Sample records for ultra-high bandwidth crt

  1. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  2. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  3. Ultra-high bandwidth quantum secured data transmission

    NASA Astrophysics Data System (ADS)

    Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-10-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

  4. Ultra-high bandwidth quantum secured data transmission

    PubMed Central

    Dynes, James F.; Tam, Winci W-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-01-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment. PMID:27734921

  5. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    PubMed

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  6. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  7. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7more » Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.« less

  8. Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.

    2018-04-01

    The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWR<2 for entire bandwidth of antenna and peak gain is 5.2 dB. Thus the antenna covers the UWB range and it can also be used for bands such as 2.4/3.6/5 -GHz WLAN bands, 2.5/3.5/5.5GHz WiMAX bands and X band satellite communication at 7.25-8.395 GHz.

  9. Graphene-assisted ultra-compact polarization splitter and rotator with an extended bandwidth.

    PubMed

    Zhang, Tian; Ke, Xianmin; Yin, Xiang; Chen, Lin; Li, Xun

    2017-09-22

    The high refraction-index contrast between silicon and the surrounding cladding makes silicon-on-insulator devices highly polarization-dependent. However, it is greatly desirable for many applications to address the issue of polarization dependence in silicon photonics. Here, a novel ultra-compact polarization splitter and rotator (PSR), constructed with an asymmetrical directional coupler consisting of a rib silicon waveguide and a graphene-embedded rib silicon waveguide (GERSW), on a silicon-on-insulator platform is proposed and investigated. By taking advantage of the large modulation of the effective refractive index of the TE mode for the GERSW by tuning the chemical potential of graphene, the phase matching condition can be well satisfied over a wide spectral band. The presented result demonstrates that for a 7-layer-graphene-embedded PSR with a coupling length of 11.1 μm, a high TM-to-TE conversion efficiency (>-0.5 dB) can be achieved over a broad bandwidth from 1516 to 1602 nm.

  10. Realization of an Ultra-thin Metasurface to Facilitate Wide Bandwidth, Wide Angle Beam Scanning.

    PubMed

    Bah, Alpha O; Qin, Pei-Yuan; Ziolkowski, Richard W; Cheng, Qiang; Guo, Y Jay

    2018-03-19

    A wide bandwidth, ultra-thin, metasurface is reported that facilitates wide angle beam scanning. Each unit cell of the metasurface contains a multi-resonant, strongly-coupled unequal arm Jerusalem cross element. This element consists of two bent-arm, orthogonal, capacitively loaded strips. The wide bandwidth of the metasurface is achieved by taking advantage of the strong coupling within and between its multi-resonant elements. A prototype of the proposed metasurface has been fabricated and measured. The design concept has been validated by the measured results. The proposed metasurface is able to alleviate the well-known problem of impedance mismatch caused by mutual coupling when the main beam of an array is scanned. In order to validate the wideband and wide scanning ability of the proposed metasurface, it is integrated with a wideband antenna array as a wide angle impedance matching element. The metasurface-array combination facilitates wide angle scanning over a 6:1 impedance bandwidth without the need for bulky dielectrics or multi-layered structures.

  11. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    NASA Astrophysics Data System (ADS)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  12. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  13. Network bandwidth utilization forecast model on high bandwidth networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wuchert; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  14. Chemical Reactivity Test (CRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaka, F.

    The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).

  15. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  16. Toshiba TDF-500 High Resolution Viewing And Analysis System

    NASA Astrophysics Data System (ADS)

    Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.

    1988-06-01

    A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.

  17. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    PubMed Central

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide. PMID:28071681

  18. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.

  19. Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigelow, David; Bent, John; Chen, Hsing-Bung

    2010-04-05

    Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long asmore » possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.« less

  20. Model-driven requirements engineering (MDRE) for real-time ultra-wide instantaneous bandwidth signal simulation

    NASA Astrophysics Data System (ADS)

    Chang, Daniel Y.; Rowe, Neil C.

    2013-05-01

    While conducting a cutting-edge research in a specific domain, we realize that (1) requirements clarity and correctness are crucial to our success [1], (2) hardware is hard to change, most work is in software requirements development, coding and testing [2], (3) requirements are constantly changing, so that configurability, reusability, scalability, adaptability, modularity and testability are important non-functional attributes [3], (4) cross-domain knowledge is necessary for complex systems [4], and (5) if our research is successful, the results could be applied to other domains with similar problems. In this paper, we propose to use model-driven requirements engineering (MDRE) to model and guide our requirements/development, since models are easy to understand, execute, and modify. The domain for our research is Electronic Warfare (EW) real-time ultra-wide instantaneous bandwidth (IBW1) signal simulation. The proposed four MDRE models are (1) Switch-and-Filter architecture, (2) multiple parallel data bit streams alignment, (3) post-ADC and pre-DAC bits re-mapping, and (4) Discrete Fourier Transform (DFT) filter bank. This research is unique since the instantaneous bandwidth we are dealing with is in gigahertz range instead of conventional megahertz.

  1. PICSiP: new system-in-package technology using a high bandwidth photonic interconnection layer for converged microsystems

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Töpper, Michael; Reichl, Herbert

    2009-05-01

    Technological frontiers between semiconductor technology, packaging, and system design are disappearing. Scaling down geometries [1] alone does not provide improvement of performance, less power, smaller size, and lower cost. It will require "More than Moore" [2] through the tighter integration of system level components at the package level. System-in-Package (SiP) will deliver the efficient use of three dimensions (3D) through innovation in packaging and interconnect technology. A key bottleneck to the implementation of high-performance microelectronic systems, including SiP, is the lack of lowlatency, high-bandwidth, and high density off-chip interconnects. Some of the challenges in achieving high-bandwidth chip-to-chip communication using electrical interconnects include the high losses in the substrate dielectric, reflections and impedance discontinuities, and susceptibility to crosstalk [3]. Obviously, the incentive for the use of photonics to overcome the challenges and leverage low-latency and highbandwidth communication will enable the vision of optical computing within next generation architectures. Supercomputers of today offer sustained performance of more than petaflops, which can be increased by utilizing optical interconnects. Next generation computing architectures are needed with ultra low power consumption; ultra high performance with novel interconnection technologies. In this paper we will discuss a CMOS compatible underlying technology to enable next generation optical computing architectures. By introducing a new optical layer within the 3D SiP, the development of converged microsystems, deployment for next generation optical computing architecture will be leveraged.

  2. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  3. Impact of phosphor luminance noise on the specification of high-resolution CRT displays for medical imaging

    NASA Astrophysics Data System (ADS)

    Muka, Edward; Mertelmeier, Thomas; Slone, Richard M.; Senol, Evren

    1997-05-01

    We studied the impact of CRT spot size, phosphor luminance noise and image noise on the specification of high- resolution CRT displays that address the critical needs of general chest radiography. Using Argus CRT simulation software, the design of high-resolution CRTs for the display of adult chest radiographs was studied. The simulated images were printed on a laser printer and evaluated by a board- certified radiologist, RMS. The validity of the Argus simulation was assessed by modeling a 1k X 1k pixels CRT, whose technical parameters were sufficiently well known. Comments from the observer are presented comparing the simulated 2k display and a size-matched replicate of the original screen/film image. Critical parameters like phosphor luminance efficiency and its impact on electron beam size and phosphor luminance noise and its impact on radiographic image noise are discussed. We conclude that Argus CRT simulation software can successfully model the performance of CRTs intended to display medical images permitting consideration of critical parameters without costly manufacturing trials. Based on the 2k CRT simulation results, we suggest that a low luminance noise phosphor such as type p45 be used to ensure that specifying a small spot size would yield the anticipated sharpness improvements.

  4. CRT electron-optical system

    NASA Astrophysics Data System (ADS)

    Shirai, Shoji

    1995-09-01

    CRT is the most successful electron optical system, commercially. Over a hundred million systems are produced each year, and distributed to the whole world as television sets or personal computers. Therefore, the system has to be extremely cost and power effective, and ergonomics is the important issue at its design. Also, CRT has to be bright enough to be watched in the luminous living or office room. Therefore, electron beam current and anode voltage (CRT screen voltage) are as high as 0.5 to 7 mA and 20 to 33 kV, respectively. These unique restrictions cause unique electron lens design such as in-line rotationally asymmetrical lens or dynamic quadrupole lens and deflection yoke design such as self converging deflection yoke which produces barrel shaped vertical and pin-cushion shaped horizontal magnetic fields. In this paper the recent technical advancement and future trends of the CRT electron optical system will be discussed. The discussion will be restricted only to the picture tube, and other devices such as camera tube, oscilloscope tube will be excluded.

  5. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.

    PubMed

    Meng, Bo; Wang, Qi Jie

    2012-01-16

    In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

  6. High bandwidth electro-optic technology for intersatellite optical communications

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    The research and development of electronic and electro-optic components for geosynchronous and low earth orbiting satellite optical high bandwidth communications at the NASA-Goddard Space Flight Center is reviewed. Intersatellite optical communications retains a strong reliance on microwave circuit technology in several areas - the microwave to optical interface, the laser transmitter modulation driver and the optical receiver. A microwave to optical interface is described requiring high bandwidth electronic downconverters and demodulators. Electrical bandwidth and current drive requirements for the laser modulation driver for three laser alternatives are discussed. Bandwidth and noise requirements are presented for optical receiver architectures.

  7. Single-longitudinal-mode, narrow bandwidth double-ring fiber laser stabilized by an efficiently taper-coupled high roundness microsphere resonator

    NASA Astrophysics Data System (ADS)

    Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing

    2018-06-01

    This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.

  8. Tactical Decision Aids High Bandwidth Links Using Autonomous Vehicles

    DTIC Science & Technology

    2004-01-01

    1 Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) A. J. Healey, D. P. Horner, Center for Autonomous Underwater Vehicle...SUBTITLE Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  9. Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity

    NASA Astrophysics Data System (ADS)

    Fan, Xu-Dong; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-09-01

    Schroeder diffusers, as a classical design of acoustic diffusers proposed over 40 years ago, play key roles in many practical scenarios ranging from architectural acoustics to noise control to particle manipulation. Despite the great success of conventional acoustic diffusers, it is still worth pursuing ideal acoustic diffusers that are essentially expected to produce perfect sound diffuse reflection within the unlimited bandwidth. Here, we propose a different mechanism for designing acoustic diffusers to overcome the basic limits in intensity uniformity and working bandwidth in the previous designs and demonstrate a practical implementation by acoustic metamaterials with dispersionless phase-steering capability. In stark contrast to the existing production of diffuse fields relying on random scattering of sound energy by using a specific mathematical number sequence of periodically distributed unit cells, we directly mold the reflected wavefront into the desired shape by precisely manipulating the local phases of individual subwavelength metastructures. We also benchmark our design via numerical simulation with a commercially available Schroeder diffuser, and the results verify that our proposed diffuser scatters incident acoustic energy into all directions more uniformly within an ultra-broad band regardless of the incident angle. Furthermore, our design enables further improvement of the working bandwidth just by simply downscaling each individual element. With ultra-broadband functionality and high uniformity of reflected intensity, our metamaterial-based production of the diffusive field opens a route to the design and application of acoustic diffusers and may have a significant impact on various fields such as architectural acoustics and medical ultrasound imaging/treatment.

  10. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    PubMed

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  11. Unpacking the CRT in Negotiating White Science

    NASA Astrophysics Data System (ADS)

    Parsons, Eileen R. Carlton; Rhodes, Billye; Brown, Corliss

    2011-12-01

    In this forum, we summarize CRT's origins, tenets common to most CRT writings, and CRT's evolution. We discuss Yerrick's article Negotiating White Science with respect to certain CRT premises. Specifically, we use the CRT tenet of racism as emphasized in first- and second-generation CRT and CRT elements liberal racial ideology and voices of color to critically examine Yerrick's propositions.

  12. VisIO: enabling interactive visualization of ultra-scale, time-series data via high-bandwidth distributed I/O systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Christopher J; Ahrens, James P; Wang, Jun

    2010-10-15

    Petascale simulations compute at resolutions ranging into billions of cells and write terabytes of data for visualization and analysis. Interactive visuaUzation of this time series is a desired step before starting a new run. The I/O subsystem and associated network often are a significant impediment to interactive visualization of time-varying data; as they are not configured or provisioned to provide necessary I/O read rates. In this paper, we propose a new I/O library for visualization applications: VisIO. Visualization applications commonly use N-to-N reads within their parallel enabled readers which provides an incentive for a shared-nothing approach to I/O, similar tomore » other data-intensive approaches such as Hadoop. However, unlike other data-intensive applications, visualization requires: (1) interactive performance for large data volumes, (2) compatibility with MPI and POSIX file system semantics for compatibility with existing infrastructure, and (3) use of existing file formats and their stipulated data partitioning rules. VisIO, provides a mechanism for using a non-POSIX distributed file system to provide linear scaling of 110 bandwidth. In addition, we introduce a novel scheduling algorithm that helps to co-locate visualization processes on nodes with the requested data. Testing using VisIO integrated into Para View was conducted using the Hadoop Distributed File System (HDFS) on TACC's Longhorn cluster. A representative dataset, VPIC, across 128 nodes showed a 64.4% read performance improvement compared to the provided Lustre installation. Also tested, was a dataset representing a global ocean salinity simulation that showed a 51.4% improvement in read performance over Lustre when using our VisIO system. VisIO, provides powerful high-performance I/O services to visualization applications, allowing for interactive performance with ultra-scale, time-series data.« less

  13. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  14. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    NASA Astrophysics Data System (ADS)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  15. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  16. High bandwidth deflection readout for atomic force microscopes

    NASA Astrophysics Data System (ADS)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62 fm / √{ Hz } .

  17. All-optical central-frequency-programmable and bandwidth-tailorable radar

    PubMed Central

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596

  18. On-Chip Integrated Distributed Amplifier and Antenna Systems in SiGe BiCMOS for Transceivers with Ultra-Large Bandwidth

    NASA Astrophysics Data System (ADS)

    Valerio Testa, Paolo; Klein, Bernhard; Hahnel, Ronny; Plettemeier, Dirk; Carta, Corrado; Ellinger, Frank

    2017-09-01

    This paper presents an overview of the research work currently being performed within the frame of project DAAB and its successor DAAB-TX towards the integration of ultra-wideband transceivers operating at mm-wave frequencies and capable of data rates up to 100 Gbits-1. Two basic system architectures are being considered: integrating a broadband antenna with a distributed amplifier and integrate antennas centered at adjacent frequencies with broadband active combiners or dividers. The paper discusses in detail the design of such systems and their components, from the distributed amplifiers and combiners, to the broadband silicon antennas and their single-chip integration. All components are designed for fabrication in a commercially available SiGe:C BiCMOS technology. The presented results represent the state of the art in their respective areas: 170 GHz is the highest reported bandwidth for distributed amplifiers integrated in Silicon; 89 GHz is the widest reported bandwidth for integrated-system antennas; the simulated performance of the two antenna integrated receiver spans 105 GHz centered at 148GHz, which would improve the state of the art by a factor in excess of 4 even against III-V implementations, if confirmed by measurements.

  19. CRT image recording evaluation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Performance capabilities and limitations of a fiber optic coupled line scan CRT image recording system were investigated. The test program evaluated the following components: (1). P31 phosphor CRT with EMA faceplate; (2). P31 phosphor CRT with clear clad faceplate; (3). Type 7743 semi-gloss dry process positive print paper; (4). Type 777 flat finish dry process positive print paper; (5). Type 7842 dry process positive film; and (6). Type 1971 semi-gloss wet process positive print paper. Detailed test procedures used in each test are provided along with a description of each test, the test data, and an analysis of the results.

  20. Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.

    PubMed

    St-Yves, Jonathan; Bahrami, Hadi; Jean, Philippe; LaRochelle, Sophie; Shi, Wei

    2015-12-01

    Next-generation high-capacity optical networks require flexible allocation of spectrum resources, for which low-cost optical filters with an ultra-wide bandwidth tunability beyond 100 GHz are desired. We demonstrate an integrated band-pass filter with the bandwidth continuously tuned across 670 GHz (117-788 GHz) which, to the best of our knowledge, is the widest tuning span ever demonstrated on a silicon chip. The filter also features simultaneous wavelength tuning and an unlimited free spectral range. We measured an out-of-band contrast of up to 55 dB, low in-band ripples of less than 0.3 dB, and in-band group delay variation of less than 8 ps. This result was achieved using cascaded Bragg-grating-assisted contra-directional couplers and micro-heaters on the 220 nm silicon-on-insulator platform with a very compact footprint of less than 7000  μm2. Another design with the bandwidth continuously tunable from 50 GHz to 1 THz is also presented.

  1. Hybrid cryptosystem RSA - CRT optimization and VMPC

    NASA Astrophysics Data System (ADS)

    Rahmadani, R.; Mawengkang, H.; Sutarman

    2018-03-01

    Hybrid cryptosystem combines symmetric algorithms and asymmetric algorithms. This combination utilizes speeds on encryption/decryption processes of symmetric algorithms and asymmetric algorithms to secure symmetric keys. In this paper we propose hybrid cryptosystem that combine symmetric algorithms VMPC and asymmetric algorithms RSA - CRT optimization. RSA - CRT optimization speeds up the decryption process by obtaining plaintext with dp and p key only, so there is no need to perform CRT processes. The VMPC algorithm is more efficient in software implementation and reduces known weaknesses in RC4 key generation. The results show hybrid cryptosystem RSA - CRT optimization and VMPC is faster than hybrid cryptosystem RSA - VMPC and hybrid cryptosystem RSA - CRT - VMPC. Keyword : Cryptography, RSA, RSA - CRT, VMPC, Hybrid Cryptosystem.

  2. Lead recovery from waste CRT funnel glass by high-temperature melting process.

    PubMed

    Hu, Biao; Hui, Wenlong

    2018-02-05

    In this research, a novel and effective process for waste CRT funnel glass treatment was developed. The key to this process is removal of lead from the CRT funnel glass by high-temperature melting process. Sodium carbonate powder was used as a fusion agent, sodium sulfide serves as a catalytic agent and carbon powder acts as reducing agent. Experimental results showed that lead recovery rate increased with an increase in the amount of added sodium carbonate, sodium sulfide, carbonate, temperature and holding time initially, and then reached a stable value. The maximum lead recovery rate was approximately 94%, when the optimum adding amount of sodium carbonate, sodium sulfide, carbonate, temperature and holding time were 25%, 8%, 3.6%, 1200°C and 120min, respectively. In the high-temperature melting process, lead silicate in the funnel glass was firstly reduced, and then removed. The glass slag can be made into sodium and potassium silicate by hydrolysis process. This study proposed a practical and economical process for recovery of lead and utilization of waste glass slag. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Blocking CRT: How the Emotionality of Whiteness Blocks CRT in Urban Teacher Education

    ERIC Educational Resources Information Center

    Matias, Cheryl E.; Montoya, Roberto; Nishi, Naomi W. M.

    2016-01-01

    Although Critical Race Theory (CRT) has been applied to teacher education, it has yet to be meaningfully integrated into the core of urban teacher education programs. The reticence to embrace CRT is largely due to the overwhelming presence of Whiteness, despite Sleeter's (2001) demand for diversification. This theoretically interpretative article…

  4. Live Ultra-High Definition from the International Space Station

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; George, Sandy

    2017-01-01

    The first ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a 'Super Session' at the National Association of Broadcasters (NAB) in April 2017. The Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. HEVC may also enable live Virtual Reality video downlinks from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a 'live' event was staged when the UHD coming from the ISS had a latency of 10+ seconds. Finally, the paper will discuss how NASA is leveraging commercial technologies for use on-orbit vs. creating technology as was required during the Apollo Moon Program and early space age.

  5. Highly linear dual ring resonator modulator for wide bandwidth microwave photonic links.

    PubMed

    Hosseinzadeh, Arash; Middlebrook, Christopher T

    2016-11-28

    A highly linear dual ring resonator modulator (DRRM) design is demonstrated to provide high spur-free dynamic range (SFDR) in a wide operational bandwidth. Harmonic and intermodulation distortions are theoretically analyzed in a single ring resonator modulator (RRM) with Lorentzian-shape transfer function and a strategy is proposed to enhance modulator linearity for wide bandwidth applications by utilizing DRRM. Third order intermodulation distortion is suppressed in a frequency independent process with proper splitting ratio of optical and RF power and proper dc biasing of the ring resonators. Operational bandwidth limits of the DRRM are compared to the RRM showing the capability of the DRRM in providing higher SFDR in an unlimited operational bandwidth. DRRM bandwidth limitations are a result of the modulation index from each RRM and their resonance characteristics that limit the gain and noise figure of the microwave photonic link. The impact of the modulator on microwave photonic link figure of merits is analyzed and compared to RRM and Mach-Zehnder Interference (MZI) modulators. Considering ± 5 GHz operational bandwidth around the resonance frequency imposed by the modulation index requirement the DRRM is capable of a ~15 dB SFDR improvement (1 Hz instantaneous bandwidth) versus RRM and MZI.

  6. Optical air-coupled NDT system with ultra-broad frequency bandwidth (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fischer, Balthasar; Rohringer, Wolfgang; Heine, Thomas

    2017-05-01

    We present a novel, optical ultrasound airborne acoustic testing setup exhibiting a frequency bandwidth of 1MHz in air. The sound waves are detected by a miniaturized Fabry-Pérot interferometer (2mm cavity) whilst the sender consists of a thermoacoustic emitter or a short laser pulse We discuss characterization measurements and C-scans of a selected set of samples, including Carbon fiber reinforced polymer (CFRP). The high detector sensitivity allows for an increased penetration depth. The high frequency and the small transducer dimensions lead to a compelling image resolution.

  7. Managing high-bandwidth real-time data storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigelow, David D.; Brandt, Scott A; Bent, John M

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended tomore » address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.« less

  8. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors

  9. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    PubMed

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  10. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  11. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  12. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE PAGES

    Yoo, Wucherl; Sim, Alex

    2016-06-24

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  13. Comparison of the detectability of high- and low-contrast details on a TFT screen and a CRT screen designed for radiologic diagnosis.

    PubMed

    Kotter, Elmar; Bley, Thorsten A; Saueressig, Ulrich; Fisch, Dagmar; Springer, Oliver; Winterer, Jan Torsten; Schaefer, Oliver; Langer, Mathias

    2003-11-01

    To evaluate the detection rate of fine details of a new thin-film transistor (TFT) grayscale monitor designed for radiologic diagnosis, compared with a type of cathode ray tube (CRT) screen used routinely for diagnostic radiology. Fifteen radiographs of a statistical phantom presenting low- and high-contrast details were obtained and read out with an Agfa ADC compact storage phosphor system. Each radiograph presented 60 high-density (high-contrast) and 60 low-density (low-contrast) test bodies. Approximately half the test bodies contained holes with different diameters. Observers were asked to detect the presence or absence of a hole in the test body on a 5-point confidence range. The total of 1800 test bodies was reviewed by 5 radiologists on the TFT monitor (20.8 inches; 1536 x 2048 pixels; maximum luminance, 650 cd/m2; contrast, 600:1) and the CRT monitor (21 inches; P45 Phosphor; 2048 x 2560 pixels operated at 1728 x 2304 pixels; maximum luminance, 600 cd/m2; contrast, 300:1). The data were analyzed by receiver-operator characteristic analysis. For high-contrast details, the mean area under the curve rated 0.9336 for the TFT monitor and 0.9312 for the CRT monitor. For low-contrast details, the mean area under the curve rated 0.9189 for the TFT monitor and 0.9224 for the CRT monitor. At P high- and low-contrast disks) types of artifacts. The TFT screen performs as well as CRT monitors for the detection of fine details in both high- and low-contrast environments. Further studies with images derived from clinical routine are necessary before safely using TFT monitors in clinical practice.

  14. Biopsy Specimens Obtained 7 Days After Starting Chemoradiotherapy (CRT) Provide Reliable Predictors of Response to CRT for Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshiyuki; Sadahiro, Sotaro, E-mail: sadahiro@is.icc.u-tokai.ac.jp; Tanaka, Akira

    2013-04-01

    Purpose: Preoperative chemoradiation therapy (CRT) significantly decreases local recurrence in locally advanced rectal cancer. Various biomarkers in biopsy specimens obtained before CRT have been proposed as predictors of response. However, reliable biomarkers remain to be established. Methods and Materials: The study group comprised 101 consecutive patients with locally advanced rectal cancer who received preoperative CRT with oral uracil/tegafur (UFT) or S-1. We evaluated histologic findings on hematoxylin and eosin (H and E) staining and immunohistochemical expressions of Ki67, p53, p21, and apoptosis in biopsy specimens obtained before CRT and 7 days after starting CRT. These findings were contrasted with themore » histologic response and the degree of tumor shrinkage. Results: In biopsy specimens obtained before CRT, histologic marked regression according to the Japanese Classification of Colorectal Carcinoma (JCCC) criteria and the degree of tumor shrinkage on barium enema examination (BE) were significantly greater in patients with p21-positive tumors than in those with p21-negative tumors (P=.04 and P<.01, respectively). In biopsy specimens obtained 7 days after starting CRT, pathologic complete response, histologic marked regression according to both the tumor regression criteria and JCCC criteria, and T downstaging were significantly greater in patients with apoptosis-positive and p21-positive tumors than in those with apoptosis-negative (P<.01, P=.02, P=.01, and P<.01, respectively) or p21-negative tumors (P=.03, P<.01, P<.01, and P=.02, respectively). The degree of tumor shrinkage on both BE as well as MRI was significantly greater in patients with apoptosis-positive and with p21-positive tumors than in those with apoptosis-negative or p21-negative tumors, respectively. Histologic changes in H and E-stained biopsy specimens 7 days after starting CRT significantly correlated with pathologic complete response and marked regression on both JCCC and tumor

  15. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  16. Theoretical Design Study of a 2-18 GHz Bandwidth Helix TWT (Traveling Wave Tube) Amplifier

    DTIC Science & Technology

    1987-02-01

    Inckode Security Clanification) THEORETICAL DESIGN STUDY OF A 2-18 GHz BANDWIDTH HELIX TWT AMPLIFIER 12. PERSONAL AUTNOR(S) Michael A. Frisoni 13a. TYPE...in a traveling-wave tube ( TWT ) output circuit in A’ order to realize a 2-18 GHz frequency bandwidth. The nondispersive helix circuit provides the...Input Parameters . . . . . . . . . . . 30 V. ULTRA- BROADBAND THEORY BASED ON TWT COMPUTER SIMULATION • . 33 A. Definitions

  17. Optimal Bandwidth for High Efficiency Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Yang, Ronggui; Chen, Gang; Dresselhaus, Mildred S.

    2011-11-01

    The thermoelectric figure of merit (ZT) in narrow conduction bands of different material dimensionalities is investigated for different carrier scattering models. When the bandwidth is zero, the transport distribution function (TDF) is finite, not infinite as previously speculated by Mahan and Sofo [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)PNASA60027-842410.1073/pnas.93.15.7436], even though the carrier density of states goes to infinity. Such a finite TDF results in a zero electrical conductivity and thus a zero ZT. We point out that the optimal ZT cannot be found in an extremely narrow conduction band. The existence of an optimal bandwidth for a maximal ZT depends strongly on the scattering models and the dimensionality of the material. A nonzero optimal bandwidth for maximizing ZT also depends on the lattice thermal conductivity. A larger maximum ZT can be obtained for materials with a smaller lattice thermal conductivity.

  18. Vertically integrated visible and near-infrared metasurfaces enabling an ultra-broadband and highly angle-resolved anomalous reflection.

    PubMed

    Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2018-06-21

    An optical device with minimized dimensions, which is capable of efficiently resolving an ultra-broad spectrum into a wide splitting angle but incurring no spectrum overlap, is of importance in advancing the development of spectroscopy. Unfortunately, this challenging task cannot be easily addressed through conventional geometrical or diffractive optical elements. Herein, we propose and demonstrate vertically integrated visible and near-infrared metasurfaces which render an ultra-broadband and highly angle-resolved anomalous reflection. The proposed metasurface capitalizes on a supercell that comprises two vertically concatenated trapezoid-shaped aluminum antennae, which are paired with a metallic ground plane via a dielectric layer. Under normal incidence, reflected light within a spectral bandwidth of 1000 nm ranging from λ = 456 nm to 1456 nm is efficiently angle-resolved to a single diffraction order with no spectrum overlap via the anomalous reflection, exhibiting an average reflection efficiency over 70% and a substantial angular splitting of 58°. In light of a supercell pitch of 1500 nm, to the best of our knowledge, the micron-scale bandwidth is the largest ever reported. It is noted that the substantially wide bandwidth has been accomplished by taking advantage of spectral selective vertical coupling effects between antennae and ground plane. In the visible regime, the upper antenna primarily renders an anomalous reflection by cooperating with the lower antenna, which in turn cooperates with the ground plane and produces phase variations leading to an anomalous reflection in the near-infrared regime. Misalignments between the two antennae have been particularly inspected to not adversely affect the anomalous reflection, thus guaranteeing enhanced structural tolerance of the proposed metasurface.

  19. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  20. Ultra-flat wideband single-pump Raman-enhanced parametric amplification.

    PubMed

    Gordienko, V; Stephens, M F C; El-Taher, A E; Doran, N J

    2017-03-06

    We experimentally optimize a single pump fiber optical parametric amplifier in terms of gain spectral bandwidth and gain variation (GV). We find that optimal performance is achieved with the pump tuned to the zero-dispersion wavelength of dispersion stable highly nonlinear fiber (HNLF). We demonstrate further improvement of parametric gain bandwidth and GV by decreasing the HNLF length. We discover that Raman and parametric gain spectra produced by the same pump may be merged together to enhance overall gain bandwidth, while keeping GV low. Consequently, we report an ultra-flat gain of 9.6 ± 0.5 dB over a range of 111 nm (12.8 THz) on one side of the pump. Additionally, we demonstrate amplification of a 60 Gbit/s QPSK signal tuned over a portion of the available bandwidth with OSNR penalty less than 1 dB for Q2 below 14 dB.

  1. An ultra-wide bandwidth-based range/GPS tight integration approach for relative positioning in vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Wayn Cheong, Joon; Dempster, Andrew G.

    2015-04-01

    Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems, such as collision warning. However, commercial global navigation satellite systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, cooperative positioning (CP) techniques, through sharing the GNSS measurements between vehicles, can improve the performance of relative positioning in a vehicular ad hoc network (VANET). In this paper, while assuming there are no obstacles between vehicles, a new enhanced tightly coupled CP technique is presented by adding ultra-wide bandwidth (UWB)-based inter-vehicular range measurements. In the proposed CP method, each vehicle fuses the GPS measurements and the inter-vehicular range measurements. Based on analytical and experimental results, in the full GPS coverage environment, the new tight integration CP method outperforms the INS-aided tight CP method, tight CP method, and DGPS by 11%, 15%, and 24%, respectively; in the GPS outage scenario, the performance improvement achieves 60%, 65%, and 73%, respectively.

  2. Characterization of beta-carotene ketolases, CrtW, from marine bacteria by complementation analysis in Escherichia coli.

    PubMed

    Choi, Seon-kang; Nishida, Yasuhiro; Matsuda, Satoru; Adachi, Kyoko; Kasai, Hiroaki; Peng, Xue; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-01-01

    A complementation analysis was performed in Escherichia coli to evaluate the efficiency of beta-carotene ketolases (CrtW) from the marine bacteria Brevundimonas sp. SD212, Paracoccus sp. PC1 (Alcaligenes PC-1), and Paracoccus sp. N81106 (Agrobacterium aurantiacum), for astaxanthin production. Each crtW gene was expressed in Escherichia coli synthesizing zeaxanthin due to the presence of plasmid pACCAR25DeltacrtX. Carotenoids that accumulated in the resulting E. coli transformants were examined by chromatographic and spectroscopic analyses. The transformant carrying the Paracoccus sp. PC1 or N81106 crtW gene accumulated high levels of adonixanthin, which is the final astaxanthin precursor for CrtW, and astaxanthin, while the E. coli transformant with crtW from Brevundimonas sp. SD212 did not accumulate any adonixanthin and produced a high level of astaxanthin. These results show efficient conversion by CrtW of Brevundimonas sp. SD212 from adonixanthin to astaxanthin, which is a new-found characteristic of a bacterial CrtW enzyme. The phylogenetic positions between CrtW of the two genera, Brevundimonas and Paracoccus, are distant, although they fall into alpha-Proteobacteria.

  3. Ultra-flat and ultra-broadband supercontinuum generation in photonic crystal fiber pumped by noise-like pulses

    NASA Astrophysics Data System (ADS)

    Chen, Yewang; Ruan, Shuangchen; Wu, Xu; Guo, Chunyu; Liu, Weiqi; Yu, Jun; Luo, Ruoheng; Ren, Xikui; Zhu, Yihuai

    2017-02-01

    An ultra-flat and ultra-broadband supercontinuum (SC) is demonstrated in a 4-m photonic crystal fiber (PCF) pumped by an Yb-doped all-fiber noise-like pulses (NLP) laser. The Yb-doped fiber laser is seeded by a SESAM mode-locked fiber laser, and amplified by cascaded fiber amplifiers, with its center wavelength, repetition frequency and the average noise-like bunch duration of 1064.52 nm, 50.18 MHz, 9.14 ps, respectively. Pumped by this NLP laser, the SC source has a 3 dB bandwidth and a 7 dB bandwidth (ignore the pump residue) of 1440 nm and 1790 nm at the maximum average output power of 6.94 W. To the best of our knowledge, this flatness is significantly prominent for the performance of PCF-based SC sources.

  4. Intelligent bandwidth compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 bandwidth-compressed images are presented.

  5. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics.

    PubMed

    Chen, Sen; Luo, Sheng Nian

    2018-03-01

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  6. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sen; Luo, Sheng-Nian

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamentalmore » harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.« less

  7. Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Sasai, Yoshinori; Nagai, Yuya; Itow, Yoshitaka; Matsubara, Yutaka; Sako, Takashi; Lopez, Diego; Itow, Tsukasa; Munakata, Kazuoki; Kato, Chihiro; Kozai, Masayoshi; Miyazaki, Takahiro; Shibata, Shoichi; Oshima, Akitoshi; Kojima, Hiroshi; Tsuchiya, Harufumi; Watanabe, Kyoko; Koi, Tatsumi; Valdés-Galicia, Jose Francisco; González, Luis Xavier; Ortiz, Ernesto; Musalem, Octavio; Hurtado, Alejandro; Garcia, Rocio; Anzorena, Marcos

    2014-12-01

    We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm × 2.5 cm × 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m × 3.0 m × 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.

  8. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI

    PubMed Central

    Wang, Cheng; Zeng, Jian; Li, Yin; Yang, Guangxiao; He, Guangyuan

    2014-01-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g–1 of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g–1 of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g–1 of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. PMID:24692648

  9. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    PubMed

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer

    PubMed Central

    Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei

    2017-01-01

    Abstract Background: Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose–volume histograms and outcomes including survival and toxicity. Methods: A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Results: Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Conclusion: Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while

  11. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  12. Wideband spectrum analysis of ultra-high frequency radio-wave signals due to advanced one-phonon non-collinear anomalous light scattering.

    PubMed

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-04-20

    We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52  GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.

  13. Ultra High Bypass Integrated System Test

    NASA Image and Video Library

    2015-09-14

    NASA’s Environmentally Responsible Aviation Project, in collaboration with the Federal Aviation Administration (FAA) and Pratt & Whitney, completed testing of an Ultra High Bypass Ratio Turbofan Model in the 9’ x 15’ Low Speed Wind Tunnel at NASA Glenn Research Center. The fan model is representative of the next generation of efficient and quiet Ultra High Bypass Ratio Turbofan Engine designs.

  14. Low cost and thin metasurface for ultra wide band and wide angle polarization insensitive radar cross section reduction

    NASA Astrophysics Data System (ADS)

    Ameri, Edris; Esmaeli, Seyed Hassan; Sedighy, Seyed Hassan

    2018-05-01

    A planar low cost and thin metasurface is proposed to achieve ultra-wideband radar cross section (RCS) reduction with stable performance with respect to polarization and incident angles. This metasurface is composed of two different artificial magnetic conductor unit cells arranged in a chessboard like configuration. These unit cells have a Jerusalem cross pattern with different thicknesses, which results in wideband out-phase reflection and RCS reduction, consequently. The designed metasurface reduces RCS more than 10-dB from 13.6 GHz to 45.5 GHz (108% bandwidth) and more than 20-dB RCS from 15.2 GHz to 43.6 GHz (96.6%). Moreover, the 10-dB RCS reduction bandwidth is very stable (more than 107%) for both TE and TM polarizations. The good agreement between simulations and measurement results proves the design, properly. The ultra-wide bandwidth, low cost, low profile, and stable performance of this metasurface prove its high capability compared with the state-of-the-art references.

  15. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.

    PubMed

    Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H

    2016-06-08

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

  16. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    PubMed Central

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  17. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments Database

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  18. High bandwidth specialty optical fibers for data communications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Sun, Xiaoguang

    2008-11-01

    Perhaps the most common specialty optical fiber is HCS hard polymer clad silica fiber. It was invented almost 30 years ago for transmitting laser light to initiate explosives in mining industry and later adapted to be used in a variety of new applications, such as data communications. The most typical HCS fiber typically consists of a 200 μm pure silica glass core, a thin coating of low refractive index hard polymer as the cladding, and an ETFE buffer. This design enables the "crimp-and-cleave" technique of terminating and connectorizing fibers quickly and reliably. Its greater glass diameter also renders greater robustness allowing the fiber to endure greater forces during installation. Due to its larger core size and high numerical aperture (NA), the fiber can be used with a plastic connector and low cost LED transmitter that can greatly reduce the system cost. It can also be used at higher temperature and humidity conditions than standard optical fibers coated with telecommunications grade acrylate material. As applications evolve and require greater bandwidth and/or performance over a greater distance, the challenge now is to develop specialty optical fibers with significantly greater bandwidth-length product while maintaining all other characteristics critical to their ease of use and performance. As a response to the demand, two new fiber types have been designed and developed as higher bandwidth versions of the original HCS fiber. In this paper, we will discuss some of the main design requirements for the fibers, describe in detail the two designs, and present the results of fiber performance.

  19. Information recovery from high-speed silver halide emulsions containing CRT traces after exposure to nuclear gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmore, C. H.

    1974-03-01

    A data recovery problem often occurs in nuclear tests when photographic film used to record CRT traces is unavoidably exposed fo gamma rays before it can be retrieved for developing. Studies made to improve recovery of the CRT data from such film are described. Best results were obtained with a procedure involving reversal processing, silver intensification, dye-coupling development, and duplication. (auth)

  20. Anodal right ventricular capture during left ventricular stimulation in CRT-implantable cardioverter defibrillators.

    PubMed

    Thibault, Bernard; Roy, Denis; Guerra, Peter G; Macle, Laurent; Dubuc, Marc; Gagné, Pierre; Greiss, Isabelle; Novak, Paul; Furlani, Aldo; Talajic, Mario

    2005-07-01

    Cardiac resynchronization therapy (CRT) has been shown to improve symptoms of patients with moderate to severe heart failure. Optimal CRT involves biventricular or left ventricular (LV) stimulation alone, atrio-ventricular (AV) delay optimization, and possibly interventricular timing adjustment. Recently, anodal capture of the right ventricle (RV) has been described for patients with CRT-pacemakers. It is unknown whether the same phenomenon exists in CRT systems associated with defibrillators (CRT-ICD). The RV leads used in these systems are different from pacemaker leads: they have a larger diameter and shocking coils, which may affect the occurrence of anodal capture. We looked for anodal RV capture during LV stimulation in 11 consecutive patients who received a CRT-ICD system with RV leads with a true bipolar design. Fifteen patients who had RV leads with an integrated design were used as controls. Anodal RV and LV thresholds were determined at pulse width (pw) durations of 0.2, 0.5, and 1.0 ms. RV anodal capture during LV pacing was found in 11/11 patients at some output with true bipolar RV leads versus 0/15 patients with RV leads with an integrated bipolar design. Anodal RV capture threshold was more affected by changes in pw duration than LV capture threshold. In CRT-ICD systems, RV leads with a true bipolar design with the proximal ring also used as the anode for LV pacing are associated with a high incidence of anodal RV capture during LV pacing. This may affect the clinical response to alternative resynchronization methods using single LV stimulation or interventricular delay programming.

  1. Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-05-01

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.

  2. Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Zmuidzinas, Jonas; Bradford, Charles M.; Leduc, Henry G.; Day, Peter K.; Swenson, Loren; Hailey-Dunsheath, Steven; O'Brient, Roger C.; Padin, Stephen; Shirokoff, Erik D.; hide

    2013-01-01

    Small size, wide spectral bandwidth, and highly multiplexed detector readout are required to develop powerful multi-beam spectrometers for high-redshift observations. Currently available spectrometers at these frequencies are large and bulky. The grating sizes for these spectrometers are prohibitive. This fundamental size issue is a key limitation for space-based spectrometers for astrophysics applications. A novel, moderate-resolving-power (R-700), ultra-compact spectrograph-on-a-chip for millimeter and submillimeter wavelengths is the solution.

  3. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    PubMed

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultra-wideband microwave photonic frequency downconverter based on carrier-suppressed single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu

    2018-03-01

    An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.

  5. WDM package enabling high-bandwidth optical intrasystem interconnects for high-performance computer systems

    NASA Astrophysics Data System (ADS)

    Schrage, J.; Soenmez, Y.; Happel, T.; Gubler, U.; Lukowicz, P.; Mrozynski, G.

    2006-02-01

    From long haul, metro access and intersystem links the trend goes to applying optical interconnection technology at increasingly shorter distances. Intrasystem interconnects such as data busses between microprocessors and memory blocks are still based on copper interconnects today. This causes a bottleneck in computer systems since the achievable bandwidth of electrical interconnects is limited through the underlying physical properties. Approaches to solve this problem by embedding optical multimode polymer waveguides into the board (electro-optical circuit board technology, EOCB) have been reported earlier. The principle feasibility of optical interconnection technology in chip-to-chip applications has been validated in a number of projects. For reasons of cost considerations waveguides with large cross sections are used in order to relax alignment requirements and to allow automatic placement and assembly without any active alignment of components necessary. On the other hand the bandwidth of these highly multimodal waveguides is restricted due to mode dispersion. The advance of WDM technology towards intrasystem applications will provide sufficiently high bandwidth which is required for future high-performance computer systems: Assuming that, for example, 8 wavelength-channels with 12Gbps (SDR1) each are given, then optical on-board interconnects with data rates a magnitude higher than the data rates of electrical interconnects for distances typically found at today's computer boards and backplanes can be realized. The data rate will be twice as much, if DDR2 technology is considered towards the optical signals as well. In this paper we discuss an approach for a hybrid integrated optoelectronic WDM package which might enable the application of WDM technology to EOCB.

  6. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    PubMed Central

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-01-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254

  7. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    PubMed

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  8. High bandwidth magnetically isolated signal transmission circuit

    NASA Technical Reports Server (NTRS)

    Repp, John Donald (Inventor)

    2005-01-01

    Many current electronic systems incorporate expensive or sensitive electrical components. Because electrical energy is often generated or transmitted at high voltages, the power supplies to these electronic systems must be carefully designed. Power supply design must ensure that the electrical system being supplied with power is not exposed to excessive voltages or currents. In order to isolate power supplies from electrical equipment, many methods have been employed. These methods typically involve control systems or signal transfer methods. However, these methods are not always suitable because of their drawbacks. The present invention relates to transmitting information across an interface. More specifically, the present invention provides an apparatus for transmitting both AC and DC information across a high bandwidth magnetic interface with low distortion.

  9. Got Bandwidth?

    ERIC Educational Resources Information Center

    Villano, Matt

    2009-01-01

    Video-heavy distance learning programs can put a strain on the campus network. This article describes how three institutions are managing bandwidth to ensure high-quality service for eLearning students.

  10. RAID Disk Arrays for High Bandwidth Applications

    NASA Technical Reports Server (NTRS)

    Moren, Bill

    1996-01-01

    High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.

  11. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  12. Design and demonstration of ultra-fast W-band photonic transmitter-mixer and detectors for 25 Gbits/sec error-free wireless linking.

    PubMed

    Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E

    2012-09-10

    A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

  13. Transfer of stimulus control from a TFT to CRT screen.

    PubMed

    Railton, Renee Caron Richards; Foster, T Mary; Temple, William

    2010-10-01

    The use of television and computer screens for presenting stimuli to animals is increasing as it is non-invasive and can provide precise control over stimuli. Past studies have used cathode ray tube (CRT) screens; however, there is some evidence that these give different results to non-flickering thin film transistor (TFT) screens. Hens' critical flicker fusion frequency ranges between 80 and 90 Hz--above standard CRT screens. Thus, stimuli presented on CRT screens may appear distorted to hens. This study aimed to investigate whether changing the flicker rate of CRT screens altered hens' discrimination. Hens were trained (in a conditional discrimination) to discriminate between two stimuli on a TFT (flickerless) screen, and tested with the stimuli on a CRT screen at four flicker rates (60, 75, 85, and 100 Hz). The hens' accuracy generally decreased as the refresh rate of the CRT screen decreased. These results imply that the change in flicker rate changed the appearance of the stimuli enough to affect the hens' discrimination and stimulus control is disrupted when the stimuli appear to flicker. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. High-bandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner.

    PubMed

    Feng, Zhao; Ling, Jie; Ming, Min; Xiao, Xiao-Hui

    2017-08-01

    For precision motion, high-bandwidth and flexible tracking are the two important issues for significant performance improvement. Iterative learning control (ILC) is an effective feedforward control method only for systems that operate strictly repetitively. Although projection ILC can track varying references, the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying (LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate that the proposed approach can locate the high-frequency regions accurately and achieve the best performance under varying references compared with traditional frequency-domain and projection ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed approach.

  15. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    PubMed

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan

    An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.

  17. No detectable bioeffects following acute exposure to high peak power ultra-wide band electromagnetic radiation in rats.

    PubMed

    Walters, T J; Mason, P A; Sherry, C J; Steffen, C; Merritt, J H

    1995-06-01

    A wide range assessment of the possible bioeffects of an acute exposure to high peak power ultra-wide band (UWB) electromagnetic radiation was performed in rats. The UWB-exposure consisted of 2 min of pulsed (frequency: 60 Hz, pulse width: 5-10 ns) UWB (bandwidth: 0.25-2.50 GHz) electromagnetic radiation. Rats were examined using one of the following: 1) a functional observational battery (FOB); 2) a swimming performance test; 3) a complete panel of blood chemistries; or 4) determination of the expression of the c-fos protein in immunohistologically-stained sections of the brain. No significant differences were found between UWB- or sham-exposed rats on any of the measured parameters.

  18. The QoE implications of ultra-high definition video adaptation strategies

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Awobuluyi, Olatunde; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    As the capabilities of high-end consumer devices increase, streaming and playback of Ultra-High Definition (UHD) is set to become commonplace. The move to these new, higher resolution, video services is one of the main factors contributing to the predicted continuation of growth in video related traffic in the Internet. This massive increases in bandwidth requirement, even when mitigated by the use of new video compression standards such as H.265, will place an ever-increasing burden on network service providers. This will be especially true in mobile environments where users have come to expect ubiquitous access to content. Consequently, delivering UHD and Full UHD (FUHD) video content is one of the key drivers for future Fifth Generation (5G) mobile networks. One often voiced, but as yet unanswered question, is whether users of mobile devices with modest screen sizes (e.g. smartphones or smaller tablet) will actually benefit from consuming the much higher bandwidth required to watch online UHD video, in terms of an improved user experience. In this paper, we use scalable H.265 encoded video streams to conduct a subjective evaluation of the impact on a user's perception of video quality across a comprehensive range of adaptation strategies, covering each of the three adaptation domains, for UHD and FUHD video. The results of our subjective study provide insightful and useful indications of which methods of adapting UHD and FUHD streams have the least impact on user's perceived QoE. In particular, it was observed that, in over 70% of cases, users were unable to distinguish between full HD (1080p) and UHD (4K) videos when they were unaware of which version was being shown to them. Our results from this evaluation can be used to provide adaptation rule sets that will facilitate fast, QoE aware in-network adaptation of video streams in support of realtime adaptation objectives. Undoubtedly they will also promote discussion around how network service providers manage

  19. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  20. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  1. Real-time film recording from stroke-written CRT's

    NASA Technical Reports Server (NTRS)

    Hunt, R.; Grunwald, A. J.

    1980-01-01

    Real-time simulation studies often require motion-picture recording of events directly from stroke written cathode-ray tubes (CRT's). Difficulty presented is prevention of "flicker," which results from lack of synchronization between display sequence on CRT and shutter motion of camera. Programmable method has been devised for phasing display sequence to shutter motion, ensuring flicker-free recordings.

  2. Cognitive remediation therapy (CRT) in a specialist inpatient eating disorder service for children and adolescents: CAN-CRT study protocol for a pilot randomised controlled trial.

    PubMed

    Giombini, Lucia; Nesbitt, Sophie; Cox, Hannah; Foxall, Anna; Sharia, Teo; Easter, Abigail; Tchanturia, Kate

    2018-03-26

    Research on treatments for young people (YP) with anorexia nervosa (AN) is scarce. Evidence supports the use of cognitive remediation therapy (CRT) to improve central coherence and set-shifting, inefficiencies that can negatively impact on prognosis. The study aims to evaluate the feasibility of individual CRT in an inpatient setting for YP aged 10-18 years with AN and to qualitatively examine YP's and their parents experiences. In a single-centre, pilot, randomised controlled trial, 80 patients aged 10-18 years with AN will be randomly allocated to the immediate or delayed CRT group, in addition to standard treatment. A repeated measures design will be conducted across 3 time points. The data will provide evidence regarding the feasibility of individual CRT in YP with AN, informing directions of further development of CRT. The study is in preparation for a definitive randomised controlled trial. The aim of this manuscript is to describe the study protocol. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association.

  3. Fault-tolerant bandwidth reservation strategies for data transfers in high-performance networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Liudong; Zhu, Michelle M.; Wu, Chase Q.

    2016-11-22

    Many next-generation e-science applications need fast and reliable transfer of large volumes of data with guaranteed performance, which is typically enabled by the bandwidth reservation service in high-performance networks. One prominent issue in such network environments with large footprints is that node and link failures are inevitable, hence potentially degrading the quality of data transfer. We consider two generic types of bandwidth reservation requests (BRRs) concerning data transfer reliability: (i) to achieve the highest data transfer reliability under a given data transfer deadline, and (ii) to achieve the earliest data transfer completion time while satisfying a given data transfer reliabilitymore » requirement. We propose two periodic bandwidth reservation algorithms with rigorous optimality proofs to optimize the scheduling of individual BRRs within BRR batches. The efficacy of the proposed algorithms is illustrated through extensive simulations in comparison with scheduling algorithms widely adopted in production networks in terms of various performance metrics.« less

  4. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.).

    PubMed

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca 2+ -binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat ( Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  5. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding. PMID:28955354

  6. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai

    2006-10-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  7. Fast Faraday Cup With High Bandwidth

    DOEpatents

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  8. Highly efficient frequency conversion with bandwidth compression of quantum light

    PubMed Central

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  9. Novel ICD Programming and Inappropriate ICD Therapy in CRT-D Versus ICD Patients: A MADIT-RIT Sub-Study.

    PubMed

    Kutyifa, Valentina; Daubert, James P; Schuger, Claudio; Goldenberg, Ilan; Klein, Helmut; Aktas, Mehmet K; McNitt, Scott; Stockburger, Martin; Merkely, Bela; Zareba, Wojciech; Moss, Arthur J

    2016-01-01

    The Multicenter Automatic Defibrillator Implantation Trial-Reduce Inappropriate therapy (MADIT-RIT) trial showed a significant reduction in inappropriate implantable cardioverter defibrillator (ICD) therapy in patients programmed to high-rate cut-off (Arm B) or delayed ventricular tachycardia therapy (Arm C), compared with conventional programming (Arm A). There is limited data on the effect of cardiac resynchronization therapy with a cardioverter defibrillator (CRT-D) on the effect of ICD programming. We aimed to elucidate the effect of CRT-D on ICD programming to reduce inappropriate ICD therapy in patients implanted with CRT-D or an ICD, enrolled in MADIT-RIT. The primary end point of this study was the first inappropriate ICD therapy. Secondary end points were inappropriate anti-tachycardia pacing and inappropriate ICD shock. The study enrolled 742 (49%) patients with an ICD and 757 (51%) patients with a CRT-D. Patients implanted with a CRT-D had 62% lower risk of inappropriate ICD therapy than those with an ICD only (hazard ratio [HR] =0.38, 95% confidence interval: 0.25-0.57; P<0.001). High-rate cut-off or delayed ventricular tachycardia therapy programming significantly reduced the risk of inappropriate ICD therapy compared with conventional ICD programming in ICD (HR=0.14 [B versus A]; HR=0.21 [C versus A]) and CRT-D patients (HR=0.15 [B versus A]; HR=0.23 [C versus A]; P<0.001 for all). There was a significant reduction in inappropriate anti-tachycardia pacings in both group and a significant reduction in inappropriate ICD shock in CRT-D patients. Patients implanted with a CRT-D have lower risk of inappropriate ICD therapy than those with an ICD. Innovative ICD programming significantly reduces the risk of inappropriate ICD therapy in both ICD and CRT-D patients. http://clinicaltrials.gov; Unique identifier: NCT00947310. © 2016 American Heart Association, Inc.

  10. Ultra-broadband carpet cloak for transverse-electric polarization

    NASA Astrophysics Data System (ADS)

    Deng, Ye; Xu, Su; Zhang, Runren; Zheng, Bin; Chen, Hua; Gao, Fei; Yu, Faxin; Zhang, Baile; Chen, Hongsheng

    2016-04-01

    Magnetism is a necessity in constructing macroscopic metamaterial invisibility cloaks that are theoretically designed by transformation optics, but will generally limit the cloaking bandwidth to an impractically narrow range. To meet the broad bandwidth demand, magnetism has been fully abandoned in previous demonstrations of macroscopic carpet cloaking, whose approach, however, cannot apply to a transverse-electric (TE) polarization. To fill this gap, here we experimentally demonstrate an ultra-broadband magnetic carpet cloak for the TE polarization. The cloak is made of non-resonant closed-ring metamaterials with little dispersion and the cloaking performance is confirmed with both time-domain simulation and frequency scanning measurement over a broad bandwidth corresponding to a pulse signal illumination.

  11. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  12. Direction of CRT waste glass processing: Electronics recycling industry communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Julia R., E-mail: mueller.143@osu.edu; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, andmore » the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass

  13. Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension

    PubMed Central

    Wang, Lan; Wu, Yichao

    2012-01-01

    Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity which assumes that only a small number of covariates influence the conditional distribution of the response variable given all candidate covariates; however, the sets of relevant covariates may differ when we consider different segments of the conditional distribution. In this framework, we investigate the methodology and theory of nonconvex penalized quantile regression in ultra-high dimension. The proposed approach has two distinctive features: (1) it enables us to explore the entire conditional distribution of the response variable given the ultra-high dimensional covariates and provides a more realistic picture of the sparsity pattern; (2) it requires substantially weaker conditions compared with alternative methods in the literature; thus, it greatly alleviates the difficulty of model checking in the ultra-high dimension. In theoretic development, it is challenging to deal with both the nonsmooth loss function and the nonconvex penalty function in ultra-high dimensional parameter space. We introduce a novel sufficient optimality condition which relies on a convex differencing representation of the penalized loss function and the subdifferential calculus. Exploring this optimality condition enables us to establish the oracle property for sparse quantile regression in the ultra-high dimension under relaxed conditions. The proposed method greatly enhances existing tools for ultra-high dimensional data analysis. Monte Carlo simulations demonstrate the usefulness of the proposed procedure. The real data example we analyzed demonstrates that the new approach reveals substantially more information compared with alternative methods. PMID:23082036

  14. Demonstration of an X-Band Multilayer Yagi-Like Microstrip Patch Antenna With High Directivity and Large Bandwidth

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zaman, Afroz; Lee, Richard Q.; Lambert, Kevin

    2005-01-01

    The feasibility of obtaining large bandwidth and high directivity from a multilayer Yagi-like microstrip patch antenna at 10 GHz is investigated. A measured 10-dB bandwidth of approximately 20 percent and directivity of approximately 11 dBi is demonstrated through the implementation of a vertically-stacked structure with three parasitic directors, above the driven patch, and a single reflector underneath the driven patch. Simulated and measured results are compared and show fairly close agreement. This antenna offers the advantages of large bandwidth, high directivity, and symmetrical broadside patterns, and could be applicable to satellite as well as terrestrial communications.

  15. Compact and multiple plasmonic nanofilter based on ultra-broad stopband in partitioned semicircle or semiring stub waveguide

    NASA Astrophysics Data System (ADS)

    Zheng, Mingfei; Li, Hongjian; Chen, Zhiquan; He, Zhihui; Xu, Hui; Zhao, Mingzhuo

    2017-11-01

    We propose a compact plasmonic nanofilter in partitioned semicircle or semiring stub waveguide, and investigate the transmission characteristics of the two novel systems by using the finite-difference time-domain method. An ultra-broad stopband phenomenon is generated by partitioning a single stub into a double stub with a rectangular metal partition, which is caused by the destructive interference superposition of the reflected and transmitted waves from each stub. A tunable stopband is realized in the multiple plasmonic nanofilter by adjusting the width of the partition and the (outer) radius and inner radius of the stub, whose starting wavelength, ending wavelength, center wavelength, bandwidth and total tunable bandwidth are discussed, and specific filtering waveband and optimum structural parameter are obtained. The proposed structures realize asymmetrical stub and achieve ultra-broad stopband, and have potential applications in band-stop nanofilters and high-density plasmonic integrated optical circuits.

  16. Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K.

    PubMed

    Robitaille, P M; Abduljalil, A M; Kangarlu, A

    2000-01-01

    To acquire ultra high resolution MRI images of the human brain at 8 Tesla within a clinically acceptable time frame. Gradient echo images were acquired from the human head of normal subjects using a transverse electromagnetic resonator operating in quadrature and tuned to 340 MHz. In each study, a group of six images was obtained containing a total of 208 MB of unprocessed information. Typical acquisition parameters were as follows: matrix = 2,000 x 2,000, field of view = 20 cm, slice thickness = 2 mm, number of excitations (NEX) = 1, flip angle = 45 degrees, TR = 750 ms, TE = 17 ms, receiver bandwidth = 69.4 kHz. This resulted in a total scan time of 23 minutes, an in-plane resolution of 100 microm, and a pixel volume of 0.02 mm3. The ultra high resolution images acquired in this study represent more than a 50-fold increase in in-plane resolution relative to conventional 256 x 256 images obtained with a 20 cm field of view and a 5 mm slice thickness. Nonetheless, the ultra high resolution images could be acquired both with adequate image quality and signal to noise. They revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. The elevated signal-to-noise ratio observed in ultra high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the histological level under in vivo conditions. However, brain motion is likely to degrade the useful resolution. This situation may be remedied in part with cardiac gating. Nonetheless, these images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.

  17. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    NASA Astrophysics Data System (ADS)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  18. High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces

    NASA Astrophysics Data System (ADS)

    Ozdemir, Aytekin

    Metasurfaces which emerged as two-dimensional counterparts of metamaterials, facilitate the realization of arbitrary phase distributions using large arrays with subwavelength and ultra-thin features. Even if metasurfaces are ultra-thin, they still effectively manipulate the phase, amplitude, and polarization of light in transmission or reflection mode. In contrast, conventional optical components are bulky, and they lose their functionality at sub-wavelength scales, which requires conceptually new types of nanoscale optical devices. On the other hand, as the optical systems shrink in size day by day, conventional bulky optical components will have tighter alignment and fabrication tolerances. Since metasurfaces can be fabricated lithographically, alignment can be done during lithographic fabrication, thus eliminating the need for post-fabrication alignments. In this work, various types of metasurface applications are thoroughly investigated for robust wavefront engineering with enhanced characteristics in terms of broad bandwidth, high efficiency and active tunability, while beneficial for application. Plasmonic metasurfaces are not compatible with the CMOS process flow, and, additionally their high absorption and ohmic loss is problematic in transmission based applications. Dielectric metasurfaces, however, offer a strong magnetic response at optical frequencies, and thus they can offer great opportunities for interacting not only with the electric component of a light field, but also with its magnetic component. They show great potential to enable practical device functionalities at optical frequencies, which motivates us to explore them one step further on wavefront engineering and imaging sensor platforms. Therefore, we proposed an efficient ultra-thin flat metalens at near-infrared regime constituted by silicon nanodisks which can support both electric and magnetic dipolar Mie-type resonances. These two dipole resonances can be overlapped at the same frequency

  19. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency.

    PubMed

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-12-15

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  20. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    PubMed Central

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393

  1. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems.

    PubMed

    Kim, Daeik; Quinlan, Michael; Yen, Teh Fu

    2009-01-01

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent. Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.

  2. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Daeik; Quinlan, Michael; Yen, Teh Fu

    2009-01-15

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent.more » Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.« less

  3. A method and data for video monitor sizing. [human CRT viewing requirements

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.; Guerin, E. G.

    1976-01-01

    The paper outlines an approach consisting of using analytical methods and empirical data to determine monitor size constraints based on the human operator's CRT viewing requirements in a context where panel space and volume considerations for the Space Shuttle aft cabin constrain the size of the monitor to be used. Two cases are examined: remote scene imaging and alphanumeric character display. The central parameter used to constrain monitor size is the ratio M/L where M is the monitor dimension and L the viewing distance. The study is restricted largely to 525 line video systems having an SNR of 32 db and bandwidth of 4.5 MHz. Degradation in these parameters would require changes in the empirically determined visual angle constants presented. The data and methods described are considered to apply to cases where operators are required to view via TV target objects which are well differentiated from the background and where the background is relatively sparse. It is also necessary to identify the critical target dimensions and cues.

  4. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less

  5. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption.

    PubMed

    Zhou, Ziheng; Chen, Ke; Zhao, Junming; Chen, Ping; Jiang, Tian; Zhu, Bo; Feng, Yijun; Li, Yue

    2017-11-27

    The metasurfaces have recently been demonstrated to provide full control of the phase responses of electromagnetic (EM) wave scattering over subwavelength scales, enabling a wide range of practical applications. Here, we propose a comprehensive scheme for the efficient and flexible design of metasurface Salisbury screen (MSS) capable of absorbing the impinging EM wave in an ultra-wide frequency band. We show that properly designed reflective metasurface can be used to substitute the metallic ground of conventional Salisbury screen for generating diverse resonances in a desirable way, thus providing large controllability over the absorption bandwidth. Based on this concept, we establish an equivalent circuit model to qualitatively analysis the resonances in MSS and design algorithms to optimize the overall performance of the MSS. Experiments have been carried out to demonstrate that the absorption bandwidth from 6 GHz to 30 GHz with an efficiency higher than 85% can be achieved by the proposal, which is apparently much larger than that of conventional Salisbury screen (7 GHz - 17 GHz). The proposed concept of MSS could offer opportunities for flexibly designing thin electromagnetic absorbers with simultaneously ultra-wide bandwidth, polarization insensitivity, and wide incident angle, exhibiting promising potentials for many applications such as in EM compatibility, stealth technique, etc.

  6. Mid-wave infrared narrow bandwidth guided mode resonance notch filter.

    PubMed

    Zhong, Y; Goldenfeld, Z; Li, K; Streyer, W; Yu, L; Nordin, L; Murphy, N; Wasserman, D

    2017-01-15

    We have designed, fabricated, and characterized a guided mode resonance notch filter operating in the technologically vital mid-wave infrared (MWIR) region of the electromagnetic spectrum. The filter provides a bandstop at λ≈4.1  μm, with a 12 dB extinction on resonance. In addition, we demonstrate a high transmission background (>80%), less than 6% transmission on resonance, and an ultra-narrow bandwidth transmission notch (10  cm-1). Our filter is optically characterized using angle- and polarization-dependent Fourier transform infrared spectroscopy, and simulated using rigorous coupled-wave analysis (RCWA) with excellent agreement between simulations and our experimental results. Using our RCWA simulations, we are able to identify the optical modes associated with the transmission dips of our filter. The presented structure offers a potential route toward narrow-band laser filters in the MWIR.

  7. Ultra-high-speed optical transmission using digital-preprocessed analog-multiplexed DAC

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Nagatani, Munehiko; Hamaoka, Fukutaro; Horikoshi, Kengo; Nakamura, Masanori; Matsushita, Asuka; Kanazawa, Shigeru; Hashimoto, Toshikazu; Nosaka, Hideyuki; Miyamoto, Yutaka

    2018-02-01

    In advanced fiber transmission systems with digital signal processors (DSPs), analog bandwidths of digital-to-analog converters (DACs), which interface the DSPs and optics, are the major factors limiting the data rates. We have developed a technology to extend the DACs' bandwidth using a digital preprocessor, two sub-DACs, and an analog multiplexer. This technology enables us to generate baseband signals with bandwidths of up to around 60 GHz, which is almost twice that of signals generated by typical CMOS DACs. In this paper, we describe the principle of the bandwidth extension and review high-speed transmission experiments enabled by this technology.

  8. Development and Implementation of High Bandwidth Pulsed Microactuators for Sub and Supersonic Applications

    DTIC Science & Technology

    2012-06-15

    Microactuators of High –Speed Flow Control”, AIAA- 2938 , 2011. 12. Kreth, P., Solomon, J.T., Alvi, F.S., “Resonance-Enhanced High Frequency Micro...paper 2938 , 2011. 34. Ali, M.Y., Solomon, J.T., Gustavsson, J., Kumar, R., Alvi, F.S., “Control of Supersonic Cavity Flows Using High Bandwidth Micro

  9. Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.

  10. An ultra-thin compact polarization-independent hexa-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Munaga, Praneeth; Bhattacharyya, Somak; Ghosh, Saptarshi; Srivastava, Kumar Vaibhav

    2018-04-01

    In this paper, an ultra-thin compact hexa-band metamaterial absorber has been presented using single layer of dielectric. The proposed design is polarization independent in nature owing to its fourfold symmetry and exhibits high angular stability up to 60° angles of incidences for both TE and TM polarizations. The structure is ultrathin in nature with 2 mm thickness, which corresponds to λ/11.4 ( λ is the operating wavelength with respect to the highest frequency of absorption). Six distinct absorption frequencies are obtained from the design, which can be distributed among three regions, namely lower band, middle band and higher band; each region consists of two closely spaced frequencies. Thereafter, the dimensions of the proposed structure are adjusted in such a way that bandwidth enhancement occurs at each region separately. Simultaneous bandwidth enhancements at middle and higher bands have also been achieved by proper optimization of the geometrical parameters. The structure with simultaneous bandwidth enhancements at X- and Ku-bands is later fabricated and the experimental absorptivity response is in agreement with the simulated one.

  11. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate

  12. Ultra-wideband high-speed Mach-Zehnder switch based on hybrid plasmonic waveguides.

    PubMed

    Janjan, Babak; Fathi, Davood; Miri, Mehdi; Ghaffari-Miab, Mohsen

    2017-02-20

    In this paper, the distinctive dispersion characteristic of hybrid plasmonic waveguides is exploited for designing ultra-wideband directional couplers. It is shown that by using optimized geometrical dimensions for hybrid plasmonic waveguides, nearly wavelength-independent directional couplers can be achieved. These broadband directional couplers are then used to design Mach-Zehnder-interferometer-based switches. Our simulation results show the ultra-wide bandwidth of ∼260  nm for the proposed hybrid plasmonic-waveguide-based switch. Further investigation of the proposed Mach-Zehnder switch confirms that because of the strong light confinement in the hybrid plasmonic waveguide structure, the switching time, power consumption, and overall footprint of the device can be significantly improved compared to silicon-ridge-waveguide-based Mach-Zehnder switches. For the Mach-Zehnder switch designed by using the optimized directional coupler, the switching time is found to be less than one picosecond, while the power consumption, VπLπ figure of merit, and active length of the device are ∼61  fJ/bit, 85  V×μm, and 30 μm, respectively.

  13. Low-power, transparent optical network interface for high bandwidth off-chip interconnects.

    PubMed

    Liboiron-Ladouceur, Odile; Wang, Howard; Garg, Ajay S; Bergman, Keren

    2009-04-13

    The recent emergence of multicore architectures and chip multiprocessors (CMPs) has accelerated the bandwidth requirements in high-performance processors for both on-chip and off-chip interconnects. For next generation computing clusters, the delivery of scalable power efficient off-chip communications to each compute node has emerged as a key bottleneck to realizing the full computational performance of these systems. The power dissipation is dominated by the off-chip interface and the necessity to drive high-speed signals over long distances. We present a scalable photonic network interface approach that fully exploits the bandwidth capacity offered by optical interconnects while offering significant power savings over traditional E/O and O/E approaches. The power-efficient interface optically aggregates electronic serial data streams into a multiple WDM channel packet structure at time-of-flight latencies. We demonstrate a scalable optical network interface with 70% improvement in power efficiency for a complete end-to-end PCI Express data transfer.

  14. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

    NASA Astrophysics Data System (ADS)

    Petersen, Christian Rosenberg; Møller, Uffe; Kubat, Irnis; Zhou, Binbin; Dupont, Sune; Ramsay, Jacob; Benson, Trevor; Sujecki, Slawomir; Abdel-Moneim, Nabil; Tang, Zhuoqi; Furniss, David; Seddon, Angela; Bang, Ole

    2014-11-01

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. To date, the limitations of mid-infrared light sources such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation have precluded mid-infrared applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central wavelength of either 4.5 μm or 6.3 μm into short pieces of ultra-high numerical-aperture step-index chalcogenide glass optical fibre generates a mid-infrared supercontinuum spanning 1.5 μm to 11.7 μm and 1.4 μm to 13.3 μm, respectively. This is the first experimental demonstration to truly reveal the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control.

  15. Electrical tweezer for highly parallelized electrorotation measurements over a wide frequency bandwidth.

    PubMed

    Rohani, Ali; Varhue, Walter; Su, Yi-Hsuan; Swami, Nathan S

    2014-07-01

    Electrorotation (ROT) is a powerful tool for characterizing the dielectric properties of cells and bioparticles. However, its application has been somewhat limited by the need to mitigate disruptions to particle rotation by translation under positive DEP and by frictional interactions with the substrate. While these disruptions may be overcome by implementing particle positioning schemes or field cages, these methods restrict the frequency bandwidth to the negative DEP range and permit only single particle measurements within a limited spatial extent of the device geometry away from field nonuniformities. Herein, we present an electrical tweezer methodology based on a sequence of electrical signals, composed of negative DEP using 180-degree phase-shifted fields for trapping and levitation of the particles, followed by 90-degree phase-shifted fields over a wide frequency bandwidth for highly parallelized electrorotation measurements. Through field simulations of the rotating electrical field under this wave-sequence, we illustrate the enhanced spatial extent for electrorotation measurements, with no limitations to frequency bandwidth. We apply this methodology to characterize subtle modifications in morphology and electrophysiology of Cryptosporidium parvum with varying degrees of heat treatment, in terms of shifts in the electrorotation spectra over the 0.05-40 MHz region. Given the single particle sensitivity and the ability for highly parallelized electrorotation measurements, we envision its application toward characterizing heterogeneous subpopulations of microbial and stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Kelsea A., E-mail: kschum@udel.edu; Schumacher, Thomas, E-mail: schumact@udel.edu; Agbemabiese, Lawrence, E-mail: agbe@udel.edu

    2014-11-15

    Highlights: • We modeled the obsolescence of cathode ray tube devices in the State of Delaware. • 411,654 CRT units or ∼16,500 metric tons have been recycled in Delaware since 2002. • The peak of the CRT obsolescence in Delaware passed by 2012. • The Delaware average CRT recycling rate between 2002 and 13 was approximately 27.5%. • CRTs will continue to infiltrate the system likely until 2033. - Abstract: The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream.more » However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware’s e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033.« less

  17. High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.

    2016-03-01

    Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.

  18. High Frequency of PfCRT 76T in Two Malian Villages and Its Prevalence in Severe Relative to Non-Severe Malaria

    PubMed Central

    Wélé, Mamadou; Djimdé, Abdoulaye A.; Guindo, Aldiouma; Beavogui, Abdoul H.; Traoré, Isaac Z.; Sadou, Aboubacar; Blaise, Dackouo; Diallo, Dapa A.; Wellems, Thomas E.; Doumbo, Ogobara K.

    2011-01-01

    We investigated PfCRT 76T mutation in severe and non-severe malaria in Southern Mali. One hundred and ninety three severe malaria cases were each matched against two non-severe malaria cases. Patients with G6PD deficiency and any known hemoglobin abnormality were excluded. PfCRT 76T was present in 60.8% (n = 386) non-severe malaria cases and in 77.2% (n = 193) severe malaria cases (p <0.0001). In children 5 years or younger, these proportions were 62.9% (n = 294) vs. 73.5% (n = 147), respectively (p < 0.01). PfCRT 76T was therefore associated with malaria severity in this setting of Mali. PMID:21300016

  19. Ultra-wideband microwave photonic link based on single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu

    2017-10-01

    Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.

  20. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  1. Investigation of a novel algorithm for synchronized left-ventricular pacing and ambulatory optimization of cardiac resynchronization therapy: results of the adaptive CRT trial.

    PubMed

    Martin, David O; Lemke, Bernd; Birnie, David; Krum, Henry; Lee, Kathy Lai-Fun; Aonuma, Kazutaka; Gasparini, Maurizio; Starling, Randall C; Milasinovic, Goran; Rogers, Tyson; Sambelashvili, Alex; Gorcsan, John; Houmsse, Mahmoud

    2012-11-01

    In patients with sinus rhythm and normal atrioventricular conduction, pacing only the left ventricle with appropriate atrioventricular delays can result in superior left ventricular and right ventricular function compared with standard biventricular (BiV) pacing. To evaluate a novel adaptive cardiac resynchronization therapy ((aCRT) algorithm for CRT pacing that provides automatic ambulatory selection between synchronized left ventricular or BiV pacing with dynamic optimization of atrioventricular and interventricular delays. Patients (n = 522) indicated for a CRT-defibrillator were randomized to aCRT vs echo-optimized BiV pacing (Echo) in a 2:1 ratio and followed at 1-, 3-, and 6-month postrandomization. The study met all 3 noninferiority primary objectives: (1) the percentage of aCRT patients who improved in their clinical composite score at 6 months was at least as high in the aCRT arm as in the Echo arm (73.6% vs 72.5%, with a noninferiority margin of 12%; P = .0007); (2) aCRT and echo-optimized settings resulted in similar cardiac performance, as demonstrated by a high concordance correlation coefficient between aortic velocity time integrals at aCRT and Echo settings at randomization (concordance correlation coefficient = 0.93; 95% confidence interval 0.91-0.94) and at 6-month postrandomization (concordance correlation coefficient = 0.90; 95% confidence interval 0.87-0.92); and (3) aCRT did not result in inappropriate device settings. There were no significant differences between the arms with respect to heart failure events or ventricular arrhythmia episodes. Secondary end points showed similar benefit, and right-ventricular pacing was reduced by 44% in the aCRT arm. The aCRT algorithm is safe and at least as effective as BiV pacing with comprehensive echocardiographic optimization. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  2. High Bandwidth Optical Links for Micro-Satellite Support

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  3. Frequent Questions About the Regulation of Used Cathode Ray Tubes (CRTs) and CRT Glass

    EPA Pesticide Factsheets

    Frequent questions such as Which materials are covered by the CRT exclusion?, How does U.S. EPA regulate recycling of used CRTs and CRT glass under the RCRA hazardous waste regulations?, What export requirements apply to CRTs and CRT glass?

  4. Are the Color Gamuts of CRT and LCD Triangular? An Experimental Study

    DTIC Science & Technology

    2000-07-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO113 31 TITLE: Are the Color Gamuts of CRT and LCD Triangular? An...ADP011297 thru ADP011332 UNCLASSIFIED Are the Color Gamuts of CRT and LCD Triangular? An Experimental Study Guan-wei Leea and Chao-hua Wenb aDepartment of...Tube) display. This study describes the difference of color gamuts in different luminance level and the accuracy of color between CRT and LCD. In the

  5. High-Density, High-Bandwidth, Multilevel Holographic Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2008-01-01

    A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing

  6. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis

    PubMed Central

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Yan-Tao; Wang, Dong-Wei; Xu, Chun-Lin; Huang, Xin; Wang, De-Sen

    2015-01-01

    Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis. PMID:26061142

  7. Are thoughtful people more utilitarian? CRT as a unique predictor of moral minimalism in the dilemmatic context.

    PubMed

    Royzman, Edward B; Landy, Justin F; Leeman, Robert F

    2015-03-01

    Recent theorizing about the cognitive underpinnings of dilemmatic moral judgment has equated slow, deliberative thinking with the utilitarian disposition and fast, automatic thinking with the deontological disposition. However, evidence for the reflective utilitarian hypothesis-the hypothesized link between utilitarian judgment and individual differences in the capacity for rational reflection (gauged here by the Cognitive Reflection Test [CRT; Frederick, 2005]) has been inconsistent and difficult to interpret in light of several design flaws. In two studies aimed at addressing some of the flaws, we found robust evidence for a reflective minimalist hypothesis-high CRT performers' tendency to regard utility-optimizing acts as largely a matter of personal prerogative, permissible both to perform and to leave undone. This relationship between CRT and the "minimalist" orientation remained intact after controlling for age, sex, trait affect, social desirability, and educational attainment. No significant association was found between CRT and the strict utilitarian response pattern or CRT and the strict deontological response pattern, nor did we find any significant association between CRT and willingness to act in the utility-optimizing manner. However, we found an inverse association between empathic concern and a willingness to act in the utility-optimizing manner, but there was no comparable association between empathic concern and the deontological judgment pattern. Theoretical, methodological, and normative implications of the findings are discussed. Copyright © 2014 Cognitive Science Society, Inc.

  8. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt.

    PubMed

    Zhou, Pingping; Ye, Lidan; Xie, Wenping; Lv, Xiaomei; Yu, Hongwei

    2015-10-01

    Astaxanthin is a highly valued carotenoid with strong antioxidant activity and has wide applications in aquaculture, food, cosmetic, and pharmaceutical industries. The market demand for natural astaxanthin promotes research in metabolic engineering of heterologous hosts for astaxanthin production. In this study, an astaxanthin-producing Saccharomyces cerevisiae strain was created by successively introducing the Haematococcus pluvialis β-carotenoid hydroxylase (crtZ) and ketolase (bkt) genes into a previously constructed β-carotene hyperproducer. Further integration of strategies including codon optimization, gene copy number adjustment, and iron cofactor supplementation led to significant increase in the astaxanthin production, reaching up to 4.7 mg/g DCW in the shake-flask cultures which is the highest astaxanthin content in S. cerevisiae reported to date. Besides, the substrate specificity of H. pluvialis CrtZ and BKT and the probable formation route of astaxanthin from β-carotene in S. cerevisiae were figured out by expressing the genes separately and in combination. The yeast strains engineered in this work provide a basis for further improving biotechnological production of astaxanthin and might offer a useful general approach to the construction of heterologous biosynthetic pathways for other natural products.

  9. Direction of CRT waste glass processing: electronics recycling industry communication.

    PubMed

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Dual-Electrode CMUT With Non-Uniform Membranes for High Electromechanical Coupling Coefficient and High Bandwidth Operation

    PubMed Central

    Guldiken, Rasim O.; Zahorian, Jaime; Yamaner, F. Y.; Degertekin, F. L.

    2010-01-01

    In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k2) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane. PMID:19574135

  11. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  12. Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, William T.; Mudrick, John P.; Xue, Jiangeng, E-mail: jxue@mse.ufl.edu

    2014-12-07

    We present detailed studies of the high photocurrent gain behavior in multilayer organic photodiodes containing tailored carrier blocking layers we reported earlier in a Letter [W. T. Hammond and J. Xue, Appl. Phys. Lett. 97, 073302 (2010)], in which a high photocurrent gain of up to 500 was attributed to the accumulation of photogenerated holes at the anode/organic active layer interface and the subsequent drastic increase in secondary electron injection from the anode. Here, we show that both the hole-blocking layer structure and layer thickness strongly influence the magnitude of the photocurrent gain. Temporal studies revealed that the frequency responsemore » of such devices is limited by three different processes with lifetimes of 10 μs, 202 μs, and 2.72 ms for the removal of confined holes, which limit the 3 dB bandwidth of these devices to 1.4 kHz. Furthermore, the composition in the mixed organic donor-acceptor photoactive layer affects both gain and bandwidth, which is attributed to the varying charge transport characteristics, and the optimal gain-bandwidth product is achieved with approximately 30% donor content. Finally, these devices show a high dynamic range of more than seven orders of magnitude, although the photocurrent shows a sublinear dependence on the incident optical power.« less

  13. Formal thought disorder in people at ultra-high risk of psychosis

    PubMed Central

    Weinstein, Sara; Stahl, Daniel; Day, Fern; Valmaggia, Lucia; Rutigliano, Grazia; De Micheli, Andrea; Fusar-Poli, Paolo; McGuire, Philip

    2017-01-01

    Background Formal thought disorder is a cardinal feature of psychosis. However, the extent to which formal thought disorder is evident in ultra-high-risk individuals and whether it is linked to the progression to psychosis remains unclear. Aims Examine the severity of formal thought disorder in ultra-high-risk participants and its association with future psychosis. Method The Thought and Language Index (TLI) was used to assess 24 ultra-high-risk participants, 16 people with first-episode psychosis and 13 healthy controls. Ultra-high-risk individuals were followed up for a mean duration of 7 years (s.d.=1.5) to determine the relationship between formal thought disorder at baseline and transition to psychosis. Results TLI scores were significantly greater in the ultra-high-risk group compared with the healthy control group (effect size (ES)=1.2), but lower than in people with first-episode psychosis (ES=0.8). Total and negative TLI scores were higher in ultra-high-risk individuals who developed psychosis, but this was not significant. Combining negative TLI scores with attenuated psychotic symptoms and basic symptoms predicted transition to psychosis (P=0.04; ES=1.04). Conclusions TLI is beneficial in evaluating formal thought disorder in ultra-high-risk participants, and complements existing instruments for the evaluation of psychopathology in this group. Declaration of interests None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28713586

  14. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer: A systematic review and meta-analysis.

    PubMed

    Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei

    2017-08-01

    Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose-volume histograms and outcomes including survival and toxicity. A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity.

  15. Cognitive remediation therapy (CRT) benefits more to patients with schizophrenia with low initial memory performances.

    PubMed

    Pillet, Benoit; Morvan, Yannick; Todd, Aurelia; Franck, Nicolas; Duboc, Chloé; Grosz, Aimé; Launay, Corinne; Demily, Caroline; Gaillard, Raphaël; Krebs, Marie-Odile; Amado, Isabelle

    2015-01-01

    Cognitive deficits in schizophrenia mainly affect memory, attention and executive functions. Cognitive remediation is a technique derived from neuropsychology, which aims to improve or compensate for these deficits. Working memory, verbal learning, and executive functions are crucial factors for functional outcome. Our purpose was to assess the impact of the cognitive remediation therapy (CRT) program on cognitive difficulties in patients with schizophrenia, especially on working memory, verbal memory, and cognitive flexibility. We collected data from clinical and neuropsychological assessments in 24 patients suffering from schizophrenia (Diagnostic and Statistical Manual of mental Disorders-Fourth Edition, DSM-IV) who followed a 3-month (CRT) program. Verbal and visuo-spatial working memory, verbal memory, and cognitive flexibility were assessed before and after CRT. The Wilcoxon test showed significant improvements on the backward digit span, on the visual working memory span, on verbal memory and on flexibility. Cognitive improvement was substantial when baseline performance was low, independently from clinical benefit. CRT is effective on crucial cognitive domains and provides a huge benefit for patients having low baseline performance. Such cognitive amelioration appears highly promising for improving the outcome in cognitively impaired patients.

  16. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology.

    PubMed

    Callaghan, Paul S; Siriwardana, Amila; Hassett, Matthew R; Roepe, Paul D

    2016-03-31

    Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.

  17. Ultra High Energy Cosmic Rays: Strangelets?

    NASA Astrophysics Data System (ADS)

    Xu, Ren-Xin; Wu, Fei

    2003-06-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of TeV-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3×1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  18. Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength- and time-division multiplexing.

    PubMed

    Li, Yihan; Kuse, Naoya; Fermann, Martin

    2017-08-07

    A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.

  19. Image Quality Assessment of 2D versus 3D T2WI and Evaluation of Ultra-high b-Value (b=2,000 mm/s2) DWI for Response Assessment in Rectal Cancer.

    PubMed

    Hausmann, Daniel; Liu, Jing; Budjan, Johannes; Reichert, Miriam; Ong, Melissa; Meyer, Mathias; Smakic, Arman; Grimm, Robert; Strecker, Ralph; Schoenberg, Stefan O; Wang, Xiaoying; Attenberger, Ulrike I

    2018-02-01

    The purpose of this IRB-approved, retrospective study was to compare image quality between 2D and high-resolution 3D, T2-weighted (T2WI) magnetic resonance imaging (MRI) sequences and to investigate the additional value of ultra-high b-value diffusion-weighted imaging (DWI; b=2,000 mm/s 2 ) for both rectal cancer staging and evaluating treatment response. From 12 February to 24 August 2016, 26 consecutive patients (22 males, four females; mean age: 61.9±14.0 years) with histologically-proven rectal cancer. In total 31 examinations [12 prior to and 19 after chemoradiation (CRT)] were included. The patients underwent pelvic MRI on a 3.0-T scanner (Magnetom Skyra, Erlangen, Germany). Three radiologists (3, 4, and 5 years of experience in MRI, respectively) independently assessed all images and rated the image quality of DWI (b=800 mm/s 2 ), apparent diffusion coefficient map, DWI (b=2,000 mm/s 2 ), 3D sagittal T2WI, 3D axial T2WI, 2D sagittal T2WI, and 2D axial T2WI of each patient, respectively. In addition, signal intensity ratios (SIR) were calculated between rectal cancer and obturator internus muscle (background) in all patients after CRT on DWI (b=2,000 mm/s 2 ) and correlated with histopathological regression grade (RG). Tumor delineation was significantly better by 2D T2WI than 3D T2WI both before and after CRT (before CRT: Z=-3.2, p=0.02; after CRT: Z=-4.408, p<0.001; all: Z=-5.192; p<0.001) and was the preferred method, although image quality ratings were not significantly different (3D sagittal: 4.00±0.48; 2D sagittal: 4.03±0.34, p=0.713; 3D axial: 3.85±0.61, 2D axial: 3.78±0.64, p=0.537). Independent t-test showed significantly higher SIR between those with RG 1 or 2 (moderate response: mean score=2.02) and those with RG 3+4 (good response: mean score=0.8) (t=3.044, p=0.011). In those with RG 4 (complete response), SIR of b2000 was 0.946 compared to a 1.41 average of the whole cohort. In two patients, tumor was invisible on b2000 following CRT (RG 3

  20. Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide

    NASA Astrophysics Data System (ADS)

    Kovacevic, Goran; Phare, Christopher; Set, Sze Y.; Lipson, Michal; Yamashita, Shinji

    2018-06-01

    We present a design of an ultra-fast in-line graphene optical modulator on a silicon waveguide with a bandwidth exceeding 100 GHz, very small power consumption below 15 fJ/bit, and insertion loss of 1.5 dB. This is achieved by utilizing the transverse-electric-mode silicon slot to tailor the overlap of graphene electrodes, thus significantly reducing the capacitance of the device while maintaining a low insertion loss and using conservative estimates of the graphene resistance. Our design is substantiated by comprehensive finite-element-method simulations and RC circuit characterization, as well as fabrication feasibility discussion.

  1. Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO 2, Nb 2O 5, or Ta 2O 5 high-index layers

    DOE PAGES

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-09-21

    Broad bandwidth coatings allow angle of incidence flexibility and accommodate spectral shifts due to aging and water absorption. Higher refractive index materials in optical coatings, such as TiO 2, Nb 2O 5, and Ta 2O 5, can be used to achieve broader bandwidths compared to coatings that contain HfO 2 high index layers. We have identified the deposition settings that lead to the highest index, lowest absorption layers of TiO 2, Nb 2O 5, and Ta 2O 5, via e-beam evaporation using ion-assisted deposition. We paired these high index materials with SiO 2 as the low index material to createmore » broad bandwidth high reflection coatings centered at 1054 nm for 45 deg angle of incidence and P polarization. Furthermore, high reflection bandwidths as large as 231 nm were realized. Laser damage tests of these coatings using the ISO 11254 and NIF-MEL protocols are presented, which revealed that the Ta 2O 5/SiO 2 coating exhibits the highest resistance to laser damage, at the expense of lower bandwidth compared to the TiO 2/SiO 2 and Nb 2O 5/SiO 2 coatings.« less

  2. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  3. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    NASA Astrophysics Data System (ADS)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  4. Colorimetry for CRT displays.

    PubMed

    Golz, Jürgen; MacLeod, Donald I A

    2003-05-01

    We analyze the sources of error in specifying color in CRT displays. These include errors inherent in the use of the color matching functions of the CIE 1931 standard observer when only colorimetric, not radiometric, calibrations are available. We provide transformation coefficients that prove to correct the deficiencies of this observer very well. We consider four different candidate sets of cone sensitivities. Some of these differ substantially; variation among candidate cone sensitivities exceeds the variation among phosphors. Finally, the effects of the recognized forms of observer variation on the visual responses (cone excitations or cone contrasts) generated by CRT stimuli are investigated and quantitatively specified. Cone pigment polymorphism gives rise to variation of a few per cent in relative excitation by the different phosphors--a variation larger than the errors ensuing from the adoption of the CIE standard observer, though smaller than the differences between some candidate cone sensitivities. Macular pigmentation has a larger influence, affecting mainly responses to the blue phosphor. The estimated combined effect of all sources of observer variation is comparable in magnitude with the largest differences between competing cone sensitivity estimates but is not enough to disrupt very seriously the relation between the L and M cone weights and the isoluminance settings of individual observers. It is also comparable with typical instrumental colorimetric errors, but we discuss these only briefly.

  5. Fusion: ultra-high-speed and IR image sensors

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  6. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats.

    PubMed

    Bland, Charles; Ramsey, Teresa L; Sabree, Fareedah; Lowe, Micheal; Brown, Kyndall; Kyrpides, Nikos C; Hugenholtz, Philip

    2007-06-18

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning to attract attention because of their proposed mechanism; that is, defending their hosts against invading extrachromosomal elements such as viruses. Existing repeat detection tools do a poor job of identifying CRISPRs due to the presence of unique spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes. CRT was compared to CRISPR detection tools, Patscan and Pilercr. In terms of correctness, CRT was shown to be very reliable, demonstrating significant improvements over Patscan for measures precision, recall and quality. When compared to Pilercr, CRT showed improved performance for recall and quality. In terms of speed, CRT proved to be a huge improvement over Patscan. Both CRT and Pilercr were comparable in speed, however CRT was faster for genomes containing large numbers of repeats. In this paper a new tool was introduced for the automatic detection of CRISPR elements. This tool, CRT, showed some important improvements over current techniques for CRISPR identification. CRT's approach to detecting repetitive sequences is straightforward. It uses a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input. This leads to a program that is easy to describe and understand; yet it is very accurate, fast and memory efficient, being O(n) in space and O(nm/l) in time.

  7. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  8. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  9. Endosome-Associated CRT1 Functions Early in Resistance Gene–Mediated Defense Signaling in Arabidopsis and Tobacco[W

    PubMed Central

    Kang, Hong-Gu; Oh, Chang-Sik; Sato, Masanao; Katagiri, Fumiaki; Glazebrook, Jane; Takahashi, Hideki; Kachroo, Pradeep; Martin, Gregory B.; Klessig, Daniel F.

    2010-01-01

    Resistance gene–mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene–mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2DD was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment. PMID:20332379

  10. Engineering ultra-flattened normal dispersion photonic crystal fiber with silica material

    NASA Astrophysics Data System (ADS)

    Ferhat, Mohamed Lamine; Cherbi, Lynda; Bahloul, Lies; Hariz, Abdelhafid

    2017-05-01

    The tailoring of the group velocity dispersion (GVD) of an optical fiber is critical in many applications, influence on the bandwidth of information transmission in optical communication systems, successful utilization of nonlinear optical properties in applications such as supercontinuum generation, wavelength conversion and harmonic generation via stimulated Raman scattering ...In this work, we propose a design of ultra-flattened photonic crystal fiber by changing the diameter of the air holes of the cladding rings. The geometry is composed of only four rings, hexagonal structure of air holes and silica as background of the solid core. As a result, we present structures with broadband flat normal dispersion on many wavelengths bands useful for several applications. We obtain flat normal dispersion over 1000 nm broadband flat normal dispersion below -7 [ps/nm.km], and ultra-flat near zero normal dispersion below -0.2 [ps/nm.km] over 150 nm. The modeled photonic crystal fiber would be valuable for the fabrication of ultra-flattened-dispersion fibers, and have potential applications in wide-band high-speed optical communication systems, supercontinuum generation and many other applications.

  11. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    PubMed Central

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd’ko, Yuri; Sutter, John

    2016-01-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm−1 spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm−1 are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s−1 in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS. PMID:26917127

  12. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    DOE PAGES

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; ...

    2016-03-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm ₋1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm ₋1are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combinationmore » of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10 12 photons s ₋1in a 90 µeV bandwidth can be achieved on the sample. Ultimately, this will provide unique new possibilities for dynamics studies by IXS.« less

  13. Lensless, ultra-wideband fiber optic rotary joint for biomedical applications.

    PubMed

    Kim, Wihan; Chen, Xi; Jo, Javier A; Applegate, Brian E

    2016-05-01

    The demands of optical fiber-based biomedical applications can, in many cases, outstrip the capabilities of lens-based commercially available fiber optic rotary joints. In some circumstances, it is necessary to use very broad spectral bandwidths (near UV to short-wave IR) and specialized optical fibers, such as double-clad fiber, and have the capacity to accommodate high rotational velocities. The broad spectrum, stretching down into the UV, presents two problems: (1) adequate chromatic correction in the lenses across the entire bandwidth and (2) strong UV absorption by the fluids used to lubricate the rotary joint. To accommodate these types of applications, we have developed an ultra-wideband lensless fiber optic rotary joint based on the principle that when two optical fibers are coaligned and placed in contact (or very close), the optical losses at the junction are very low. The advances demonstrated here enable excellent performance (<0.2  dB insertion loss), even down into the UV and spanning a wavelength range of at least 355-1360 nm with single-mode, multimode, and double-clad fibers. We also demonstrate excellent performance, ∼0.38  dB insertion loss, at rotational velocities up to 8800 rpm (146 Hz). To the best of our knowledge, this is the first demonstration of this type of rotary joint capable of such a wide bandwidth and high rotational velocities.

  14. Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware.

    PubMed

    Schumacher, Kelsea A; Schumacher, Thomas; Agbemabiese, Lawrence

    2014-11-01

    The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware's e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Gaussian entanglement distribution with gigahertz bandwidth.

    PubMed

    Ast, Stefan; Ast, Melanie; Mehmet, Moritz; Schnabel, Roman

    2016-11-01

    The distribution of entanglement with Gaussian statistic can be used to generate a mathematically proven secure key for quantum cryptography. The distributed secret key rate is limited by the entanglement strength, the entanglement bandwidth, and the bandwidth of the photoelectric detectors. The development of a source for strongly bipartite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25 GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300 MHz to about 2.8 at 1.2 GHz, extending further to about 3.1 at 1.48 GHz. In the experiment we used two 2.6 mm long monolithic periodically poled potassium titanyl phosphate (KTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550 nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed.

  16. Vitamin D deficiency and functional response to CRT in heart failure patients.

    PubMed

    Separham, A; Pourafkari, L; Kazemi, B; Haghizadeh, Y; Akbarzadeh, F; Toufan, M; Sate, H; Nader, N D

    2017-10-09

    Vitamin D deficiency has been associated with a poor outcome in patients with heart failure (HF). We examined the role of vitamin D in the response of HF patients to cardiac resynchronization therapy (CRT). The study comprised 50 patients (30 men and 20 women) with HF undergoing CRT implantation who were prospectively enrolled. Response to CRT was defined as a combination of ≥15% reduction in left ventricular end-systolic volume (LVESV) and ≥10% improvement in the 6‑Minute Walk Test within 6 months. Patients were grouped based on their levels of vitamin D prior to CRT implantation. Clinical and echocardiographic examinations were performed prior to and 6 months after the procedure. Of the patients, 11 (22%) failed to respond to CRT; two patients died within 6 months and an additional nine patients showed no improvement in the 6‑Minute Walk Test and no reduction in their baseline LVESV. A comparison was made between 25 patients with sufficient levels of vitamin D and 25 patients with insufficient levels. Nine patients (36%) in the "insufficient" group and two patients (8%) in the "sufficient" group failed to respond to CRT implantation (p = 0.037). Adequate serum concentrations of vitamin D play a significant role in improving the functional status of patients with systolic HF following CRT implantation.

  17. [Extreme (complicated, ultra-high) refractive errors: terminological misconceptions!?

    PubMed

    Avetisov, S E

    2018-01-01

    The article reviews development mechanisms of different refractive errors accompanied by marked defocus of light rays reaching the retina. Terminology used for such ametropias includes terms extreme, ultra-high and complicated. Justification of their usage for primary ametropias, whose symptom complex is based on changes in axial eye length, is an ongoing discussion. To comply with thesaurus definitions of 'diagnosis' and 'pathogenesis', to characterize refractive and anatomical-functional disorders in patients with primary ametropias it is proposed to use the terms 'hyperaxial and hypoaxial syndromes' with elaboration of specific symptoms instead of such expressions as extreme (ultra-high) myopia and hypermetropia.

  18. [Financial impact of introducing filmless CRT diagnosis].

    PubMed

    Kusakabe, Yukihiro

    2002-09-01

    There has been a great deal of discussion as to the cost and benefit of introducing filmless CRT diagnosis for radiological exams. Although the various advantages of the filmless system tend to be highlighted, very few studies have attempted to provide a quantitative estimate of the degree of impact. We analyzed the potential financial impact on the cost of film management (film development, maintenance, and transportation) if CRT diagnosis were to be introduced in Seirei Hamamatsu Hospital. In conducting this analysis, we assumed that CRT diagnosis initially would be limited to CT and MR. The analysis demonstrated that the actual yearly cost of managing films amounts to about 240 million yen. As individual items, the cost of film materials, labor, and depreciation of assets were the three largest cost sectors, with the cost of film accounting for more than 30% of the total. The expense attributable to CT and MR exams was roughly half of the total cost. Against this level of expense, the expected savings in the first year after shifting to the filmless system would be 100 million yen, or a 36% reduction in current expenses. This savings reflects various effects of system change, including lack of need for related materials, reduction in staff workload, elimination of unnecessary equipment, etc. Under the simulation we conducted, 70% of savings occurred in the area of variable costs and 30% in the area of fixed costs.

  19. Is a controlled randomised trial the non-plus-ultra design? A contribution to discussion on comparative, controlled, non-randomised trials.

    PubMed

    Gaus, Wilhelm; Muche, Rainer

    2013-05-01

    Clinical studies provide formalised experience for evidence-based medicine (EBM). Many people consider a controlled randomised trial (CRT, identical to a randomised controlled trial RCT) to be the non-plus-ultra design. However, CRTs also have limitations. The problem is not randomisation itself but informed consent for randomisation and masking of therapies according to today's legal and ethical standards. We do not want to de-rate CRTs, but we would like to contribute to the discussion on clinical research methodology. Informed consent to a CRT and masking of therapies plainly select patients. The excellent internal validity of CRTs can be counterbalanced by poor external validity, because internal and external validity act as antagonists. In a CRT, patients may feel like guinea pigs, this can decrease compliance, cause protocol violations, reduce self-healing properties, suppress unspecific therapeutic effects and possibly even modify specific efficacy. A control group (comparative study) is most important for the degree of evidence achieved by a trial. Study control by detailed protocol and good clinical practice (controlled study) is second in importance and randomisation and masking is third (thus the sequence CRT instead of RCT). Controlled non-randomised trials are just as ambitious and detailed as CRTs. We recommend clinicians and biometricians to take high quality controlled non-randomised trials into consideration more often. They combine good internal and external validity, better suit daily medical practice, show better patient compliance and fewer protocol violations, deliver estimators unbiased by alienated patients, and perhaps provide a clearer explanation of the achieved success. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  1. High-bandwidth detection of short DNA in nanopipettes.

    PubMed

    Fraccari, Raquel L; Carminati, Marco; Piantanida, Giacomo; Leontidou, Tina; Ferrari, Giorgio; Albrecht, Tim

    2016-12-12

    Glass or quartz nanopipettes have found increasing use as tools for studying the biophysical properties of DNA and proteins, and as sensor devices. The ease of fabrication, favourable wetting properties and low capacitance are some of the inherent advantages, for example compared to more conventional, silicon-based nanopore chips. Recently, we have demonstrated high-bandwidth detection of double-stranded (ds) DNA with microsecond time resolution in nanopipettes, using custom-designed electronics. The electronics design has now been refined to include more sophisticated control features, such as integrated bias reversal and other features. Here, we exploit these capabilities and probe the translocation of short dsDNA in the 100 bp range, in different electrolytes. Single-stranded (ss) DNA of similar length are in use as capture probes, so label-free detection of their ds counterparts could therefore be of relevance in disease diagnostics.

  2. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  3. Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays

    DTIC Science & Technology

    1993-12-09

    during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate... molecular beam epitaxy (MBE) crystal growth, the GaAs growth rate is highly sensitive to the substrate temperature above 650"C (2], a GaAs/AIGaAs... epitaxial growth technique to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer

  4. Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks.

    PubMed

    Van Campenhout, Joris; Green, William M J; Assefa, Solomon; Vlasov, Yurii A

    2009-12-21

    We present an ultra-broadband Mach-Zehnder based optical switch in silicon, electrically driven through carrier injection. Crosstalk levels lower than -17 dB are obtained for both the 'on' and 'off' switching states over an optical bandwidth of 110 nm, owing to the implementation of broadband 50% couplers. Full 2 x 2 switching functionality is demonstrated, with low power consumption (approximately 3 mW) and a fast switching time (< 4 ns). The utilization of standard CMOS metallization results in a low drive voltage (approximately 1 V) and a record-low V(pi)L (approximately 0.06 V x mm). The wide optical bandwidth is maintained for temperature variations up to 30 K.

  5. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  6. Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers.

    PubMed

    Kim, Myoung Jin; Jung, Yong Min; Kim, Bok Hyeon; Han, Won-Taek; Lee, Byeong Ha

    2007-08-20

    We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~ 160 nm with an insertion loss of ~ 2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~ 120 nm FWHM and ~ 4.18 dB insertion loss at the peak.

  7. Novel high-bandwidth bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Michael S.; Laycock, Leslie C.; Archer, Nick J.

    2004-12-01

    Adaptive Optics (AO) is a critical underpinning technology for future laser delivery (including free-space optical communications), target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS Advanced Technology Centre is developing multi-element bimorph deformable mirrors for such an applications. Our initial designs were based on a standard construction and exhibited a resonant frequency of 1kHz with a maximum stroke of +/-20μm for an active aperture of 50mm. These devices were limited by the necessity to have a 'dead space' between the inner active area and the mirror boundary; this ensured that both the requirements for the stroke and the fixed boundary conditions could be met simultaneously. However, there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of iteration steps, we have created novel mounting arrangements that reduce dead space and thus provide the optimum trade-off between bandwidth and stroke. These schemes include supporting the mirror from underneath, rather than at its edge. As a result, models of 60mm active diameter mirrors predict a resonance in excess of 5kHz, combined with a maximum stroke greater than +/-40μm. This paper will discuss a number of different mirror designs and present experimental results for recently assembled devices.

  8. Ultra-thin and -broadband microwave magnetic absorber enhanced by phase gradient metasurface incorporation

    NASA Astrophysics Data System (ADS)

    Fan, Ya; Wang, Jiafu; Li, Yongfeng; Pang, Yongqiang; Zheng, Lin; Xiang, Jiayu; Zhang, Jieqiu; Qu, Shaobo

    2018-05-01

    Based on the effect of anomalous reflection and refraction caused by the circularly cross-polarized phase gradient metasurface (PGM), an ultra-thin and -broadband composite absorber composed of metasurface and conventional magnetic absorbing film is proposed and demonstrated in this paper. In the case of keeping nearly the same thickness of absorbing layer, the equivalent thickness of magnetic absorbing film is enlarged by the effect of anomalous reflection and refraction, resulting in the expansion and improvement of the absorbing bandwidth and efficiency in low microwave frequency. A biarc metallic sub-cell for circularly crossed polarization is adopted to form a broadband phase gradient, by the means of rotating the Pancharatnam–Berry phases. As indicated in the experimental results, the fabricated 3.6 mm-thick absorber can averagely absorb microwave energy with the specular reflection below  ‑10 dB in the frequency interval of 2–12 GHz, which shows a good match with simulated results. Due to ultra-thin thickness and ultra-wide operating bandwidth, the proposed application of PGM in absorbing can provide an alternative way to enhance the absorbing property of current absorbing materials.

  9. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles.

    PubMed

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-07-23

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves.

  10. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles

    PubMed Central

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-01-01

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves. PMID:26202495

  11. Ultra-High Surface Speed for Metal Removal, Artillery Shell

    DTIC Science & Technology

    1981-07-01

    TECHNICAL LIBRARY "y/a^^cr^ AD-E400 660 CONTRACTOR REPORT ARLCD-CR- 81019 ULTRA-HIGH SURFACE SPEED FOR METAL REMOVAL, ARTILLERY SHELL RICHARD F...Report ARLCD-CR- 81019 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) ULTRA-HIGH SURFACE SPEED FOR METAL...UNIT* tuiPPtO 1 MIL -STD-43CA i, ASTM A-274-64 EF A1SI~1340 SEHI FIN FORGING STEEL 6 RC SQ ■ IP 120093* a LIFTS 38 PCS

  12. Extraction of heavy metal (Ba, Sr) and high silica glass powder synthesis from waste CRT panel glasses by phase separation.

    PubMed

    Xing, Mingfei; Wang, Jingyu; Fu, Zegang; Zhang, Donghui; Wang, Yaping; Zhang, Zhiyuan

    2018-04-05

    In this study, a novel process for the extraction of heavy metal Ba and Sr from waste CRT panel glass and synchronous preparation of high silica glass powder was developed by glass phase separation. CRT panel glass was first remelted with B 2 O 3 under air atmosphere to produce alkali borosilicate glass. During the phase separation process, the glass separated into two interconnected phases which were B 2 O 3 -rich phase and SiO 2 -rich phase. Most of BaO, SrO and other metal oxides including Na 2 O, K 2 O, Al 2 O 3 and CaO were mainly concentrated in the B 2 O 3 -rich phase. The interconnected B 2 O 3 -rich phase can be completely leached out by 5mol/L HNO 3 at 90 ℃. The remaining SiO 2 -rich phase was porous glasses consisting almost entirely of silica. The maximum Ba and Sr removal rates were 98.84% and 99.38% and high silica glass powder (SiO 2 purity > 90 wt%) was obtained by setting the temperature, B 2 O 3 added amount and holding time at 1000-1100 ℃, 20-30% and 30 min, respectively. Thus this study developed an potential economical process for detoxification and reclamation of waste heavy metal glasses. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CRISPR Recognition Tool (CRT): a tool for automatic detection ofclustered regularly interspaced palindromic repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Charles; Ramsey, Teresa L.; Sabree, Fareedah

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning to attract attention because of their proposed mechanism; that is, defending their hosts against invading extrachromosomal elements such as viruses. Existing repeat detection tools do a poor job of identifying CRISPRs due to the presence of unique spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes. CRT was compared to CRISPR detection tools, Patscan andmore » Pilercr. In terms of correctness, CRT was shown to be very reliable, demonstrating significant improvements over Patscan for measures precision, recall and quality. When compared to Pilercr, CRT showed improved performance for recall and quality. In terms of speed, CRT also demonstrated superior performance, especially for genomes containing large numbers of repeats. In this paper a new tool was introduced for the automatic detection of CRISPR elements. This tool, CRT, was shown to be a significant improvement over the current techniques for CRISPR identification. CRT's approach to detecting repetitive sequences is straightforward. It uses a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input. This leads to a program that is easy to describe and understand; yet it is very accurate, fast and memory efficient, being O(n) in space and O(nm/l) in time.« less

  14. Ultra wideband surface wave communications

    NASA Astrophysics Data System (ADS)

    Lacomb, Julie Anne

    Ultra Wideband (UWB), an impulse carrier waveform, was applied at HF-VHF frequencies to utilize surface wave propagation. UWB involves the propagation of transient pulses rather than continuous waves which makes the system easier to implement, inexpensive, low power and small. Commercial UWB for wireless personal area networks is 3.1 to 10.6 GHz band as approved by the FCC with ranges up to 12 ft. The use of surface wave propagation (instead of commercial SHF UWB) extends the communication range. Surface wave is a means of propagation where the wave is guided by the surface of the Earth. Surface wave is efficient at low frequencies, VLF to HF. The UWB HF channel was modeled and also experimentally characterized. The Federal Communications Commission (FCC) defines UWB as a signal with either a fractional bandwidth of 20% of the center frequency or a bandwidth of 500MHz. Designing an antenna to operate over the 20% bandwidth requirement of UWB is one of the greatest challenges. Two different antenna designs are presented, a spoke top antenna and a traveling wave antenna with photonic bandgap. These designs were implemented at the commercial UWB frequencies (3.1--10.6 GHz) due to availability of modeling tools for the higher frequencies, the reduced antenna size and the availability of measurement facilities. The spoke top was optimum for replication of the time domain input signal. The traveling wave antenna with photonic bandgap demonstrated increased impedance bandwidth of the antenna.

  15. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    NASA Astrophysics Data System (ADS)

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-11-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  16. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    PubMed Central

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-01-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date. PMID:27869119

  17. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials.

    PubMed

    Lecaplain, C; Javerzac-Galy, C; Gorodetsky, M L; Kippenberg, T J

    2016-11-21

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF 2 , CaF 2 , MgF 2 and SrF 2 microresonators. We show that MgF 2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF 2 and BaF 2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  18. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip.

    PubMed

    Lin, Yongbin; Guo, Junpeng; Lindquist, Robert G

    2009-09-28

    Dramatic increase in the bandwidth of optical fiber inline polarizer can be achieved by using metal nano-grid on the fiber tip. However, high extinction ratio of such fiber polarizer requires high spatial frequency metal nano girds with high aspect ratio on the small area of optical fiber tip. We report the development of a nano-fabrication process on the optical fiber tip, and the design and realization of the first ultra-wideband fiber inline polarization device with Au nano gird fabricated on a single mode optical fiber end face.

  19. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing.

    PubMed

    Sun, Fujun; Fu, Zhongyuan; Wang, Chunhong; Ding, Zhaoxiang; Wang, Chao; Tian, Huiping

    2017-05-20

    We propose and investigate an ultra-compact air-mode photonic crystal nanobeam cavity (PCNC) with an ultra-high quality factor-to-mode volume ratio (Q/V) by quadratically tapering the lattice space of the rectangular holes from the center to both ends while other parameters remain unchanged. By using the three-dimensional finite-difference time-domain method, an optimized geometry yields a Q of 7.2×10 6 and a V∼1.095(λ/n Si ) 3 in simulations, resulting in an ultra-high Q/V ratio of about 6.5×10 6 (λ/n Si ) -3 . When the number of holes on either side is 8, the cavity possesses a high sensitivity of 252 nm/RIU (refractive index unit), a high calculated Q-factor of 1.27×10 5 , and an ultra-small effective V of ∼0.758(λ/n Si ) 3 at the fundamental resonant wavelength of 1521.74 nm. Particularly, the footprint is only about 8×0.7  μm 2 . However, inevitably our proposed PCNC has several higher-order resonant modes in the transmission spectrum, which makes the PCNC difficult to be used for multiplexed sensing. Thus, a well-designed bandstop filter with weak sidelobes and broad bandwidth based on a photonic crystal nanobeam waveguide is created to connect with the PCNC to filter out the high-order modes. Therefore, the integrated structure presented in this work is promising for building ultra-compact lab-on-chip sensor arrays with high density and parallel-multiplexing capability.

  20. Overexpression of a bifunctional enzyme, CrtS, enhances astaxanthin synthesis through two pathways in Phaffia rhodozyma.

    PubMed

    Chi, Shuang; He, Yanfeng; Ren, Jie; Su, Qian; Liu, Xingchao; Chen, Zhi; Wang, Mingan; Li, Ying; Li, Jilun

    2015-06-18

    A moderate-temperature, astaxanthin-overproducing mutant strain (termed MK19) of Phaffia rhodozyma was generated in our laboratory. The intracellular astaxanthin content of MK19 was 17-fold higher than that of wild-type. The TLC profile of MK19 showed a band for an unknown carotenoid pigment between those of β-carotene and astaxanthin. In the present study, we attempted to identify the unknown pigment and to enhance astaxanthin synthesis in MK19 by overexpression of the crtS gene that encodes astaxanthin synthase (CrtS). A crtS-overexpressing strain was constructed without antibiotic marker. A recombinant plasmid with lower copy numbers was shown to be stable in MK19. In the positive recombinant strain (termed CSR19), maximal astaxanthin yield was 33.5% higher than MK19, and the proportion of astaxanthin as a percentage of total carotenoids was 84%. The unknown carotenoid was identified as 3-hydroxy-3',4'-didehydro-β,Ψ-carotene-4-one (HDCO) by HPLC, mass spectrometry, and NMR spectroscopy. CrtS was found to be a bifunctional enzyme that helped convert HDCO to astaxanthin. Enhancement of crtS transcriptional level increased transcription levels of related genes (crtE, crtYB, crtI) in the astaxanthin synthesis pathway. A scheme of carotenoid biosynthesis in P. rhodozyma involving alternative bicyclic and monocyclic pathways is proposed. CrtS overexpression leads to up-regulation of synthesis-related genes and increased astaxanthin production. The transformant CSR19 is a stable, secure strain suitable for feed additive production. The present findings help clarify the regulatory mechanisms that underlie metabolic fluxes in P. rhodozyma carotenoid biosynthesis pathways.

  1. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  2. Paired comparisons of nonlinear frequency compression, extended bandwidth, and restricted bandwidth hearing-aid processing for children and adults with hearing loss

    PubMed Central

    Brennan, Marc A.; McCreery, Ryan; Kopun, Judy; Hoover, Brenda; Alexander, Joshua; Lewis, Dawna; Stelmachowicz, Patricia G.

    2014-01-01

    high frequency sounds, as demonstrated by their preference for either the extended bandwidth or nonlinear frequency compression conditions over the restricted bandwidth condition. Preference for extended bandwidth can be limited for those with greater degrees of hearing loss, but participants with greater hearing loss may be more likely to prefer nonlinear frequency compression. Further investigation using participants with more severe hearing loss may be warranted. PMID:25514451

  3. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesanti, Richard Clement

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  4. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  5. Development of high frequency and wide bandwidth Johnson noise thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law abovemore » T ∼ 100 K.« less

  6. MitraClip in CRT non-responders with severe mitral regurgitation.

    PubMed

    Seifert, Martin; Schau, Thomas; Schoepp, Maren; Arya, Anita; Neuss, Michael; Butter, Christian

    2014-11-15

    Severe mitral regurgitation (MR) ≥ 3+ and left ventricular dyssynchrony in heart failure patients are markers of CRT non response. The MitraClip (MC) implantation is a therapy for MR ≥ 3+ in patients with high surgical risk of mitral valve reconstruction. We investigated 42 patients with CRT and MR ≥ 3+ who received an MC device at our center. One and two year mortality rates were compared with the predicted mortality by Seattle Heart Failure Model (SHFM) and meta-analysis global group in chronic heart failure (MAGGIC), using the baseline characteristics of patients at the time of MC implantation. The median time interval between CRT and MC implantation was 20.1 (4.5-43.3) months. In 19 patients we observed a functional regurgitation with normal leaflets and in 23 patients a degenerative mechanism for mitral regurgitation. There was no change in mean QRS duration by biventricular pacing or MC implantation. The use of MC led to significant reductions in: median N-terminal pro-brain natriuretic peptide (NT-proBNP) level (pg/ml) from 3923 to 2636 (p = 0.02), tricuspid regurgitation pressure gradient (TRPG) from 43 to 35 mmHg (p = 0.019) and in left ventricular end-diastolic volume (LVEDV) by MC (p = 0.008). At the 2 year follow-up interval the all-cause mortality was 25%. MC implantation leads to an improvement of NT-proBNP level, TRPG and LVEDV in both functional and degenerative MR but does not influence QRS duration. Two year all-cause mortality was 25% and did not differ significantly from that predicted by SHFM and MAGGIC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  8. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2014-11-01

    We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.

  9. Towards a personalized and dynamic CRT-D. A computational cardiovascular model dedicated to therapy optimization.

    PubMed

    Di Molfetta, A; Santini, L; Forleo, G B; Minni, V; Mafhouz, K; Della Rocca, D G; Fresiello, L; Romeo, F; Ferrari, G

    2012-01-01

    In spite of cardiac resynchronization therapy (CRT) benefits, 25-30% of patients are still non responders. One of the possible reasons could be the non optimal atrioventricular (AV) and interventricular (VV) intervals settings. Our aim was to exploit a numerical model of cardiovascular system for AV and VV intervals optimization in CRT. A numerical model of the cardiovascular system CRT-dedicated was previously developed. Echocardiographic parameters, Systemic aortic pressure and ECG were collected in 20 consecutive patients before and after CRT. Patient data were simulated by the model that was used to optimize and set into the device the intervals at the baseline and at the follow up. The optimal AV and VV intervals were chosen to optimize the simulated selected variable/s on the base of both echocardiographic and electrocardiographic parameters. Intervals were different for each patient and in most cases, they changed at follow up. The model can well reproduce clinical data as verified with Bland Altman analysis and T-test (p > 0.05). Left ventricular remodeling was 38.7% and left ventricular ejection fraction increasing was 11% against the 15% and 6% reported in literature, respectively. The developed numerical model could reproduce patients conditions at the baseline and at the follow up including the CRT effects. The model could be used to optimize AV and VV intervals at the baseline and at the follow up realizing a personalized and dynamic CRT. A patient tailored CRT could improve patients outcome in comparison to literature data.

  10. High bandwidth piezoresistive force probes with integrated thermal actuation

    PubMed Central

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  11. Cardiac resynchronization therapy (CRT) in heart failure--a model to assess the economic value of this new medical technology.

    PubMed

    Banz, Kurt

    2005-01-01

    This article describes the framework of a comprehensive European model developed to assess clinical and economic outcomes of cardiac resynchronization therapy (CRT) versus optimal pharmacological therapy (OPT) alone in patients with heart failure. The model structure is based on information obtained from the literature, expert opinion, and a European CRT Steering Committee. The decision-analysis tool allows a consideration of direct medical and indirect costs, and computes outcomes for distinctive periods of time up to 5 years. Qualitative data can also be entered for cost-utility analysis. Model input data for a preliminary economic appraisal of the economic value of CRT in Germany were obtained from clinical trials, experts, health statistics, and medical tariff lists. The model offers comprehensive analysis capabilities and high flexibility so that it can easily be adapted to any European country or special setting. The illustrative analysis for Germany indicates that CRT is a cost-effective intervention. Although CRT is associated with average direct medical net costs of Euro 5880 per patient, this finding means that 22% of its upfront implantation cost is recouped already within 1 year because of significantly decreased hospitalizations. With 36,600 Euros the incremental cost per quality-adjusted life-year (QALY) gained is below the euro equivalent (41,300 Euros, 1 Euro = US1.21 dollars) of the commonly used threshold level of US50,000 dollars considered to represent cost-effectiveness. The sensitivity analysis showed these preliminary results to be fairly robust towards changes in key assumptions. The European CRT model is an important tool to assess the economic value of CRT in patients with moderate to severe heart failure. In the light of the planned introduction of Diagnosis Related Group (DRG) based reimbursement in various European countries, the economic data generated by the model can play an important role in the decision-making process.

  12. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters

    NASA Astrophysics Data System (ADS)

    Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-01

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  13. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters.

    PubMed

    Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-29

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  14. Ultra-small and broadband polarization splitters based on double-slit interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chengwei; Li, Hongyun; Gong, Qihuang

    2016-03-07

    An ultra-small and broadband polarization splitter is numerically and experimentally demonstrated based on the double-slit interference in a polymer-film-coated double-slit structure. The hybrid slab waveguide (air-polymer-Au) supports both the transverse-magnetic and transverse-electric modes. The incident beam from the back side can excite these two guided modes of orthogonally polarized states in the hybrid structure. By exploiting the difference slit widths and the large mode birefringence, these two guided modes propagate to the opposite directions along the front metal surface. Moreover, the short interference length broadens the operation bandwidth. Experimentally, a polarization splitter with a lateral dimension of only about 1.6 μmmore » and an operation bandwidth of 50 nm is realized. By designing the double-slit structure in a hybrid strip waveguide, the device dimension can be significant downscaled to about 0.3 × 1.3 μm{sup 2}. Such an ultra-small and broadband polarization splitter may find important applications in the integrated photonic circuits.« less

  15. Hybrid metasurface for ultra-broadband terahertz modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, Jane E.; Withayachumnankul, Withawat; Grady, Nathaniel K.

    2014-11-05

    We demonstrate an ultra-broadband free-space terahertz modulator based on a semiconductor-integrated metasurface. The modulator is made of a planar array of metal cut-wires on a silicon-on-sapphire substrate, where the silicon layer functions as photoconductive switches. Without external excitation, the cut-wire array exhibits a Lorentzian resonant response with a transmission passband spanning dc up to the fundamental dipole resonance above 2 THz. Under photoexcitation with 1.55 eV near-infrared light, the silicon regions in the cut-wire gaps become highly conductive, causing a transition of the resonant metasurface to a wire grating with a Drude response. In effect, the low-frequency passband below 2more » THz evolves into a stopband for the incident terahertz waves. Experimental validations confirm a bandwidth of at least 100%, spanning 0.5 to 1.5 THz with -10 dB modulation depth. This modulation depth is far superior to -5 dB achievable from a plain silicon-on-sapphire substrate with effectively 25 times higher pumping energy. The proposed concept of ultra-broadband metasurface modulator can be readily extended to electrically controlled terahertz wave modulation.« less

  16. Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory.

    PubMed

    Vallejo, Felipe A; Hayden, L Michael

    2013-03-11

    We use coupled mode theory, adequately incorporating optical losses, to model ultra-broadband terahertz (THz) waveguide emitters (0.1-20 THz) based on difference frequency generation of femtosecond infrared (IR) optical pulses. We apply the model to a generic, symmetric, five-layer, metal/cladding/core waveguide structure using transfer matrix theory. We provide a design strategy for an efficient ultra-broadband THz emitter and apply it to polymer waveguides with a nonlinear core composed of a poled guest-host electro-optic polymer composite and pumped by a pulsed fiber laser system operating at 1567 nm. The predicted bandwidths are greater than 15 THz and we find a high conversion efficiency of 1.2 × 10(-4) W(-1) by balancing both the modal phase-matching and effective mode attenuation.

  17. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  18. Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Dinh, Toan; Ina, Ginnosuke; Kermany, Atieh Ranjbar; Qamar, Afzaal; Han, Jisheng; Namazu, Takahiro; Maeda, Ryutaro; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-04-01

    Strain engineering has attracted great attention, particularly for epitaxial films grown on a different substrate. Residual strains of SiC have been widely employed to form ultra-high frequency and high Q factor resonators. However, to date, the highest residual strain of SiC was reported to be limited to approximately 0.6%. Large strains induced into SiC could lead to several interesting physical phenomena, as well as significant improvement of resonant frequencies. We report an unprecedented nanostrain-amplifier structure with an ultra-high residual strain up to 8% utilizing the natural residual stress between epitaxial 3C-SiC and Si. In addition, the applied strain can be tuned by changing the dimensions of the amplifier structure. The possibility of introducing such a controllable and ultra-high strain will open the door to investigating the physics of SiC in large strain regimes and the development of ultra sensitive mechanical sensors.

  19. A HIGH BANDWIDTH BIPOLAR POWER SUPPLY FOR THE FAST CORRECTORS IN THE APS UPGRADE*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ju; Sprau, Gary

    The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% ofmore » the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.« less

  20. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.

    PubMed

    Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin

    2015-06-12

    Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.

  1. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  2. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  3. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    NASA Astrophysics Data System (ADS)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  4. Image and Video Quality Assessment Using LCD: Comparisons with CRT Conditions

    NASA Astrophysics Data System (ADS)

    Tourancheau, Sylvain; Callet, Patrick Le; Barba, Dominique

    In this paper, the impact of display on quality assessment is addressed. Subjective quality assessment experiments have been performed on both LCD and CRT displays. Two sets of still images and two sets of moving pictures have been assessed using either an ACR or a SAMVIQ protocol. Altogether, eight experiments have been led. Results are presented and discussed, some differences are pointed out. Concerning moving pictures, these differences seem to be mainly due to LCD moving artefacts such as motion blur. LCD motion blur has been measured objectively and with psycho-physics experiments. A motion-blur metric based on the temporal characteristics of LCD can be defined. A prediction model have been then designed which predict the differences of perceived quality between CRT and LCD. This motion-blur-based model enables the estimation of perceived quality on LCD with respect to the perceived quality on CRT. Technical solutions to LCD motion blur can thus be evaluated on natural contents by this mean.

  5. Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon.

    PubMed

    Shi, Wei; Yun, Han; Lin, Charlie; Greenberg, Mark; Wang, Xu; Wang, Yun; Fard, Sahba Talebi; Flueckiger, Jonas; Jaeger, Nicolas A F; Chrostowski, Lukas

    2013-03-25

    Wavelength-division-multiplexing (WDM) networks with wide channel grids and bandwidths are promising for low-cost, low-power optical interconnects. Wide-bandwidth, single-band (i.e., no free-spectral range) add-drop filters have been developed on silicon using anti-reflection contra-directional couplers with out-of-phase Bragg gratings. Using such filter components, we demonstrate a 4-channel, coarse-WDM demultiplexer with flat passbands of up to 13 nm and an ultra-compact size of 1.2 × 10(-3) mm(2).

  6. Bandwidth efficient coding for satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.

    1992-01-01

    An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.

  7. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  8. Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis.

    PubMed

    Kraus, Michael; Rapisarda, Attilio; Lam, Max; Thong, Jamie Y J; Lee, Jimmy; Subramaniam, Mythily; Collinson, Simon L; Chong, Siow Ann; Keefe, Richard S E

    2016-12-01

    The addition of off-the-shelf cognitive measures to established prodromal criteria has resulted in limited improvement in the prediction of conversion to psychosis. Tests that assess cognitive processes central to schizophrenia might better identify those at highest risk. The latent inhibition paradigm assesses a subject's tendency to ignore irrelevant stimuli, a process integral to healthy perceptual and cognitive function that has been hypothesized to be a key deficit underlying the development of schizophrenia. In this study, 142 young people at ultra high-risk for developing psychosis and 105 controls were tested on a within-subject latent inhibition paradigm. Additionally, we later inquired about the strategy that each subject employed to complete the test, and further investigated the relationship between reported strategy and the extent of latent inhibition exhibited. Unlike controls, ultra high-risk subjects did not demonstrate a significant latent inhibition effect. This difference between groups became greater when controlling for strategy. The lack of latent inhibition effect in our ultra high-risk sample suggests that individuals at ultra high-risk for psychosis are impaired in their allocation of attentional resources based on past predictive value of repeated stimuli. This fundamental deficit in the allocation of attention may contribute to the broader array of cognitive impairments and clinical symptoms displayed by individuals at ultra high-risk for psychosis.

  9. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    NASA Astrophysics Data System (ADS)

    Dykstra, D.; Bockelman, B.; Blomer, J.; Herner, K.; Levshina, T.; Slyz, M.

    2015-12-01

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called "alien cache" to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the

  10. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykstra, D.; Bockelman, B.; Blomer, J.

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliarymore » data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called 'alien cache' to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally

  11. Practical method for evaluating the visibility of moire patterns for CRT design

    NASA Astrophysics Data System (ADS)

    Shiramatsu, Naoki; Tanigawa, Masashi; Iwata, Shuji

    1995-04-01

    The high resolution CRT displays used for computer monitor and high performance TV often produce a pattern of bright and dark stripes on the screen called a moire pattern. The elimination of the moire is an important consideration in the CRT design. The objective of this study is to provide a practical method for estimating and evaluating a moire pattern considering the visibility by the human vision. On the basis of the mathematical model of a moire generation, precise value of the period and the intensity of a moire are calculated from the actual data of the electron beam profile and the transmittance distribution of apertures of the shadow mask. The visibility of the moire is evaluated by plotting the calculation results on the contrast-period plane, which consists of visible and invisible moire pattern regions based on experimental results of the psychological tests. Not only fundamental design parameters such as a shadow mask pitch and a scanning line pitch but also details of an electron beam profile such as a distortion or an asymmetry can be examined. In addition to the analysis, the image simulation of a moire using the image memory is also available.

  12. Search for ultra high energy astrophysical neutrinos with the ANITA experiment

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew

    2010-12-01

    This work describes a search for cosmogenic neutrinos at energies above 1018 eV with the Antarctic Impulsive Transient Antenna (ANITA). ANITA is a balloon-borne radio interferometer designed to measure radio impulsive emission from particle showers produced in the Antarctic ice-sheet by ultra-high energy neutrinos (UHEnu). Flying at 37 km altitude the ANITA detector is sensitive to 1M km3 of ice and is expected to produce the highest exposure to ultra high energy neutrinos to date. The design, flight performance, and analysis of the first flight of ANITA in 2006 are the subject of this dissertation. Due to sparse anthropogenic backgrounds throughout the Antarctic continent, the ANITA analysis depends on high resolution directional reconstruction. An interferometric method was developed that not only provides high resolution but is also sensitive to very weak radio emissions. The results of ANITA provide the strongest constraints on current ultra-high energy neutrino models. In addition there was a serendipitous observation of ultra-high energy cosmic ray geosynchrotron emissions that are of distinct character from the expected neutrino signal. This thesis includes a study of the radio Cherenkov emission from ultra-high energy electromagnetic showers in ice in the time-domain. All previous simulations computed the radio pulse frequency spectrum. I developed a purely time-domain algorithm for computing radiation using the vector potentials of charged particle tracks. The results are fully consistent with previous frequency domain calculations and shed new light into the properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly related to the depth development of the excess charge in the shower and its width to the observation angle with respect to the Cherenkov direction. This information can be of great practical importance for interpreting actual data.

  13. Design & Performance of Wearable Ultra Wide Band Textile Antenna for Medical Applications

    NASA Astrophysics Data System (ADS)

    Singh, Nikhil; Singh, Ashutosh Kumar; Singh, Vinod Kumar

    2015-02-01

    The concept of wearable products such as textile antenna are being developed which are capable of monitoring, alerting and demanding attention whenever hospital emergency is needed, hence minimizing labour and resource. In the proposed work by using textile material as a substrate the ultra wideband antenna is designed especially for medical applications.Simulated and measured results here shows that the proposed antenna design meets the requirements of wide working bandwidth and provides 13.08 GHz bandwidth with very small size, washable (if using conductive thread for conductive parts) and flexible materials. Results in terms of bandwidth, radiation pattern, return loss as well as gain and efficiency are presented to validate the usefulness of the current proposed design. The work done here has many implications for future research and it could help patients with such flexible and comfortable medical monitoring techniques.

  14. High Bandwidth Communications Links Between Heterogeneous Autonomous Vehicles Using Sensor Network Modeling and Extremum Control Approaches

    DTIC Science & Technology

    2008-12-01

    In future network-centric warfare environments, teams of autonomous vehicles will be deployed in a coorperative manner to conduct wide-area...of data back to the command station, autonomous vehicles configured with high bandwidth communication system are positioned between the command

  15. Bandwidth Enabled Flight Operations: Examining the Possibilities

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Renema, Fritz; Clancy, Dan (Technical Monitor)

    2002-01-01

    The Bandwidth Enabled Flight Operations project is a research effort at the NASA Ames Research Center to investigate the use of satellite communications to improve aviation safety and capacity. This project is a follow on to the AeroSAPIENT Project, which demonstrated methods for transmitting high bandwidth data in various configurations. For this research, we set a goal to nominally use only 10 percent of the available bandwidth demonstrated by AeroSAPIENT or projected by near-term technology advances. This paper describes the results of our research, including available satellite bandwidth, commercial and research efforts to provide these services, and some of the limiting factors inherent with this communications medium. It also describes our investigation into the needs of the stakeholders (Airlines, Pilots, Cabin Crews, ATC, Maintenance, etc). The paper also describes our development of low-cost networked flight deck and airline operations center simulations that were used to demonstrate two application areas: Providing real time weather information to the commercial flight deck, and enhanced crew monitoring and control for airline operations centers.

  16. Classification of diabetic macular oedema using ultra-widefield angiography and implications for response to anti-VEGF therapy.

    PubMed

    Xue, Kanmin; Yang, Elizabeth; Chong, N Victor

    2017-05-01

    To characterise differential pathogeneses of diabetic macular oedema (DMO) using ultra-widefield fluorescein angiography (UWFA) and evaluate responses to anti-vascular endothelial growth factor (anti-VEGF) therapy. Ninety-nine eyes (73 consecutive patients) with anti-VEGF naïve DMO underwent UWFA and optical coherence tomography, of which 60 with central retinal thickness (CRT) >400 μm received monthly intravitreal ranibizumab injections. Best-corrected visual acuity (BCVA) and CRT were measured at baseline and after three injections. After excluding tractional factors, DMO was categorised into three types based on UWFA: (A) microaneurysm driven (49%), (B) peripheral ischaemia (37%) and (C) neovascularisation (15%). While all three types showed similar mean CRT (p=0.257), types B and C were associated with more diffuse oedema, which extended beyond the 6.0 mm central macula (p=0.0034). Following anti-VEGF treatment, all three types showed improvement in CRT and BCVA, which reached statistical significance for types A and B. A positive correlation was found between the Peripheral Ischaemia Index and improvement in CRT (slope=2.09, R 2 =0.1169, p=0.0151) but not BCVA (slope=-0.00037, R 2 =0.001149, p=0.8152). UWFA facilitates the detection of peripheral ischaemia, which is associated with a significant proportion of DMO. While this group of DMO responded well to anti-VEGF therapy, it remains to be determined whether addressing the peripheral ischaemia may reduce recurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Gray-scale transform and evaluation for digital x-ray chest images on CRT monitor

    NASA Astrophysics Data System (ADS)

    Furukawa, Isao; Suzuki, Junji; Ono, Sadayasu; Kitamura, Masayuki; Ando, Yutaka

    1997-04-01

    In this paper, an experimental evaluation of a super high definition (SHD) imaging system for digital x-ray chest images is presented. The SHD imaging system is proposed as a platform for integrating conventional image media. We are involved in the use of SHD images in the total digitizing of medical records that include chest x-rays and pathological microscopic images, both which demand the highest level of quality among the various types of medical images. SHD images use progressive scanning and have a spatial resolution of 2000 by 2000 pixels or more and a temporal resolution (frame rate) of 60 frames/sec or more. For displaying medical x-ray images on a CRT, we derived gray scale transform characteristics based on radiologists' comments during the experiment, and elucidated the relationship between that gray scale transform and the linearization transform for maintaining the linear relationship with the luminance of film on a light box (luminance linear transform). We then carried out viewing experiments based on a five-stage evaluation. Nine radiologists participated in our experiment, and the ten cases evaluated included pulmonary fibrosis, lung cancer, and pneumonia. The experimental results indicated that conventional film images and those on super high definition CRT monitors have nearly the same quality. They also show that the gray scale transform for CRT images decided according to radiologists' comments agrees with the luminance linear transform in the high luminance region. And in the low luminance region, it was found that the gray scale transform had the characteristics of level expansion to increase the number of levels that can be expressed.

  18. Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing.

    PubMed

    Morey, Rajendra A; Inan, Seniha; Mitchell, Teresa V; Perkins, Diana O; Lieberman, Jeffrey A; Belger, Aysenil

    2005-03-01

    Individuals experiencing prodromal symptoms of schizophrenia (ultra-high-risk group) demonstrate impaired performance on tasks of executive function, attention, and working memory. The neurobiological underpinnings of such executive deficits in ultra-high-risk individuals remains unclear. We assessed frontal and striatal functions during a visual oddball continuous performance task, in ultra-high-risk, early, and chronic schizophrenic patients with the use of functional magnetic resonance imaging. Cross-sectional case-control design. Community; outpatient clinic. Patients Fifty-two individuals (control, n = 16; ultra-high risk, n = 10; early, n = 15; chronic, n = 11) from a referred clinical sample and age- and sex-matched control volunteers underwent scanning. Percentage of active voxels and percentage signal change calculated for the anterior cingulate gyrus (ACG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), basal ganglia, and thalamus. Performance on the visual oddball task was measured with percentage of hits and d' (a measure based on the hit rate and the false-alarm rate). The ultra-high-risk group showed significantly smaller differential activation between task-relevant and task-irrelevant stimuli in the frontal regions (ACG, IFG, MFG) than the control group. Frontostriatal activation associated with target stimuli in the early and chronic groups was significantly lower than the control group, while the ultra-high-risk group showed a trend toward the early group. Our findings suggest that prefrontal function begins to decline before the onset of syndromally defined illness and hence may represent a vulnerability marker in assessing the risk of developing psychotic disorders among ultra-high-risk individuals.

  19. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  20. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  1. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  2. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  3. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  4. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  5. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    DTIC Science & Technology

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  6. Fast and sensitive analysis of beta blockers by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry.

    PubMed

    Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan

    2017-07-01

    This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Advanced processing for high-bandwidth sensor systems

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.

    2000-11-01

    Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.

  8. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication

    NASA Astrophysics Data System (ADS)

    Westbergh, Petter; Safaisini, Rashid; Haglund, Erik; Gustavsson, Johan S.; Larsson, Anders; Joel, Andrew

    2013-03-01

    We present results from our new generation of high performance 850 nm oxide confined vertical cavity surface-emitting lasers (VCSELs). With devices optimized for high-speed operation under direct modulation, we achieve record high 3dB modulation bandwidths of 28 GHz for ~4 μm oxide aperture diameter VCSELs, and 27 GHz for devices with a ~7 μm oxide aperture diameter. Combined with a high-speed photoreceiver, the ~7 μm VCSEL enables error-free transmission at data rates up to 47 Gbit/s at room temperature, and up to 40 Gbit/s at 85°C.

  9. Compact antenna arrays with wide bandwidth and low sidelobe levels

    DOEpatents

    Strassner, II, Bernd H.

    2014-09-09

    Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.

  10. Video bandwidth compression system

    NASA Astrophysics Data System (ADS)

    Ludington, D.

    1980-08-01

    The objective of this program was the development of a Video Bandwidth Compression brassboard model for use by the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, in evaluation of bandwidth compression techniques for use in tactical weapons and to aid in the selection of particular operational modes to be implemented in an advanced flyable model. The bandwidth compression system is partitioned into two major divisions: the encoder, which processes the input video with a compression algorithm and transmits the most significant information; and the decoder where the compressed data is reconstructed into a video image for display.

  11. BAKABLE ULTRA-HIGH VACUUM VALVE

    DOEpatents

    Mark, J.T.; Gantz, I.H.

    1962-07-10

    S>This patent relates to a valve useful in applications involving successively closing and opening a communication between a chamber evacuated to an ultra-high vacuum condition of the order of 10/sup -10/ millimeters of mercury and another chamber or the ambient. The valve is capable of withstanding extended baking at 450 deg C and repeated opening and closing without repiacement of the valve seat (approximately 200 cycle limit). The seal is formed by mutual interdiffusion weld, coerced by a pneumatic actuator. (AEC)

  12. Spacewalking_in_Ultra_High_Definition

    NASA Image and Video Library

    2017-07-21

    Ever wonder what the spacewalker sees while you’re looking at him or her? Here’s your answer, courtesy of NASA astronaut Jack Fischer. This Ultra High Definition clip shows Fischer outside the International Space Station during a spacewalk on Expedition 51 in May 2017, and the view from a small camera attached to his spacesuit at the same time. Music by Joakim Karud. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  13. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome.

    PubMed

    Lalonde, Michel; Wells, R Glenn; Birnie, David; Ruddy, Terrence D; Wassenaar, Richard

    2014-07-01

    Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster analysis results were

  14. Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer

    NASA Astrophysics Data System (ADS)

    Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.

    2018-03-01

    An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.

  15. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    NASA Astrophysics Data System (ADS)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  16. Optimal Bandwidth for Multitaper Spectrum Estimation

    DOE PAGES

    Haley, Charlotte L.; Anitescu, Mihai

    2017-07-04

    A systematic method for bandwidth parameter selection is desired for Thomson multitaper spectrum estimation. We give a method for determining the optimal bandwidth based on a mean squared error (MSE) criterion. When the true spectrum has a second-order Taylor series expansion, one can express quadratic local bias as a function of the curvature of the spectrum, which can be estimated by using a simple spline approximation. This is combined with a variance estimate, obtained by jackknifing over individual spectrum estimates, to produce an estimated MSE for the log spectrum estimate for each choice of time-bandwidth product. The bandwidth that minimizesmore » the estimated MSE then gives the desired spectrum estimate. Additionally, the bandwidth obtained using our method is also optimal for cepstrum estimates. We give an example of a damped oscillatory (Lorentzian) process in which the approximate optimal bandwidth can be written as a function of the damping parameter. Furthermore, the true optimal bandwidth agrees well with that given by minimizing estimated the MSE in these examples.« less

  17. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    PubMed

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  18. A faster and more reliable data acquisition system for the full performance of the SciCRT

    DOE PAGES

    Sasai, Y.; Matsubara, Y.; Itow, Y.; ...

    2017-01-03

    The SciBar Cosmic Ray Telescope (SciCRT) is a massive scintillator tracker to observe cosmic rays at a very high-altitude environment in Mexico. The fully active tracker is based on the Scintillator Bar (SciBar) detector developed as a near detector for the KEK-to-Kamioka long-baseline neutrino oscillation experiment (K2K) in Japan. Since the data acquisition (DAQ) system was developed for the accelerator experiment, we determined to develop a new robust DAQ system to optimize it to our cosmic-ray experiment needs at the top of Mt. Sierra Negra (4600 m). One of our special requirements is to achieve a 10 times faster readoutmore » rate. We started to develop a new fast readout back-end board (BEB) based on 100 Mbps SiTCP, a hardware network processor developed for DAQ systems for high energy physics experiments. Then we developed the new BEB which has a potential of 20 times faster than the current one in the case of observing neutrons. Lastly, we installed the new DAQ system including the new BEBs to a part of the SciCRT in July 2015. The system has been operating since then. In this article, we describe the development, the basic performance of the new BEB, the status after the installation in the SciCRT, and the future performance.« less

  19. Bandwidth Limitations in Characterization of High Intensity Focused Ultrasound Fields in the Presence of Shocks

    NASA Astrophysics Data System (ADS)

    Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-03-01

    Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.

  20. Ultra-low noise optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Ayotte, Simon; Babin, André; Costin, François

    2014-03-01

    The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.

  1. Enhanced spectral efficiency using bandwidth switchable SAW filtering for mobile satellite communications systems

    NASA Technical Reports Server (NTRS)

    Peach, Robert; Malarky, Alastair

    1990-01-01

    Currently proposed mobile satellite communications systems require a high degree of flexibility in assignment of spectral capacity to different geographic locations. Conventionally this results in poor spectral efficiency which may be overcome by the use of bandwidth switchable filtering. Surface acoustic wave (SAW) technology makes it possible to provide banks of filters whose responses may be contiguously combined to form variable bandwidth filters with constant amplitude and phase responses across the entire band. The high selectivity possible with SAW filters, combined with the variable bandwidth capability, makes it possible to achieve spectral efficiencies over the allocated bandwidths of greater than 90 percent, while retaining full system flexibility. Bandwidth switchable SAW filtering (BSSF) achieves these gains with a negligible increase in hardware complexity.

  2. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  3. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  4. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  5. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  6. Chlorpheniramine Analogues Reverse Chloroquine Resistance in Plasmodium falciparum by Inhibiting PfCRT.

    PubMed

    Deane, Karen J; Summers, Robert L; Lehane, Adele M; Martin, Rowena E; Barrow, Russell A

    2014-05-08

    The emergence and spread of malaria parasites that are resistant to chloroquine (CQ) has been a disaster for world health. The antihistamine chlorpheniramine (CP) partially resensitizes CQ-resistant (CQR) parasites to CQ but possesses little intrinsic antiplasmodial activity. Mutations in the parasite's CQ resistance transporter (PfCRT) confer resistance to CQ by enabling the protein to transport the drug away from its site of action, and it is thought that resistance-reversers such as CP exert their effect by blocking this CQ transport activity. Here, a series of new structural analogues and homologues of CP have been synthesized. We show that these compounds (along with other in vitro CQ resistance-reversers) inhibit the transport of CQ via a resistance-conferring form of PfCRT expressed in Xenopus laevis oocytes. Furthermore, the level of PfCRT-inhibition was found to correlate well with both the restoration of CQ accumulation and the level of CQ resensitization in CQR parasites.

  7. Photometric and colorimetric measurements of CRT and TFT monitors for vision research

    NASA Astrophysics Data System (ADS)

    Klein, Johann; Zlatkova, Margarita; Lauritzen, Jan; Pierscionek, Barbara

    2013-08-01

    Visual displays have various limitations that can affect the results of vision research experiments. This study compares several characteristics of CRT (Hewlett Packard 7650) and TFT (LG Flatron L227 WT and Samsung 2233 RZ) monitors, including luminance and colour spatial homogeneity, luminance changes with viewing angle, contrast linearity and warm-up characteristics. In addition, the psychophysical performance in grating contrast sensitivity test for both CRT and TFT monitors was compared. The TFT monitors demonstrated spatial non-homogeneity ('mura') with up to 50% of luminance change across the screen and a more significant luminance viewing angle dependence compared with CRT. The chromaticity of the white point showed negligible variation across the screen. Both types of monitors required a warm-up time of the order of 60 min. Despite the physical differences between monitors, visual contrast sensitivity performance measured with the two types of monitors was similar using both static and flickering gratings.

  8. Ultra-high vacuum compatible induction-heated rod casting furnace

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  9. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  10. Ultra-wide band signal generation using a coupling-tunable silicon microring resonator.

    PubMed

    Ding, Yunhong; Huang, Bo; Peucheret, Christophe; Xu, Jing; Ou, Haiyan; Zhang, Xinliang; Huang, Dexiu

    2014-03-10

    Ultra-wide band signal generation using a silicon microring resonator tuned to an NRZ-DPSK modulated optical carrier is proposed and demonstrated. The scheme is shown to enable the generation of UWB signals with switchable polarity and tunable bandwidth by simply tuning the coupling regions of the microring resonator. Monocycle pulses with both negative and positive polarities are successfully synthesized experimentally.

  11. Search for Ultra-High Energy Photons with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homola, Piotr

    One of key scientific objectives of the Pierre Auger Observatory is the search for ultra-high energy photons. Such photons could originate either in the interactions of energetic cosmic-ray nuclei with the cosmic microwave background (so-called cosmogenic photons) or in the exotic scenarios, e.g. those assuming a production and decay of some hypothetical super-massive particles. The latter category of models would imply relatively large fluxes of photons with ultra-high energies at Earth, while the former, involving interactions of cosmic-ray nuclei with the microwave background - just the contrary: very small fractions. The investigations on the data collected so far in themore » Pierre Auger Observatory led to placing very stringent limits to ultra-high energy photon fluxes: below the predictions of the most of the exotic models and nearing the predicted fluxes of the cosmogenic photons. In this paper the status of these investigations and perspectives for further studies are summarized.« less

  12. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, Michel, E-mail: mlalonde15@rogers.com; Wassenaar, Richard; Wells, R. Glenn

    2014-07-15

    Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: Aboutmore » 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity

  13. Operation bandwidth optimization of photonic differentiators.

    PubMed

    Yan, Siqi; Zhang, Yong; Dong, Jianji; Zheng, Aoling; Liao, Shasha; Zhou, Hailong; Wu, Zhao; Xia, Jinsong; Zhang, Xinliang

    2015-07-27

    We theoretically investigate the operation bandwidth limitation of the photonic differentiator including the upper limitation, which is restrained by the device operation bandwidth and the lower limitation, which is restrained by the energy efficiency (EE) and detecting noise level. Taking the silicon photonic crystal L3 nano-cavity (PCN) as an example, for the first time, we experimentally demonstrate that the lower limitation of the operation bandwidth does exist and differentiators with different bandwidths have significantly different acceptable pulse width range of input signals, which are consistent to the theoretical prediction. Furthermore, we put forward a novel photonic differentiator scheme employing cascaded PCNs with different Q factors, which is likely to expand the operation bandwidth range of photonic differentiator dramatically.

  14. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  15. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  16. Molecular interaction of selected phytochemicals under the charged environment of Plasmodium falciparum chloroquine resistance transporter (PfCRT) model.

    PubMed

    Patel, Saumya K; Khedkar, Vijay M; Jha, Prakash C; Jasrai, Yogesh T; Pandya, Himanshu A; George, Linz-Buoy; Highland, Hyacinth N; Skelton, Adam A

    2016-01-01

    Phytochemicals of Catharanthus roseus Linn. and Tylophora indica have been known for their inhibition of malarial parasite, Plasmodium falciparum in cell culture. Resistance to chloroquine (CQ), a widely used antimalarial drug, is due to the CQ resistance transporter (CRT) system. The present study deals with computational modeling of Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein and development of charged environment to mimic a condition of resistance. The model of PfCRT was developed using Protein homology/analogy engine (PHYRE ver 0.2) and was validated based on the results obtained using PSI-PRED. Subsequently, molecular interactions of selected phytochemicals extracted from C. roseus Linn. and T. indica were studied using multiple-iterated genetic algorithm-based docking protocol in order to investigate the translocation of these legends across the PfCRT protein. Further, molecular dynamics studies exhibiting interaction energy estimates of these compounds within the active site of the protein showed that compounds are more selective toward PfCRT. Clusters of conformations with the free energy of binding were estimated which clearly demonstrated the potential channel and by this means the translocation across the PfCRT is anticipated.

  17. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  18. High rate concatenated coding systems using bandwidth efficient trellis inner codes

    NASA Technical Reports Server (NTRS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1989-01-01

    High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.

  19. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    PubMed

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.

  20. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-01-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations.

  1. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  2. Improved-Bandwidth Transimpedance Amplifier

    NASA Technical Reports Server (NTRS)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  3. Helical tomotherapy significantly reduces dose to normal tissues when compared to 3D-CRT for locally advanced rectal cancer.

    PubMed

    Jhaveri, Pavan M; Teh, Bin S; Paulino, Arnold C; Smiedala, Mindy J; Fahy, Bridget; Grant, Walter; McGary, John; Butler, E Brian

    2009-10-01

    Combined modality treatment (neoadjuvant chemoradiotherapy followed by surgery) for locally advanced rectal cancer requires special attention to various organs at risk (OAR). As a result, the use of conformal dose delivery methods has become more common in this disease setting. Helical tomotherapy is an image-guided intensity modulated delivery system that delivers dose in a fan-beam manner at 7 degree intervals around the patient and can potentially limit normal tissue from high dose radiation while adequately treating targets. In this study we dosimetrically compare helical tomotherapy to 3D-CRT for stage T3 rectal cancer. The helical tomotherapy plans were optimized in the TomoPlan system to achieve an equivalent uniform dose of 45 Gy for 10 patients with T3N0M0 disease that was at least 5cm from the anal verge. The GTV included the rectal thickening and mass evident on colonoscopy and CT scan as well as with the help of a colorectal surgeon. The CTV included the internal iliac, obturator, and pre-sacral lymphatic chains. The OAR that were outlined included the small bowel, pelvic bone marrow, femoral heads, and bladder. Anatom-e system was used to assist in delineating GTV, CTV and OAR. These 10 plans were then duplicated and optimized into 3-field 3D-CRT plans within the Pinnacle planning system.The V[45], V[40], V[30], V[20], V[10], and mean dose to the OAR were compared between the helical tomotherapy and 3D-CRT plans. Statistically significant differences were achieved in the doses to all OAR, including all volumes and means except for V[10] for the small bowel and the femoral heads. Adequate dosimetric coverage of targets were achieved with both helical tomotherapy and 3D-CRT. Helical tomotherapy reduces the volume of normal tissue receiving high-dose RT when compared to 3D-CRT treatment. Both modalities adequately dose the tumor. Clinical studies addressing the dosimetric benefits are on-going.

  4. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes

    NASA Astrophysics Data System (ADS)

    Li, Long; Lv, Zhiyong

    2017-08-01

    In this paper, a metamaterial absorber is designed, fabricated, and experimentally demonstrated to realize ultra-wideband absorption, which is composed of three layers of square resistive metasurfaces with different dimensions. Multilayer resistive metasurfaces can not only broaden the absorption bandwidth but also adjust the impedance matching based on multi-resonant modes. The total thickness of the proposed absorber is 3.8 mm, which is only 0.09 λ at the lowest frequency. The bandwidth of absorptivity more than 90% is from 7.0 GHz to 37.4 GHz, and the relative absorption bandwidth is about 137%. The proposed absorber has good polarization-insensitiveness and wide incident angle stability. The measured results agree well with the theoretical design and the numerical simulations.

  5. New-type steel plate with ultra high crack-arrestability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.

    1995-12-31

    A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less

  6. Application of ultra-high performance concrete to bridge girders.

    DOT National Transportation Integrated Search

    2009-02-01

    "Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...

  7. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    NASA Astrophysics Data System (ADS)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  8. Wide-Bandwidth, Wide-Beamwidth, High-Resolution, Millimeter-Wave Imaging for Concealed Weapon Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.

    2013-06-12

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz

  9. Bandwidth compression of multispectral satellite imagery

    NASA Technical Reports Server (NTRS)

    Habibi, A.

    1978-01-01

    The results of two studies aimed at developing efficient adaptive and nonadaptive techniques for compressing the bandwidth of multispectral images are summarized. These techniques are evaluated and compared using various optimality criteria including MSE, SNR, and recognition accuracy of the bandwidth compressed images. As an example of future requirements, the bandwidth requirements for the proposed Landsat-D Thematic Mapper are considered.

  10. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S G; Barty, C P J; Betts, S M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  11. The effect of bandwidth on filter instrument total ozone accuracy

    NASA Technical Reports Server (NTRS)

    Basher, R. E.

    1977-01-01

    The effect of the width and shape of the New Zealand filter instrument's passbands on measured total-ozone accuracy is determined using a numerical model of the spectral measurement process. The model enables the calculation of corrections for the 'bandwidth-effect' error and shows that highly attenuating passband skirts and well-suppressed leakage bands are at least as important as narrow half-bandwidths. Over typical ranges of airmass and total ozone, the range in the bandwidth-effect correction is about 2% in total ozone for the filter instrument, compared with about 1% for the Dobson instrument.

  12. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  13. Ultra high vacuum test setup for electron gun

    NASA Astrophysics Data System (ADS)

    Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.

    2008-05-01

    Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.

  14. Bond behavior of reinforcing steel in ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2014-10-01

    Ultra-High Performance Concrete (UHPC) is a relatively new class of advanced cementitious composite : materials, which exhibits high compressive [above 21.7 ksi (150 MPa)] and tensile [above 0.72 ksi (5 MPa)] : strengths. The discrete steel fiber rei...

  15. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. (a) Each authorization issued pursuant to these rules...

  16. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. (a) Each authorization issued pursuant to these rules...

  17. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. (a) Each authorization issued pursuant to these rules...

  18. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1993-12-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. Concentrtion was on epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer involves creating a nonuniform substrate surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate temperature. Growth is investigated with the use of a patterned spacer (either a Ga or Si substrate) placed in-between the substrate and its heater. The temperature distribution on such wafers is used to guide our experiments. A reflectivity measurement apparatus that is capable of mapping a 2 in. wafer with a 100 microns diameter resolution was built for diagnosing our wafers. In this first six-month report, our calculations, the various experimental results, and a discussion on future directions are presented.

  19. Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated Raman scattering.

    PubMed

    Semrau, Daniel; Killey, Robert; Bayvel, Polina

    2017-06-12

    As the bandwidths of optical communication systems are increased to maximize channel capacity, the impact of stimulated Raman scattering (SRS) on the achievable information rates (AIR) in ultra-wideband coherent WDM systems becomes significant, and is investigated in this work, for the first time. By modifying the GN-model to account for SRS, it is possible to derive a closed-form expression that predicts the optical signal-to-noise ratio of all channels at the receiver for bandwidths of up to 15 THz, which is in excellent agreement with numerical calculations. It is shown that, with fixed modulation and coding rate, SRS leads to a drop of approximately 40% in achievable information rates for bandwidths higher than 15 THz. However, if adaptive modulation and coding rates are applied across the entire spectrum, this AIR reduction can be limited to only 10%.

  20. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    PubMed

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  1. Full-color laser cathode ray tube (L-CRT) projector

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, Vladimir; Nasibov, Alexander S.; Popov, Yuri M.; Reznikov, Parvel V.; Skasyrsky, Yan K.

    1995-04-01

    A full color TV projector based on three laser cathode-ray tubes (L-CRT) is described. A water-cooled laser screen (LS) is the radiation element of the L-CRT. We have produced three main colors (blue, green and red) by using the LS made of three II-VI compounds: ZnSe ((lambda) equals 475 nm), CdS ((lambda) equals 530 nm) and ZnCdSe (630 nm). The total light flow reaches 1500 Lm, and the number of elements per line is not less than 1000. The LS efficiency may be about 10 Lm/W. In our experiments we have tested new electron optics: - (30 - 37) kV are applied to the cathode unit of the electron gun; the anode of the e-gun and the e-beam intensity modulator are under low potential; the LS has a potential + (30 - 37) kV. The accelerating voltage is divided into two parts, and this enables us to diminish the size and weight of the projector.

  2. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  3. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    NASA Astrophysics Data System (ADS)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  4. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  5. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. Link to an amendment published at 76 FR 59572, Sept. 27...

  6. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. Link to an amendment published at 77 FR 54432, Sept. 5...

  7. Bandwidth in bolometric interferometry

    NASA Astrophysics Data System (ADS)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  8. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  9. Empiric versus imaging guided left ventricular lead placement in cardiac resynchronization therapy (ImagingCRT): study protocol for a randomized controlled trial.

    PubMed

    Sommer, Anders; Kronborg, Mads Brix; Poulsen, Steen Hvitfeldt; Böttcher, Morten; Nørgaard, Bjarne Linde; Bouchelouche, Kirsten; Mortensen, Peter Thomas; Gerdes, Christian; Nielsen, Jens Cosedis

    2013-04-26

    Cardiac resynchronization therapy (CRT) is an established treatment in heart failure patients. However, a large proportion of patients remain nonresponsive to this pacing strategy. Left ventricular (LV) lead position is one of the main determinants of response to CRT. This study aims to clarify whether multimodality imaging guided LV lead placement improves clinical outcome after CRT. The ImagingCRT study is a prospective, randomized, patient- and assessor-blinded, two-armed trial. The study is designed to investigate the effect of imaging guided left ventricular lead positioning on a clinical composite primary endpoint comprising all-cause mortality, hospitalization for heart failure, or unchanged or worsened functional capacity (no improvement in New York Heart Association class and <10% improvement in six-minute-walk test). Imaging guided LV lead positioning is targeted to the latest activated non-scarred myocardial region by speckle tracking echocardiography, single-photon emission computed tomography, and cardiac computed tomography. Secondary endpoints include changes in LV dimensions, ejection fraction and dyssynchrony. A total of 192 patients are included in the study. Despite tremendous advances in knowledge with CRT, the proportion of patients not responding to this treatment has remained stable since the introduction of CRT. ImagingCRT is a prospective, randomized study assessing the clinical and echocardiographic effect of multimodality imaging guided LV lead placement in CRT. The results are expected to make an important contribution in the pursuit of increasing response rate to CRT. Clinicaltrials.gov identifier NCT01323686. The trial was registered March 25, 2011 and the first study subject was randomized April 11, 2011.

  10. Digital mammography: comparative performance of color LCD and monochrome CRT displays.

    PubMed

    Samei, Ehsan; Poolla, Ananth; Ulissey, Michael J; Lewin, John M

    2007-05-01

    To evaluate the comparative performance of high-fidelity liquid crystal display (LCD) and cathode ray tube (CRT) devices for mammography applications, and to assess the impact of LCD viewing angle on detection accuracy. Ninety 1 k x 1 k images were selected from a database of digital mammograms: 30 without any abnormality present, 30 with subtle masses, and 30 with subtle microcalcifications. The images were used with waived informed consent, Health Insurance Portability and Accountability Act compliance, and Institutional Review Board approval. With postprocessing presentation identical to those of the commercial mammography system used, 1 k x 1 k sections of images were viewed on a monochrome CRT and a color LCD in native grayscale, and with a grayscale representative of images viewed from a 30 degrees or 50 degrees off-normal viewing angle. Randomized images were independently scored by four experienced breast radiologists for the presence of lesions using a 0-100 grading scale. To compare diagnostic performance of the display modes, observer scores were analyzed using receiver operating characteristic (ROC) and analysis of variance. For masses and microcalcifications, the detection rate in terms of the area under the ROC curve (A(z)) showed a 2% increase and a 4% decrease from CRT to LCD, respectively. However, differences were not statistically significant (P > .05). The viewing angle data showed better microcalcification detection but lower mass detection at 30 degrees viewing orientation. The overall results varied notably from observer to observer yielding no statistically discernible trends across all observers, suggesting that within the 0-50 degrees viewing angle range and in a controlled observer experiment, the variation in the contrast response of the LCD has little or no impact on the detection of mammographic lesions. Although CRTs and LCDs differ in terms of angular response, resolution, noise, and color, these characteristics seem to have little

  11. Spatially-Resolved Characterization Techniques to Investigate Impact Damage in Ultra-High Performance Concretes

    DTIC Science & Technology

    2013-04-01

    Concretes G eo te ch n ic al a n d S tr u ct u re s La b or at or y Robert D. Moser, Paul G. Allison, and Mei Q. Chandler April 2013 Approved...Impact Damage in Ultra-High Performance Concretes Robert D. Moser, Paul G. Allison, and Mei Q. Chandler Geotechnical and Structures Laboratory US...Portland Cement concrete (OPC) and Ultra-High Performance Concretes (UHPCs) under high-strain impact and penetration loads at lower length scales

  12. 47 CFR 87.135 - Bandwidth of emission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth of emission. 87.135 Section 87.135 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Technical Requirements § 87.135 Bandwidth of emission. (a) Occupied bandwidth is the width of a frequency...

  13. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  14. Estimating Bottleneck Bandwidth using TCP

    NASA Technical Reports Server (NTRS)

    Allman, Mark

    1998-01-01

    Various issues associated with estimating bottleneck bandwidth using TCP are presented in viewgraph form. Specific topics include: 1) Why TCP is wanted to estimate the bottleneck bandwidth; 2) Setting ssthresh to an appropriate value to reduce loss; 3) Possible packet-pair solutions; and 4) Preliminary results: ACTS and the Internet.

  15. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    NASA Astrophysics Data System (ADS)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  16. Device Longevity in a Contemporary Cohort of ICD/CRT-D Patients Undergoing Device Replacement.

    PubMed

    Zanon, Francesco; Martignani, Cristian; Ammendola, Ernesto; Menardi, Endrj; Narducci, Maria Lucia; DE Filippo, Paolo; Santamaria, Matteo; Campana, Andrea; Stabile, Giuseppe; Potenza, Domenico Rosario; Pastore, Gianni; Iori, Matteo; LA Rosa, Concetto; Biffi, Mauro

    2016-07-01

    The longevity of defibrillators (ICD) is extremely important from both a clinical and economic perspective. We studied the reasons for device replacement, the longevity of removed ICD, and the existence of possible factors associated with shorter service life. Consecutive patients who underwent ICD replacement from March 2013 to May 2015 in 36 Italian centers were included in this analysis. Data on replaced devices were collected. A total of 953 patients were included in this analysis. In 813 (85%) patients the reason for replacement was battery depletion, while 88 (9%) devices were removed for clinical reasons and the remaining 52 because of system failure (i.e., lead or ICD generator failure or a safety advisory indication). The median service life was 5.9 years (25th-75th percentile, 4.9-6.9) for single- and dual-chamber ICD and 4.9 years (25th-75th percentile, 4.0-5.7) for CRT-D. On multivariate analysis, the factors CRT-D device, SC/DC ICD generator from Biotronik, percentage of ventricular pacing, and the occurrence of a system failure were positively associated with a replacement procedure. By contrast, the device from Boston Scientific was an independent protective factor against replacement. Considerable differences were seen in battery duration in both ICD and CRT-D. Specifically, Biotronik devices showed the shortest longevity among ICD and Boston Scientific showed the longest longevity among CRT-D (log-rank test, P < 0.001 for pairwise comparisons). Several factors were associated with shorter service life of ICD devices: CRT-D, occurrence of system failure and percentage of ventricular pacing. Our results confirmed significant differences among manufacturers. © The Authors. Journal of Cardiovascular Electrophysiology published by Wiley Periodicals, Inc.

  17. Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.

    PubMed

    Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.

  18. Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation

    PubMed Central

    Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397

  19. Risk Factors of Catheter-Related Thrombosis (CRT) in Cancer Patients: A Patient-Level Data (IPD) Meta-Analysis of Clinical Trials and Prospective Studies

    PubMed Central

    Saber, W.; Moua, T.; Williams, E. C.; Verso, M.; Agnelli, G.; Couban, S.; Young, A.; De Cicco, M.; Biffi, R.; van Rooden, C. J.; Huisman, M. V.; Fagnani, D.; Cimminiello, C.; Moia, M.; Magagnoli, M.; Povoski, S. P.; Malak, S. F.; Lee, A. Y.

    2010-01-01

    Background Knowledge of independent, baseline risk factors of catheter-related thrombosis (CRT) may help select adult cancer patients at high risk to receive thromboprophylaxis. Objectives We conducted a meta-analysis of individual patient-level data to identify these baseline risk factors. Patients/Methods MEDLINE, EMBASE, CINAHL, CENTRAL, DARE, Grey literature databases were searched in all languages from 1995-2008. Prospective studies and randomized controlled trials (RCTs) were eligible. Studies were included if original patient-level data were provided by the investigators and if CRT was objectively confirmed with valid imaging. Multivariate logistic regression analysis of 17 prespecified baseline characteristics was conducted. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated. Results A total sample of 5636 subjects from 5 RCTs and 7 prospective studies was included in the analysis. Among these subjects, 425 CRT events were observed. In multivariate logistic regression, the use of implanted ports as compared with peripherally implanted central venous catheters (PICC), decreased CRT risk (OR = 0.43; 95% CI, 0.23-0.80), whereas past history of deep vein thrombosis (DVT) (OR = 2.03; 95% CI, 1.05-3.92), subclavian venipuncture insertion technique (OR = 2.16; 95% CI, 1.07-4.34), and improper catheter tip location (OR = 1.92; 95% CI, 1.22-3.02), increased CRT risk. Conclusions CRT risk is increased with using PICC catheters, previous history of DVT, subclavian venipuncture insertion technique and improper positioning of the catheter tip. These factors may be useful for risk stratifying patients to select those for thromboprophylaxis. Prospective studies are needed to validate these findings. PMID:21040443

  20. Link and Network Layers Design for Ultra-High-Speed Terahertz-Band Communications Networks

    DTIC Science & Technology

    2017-01-01

    throughput, and identify the optimal parameter values for their design (Sec. 6.2.3). Moreover, we validate and test the scheme with experimental data obtained...LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH- SPEED TERAHERTZ-BAND COMMUNICATIONS NETWORKS STATE UNIVERSITY OF NEW YORK (SUNY) AT BUFFALO JANUARY...TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) FEB 2015 – SEP 2016 4. TITLE AND SUBTITLE LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH

  1. Improving the Bandwidth Selection in Kernel Equating

    ERIC Educational Resources Information Center

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  2. Constrained ℋ∞ control for low bandwidth active suspensions

    NASA Astrophysics Data System (ADS)

    Wasiwitono, Unggul; Sutantra, I. Nyoman

    2017-08-01

    Low Bandwidth Active Suspension (LBAS) is shown to be more competitive to High Bandwidth Active Suspension (HBAS) when energy and cost aspects are taken into account. In this paper, the constrained ℋ∞ control scheme is applied for LBAS system. The ℋ∞ performance is used to measure ride comfort while the concept of reachable set in a state-space ellipsoid defined by a quadratic storage function is used to capture the time domain constraint that representing the requirements for road holding, suspension deflection limitation and actuator saturation. Then, the control problem is derived in the framework of Linear Matrix Inequality (LMI) optimization. The simulation is conducted considering the road disturbance as a stationary random process. The achievable performance of LBAS is analyzed for different values of bandwidth and damping ratio.

  3. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    NASA Astrophysics Data System (ADS)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  4. High Contrast CRT.

    DTIC Science & Technology

    1980-02-01

    barium dioxide contains about 0.02% iron. For economical reasons, glass manufacturer’s probably use materials of lesser purity than reagent grade...otherwise the same procedure is followed. 2.4 Nonreflecting (NR) Film The NR film is a light abosrbing inhomogeneous film utilized to achieve a high...hour. No surface distortion of the disc occurred, thus ruling out any reaction between the carbon support plate and the glass disc that might have

  5. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    NASA Astrophysics Data System (ADS)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  6. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Bandwidth tunable amplifier for recording biopotential signals.

    PubMed

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  8. A hydrophone prototype for ultra high energy neutrino acoustic detection

    NASA Astrophysics Data System (ADS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  9. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  10. Time-optimal control with finite bandwidth

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  11. Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2014-11-01

    Ultra-high performance concrete (UHPC) has garnered interest from the highway infrastructure community for its greatly enhanced mechanical and durability properties. The objective of this research is to extensively evaluate the factors that affect bo...

  12. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  13. Waste heat recovery with ultra high-speed turbomachinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakkilainen, E.; Larjola, J.; Lindgren, O.

    1984-08-01

    A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.

  14. 40 CFR 261.39 - Conditional Exclusion for Used, Broken Cathode Ray Tubes (CRTs) and Processed CRT Glass...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...

  15. 40 CFR 261.39 - Conditional Exclusion for Used, Broken Cathode Ray Tubes (CRTs) and Processed CRT Glass...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...

  16. 40 CFR 261.39 - Conditional Exclusion for Used, Broken Cathode Ray Tubes (CRTs) and Processed CRT Glass...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...

  17. 40 CFR 261.39 - Conditional Exclusion for Used, Broken Cathode Ray Tubes (CRTs) and Processed CRT Glass...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...

  18. 40 CFR 261.39 - Conditional Exclusion for Used, Broken Cathode Ray Tubes (CRTs) and Processed CRT Glass...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...

  19. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  20. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  1. Development of Non-Proprietary Ultra-High Performance Concrete : Final Report

    DOT National Transportation Integrated Search

    2017-12-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...

  2. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  4. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  5. Digestive toxicities after palliative three-dimensional conformal radiation therapy (3D-CRT) for cervico-thoracic spinal metastases.

    PubMed

    Peyraga, Guillaume; Caron, Delphine; Lizee, Thibaut; Metayer, Yann; Septans, Anne-Lise; Pointreau, Yoann; Denis, Fabrice; Ganem, Gerard; Lafond, Cedrik; Roche, Sophie; Dupuis, Olivier

    2018-06-01

    The palliative treatment for cervico-thoracic spinal metastases is based on a three-dimensional conformal radiation therapy (3D-CRT). Digestive toxicities are common and cause a clinical impact frequently underestimated in patients. We performed a retrospective study of digestive side effects occurring after palliative 3D-CRT for cervico-thoracic spinal metastases. All patients receiving palliative 3D-CRT at Jean Bernard Center from January 2013 to December 2014 for spinal metastases between the 5th cervical vertebra (C5) and the 12th thoracic vertebra (T12) were eligible. Three-dimensional conformal RT was delivered by a linear accelerator (CLINAC, Varian). Premedication to prevent digestive toxicities was not used. Adverse events ("esophagitis" and "nausea and/or vomiting") were evaluated according to the NCI-CTCae (version 4). From January 2013 to December 2014, 128 patients met the study criteria. The median age was 68.6 years [31.8; 88.6]. Most patients (84.4%) received 30 Gy in 10 fractions. The median overall time of treatment was 13 days [3-33]. Forty patients (31.3%) suffered from grade ≥ 2 of "esophagitis" (35 grade 2 (27.4%) and 5 grade 3 (3.9%)). Eight patients (6.3%) suffered from grade ≥ 2 of "nausea and/or vomiting" (6 grade 2 (4.7%), 1 grade 3 (0.8%), and 1 grade 4 (0.8%)). The high incidence of moderate to severe digestive toxicities after palliative 3D-CRT for cervico-thoracic spinal metastases led to consider static or dynamic intensity-modulated radiation therapy (IMRT) to reduce the dose to organ at risk (the esophagus and stomach). Dosimetric studies and implementation in the clinic should be the next steps.

  6. The effect of cognitive remediation in individuals at ultra-high risk for psychosis: a systematic review.

    PubMed

    Glenthøj, Louise Birkedal; Hjorthøj, Carsten; Kristensen, Tina Dam; Davidson, Charlie Andrew; Nordentoft, Merete

    2017-01-01

    Cognitive deficits are prominent features of the ultra-high risk state for psychosis that are known to impact functioning and course of illness. Cognitive remediation appears to be the most promising treatment approach to alleviate the cognitive deficits, which may translate into functional improvements. This study systematically reviewed the evidence on the effectiveness of cognitive remediation in the ultra-high risk population. The electronic databases MEDLINE, PsycINFO, and Embase were searched using keywords related to cognitive remediation and the UHR state. Studies were included if they were peer-reviewed, written in English, and included a population meeting standardized ultra-high risk criteria. Six original research articles were identified. All the studies provided computerized, bottom-up-based cognitive remediation, predominantly targeting neurocognitive function. Four out of five studies that reported a cognitive outcome found cognitive remediation to improve cognition in the domains of verbal memory, attention, and processing speed. Two out of four studies that reported on functional outcome found cognitive remediation to improve the functional outcome in the domains of social functioning and social adjustment. Zero out of the five studies that reported such an outcome found cognitive remediation to affect the magnitude of clinical symptoms. Research on the effect of cognitive remediation in the ultra-high risk state is still scarce. The current state of evidence indicates an effect of cognitive remediation on cognition and functioning in ultra-high risk individuals. More research on cognitive remediation in ultra-high risk is needed, notably in large-scale trials assessing the effect of neurocognitive and/or social cognitive remediation on multiple outcomes.

  7. Frequency Bandwidth Optimization of Left-Handed Metamaterial

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.

    2004-01-01

    Recently, left-handed metamaterials (LHM s) have been demonstrated with an effective negative index of refraction and with antiparallel group and phase velocities for microwave radiation over a narrow frequency bandwidth. In order to take advantage of these characteristics for practical applications, it will be beneficial to develop LHM s with increased frequency bandwidth response and lower losses. In this paper a commercial three-dimensional electromagnetic simulation code is used to explore the effects of geometry parameter variations on the frequency bandwidth of a LHM at microwave frequencies. Utilizing an optimizing routine in the code, a geometry was generated with a bandwidth more than twice as large as the original geometry.

  8. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  9. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    PubMed

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.

  10. Cross-phase modulation bandwidth in ultrafast fiber wavelength converters

    NASA Astrophysics Data System (ADS)

    Luís, Ruben S.; Monteiro, Paulo; Teixeira, António

    2006-12-01

    We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1THz, making it the most appropriate for ultrafast wavelength conversion.

  11. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    PubMed

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  12. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  13. Optical bandwidth in coupling: the multicore photonic switch.

    PubMed

    Attard, Alfred E

    2003-05-20

    In the present study, the bandwidth of a photonic switch described previously [Appl. Opt. 37,2296 (1998); 38, 3239 (1999)] is evaluated. First the optical bandwidth is evaluated for coupling between two fiber-core waveguides, in which the cores are embedded within the same cladding. Then the coupling bandwidth is determined for a fiber-core-to-slab-core waveguide, in which the cores are embedded within the same cladding. These bandwidths are then compared and contrasted with the bandwidths of the photonic switch, which consists of two fiber cores and a control waveguide. Two configurations of the photonic switch are considered: one in which the control waveguide is a fiber core and one in which the control waveguide is a slab core. For the photonic switch, the bandwidth characteristics are more complicated than for the coupled pairs, and these characteristics are discussed in detail.

  14. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  15. 47 CFR 90.209 - Bandwidth limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth limitations. 90.209 Section 90.209 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND... not necessarily indicate the bandwidth occupied by the emission at any instant. In those cases where...

  16. A high performance long-reach passive optical network with a novel excess bandwidth distribution scheme

    NASA Astrophysics Data System (ADS)

    Chao, I.-Fen; Zhang, Tsung-Min

    2015-06-01

    Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.

  17. What Are You? A CRT Perspective on the Experiences of Mixed Race Persons in "Post-Racial" America

    ERIC Educational Resources Information Center

    Anderson, Celia Rousseau

    2015-01-01

    In this article, the author employs Critical Race Theory (CRT) to examine the experiences of mixed race individuals in the United States. Drawing on historical and contemporary conditions involving persons of mixed race, the author considers how key ideas from CRT can be useful to frame an analysis of the experiences of multiracial persons in the…

  18. Simultaneous image reproduction on CRT screen: Moves ultrasonic sectional view and electrocardiogram curves

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A method for simultaneous reproduction of images, requiring different amounts of time to reproduce, on a cathode ray tube (CRT) screen is disclosed. Ultrasonic sectional views and electrocardiogram curves are simultaneously reproduced on the CRT screen by producing the images on different areas of a screen with two phosphors having different persistence times and luminous colors, within the times required for the appearance of the images. In front of the area on which is produced the image requiring the shorter time is a color filter which is permeable to the color of the phosphor with the shorter persistence time by which absorbs the color of the other phosphor.

  19. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less

  20. Forecasting quantities of disused household CRT appliances--a regional case study approach and its application to Baden-Württemberg.

    PubMed

    Walk, Wolfgang

    2009-02-01

    Due to special requirements regarding logistics and recycling, disused cathode ray tube (CRT) appliances are handled in some countries as a separate waste fraction. This article presents a forecast of future household waste CRT quantities based on the past and present equipment of households with television sets and computer monitors. Additional aspects taken into consideration are the product life time distribution and the ongoing change in display technology. Although CRT technology is fading out, the findings of this forecast show that quantities of waste CRT appliances will not decrease before 2012 in Baden-Württemberg, Germany. The results of this regional case study are not quantitatively transferable without further analysis. The method provided allows analysts to consider how the time shift between production and discard could impact recycling options, and the method could be valuable for future similar analyses elsewhere.

  1. Directing Traffic: Managing Internet Bandwidth Fairly

    ERIC Educational Resources Information Center

    Paine, Thomas A.; Griggs, Tyler J.

    2008-01-01

    Educational institutions today face budgetary restraints and scarce resources, complicating the decision of how to allot bandwidth for campus network users. Additionally, campus concerns over peer-to-peer networking (specifically outbound Internet traffic) have increased because of bandwidth and copyright issues. In this article, the authors…

  2. Evaluation of lead recovery efficiency from waste CRT funnel glass by chlorinating volatilization process.

    PubMed

    Erzat, Aris; Zhang, Fu-Shen

    2014-01-01

    The current study was carried out to develop a novel process, namely chloride volatilization procedure for lead recovery from waste cathode ray tube (CRT) funnel glass. In the recovery system, the glass powder was first compressed into cylindrical pellet homogeneously with chlorinating agents, and then subjected to thermal treatment for solid-phase reaction. In this case, lead could be easily released from the silicon oxide network of the glass and it was recovered in the form of PbCl₂. It was found that CaCl2 was the most effective chlorinating agent, and the optimum operation temperature, holding time and system pressure were 1000 °C, 2 h, 600 ± 50 Pa, respectively. The evaporated PbCl₂could be easily recovered by a cooling device. The evaporation ratio of lead from waste CRT was 99.1% and the purity of the recovered PbCl₂product was 97.0%. The reaction routes and lead recovery mechanisms of the process were identified. This study provides an efficient and practical process for waste CRT funnel glass detoxification and recycling.

  3. Wavelength and bandwidth tunable photonic stopband of ferroelectric liquid crystals.

    PubMed

    Ozaki, Ryotaro; Moritake, Hiroshi

    2012-03-12

    The chiral smectic C phase of ferroelectric liquid crystals (FLCs) has a self-assembling helical structure which is regarded as a one-dimensional pseudo-photonic crystal. It is well known that a stopband of a FLC can be tuned in wavelength domain by changing temperature or electric field. We here have demonstrated an FLC stopband with independently tunable wavelength and bandwidth by controlling temperature and incident angle. At highly oblique incidence, the stopband does not have polarization dependence. Furthermore, the bandwidth at highly oblique incidence is much wider than that at normal incidence. The mechanism of the tunable stopband is clarified by considering the reflection at oblique incidence.

  4. Design of Ultra-High Temperature Ceramics for Improved Performance

    DTIC Science & Technology

    2009-02-28

    e.g., grain boundary chemistry or change in impurity concentrations) or physical (e.g., residual stress) effects. 600 co 500 a. oi400 c CD i...SA037 Effects of oxygen content on the properties of supcr-high-teiiiperature resistant Si-AI- C fibers D.f. Zhao (National University of Defense...of Technology, China) 15:05 S A034 Oxyacetylene ablation behavior of carbon fibers reinforced carbon matrix and ultra-high temperature

  5. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    PubMed

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or

  6. MDOT aims for lower-cost ultra-high performance concrete : research spotlight.

    DOT National Transportation Integrated Search

    2016-08-01

    In recent years, several vendors have developed ultra-high performance : concrete (UHPC) that surpasses traditional concrete mixes by offering : exceptional freeze-thaw resistance, reduced susceptibility to cracking : and far less reinforcement corro...

  7. Multilayer ultra-high-temperature ceramic coatings

    DOEpatents

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  8. Ultra-wideband optical leaky-wave slot antennas.

    PubMed

    Wang, Yan; Helmy, Amr S; Eleftheriades, George V

    2011-06-20

    We propose and investigate an ultra-wideband leaky-wave antenna that operates at optical frequencies for the purpose of efficient energy coupling between localized nanoscale optical circuits and the far-field. The antenna consists of an optically narrow aluminum slot on a silicon substrate. We analyze its far-field radiation pattern in the spectral region centered around 1550 nm with a 50% bandwidth ranging from 2000 nm to 1200 nm. This plasmonic leaky-wave slot produces a maximum far-field radiation angle at 32° and a 3 dB beamwidth of 24° at its center wavelength. The radiation pattern is preserved within the 50% bandwidth suffering only insignificant changes in both the radiation angle and the beamwidth. This wide-band performance is quite unique when compared to other optical antenna designs. Furthermore, the antenna effective length for radiating 90% and 99.9% of the input power is only 0.5λ(0) and 1.5λ(0) respectively at 1550 nm. The versatility and simplicity of the proposed design along with its small footprint makes it extremely attractive for integration with nano-optical components using existing technologies.

  9. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    USGS Publications Warehouse

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  10. Ultra-high-speed variable focus optics for novel applications in advanced imaging

    NASA Astrophysics Data System (ADS)

    Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.

    2018-02-01

    With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.

  11. Monostatic ultra-wideband GPR antenna for through wall detection

    NASA Astrophysics Data System (ADS)

    Ali, Jawad; Abdullah, Noorsaliza; Yahya, Roshayati; Naeem, Taimoor

    2017-11-01

    The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB) printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR) technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS) method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  12. Optimal Design of Miniaturized Reflecting Metasurfaces for Ultra-Wideband and Angularly Stable Polarization Conversion.

    PubMed

    Borgese, Michele; Costa, Filippo; Genovesi, Simone; Monorchio, Agostino; Manara, Giuliano

    2018-05-16

    An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.

  13. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  14. A High-Linearity Low-Noise Amplifier with Variable Bandwidth for Neural Recoding Systems

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeshi; Sueishi, Katsuya; Iwata, Atsushi; Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi

    2011-04-01

    This paper describes a low-noise amplifier with multiple adjustable parameters for neural recording applications. An adjustable pseudo-resistor implemented by cascade metal-oxide-silicon field-effect transistors (MOSFETs) is proposed to achieve low-signal distortion and wide variable bandwidth range. The amplifier has been implemented in 0.18 µm standard complementary metal-oxide-semiconductor (CMOS) process and occupies 0.09 mm2 on chip. The amplifier achieved a selectable voltage gain of 28 and 40 dB, variable bandwidth from 0.04 to 2.6 Hz, total harmonic distortion (THD) of 0.2% with 200 mV output swing, input referred noise of 2.5 µVrms over 0.1-100 Hz and 18.7 µW power consumption at a supply voltage of 1.8 V.

  15. Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period

    PubMed Central

    Li, Guangyuan; Zhang, Jiasen

    2014-01-01

    Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate–metal interface and the first-order SPP resonance at the metal–substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results. PMID:25081812

  16. Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period.

    PubMed

    Li, Guangyuan; Zhang, Jiasen

    2014-08-01

    Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate-metal interface and the first-order SPP resonance at the metal-substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results.

  17. The effect of bandwidth on telerobot system performance

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Ali, Michael S.; Minis, Ioannis

    1991-01-01

    The purpose of the experiment was to determine the effect that various slave-joint bandwidths have on telerobot system performance. The telerobot system consisted of a slave arm controlled by a master. The slave incorporated an impedance loop to provide local compliance in addition to the compliance provided by the operator via force feedback. Three joint bandwidths, 0.5, 1.0, and 2.0 Hz, were used. The performance measures were the task completion time and the sums of the squared forces and moments exerted on the environment. The task consisted of peg-in-hole insertion and removal. The results of the experiment indicate a significant performance decrease at 0.5-Hz bandwidth relative to the 1- and 2-Hz bandwidths. There was no significant change in performance between the 1- and 2-Hz bandwidths.

  18. Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor

    NASA Astrophysics Data System (ADS)

    Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke

    2018-04-01

    In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.

  19. Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2001-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64

  20. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  1. Examining the association between social cognition and functioning in individuals at ultra-high risk for psychosis.

    PubMed

    Cotter, Jack; Bartholomeusz, Cali; Papas, Alicia; Allott, Kelly; Nelson, Barnaby; Yung, Alison R; Thompson, Andrew

    2017-01-01

    Social and role functioning are compromised for the majority of individuals at ultra-high risk of psychosis, and it is important to identify factors that contribute to this functional decline. This study aimed to investigate social cognitive abilities, which have previously been linked to functioning in schizophrenia, as potential factors that impact social, role and global functioning in ultra-high risk patients. A total of 30 ultra-high risk patients were recruited from an established at-risk clinical service in Melbourne, Australia, and completed a battery of social cognitive, neurocognitive, clinical and functioning measures. We examined the relationships between all four core domains of social cognition (emotion recognition, theory of mind, social perception and attributional style), neurocognitive, clinical and demographic variables with three measures of functioning (the Global Functioning Social and Role scales and the Social and Occupational Functioning Assessment Scale) using correlational and multiple regression analyses. Performance on a visual theory of mind task (visual jokes task) was significantly correlated with both concurrent role ( r = 0.425, p = 0.019) and global functioning ( r = 0.540, p = 0.002). In multivariate analyses, it also accounted for unique variance in global, but not role functioning after adjusting for negative symptoms and stress. Social functioning was not associated with performance on any of the social cognition tasks. Among specific social cognitive abilities, only a test of theory of mind was associated with functioning in our ultra-high risk sample. Further longitudinal research is needed to examine the impact of social cognitive deficits on long-term functional outcome in the ultra-high risk group. Identifying social cognitive abilities that significantly impact functioning is important to inform the development of targeted intervention programmes for ultra-high risk individuals.

  2. Efflux of a range of antimalarial drugs and 'chloroquine resistance reversers' from the digestive vacuole in malaria parasites with mutant PfCRT.

    PubMed

    Lehane, Adele M; Kirk, Kiaran

    2010-08-01

    Chloroquine-resistant malaria parasites (Plasmodium falciparum) show an increased leak of H(+) ions from their internal digestive vacuole in the presence of chloroquine. This phenomenon has been attributed to the transport of chloroquine, together with H(+), out of the digestive vacuole (and hence away from its site of action) via a mutant form of the parasite's chloroquine resistance transporter (PfCRT). Here, using transfectant parasite lines, we show that a range of other antimalarial drugs, as well as various 'chloroquine resistance reversers' induce an increased leak of H(+) from the digestive vacuole of parasites expressing mutant PfCRT, consistent with these compounds being substrates for mutant forms, but not the wild-type form, of PfCRT. For some compounds there were significant differences observed between parasites having the African/Asian Dd2 form of PfCRT and those with the South American 7G8 form of PfCRT, consistent with there being differences in the transport properties of the two mutant proteins. The finding that chloroquine resistance reversers are substrates for mutant PfCRT has implications for the mechanism of action of this class of compound. © 2010 Blackwell Publishing Ltd.

  3. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  4. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  5. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  6. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversionmore » efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.« less

  7. Development of Non-Proprietary Ultra-High Performance Concrete : Project Summary Report

    DOT National Transportation Integrated Search

    2017-12-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Thus, elements made with UHPC can be thinner/lighter than elements made with conventional concrete. The enhanced durabilit...

  8. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  9. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  10. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  11. Development of a Family of Ultra-High Performance Concrete Pi-Girders

    DOT National Transportation Integrated Search

    2014-01-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material, which tends to exhibit superior properties such as exceptional durability, increased strength, and long-term stability. (See references 1-4.) The use of existing s...

  12. Ultra-high performance concrete for Michigan bridges, material performance : phase I.

    DOT National Transportation Integrated Search

    2008-10-13

    One of the latest advancements in concrete technology is Ultra-High Performance Concrete (UHPC). UHPC is : defined as concretes attaining compressive strengths exceeding 25 ksi (175 MPa). It is a fiber-reinforced, denselypacked : concrete material wh...

  13. Bandwidth enhancement of dielectric resonator antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    An experimental investigation of bandwidth enhancement of dielectric resonator antennas (DRA) using parasitic elements is reported. Substantial bandwidth enhancement for the HE(sub 11delta) mode of the stacked geometry and for the HE(sub 13delta) mode of the coplanar collinear geometry was demonstrated. Excellent radiation patterns for the HE(sub 11delta) mode were also recorded.

  14. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  15. Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers

    NASA Astrophysics Data System (ADS)

    Nikandish, Gholamreza; Medi, Ali

    2015-02-01

    The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.

  16. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected

  17. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Monavarian, M.; Rashidi, A.; Aragon, A. A.; Oh, S. H.; Rishinaramangalam, A. K.; DenBaars, S. P.; Feezell, D.

    2018-01-01

    High-speed InGaN/GaN blue light-emitting diodes (LEDs) are needed for future gigabit-per-second visible-light communication systems. Large LED modulation bandwidths are typically achieved at high current densities, with reports close to 1 GHz bandwidth at current densities ranging from 5 to 10 kA/cm2. However, the internal quantum efficiency (IQE) of InGaN/GaN LEDs is quite low at high current densities due to the well-known efficiency droop phenomenon. Here, we show experimentally that nonpolar and semipolar orientations of GaN enable higher modulation bandwidths at low current densities where the IQE is expected to be higher and power dissipation is lower. We experimentally compare the modulation bandwidth vs. current density for LEDs on nonpolar (10 1 ¯ 0 ), semipolar (20 2 ¯ 1 ¯) , and polar (" separators="|0001 ) orientations. In agreement with wavefunction overlap considerations, the experimental results indicate a higher modulation bandwidth for the nonpolar and semipolar LEDs, especially at relatively low current densities. At 500 A/cm2, the nonpolar LED has a 3 dB bandwidth of ˜1 GHz, while the semipolar and polar LEDs exhibit bandwidths of 260 MHz and 75 MHz, respectively. A lower carrier density for a given current density is extracted from the RF measurements for the nonpolar and semipolar LEDs, consistent with the higher wavefunction overlaps in these orientations. At large current densities, the bandwidth of the polar LED approaches that of the nonpolar and semipolar LEDs due to coulomb screening of the polarization field. The results support using nonpolar and semipolar orientations to achieve high-speed LEDs at low current densities.

  18. A review of ultra-short pulse lasers for military remote sensing and rangefinding

    NASA Astrophysics Data System (ADS)

    Lamb, Robert A.

    2009-09-01

    Advances in ultra-short pulse laser technology have resulted in commercially available laser systems capable of generating high peak powers >1GW in tabletop systems. This opens the prospect of generating very wide spectral emissions with a combination of non-linear optical effects in photonic crystal fibres to produce supercontinuua in systems that are readily accessible to military applications. However, military remote sensing rarely requires bandwidths spanning two octaves and it is clear that efficient systems require controlled spectral emission in relevant bands. Furthermore, the limited spectral responsivity of focal plane arrays may impose further restriction on the usable spectrum. A recent innovation which temporally encodes a spectrum using group velocity dispersion allows detection with a photodiode, opening the prospect for high speed hyperspectral sensing and imaging. At the opposite end of the power spectrum, ultra-low power remote sensing using time-correlated single photon counting (SPC) has reduced the laser power requirement and demonstrated remote sensing over 5km during daylight with repetition rates of ~10MHz with ps pulses. Recent research has addressed uncorrelated SPC and waveform transmission to increase data rates for absolute rangefinding whilst avoiding range aliasing. This achievement opens the prospect of combining SPC with high repetition rate temporal encoding of supercontinuua to realise practical hyperspectral remote sensing lidar. The talk will present an overview of these technologies and present a concept which combines them into a single system for high-speed hyperspectral imaging and remote sensing.

  19. Caveats when Analyzing Ultra-high Molar Mass Polymers by SEC

    USDA-ARS?s Scientific Manuscript database

    The analysis of ultra-high molar mass (M > 1 million g/mol) polymers via size-exclusion chromatography (SEC) presents a number of non-trivial challenges. Dissolution and full solvation may take days, as is the case for cellulose dissolution in non-complexing non degrading solvents; very low concent...

  20. Exploring the potential of the bacterial carotene desaturase CrtI to increase the beta-carotene content in Golden Rice.

    PubMed

    Al-Babili, Salim; Hoa, Tran Thi Cuc; Schaub, Patrick

    2006-01-01

    To increase the beta-carotene (provitamin A) content and thus the nutritional value of Golden Rice, the optimization of the enzymes employed, phytoene synthase (PSY) and the Erwinia uredovora carotene desaturase (CrtI), must be considered. CrtI was chosen for this study because this bacterial enzyme, unlike phytoene synthase, was expressed at barely detectable levels in the endosperm of the Golden Rice events investigated. The low protein amounts observed may be caused by either weak cauliflower mosaic virus 35S promoter activity in the endosperm or by inappropriate codon usage. The protein level of CrtI was increased to explore its potential for enhancing the flux of metabolites through the pathway. For this purpose, a synthetic CrtI gene with a codon usage matching that of rice storage proteins was generated. Rice plants were transformed to express the synthetic gene under the control of the endosperm-specific glutelin B1 promoter. In addition, transgenic plants expressing the original bacterial gene were generated, but the endosperm-specific glutelin B1 promoter was employed instead of the cauliflower mosaic virus 35S promoter. Independent of codon optimization, the use of the endosperm-specific promoter resulted in a large increase in bacterial desaturase production in the T(1) rice grains. However, this did not lead to a significant increase in the carotenoid content, suggesting that the bacterial enzyme is sufficiently active in rice endosperm even at very low levels and is not rate-limiting. The endosperm-specific expression of CrtI did not affect the carotenoid pattern in the leaves, which was observed upon its constitutive expression. Therefore, tissue-specific expression of CrtI represents the better option.

  1. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocca, Jorge J.

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achievedmore » using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm -3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.« less

  2. Differential renal effects of candesartan at high and ultra-high doses in diabetic mice–potential role of the ACE2/AT2R/Mas axis

    PubMed Central

    Callera, Glaucia E.; Antunes, Tayze T.; Correa, Jose W.; Moorman, Danielle; Gutsol, Alexey; He, Ying; Cat, Aurelie Nguyen Dinh; Briones, Ana M.; Montezano, Augusto C.; Burns, Kevin D.; Touyz, Rhian M.

    2016-01-01

    High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes. PMID:27612496

  3. Influence of room lighting on grey-scale perception with a CRT-and a TFT monitor display.

    PubMed

    Haak, R; Wicht, M J; Hellmich, M; Nowak, G; Noack, M J

    2002-05-01

    To determine the influence of ambient lighting on grey-scale perception using a cathode-ray tube (CRT) and a thin film transistor (TFT) computer display. A cathode ray tube (Nokia XS 446) and a liquid crystal display (Panasonic LC 50S) were used at reduced room lighting (70 lux) and under conditions recommended for a dental operatory (1000 lux). Twenty-seven observers examined twice a modified SMPTE test pattern [0 to 255; 255 to 0] grey-scale values. The corresponding contrast differences were allocated to four ranges of grey levels (I: 0-63; II: 64-127; III: 128-191; IV: 192-255). The influences of monitor type, grey-scale range and illumination were evaluated by means of repeated measures analysis of variance. Detection of differences in monochromatic intensity was significantly earlier with reduced lighting (P<0.0001). When full ambient lighting was used, the TFT display was superior compared to the CRT monitor in ranges II and III (P<0.0001), whereas no differences could be detected for grey intensities between 0 and 63 (P=0.71) and between 192 and 255 (P=0.36). Background lighting hampers grey-scale perception on computer displays. In this study of one TFT and one CRT monitor, the TFT in full ambient lighting was associated with earlier detection of grey scale differences than CRT.

  4. Comparing bandwidth requirements for digital baseband signals.

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Green, T. A.

    1972-01-01

    This paper describes the relative bandwidth requirements of the common digital baseband signaling techniques used for data transmission. Bandwidth considerations include the percentage of total power in a properly encoded PN sequence passed at bandwidths of 0.5, 1, 2 and 3 times the reciprocal of the bit interval. The signals considered in this study are limited to the binary class. The study compares such signaling techniques as delay modulation, bipolar, biternary, duobinary, pair selected ternary and time polarity control in addition to the conventional NRZ, RZ and BI-phi schemes.

  5. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ultra-High Temperature Materials Characterization for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high

  7. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  8. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  9. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  10. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  11. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  12. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  13. Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Frisari, M.; Thissen, R.; Dutuit, O.; Bonnet, J.-Y.; Quirico, E.; Sciamma O'Brien, E.; Szopa, C.; Carrasco, N.; Somogyi, A.; Smith, M.; Hörst, S. M.; Yelle, R.

    2010-04-01

    We propose here a systematic ultra-high resolution mass spectrometry and MS/MS study in order to provide a more coherent and complete characterization of the structure of the molecules making up the soluble fraction of the Titan tholins.

  14. The Bendability of Ultra High strength Steels

    NASA Astrophysics Data System (ADS)

    Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.

    2016-08-01

    Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.

  15. Photonic generation of ultra-wide-band doublet pulse through monolithic integration of tapered directional coupler and quantum well waveguide.

    PubMed

    Kuo, Yu-Zheng; Wu, Jui-Pin; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2012-10-22

    We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530 nm photonic UWB doublet optical pulse with 75-ps pulse width, below -41.3 dBm power, 125% fractional bandwidth, and 7.5 GHz of -10 dB bandwidth has been demonstrated, fitted into FCC requirement (3.1 GHz~10.6 GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25 Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.

  16. How the Irish Became CRT'd? "Greening" Critical Race Theory, and the Pitfalls of a Normative Atlantic State View

    ERIC Educational Resources Information Center

    Kitching, Karl

    2015-01-01

    This article considers the transatlantic use of Critical Race Theory (CRT) frameworks to critically interpret racism in education internationally, and the possibilities and pitfalls this has for understanding racism in Ireland. It argues for the importance of CRT's framework on a number of grounds, but echoes cautions against the assumed, or sole…

  17. Prospective Randomized Evaluation of Implantable Cardioverter-Defibrillator Programming in Patients With a Left Ventricular Assist Device.

    PubMed

    Richardson, Travis D; Hale, Leslie; Arteaga, Christopher; Xu, Meng; Keebler, Mary; Schlendorf, Kelly; Danter, Matthew; Shah, Ashish; Lindenfeld, JoAnn; Ellis, Christopher R

    2018-02-23

    Ventricular arrhythmias are common in patients with left ventricular assist devices (LVADs) but are often hemodynamically tolerated. Optimal implantable cardioverter defibrillator (ICD) tachy-programming strategies in patients with LVAD have not been determined. We sought to determine if an ultra-conservative ICD programming strategy in patients with LVAD affects ICD shocks. Adult patients with an existing ICD undergoing continuous flow LVAD implantation were randomized to standard ICD programming by their treating physician or an ultra-conservative ICD programming strategy utilizing maximal allowable intervals to detection in the ventricular fibrillation and ventricular tachycardia zones with use of ATP. Patients with cardiac resynchronization therapy (CRT) devices were also randomized to CRT ON or OFF. Patients were followed a minimum of 6 months. The primary outcome was time to first ICD shock. Among the 83 patients studied, we found no statistically significant difference in time to first ICD shock or total ICD shocks between groups. In the ultra-conservative group 16% of patients experienced at least one shock compared with 21% in the control group ( P =0.66). There was no difference in mortality, arrhythmic hospitalization, or hospitalization for heart failure. In the 41 patients with CRT ICDs fewer shocks were observed with CRT-ON but this was not statistically significant: 10% of patients with CRT-ON (n=21) versus 38% with CRT-OFF (n=20) received shocks ( P =0.08). An ultra-conservative programming strategy did not reduce ICD shocks. Programming restrictions on ventricular tachycardia and ventricular fibrillation zone therapy should be reconsidered for the LVAD population. The role of CRT in patients with LVAD warrants further investigation. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01977703. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  18. Development of Non-Proprietary Ultra-High Performance Concrete : Research Topic Statement

    DOT National Transportation Integrated Search

    2014-05-29

    Ultra-high performance concrete became commercially available in the U.S. in 2000. Since then, UHPC has been actively promoted by the Federal Highway Administration. UHPC has mostly been used in the U.S. for field-cast connections of prefabricated br...

  19. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  20. A swimming pool array for ultra high energy showers

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  1. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  2. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  3. Negative inductance circuits for metamaterial bandwidth enhancement

    NASA Astrophysics Data System (ADS)

    Avignon-Meseldzija, Emilie; Lepetit, Thomas; Ferreira, Pietro Maris; Boust, Fabrice

    2017-12-01

    Passive metamaterials have yet to be translated into applications on a large scale due in large part to their limited bandwidth. To overcome this limitation many authors have suggested coupling metamaterials to non-Foster circuits. However, up to now, the number of convincing demonstrations based on non-Foster metamaterials has been very limited. This paper intends to clarify why progress has been so slow, i.e., the fundamental difficulty in making a truly broadband and efficient non-Foster metamaterial. To this end, we consider two families of metamaterials, namely Artificial Magnetic Media and Artificial Magnetic Conductors. In both cases, it turns out that bandwidth enhancement requires negative inductance with almost zero resistance. To estimate bandwidth enhancement with actual non-Foster circuits, we consider two classes of such circuits, namely Linvill and gyrator. The issue of stability being critical, both metamaterial families are studied with equivalent circuits that include advanced models of these non-Foster circuits. Conclusions are different for Artificial Magnetic Media coupled to Linvill circuits and Artificial Magnetic Conductors coupled to gyrator circuits. In the first case, requirements for bandwidth enhancement and stability are very hard to meet simultaneously whereas, in the second case, an adjustment of the transistor gain does significantly increase bandwidth.

  4. Strain analysis in CRT candidates using the novel segment length in cine (SLICE) post-processing technique on standard CMR cine images.

    PubMed

    Zweerink, Alwin; Allaart, Cornelis P; Kuijer, Joost P A; Wu, LiNa; Beek, Aernout M; van de Ven, Peter M; Meine, Mathias; Croisille, Pierre; Clarysse, Patrick; van Rossum, Albert C; Nijveldt, Robin

    2017-12-01

    Although myocardial strain analysis is a potential tool to improve patient selection for cardiac resynchronization therapy (CRT), there is currently no validated clinical approach to derive segmental strains. We evaluated the novel segment length in cine (SLICE) technique to derive segmental strains from standard cardiovascular MR (CMR) cine images in CRT candidates. Twenty-seven patients with left bundle branch block underwent CMR examination including cine imaging and myocardial tagging (CMR-TAG). SLICE was performed by measuring segment length between anatomical landmarks throughout all phases on short-axis cines. This measure of frame-to-frame segment length change was compared to CMR-TAG circumferential strain measurements. Subsequently, conventional markers of CRT response were calculated. Segmental strains showed good to excellent agreement between SLICE and CMR-TAG (septum strain, intraclass correlation coefficient (ICC) 0.76; lateral wall strain, ICC 0.66). Conventional markers of CRT response also showed close agreement between both methods (ICC 0.61-0.78). Reproducibility of SLICE was excellent for intra-observer testing (all ICC ≥0.76) and good for interobserver testing (all ICC ≥0.61). The novel SLICE post-processing technique on standard CMR cine images offers both accurate and robust segmental strain measures compared to the 'gold standard' CMR-TAG technique, and has the advantage of being widely available. • Myocardial strain analysis could potentially improve patient selection for CRT. • Currently a well validated clinical approach to derive segmental strains is lacking. • The novel SLICE technique derives segmental strains from standard CMR cine images. • SLICE-derived strain markers of CRT response showed close agreement with CMR-TAG. • Future studies will focus on the prognostic value of SLICE in CRT candidates.

  5. Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Zheng, C.; Pong, Philip W. T.

    Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model.more » The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.« less

  6. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  7. Case study: dairies utilizing ultra-high stock density grazing in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing has gained interest in the forage industry. However, little credible research exists to support anecdotal claims that forage and soil improvement occur through trampling high proportions (75+%) of mature forage into the soil by grazing dense groups of cattle o...

  8. [Estimation of rice LAI by using NDVI at different spectral bandwidths].

    PubMed

    Wang, Fu-min; Huang, Jing-feng; Tang, Yan-lin; Wang, Xiu-zhen

    2007-11-01

    The canopy hyperspectral reflectance data of rice at its different development stages were collected from field measurement, and the corresponding NDVIs as well as the correlation coefficients of NDVIs and LAI were computed at extending bandwidth of TM red and near-infrared (NIR) spectra. According to the variation characteristics of best fitted R2 with spectral bandwidth, the optimal bandwidth was determined. The results showed that the correlation coefficients of LAI and ND-VI and the maximum R2 of the best fitted functions at different spectral bandwidths had the same variation trend, i.e., decreased with increasing bandwidth when the bandwidth was less than 60 nm. However, when the bandwidth was beyond 60 nm, the maximum R2 somewhat fluctuated due to the effect of NIR. The analysis of R2 variation with bandwidth indicated that 15 nm was the optimal bandwidth for the estimation of rice LAI by using NDVI.

  9. A novel construction method of QC-LDPC codes based on CRT for optical communications

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-05-01

    A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed based on Chinese remainder theory (CRT). The method can not only increase the code length without reducing the girth, but also greatly enhance the code rate, so it is easy to construct a high-rate code. The simulation results show that at the bit error rate ( BER) of 10-7, the net coding gain ( NCG) of the regular QC-LDPC(4 851, 4 546) code is respectively 2.06 dB, 1.36 dB, 0.53 dB and 0.31 dB more than those of the classic RS(255, 239) code in ITU-T G.975, the LDPC(32 640, 30 592) code in ITU-T G.975.1, the QC-LDPC(3 664, 3 436) code constructed by the improved combining construction method based on CRT and the irregular QC-LDPC(3 843, 3 603) code constructed by the construction method based on the Galois field ( GF( q)) multiplicative group. Furthermore, all these five codes have the same code rate of 0.937. Therefore, the regular QC-LDPC(4 851, 4 546) code constructed by the proposed construction method has excellent error-correction performance, and can be more suitable for optical transmission systems.

  10. Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention.

    PubMed

    Boakye, Cedar H A; Patel, Ketan; Doddapaneni, Ravi; Bagde, Arvind; Behl, Gautam; Chowdhury, Nusrat; Safe, Stephen; Singh, Mandip

    2016-07-01

    In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis. UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo. DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (p<0.01) skin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (p<0.05) the number of tumors observed in SKH-1 mice (3.33-fold), which was comparable to pretreatment with sunscreen (SPF30). Also, DIM-D-UltraFLEX-Nano caused decrease (p<0.05) in UV-induced DNA damage (8-hydroxydeoxyguanosine), skin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21). UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30

  11. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  12. High bandwidth all-optical 3×3 switch based on multimode interference structures

    NASA Astrophysics Data System (ADS)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  13. Simultaneous structural and environmental loading of an ultra-high performance concrete component

    DOT National Transportation Integrated Search

    2010-07-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which tends to exhibit superior properties such as increased durability, strength, and long-term stability. This experimental investigation focused on the flexural ...

  14. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  15. Battling Inertia in Educational Leadership: CRT Praxis for Race Conscious Dialogue

    ERIC Educational Resources Information Center

    Agosto, Vonzell; Karanxha, Zorka; Bellara, Aarti

    2015-01-01

    The purpose of this article is to illustrate how institutional racism is mediated by faculty negotiating power and privilege in the selection of Black (African American) women into an educational leadership preparation program. Critical race theory (CRT) praxis is used to analyze the faculty dynamics in the candidate selection process situated in…

  16. Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano

    NASA Astrophysics Data System (ADS)

    Evita, Maria; Djamal, Mitra; Zimanowski, Bernd; Schilling, Klaus

    2017-01-01

    Volcano monitoring requires the system which has high-fidelity operation and real-time acquisition. MONICA (Mobile Monitoring System for Indonesian Volcano), a system based on Wireless Sensor Network, mobile robot and satellite technology has been proposed to fulfill this requirement for volcano monitoring system in Indonesia. This system consists of fixed-mode for normal condition and mobile mode for emergency situation. The first and second modes have been simulated in slow motion earthquake cases of Merapi Volcano, Indonesia. In this research, we have investigated the application of our bandwidth management for high-fidelity operation and real time acquisition in mobile mode of a strong motion earthquake from this volcano. The simulation result showed that our system still could manage the bandwidth even when there were 2 died fixed node after had stroked by the lightning. This result (64% to 83% throughput in average) was still better than the bandwidth utilized by the existing equipment (0% throughput because of the broken seismometer).

  17. Ultra-high throughput real-time instruments for capturing fast signals and rare events

    NASA Astrophysics Data System (ADS)

    Buckley, Brandon Walter

    Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and

  18. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  19. 47 CFR 101.515 - Emissions and bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emissions and bandwidth. 101.515 Section 101... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.515 Emissions and bandwidth. Different types of emissions may be authorized if the applicant describes fully the modulation...

  20. Gbps wireless transceivers for high bandwidth interconnections in distributed cyber physical systems

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Neri, Bruno

    2015-05-01

    In Cyber Physical Systems there is a growing use of high speed sensors like photo and video camera, radio and light detection and ranging (Radar/Lidar) sensors. Hence Cyber Physical Systems can benefit from the high communication data rate, several Gbps, that can be provided by mm-wave wireless transceivers. At such high frequency the wavelength is few mm and hence the whole transceiver including the antenna can be integrated in a single chip. To this aim this paper presents the design of 60 GHz transceiver architecture to ensure connection distances up to 10 m and data rate up to 4 Gbps. At 60 GHz there are more than 7 GHz of unlicensed bandwidth (available for free for development of new services). By using a CMOS SOI technology RF, analog and digital baseband circuitry can be integrated in the same chip minimizing noise coupling. Even the antenna is integrated on chip reducing cost and size vs. classic off-chip antenna solutions. Therefore the proposed transceiver can enable at physical layer the implementation of low cost nodes for a Cyber Physical System with data rates of several Gbps and with a communication distance suitable for home/office scenarios, or on-board vehicles such as cars, trains, ships, airplanes

  1. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  3. Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars.

    PubMed

    She, C Y

    2001-09-20

    It is well known that scattering lidars, i.e., Mie, aerosol-wind, Rayleigh, high-spectral-resolution, molecular-wind, rotational Raman, and vibrational Raman lidars, are workhorses for probing atmospheric properties, including the backscatter ratio, aerosol extinction coefficient, temperature, pressure, density, and winds. The spectral structure of molecular scattering (strength and bandwidth) and its constituent spectra associated with Rayleigh and vibrational Raman scattering are reviewed. Revisiting the correct name by distinguishing Cabannes scattering from Rayleigh scattering, and sharpening the definition of each scattering component in the Rayleigh scattering spectrum, the review allows a systematic, logical, and useful comparison in strength and bandwidth between each scattering component and in receiver bandwidths (for both nighttime and daytime operation) between the various scattering lidars for atmospheric sensing.

  4. A COMPUTATIONAL APPROACH TO UNDERSTANDING THE CARDIAC ELECTROMECHANICAL ACTIVATION SEQUENCE IN THE NORMAL AND FAILING HEART, WITH TRANSLATION TO THE CLINICAL PRACTICE OF CRT

    PubMed Central

    Constantino, Jason; Hu, Yuxuan; Trayanova, Natalia A.

    2012-01-01

    Cardiac resynchronization therapy (CRT) is an established clinical treatment modality that aims to recoordinate contraction of the heart in dyssynchrous heart failure (DHF) patients. Although CRT reduces morbidity and mortality, a significant percentage of CRT patients fail to respond to the therapy, reflecting an insufficient understanding of the electromechanical activity of the DHF heart. Computational models of ventricular electromechanics, are now poised to fill this knowledge gap and provide a comprehensive characterization of the spatiotemporal electromechanical interactions in the normal and DHF heart. The objective of this paper is to demonstrate the powerful utility of computational models of ventricular electromechanics in characterizing the relationship between the electrical and mechanical activation in the DHF heart, and how this understanding can be utilized to devise better CRT strategies. The computational research presented here exploits knowledge regarding the three dimensional distribution of the electromechanical delay, defined as the time interval between myocyte depolarization and onset of myofiber shortening, in determining the optimal location of the LV pacing electrode for CRT. The simulation results shown here also suggest utilizing myocardial efficiency and regional energy consumption as a guide to optimize CRT. PMID:22884712

  5. Optimal design of similariton fiber lasers without gain-bandwidth limitation.

    PubMed

    Li, Xingliang; Zhang, Shumin; Yang, Zhenjun

    2017-07-24

    We have numerically investigated broadband high-energy similariton fiber lasers, demonstrated that the self-similar evolution of pulses can locate in a segment of photonic crystal fiber without gain-bandwidth limitation. The effects of various parameters, including the cavity length, the spectral filter bandwidth, the pump power, the length of the photonic crystal fiber and the output coupling ratio have also been studied in detail. Using the optimal parameters, a single pulse with spectral width of 186.6 nm, pulse energy of 23.8 nJ, dechirped pulse duration of 22.5 fs and dechirped pulse peak power of 1.26 MW was obtained. We believe that this detailed analysis of the behaviour of pulses in the similariton regime may have major implications in the development of broadband high-energy fiber lasers.

  6. Multigigabit optical transceivers for high-data rate military applications

    NASA Astrophysics Data System (ADS)

    Catanzaro, Brian E.; Kuznia, Charlie

    2012-01-01

    Avionics has experienced an ever increasing demand for processing power and communication bandwidth. Currently deployed avionics systems require gigabit communication using opto-electronic transceivers connected with parallel optical fiber. Ultra Communications has developed a series of transceiver solutions combining ASIC technology with flip-chip bonding and advanced opto-mechanical molded optics. Ultra Communications custom high speed ASIC chips are developed using an SoS (silicon on sapphire) process. These circuits are flip chip bonded with sources (VCSEL arrays) and detectors (PIN diodes) to create an Opto-Electronic Integrated Circuit (OEIC). These have been combined with micro-optics assemblies to create transceivers with interfaces to standard fiber array (MT) cabling technology. We present an overview of the demands for transceivers in military applications and how new generation transceivers leverage both previous generation military optical transceivers as well as commercial high performance computing optical transceivers.

  7. Ultra-wideband ladder filter using SH(0) plate wave in thin LiNbO(3) plate and its application to tunable filter.

    PubMed

    Kadota, Michio; Tanaka, Shuji

    2015-05-01

    A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space.

  8. Microstructure of ultra high performance concrete containing lithium slag.

    PubMed

    He, Zhi-Hai; Du, Shi-Gui; Chen, Deng

    2018-04-03

    Lithium slag (LS) is discharged as a byproduct in the process of the lithium carbonate, and it is very urgent to explore an efficient way to recycle LS in order to protect the environments and save resources. Many available supplementary cementitious materials for partial replacement of cement and/or silica fume (SF) can be used to prepare ultra high performance concrete (UHPC). The effect of LS to replace SF partially by weight used as a supplementary cementitious material (0%, 5%, 10% and 15% of binder) on the compressive strengths and microstructure evolution of UHPC has experimentally been studied by multi-techniques including mercury intrusion porosimetry, scanning electron microscope and nanoindentation technique. The results show that the use of LS degrades the microstructure of UHPC at early ages, and however, the use of LS with the appropriate content improves microstructure of UHPC at later ages. The hydration products of UHPC are mainly dominated by ultra-high density calcium-silicate-hydrate (UHD C-S-H) and interfacial transition zone (ITZ) in UHPC has similar compact microstructure with the matrix. The use of LS improves the hydration degree of UHPC and increases the elastic modulus of ITZ in UHPC. LS is a promising substitute for SF for preparation UHPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Development of Non-Proprietary Ultra High Performance Concrete : Final Presentation : November, 2017

    DOT National Transportation Integrated Search

    2017-11-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...

  10. Faint CO Line Wings in Four Star-forming (Ultra)luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel

    2015-09-01

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s-1-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  11. Cognitive remediation therapy (CRT) as a treatment enhancer of eating disorders and obsessive compulsive disorders: study protocol for a randomized controlled trial.

    PubMed

    van Passel, Boris; Danner, Unna; Dingemans, Alexandra; van Furth, Eric; Sternheim, Lot; van Elburg, Annemarie; van Minnen, Agnes; van den Hout, Marcel; Hendriks, Gert-Jan; Cath, Daniëlle

    2016-11-10

    Anorexia nervosa (AN) and Obsessive Compulsive Disorder (OCD) are among the most incapacitating and costly of mental disorders. Cognitive Behaviour Therapy (CBT), medication, and combination regimens, to which in AN personalised guidance on weight control is added, are moderately successful, leaving room for more effective treatment algorithms. An underlying deficit which the two disorders share is cognitive inflexibility, a trait that is likely to impede treatment engagement and reduce patients' ability to benefit from treatment. Cognitive remediation therapy (CRT) is an easy-to-use intervention aimed at reducing cognitive inflexibility and thereby enhancing treatment outcome, which we aim to test in a controled study. In a randomized-controlled multicenter clinical trial 64 adult patients with AN and 64 with OCD are randomized to 10 bi-weekly sessions with either CRT or a control condition, after which Treatment As Usual (TAU) is started. All patients are evaluated during single-blind assessments at baseline, post-CRT/control intervention, and after 6 months. Indices of treatment effect are disorder-specific symptom severity, quality of life, and cost-effectivity. Also, moderators and mediators of treatment effects will be studied. To our knowledge, this is the first randomized controlled trial using an control condition evaluating the efficacy and effectiveness of CRT as a treatment enhancer preceding TAU for AN, and the first study to investigate CRT in OCD, moreover taking cost-effectiveness of CRT in AN and OCD into account. The Netherlands Trial Register NTR3865 . Registered 20 february 2013.

  12. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation Volume II : behavior of ultra-high strength concrete bridge deck panels compared to conventional stay-in-place deck panels

    DOT National Transportation Integrated Search

    2017-08-01

    The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...

  13. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less

  14. Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer.

    PubMed

    Abo-Madyan, Yasser; Aziz, Muhammad Hammad; Aly, Moamen M O M; Schneider, Frank; Sperk, Elena; Clausen, Sven; Giordano, Frank A; Herskind, Carsten; Steil, Volker; Wenz, Frederik; Glatting, Gerhard

    2014-03-01

    Second cancer risk after breast conserving therapy is becoming more important due to improved long term survival rates. In this study, we estimate the risks for developing a solid second cancer after radiotherapy of breast cancer using the concept of organ equivalent dose (OED). Computer-tomography scans of 10 representative breast cancer patients were selected for this study. Three-dimensional conformal radiotherapy (3D-CRT), tangential intensity modulated radiotherapy (t-IMRT), multibeam intensity modulated radiotherapy (m-IMRT), and volumetric modulated arc therapy (VMAT) were planned to deliver a total dose of 50 Gy in 2 Gy fractions. Differential dose volume histograms (dDVHs) were created and the OEDs calculated. Second cancer risks of ipsilateral, contralateral lung and contralateral breast cancer were estimated using linear, linear-exponential and plateau models for second cancer risk. Compared to 3D-CRT, cumulative excess absolute risks (EAR) for t-IMRT, m-IMRT and VMAT were increased by 2 ± 15%, 131 ± 85%, 123 ± 66% for the linear-exponential risk model, 9 ± 22%, 82 ± 96%, 71 ± 82% for the linear and 3 ± 14%, 123 ± 78%, 113 ± 61% for the plateau model, respectively. Second cancer risk after 3D-CRT or t-IMRT is lower than for m-IMRT or VMAT by about 34% for the linear model and 50% for the linear-exponential and plateau models, respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate.

    PubMed

    Zhang, Caihong; Avetisyan, Yuri; Glosser, Andreas; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2012-04-09

    A new scheme of optical rectification (OR) of femtosecond laser pulses in a periodically poled lithium niobate (PPLN) crystal, which generates high energy and bandwidth tunable multicycle THz pulses, is proposed and demonstrated. We show that the number of the oscillation cycles of the THz electric field and therefore bandwidth of generated THz spectrum can easily and smoothly be tuned from a few tens of GHz to a few THz by changing the pump optical spot size on PPLN crystal. The minimal bandwidth is 17 GHz that is smallest ever of reported in scheme of THz generation by OR at room temperature. Similar to the case of Cherenkov-type OR in single-domain LiNbO₃, the spectrum of THz generation extends from 0.1 THz to 3 THz when laser beam is focused to a size close to half-period of PPLN structure. The energy spectral density of narrowband THz generation is almost independent of the bandwidth and is typically 220 nJ/THz for ~1 W pump power at 1 kHz repetition rate.

  16. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins.

    PubMed

    Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping

    2016-02-20

    Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Ultra-high cooling rate utilizing thin film evaporation

    NASA Astrophysics Data System (ADS)

    Su, Fengmin; Ma, Hongbin; Han, Xu; Chen, Hsiu-hung; Tian, Bohan

    2012-09-01

    This research introduces a cell cryopreservation method, which utilizes thin film evaporation and provides an ultra-high cooling rate. The microstructured surface forming the thin film evaporation was fabricated from copper microparticles with an average diameter of 50 μm. Experimental results showed that a cooling rate of approximately 5×104 °C/min was achieved in a temperature range from 10 °C to -187 °C. The current investigation will give birth to a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.

  18. The systolic index: a noninvasive approach for the assessment of cardiac function: implications for patients with DDD and CRT devices.

    PubMed

    Chirife, Raul; Ruiz, G Aurora; Gayet, Enrique; Muratore, Claudio; Mazzetti, Héctor; Pellegrini, Alejandro; Tentori, M Cristina

    2013-10-01

    Our objective was to evaluate the systolic index (SI), the ratio between rate-corrected left ventricular ejection time (LVETc), and a preejection period surrogate (PEPsu), to assess cardiac function in patients with DDD and cardiac resynchronization therapy (CRT) pacemakers. LVETc and PEPsu were automatically measured from electrocardiogram and finger photoplethismography. Atrioventricular (AV) and mode switch (CRT to DDD) were used as hemodynamic challenges. Performance of SI, beat-by-beat systolic blood pressure (SBP), and Doppler aortic velocity/time integral (AoVTI) were compared in 36 patients, and SI's detection of CRT to DDD mode switch in nine patients, responders to CRT. AVs were changed from 30 ms to 250 ms (20 ms steps) at constant paced heart rate, alternating with a reference AV (RefAV), to reduce hemodynamic drift. The coefficient of variation (standard deviation/mean) of SI, SBP, and AoVTI during all RefAVs were used as error marker. The percentage detection of hemodynamic changes during AV transitions was a marker of sensitivity. Fifty-five patients (males 62%, age 69.6 ± 17) were studied. SI detected 441 of 544 transitions (81%) versus 361 (66%) of SBP (P = 0.005). Error during RefAVs was smaller for SI (3.4%) as compared to AoVTI (7.8%, P = 0.015) and to SBP (5.7%, P = 0.005). SIs correlated with AoVTI (R from 0.71 to 0.98, all P < 0.001). SI detected all CRT to DDD changes (P < 0.001). The noninvasive SI obtained with a simple, observer-independent hemodynamic assessment procedure has higher accuracy than SBP and AoVTI and better sensitivity than SBP. It detects mechanical resynchronization in CRT and allows programming a suitable AV delay. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  19. SU-F-J-45: Sparing Normal Tissue with Ultra-High Dose Rate in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y

    Purpose: To spare normal tissue by reducing the location uncertainty of a moving target, we proposed an ultra-high dose rate system and evaluated. Methods: High energy electrons generated with a linear accelerator were injected into a storage ring to be accumulated. The number of the electrons in the ring was determined based on the prescribed radiation dose. The dose was delivered within a millisecond, when an online imaging system found that the target was in the position that was consistent with that in a treatment plan. In such a short time period, the displacement of the target was negligible. Themore » margin added to the clinical target volume (CTV) could be reduced that was evaluated by comparing of volumes between CTV and ITV in 14 cases of lung stereotactic body radiation therapy (SBRT) treatments. A design of the ultra-high dose rate system was evaluated based clinical needs and the recent developments of low energy (a few MeV) electron storage ring. Results: This design of ultra-high dose rate system was feasible based on the techniques currently available. The reduction of a target volume was significant by reducing the margin that accounted the motion of the target. ∼50% volume reduction of the internal target volume (ITV) could be achieved in lung SBRT treatments. Conclusion: With this innovation of ultra-high dose rate system, the margin of target is able to be significantly reduced. It will reduce treatment time of gating and allow precisely specified gating window to improve the accuracy of dose delivering.« less

  20. Enhancing the usability of CRT displays in test flight monitoring

    NASA Astrophysics Data System (ADS)

    Granaas, Michael M.; Sredinski, Victoria E.

    1991-01-01

    Enhancing the usability of Mission Control Center (MCC) CRT displays stands to improve the quality, productivity, and safety of flight-test research at the NASA Ames-Dryden Flight Research Facility. The results of this research suggests that much can be done to assist the user and improve the quality of flight research through the enhancement of current displays. This research has applications to a variety of flight data monitoring displays.

  1. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.

    PubMed

    Shen, Yang; Zhang, Jieqiu; Pang, Yongqiang; Zheng, Lin; Wang, Jiafu; Ma, Hua; Qu, Shaobo

    2018-03-13

    Distilled water has frequency dispersive characteristic and high value of imaginary part in permittivity, which can be seen as a good candidate of broadband metamaterial absorbers(MAs) in microwave. Here, an interesting idea based on the combination of water-substrate and metallic metamaterial in the three-dimensional construction is proposed, which can achieve outstanding broadband absorption. As a proof, the distilled water is filled into the dielectric reservoir as ultra-thin water-substrate, and then the water-substrates are arranged on the metal backplane periodically as three-dimensional water-substrate array(TWA). Simulation shows that the TWA achieves broadband absorption with the efficiency more than 90% from 8.3 to 21.0 GHz. Then, the trigonal metallic fishbone structure is introduced here between the water-substrate and the dielectric reservoir periodically as three-dimensional water-substrate metamaterial absorber(TWMA). The proposed TWMA could achieve ultra-broadband absorption from 2.6 to 16.8 GHz, which has increase by 64.8% in relative absorption bandwidth. Meanwhile, due to the participation of distilled water, the thermally tunable property also deserves to be discussed here. In view of the outstanding performance, it is worth to expect a wide range of applications to emerge inspired from the proposed construction.

  2. Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth.

    PubMed

    Briles, Travis C; Yost, Dylan C; Cingöz, Arman; Ye, Jun; Schibli, Thomas R

    2010-05-10

    We present a high bandwidth piezoelectric-actuated mirror for length stabilization of an optical cavity. The actuator displays a transfer function with a flat amplitude response and greater than 135 masculine phase margin up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a closed servo loop. To the best of our knowledge, this actuator has achieved the largest servo bandwidth for a piezoelectric transducer (PZT). The actuator should be very useful in a wide variety of applications requiring precision control of optical lengths, including laser frequency stabilization, optical interferometers, and optical communications. (c) 2010 Optical Society of America.

  3. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    NASA Astrophysics Data System (ADS)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-09-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.

  4. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    PubMed Central

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-01-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796

  5. Rapid brain MRI acquisition techniques at ultra-high fields

    PubMed Central

    Setsompop, Kawin; Feinberg, David A.; Polimeni, Jonathan R.

    2017-01-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher spatial resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, is a concurrent increased image encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI—particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development—such as the move from conventional 2D slice-by-slice imaging to more efficient Simultaneous MultiSlice (SMS) or MultiBand imaging (which can be viewed as “pseudo-3D” encoding) as well as full 3D imaging—have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multi-channel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. PMID:26835884

  6. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniquesmore » in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.« less

  7. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.

    PubMed

    Ast, Stefan; Samblowski, Aiko; Mehmet, Moritz; Steinlechner, Sebastian; Eberle, Tobias; Schnabel, Roman

    2012-06-15

    Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a nonclassical cw laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric downconversion via a periodically poled potassium titanyl phosphate crystal. We did not use any resonant enhancement for the fundamental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the nonlinear crystal.

  8. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  9. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  10. 47 CFR 2.1049 - Measurements required: Occupied bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... established for the characteristic baseband frequency. (Modulation reference level is defined as the average....1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS... Certification § 2.1049 Measurements required: Occupied bandwidth. The occupied bandwidth, that is the frequency...

  11. Comparison of pattern VEP results acquired using CRT and TFT stimulators in the clinical practice.

    PubMed

    Nagy, Balázs Vince; Gémesi, Szabolcs; Heller, Dávid; Magyar, András; Farkas, Agnes; Abrahám, György; Varsányi, Balázs

    2011-06-01

    There are several electrophysiological systems available commercially. Usually, control groups are required to compare their results, due to the differences between display types. Our aim was to examine the differences between CRT and LCD/TFT stimulators used in pattern VEP responses performed according to the ISCEV standards. We also aimed to check different contrast values toward thresholds. In order to obtain more precise results, we intended to measure the intensity and temporal response characteristics of the monitors with photometric methods. To record VEP signals, a Roland RetiPort electrophysiological system was used. The pattern VEP tests were carried out according to ISCEV protocols on a CRT and a TFT monitor consecutively. Achromatic checkerboard pattern was used at three different contrast levels (maximal, 75, 25%) using 1° and 15' check sizes. Both CRT and TFT displays were luminance and contrast matched, according to the gamma functions based on measurements at several DAC values. Monitor-specific luminance parameters were measured by means of spectroradiometric instruments. Temporal differences between the displays' electronic and radiometric signals were measured with a device specifically built for the purpose. We tested six healthy control subjects with visual acuity of at least 20/20. The tests were performed on each subject three times on different days. We found significant temporal differences between the CRT and the LCD monitors at all contrast levels and spatial frequencies. In average, the latency times were 9.0 ms (±3.3 ms) longer with the TFT stimulator. This value is in accordance with the average of the measured TFT input-output temporal difference values (10.1 ± 2.2 ms). According to our findings, measuring the temporal parameters of the TFT monitor with an adequately calibrated measurement setup and correcting the VEP data with the resulting values, the VEP signals obtained with different display types can be transformed to be

  12. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  13. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  14. Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers.

    PubMed

    Maresca, David; Renaud, Guillaume; van Soest, Gijs; Li, Xiang; Zhou, Qifa; Shung, K Kirk; de Jong, Nico; van der Steen, Antonius F W

    2013-04-01

    We demonstrate two methods for vasa vasorum imaging using contrast-enhanced intravascular ultrasound, which can be performed using commercial catheters. Plaque neovascularization was recognized as an independent marker of coronary artery plaque vulnerability. IVUS-based methods to image the microvessels available to date require high bandwidth (-6 dB relative frequency bandwidth >70%), which are not routinely available commercially. We explored the potential of ultraharmonic imaging and chirp reversal imaging for vasa vasorum imaging. In vitro recordings were performed on a tissue-mimicking phantom using a commercial ultrasound contrast agent and a transducer with a center frequency of 34 MHz and a -6 dB relative bandwidth of 56%. Acoustic peak pressures <500 kPa were used. A tissue-mimicking phantom with channels down to 200 μm in diameter was successfully imaged by the two contrast detection sequences while the smallest channel stayed invisible in conventional intravascular ultrasound images. Ultraharmonic imaging provided the best contrast agent detection. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  15. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.

  16. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and emission...

  17. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and emission...

  18. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and emission...

  19. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and emission...

  20. Dictionary-based monitoring of premature ventricular contractions: An ultra-low-cost point-of-care service.

    PubMed

    Bollepalli, S Chandra; Challa, S Sastry; Anumandla, Laxminarayana; Jana, Soumya

    2018-04-25

    While cardiovascular diseases (CVDs) are prevalent across economic strata, the economically disadvantaged population is disproportionately affected due to the high cost of traditional CVD management, involving consultations, testing and monitoring at medical facilities. Accordingly, developing an ultra-low-cost alternative, affordable even to groups at the bottom of the economic pyramid, has emerged as a societal imperative. Against this backdrop, we propose an inexpensive yet accurate home-based electrocardiogram (ECG) monitoring service. Specifically, we seek to provide point-of-care monitoring of premature ventricular contractions (PVCs), high frequency of which could indicate the onset of potentially fatal arrhythmia. Note that the first-generation telecardiology system acquires the ECG, transmits it to a professional diagnostic center without processing, and nearly achieves the diagnostic accuracy of a bedside setup. In the process, such a system incurs high bandwidth cost and requires the physicians to process the entire record for diagnosis. To reduce cost, current telecardiology systems compress data before transmitting. However, the burden on physicians remains undiminished. In this context, we develop a dictionary-based algorithm that reduces not only the overall bandwidth requirement, but also the physicians workload by localizing anomalous beats. Specifically, we detect anomalous beats with high sensitivity and only those beats are then transmitted. In fact, we further compress those beats using class-specific dictionaries subject to suitable reconstruction/diagnostic fidelity. Finally, using Monte Carlo cross validation on MIT/BIH arrhythmia database, we evaluate the performance of the proposed system. In particular, with a sensitivity target of at most one undetected PVC in one hundred beats, and a percentage root mean squared difference less than 9% (a clinically acceptable level of fidelity), we achieved about 99.15% reduction in bandwidth cost

  1. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  2. Out-of-field doses from pediatric craniospinal irradiations using 3D-CRT, IMRT, helical tomotherapy and electron-based therapy

    NASA Astrophysics Data System (ADS)

    De Saint-Hubert, Marijke; Verellen, Dirk; Poels, Kenneth; Crijns, Wouter; Magliona, Federica; Depuydt, Tom; Vanhavere, Filip; Struelens, Lara

    2017-07-01

    Medulloblastoma treatment involves irradiation of the entire central nervous system, i.e. craniospinal irradiation (CSI). This is associated with the significant exposure of large volumes of healthy tissue and there is growing concern regarding treatment-associated side effects. The current study compares out-of-field organ doses in children receiving CSI through 3D-conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), helical tomotherapy (HT) and an electron-based technique, and includes radiation doses resulting from imaging performed during treatment. An extensive phantom study is performed, using an anthropomorphic phantom corresponding to a five year old child, in which organ absorbed doses are measured using thermoluminescent detectors. Additionally, the study evaluates and explores tools for calculating out-of-field patient doses using the treatment planning system (TPS) and analytical models. In our study, 3D-CRT resulted in very high doses to a limited number of organs, while it was able to spare organs such as the lungs and breast when compared to IMRT and HT. Both IMRT and HT spread the dose over more organs and were able to spare the heart, thyroid, bladder, uterus and testes when compared to 3D-CRT. The electron-based technique considerably decreased the out-of-field doses in deep-seated organs but could not avoid nearby out-of-field organs such as the lungs, ribs, adrenals, kidneys and uterus. The daily imaging dose is small compared to the treatment dose burden. The TPS error for out-of-field doses was most pronounced for organs further away from the target; nevertheless, no systematic underestimation was observed for any of the studied TPS systems. Finally, analytical modeling was most optimal for 3D-CRT although the number of organs that could be modeled was limited. To conclude, none of the techniques studied was capable of sparing all organs from out-of-field doses. Nevertheless, the electron-based technique showed the most

  3. Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes Using Ballistocardiogram Measurements on a High Bandwidth Force Plate

    PubMed Central

    Ashouri, Hazar; Orlandic, Lara; Inan, Omer T.

    2016-01-01

    Unobtrusive and inexpensive technologies for monitoring the cardiovascular health of heart failure (HF) patients outside the clinic can potentially improve their continuity of care by enabling therapies to be adjusted dynamically based on the changing needs of the patients. Specifically, cardiac contractility and stroke volume (SV) are two key aspects of cardiovascular health that change significantly for HF patients as their condition worsens, yet these parameters are typically measured only in hospital/clinical settings, or with implantable sensors. In this work, we demonstrate accurate measurement of cardiac contractility (based on pre-ejection period, PEP, timings) and SV changes in subjects using ballistocardiogram (BCG) signals detected via a high bandwidth force plate. The measurement is unobtrusive, as it simply requires the subject to stand still on the force plate while holding electrodes in the hands for simultaneous electrocardiogram (ECG) detection. Specifically, we aimed to assess whether the high bandwidth force plate can provide accuracy beyond what is achieved using modified weighing scales we have developed in prior studies, based on timing intervals, as well as signal-to-noise ratio (SNR) estimates. Our results indicate that the force plate BCG measurement provides more accurate timing information and allows for better estimation of PEP than the scale BCG (r2 = 0.85 vs. r2 = 0.81) during resting conditions. This correlation is stronger during recovery after exercise due to more significant changes in PEP (r2 = 0.92). The improvement in accuracy can be attributed to the wider bandwidth of the force plate. ∆SV (i.e., changes in stroke volume) estimations from the force plate BCG resulted in an average error percentage of 5.3% with a standard deviation of ±4.2% across all subjects. Finally, SNR calculations showed slightly better SNR in the force plate measurements among all subjects but the small difference confirmed that SNR is limited by

  4. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    PubMed Central

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You

    2018-01-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519

  5. Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haertl, Petra M., E-mail: petra.haertl@klinik.uni-regensburg.de; Pohl, Fabian; Weidner, Karin

    2013-04-01

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to themore » average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.« less

  6. Fractal Based Triple Band High Gain Monopole Antenna

    NASA Astrophysics Data System (ADS)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  7. Ultra-High Temperature Materials Characterization for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.

  8. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients.

    PubMed

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-10-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Ultra-high resolution and high-brightness AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  10. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  11. The minimum bandwidths of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Baumback, M. M.; Calvert, W.

    1987-01-01

    The bandwidths of the discrete spectral components of the auroral kilometric radiation can sometimes be as narrow as 5 Hz. Since this would imply an apparent source thickness of substantially less than the wavelength, it is inconsistent with the previous explanation for such discrete components based simply upon vertical localization of a cyclotron source. Instead, such narrow bandwidths can only be explained by radio lasing.

  12. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.

  13. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical network

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-03-01

    The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.

  14. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  15. Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.

    1998-01-01

    A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.

  16. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  17. Evaluation of individual cognitive remediation therapy (CRT) for the treatment of young people with anorexia nervosa.

    PubMed

    Giombini, Lucia; Moynihan, Jennifer; Turco, Matteo; Nesbitt, Sophie

    2017-12-01

    Research suggests that there are cognitive inefficiencies underlying Anorexia Nervosa (AN), with CRT showing promise in improving these inefficiencies in adults. This area has yet to be explored in a younger population. The aim of this study was to evaluate the use of CRT for young people. A within-subjects design was used to compare the performance of children and adolescents with AN on several neuropsychological measures administered before and after a course of CRT. Ninety-two female participants diagnosed with AN aged between 11 and 17 (M = 14.8, SD = 1.6), all receiving treatment at a specialist inpatient unit. The assessment consisted of the Rey-Osterrieth Complex Figure test (ROCFT), the Behaviour Rating Inventory of Executive Function-Self-Report (BRIEF-SR), and the D-KEFS Colour-Word Interference Test (CWT). Repeated-measures t tests were used to analyse the ROCFT and BRIEF-SR data. There was a significant improvement in Central Coherence Index (p < .001), Immediate Recall (p < .001), Shift (p < .001) Cognitive Shift (p = 002), Behavioural shift (p < .001), Emotional Control (p < .001), Working Memory (p = .001), Plan/Organize (p < .001), Monitor (p = .001) BRI (p < .001), MI (p = .001), and GEC (p < .001). On the D-KEFS CWT, a repeated-measure Wilcoxon signed-rank test revealed a significant improvement in Error Rate (p = .019) and a repeated-measures t test revealed a significant improvement in time taken (p < .001). Results suggest that CRT for children and adolescents with AN could strengthen specific cognitive domains.

  18. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  19. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  20. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.