Sample records for ultra-high density information

  1. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  2. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  3. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocca, Jorge J.

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achievedmore » using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm -3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.« less

  4. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  5. An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce

    PubMed Central

    Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W.

    2013-01-01

    We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. PMID:23550116

  6. An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce.

    PubMed

    Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W

    2013-04-09

    We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F 7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. Copyright © 2013 Truco et al.

  7. Case study: dairies utilizing ultra-high stock density grazing in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing has gained interest in the forage industry. However, little credible research exists to support anecdotal claims that forage and soil improvement occur through trampling high proportions (75+%) of mature forage into the soil by grazing dense groups of cattle o...

  8. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum).

    PubMed

    Han, Koeun; Jeong, Hee-Jin; Yang, Hee-Bum; Kang, Sung-Min; Kwon, Jin-Kyung; Kim, Seungill; Choi, Doil; Kang, Byoung-Cheorl

    2016-04-01

    Most agricultural traits are controlled by quantitative trait loci (QTLs); however, there are few studies on QTL mapping of horticultural traits in pepper (Capsicum spp.) due to the lack of high-density molecular maps and the sequence information. In this study, an ultra-high-density map and 120 recombinant inbred lines (RILs) derived from a cross between C. annuum'Perennial' and C. annuum'Dempsey' were used for QTL mapping of horticultural traits. Parental lines and RILs were resequenced at 18× and 1× coverage, respectively. Using a sliding window approach, an ultra-high-density bin map containing 2,578 bins was constructed. The total map length of the map was 1,372 cM, and the average interval between bins was 0.53 cM. A total of 86 significant QTLs controlling 17 horticultural traits were detected. Among these, 32 QTLs controlling 13 traits were major QTLs. Our research shows that the construction of bin maps using low-coverage sequence is a powerful method for QTL mapping, and that the short intervals between bins are helpful for fine-mapping of QTLs. Furthermore, bin maps can be used to improve the quality of reference genomes by elucidating the genetic order of unordered regions and anchoring unassigned scaffolds to linkage groups. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  9. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  10. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  11. Case study: dairies utilizing ultra-high stock density grazing in the northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing (also loosely referred to as ‘mob grazing’) has attracted a lot of attention and press in the forage industry. Numerous anecdotal articles can be found in trade magazines that promote the perceived benefits of UHSD grazing. However, there is little credible re...

  12. Case study: dairies utilizing ultra-high stocking density grazing in Pennsylvania and New York

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stocking density (UHSD) grazing has gained interest in the forage industry. Proponents of UHSD emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 560,425 kg ha**-1 of beef cattle on small paddocks with rest periods of up t...

  13. Case study: dairies using ultra-high stocking density grazing in the Northeastern U.S.

    USDA-ARS?s Scientific Manuscript database

    Proponents of ultra-high stocking density (UHSD) grazing emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 500,000 lb per acre of beef cattle on small paddocks with rest periods up to 180 days. However, it is unclear if this managem...

  14. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    DOE PAGES

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; ...

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl 2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl 2 batteries operated at 280°C, was obtained for planar Na-NiCl 2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl 2more » batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less

  15. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  16. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a

  17. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    PubMed

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011

  18. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.

    PubMed

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L

    2016-02-11

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  19. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density

    PubMed Central

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg−1, higher than that of conventional tubular sodium–nickel chloride batteries (280 °C), is obtained for planar sodium–nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium–nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  20. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  1. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  2. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  3. Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius.

    PubMed

    Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan

    2018-01-01

    An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.

  4. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei

    2013-08-12

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm{sup −3}. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ∼22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth onmore » conductors.« less

  5. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  6. Ultra-Low Density Organic-Inorganic Composite Materials Possessing Thermally Insulating and Acoustic Damping Properties

    DTIC Science & Technology

    1992-05-07

    Officer. Dr. Kenneth Wynne d. Brief Description of Project- We are investigating the design and synthesis of strong, ultra-low density xerogel and aerogel ...materials of this type would have applications in a broad range of areas including lightweight engine components, high temperature coatings, aircraft wings...we plan to investigate the formation of ultra-low density composites using supercritical universal drying (SCUD) techniques. SiO2 aerogel materials

  7. Ultra-stiff metallic glasses through bond energy density design.

    PubMed

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  8. Ultra-High Density Holographic Memory Module with Solid-State Architecture

    NASA Technical Reports Server (NTRS)

    Markov, Vladimir B.

    2000-01-01

    NASA's terrestrial. space, and deep-space missions require technology that allows storing. retrieving, and processing a large volume of information. Holographic memory offers high-density data storage with parallel access and high throughput. Several methods exist for data multiplexing based on the fundamental principles of volume hologram selectivity. We recently demonstrated that a spatial (amplitude-phase) encoding of the reference wave (SERW) looks promising as a way to increase the storage density. The SERW hologram offers a method other than traditional methods of selectivity, such as spatial de-correlation between recorded and reconstruction fields, In this report we present the experimental results of the SERW-hologram memory module with solid-state architecture, which is of particular interest for space operations.

  9. Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea

    PubMed Central

    Kujur, Alice; Upadhyaya, Hari D.; Shree, Tanima; Bajaj, Deepak; Das, Shouvik; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We discovered 26785 and 16573 high-quality SNPs differentiating two parental genotypes of a RIL mapping population using reference desi and kabuli genome-based GBS assay. Of these, 3625 and 2177 SNPs have been integrated into eight desi and kabuli chromosomes, respectively in order to construct ultra-high density (0.20–0.37 cM) intra-specific chickpea genetic linkage maps. One of these constructed high-resolution genetic map has potential to identify 33 major genomic regions harbouring 35 robust QTLs (PVE: 17.9–39.7%) associated with three agronomic traits, which were mapped within <1 cM mean marker intervals on desi chromosomes. The extended LD (linkage disequilibrium) decay (~15 cM) in chromosomes of genetic maps have encouraged us to use a rapid integrated approach (comparative QTL mapping, QTL-region specific haplotype/LD-based trait association analysis, expression profiling and gene haplotype-based association mapping) rather than a traditional QTL map-based cloning method to narrow-down one major seed weight (SW) robust QTL region. It delineated favourable natural allelic variants and superior haplotype-containing one seed-specific candidate embryo defective gene regulating SW in chickpea. The ultra-high-resolution genetic maps, QTLs/genes and alleles/haplotypes-related genomic information generated and integrated strategy for rapid QTL/gene identification developed have potential to expedite genomics-assisted breeding applications in crop plants, including chickpea for their genetic enhancement. PMID:25942004

  10. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    PubMed

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  11. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam

    PubMed Central

    Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.

    2016-01-01

    The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471

  12. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment

    PubMed Central

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-01-01

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627

  13. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    NASA Astrophysics Data System (ADS)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  14. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  15. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  16. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    NASA Astrophysics Data System (ADS)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  17. 1 μm-thickness ultra-flexible and high electrode-density surface electromyogram measurement sheet with 2 V organic transistors for prosthetic hand control.

    PubMed

    Fuketa, Hiroshi; Yoshioka, Kazuaki; Shinozuka, Yasuhiro; Ishida, Koichi; Yokota, Tomoyuki; Matsuhisa, Naoji; Inoue, Yusuke; Sekino, Masaki; Sekitani, Tsuyoshi; Takamiya, Makoto; Someya, Takao; Sakurai, Takayasu

    2014-12-01

    A 64-channel surface electromyogram (EMG) measurement sheet (SEMS) with 2 V organic transistors on a 1 μm-thick ultra-flexible polyethylene naphthalate (PEN) film is developed for prosthetic hand control. The surface EMG electrodes must satisfy the following three requirements; high mechanical flexibility, high electrode density and high signal integrity. To achieve high electrode density and high signal integrity, a distributed and shared amplifier (DSA) architecture is proposed, which enables an in-situ amplification of the myoelectric signal with a fourfold increase in EMG electrode density. In addition, a post-fabrication select-and-connect (SAC) method is proposed to cope with the large mismatch of organic transistors. The proposed SAC method reduces the area and the power overhead by 96% and 98.2%, respectively, compared with the use of conventional parallel transistors to reduce the transistor mismatch by a factor of 10.

  18. Ultra-low thermal conductivity of high-interface density Si/Ge amorphous multilayers

    NASA Astrophysics Data System (ADS)

    Goto, Masahiro; Xu, Yibin; Zhan, Tianzhuo; Sasaki, Michiko; Nishimura, Chikashi; Kinoshita, Yohei; Ishikiriyama, Mamoru

    2018-04-01

    Owing to their phonon scattering and interfacial thermal resistance (ITR) characteristics, inorganic multilayers (MLs) have attracted considerable attention for thermal barrier applications. In this study, a-Si/a-Ge MLs with layer thicknesses ranging from 0.3 to 5 nm and different interfacial elemental mixture states were fabricated using a combinatorial sputter-coating system, and their thermal conductivities were measured via a frequency-domain thermo-reflectance method. An ultra-low thermal conductivity of κ = 0.29 ± 0.01 W K-1 m-1 was achieved for a layer thickness of 0.8 nm. The ITR was found to decrease from 8.5 × 10-9 to 3.6 × 10-9 m2 K W-1 when the interfacial density increases from 0.15 to 0.77 nm-1.

  19. Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension

    PubMed Central

    Wang, Lan; Wu, Yichao

    2012-01-01

    Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity which assumes that only a small number of covariates influence the conditional distribution of the response variable given all candidate covariates; however, the sets of relevant covariates may differ when we consider different segments of the conditional distribution. In this framework, we investigate the methodology and theory of nonconvex penalized quantile regression in ultra-high dimension. The proposed approach has two distinctive features: (1) it enables us to explore the entire conditional distribution of the response variable given the ultra-high dimensional covariates and provides a more realistic picture of the sparsity pattern; (2) it requires substantially weaker conditions compared with alternative methods in the literature; thus, it greatly alleviates the difficulty of model checking in the ultra-high dimension. In theoretic development, it is challenging to deal with both the nonsmooth loss function and the nonconvex penalty function in ultra-high dimensional parameter space. We introduce a novel sufficient optimality condition which relies on a convex differencing representation of the penalized loss function and the subdifferential calculus. Exploring this optimality condition enables us to establish the oracle property for sparse quantile regression in the ultra-high dimension under relaxed conditions. The proposed method greatly enhances existing tools for ultra-high dimensional data analysis. Monte Carlo simulations demonstrate the usefulness of the proposed procedure. The real data example we analyzed demonstrates that the new approach reveals substantially more information compared with alternative methods. PMID:23082036

  20. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  1. Ultra-high density optical data storage in common transparent plastics.

    PubMed

    Kallepalli, Deepak L N; Alshehri, Ali M; Marquez, Daniela T; Andrzejewski, Lukasz; Scaiano, Juan C; Bhardwaj, Ravi

    2016-05-25

    The ever-increasing demand for high data storage capacity has spurred research on development of innovative technologies and new storage materials. Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium. However, in most cases the recording medium had to be photosensitive requiring doping with photochromic molecules or nanoparticles in a multilayer stack or in the bulk material. Here, we show high-density data storage in commonly available plastics without any special material preparation. A pulsed laser was used to record data in micron-sized modified regions. Upon excitation by the read laser, each modified region emits fluorescence whose intensity represents 32 grey levels corresponding to 5 bits. We demonstrate up to 20 layers of embedded data. Adjusting the read laser power and detector sensitivity storage capacities up to 0.2 TBytes can be achieved in a standard 120 mm disc.

  2. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less

  3. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    NASA Astrophysics Data System (ADS)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  4. High Density Diffusion-Free Nanowell Arrays

    PubMed Central

    Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter

    2012-01-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968

  5. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  6. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    PubMed

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  7. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, Ronald F.; Brown, John D.

    1996-01-01

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  8. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1996-03-19

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  9. Ultra-High Temperature Materials Characterization for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high

  10. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Ultra-High-Density Ferroelectric Memories

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1995-01-01

    Features include fast input and output via optical fibers. Memory devices of proposed type include thin ferroelectric films in which data stored in form of electric polarization. Assuming one datum stored in region as small as polarization domain, sizes of such domains impose upper limits on achievable storage densities. Limits approach 1 terabit/cm(Sup2) in all-optical versions of these ferroelectric memories and exceeds 1 gigabit/cm(Sup2) in optoelectronic versions. Memories expected to exhibit operational lives of about 10 years, input/output times of about 10 ns, and fatigue lives of about 10(Sup13) cycles.

  12. Ab initio Computations of the Electronic, Mechanical, and Thermal Properties of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray

    2011-01-01

    Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.

  13. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    NASA Astrophysics Data System (ADS)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  14. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  15. Ultra High Bypass Integrated System Test

    NASA Image and Video Library

    2015-09-14

    NASA’s Environmentally Responsible Aviation Project, in collaboration with the Federal Aviation Administration (FAA) and Pratt & Whitney, completed testing of an Ultra High Bypass Ratio Turbofan Model in the 9’ x 15’ Low Speed Wind Tunnel at NASA Glenn Research Center. The fan model is representative of the next generation of efficient and quiet Ultra High Bypass Ratio Turbofan Engine designs.

  16. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  17. Ultra-high-speed variable focus optics for novel applications in advanced imaging

    NASA Astrophysics Data System (ADS)

    Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.

    2018-02-01

    With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.

  18. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    PubMed

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Generation of ultra high-power thermal plasma jet and its application to crystallization of amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Nakashima, Ryosuke; Shin, Ryota; Hanafusa, Hiroaki; Higashi, Seiichiro

    2017-06-01

    We have successfully generated ultra high-power thermal plasma jet (Super TPJ: s-TPJ) by increasing the Ar gas supply pressure to 0.4 MPa and the flow rate to 18 L/min. DC arc discharge was stably performed under a supply power of 4.6 kW. The peak power density of s-TPJ reached 64.1 kW/cm2 and enabled us to melt and recrystallize amorphous silicon (a-Si) films on quartz substrates with a scanning speed as high as 8000 mm/s. Under ultra high-speed scanning faster than 3000 mm/s, we observed granular crystal growth (GCG) competing with conventional high-speed lateral crystallization (HSLC). When further high speed scanning was performed, we observed a significant increase in grain density, which suggests spontaneous nucleation in undercooled molten Si as the origin of GCG. When we crystallized an isolated pattern of 6 × 6 µm2 under GCG conditions, single crystalline growth was successfully achieved.

  20. Structured block copolymer thin film composites for ultra-high energy density capacitors

    NASA Astrophysics Data System (ADS)

    Samant, Saumil; Hailu, Shimelis; Grabowski, Christopher; Durstock, Michael; Raghavan, Dharmaraj; Karim, Alamgir

    2014-03-01

    Development of high energy density capacitors is essential for future applications like hybrid vehicles and directed energy weaponry. Fundamentally, energy density is governed by product of dielectric permittivity ɛ and breakdown strength Vbd. Hence, improvements in energy density are greatly reliant on improving either ɛ or Vbd or a combination of both. Polymer films are widely used in capacitors due to high Vbd and low loss but they suffer from very low permittivities. Composite dielectrics offer a unique opportunity to combine the high ɛ of inorganic fillers with the high Vbd of a polymer matrix. For enhancement of dielectric properties, it is essential to improve matrix-filler interaction and control the spatial distribution of fillers for which nanostructured block copolymers BCP act as ideal templates. We use Directed Self-assembly of block copolymers to rapidly fabricate highly aligned BCP-TiO2 composite nanostructures in thin films under dynamic thermal gradient field to synergistically combine the high ɛ of functionalized TiO2 and high Vbd of BCP matrix. The results of impact of BCP morphology, processing conditions and concentration of TiO2 on capacitor performance will be reported. U.S. Air Force of Scientific Research under contract FA9550-12-1-0306

  1. Search for ultra high energy astrophysical neutrinos with the ANITA experiment

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew

    2010-12-01

    This work describes a search for cosmogenic neutrinos at energies above 1018 eV with the Antarctic Impulsive Transient Antenna (ANITA). ANITA is a balloon-borne radio interferometer designed to measure radio impulsive emission from particle showers produced in the Antarctic ice-sheet by ultra-high energy neutrinos (UHEnu). Flying at 37 km altitude the ANITA detector is sensitive to 1M km3 of ice and is expected to produce the highest exposure to ultra high energy neutrinos to date. The design, flight performance, and analysis of the first flight of ANITA in 2006 are the subject of this dissertation. Due to sparse anthropogenic backgrounds throughout the Antarctic continent, the ANITA analysis depends on high resolution directional reconstruction. An interferometric method was developed that not only provides high resolution but is also sensitive to very weak radio emissions. The results of ANITA provide the strongest constraints on current ultra-high energy neutrino models. In addition there was a serendipitous observation of ultra-high energy cosmic ray geosynchrotron emissions that are of distinct character from the expected neutrino signal. This thesis includes a study of the radio Cherenkov emission from ultra-high energy electromagnetic showers in ice in the time-domain. All previous simulations computed the radio pulse frequency spectrum. I developed a purely time-domain algorithm for computing radiation using the vector potentials of charged particle tracks. The results are fully consistent with previous frequency domain calculations and shed new light into the properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly related to the depth development of the excess charge in the shower and its width to the observation angle with respect to the Cherenkov direction. This information can be of great practical importance for interpreting actual data.

  2. Ni-coated CaCu3Ti4O12/low density polyethylene composite material with ultra-high dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Gao, L.; Wang, X.; Chen, Y.; Chi, Q. G.; Lei, Q. Q.

    2015-08-01

    We report a novel low-density polyethylene (LDPE) composite filled with nickel-coated CaCu3Ti4O12 ceramic (denoted as CCTO@Ni), prepared by a melt mixing technique, and its prominent dielectric characteristics. The effects of magnetic field treatment on the dielectric properties of CCTO@Ni/LDPE composite films with a low filler concentration of 10 vol.% were investigated. Our results show that the dielectric permittivity, loss tangent, and conductivity of the LDPE composite films initially improved and then decreased with increasing treatment time under the applied magnetic field. Magnetic field treatment for 60 min led to an ultra-high dielectric permittivity value of 1.57 × 104, four orders of magnitude higher than that of the pure LDPE material. Our results indicate that the magnetic treatment may have induced a percolation effect and enhanced the interfacial polarization of the CCTO@Ni/LDPE composite, resulting in the observed changes in its dielectric properties.

  3. Contribution of HI-bearing ultra-diffuse galaxies to the cosmic number density of galaxies

    NASA Astrophysics Data System (ADS)

    Jones, M. G.; Papastergis, E.; Pandya, V.; Leisman, L.; Romanowsky, A. J.; Yung, L. Y. A.; Somerville, R. S.; Adams, E. A. K.

    2018-06-01

    We estimate the cosmic number density of the recently identified class of HI-bearing ultra-diffuse sources (HUDs) based on the completeness limits of the ALFALFA survey. These objects have HI masses approximately in the range 8.5 < logMHI/M⊙ < 9.5, average r-band surface brightnesses fainter than 24 mag arcsec-2, half-light radii greater than 1.5 kpc, and are separated from neighbours by at least 350 kpc. In this work we demonstrate that they contribute at most 6% of the population of HI-bearing dwarfs detected by ALFALFA (with similar HI masses), have a total cosmic number density of (1.5 ± 0.6) × 10-3 Mpc-3, and an HI mass density of (6.0 ± 0.8) × 105 M⊙ Mpc-3. We estimate that this is similar to the total cosmic number density of ultra-diffuse galaxies (UDGs) in groups and clusters, and conclude that the relation between the number of UDGs hosted in a halo and the halo mass must have a break below M200 1012 M⊙ in order to account for the abundance of HUDs in the field. The distribution of the velocity widths of HUDs rises steeply towards low values, indicating a preference for slow rotation rates compared to the global HI-rich dwarf population. These objects were already included in previous measurements of the HI mass function, but have been absent from measurements of the galaxy stellar mass function owing to their low surface brightness. However, we estimate that due to their low number density the inclusion of HUDs would constitute a correction of less than 1%. Comparison with the Santa Cruz semi-analytic model shows that it produces HI-rich central UDGs that have similar colours to HUDs, but that these UDGs are currently produced in a much greater number. While previous results from this sample have favoured formation scenarios where HUDs form in high spin-parameter halos, comparisons with recent results which invoke that formation mechanism reveal that this model produces an order of magnitude more field UDGs than we observe in the HUD population

  4. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10 23 cm ₋3more » in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  5. Quantum crystallographic charge density of urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  6. Quantum crystallographic charge density of urea

    DOE PAGES

    Wall, Michael E.

    2016-06-08

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  7. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

    PubMed Central

    Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan

    2013-01-01

    The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220

  8. Microstructure of ultra high performance concrete containing lithium slag.

    PubMed

    He, Zhi-Hai; Du, Shi-Gui; Chen, Deng

    2018-04-03

    Lithium slag (LS) is discharged as a byproduct in the process of the lithium carbonate, and it is very urgent to explore an efficient way to recycle LS in order to protect the environments and save resources. Many available supplementary cementitious materials for partial replacement of cement and/or silica fume (SF) can be used to prepare ultra high performance concrete (UHPC). The effect of LS to replace SF partially by weight used as a supplementary cementitious material (0%, 5%, 10% and 15% of binder) on the compressive strengths and microstructure evolution of UHPC has experimentally been studied by multi-techniques including mercury intrusion porosimetry, scanning electron microscope and nanoindentation technique. The results show that the use of LS degrades the microstructure of UHPC at early ages, and however, the use of LS with the appropriate content improves microstructure of UHPC at later ages. The hydration products of UHPC are mainly dominated by ultra-high density calcium-silicate-hydrate (UHD C-S-H) and interfacial transition zone (ITZ) in UHPC has similar compact microstructure with the matrix. The use of LS improves the hydration degree of UHPC and increases the elastic modulus of ITZ in UHPC. LS is a promising substitute for SF for preparation UHPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis)

    PubMed Central

    Fu, Beide; Liu, Haiyang; Yu, Xiaomu; Tong, Jingou

    2016-01-01

    Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp. PMID:27345016

  10. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods.

    PubMed

    Kleinschmidt, R; Watson, D

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km(2)), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h(-1) (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    PubMed

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  12. Effect of ultra-low doses, ASIR and MBIR on density and noise levels of MDCT images of dental implant sites.

    PubMed

    Widmann, Gerlig; Al-Shawaf, Reema; Schullian, Peter; Al-Sadhan, Ra'ed; Hörmann, Romed; Al-Ekrish, Asma'a A

    2017-05-01

    Differences in noise and density values in MDCT images obtained using ultra-low doses with FBP, ASIR, and MBIR may possibly affect implant site density analysis. The aim of this study was to compare density and noise measurements recorded from dental implant sites using ultra-low doses combined with FBP, ASIR, and MBIR. Cadavers were scanned using a standard protocol and four low-dose protocols. Scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Density (mean Hounsfield units [HUs]) of alveolar bone and noise levels (mean standard deviation of HUs) was recorded from all datasets and measurements were compared by paired t tests and two-way ANOVA with repeated measures. Significant differences in density and noise were found between the reference dose/FBP protocol and almost all test combinations. Maximum mean differences in HU were 178.35 (bone kernel) and 273.74 (standard kernel), and in noise, were 243.73 (bone kernel) and 153.88 (standard kernel). Decreasing radiation dose increased density and noise regardless of reconstruction technique and kernel. The effect of reconstruction technique on density and noise depends on the reconstruction kernel used. • Ultra-low-dose MDCT protocols allowed more than 90 % reductions in dose. • Decreasing the dose generally increased density and noise. • Effect of IRT on density and noise varies with reconstruction kernel. • Accuracy of low-dose protocols for interpretation of bony anatomy not known. • Effect of low doses on accuracy of computer-aided design models unknown.

  13. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays.

    PubMed

    Gosso, Sara; Turturici, Marco; Franchino, Claudio; Colombo, Elisabetta; Pasquarelli, Alberto; Carbone, Emilio; Carabelli, Valentina

    2014-08-01

    Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 μm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  14. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data

    NASA Astrophysics Data System (ADS)

    Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott

    Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.

  15. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  16. Exploratory visualization of astronomical data on ultra-high-resolution wall displays

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé

    2016-07-01

    Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.

  17. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected

  18. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  19. High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions

    PubMed Central

    Li, Weiwei; Gao, Song; Wu, Liqiong; Qiu, Shengqiang; Guo, Yufen; Geng, Xiumei; Chen, Mingliang; Liao, Shutian; Zhu, Chao; Gong, Youpin; Long, Mingsheng; Xu, Jianbao; Wei, Xiangfei; Sun, Mengtao; Liu, Liwei

    2013-01-01

    The chemical vapor deposition (CVD) fabrication of high-density three-dimension graphene macroscopic objects (3D-GMOs) with a relatively low porosity has not yet been realized, although they are desirable for applications in which high mechanical and electrical properties are required. Here, we explore a method to rapidly prepare the high-density 3D-GMOs using nickel chloride hexahydrate (NiCl2·6H2O) as a catalyst precursor by CVD process at atmospheric pressure. Further, the free-standing 3D-GMOs are employed as electrolytic electrodes to remove various heavy metal ions. The robust 3D structure, high conductivity (~12 S/cm) and large specific surface area (~560 m2/g) enable ultra-high electrical adsorption capacities (Cd2+ ~ 434 mg/g, Pb2+ ~ 882 mg/g, Ni2+ ~ 1,683 mg/g, Cu2+ ~ 3,820 mg/g) from aqueous solutions and fast desorption. The current work has significance in the studies of both the fabrication of high-density 3D-GMOs and the removal of heavy metal ions. PMID:23821107

  20. Rapid brain MRI acquisition techniques at ultra-high fields

    PubMed Central

    Setsompop, Kawin; Feinberg, David A.; Polimeni, Jonathan R.

    2017-01-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher spatial resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, is a concurrent increased image encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI—particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development—such as the move from conventional 2D slice-by-slice imaging to more efficient Simultaneous MultiSlice (SMS) or MultiBand imaging (which can be viewed as “pseudo-3D” encoding) as well as full 3D imaging—have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multi-channel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. PMID:26835884

  1. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  2. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  3. Development of High Power Density Micro-Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhua

    parasitic electrical resistances. The device demonstrates a maximum power of 2990 muW at a temperature difference of 52.5 K, corresponding to a power density as high as 9.2 mW cm-2. The power density of our device is more than two times the highest value reported for the electroplated micro-TEGs in the literature, which can be attributed to the low internal resistance and high packing density of thermoelectric pillars. Based on my work on non-flexible micro-TEGs, I further modified the device fabrication process and developed an ultra-light high power density flexible micro-TEG. The flexible TEG demonstrates excellent flexibility. No obvious electrical resistance change was observed after bending to a curvature as small as 5 mm for 600 times. The flexible micro-TEG we developed demonstrates a maximum power of 1.5 mW at a temperature difference of 50.7 K, corresponding to a power density of 4.5 mW cm-2. More importantly, the flexible TEG is ultra-light and an unprecedentedly high power per unit mass of 60 mW g-1 is achieved, which might be beneficial for wearable technology.

  4. Ultra-wide-range measurements of thin-film filter optical density over the visible and near-infrared spectrum.

    PubMed

    Lequime, Michel; Liukaityte, Simona; Zerrad, Myriam; Amra, Claude

    2015-10-05

    We present the improved structure and operating principle of a spectrophotometric mean that allows us for the recording of the transmittance of a thin-film filter over an ultra-wide range of optical densities (from 0 to 11) between 400 and 1000 nm. The operation of this apparatus is based on the combined use of a high power supercontinuum laser source, a tunable volume hologram filter, a standard monochromator and a scientific grade CCD camera. The experimentally recorded noise floor is in good accordance with the optical density values given by the theoretical approach. A demonstration of the sensitivity gain provided by this new set-up with respect to standard spectrophotometric means is performed via the characterization of various types of filters (band-pass, long-pass, short-pass, and notch).

  5. Study on Structural and Dielectric Properties of Ultra-Low-Fire Integratable Dielectric Film for High-Frequency and Microwave Application

    NASA Astrophysics Data System (ADS)

    Qu, Sheng; Zhang, Jihua; Wu, Kaituo; Wang, Lei; Chen, Hongwei

    2018-03-01

    In this study, ultra-low-fire ceramic composites of Zn2Te3O8-30 wt.%TiTe3O8 (ZTT) were prepared by a solid-state reaction method. Densified at 600°C, the best microwave dielectric properties at 8.5 GHz were measured with the ɛ r , tan δ, Q × f, and τ f as 25.6, 1.5 × 10-4, 56191 GHz and 1.66 ppm/°C, respectively. Thin films of ultra-low-fire ZTT were prepared by a radio-frequency magnetron sputtering method. ZTT films which deposited on Au/NiCr/SiO2/Si (100) substrates at 200°C showed good adhesion. From ultra-low-fire ceramic to ultra-low-fire ZTT thin films, the latter maintained all the good high-frequency dielectric properties of the former: high dielectric constant ( ɛ r ˜ 25) and low dissipation factor (tan δ < 5×10-3), low leakage current density (˜ 10-9 A/cm2) and ultra low processing temperature. These excellent properties of the ultra-low-fire ZTT thin film make it possible to be integrated in MMIC and be applied in the research of GaN and GaAs MOSFET devices.

  6. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  7. Formal thought disorder in people at ultra-high risk of psychosis

    PubMed Central

    Weinstein, Sara; Stahl, Daniel; Day, Fern; Valmaggia, Lucia; Rutigliano, Grazia; De Micheli, Andrea; Fusar-Poli, Paolo; McGuire, Philip

    2017-01-01

    Background Formal thought disorder is a cardinal feature of psychosis. However, the extent to which formal thought disorder is evident in ultra-high-risk individuals and whether it is linked to the progression to psychosis remains unclear. Aims Examine the severity of formal thought disorder in ultra-high-risk participants and its association with future psychosis. Method The Thought and Language Index (TLI) was used to assess 24 ultra-high-risk participants, 16 people with first-episode psychosis and 13 healthy controls. Ultra-high-risk individuals were followed up for a mean duration of 7 years (s.d.=1.5) to determine the relationship between formal thought disorder at baseline and transition to psychosis. Results TLI scores were significantly greater in the ultra-high-risk group compared with the healthy control group (effect size (ES)=1.2), but lower than in people with first-episode psychosis (ES=0.8). Total and negative TLI scores were higher in ultra-high-risk individuals who developed psychosis, but this was not significant. Combining negative TLI scores with attenuated psychotic symptoms and basic symptoms predicted transition to psychosis (P=0.04; ES=1.04). Conclusions TLI is beneficial in evaluating formal thought disorder in ultra-high-risk participants, and complements existing instruments for the evaluation of psychopathology in this group. Declaration of interests None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28713586

  8. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao

    2014-05-01

    Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm-2 and energy densities of 5.91 and 3.84 μWh cm-2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics.

  9. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics

    PubMed Central

    Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao

    2014-01-01

    Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm−2 and energy densities of 5.91 and 3.84 μWh cm−2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics. PMID:24786366

  10. Ultra-High Temperature Materials Characterization for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.

  11. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic.

    PubMed

    Stutman, D; Finkenthal, M

    2011-11-01

    High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer. © 2011 American Institute of Physics

  12. TiO2-Based Indium Phosphide Metal-Oxide-Semiconductor Capacitor with High Capacitance Density.

    PubMed

    Cheng, Chun-Hu; Hsu, Hsiao-Hsuan; Chou, Kun-i

    2015-04-01

    We report a low-temperature InP p-MOS with a high capacitance density of 2.7 µF/cm2, low leakage current of 0.77 A/cm2 at 1 V and tight current distribution. The high-density and low-leakage InP MOS was achieved by using high-κ TiLaO dielectric and ultra-thin SiO2 buffer layer with a thickness of less than 0.5 nm. The obtained EOT can be aggressively scaled down to < 1 nm through the use of stacked TiLaO/SiO2 dielectric, which has the potential for the future application of high mobility III-V CMOS devices.

  13. Ultra High Energy Cosmic Rays: Strangelets?

    NASA Astrophysics Data System (ADS)

    Xu, Ren-Xin; Wu, Fei

    2003-06-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of TeV-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3×1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  14. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  15. Fusion: ultra-high-speed and IR image sensors

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  16. The Influence of Sintering Method on Kaolin-Based Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene as Binder

    NASA Astrophysics Data System (ADS)

    Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.

    2017-11-01

    The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.

  17. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films.

    PubMed

    Cheng, Hongbo; Ouyang, Jun; Zhang, Yun-Xiang; Ascienzo, David; Li, Yao; Zhao, Yu-Yao; Ren, Yuhang

    2017-12-08

    Dielectric capacitors have the highest charge/discharge speed among all electrical energy devices, but lag behind in energy density. Here we report dielectric ultracapacitors based on ferroelectric films of Ba(Zr 0.2 ,Ti 0.8 )O 3 which display high-energy densities (up to 166 J cm -3 ) and efficiencies (up to 96%). Different from a typical ferroelectric whose electric polarization is easily saturated, these Ba(Zr 0.2 ,Ti 0.8 )O 3 films display a much delayed saturation of the electric polarization, which increases continuously from nearly zero at remnant in a multipolar state, to a large value under the maximum electric field, leading to drastically improved recyclable energy densities. This is achieved by the creation of an adaptive nano-domain structure in these perovskite films via phase engineering and strain tuning. The lead-free Ba(Zr 0.2 ,Ti 0.8 )O 3 films also show excellent dielectric and energy storage performance over a broad frequency and temperature range. These findings may enable broader applications of dielectric capacitors in energy storage, conditioning, and conversion.

  18. Evolution of Automotive Chopper Circuits Towards Ultra High Efficiency and Power Density

    NASA Astrophysics Data System (ADS)

    Pavlovsky, Martin; Tsuruta, Yukinori; Kawamura, Atsuo

    Automotive industry is considered to be one of the main contributors to environmental pollution and global warming. Therefore, many car manufacturers are in near future planning to introduce hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV) and pure electric vehicles (EV) to make our cars more environmentally friendly. These new vehicles require highly efficient and small power converters. In recent years, considerable improvements were made in designing such converters. In this paper, an approach based on so called Snubber Assisted Zero Voltage and Zero Current Switching topology otherwise also known as SAZZ is presented. This topology has evolved to be one of the leaders in the field of highly efficient converters with high power densities. Evolution and main features of this topology are briefly discussed. Capabilities of the topology are demonstrated on two case study prototypes based on different design approaches. The prototypes are designed to be fully bi-directional for peak power output of 30kW. Both designs reached efficiencies close to 99% in wide load range. Power densities over 40kW/litre are attainable in the same time. Combination of MOSFET technology and SAZZ topology is shown to be very beneficial to converters designed for EV applications.

  19. Nanoporous membrane device for ultra high heat flux thermal management

    NASA Astrophysics Data System (ADS)

    Hanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.

    2018-02-01

    High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat flux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high heat flux dissipation using evaporation from a nanoporous silicon membrane. With 100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fluxes of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high flux thermal management strategy over large areas for high-performance electronics.

  20. Initial Experience With Ultra High-Density Mapping of Human Right Atria.

    PubMed

    Bollmann, Andreas; Hilbert, Sebastian; John, Silke; Kosiuk, Jedrzej; Hindricks, Gerhard

    2016-02-01

    Recently, an automatic, high-resolution mapping system has been presented to accurately and quickly identify right atrial geometry and activation patterns in animals, but human data are lacking. This study aims to assess the clinical feasibility and accuracy of high-density electroanatomical mapping of various RA arrhythmias. Electroanatomical maps of the RA (35 partial and 24 complete) were created in 23 patients using a novel mini-basket catheter with 64 electrodes and automatic electrogram annotation. Median acquisition time was 6:43 minutes (0:39-23:05 minutes) with shorter times for partial (4.03 ± 4.13 minutes) than for complete maps (9.41 ± 4.92 minutes). During mapping 3,236 (710-16,306) data points were automatically annotated without manual correction. Maps obtained during sinus rhythm created geometry consistent with CT imaging and demonstrated activation originating at the middle to superior crista terminalis, while maps during CS pacing showed right atrial activation beginning at the infero-septal region. Activation patterns were consistent with cavotricuspid isthmus-dependent atrial flutter (n = 4), complex reentry tachycardia (n = 1), or ectopic atrial tachycardia (n = 2). His bundle and fractionated potentials in the slow pathway region were automatically detected in all patients. Ablation of the cavotricuspid isthmus (n = 9), the atrio-ventricular node (n = 2), atrial ectopy (n = 2), and the slow pathway (n = 3) was successfully and safely performed. RA mapping with this automatic high-density mapping system is fast, feasible, and safe. It is possible to reproducibly identify propagation of atrial activation during sinus rhythm, various tachycardias, and also complex reentrant arrhythmias. © 2015 Wiley Periodicals, Inc.

  1. Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle.

    PubMed

    Judge, M M; Kelleher, M M; Kearney, J F; Sleator, R D; Berry, D P

    2017-06-01

    Angus and Hereford beef is marketed internationally for apparent superior meat quality attributes; DNA-based breed authenticity could be a useful instrument to ensure consumer confidence on premium meat products. The objective of this study was to develop an ultra-low-density genotype panel to accurately quantify the Angus and Hereford breed proportion in biological samples. Medium-density genotypes (13 306 single nucleotide polymorphisms (SNPs)) were available on 54 703 commercial and 4042 purebred animals. The breed proportion of the commercial animals was generated from the medium-density genotypes and this estimate was regarded as the gold-standard breed composition. Ten genotype panels (100 to 1000 SNPs) were developed from the medium-density genotypes; five methods were used to identify the most informative SNPs and these included the Delta statistic, the fixation (F st) statistic and an index of both. Breed assignment analyses were undertaken for each breed, panel density and SNP selection method separately with a programme to infer population structure using the entire 13 306 SNP panel (representing the gold-standard measure). Breed assignment was undertaken for all commercial animals (n=54 703), animals deemed to contain some proportion of Angus based on pedigree (n=5740) and animals deemed to contain some proportion of Hereford based on pedigree (n=5187). The predicted breed proportion of all animals from the lower density panels was then compared with the gold-standard breed prediction. Panel density, SNP selection method and breed all had a significant effect on the correlation of predicted and actual breed proportion. Regardless of breed, the Index method of SNP selection numerically (but not significantly) outperformed all other selection methods in accuracy (i.e. correlation and root mean square of prediction) when panel density was ⩾300 SNPs. The correlation between actual and predicted breed proportion increased as panel density increased. Using

  2. Examining the association between social cognition and functioning in individuals at ultra-high risk for psychosis.

    PubMed

    Cotter, Jack; Bartholomeusz, Cali; Papas, Alicia; Allott, Kelly; Nelson, Barnaby; Yung, Alison R; Thompson, Andrew

    2017-01-01

    Social and role functioning are compromised for the majority of individuals at ultra-high risk of psychosis, and it is important to identify factors that contribute to this functional decline. This study aimed to investigate social cognitive abilities, which have previously been linked to functioning in schizophrenia, as potential factors that impact social, role and global functioning in ultra-high risk patients. A total of 30 ultra-high risk patients were recruited from an established at-risk clinical service in Melbourne, Australia, and completed a battery of social cognitive, neurocognitive, clinical and functioning measures. We examined the relationships between all four core domains of social cognition (emotion recognition, theory of mind, social perception and attributional style), neurocognitive, clinical and demographic variables with three measures of functioning (the Global Functioning Social and Role scales and the Social and Occupational Functioning Assessment Scale) using correlational and multiple regression analyses. Performance on a visual theory of mind task (visual jokes task) was significantly correlated with both concurrent role ( r = 0.425, p = 0.019) and global functioning ( r = 0.540, p = 0.002). In multivariate analyses, it also accounted for unique variance in global, but not role functioning after adjusting for negative symptoms and stress. Social functioning was not associated with performance on any of the social cognition tasks. Among specific social cognitive abilities, only a test of theory of mind was associated with functioning in our ultra-high risk sample. Further longitudinal research is needed to examine the impact of social cognitive deficits on long-term functional outcome in the ultra-high risk group. Identifying social cognitive abilities that significantly impact functioning is important to inform the development of targeted intervention programmes for ultra-high risk individuals.

  3. A strategy to unveil transient sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Takami, Hajime

    2013-06-01

    Transient generation of ultra-high-energy cosmic rays (UHECRs) has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ˜ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.

  4. Information Density and Syntactic Repetition.

    PubMed

    Temperley, David; Gildea, Daniel

    2015-11-01

    In noun phrase (NP) coordinate constructions (e.g., NP and NP), there is a strong tendency for the syntactic structure of the second conjunct to match that of the first; the second conjunct in such constructions is therefore low in syntactic information. The theory of uniform information density predicts that low-information syntactic constructions will be counterbalanced by high information in other aspects of that part of the sentence, and high-information constructions will be counterbalanced by other low-information components. Three predictions follow: (a) lexical probabilities (measured by N-gram probabilities and head-dependent probabilities) will be lower in second conjuncts than first conjuncts; (b) lexical probabilities will be lower in matching second conjuncts (those whose syntactic expansions match the first conjunct) than nonmatching ones; and (c) syntactic repetition should be especially common for low-frequency NP expansions. Corpus analysis provides support for all three of these predictions. Copyright © 2015 Cognitive Science Society, Inc.

  5. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling?

    PubMed

    Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas

    2017-12-01

    Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.

  6. [Extreme (complicated, ultra-high) refractive errors: terminological misconceptions!?

    PubMed

    Avetisov, S E

    2018-01-01

    The article reviews development mechanisms of different refractive errors accompanied by marked defocus of light rays reaching the retina. Terminology used for such ametropias includes terms extreme, ultra-high and complicated. Justification of their usage for primary ametropias, whose symptom complex is based on changes in axial eye length, is an ongoing discussion. To comply with thesaurus definitions of 'diagnosis' and 'pathogenesis', to characterize refractive and anatomical-functional disorders in patients with primary ametropias it is proposed to use the terms 'hyperaxial and hypoaxial syndromes' with elaboration of specific symptoms instead of such expressions as extreme (ultra-high) myopia and hypermetropia.

  7. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  8. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  9. Ultra-High Surface Speed for Metal Removal, Artillery Shell

    DTIC Science & Technology

    1981-07-01

    TECHNICAL LIBRARY "y/a^^cr^ AD-E400 660 CONTRACTOR REPORT ARLCD-CR- 81019 ULTRA-HIGH SURFACE SPEED FOR METAL REMOVAL, ARTILLERY SHELL RICHARD F...Report ARLCD-CR- 81019 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) ULTRA-HIGH SURFACE SPEED FOR METAL...UNIT* tuiPPtO 1 MIL -STD-43CA i, ASTM A-274-64 EF A1SI~1340 SEHI FIN FORGING STEEL 6 RC SQ ■ IP 120093* a LIFTS 38 PCS

  10. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  11. Mandala Networks: ultra-small-world and highly sparse graphs

    PubMed Central

    Sampaio Filho, Cesar I. N.; Moreira, André A.; Andrade, Roberto F. S.; Herrmann, Hans J.; Andrade, José S.

    2015-01-01

    The increasing demands in security and reliability of infrastructures call for the optimal design of their embedded complex networks topologies. The following question then arises: what is the optimal layout to fulfill best all the demands? Here we present a general solution for this problem with scale-free networks, like the Internet and airline networks. Precisely, we disclose a way to systematically construct networks which are robust against random failures. Furthermore, as the size of the network increases, its shortest path becomes asymptotically invariant and the density of links goes to zero, making it ultra-small world and highly sparse, respectively. The first property is ideal for communication and navigation purposes, while the second is interesting economically. Finally, we show that some simple changes on the original network formulation can lead to an improved topology against malicious attacks. PMID:25765450

  12. Plasma devices to guide and collimate a high density of MeV electrons.

    PubMed

    Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T

    2004-12-23

    The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

  13. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    NASA Astrophysics Data System (ADS)

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-11-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  14. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    PubMed Central

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-01-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date. PMID:27869119

  15. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials.

    PubMed

    Lecaplain, C; Javerzac-Galy, C; Gorodetsky, M L; Kippenberg, T J

    2016-11-21

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF 2 , CaF 2 , MgF 2 and SrF 2 microresonators. We show that MgF 2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF 2 and BaF 2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  16. Ultra-high power capabilities in amorphous FePO4 thin films

    NASA Astrophysics Data System (ADS)

    Gandrud, Knut B.; Nilsen, Ola; Fjellvåg, Helmer

    2016-02-01

    Record breaking electrochemical properties of FePO4 have been found through investigation of the thickness dependent electrochemical properties of amorphous thin film electrodes. Atomic layer deposition was used for production of thin films of amorphous FePO4 with highly accurate thickness and topography. Electrochemical characterization of these thin film electrodes revealed that the thinner electrodes behave in a pseudocapacitive manner even at high rates of Li+ de/intercalation, which enabled specific powers above 1 MW kg-1 FePO4 to be obtained with minimal capacity loss. In addition, a self-enhancing kinetic effect was observed during cycling enabling more than 10,000 cycles at current rates approaching that of a supercapacitor (11s charge/discharge). The current findings may open for construction of ultra-high power battery electrodes that combines the energy density of batteries with the power capabilities of supercapacitors.

  17. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  18. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  19. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  20. UltraSail CubeSat Solar Sail Flight Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, David; Burton, Rodney; Coverstone, Victoria; Swenson, Gary

    2013-01-01

    UltraSail is a next-generation, highrisk, high-payoff sail system for the launch, deployment, stabilization, and control of very large (km2 class) solar sails enabling high payload mass fractions for interplanetary and deep space spacecraft. UltraSail is a non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation- flying microsatellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 km2, sail subsystem area densities approaching 1 g/m2, and thrust levels many times those of ion thrusters used for comparable deep space missions. UltraSail can achieve outer planetary rendezvous, a deep-space capability now reserved for high-mass nuclear and chemical systems. There is a twofold rationale behind the UltraSail concept for advanced solar sail systems. The first is that sail-andboom systems are inherently size-limited. The boom mass must be kept small, and column buckling limits the boom length to a few hundred meters. By eliminating the boom, UltraSail not only offers larger sail area, but also lower areal density, allowing larger payloads and shorter mission transit times. The second rationale for UltraSail is that sail films present deployment handling difficulties as the film thickness approaches one micrometer. The square sail requires that the film be folded in two directions for launch, and similarly unfolded for deployment. The film is stressed at the intersection of two folds, and this stress varies inversely with the film thickness. This stress can cause the film to yield, forming a permanent crease, or worse, to perforate. By rolling the film as UltraSail does, creases are prevented. Because the film is so thin, the roll thickness is small. Dynamic structural analysis of UltraSail coupled with dynamic control analysis shows that the system can be designed to eliminate longitudinal torsional waves created while controlling the pitch of the blades

  1. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients.

    PubMed

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-10-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  3. Generation of neutral and high-density electron-positron pair plasmas in the laboratory.

    PubMed

    Sarri, G; Poder, K; Cole, J M; Schumaker, W; Di Piazza, A; Reville, B; Dzelzainis, T; Doria, D; Gizzi, L A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kuschel, S; Mangles, S P D; Najmudin, Z; Shukla, N; Silva, L O; Symes, D; Thomas, A G R; Vargas, M; Vieira, J; Zepf, M

    2015-04-23

    Electron-positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter-antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron-positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron-positron plasmas in controlled laboratory experiments.

  4. Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Dinh, Toan; Ina, Ginnosuke; Kermany, Atieh Ranjbar; Qamar, Afzaal; Han, Jisheng; Namazu, Takahiro; Maeda, Ryutaro; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-04-01

    Strain engineering has attracted great attention, particularly for epitaxial films grown on a different substrate. Residual strains of SiC have been widely employed to form ultra-high frequency and high Q factor resonators. However, to date, the highest residual strain of SiC was reported to be limited to approximately 0.6%. Large strains induced into SiC could lead to several interesting physical phenomena, as well as significant improvement of resonant frequencies. We report an unprecedented nanostrain-amplifier structure with an ultra-high residual strain up to 8% utilizing the natural residual stress between epitaxial 3C-SiC and Si. In addition, the applied strain can be tuned by changing the dimensions of the amplifier structure. The possibility of introducing such a controllable and ultra-high strain will open the door to investigating the physics of SiC in large strain regimes and the development of ultra sensitive mechanical sensors.

  5. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations

    DOE PAGES

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin; ...

    2017-01-18

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less

  6. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  7. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (<1000 Hz), with an ultra-light areal mass density (<1.6 kg/m2) and an ultra-thin thickness (1000 times smaller than the operating wavelength). The underlying physical mechanism of such extraordinary sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  8. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  9. Double-tilt in situ TEM holder with ultra-high stability.

    PubMed

    Xu, Mingjie; Dai, Sheng; Blum, Thomas; Li, Linze; Pan, Xiaoqing

    2018-05-06

    A double tilting holder with high stability is essential for acquiring atomic-scale information by transmission electron microscopy (TEM), but the availability of such holders for in situ TEM studies under various external stimuli is limited. Here, we report a unique design of seal-bearing components that provides ultra-high stability and multifunctionality (including double tilting) in an in situ TEM holder. The seal-bearing subsystem provides superior vibration damping and electrical insulation while maintaining excellent vacuum sealing and small form factor. A wide variety of in situ TEM applications including electrical measurement, STM mapping, photovoltaic studies, and CL spectroscopy can be performed on this platform with high spatial resolution imaging and electrical sensitivity at the pA scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  11. Creation of ultra-high energy density matter using nanostructured targets

    NASA Astrophysics Data System (ADS)

    Tommasini, Riccardo; Park, J.; London, R.; Chen, H.; Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V.; Capeluto, M.; Keiss, D.; Townsend, A.; Rocca, J. J.; Kaymak, V.; Pukhov, A.; Hill, M.

    2015-11-01

    Recent experiments have demonstrated that trapping of 60 femtosecond laser pulses of relativistic intensity deep within ordered nanowire arrays can create a new ultra-hot plasma regime. Here we report on the experiments at the Titan laser at the Lawrence Livermore National Laboratory that aim to scale these results by two orders of magnitude in laser energy. Preliminary analysis of the Titan results show that sub-picosecond laser irradiation of vertically aligned nanostructures of Au, Ag and Ni produces an increase of a factor greater than 1.6 in the suprathermal electron temperatures and an increase by a factor of 3 in the conversion efficiency into continuum x-rays, both with respect to flat targets of the same composition. Kα radiation from nanowire array targets also shows an increase between 3x and 5x over flat targets. The nanowire array targets reflected a 5x smaller fraction of the laser energy, indicating significantly larger absorption of the laser pulse. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, by the Office of Fusion Energy Sciences, U.S Department of Energy, and by the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079.

  12. Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis.

    PubMed

    Kraus, Michael; Rapisarda, Attilio; Lam, Max; Thong, Jamie Y J; Lee, Jimmy; Subramaniam, Mythily; Collinson, Simon L; Chong, Siow Ann; Keefe, Richard S E

    2016-12-01

    The addition of off-the-shelf cognitive measures to established prodromal criteria has resulted in limited improvement in the prediction of conversion to psychosis. Tests that assess cognitive processes central to schizophrenia might better identify those at highest risk. The latent inhibition paradigm assesses a subject's tendency to ignore irrelevant stimuli, a process integral to healthy perceptual and cognitive function that has been hypothesized to be a key deficit underlying the development of schizophrenia. In this study, 142 young people at ultra high-risk for developing psychosis and 105 controls were tested on a within-subject latent inhibition paradigm. Additionally, we later inquired about the strategy that each subject employed to complete the test, and further investigated the relationship between reported strategy and the extent of latent inhibition exhibited. Unlike controls, ultra high-risk subjects did not demonstrate a significant latent inhibition effect. This difference between groups became greater when controlling for strategy. The lack of latent inhibition effect in our ultra high-risk sample suggests that individuals at ultra high-risk for psychosis are impaired in their allocation of attentional resources based on past predictive value of repeated stimuli. This fundamental deficit in the allocation of attention may contribute to the broader array of cognitive impairments and clinical symptoms displayed by individuals at ultra high-risk for psychosis.

  13. Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing.

    PubMed

    Morey, Rajendra A; Inan, Seniha; Mitchell, Teresa V; Perkins, Diana O; Lieberman, Jeffrey A; Belger, Aysenil

    2005-03-01

    Individuals experiencing prodromal symptoms of schizophrenia (ultra-high-risk group) demonstrate impaired performance on tasks of executive function, attention, and working memory. The neurobiological underpinnings of such executive deficits in ultra-high-risk individuals remains unclear. We assessed frontal and striatal functions during a visual oddball continuous performance task, in ultra-high-risk, early, and chronic schizophrenic patients with the use of functional magnetic resonance imaging. Cross-sectional case-control design. Community; outpatient clinic. Patients Fifty-two individuals (control, n = 16; ultra-high risk, n = 10; early, n = 15; chronic, n = 11) from a referred clinical sample and age- and sex-matched control volunteers underwent scanning. Percentage of active voxels and percentage signal change calculated for the anterior cingulate gyrus (ACG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), basal ganglia, and thalamus. Performance on the visual oddball task was measured with percentage of hits and d' (a measure based on the hit rate and the false-alarm rate). The ultra-high-risk group showed significantly smaller differential activation between task-relevant and task-irrelevant stimuli in the frontal regions (ACG, IFG, MFG) than the control group. Frontostriatal activation associated with target stimuli in the early and chronic groups was significantly lower than the control group, while the ultra-high-risk group showed a trend toward the early group. Our findings suggest that prefrontal function begins to decline before the onset of syndromally defined illness and hence may represent a vulnerability marker in assessing the risk of developing psychotic disorders among ultra-high-risk individuals.

  14. Ultra-Low Density Aerogel Mirror Substrates

    DTIC Science & Technology

    1993-04-01

    Silica aerogel materials were fabricated by both the high temperature and low temperature methods at the Lawrence Livermore National Laboratory in...evaporation techniques were used to planarize the silica aerogel with SiO 2 prior to metalization. The PECVD was performed at the Cornell University...incident hv. Defect Physics Silica aerogel is an amorphous SiO, matrix of high porosity (or a low density disordered material). The amorphous r~ature of

  15. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    NASA Technical Reports Server (NTRS)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on

  16. Generation of neutral and high-density electron–positron pair plasmas in the laboratory

    PubMed Central

    Sarri, G.; Poder, K.; Cole, J. M.; Schumaker, W.; Di Piazza, A.; Reville, B.; Dzelzainis, T.; Doria, D.; Gizzi, L. A.; Grittani, G.; Kar, S.; Keitel, C. H.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Shukla, N.; Silva, L. O.; Symes, D.; Thomas, A. G. R.; Vargas, M.; Vieira, J.; Zepf, M.

    2015-01-01

    Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments. PMID:25903920

  17. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    PubMed

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A multi-wavelength, high-contrast contact radiography system for the study of low-density aerogel foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Koch, J. A.; Haugh, M. J.

    2016-07-15

    A multi-wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ∼10.3% accuracy with ∼30 μm spatial resolution. The system description, performance, and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C{sub 20}H{sub 30}) aerogel are discussed in this manuscript.

  19. A multi-wavelength, high-contrast contact radiography system for the study of low density aerogel foams

    DOE PAGES

    Opachich, Y.P.; Koch, J.A.; Haugh, M. J.; ...

    2017-07-01

    A multi wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility (NIF) and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ~10.3% accuracy with ~30 μm spatial resolution. The system description, performance and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C 20H 30) aerogel are discussed in this manuscript.

  20. Nanoscale cross-point diode array accessing embedded high density PCM

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Liu, Yan; Liu, Bo; Gao, Dan; Xu, Zhen; Zhan, Yipeng; Song, Zhitang; Feng, Songlin

    2017-08-01

    The main bottlenecks in the development of current embedded phase change memory (PCM) technology are the current density and data storage density. In this paper, we present a PCM with 4F2 cross-point diode selector and blade-type bottom electrode contact (BEC). A blade TiN BEC with a cross-sectional area of 630 nm2 (10 nm × 63 nm) reduces the reset current down to about 750 μA. The optimized diode array could supply this 750 μA reset current at about 1.7 V and low off-current 1 × 10-4 μA at about -5.05 V. The on-off ratio of this device is 7.5 × 106. The proposed nanoscale PCM device simultaneously exhibits an operation voltage as low as 3 V and a high density drive current with an ultra small cell size of 4F2 (108 nm × 108 nm). Over 106 cycling endurance properties guarantee that it can work effectively on the embedded memory.

  1. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    DTIC Science & Technology

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  2. Fast and sensitive analysis of beta blockers by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry.

    PubMed

    Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan

    2017-07-01

    This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  4. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  5. BAKABLE ULTRA-HIGH VACUUM VALVE

    DOEpatents

    Mark, J.T.; Gantz, I.H.

    1962-07-10

    S>This patent relates to a valve useful in applications involving successively closing and opening a communication between a chamber evacuated to an ultra-high vacuum condition of the order of 10/sup -10/ millimeters of mercury and another chamber or the ambient. The valve is capable of withstanding extended baking at 450 deg C and repeated opening and closing without repiacement of the valve seat (approximately 200 cycle limit). The seal is formed by mutual interdiffusion weld, coerced by a pneumatic actuator. (AEC)

  6. Spacewalking_in_Ultra_High_Definition

    NASA Image and Video Library

    2017-07-21

    Ever wonder what the spacewalker sees while you’re looking at him or her? Here’s your answer, courtesy of NASA astronaut Jack Fischer. This Ultra High Definition clip shows Fischer outside the International Space Station during a spacewalk on Expedition 51 in May 2017, and the view from a small camera attached to his spacesuit at the same time. Music by Joakim Karud. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  7. Photoelectrochemical information storage using an azobenzene derivative

    NASA Astrophysics Data System (ADS)

    Liu, Z. F.; Hashimoto, K.; Fujishima, A.

    1990-10-01

    HIGH-DENSITY information storage is becoming an increasingly important technological objective. The 'heat-mode' storage techniques (in which only the thermal energy of laser light is used in the recording process and hence information usually stored as a physical change of the storage media) that are used in current optical memories are limited by the diffraction properties of light1, and the alternative 'photon-mode' (in which information is stored as a photon-induced chemical change of the storage media) has attracted attention recently for high-density storage. The most promising candidates for realizing this mode seem to be photochro-ism and photochemical hole burning; but these have some intrinsic drawbacks1,2. Here we present a novel 'photon-mode' technique that uses the photoelectrochemical properties of a Langmuir-Blodgett film of an azobenzene derivative. The system can be interconverted photochemically or electrochemically between three chemical states, and this three-state system is shown to provide a potential storage process that allows for ultra-high storage density, multi-function memory and non-destructive information readout.

  8. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    PubMed Central

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource

  9. Ultra-high vacuum compatible induction-heated rod casting furnace

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  10. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  11. Search for Ultra-High Energy Photons with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homola, Piotr

    One of key scientific objectives of the Pierre Auger Observatory is the search for ultra-high energy photons. Such photons could originate either in the interactions of energetic cosmic-ray nuclei with the cosmic microwave background (so-called cosmogenic photons) or in the exotic scenarios, e.g. those assuming a production and decay of some hypothetical super-massive particles. The latter category of models would imply relatively large fluxes of photons with ultra-high energies at Earth, while the former, involving interactions of cosmic-ray nuclei with the microwave background - just the contrary: very small fractions. The investigations on the data collected so far in themore » Pierre Auger Observatory led to placing very stringent limits to ultra-high energy photon fluxes: below the predictions of the most of the exotic models and nearing the predicted fluxes of the cosmogenic photons. In this paper the status of these investigations and perspectives for further studies are summarized.« less

  12. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  13. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  14. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  15. High throughput nonparametric probability density estimation.

    PubMed

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  16. High throughput nonparametric probability density estimation

    PubMed Central

    Farmer, Jenny

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803

  17. High Energy Density Physics and Exotic Acceleration Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, T.; /General Atomics, San Diego; Colby, E.

    2005-09-27

    proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.« less

  18. Ultra-efficient all-printed organic photodetectors

    NASA Astrophysics Data System (ADS)

    Kielar, Marcin; Dhez, Olivier; Hirsch, Lionel

    2016-09-01

    Organic photodetectors are able to transform plastic into intelligent surfaces making our daily life easier, smarter and more productive. The key element for a sensor is to reduce the dark current density in order to boost the limit of detection. The energetic requirements in order to select materials for ultra-high performance organic photodetectors are presented with the following experimental results: a detectivity of 3.36 × 1013 Jones has been achieved with an extremely low dark current density of 0.32 nA cm-2 and a responsivity as high as 0.34 A W-1. Flexible devices are all made at lowtemperature and with solution-processed materials. Their stability under operation is also presented.

  19. New-type steel plate with ultra high crack-arrestability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.

    1995-12-31

    A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less

  20. Influence of third-body particles originating from bone void fillers on the wear of ultra-high-molecular-weight polyethylene

    PubMed Central

    Cowie, Raelene M; Carbone, Silvia; Aiken, Sean; Cooper, John J; Jennings, Louise M

    2016-01-01

    Calcium sulfate bone void fillers are increasingly being used for dead space management in infected arthroplasty revision surgery. The presence of these materials as loose beads close to the bearing surfaces of joint replacements gives the potential for them to enter the joint becoming trapped between the articulating surfaces; the resulting damage to cobalt chrome counterfaces and the subsequent wear of ultra-high-molecular-weight polyethylene is unknown. In this study, third-body damage to cobalt chrome counterfaces was simulated using particles of the calcium sulfate bone void fillers Stimulan® (Biocomposites Ltd., Keele, UK) and Osteoset® (Wright Medical Technology, TN, USA) using a bespoke rig. Scratches on the cobalt chrome plates were quantified in terms of their density and mean lip height, and the damage caused by the bone void fillers was compared to that caused by particles of SmartSet GMV PMMA bone cement (DePuy Synthes, IN, USA). The surface damage from Stimulan® was below the resolution of the analysis technique used; SmartSet GMV caused 0.19 scratches/mm with a mean lip height of 0.03 µm; Osteoset® led to a significantly higher number (1.62 scratches/mm) of scratches with a higher mean lip height (0.04 µm). Wear tests of ultra-high-molecular-weight polyethylene were carried out in a six-station multi-axial pin on plate reciprocating rig against the damaged plates and compared to negative (highly polished) and positive control plates damaged with a diamond stylus (2 µm lip height). The wear of ultra-high-molecular-weight polyethylene was shown to be similar against the negative control plates and those damaged with third-body particles; there was a significantly higher (p < 0.001) rate of ultra-high-molecular-weight polyethylene wear against the positive control plates. This study showed that bone void fillers of similar composition can cause varying damage to cobalt chrome counterfaces. However, the lip heights of the scratches

  1. Application of ultra-high performance concrete to bridge girders.

    DOT National Transportation Integrated Search

    2009-02-01

    "Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...

  2. World's first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed “KIZUNA”

    PubMed Central

    Sawai, Takashi; Uzuki, Miwa; Miura, Yasuhiro; Kamataki, Akihisa; Matsumura, Tsubasa; Saito, Kenji; Kurose, Akira; Osamura, Yoshiyuki R.; Yoshimi, Naoki; Kanno, Hiroyuki; Moriya, Takuya; Ishida, Yoji; Satoh, Yohichi; Nakao, Masahiro; Ogawa, Emiko; Matsuo, Satoshi; Kasai, Hiroyuki; Kumagai, Kazuhiro; Motoda, Toshihiro; Hopson, Nathan

    2013-01-01

    Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA) has developed the “Kizuna” ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS) ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing) with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan), Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also for

  3. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    NASA Astrophysics Data System (ADS)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  4. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  5. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor.

    PubMed

    Liu, Yonghuan; Wang, Rutao; Yan, Xingbin

    2015-06-08

    Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g(-1) at 0.5 A g(-1) is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g(-1) at 100 A g(-1). On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg(-1) and an ultrahigh power density of 40 000 W kg(-1).

  6. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor

    PubMed Central

    Liu, Yonghuan; Wang, Rutao; Yan, Xingbin

    2015-01-01

    Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g−1 at 0.5 A g−1 is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g−1 at 100 A g−1. On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg−1 and an ultrahigh power density of 40 000 W kg−1. PMID:26053847

  7. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  8. Ultra high vacuum test setup for electron gun

    NASA Astrophysics Data System (ADS)

    Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.

    2008-05-01

    Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.

  9. Bond behavior of reinforcing steel in ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2014-10-01

    Ultra-High Performance Concrete (UHPC) is a relatively new class of advanced cementitious composite : materials, which exhibits high compressive [above 21.7 ksi (150 MPa)] and tensile [above 0.72 ksi (5 MPa)] : strengths. The discrete steel fiber rei...

  10. Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis

    PubMed Central

    Lin, Ashleigh; Yung, Alison R.; Koutsouleris, Nikolaos; Nelson, Barnaby; Cropley, Vanessa L.; Velakoulis, Dennis; McGorry, Patrick D.; Pantelis, Christos; Wood, Stephen J.

    2017-01-01

    Abstract Most individuals at ultra-high risk (UHR) for psychosis do not transition to frank illness. Nevertheless, many have poor clinical outcomes and impaired psychosocial functioning. This study used voxel-based morphometry to investigate if baseline grey and white matter brain densities at identification as UHR were associated with functional outcome at medium- to long-term follow-up. Participants were help-seeking UHR individuals (n = 109, 54M:55F) who underwent magnetic resonance imaging at baseline; functional outcome was assessed an average of 9.2 years later. Primary analysis showed that lower baseline grey matter density, but not white matter density, in bilateral frontal and limbic areas, and left cerebellar declive were associated with poorer functional outcome (Social and Occupational Functioning Assessment Scale [SOFAS]). These findings were independent of transition to psychosis or persistence of the at-risk mental state. Similar regions were significantly associated with lower self-reported levels of social functioning and increased negative symptoms at follow-up. Exploratory analyses showed that lower baseline grey matter densities in middle and inferior frontal gyri were significantly associated with decline in Global Assessment of Functioning (GAF) score over follow-up. There was no association between baseline grey matter density and IQ or positive symptoms at follow-up. The current findings provide novel evidence that those with the poorest functional outcomes have the lowest grey matter densities at identification as UHR, regardless of transition status or persistence of the at-risk mental state. Replication and validation of these findings may allow for early identification of poor functional outcome and targeted interventions. PMID:27369472

  11. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    NASA Astrophysics Data System (ADS)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  12. Probing the Milky Way electron density using multi-messenger astronomy

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane

    2015-04-01

    Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.

  13. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  14. Coupling temporal and spatial gradient information in high-density unstructured Lagrangian measurements

    NASA Astrophysics Data System (ADS)

    Wong, Jaime G.; Rosi, Giuseppe A.; Rouhi, Amirreza; Rival, David E.

    2017-10-01

    Particle tracking velocimetry (PTV) produces high-quality temporal information that is often neglected when computing spatial gradients. A method is presented here to utilize this temporal information in order to improve the estimation of spatial gradients for spatially unstructured Lagrangian data sets. Starting with an initial guess, this method penalizes any gradient estimate where the substantial derivative of vorticity along a pathline is not equal to the local vortex stretching/tilting. Furthermore, given an initial guess, this method can proceed on an individual pathline without any further reference to neighbouring pathlines. The equivalence of the substantial derivative and vortex stretching/tilting is based on the vorticity transport equation, where viscous diffusion is neglected. By minimizing the residual of the vorticity-transport equation, the proposed method is first tested to reduce error and noise on a synthetic Taylor-Green vortex field dissipating in time. Furthermore, when the proposed method is applied to high-density experimental data collected with `Shake-the-Box' PTV, noise within the spatial gradients is significantly reduced. In the particular test case investigated here of an accelerating circular plate captured during a single run, the method acts to delineate the shear layer and vortex core, as well as resolve the Kelvin-Helmholtz instabilities, which were previously unidentifiable without the use of ensemble averaging. The proposed method shows promise for improving PTV measurements that require robust spatial gradients while retaining the unstructured Lagrangian perspective.

  15. Information Density and Syntactic Repetition

    ERIC Educational Resources Information Center

    Temperley, David; Gildea, Daniel

    2015-01-01

    In noun phrase (NP) coordinate constructions (e.g., NP and NP), there is a strong tendency for the syntactic structure of the second conjunct to match that of the first; the second conjunct in such constructions is therefore low in syntactic information. The theory of uniform information density predicts that low-information syntactic…

  16. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  17. Integration of ultra-high field MRI and histology for connectome based research of brain disorders

    PubMed Central

    Yang, Shan; Yang, Zhengyi; Fischer, Karin; Zhong, Kai; Stadler, Jörg; Godenschweger, Frank; Steiner, Johann; Heinze, Hans-Jochen; Bernstein, Hans-Gert; Bogerts, Bernhard; Mawrin, Christian; Reutens, David C.; Speck, Oliver; Walter, Martin

    2013-01-01

    Ultra-high field magnetic resonance imaging (MRI) became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods can be effectively combined at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time) the feasibility and quality of ultra-high spatial resolution (150 μm isotopic) imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information. PMID:24098272

  18. Spatially-Resolved Characterization Techniques to Investigate Impact Damage in Ultra-High Performance Concretes

    DTIC Science & Technology

    2013-04-01

    Concretes G eo te ch n ic al a n d S tr u ct u re s La b or at or y Robert D. Moser, Paul G. Allison, and Mei Q. Chandler April 2013 Approved...Impact Damage in Ultra-High Performance Concretes Robert D. Moser, Paul G. Allison, and Mei Q. Chandler Geotechnical and Structures Laboratory US...Portland Cement concrete (OPC) and Ultra-High Performance Concretes (UHPCs) under high-strain impact and penetration loads at lower length scales

  19. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  20. Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles

    NASA Astrophysics Data System (ADS)

    Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo

    2018-03-01

    In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.

  1. Link and Network Layers Design for Ultra-High-Speed Terahertz-Band Communications Networks

    DTIC Science & Technology

    2017-01-01

    throughput, and identify the optimal parameter values for their design (Sec. 6.2.3). Moreover, we validate and test the scheme with experimental data obtained...LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH- SPEED TERAHERTZ-BAND COMMUNICATIONS NETWORKS STATE UNIVERSITY OF NEW YORK (SUNY) AT BUFFALO JANUARY...TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) FEB 2015 – SEP 2016 4. TITLE AND SUBTITLE LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH

  2. High-power-density, high-energy-density fluorinated graphene for primary lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Guiming; Chen, Huixin; Huang, Xingkang; Yue, Hongjun; Lu, Canzhong

    2018-03-01

    Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx) with superior performance through a direct gas fluorination. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1073 Wh kg-1 and an excellent power density of 21460 W kg-1 at a high current density of 10 A g-1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  3. Fabrication of 4H-SiC n-channel IGBTs with ultra high blocking voltage

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Tao, Yonghong; Yang, Tongtong; Huang, Runhua; Song, Bai

    2018-03-01

    Owing to the conductivity modulation of silicon carbide (SiC) bipolar devices, n-channel insulated gate bipolar transistors (n-IGBTs) have a significant advantage over metal oxide semiconductor field effect transistors (MOSFETs) in ultra high voltage (UHV) applications. In this paper, backside grinding and laser annealing process were carried out to fabricate 4H-SiC n-IGBTs. The thickness of a drift layer was 120 μm, which was designed for a blocking voltage of 13 kV. The n-IGBTs carried a collector current density of 24 A/cm2 at a power dissipation of 300 W/cm2 when the gate voltage was 20 V, with a differential specific on-resistance of 140 mΩ·cm2.

  4. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    NASA Astrophysics Data System (ADS)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  5. Ultra-high-energy cosmic rays from low-luminosity active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Duţan, Ioana; Caramete, Laurenţiu I.

    2015-03-01

    We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power Pj ⩽1046 erg s-1. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies ⩾ 50 EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We found that the UHECR flux is dependent on the observed radio flux density, the distance to the AGN, and the BH mass, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 Jy to make predictions for the maximum particle energy, luminosity, and flux of the UHECRs from nearby AGN. These predictions are then used in a semi-analytical code developed in Mathematica (SAM code) as inputs for the Monte-Carlo simulations to obtain the distribution of the arrival direction at the Earth and the energy spectrum of the UHECRs, taking into account their deflection in the intergalactic magnetic fields. For comparison, we also use the CRPropa code with the same initial conditions as for the SAM code. Importantly, to calculate the energy spectrum we also include the weighting of the UHECR flux per each UHECR source. Next, we compare the energy spectrum of the UHECRs with that obtained by the Pierre Auger Observatory.

  6. Ultra-slow dynamics in low density amorphous ice revealed by deuteron NMR: indication of a glass transition.

    PubMed

    Löw, Florian; Amann-Winkel, Katrin; Loerting, Thomas; Fujara, Franz; Geil, Burkhard

    2013-06-21

    The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.

  7. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  8. Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2014-11-01

    Ultra-high performance concrete (UHPC) has garnered interest from the highway infrastructure community for its greatly enhanced mechanical and durability properties. The objective of this research is to extensively evaluate the factors that affect bo...

  9. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae

    2014-07-01

    Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even

  10. Anomalous D-Log E curve with high contrast developer Kodak D8 on ultra fine grain emulsion BB640.

    PubMed

    Ulibarrena, M; Mendez, M; Blaya, S; Fimia, A

    2001-12-03

    D-Log E curves, also known as H-D curves, are used since the XIX century as a tool for describing the characteristics of silver halide emulsions. This curve has a very standard shape, with a linear region, a toe, a shoulder and a solarization region. In this work we present a distortion of the usual curve due to the action of a high contrast developer, Kodak D8, on an ultra fine grain emulsion, BB640\\cite{ov04}. The solarization effect is replaced by a linear zone where developed densities increase with increasing exposures, until all silver halide present in the emulsion is reduced by developer D8 to metallic silver. Densities higher than 11 have been obtained.

  11. Waste heat recovery with ultra high-speed turbomachinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakkilainen, E.; Larjola, J.; Lindgren, O.

    1984-08-01

    A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.

  12. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO2/Si interfaces with low defect densities

    NASA Astrophysics Data System (ADS)

    Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike

    2017-02-01

    Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.

  13. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  14. 1310 nm quantum dot DFB lasers with high dot density and ultra-low linewidth-power product

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Lester, L. F.; Gray, A. L.; Newell, T. C.; Hains, C.; Gogna, P.; Muller, R.; Maker, P.; Su, H.; Stintz, A.

    2002-01-01

    Laterally coupled distributed feedback lasers using high-density InAs quantum dots-in-a-well (DWELL) active region demonstrate a nominal wavelength of 1310 nm, a linewidth as small as 68 kHz, and a linewidth-power product of 100 kHz-mW.

  15. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  16. Development of Non-Proprietary Ultra-High Performance Concrete : Final Report

    DOT National Transportation Integrated Search

    2017-12-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...

  17. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  19. Can nutritional information modify purchase of ultra-processed products? Results from a simulated online shopping experiment.

    PubMed

    Machín, Leandro; Arrúa, Alejandra; Giménez, Ana; Curutchet, María Rosa; Martínez, Joseline; Ares, Gastón

    2018-01-01

    The aim of the present work was to evaluate the influence of two front-of-pack nutrition information schemes (traffic-light system and Chilean warning system) on consumer purchase of ultra-processed foods in a simulated online grocery store. Following a between-subjects design, participants completed a simulated weekly food purchase in an online grocery store under one of three experimental conditions: (i) a control condition with no nutrition information, (ii) a traffic-light system and (iii) the Chilean warning system. Information about energy (calories), sugar, saturated fats and salt content was included in the nutrition information schemes. Participants were recruited from a consumer database and a Facebook advertisement. People from Montevideo (Uruguay), aged 18-77 years (n 437; 75 % female), participated in the study. All participants were in charge of food purchase in the household, at least occasionally. No significant differences between experimental conditions were found in the mean share of ultra-processed foods purchased by participants, both in terms of number of products and expenditure, or in the mean energy, sugar, saturated fat and salt content of the purchased items. However, the Chilean warning system decreased intended purchase of sweets and desserts. Results from this online simulation provided little evidence to suggest that the traffic-light system or the Chilean warning system in isolation could be effective in reducing purchase of ultra-processed foods or improving the nutritional composition of the purchased products.

  20. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  1. The effect of cognitive remediation in individuals at ultra-high risk for psychosis: a systematic review.

    PubMed

    Glenthøj, Louise Birkedal; Hjorthøj, Carsten; Kristensen, Tina Dam; Davidson, Charlie Andrew; Nordentoft, Merete

    2017-01-01

    Cognitive deficits are prominent features of the ultra-high risk state for psychosis that are known to impact functioning and course of illness. Cognitive remediation appears to be the most promising treatment approach to alleviate the cognitive deficits, which may translate into functional improvements. This study systematically reviewed the evidence on the effectiveness of cognitive remediation in the ultra-high risk population. The electronic databases MEDLINE, PsycINFO, and Embase were searched using keywords related to cognitive remediation and the UHR state. Studies were included if they were peer-reviewed, written in English, and included a population meeting standardized ultra-high risk criteria. Six original research articles were identified. All the studies provided computerized, bottom-up-based cognitive remediation, predominantly targeting neurocognitive function. Four out of five studies that reported a cognitive outcome found cognitive remediation to improve cognition in the domains of verbal memory, attention, and processing speed. Two out of four studies that reported on functional outcome found cognitive remediation to improve the functional outcome in the domains of social functioning and social adjustment. Zero out of the five studies that reported such an outcome found cognitive remediation to affect the magnitude of clinical symptoms. Research on the effect of cognitive remediation in the ultra-high risk state is still scarce. The current state of evidence indicates an effect of cognitive remediation on cognition and functioning in ultra-high risk individuals. More research on cognitive remediation in ultra-high risk is needed, notably in large-scale trials assessing the effect of neurocognitive and/or social cognitive remediation on multiple outcomes.

  2. UltraSail - Ultra-Lightweight Solar Sail Concept

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L.; Coverstone, Victoria L.; Hargens-Rysanek, Jennifer; Ertmer, Kevin M.; Botter, Thierry; Benavides, Gabriel; Woo, Byoungsam; Carroll, David L.; Gierow, Paul A.; Farmer, Greg

    2005-01-01

    UltraSail is a next-generation high-risk, high-payoff sail system for the launch, deployment, stabilization and control of very large (sq km class) solar sails enabling high payload mass fractions for high (Delta)V. Ultrasail is an innovative, non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation-flying micro-satellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 sq km, sail subsystem area densities approaching 1 g/sq m, and thrust levels many times those of ion thrusters used for comparable deep space missions. Ultrasail can achieve outer planetary rendezvous, a deep space capability now reserved for high-mass nuclear and chemical systems. One of the primary innovations is the near-elimination of sail supporting structures by attaching each blade tip to a formation-flying micro-satellite which deploys the sail, and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These tip micro-satellites are controlled by 3-axis micro-thruster propulsion and an on-board metrology system. It is shown that an optimum spin rate exists which maximizes payload mass.

  3. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Zas, Enrique

    2018-01-01

    The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  4. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  5. Spent Fuel Assay with an Ultra-High Rate HPGe Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, James; Fulsom, Bryan; Pitts, Karl

    2015-07-01

    Traditional verification of spent nuclear fuel (SNF) includes determination of initial enrichment, burnup and cool down time (IE, BU, CT). Along with neutron measurements, passive gamma assay provides important information for determining BU and CT. Other gamma-ray-based assay methods such as passive tomography and active delayed gamma offer the potential to measure the spatial distribution of fission products and the fissile isotopic concentration of the fuel, respectively. All fuel verification methods involving gamma-ray spectroscopy require that the spectrometers manage very high count rates while extracting the signatures of interest. PNNL has developed new digital filtering and analysis techniques to producemore » an ultra-high rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This 37% relative efficiency detector has been operated for SNF measurements at input count rates of 500-1300 kcps and throughput in excess of 150 kcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This paper will present the results of both passive and active SNF measurement performed with this system at PNNL. (authors)« less

  6. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  7. Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis.

    PubMed

    Reniers, Renate L E P; Lin, Ashleigh; Yung, Alison R; Koutsouleris, Nikolaos; Nelson, Barnaby; Cropley, Vanessa L; Velakoulis, Dennis; McGorry, Patrick D; Pantelis, Christos; Wood, Stephen J

    2017-03-01

    Most individuals at ultra-high risk (UHR) for psychosis do not transition to frank illness. Nevertheless, many have poor clinical outcomes and impaired psychosocial functioning. This study used voxel-based morphometry to investigate if baseline grey and white matter brain densities at identification as UHR were associated with functional outcome at medium- to long-term follow-up. Participants were help-seeking UHR individuals (n = 109, 54M:55F) who underwent magnetic resonance imaging at baseline; functional outcome was assessed an average of 9.2 years later. Primary analysis showed that lower baseline grey matter density, but not white matter density, in bilateral frontal and limbic areas, and left cerebellar declive were associated with poorer functional outcome (Social and Occupational Functioning Assessment Scale [SOFAS]). These findings were independent of transition to psychosis or persistence of the at-risk mental state. Similar regions were significantly associated with lower self-reported levels of social functioning and increased negative symptoms at follow-up. Exploratory analyses showed that lower baseline grey matter densities in middle and inferior frontal gyri were significantly associated with decline in Global Assessment of Functioning (GAF) score over follow-up. There was no association between baseline grey matter density and IQ or positive symptoms at follow-up. The current findings provide novel evidence that those with the poorest functional outcomes have the lowest grey matter densities at identification as UHR, regardless of transition status or persistence of the at-risk mental state. Replication and validation of these findings may allow for early identification of poor functional outcome and targeted interventions. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  9. Super earth interiors and validity of Birch's Law for ultra-high pressure metals and ionic solids

    NASA Astrophysics Data System (ADS)

    Ware, Lucas Andrew

    2015-01-01

    Super Earths, recently detected by the Kepler Mission, expand the ensemble of known terrestrial planets beyond our Solar System's limited group. Birch's Law and velocity-density systematics have been crucial in constraining our knowledge of the composition of Earth's mantle and core. Recently published static diamond anvil cell experimental measurements of sound velocities in iron, a key deep element in most super Earth models, are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked with a two-stage light gas gun into the ultra-high pressure, temperature fluid state and make comparisons to the recent static data.

  10. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-06-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  11. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-03-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  12. Characterization of Polyimide Foams for Ultra-Lightweight Space Structures

    NASA Technical Reports Server (NTRS)

    Meador, Michael (Technical Monitor); Hillman, Keithan; Veazie, David R.

    2003-01-01

    Ultra-lightweight materials have played a significant role in nearly every area of human activity ranging from magnetic tapes and artificial organs to atmospheric balloons and space inflatables. The application range of ultra-lightweight materials in past decades has expanded dramatically due to their unsurpassed efficiency in terms of low weight and high compliance properties. A new generation of ultra-lightweight materials involving advanced polymeric materials, such as TEEK (TM) polyimide foams, is beginning to emerge to produce novel performance from ultra-lightweight systems for space applications. As a result, they require that special conditions be fulfilled to ensure adequate structural performance, shape retention, and thermal stability. It is therefore important and essential to develop methodologies for predicting the complex properties of ultra-lightweight foams. To support NASA programs such as the Reusable Launch Vehicle (RLV), Clark Atlanta University, along with SORDAL, Inc., has initiated projects for commercial process development of polyimide foams for the proposed cryogenic tank integrated structure (see figure 1). Fabrication and characterization of high temperature, advanced aerospace-grade polyimide foams and filled foam sandwich composites for specified lifetimes in NASA space applications, as well as quantifying the lifetime of components, are immensely attractive goals. In order to improve the development, durability, safety, and life cycle performance of ultra-lightweight polymeric foams, test methods for the properties are constant concerns in terms of timeliness, reliability, and cost. A major challenge is to identify the mechanisms of failures (i.e., core failure, interfacial debonding, and crack development) that are reflected in the measured properties. The long-term goal of the this research is to develop the tools and capabilities necessary to successfully engineer ultra-lightweight polymeric foams. The desire is to reduce density

  13. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  14. An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio)

    PubMed Central

    Peng, Wenzhu; Xu, Jian; Zhang, Yan; Feng, Jianxin; Dong, Chuanju; Jiang, Likun; Feng, Jingyan; Chen, Baohua; Gong, Yiwen; Chen, Lin; Xu, Peng

    2016-01-01

    High density genetic linkage maps are essential for QTL fine mapping, comparative genomics and high quality genome sequence assembly. In this study, we constructed a high-density and high-resolution genetic linkage map with 28,194 SNP markers on 14,146 distinct loci for common carp based on high-throughput genotyping with the carp 250 K single nucleotide polymorphism (SNP) array in a mapping family. The genetic length of the consensus map was 10,595.94 cM with an average locus interval of 0.75 cM and an average marker interval of 0.38 cM. Comparative genomic analysis revealed high level of conserved syntenies between common carp and the closely related model species zebrafish and medaka. The genome scaffolds were anchored to the high-density linkage map, spanning 1,357 Mb of common carp reference genome. QTL mapping and association analysis identified 22 QTLs for growth-related traits and 7 QTLs for sex dimorphism. Candidate genes underlying growth-related traits were identified, including important regulators such as KISS2, IGF1, SMTLB, NPFFR1 and CPE. Candidate genes associated with sex dimorphism were also identified including 3KSR and DMRT2b. The high-density and high-resolution genetic linkage map provides an important tool for QTL fine mapping and positional cloning of economically important traits, and improving common carp genome assembly. PMID:27225429

  15. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors

  16. Design of Ultra-High Temperature Ceramics for Improved Performance

    DTIC Science & Technology

    2009-02-28

    e.g., grain boundary chemistry or change in impurity concentrations) or physical (e.g., residual stress) effects. 600 co 500 a. oi400 c CD i...SA037 Effects of oxygen content on the properties of supcr-high-teiiiperature resistant Si-AI- C fibers D.f. Zhao (National University of Defense...of Technology, China) 15:05 S A034 Oxyacetylene ablation behavior of carbon fibers reinforced carbon matrix and ultra-high temperature

  17. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    PubMed

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or

  18. MDOT aims for lower-cost ultra-high performance concrete : research spotlight.

    DOT National Transportation Integrated Search

    2016-08-01

    In recent years, several vendors have developed ultra-high performance : concrete (UHPC) that surpasses traditional concrete mixes by offering : exceptional freeze-thaw resistance, reduced susceptibility to cracking : and far less reinforcement corro...

  19. Multilayer ultra-high-temperature ceramic coatings

    DOEpatents

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  20. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  1. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  2. Brain MR imaging at ultra-low radiofrequency power.

    PubMed

    Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B

    2011-05-01

    To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011

  3. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  4. Consumption of ultra-processed foods predicts diet quality in Canada.

    PubMed

    Moubarac, Jean-Claude; Batal, M; Louzada, M L; Martinez Steele, E; Monteiro, C A

    2017-01-01

    This study describes food consumption patterns in Canada according to the types of food processing using the Nova classification and investigates the association between consumption of ultra-processed foods and the nutrient profile of the diet. Dietary intakes of 33,694 individuals from the 2004 Canadian Community Health Survey aged 2 years and above were analyzed. Food and drinks were classified using Nova into unprocessed or minimally processed foods, processed culinary ingredients, processed foods and ultra-processed foods. Average consumption (total daily energy intake) and relative consumption (% of total energy intake) provided by each of the food groups were calculated. Consumption of ultra-processed foods according to sex, age, education, residential location and relative family revenue was assessed. Mean nutrient content of ultra-processed foods and non-ultra-processed foods were compared, and the average nutrient content of the overall diet across quintiles of dietary share of ultra-processed foods was measured. In 2004, 48% of calories consumed by Canadians came from ultra-processed foods. Consumption of such foods was high amongst all socioeconomic groups, and particularly in children and adolescents. As a group, ultra-processed foods were grossly nutritionally inferior to non-ultra-processed foods. After adjusting for covariates, a significant and positive relationship was found between the dietary share of ultra-processed foods and the content in carbohydrates, free sugars, total and saturated fats and energy density, while an inverse relationship was observed with the dietary content in protein, fiber, vitamins A, C, D, B6 and B12, niacin, thiamine, riboflavin, as well as zinc, iron, magnesium, calcium, phosphorus and potassium. Lowering the dietary share of ultra-processed foods and raising consumption of hand-made meals from unprocessed or minimally processed foods would substantially improve the diet quality of Canadian. Copyright © 2016

  5. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversionmore » efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.« less

  6. Visual analytics of inherently noisy crowdsourced data on ultra high resolution displays

    NASA Astrophysics Data System (ADS)

    Huynh, Andrew; Ponto, Kevin; Lin, Albert Yu-Min; Kuester, Falko

    The increasing prevalence of distributed human microtasking, crowdsourcing, has followed the exponential increase in data collection capabilities. The large scale and distributed nature of these microtasks produce overwhelming amounts of information that is inherently noisy due to the nature of human input. Furthermore, these inputs create a constantly changing dataset with additional information added on a daily basis. Methods to quickly visualize, filter, and understand this information over temporal and geospatial constraints is key to the success of crowdsourcing. This paper present novel methods to visually analyze geospatial data collected through crowdsourcing on top of remote sensing satellite imagery. An ultra high resolution tiled display system is used to explore the relationship between human and satellite remote sensing data at scale. A case study is provided that evaluates the presented technique in the context of an archaeological field expedition. A team in the field communicated in real-time with and was guided by researchers in the remote visual analytics laboratory, swiftly sifting through incoming crowdsourced data to identify target locations that were identified as viable archaeological sites.

  7. Development of Non-Proprietary Ultra-High Performance Concrete : Project Summary Report

    DOT National Transportation Integrated Search

    2017-12-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Thus, elements made with UHPC can be thinner/lighter than elements made with conventional concrete. The enhanced durabilit...

  8. In vivo wide-field calcium imaging of mouse thalamocortical synapses with an 8 K ultra-high-definition camera.

    PubMed

    Yoshida, Eriko; Terada, Shin-Ichiro; Tanaka, Yasuyo H; Kobayashi, Kenta; Ohkura, Masamichi; Nakai, Junichi; Matsuzaki, Masanori

    2018-05-29

    In vivo wide-field imaging of neural activity with a high spatio-temporal resolution is a challenge in modern neuroscience. Although two-photon imaging is very powerful, high-speed imaging of the activity of individual synapses is mostly limited to a field of approximately 200 µm on a side. Wide-field one-photon epifluorescence imaging can reveal neuronal activity over a field of ≥1 mm 2 at a high speed, but is not able to resolve a single synapse. Here, to achieve a high spatio-temporal resolution, we combine an 8 K ultra-high-definition camera with spinning-disk one-photon confocal microscopy. This combination allowed us to image a 1 mm 2 field with a pixel resolution of 0.21 µm at 60 fps. When we imaged motor cortical layer 1 in a behaving head-restrained mouse, calcium transients were detected in presynaptic boutons of thalamocortical axons sparsely labeled with GCaMP6s, although their density was lower than when two-photon imaging was used. The effects of out-of-focus fluorescence changes on calcium transients in individual boutons appeared minimal. Axonal boutons with highly correlated activity were detected over the 1 mm 2 field, and were probably distributed on multiple axonal arbors originating from the same thalamic neuron. This new microscopy with an 8 K ultra-high-definition camera should serve to clarify the activity and plasticity of widely distributed cortical synapses.

  9. Durable High-Density Data Storage

    NASA Technical Reports Server (NTRS)

    Lamartine, Bruce C.; Stutz, Roger A.

    1996-01-01

    The focus ion beam (FIB) micromilling process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate that the useful life of data written on silicon or gold-coated silicon to be on the order of a few thousand years without the need to rewrite the data every few years. The process uses an ion beam to carve material from the surface, much like stone cutters in ancient civilizations removed material from stone. The deeper the information is carved into the media, the longer the expected life of the information. The process can record information in three formats: (1) binary at densities of 23 Gbits/square inch, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus, it is possible to record, in a human-viewable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the remaining higher density information.

  10. Redundancy and reduction: Speakers manage syntactic information density

    PubMed Central

    Florian Jaeger, T.

    2010-01-01

    A principle of efficient language production based on information theoretic considerations is proposed: Uniform Information Density predicts that language production is affected by a preference to distribute information uniformly across the linguistic signal. This prediction is tested against data from syntactic reduction. A single multilevel logit model analysis of naturally distributed data from a corpus of spontaneous speech is used to assess the effect of information density on complementizer that-mentioning, while simultaneously evaluating the predictions of several influential alternative accounts: availability, ambiguity avoidance, and dependency processing accounts. Information density emerges as an important predictor of speakers’ preferences during production. As information is defined in terms of probabilities, it follows that production is probability-sensitive, in that speakers’ preferences are affected by the contextual probability of syntactic structures. The merits of a corpus-based approach to the study of language production are discussed as well. PMID:20434141

  11. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  12. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  13. The relation between high-density and very-high-density amorphous ice.

    PubMed

    Loerting, Thomas; Salzmann, Christoph G; Winkel, Katrin; Mayer, Erwin

    2006-06-28

    The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.

  14. Development of a Family of Ultra-High Performance Concrete Pi-Girders

    DOT National Transportation Integrated Search

    2014-01-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material, which tends to exhibit superior properties such as exceptional durability, increased strength, and long-term stability. (See references 1-4.) The use of existing s...

  15. Ultra-high performance concrete for Michigan bridges, material performance : phase I.

    DOT National Transportation Integrated Search

    2008-10-13

    One of the latest advancements in concrete technology is Ultra-High Performance Concrete (UHPC). UHPC is : defined as concretes attaining compressive strengths exceeding 25 ksi (175 MPa). It is a fiber-reinforced, denselypacked : concrete material wh...

  16. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  17. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime

    NASA Astrophysics Data System (ADS)

    Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.

    2018-05-01

    The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.

  18. Caveats when Analyzing Ultra-high Molar Mass Polymers by SEC

    USDA-ARS?s Scientific Manuscript database

    The analysis of ultra-high molar mass (M > 1 million g/mol) polymers via size-exclusion chromatography (SEC) presents a number of non-trivial challenges. Dissolution and full solvation may take days, as is the case for cellulose dissolution in non-complexing non degrading solvents; very low concent...

  19. Differential renal effects of candesartan at high and ultra-high doses in diabetic mice–potential role of the ACE2/AT2R/Mas axis

    PubMed Central

    Callera, Glaucia E.; Antunes, Tayze T.; Correa, Jose W.; Moorman, Danielle; Gutsol, Alexey; He, Ying; Cat, Aurelie Nguyen Dinh; Briones, Ana M.; Montezano, Augusto C.; Burns, Kevin D.; Touyz, Rhian M.

    2016-01-01

    High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes. PMID:27612496

  20. Efficient Ultra-High Speed Communication with Simultaneous Phase and Amplitude Regenerative Sampling (SPARS)

    NASA Astrophysics Data System (ADS)

    Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang

    2017-09-01

    For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.

  1. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Information Theory and the Earth's Density Distribution

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    An argument for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia lead to a density distribution which was surprisingly close to the optimum distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.

  3. Holographic memory for high-density data storage and high-speed pattern recognition

    NASA Astrophysics Data System (ADS)

    Gu, Claire

    2002-09-01

    As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.

  4. Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Frisari, M.; Thissen, R.; Dutuit, O.; Bonnet, J.-Y.; Quirico, E.; Sciamma O'Brien, E.; Szopa, C.; Carrasco, N.; Somogyi, A.; Smith, M.; Hörst, S. M.; Yelle, R.

    2010-04-01

    We propose here a systematic ultra-high resolution mass spectrometry and MS/MS study in order to provide a more coherent and complete characterization of the structure of the molecules making up the soluble fraction of the Titan tholins.

  5. Microstructural characterization of ultra thin copper interconnects

    NASA Astrophysics Data System (ADS)

    Yang, Hee-Dong

    The present study investigates the defects related to reliability issues, such as physical failures developed during processing and end use. In the first part of this study, kinetic analysis using the Johnson-Mehl-Avrami (JMA) model demonstrates that a self-annealing mechanism in electroplated Cu films depends on the film properties, such as thickness and the amount of crystal defects in an as-deposited state. In order to obtain the evidence of such defects, the microstructural characterization of defects in ultra thin copper interconnects using transmission electron microscopy (TEM) is presented. Examination of the defects using TEM reveals that voids filled with gas form as a lens shape along the {110} habit planes of the copper matrix. In the second part of this study, methodology and results of an electro-thermal-fatigue (ETF) testing, designed for early detection of process defects, are presented. Such ETF testing combines high-density current electrical stressing and thermal cycling to accelerate the evolution of defects in Cu interconnects. In ETF testing, the evolution of defects provides the nucleation sites for voids which open or close during thermal cycling. Then, the accumulation of voids creates the change in resistance when they reach a critical size. As a result of voids evolution, the high current density and high joule heating create a transient resistance increase. ETF testing reveals two failure modes, and the mode-I failure has the importance in detecting defects. The number of cycles to failure in ETF testing decreases with higher current density, but the rate of thermal cycling has no effect. Results from this investigation suggest that impurities in the copper electrodeposition process must be carefully controlled to achieve reliable ultra thin copper interconnects.

  6. The Bendability of Ultra High strength Steels

    NASA Astrophysics Data System (ADS)

    Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.

    2016-08-01

    Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.

  7. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.

    PubMed

    Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun

    2016-08-30

    Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.

  8. Development of Non-Proprietary Ultra-High Performance Concrete : Research Topic Statement

    DOT National Transportation Integrated Search

    2014-05-29

    Ultra-high performance concrete became commercially available in the U.S. in 2000. Since then, UHPC has been actively promoted by the Federal Highway Administration. UHPC has mostly been used in the U.S. for field-cast connections of prefabricated br...

  9. A swimming pool array for ultra high energy showers

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  10. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  11. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  12. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  13. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  14. Investigation of aquaporins and apparent diffusion coefficient from ultra-high b-values in a rat model of diabetic nephropathy.

    PubMed

    Wang, Yu; Zhang, Heng; Zhang, Ruzhi; Zhao, Zhoushe; Xu, Ziqian; Wang, Lei; Liu, Rongbo; Gao, Fabao

    2017-01-01

    To assess kidney damage in a rat model of type-2 diabetic nephropathy based on apparent diffusion coefficient (ADC) data obtained from ultra-high b-values and discuss its relationship to the expression of aquaporins (AQPs). This study was approved by the institutional Animal Care and Use Committee. Thirty male Sprague-Dawley rats were randomised into two groups: (1) untreated controls and (2) diabetes mellitus (DM). All rats underwent diffusion-weighted imaging (DWI) with 18 b-values (0-4500 s/mm 2 ). Maps of low ADC (ADC low ), standard ADC (ADC st ) and ultra-high ADC (ADC uh ) were calculated from low b-values (0-200 s/mm 2 ), standard b-values (300-1500 s/mm 2 ) and ultra-high b-values (1700-4500 s/mm 2 ), respectively. The expression of AQPs in the kidneys was studied using immunohistochemistry. Laboratory parameters of diabetic and kidney functions, ADC low , ADC st , ADC uh , and the optical density (OD) of AQP expression in the two groups were compared using an independent t test. Correlations between ADCs and the OD of AQP expression were evaluated by Pearson's correlation analysis. ADC uh were significantly higher in the cortex (CO), outer stripe of the outer medulla (OS) and inner stripe of the outer medulla (IS), and the OD values of AQ-2 were significantly higher in the OS, IS and inner medulla (IM) in DM animals compared with control animals. ADC uh and OD values of AQP-2 expression were positively correlated in the OS, IS and IM of the kidney. ADC uh may work as useful metrics for early detection of kidney damage in diabetic nephropathy and may be associated with AQP-2 expression.

  15. Ultra-Sensitive Detection of Plasmodium falciparum by Amplification of Multi-Copy Subtelomeric Targets

    PubMed Central

    Hofmann, Natalie; Mwingira, Felista; Shekalaghe, Seif; Robinson, Leanne J.; Mueller, Ivo; Felger, Ingrid

    2015-01-01

    Background Planning and evaluating malaria control strategies relies on accurate definition of parasite prevalence in the population. A large proportion of asymptomatic parasite infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes. The sensitivity of molecular detection by PCR is limited by the abundance of the target sequence in a DNA sample; thus, detection becomes imperfect at low densities. We aimed to increase PCR diagnostic sensitivity by targeting multi-copy genomic sequences for reliable detection of low-density infections, and investigated the impact of these PCR assays on community prevalence data. Methods and Findings Two quantitative PCR (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ∼250 copies/genome) and the var gene acidic terminal sequence (varATS, 59 copies/genome). Our assays reached a limit of detection of 0.03 to 0.15 parasites/μl blood and were 10× more sensitive than standard 18S rRNA qPCR. In a population cross-sectional study in Tanzania, 295/498 samples tested positive using ultra-sensitive assays. Light microscopy missed 169 infections (57%). 18S rRNA qPCR failed to identify 48 infections (16%), of which 40% carried gametocytes detected by pfs25 quantitative reverse-transcription PCR. To judge the suitability of the TARE-2 and varATS assays for high-throughput screens, their performance was tested on sample pools. Both ultra-sensitive assays correctly detected all pools containing one low-density P. falciparum–positive sample, which went undetected by 18S rRNA qPCR, among nine negatives. TARE-2 and varATS qPCRs improve estimates of prevalence rates, yet other infections might still remain undetected when absent in the limited blood volume sampled. Conclusions Measured malaria prevalence in communities is largely determined by the

  16. Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention.

    PubMed

    Boakye, Cedar H A; Patel, Ketan; Doddapaneni, Ravi; Bagde, Arvind; Behl, Gautam; Chowdhury, Nusrat; Safe, Stephen; Singh, Mandip

    2016-07-01

    In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis. UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo. DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (p<0.01) skin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (p<0.05) the number of tumors observed in SKH-1 mice (3.33-fold), which was comparable to pretreatment with sunscreen (SPF30). Also, DIM-D-UltraFLEX-Nano caused decrease (p<0.05) in UV-induced DNA damage (8-hydroxydeoxyguanosine), skin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21). UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30

  17. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  18. Simultaneous structural and environmental loading of an ultra-high performance concrete component

    DOT National Transportation Integrated Search

    2010-07-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which tends to exhibit superior properties such as increased durability, strength, and long-term stability. This experimental investigation focused on the flexural ...

  19. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  20. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laroche, D.; Lu, T. M., E-mail: tlu@sandia.gov; Huang, S.-H.

    2016-06-06

    We report the magneto-transport, scattering mechanisms, and effective mass analysis of an ultra-low density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si{sub 0.2}Ge{sub 0.8} heterostructure. This fabrication technique allows hole densities as low as p ∼ 1.1 × 10{sup 10 }cm{sup −2} to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, μ ∝ n{sup α}, is found to be α ∼ 0.29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migrationmore » model is used to explain the mobility decrease at the highest achievable densities. The hole effective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p ∼ 1.0 × 10{sup 11 }cm{sup −2}, the effective mass m* is ∼0.105 m{sub 0}, which is significantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.« less

  1. ICPP: Relativistic Plasma Physics with Ultra-Short High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Meyer-Ter-Vehn, Juergen

    2000-10-01

    Recent progress in generating ultra-short high-intensity laser pulses has opened a new branch of relativistic plasma physics, which is discussed in this talk in terms of particle-in-cell (PIC) simulations. These pulses create small plasma volumes of high-density plasma with plasma fields above 10^12 V/m and 10^8 Gauss. At intensities beyond 10^18 W/cm^2, now available from table-top systems, they drive relativistic electron currents in self-focussing plasma channels. These currents are close to the Alfven limit and allow to study relativistic current filamentation. A most remarkable feature is the generation of well collimated relativistic electron beams emerging from the channels with energies up to GeV. In dense matter they trigger cascades of gamma-rays, e^+e^- pairs, and a host of nuclear and particle processes. One of the applications may be fast ignition of compressed inertial fusion targets. Above 10^23 W/cm^2, expected to be achieved in the future, solid-density matter becomes relativistically transparent for optical light, and the acceleration of protons to multi-GeV energies is predicted in plasma layers less than 1 mm thick. These results open completely new perspectives for plasma-based accelerator schemes. Three-dimensional PIC simulations turn out to be the superior tool to explore the relativistic plasma kinetics at such intensities. Results obtained with the VLPL code [1] are presented. Different mechanisms of particle acceleration are discussed. Both laser wakefield and direct laser acceleration in plasma channels (by a mechanism similar to inverse free electron lasers) have been identified. The latter describes recent MPQ experimental results. [1] A. Pukhov, J. Plasma Physics 61, 425 - 433 (1999): Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Laboratory).

  2. Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K.

    PubMed

    Robitaille, P M; Abduljalil, A M; Kangarlu, A

    2000-01-01

    To acquire ultra high resolution MRI images of the human brain at 8 Tesla within a clinically acceptable time frame. Gradient echo images were acquired from the human head of normal subjects using a transverse electromagnetic resonator operating in quadrature and tuned to 340 MHz. In each study, a group of six images was obtained containing a total of 208 MB of unprocessed information. Typical acquisition parameters were as follows: matrix = 2,000 x 2,000, field of view = 20 cm, slice thickness = 2 mm, number of excitations (NEX) = 1, flip angle = 45 degrees, TR = 750 ms, TE = 17 ms, receiver bandwidth = 69.4 kHz. This resulted in a total scan time of 23 minutes, an in-plane resolution of 100 microm, and a pixel volume of 0.02 mm3. The ultra high resolution images acquired in this study represent more than a 50-fold increase in in-plane resolution relative to conventional 256 x 256 images obtained with a 20 cm field of view and a 5 mm slice thickness. Nonetheless, the ultra high resolution images could be acquired both with adequate image quality and signal to noise. They revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. The elevated signal-to-noise ratio observed in ultra high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the histological level under in vivo conditions. However, brain motion is likely to degrade the useful resolution. This situation may be remedied in part with cardiac gating. Nonetheless, these images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.

  3. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  4. On the mechanism of charge transport in low density polyethylene

    NASA Astrophysics Data System (ADS)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  5. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  7. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE PAGES

    Zou, Y.; Wang, X.; Chen, T.; ...

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  8. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Y.; Wang, X.; Chen, T.

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  9. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C.; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiersmore » synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre

  10. Information density converges in dialogue: Towards an information-theoretic model.

    PubMed

    Xu, Yang; Reitter, David

    2018-01-01

    The principle of entropy rate constancy (ERC) states that language users distribute information such that words tend to be equally predictable given previous contexts. We examine the applicability of this principle to spoken dialogue, as previous findings primarily rest on written text. The study takes into account the joint-activity nature of dialogue and the topic shift mechanisms that are different from monologue. It examines how the information contributions from the two dialogue partners interactively evolve as the discourse develops. The increase of local sentence-level information density (predicted by ERC) is shown to apply to dialogue overall. However, when the different roles of interlocutors in introducing new topics are identified, their contribution in information content displays a new converging pattern. We draw explanations to this pattern from multiple perspectives: Casting dialogue as an information exchange system would mean that the pattern is the result of two interlocutors maintaining their own context rather than sharing one. Second, we present some empirical evidence that a model of Interactive Alignment may include information density to explain the effect. Third, we argue that building common ground is a process analogous to information convergence. Thus, we put forward an information-theoretic view of dialogue, under which some existing theories of human dialogue may eventually be unified. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of Non-Proprietary Ultra High Performance Concrete : Final Presentation : November, 2017

    DOT National Transportation Integrated Search

    2017-11-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...

  12. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  13. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation Volume II : behavior of ultra-high strength concrete bridge deck panels compared to conventional stay-in-place deck panels

    DOT National Transportation Integrated Search

    2017-08-01

    The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...

  14. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less

  15. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    PubMed

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  16. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33136e

  17. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins.

    PubMed

    Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping

    2016-02-20

    Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ultra-high cooling rate utilizing thin film evaporation

    NASA Astrophysics Data System (ADS)

    Su, Fengmin; Ma, Hongbin; Han, Xu; Chen, Hsiu-hung; Tian, Bohan

    2012-09-01

    This research introduces a cell cryopreservation method, which utilizes thin film evaporation and provides an ultra-high cooling rate. The microstructured surface forming the thin film evaporation was fabricated from copper microparticles with an average diameter of 50 μm. Experimental results showed that a cooling rate of approximately 5×104 °C/min was achieved in a temperature range from 10 °C to -187 °C. The current investigation will give birth to a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.

  19. SU-F-J-45: Sparing Normal Tissue with Ultra-High Dose Rate in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y

    Purpose: To spare normal tissue by reducing the location uncertainty of a moving target, we proposed an ultra-high dose rate system and evaluated. Methods: High energy electrons generated with a linear accelerator were injected into a storage ring to be accumulated. The number of the electrons in the ring was determined based on the prescribed radiation dose. The dose was delivered within a millisecond, when an online imaging system found that the target was in the position that was consistent with that in a treatment plan. In such a short time period, the displacement of the target was negligible. Themore » margin added to the clinical target volume (CTV) could be reduced that was evaluated by comparing of volumes between CTV and ITV in 14 cases of lung stereotactic body radiation therapy (SBRT) treatments. A design of the ultra-high dose rate system was evaluated based clinical needs and the recent developments of low energy (a few MeV) electron storage ring. Results: This design of ultra-high dose rate system was feasible based on the techniques currently available. The reduction of a target volume was significant by reducing the margin that accounted the motion of the target. ∼50% volume reduction of the internal target volume (ITV) could be achieved in lung SBRT treatments. Conclusion: With this innovation of ultra-high dose rate system, the margin of target is able to be significantly reduced. It will reduce treatment time of gating and allow precisely specified gating window to improve the accuracy of dose delivering.« less

  20. Distortion correction in EPI at ultra-high-field MRI using PSF mapping with optimal combination of shift detection dimension.

    PubMed

    Oh, Se-Hong; Chung, Jun-Young; In, Myung-Ho; Zaitsev, Maxim; Kim, Young-Bo; Speck, Oliver; Cho, Zang-Hee

    2012-10-01

    Despite its wide use, echo-planar imaging (EPI) suffers from geometric distortions due to off-resonance effects, i.e., strong magnetic field inhomogeneity and susceptibility. This article reports a novel method for correcting the distortions observed in EPI acquired at ultra-high-field such as 7 T. Point spread function (PSF) mapping methods have been proposed for correcting the distortions in EPI. The PSF shift map can be derived either along the nondistorted or the distorted coordinates. Along the nondistorted coordinates more information about compressed areas is present but it is prone to PSF-ghosting artifacts induced by large k-space shift in PSF encoding direction. In contrast, shift maps along the distorted coordinates contain more information in stretched areas and are more robust against PSF-ghosting. In ultra-high-field MRI, an EPI contains both compressed and stretched regions depending on the B0 field inhomogeneity and local susceptibility. In this study, we present a new geometric distortion correction scheme, which selectively applies the shift map with more information content. We propose a PSF-ghost elimination method to generate an artifact-free pixel shift map along nondistorted coordinates. The proposed method can correct the effects of the local magnetic field inhomogeneity induced by the susceptibility effects along with the PSF-ghost artifact cancellation. We have experimentally demonstrated the advantages of the proposed method in EPI data acquisitions in phantom and human brain using 7-T MRI. Copyright © 2011 Wiley Periodicals, Inc.

  1. Live Ultra-High Definition from the International Space Station

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; George, Sandy

    2017-01-01

    The first ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a 'Super Session' at the National Association of Broadcasters (NAB) in April 2017. The Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. HEVC may also enable live Virtual Reality video downlinks from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a 'live' event was staged when the UHD coming from the ISS had a latency of 10+ seconds. Finally, the paper will discuss how NASA is leveraging commercial technologies for use on-orbit vs. creating technology as was required during the Apollo Moon Program and early space age.

  2. Optically Addressed Nanostructures for High Density Data Storage

    DTIC Science & Technology

    2005-10-14

    beam to sub-wavelength resolutions. X. Refereed Journal Publications I. M. D. Stenner , D. J. Gauthier, and M. A. Neifeld, "The speed of information in a...profiles for high-density optical data storage," Optics Communications, Vol.253, pp.56-69, 2005. 5. M. D. Stenner , D. J. Gauthier, and M. A. Neifeld, "Fast...causal information transmission in a medium with a slow group velocity," Physical Review Letters, Vol.94, February 2005. 6. M. D. Stenner , M. A

  3. High to ultra-high power electrical energy storage.

    PubMed

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  4. Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Min; He, Shih-Ming; Huang, Chi-Hsien; Huang, Cheng-Chun; Shih, Wen-Pin; Chu, Chun-Lin; Kong, Jing; Li, Ju; Su, Ching-Yuan

    2016-02-01

    In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa-1, which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches.In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra

  5. Application of ultra high pressure (UHP) in starch chemistry.

    PubMed

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  6. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.

    2017-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework

  7. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  8. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    PubMed Central

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You

    2018-01-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519

  9. High density laser-driven target

    DOEpatents

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  10. GaN on Diamond with Ultra-Low Thermal Barrier Resistance

    DTIC Science & Technology

    2016-03-31

    GaN-on-Diamond with Ultra-Low Thermal Barrier Resistance Xing Gu1, Cathy Lee1, Jinqiao Xie1, Edward Beam1, Michael Becker2, Timothy A. Grotjohn2...Bristol BS8 1TL, UK Abstract: We investigated the effective thermal boundary resistance (TBReff) of GaN-on-Diamond interfaces for diamond growth... thermal boundary resistance; TBReff , interfacial layers; high density dielectric Introduction While GaN-based RF transistors, typically on SiC

  11. Ultra-high resolution and high-brightness AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  12. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  13. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography*

    PubMed Central

    Desmarais, Samantha M.; Tropini, Carolina; Miguel, Amanda; Cava, Felipe; Monds, Russell D.; de Pedro, Miguel A.; Huang, Kerwyn Casey

    2015-01-01

    The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination. PMID:26468288

  14. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  15. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  16. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  17. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications.

    PubMed

    Rimell, J T; Marquis, P M

    2000-01-01

    Rapid prototyping is a relatively new technology, which although prominent in the engineering industry is only just starting to make an impact in the medical field. Its current medical uses are mainly confined to surgical planning and teaching, but the technology also has the potential to allow for patient-tailored prostheses. The work reported here describes the application of a simplified selective laser sintering apparatus with ultra high molecular weight polyethylene (UHMWPE). The morphology and chemistry of the starting powders and lased material have been characterized using Fourier Transform Infra Red spectroscopy and a combination of light and scanning electron microscopy. It was found that solid linear continuous bodies could be formed, but material shrinkage caused problems when trying to form sheet-like structures. The porosity of the formed material was also a concern. The material exposed to the laser beam was shown to have undergone degradation in terms of chain scission, cross-linking, and oxidation. It has been concluded that to apply this technology to the fabrication of UHMWPE devices requires the development of improved starting powders, in particular with increased density. Copyright 2000 John Wiley & Sons, Inc.

  18. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.

    The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less

  19. Ultra high-definition video: convergence toward 100Gbps and beyond for digital A/V connectivity with fiber optics

    NASA Astrophysics Data System (ADS)

    Parekh, Devang; Nguyen, Nguyen X.

    2018-02-01

    The recent advent of Ultra-high-definition television (also known as Ultra HD television, Ultra HD, UHDTV, UHD and Super Hi-Vision) has accelerated a demand for a Fiber-in-the-Premises video communication (VCOM) solution that converges toward 100Gbps and Beyond. Hybrid Active-Optical-Cables (AOC) is a holistic connectivity platform well suited for this "The Last Yard" connectivity; as it combines both copper and fiber optics to deliver a high data-rate and power transmission needed. While technically feasible yet challenging to manufacture, hybrid-AOC could be a holygrail fiber-optics solution that dwarfs the volume of both telecom and datacom connection in the foreseeable future.

  20. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  1. Redundancy and Reduction: Speakers Manage Syntactic Information Density

    ERIC Educational Resources Information Center

    Jaeger, T. Florian

    2010-01-01

    A principle of efficient language production based on information theoretic considerations is proposed: Uniform Information Density predicts that language production is affected by a preference to distribute information uniformly across the linguistic signal. This prediction is tested against data from syntactic reduction. A single multilevel…

  2. Comparison of detonation spreading in pressed ultra-fine and nano-TATB

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Wixom, Ryan; Knepper, Robert; Yarrington, Cole; Patel, Rajen; Stepanov, Victor

    2017-06-01

    Detonation spreading behavior in insensitive high explosives is an important performance characteristic for initiation-train design. In the past, several variations of the floret test have been used to study this phenomenon. Commonly, dent blocks or multi-fiber optical probes were employed for reduced cost and complexity. We devised a floret-like test, using minimal explosive material, to study the detonation spreading in nano-TATB as compared to ultra-fine TATB. Our test uses a streak camera, combined with photonic Doppler velocimetry, to image the breakout timing and quantify the output particle velocity. The TATB acceptor pellets are initiated using an explosively-driven aluminum flyer with a well characterized velocity. We characterized the two types of TATB by assessing purity, particle morphology, and the microstructure of the consolidated pellets. Our results align with published data for ultra-fine TATB, however the nano-TATB shows a distinct difference where output has a strong dependence on density. The results indicate that control over pellet pore size and pressing density may be used to optimize detonation spreading behavior.

  3. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.

    PubMed

    D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry

    2014-05-19

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.

  4. A Novel Femtosecond-gated, High-resolution, Frequency-shifted Shearing Interferometry Technique for Probing Pre-plasma Expansion in Ultra-intense Laser Experiments

    DTIC Science & Technology

    2014-07-17

    frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction

  5. Ultra-high resolution spectral domain optical coherence tomography using supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yatagai, Toyohiko; Otani, Yukitoshi

    2016-04-01

    An ultra-high resolution spectral domain optical coherence tomography (SD-OCT) was developed using a cost-effective supercontinuum laser. A spectral filter consists of a dispersive prism, a cylindrical lens and a right-angle prism was built to transmit the wavelengths in range 680-940 nm to the OCT system. The SD-OCT has achieved 1.9 μm axial resolution and the sensitivity was estimated to be 91.5 dB. A zero-crossing fringes matching method which maps the wavelengths to the pixel indices of the spectrometer was proposed for the OCT spectral calibration. A double sided foam tape as a static sample and the tip of a middle finger as a biological sample were measured by the OCT. The adhesive and the internal structure of the foam of the tape were successfully visualized in three dimensions. Sweat ducts was clearly observed in the OCT images at very high resolution. To the best of our knowledge, this is the first demonstration of ultra-high resolution visualization of sweat duct by OCT.

  6. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  7. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor

    PubMed Central

    Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Chen, Lei; Li, Ruifang; Ma, Rui; Liu, Chang; Zhang, Jinqiannan; Ye, Han

    2017-01-01

    In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices. PMID:28332629

  8. A Novel Method for Electroplating Ultra-High-Strength Glassy Metals

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.

  9. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing.

    PubMed

    Sun, Fujun; Fu, Zhongyuan; Wang, Chunhong; Ding, Zhaoxiang; Wang, Chao; Tian, Huiping

    2017-05-20

    We propose and investigate an ultra-compact air-mode photonic crystal nanobeam cavity (PCNC) with an ultra-high quality factor-to-mode volume ratio (Q/V) by quadratically tapering the lattice space of the rectangular holes from the center to both ends while other parameters remain unchanged. By using the three-dimensional finite-difference time-domain method, an optimized geometry yields a Q of 7.2×10 6 and a V∼1.095(λ/n Si ) 3 in simulations, resulting in an ultra-high Q/V ratio of about 6.5×10 6 (λ/n Si ) -3 . When the number of holes on either side is 8, the cavity possesses a high sensitivity of 252 nm/RIU (refractive index unit), a high calculated Q-factor of 1.27×10 5 , and an ultra-small effective V of ∼0.758(λ/n Si ) 3 at the fundamental resonant wavelength of 1521.74 nm. Particularly, the footprint is only about 8×0.7  μm 2 . However, inevitably our proposed PCNC has several higher-order resonant modes in the transmission spectrum, which makes the PCNC difficult to be used for multiplexed sensing. Thus, a well-designed bandstop filter with weak sidelobes and broad bandwidth based on a photonic crystal nanobeam waveguide is created to connect with the PCNC to filter out the high-order modes. Therefore, the integrated structure presented in this work is promising for building ultra-compact lab-on-chip sensor arrays with high density and parallel-multiplexing capability.

  10. Characterization of high density SiPM non-linearity and energy resolution for prompt gamma imaging applications

    NASA Astrophysics Data System (ADS)

    Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.

    2017-07-01

    Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.

  11. Fast Spectroscopic Imaging and Field Compensation Using Frequency Modulation at Ultra-High-Field

    NASA Astrophysics Data System (ADS)

    Jang, Albert Woo Ju

    The high energy phosphates (HEP) in the myocardium, which are critical to understanding the cardiac function in both normal and pathophysiologic states, can be assessed non-invasively in vivo using phosphorus-31 (31P) spectroscopy. Compared to proton, for the same volume and magnetic field strength, the available signal-to-noise (SNR) ratio of the HEP metabolites is orders of magnitude lower mainly due to its intrinsically low concentration. Hence, cardiac spectroscopy greatly benefits when performed at ultra-high-fields (UHF, ≥ 7 T), both in terms of increased SNR and increased spectroscopic resolution. However, at ultra-high-field strengths, complications arise from the RF transmit wavelength becoming comparable or smaller than the field-of-view (FOV), thus exhibiting wave-like behavior. Furthermore, even with the spectroscopic resolution afforded at UHF, measuring myocardial inorganic phosphate (Pi) is still a challenge and has been a major barrier in extracting the ATP turnover rate. Recently, an indirect way of extracting the ATP hydrolysis rate forgoing direct measurement of Pi was established. In this work, we combine this method with the T1 nom method to monitor the transmural distribution of forward creatine kinase reaction (kf,CK) and ATP hydrolysis rate (kr,ATPase) of the myocardium, effectively reducing data acquisition time by up to an order of magnitude. In addition, a new class of 2D FM pulses and multidimensional adiabatic pulses are presented, which can compensate for B1 inhomogeneity through its spatiotemporal properties. These pulses should be valuable for spectroscopic applications at ultra-high-fields.

  12. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheli, Leonardo, E-mail: lm409@exeter.ac.uk; Mallick, Tapas K., E-mail: T.K.Mallick@exeter.ac.uk; Fernandez, Eduardo F., E-mail: E.Fernandez-Fernandez2@exeter.ac.uk

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the resultsmore » of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.« less

  13. Durability and smart condition assessment of ultra-high performance concrete in cold climates.

    DOT National Transportation Integrated Search

    2016-12-31

    The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...

  14. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. A promising high-energy-density material.

    PubMed

    Zhang, Wenquan; Zhang, Jiaheng; Deng, Mucong; Qi, Xiujuan; Nie, Fude; Zhang, Qinghua

    2017-08-03

    High-energy density materials represent a significant class of advanced materials and have been the focus of energetic materials community. The main challenge in this field is to design and synthesize energetic compounds with a highest possible density and a maximum possible chemical stability. Here we show an energetic compound, [2,2'-bi(1,3,4-oxadiazole)]-5,5'-dinitramide, is synthesized through a two-step reaction from commercially available reagents. It exhibits a surprisingly high density (1.99 g cm -3 at 298 K), poor solubility in water and most organic solvents, decent thermal stability, a positive heat of formation and excellent detonation properties. The solid-state structural features of the synthesized compound are also investigated via X-ray diffraction and several theoretical techniques. The energetic and sensitivity properties of the explosive compound are similar to those of 2, 4, 6, 8, 10, 12-(hexanitrohexaaza)cyclododecane (CL-20), and the developed compound shows a great promise for potential applications as a high-energy density material.High energy density materials are of interest, but density is the limiting factor for many organic compounds. Here the authors show the formation of a high density energetic compound from a two-step reaction between commercially available compounds that exhibit good heat thermal stability and detonation properties.

  16. Interpersonal sensitivity and functioning impairment in youth at ultra-high risk for psychosis.

    PubMed

    Masillo, A; Valmaggia, L R; Saba, R; Brandizzi, M; Lindau, J F; Solfanelli, A; Curto, M; Narilli, F; Telesforo, L; Kotzalidis, G D; Di Pietro, D; D'Alema, M; Girardi, P; Fiori Nastro, P

    2016-01-01

    A personality trait that often elicits poor and uneasy interpersonal relationships is interpersonal sensitivity. The aim of the present study was to explore the relationship between interpersonal sensitivity and psychosocial functioning in individuals at ultra-high risk for psychosis as compared to help-seeking individuals who screened negative for an ultra-high risk of psychosis. A total sample of 147 adolescents and young adult who were help seeking for emerging mental health problems participated in the study. The sample was divided into two groups: 39 individuals who met criteria for an ultra-high-risk mental state (UHR), and 108 (NS). The whole sample completed the Interpersonal Sensitivity Measure (IPSM) and the Global Functioning: Social and Role Scale (GF:SS; GF:RS). Mediation analysis was used to explore whether attenuated negative symptoms mediated the relationship between interpersonal sensitivity and social functioning. Individuals with UHR state showed higher IPSM scores and lower GF:SS and GF:RS scores than NS participants. A statistically negative significant correlation between two IPSM subscales (Interpersonal Awareness and Timidity) and GF:SS was found in both groups. Our results also suggest that the relationship between the aforementioned aspects of interpersonal sensitivity and social functioning was not mediated by negative prodromal symptoms. This study suggests that some aspects of interpersonal sensitivity were associated with low level of social functioning. Assessing and treating interpersonal sensitivity may be a promising therapeutic target to improve social functioning in young help-seeking individuals.

  17. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2009-09-01

    "Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...

  18. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2009-09-01

    Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possibl...

  19. Characterization of the punching shear capacity of thin ultra-high performance concrete slabs.

    DOT National Transportation Integrated Search

    2005-01-01

    Ultra-high performance concrete (UHPC) is a relatively new type of concrete that exhibits mechanical properties that are far superior to those of conventional concrete and in some cases rival those of steel. The main characteristics that distinguish ...

  20. Feasibility Study to Evaluate Candidate Materials of Nanofilled Block Copolymers for Use in Ultra High Density Pulsed Power Capacitors

    DTIC Science & Technology

    2015-10-26

    grafting block copolymer (BCP) to nanoparticles (BCP-g-NPs) to chemically match the corona of NPs with BCP matrix has resulted in a highly dispersed BCP...strategy of grafting BCP to nanoparticles in order to chemically match the corona of nanoparticles with BCP matrix has resulted in a highly dispersed...fast energy storage and discharge capabilities. However, the energy storage density of these capacitors is limited by the dielectric properties of

  1. An in-depth Monte Carlo study of lateral electron disequilibrium for small fields in ultra-low density lung: implications for modern radiation therapy

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Battista, Jerry J.

    2012-03-01

    Modern radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use tightly conformed megavoltage x-ray fields to irradiate a tumour within lung tissue. For these conditions, lateral electron disequilibrium (LED) may occur, which systematically perturbs the dose distribution within tumour and nearby lung tissues. The goal of this work is to determine the combination of beam and lung density parameters that cause significant LED within and near the tumour. The Monte Carlo code DOSXYZnrc (National Research Council of Canada, Ottawa, ON) was used to simulate four 20 × 20 × 25 cm3 water-lung-water slab phantoms, which contained lung tissue only, or one of three different centrally located small tumours (sizes: 1 × 1 × 1, 3 × 3 × 3, 5 × 5 × 5 cm3). Dose calculations were performed using combinations of six beam energies (Co-60 up to 18 MV), five field sizes (1 × 1 cm2 up to 15 × 15 cm2), and 12 lung densities (0.001 g cm-3 up to 1 g cm-3) for a total of 1440 simulations. We developed the relative depth-dose factor (RDDF), which can be used to characterize the extent of LED (RDDF <1.0). For RDDF <0.7 severe LED occurred, and both lung and tumour dose were drastically reduced. For example, a 6 MV (3 × 3 cm2) field was used to irradiate a 1 cm3 tumour embedded in lung with ultra-low density of 0.001 g cm-3 (RDDF = 0.2). Dose in up-stream lung and tumour centre were reduced by as much as 80% with respect to the water density calculation. These reductions were worse for smaller tumours irradiated with high energy beams, small field sizes, and low lung density. In conclusion, SBRT trials based on dose calculations in homogeneous tissue are misleading as they do not reflect the actual dosimetric effects due to LED. Future clinical trials should only use dose calculation engines that can account for electron scatter, with special attention given to patients with low lung density (i.e. emphysema

  2. Characterization of electrical noise limits in ultra-stable laser systems.

    PubMed

    Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H

    2016-12-01

    We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.

  3. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  4. Searching for ultra high energy neutrinos from space

    NASA Astrophysics Data System (ADS)

    Santangelo, A.

    2006-07-01

    Observations of neutrinos at Ultra High Energies (UHE), from a few 1018 eV to beyond the decade of 1020 eV, are an extraordinary opportunity to explore this still largely unknown Universe and present us a tremendous experimental challenge. It is indeed expected that observations of UHEνs (and cosmic rays) will provide entirely new information on the sources and on the physical mechanisms able to accelerate these extreme messengers to macroscopic energies. However, as extensively debated in the last few years, UHE particles might, also, carry evidence of unknown physics or of exotic particles, relics of the early Universe. To reach these goals, high statistics, high quality observations are required. This implies innovative experiments with larger acceptances and good understanding of systematic uncertainties. The ground-based Pierre Auger Observatory, whose southern site is expected to be completed in Malargue, Argentina by the end of 2006, will surely provide, in the near future, a more solid observational scenario for UHE Cosmic Rays (UHECR). However, only space-based observatories can reach the effective area necessary to systematically explore the UHE universe. Space-based observatories are likely to be essential for neutrino observations at UHE. In fact only a few UHE neutrinos will be detected by the current planned observatories and only if the most promising estimates for fluxes applies. In the present paper, after summarizing the science rationale behind UHEν studies, we review the status of current experimental efforts, with the main emphasis on the actual generation of space-based observatories. We also briefly discuss the scientific goals, the requirements and the R&D of a “next-generation” space-based mission for UHE observations. The opening of the ESA “Cosmic Vision 2015 2025” long term plan provides, in the very near future, an unique opportunity to develop such a challenging and innovative observatory for UHE.

  5. Approaches for springback reduction when forming ultra high-strength sheet metals

    NASA Astrophysics Data System (ADS)

    Radonjic, R.; Liewald, M.

    2016-11-01

    Nowadays, the automotive industry is challenged constantly by increasing environmental regulations and the continuous enhancement of standards with regard to passenger's safety (NCAP, Part 1). In order to fulfil the aforementioned requirements, the use of ultra high-strength steels in research and industrial applications is of high interest. When forming such materials, the main problem results from the large amount of springback which occurs after the release of the part. This paper shows the applicability of several approaches for the reduction of springback amount by forming of one hat channel shaped component. A novel approach for springack reduction which is based on forming with an alternating blank draw-in is presented as well. In this investigation an ultra high-strength steel of the grade DP 980 was used. The part's measurements were taken at significant cross-sections in order to provide a qualitative comparison between the reference geometry and the part's released shape. The obtained results were analysed and used in order to quantify the success of particular approaches for springback reduction. When taking a curved hat channel shaped component as an example, the results achieved in the investigations showed that it is possible to reduce part shape deviations significantly when using DP 980 as workpiece material.

  6. High density harp for SSCL linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  7. Effect of Curing Period on Properties of Steel and Polypropylene Fibre Reinforced Ultra-High Performance Concrete

    NASA Astrophysics Data System (ADS)

    Smarzewski, Piotr

    2017-10-01

    This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.

  8. High density dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, G.L.

    1996-09-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm{sup 3} of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm{sup {minus}3} with U{sub 3}Si{sub 2} as fuel. High-density uranium compounds offer no real density advantage over U{sub 3}Si{sub 2} and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U{sub 3}Si has approximately a 30% higher uranium density but the density of the U{sub 6}X compounds would yield the factormore » 1.5 needed to achieve 9 g cm{sup {minus}3} uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure {alpha}-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic {gamma} phase at low temperatures where normally {alpha} phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing.« less

  9. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  10. Ultra High Strain Rate Nanoindentation Testing.

    PubMed

    Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl

    2017-06-17

    Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.

  11. Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.

    2017-12-01

    Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.

  12. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  13. Measuring the Non-Line-of-Sight Ultra-High-Frequency Channel in Mountainous Terrain: A Spread-Spectrum, Portable Channel Sounder

    DTIC Science & Technology

    2018-03-01

    ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain

  14. High-resolution angle-resolved photoemission study of electronic structure and charge-density wave formation in HoTe3

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan

    We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.

  15. A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification.

    PubMed

    Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I; Woo, Tom K; Vaidhyanathan, Ramanathan

    2015-12-01

    Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10(-9) m(2)/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams.

  16. Poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) copolymers: A nonlinear dielectric material for high energy density storage

    NASA Astrophysics Data System (ADS)

    Rahimabady, Mojtaba; Qun Xu, Li; Arabnejad, Saeid; Yao, Kui; Lu, Li; Shim, Victor P. W.; Gee Neoh, Koon; Kang, En-Tang

    2013-12-01

    A nonlinear dielectric poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) [P(VDF-HFP)-g-PDMA] graft copolymer with ultra-high energy density of 33 J/cm3 was obtained by thermally initiated radical graft polymerization. It was observed that the dielectric constant of the graft copolymer films was 63% higher than that of P(VDF-HFP), with a large dielectric breakdown strength (>850 MV/m). Theoretical analyses and experimental measurements showed that the significant improvement in the electric polarization was attributed to the introduction of the highly polarizable hydroxyl groups in the PDMA side chains, and the large breakdown strength arose from the strong adhesion bonding of the catechol-containing graft copolymer to the metal electrode.

  17. Development of ultra-high temperature material characterization capabilities using digital image correlation analysis

    NASA Astrophysics Data System (ADS)

    Cline, Julia Elaine

    2011-12-01

    Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.

  18. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential

    PubMed Central

    2014-01-01

    Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278

  19. HOW MANY ULTRA-HIGH ENERGY COSMIC RAYS COULD WE EXPECT FROM CENTAURUS A?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraija, N.; Gonzalez, M. M.; Perez, M.

    2012-07-01

    The Pierre Auger Observatory has associated a few ultra-high energy cosmic rays (UHECRs) with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray, and {gamma}-rays (MeV-TeV) because it is the nearest radio-loud active galactic nucleus. Its spectral energy distribution or spectrum shows two main peaks, the low-energy peak, at an energy of 10{sup -2} eV, and the high-energy peak, at about 150 keV. There is also a faint very high energy (VHE; E {>=} 100 GeV) {gamma}-ray emission fully detected by the High Energy Stereoscopic System experiment. In this work, we describe the entiremore » spectrum: the two main peaks with a synchrotron/synchrotron self-Compton model, and the VHE emission with a hadronic model. We consider p{gamma} and pp interactions. For the p{gamma} interaction, we assume that the target photons are those produced at 150 keV in leptonic processes. On the other hand, for the pp interaction we consider as targets the thermal particle densities in the lobes. Requiring a satisfactory description of the spectra at very high energies with p{gamma} interaction, we obtain an excessive luminosity in UHECRs (even exceeding the Eddington luminosity). However, when considering the pp interaction to describe the {gamma}-spectrum, the number of UHECRs obtained is in agreement with Pierre Auger observations. We also calculate the possible neutrino signal from pp interactions on a Km{sup 3} neutrino telescope using Monte Carlo simulations.« less

  20. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  1. Ultra-lightweight and highly porous carbon aerogels from bamboo pulp fibers as an effective sorbent for water treatment

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Zhang, Xiaofang; Zhao, Jiangqi; Li, Qingye; Ao, Chenghong; Xia, Tian; Zhang, Wei; Lu, Canhui

    Sorbents derived from biomass provide a novel approach to settle issues of organic solvent and/or oil leakage. In this work, a novel carbon aerogel (CA) was prepared as sorbents using the cheap and abundant bamboo pulp fibers as precursors through the pyrolysis method. The CA displayed an ultra-low density (5.65 mg cm-3), high hydrophobicity (water contact angle of 135.9°) and a large specific surface area (379.39 m2 g-1) as well as great mechanical properties. The absorption capacities of CA for organic solvents/oils were extraordinary (50-150 g/g). Particularly, its absorption on organic solvents was superior to many other bio-based CAs. The reusability of CA was also found impressive. For over five absorption-desorption cycles, the CA still showed excellent absorption behaviors on organic solvents and oils. Importantly, the fabrication process of CA is quite simple and environmentally friendly, demonstrating high potentials for future water treatment applications.

  2. Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III

    2001-01-01

    After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.

  3. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs <30 Ω/sq). These CuNW TCEs are subsequently hybridized with aluminum-doped zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  4. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator

    NASA Astrophysics Data System (ADS)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2018-05-01

    We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra-high quality factor of 1.5 × 104 at 0.62 THz. The WGMs are observed in a high resistivity float zone silicon spherical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker theory allows us to unambiguously identify the observed higher order radial THz WGMs.

  5. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers.

    PubMed

    Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G

    2008-05-06

    Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.

  6. Global distribution of the He+ column density observed by Extreme Ultra Violet Imager on the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung

    2017-07-01

    The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.

  7. Ultra-high performance concrete : a state-of-the-art report for the bridge community.

    DOT National Transportation Integrated Search

    2013-06-01

    "The term Ultra-High Performance Concrete (UHPC) refers to a relatively new class of advanced cementitious : composite materials whose mechanical and durability properties far surpass those of conventional concrete. This : class of concrete has been ...

  8. Ultra High Definition Video from the International Space Station (Reel 1)

    NASA Image and Video Library

    2015-06-15

    The view of life in space is getting a major boost with the introduction of 4K Ultra High-Definition (UHD) video, providing an unprecedented look at what it's like to live and work aboard the International Space Station. This important new capability will allow researchers to acquire high resolution - high frame rate video to provide new insight into the vast array of experiments taking place every day. It will also bestow the most breathtaking views of planet Earth and space station activities ever acquired for consumption by those still dreaming of making the trip to outer space.

  9. "Ultra High Dilution 1994" revisited 2015--the state of follow-up research.

    PubMed

    Endler, P Christian; Schulte, Jurgen; Stock-Schroeer, Beate; Stephen, Saundra

    2015-10-01

    The "Ultra High Dilution 1994" project was an endeavour to take stock of the findings and theories on homeopathic extreme dilutions that were under research at the time in areas of biology, biophysics, physics and medicine. The project finally materialized into an anthology assembling contributions of leading scientists in the field. Over the following two decades, it became widely quoted within the homeopathic community and also known in other research communities. The aim of the present project was to re-visit and review the 1994 studies from the perspective of 2015. The original authors from 1994 or close laboratory colleagues were asked to contribute papers covering their research efforts and learnings in the period from 1994 up to 2015. These contributions were edited and cross-referenced, and a selection of further contributions was added. About a dozen contributions reported on follow-up experiments and studies, including further developments in theory. Only few of the models that had seemed promising in 1994 had not been followed up later. Most models presented in the original publication had meanwhile been submitted to intra-laboratory, multicentre or independent scrutiny. The results of the follow-up research seemed to have rewarded the efforts. Furthermore, contributions were provided on new models that had been inspired by the original ones or that may be candidates for further in-depth ultra high dilution (UHD) research. The project "Ultra High Dilution 1994 revisited 2015" is the latest output of what might be considered the "buena vista social club" of homeopathy research. However, it presents new developments and results of the older, established experimental models as well as a general survey of the state of UHD research. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  10. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja

    Shape memory polymers (SMPs) are a rapidly emerging class of smart materials that can be stored in a deformed temporary shape, and can actively return to their original shape upon application of an external stimulus such as heat, pH or light. This behavior is particularly advantageous for minimally invasive biomedical applications comprising embolic/regenerative scaffolds, as it enables a transcatheter delivery of the device to the target site. The focus of this work was to exploit this shape memory behavior of polyurethanes, and develop an efficient embolic SMP foam device for the treatment of intracranial aneurysms.In summary, this work reports amore » novel family of ultra low density polymer foams which can be delivered via a minimally invasive surgery to the aneurysm site, actuated in a controlled manner to efficiently embolize the aneurysm while promoting physiological fluid/blood flow through the reticulated/open porous structure, and eventually biodegrade leading to complete healing of the vasculature.« less

  11. UltraNet Target Parameters. Chapter 1

    NASA Technical Reports Server (NTRS)

    Kislitzin, Katherine T.; Blaylock, Bruce T. (Technical Monitor)

    1992-01-01

    The UltraNet is a high speed network capable of rates up to one gigabit per second. It is a hub based network with four optical fiber links connecting each hub. Each link can carry up to 256 megabits of data, and the hub backplane is capable of one gigabit aggregate throughput. Host connections to the hub may be fiber, coax, or channel based. Bus based machines have adapter boards that connect to transceivers in the hub, while channel based machines use a personality module in the hub. One way that the UltraNet achieves its high transfer rates is by off-loading the protocol processing from the hosts to special purpose protocol engines in the UltraNet hubs. In addition, every hub has a PC connected to it by StarLAN for network management purposes. Although there is hub resident and PC resident UltraNet software, this document treats only the host resident UltraNet software.

  12. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, M. P., E-mail: mpvaldivia@pha.jhu.edu; Stutman, D.; Stoeckl, C.

    2016-11-15

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25–29 J, 8–30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  13. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited).

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Mileham, C; Begishev, I A; Theobald, W; Bromage, J; Regan, S P; Klein, S R; Muñoz-Cordovez, G; Vescovi, M; Valenzuela-Villaseca, V; Veloso, F

    2016-11-01

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  14. Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management

    USGS Publications Warehouse

    Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.

    2012-01-01

    One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.

  15. High-Density Signal Interface Electromagnetic Radiation Prediction for Electromagnetic Compatibility Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew

    Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities aremore » derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.« less

  16. Post occupancy evaluation of energy-efficient behavior in informal housing of high density area

    NASA Astrophysics Data System (ADS)

    Aulia, D. N.; Marpaung, B. O. Y.

    2018-02-01

    The concept of energy-efficient building emphasizes the critical of efficiency in the use of water, electrical energy, and building materials, beginning with design, construction, to the maintenance of the building in the future. This study was conducted to observe the behavior of Energy Saving of the residents in performing everyday activities in the building. The observed variables are the consumption of natural resources (energy, material, water, and land) and the emissions of air, water, and land related to the environment and health. This research is a descriptive qualitative research with the method of data collection is the distribution of questionnaires and observation. The method of analyzing data is posted occupancy evaluation undertaken to obtain patterns of community-based behavior in urban areas. The informal high-density housing area is a typology of population settlements that found in many big cities in Indonesia. This community represents various community groups regarding occupation, education, income, and race. The results of the study concluded that there are five components of energy-saving behavioral formers in housing namely: residential building components, environmental components in occupancy, external occupancy components, components of social activities and elements of business

  17. Gradient and shim technologies for ultra high field MRI

    PubMed Central

    Winkler, Simone A.; Schmitt, Franz; Landes, Hermann; DeBever, Josh; Wade, Trevor; Alejski, Andrew

    2017-01-01

    Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging. PMID:27915120

  18. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P., E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu

    2013-05-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s{sup -1}, median angular diameters of 10', and median velocity widths of 23 km s{sup -1}. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distributionmore » and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of {approx}1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of {approx}10{sup 5}-10{sup 6} M{sub Sun }, H I diameters of {approx}2-3 kpc, and indicative dynamical masses within the H I extent of {approx}10{sup 7}-10{sup 8} M{sub Sun }, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.« less

  19. Fatigue Properties of the Ultra-High Strength Steel TM210A

    PubMed Central

    Kang, Xia; Zhao, Gui-ping

    2017-01-01

    This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = −1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 107 cycles. A double weighted least square method was then used to fit the stress-life (S–N) curve. The S–N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69. PMID:28891934

  20. High-Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D.; Gray, David L.

    1995-01-01

    High-density digital data storage system designed for cost-effective storage of large amounts of information acquired during experiments. System accepts up to 20 channels of 16-bit digital data with overall transfer rates of 500 kilobytes per second. Data recorded on 8-millimeter magnetic tape in cartridges, each capable of holding up to five gigabytes of data. Each cartridge mounted on one of two tape drives. Operator chooses to use either or both of drives. One drive used for primary storage of data while other can be used to make a duplicate record of data. Alternatively, other drive serves as backup data-storage drive when primary one fails.

  1. Stunning Aurora Borealis from Space - Ultra-High Definition 4K

    NASA Image and Video Library

    2016-04-17

    NASA Television’s newest offering, NASA TV UHD, brings ultra-high definition video to a new level with the kind of imagery only the world’s leader in space exploration could provide. Harmonic produced this show exclusively for NASA TV UHD, using time-lapses shot from the International Space Station, showing both the Aurora Borealis and Aurora Australis phenomena that occur when electrically charged electrons and protons in the Earth's magnetic field collide with neutral atoms in the upper atmosphere.

  2. Ultra-high-pressure liquid chromatography-tandem mass spectrometry method for the determination of alkylphenols in soil.

    PubMed

    Wang, Jing; Pan, Hefang; Liu, Zhengzheng; Ge, Fei

    2009-03-20

    A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 microm, 50 mm x 2.1mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0-103.4%, with the RSD<15%. The calibration curves for alkylphenols were linear within the range of 0.01-0.4 microg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 microg/kg.

  3. Ultra-high polarity ceramics induced extrinsic high permittivity of polymers contributing to high permittivity of 2-2 series composites

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi

    2018-01-01

    Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity

  4. Ultra high energy events in ECHOS series and primary energy spectrum

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Iwai, J.; Ogata, T.

    1985-01-01

    The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (P sub t) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.

  5. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  6. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  7. Ultra-Structure database design methodology for managing systems biology data and analyses

    PubMed Central

    Maier, Christopher W; Long, Jeffrey G; Hemminger, Bradley M; Giddings, Morgan C

    2009-01-01

    Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping). Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find Ultra-Structure offers

  8. Ultra High Quality Factor Microtoroid for Chemical and Biomedical Sensing Applications

    DTIC Science & Technology

    2013-08-01

    PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS resonator...PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Lan Yang 314-935-9543 3. DATES COVERED (From - To...change. By using this ultra high-Q WGM resonator, radius >75nm polystyrene nanoparticle are detected in aquatic environment. In addition to polystyrene

  9. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  10. Design, construction, and field testing of an ultra high performance concrete pi-girder bridge.

    DOT National Transportation Integrated Search

    2011-01-01

    The Jakway Park Bridge in Buchanan County, Iowa is the first bridge constructed with a new prestesssed girder system composed of : precast Ultra-High Performance Concrete (UHPC). These girders employ an integral deck to facilitate construction and ar...

  11. Design optimization of ultra-high concentrator photovoltaic system using two-stage non-imaging solar concentrator

    NASA Astrophysics Data System (ADS)

    Wong, C.-W.; Yew, T.-K.; Chong, K.-K.; Tan, W.-C.; Tan, M.-H.; Lim, B.-H.

    2017-11-01

    This paper presents a systematic approach for optimizing the design of ultra-high concentrator photovoltaic (UHCPV) system comprised of non-imaging dish concentrator (primary optical element) and crossed compound parabolic concentrator (secondary optical element). The optimization process includes the design of primary and secondary optics by considering the focal distance, spillage losses and rim angle of the dish concentrator. The imperfection factors, i.e. mirror reflectivity of 93%, lens’ optical efficiency of 85%, circumsolar ratio of 0.2 and mirror surface slope error of 2 mrad, were considered in the simulation to avoid the overestimation of output power. The proposed UHCPV system is capable of attaining effective ultra-high solar concentration ratio of 1475 suns and DC system efficiency of 31.8%.

  12. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Muratoglu, Orhun K.

    2007-12-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.

  13. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    NASA Astrophysics Data System (ADS)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  14. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  15. Design of ultra high performance concrete as an overlay in pavements and bridge decks.

    DOT National Transportation Integrated Search

    2014-08-01

    The main objective of this research was to develop ultra-high performance concrete (UHPC) as a reliable, economic, low carbon foot : print and durable concrete overlay material that can offer shorter traffic closures due to faster construction. The U...

  16. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    NASA Astrophysics Data System (ADS)

    Fowler, T. Kenneth; Li, Hui

    2016-10-01

    > eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Experiments and simulations are suggested to verify the acceleration process.

  17. Ultra-high vacuum compatible preparation chain for intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  18. High density diffusion-free nanowell arrays.

    PubMed

    Takulapalli, Bharath R; Qiu, Ji; Magee, D Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin G; LaBaer, Joshua; Wiktor, Peter

    2012-08-03

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide.

  19. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  20. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  1. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    NASA Astrophysics Data System (ADS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  2. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  3. Application of Magnetic Suspension and Balance Systems to Ultra-High Reynolds Number Facilities

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1996-01-01

    The current status of wind tunnel magnetic suspension and balance system development is briefly reviewed. Technical work currently underway at NASA Langley Research Center is detailed, where it relates to the ultra-high Reynolds number application. The application itself is addressed, concluded to be quite feasible, and broad design recommendations given.

  4. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  5. Neutrinos, ultra-high-energy cosmic rays and fundamental physics

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2001-05-01

    In the first lecture, aspects of neutrino physics beyond the Standard Model are emphasized, including the emerging default options for atmospheric and solar neutrino oscillations, namely νμ-->ντ and νe-->νμ,τ respectively, and the need to check them, the prospects opened up by the successful starts of SNO and K2K and the opportunities for future long-baseline neutrino experiments. In the second lecture, it is discussed how cosmic rays may provide opportunities for probing fundamental physics. For example, ultra-high-energy cosmic rays might originate from the decays of metastable heavy particles, and astrophysical γ rays can be used to test models of quantum gravity. Both scenarios offer ways to avoid the GZK cut-off, and might best be probed using high-energy astrophysical neutrinos. .

  6. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  7. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGES

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  8. A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification

    PubMed Central

    Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D.; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I.; Woo, Tom K.; Vaidhyanathan, Ramanathan

    2015-01-01

    Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10−9 m2/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams. PMID:26824055

  9. High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces

    NASA Astrophysics Data System (ADS)

    Ozdemir, Aytekin

    Metasurfaces which emerged as two-dimensional counterparts of metamaterials, facilitate the realization of arbitrary phase distributions using large arrays with subwavelength and ultra-thin features. Even if metasurfaces are ultra-thin, they still effectively manipulate the phase, amplitude, and polarization of light in transmission or reflection mode. In contrast, conventional optical components are bulky, and they lose their functionality at sub-wavelength scales, which requires conceptually new types of nanoscale optical devices. On the other hand, as the optical systems shrink in size day by day, conventional bulky optical components will have tighter alignment and fabrication tolerances. Since metasurfaces can be fabricated lithographically, alignment can be done during lithographic fabrication, thus eliminating the need for post-fabrication alignments. In this work, various types of metasurface applications are thoroughly investigated for robust wavefront engineering with enhanced characteristics in terms of broad bandwidth, high efficiency and active tunability, while beneficial for application. Plasmonic metasurfaces are not compatible with the CMOS process flow, and, additionally their high absorption and ohmic loss is problematic in transmission based applications. Dielectric metasurfaces, however, offer a strong magnetic response at optical frequencies, and thus they can offer great opportunities for interacting not only with the electric component of a light field, but also with its magnetic component. They show great potential to enable practical device functionalities at optical frequencies, which motivates us to explore them one step further on wavefront engineering and imaging sensor platforms. Therefore, we proposed an efficient ultra-thin flat metalens at near-infrared regime constituted by silicon nanodisks which can support both electric and magnetic dipolar Mie-type resonances. These two dipole resonances can be overlapped at the same frequency

  10. Modification of Existing Prestressed Girder Cross-Sections for the Optimal Structural Use of Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2008-10-22

    Ultra High Performance Concrete (UHPC) is a class of cementitious materials that share similar characteristics including very large compressive strengths, tensile strength greater than conventional concrete and high durability. The material consists ...

  11. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    DOEpatents

    Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  12. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  13. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  14. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  15. Chemical fingerprint of Ganmaoling granule by double-wavelength ultra high performance liquid chromatography and ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Lou, Qiong; Ye, Xiaolan; Zhou, Yingyi; Li, Hua; Song, Fenyun

    2015-06-01

    A method incorporating double-wavelength ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was developed for the investigation of the chemical fingerprint of Ganmaoling granule. The chromatographic separations were performed on an ACQUITY UPLC HSS C18 column (2.1 × 50 mm, 1.8 μm) at 30°C using gradient elution with water/formic acid (1%) and acetonitrile at a flow rate of 0.4 mL/min. A total of 11 chemical constituents of Ganmaoling granule were identified from their molecular weight, UV spectra, tandem mass spectrometry data, and retention behavior by comparing the results with those of the reference standards or literature. And 25 peaks were selected as the common peaks for fingerprint analysis to evaluate the similarities among 25 batches of Ganmaoling granule. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis showed that the important chemical markers that could distinguish the different batches were revealed as 4,5-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4-O-caffeoylquinic acid. This is the first report of the ultra high performance liquid chromatography chemical fingerprint and component identification of Ganmaoling granule, which could lay a foundation for further studies of Ganmaoling granule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  17. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  18. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  19. Blazar 3C 66A: Another extragalactic source of ultra-high-energy gamma-ray photons

    NASA Astrophysics Data System (ADS)

    Neshpor, Yu. I.; Stepanyan, A. A.; Kalekin, O. P.; Fomin, V. P.; Chalenko, N. N.; Shitov, V. G.

    1998-03-01

    he observations of the object 3C 66A which were carried out with the GT-48 gamma-ray telescope at the Crimean Astrophysical Observatory in November-December 1996 revealed a flux of ultra-high-energy (>10^12 eV) gamma-ray photons from this blazar. According to preliminary estimates, the photon flux is (31) 10^11 photons cm^-2 s^-1. The blazar 3C 66A is the third extragalactic object from which a flux of ultra- high-energy gamma-ray photons was detected. Fluxes of gamma-ray photons were previously detected from the galaxies Mk 421 and Mk 501 at the Whipple observatory. This result provides further evidence that active processes proceed in blazars which are accompanied by the generation of cosmic rays responsible for the emission of gamma-ray photons.

  20. Studies of Muons in Extensive Air Showers from Ultra-High Energy Cosmic Rays Observed with the Telescope Array Surface Detector

    NASA Astrophysics Data System (ADS)

    Takeishi, R.; Sagawa, H.; Fukushima, M.; Takeda, M.; Nonaka, T.; Kawata, K.; Kido, E.; Sakurai, N.; Okuda, T.; Ogio, S.; Matthews, J. N.; Stokes, B.

    The number of muons in the air shower induced by ultra-high energy cosmic rays (UHECRs) has been measured with surface detector (SD) arrays of various experiments. Monte Carlo (MC) prediction of the number of muons in air showers depends on hadronic interaction models and the primary cosmic ray composition. By comparing the measured number of muons with the MC prediction, hadronic interaction models can be tested. The Pierre Auger Observatory reported that the number of muons measured by water Cherenkov type SD is about 1.8 times larger than the MC prediction for proton with QGSJET II-03 model. The number of muons in the Auger data is also larger than the MC prediction for iron. The Telescope Array experiment adopts plastic scintillator type SD, which is sensitive to the electromagnetic component that is the major part of secondary particles in the air shower. To search for the high muon purity condition in air showers observed by the TA, we divided air shower events into subsets by the zenith angle θ, the azimuth angle ϕ relative to the shower arrival direction projected onto the ground, and the distance R from shower axis. As a result, we found subsets with the high muon purity 65%, and compared the charge density between observed data and MC. The typical ratios of the charge density of the data to that of the MC are 1.71 ± 0.10 at 1870 m < R < 2150 m and 3.24 ± 0.40 at 2850 m < R < 3280 m. The difference in the charge density between the data and the MC is larger at the higher muon purity. These results imply that the excess of the charge density in the data is partly explained by the muon excess.

  1. Tracking the unconscious generation of free decisions using ultra-high field fMRI.

    PubMed

    Bode, Stefan; He, Anna Hanxi; Soon, Chun Siong; Trampel, Robert; Turner, Robert; Haynes, John-Dylan

    2011-01-01

    Recently, we demonstrated using functional magnetic resonance imaging (fMRI) that the outcome of free decisions can be decoded from brain activity several seconds before reaching conscious awareness. Activity patterns in anterior frontopolar cortex (BA 10) were temporally the first to carry intention-related information and thus a candidate region for the unconscious generation of free decisions. In the present study, the original paradigm was replicated and multivariate pattern classification was applied to functional images of frontopolar cortex, acquired using ultra-high field fMRI at 7 Tesla. Here, we show that predictive activity patterns recorded before a decision was made became increasingly stable with increasing temporal proximity to the time point of the conscious decision. Furthermore, detailed questionnaires exploring subjects' thoughts before and during the decision confirmed that decisions were made spontaneously and subjects were unaware of the evolution of their decision outcomes. These results give further evidence that FPC stands at the top of the prefrontal executive hierarchy in the unconscious generation of free decisions.

  2. Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve

    Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.

  3. Density estimation in tiger populations: combining information for strong inference

    USGS Publications Warehouse

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Delampady, Mohan; Nichols, James D.; Karanth, K. Ullas; Macdonald, David W.

    2012-01-01

    A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture–recapture data. The model, which combined information, provided the most precise estimate of density (8.5 ± 1.95 tigers/100 km2 [posterior mean ± SD]) relative to a model that utilized only one data source (photographic, 12.02 ± 3.02 tigers/100 km2 and fecal DNA, 6.65 ± 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.

  4. Density estimation in tiger populations: combining information for strong inference.

    PubMed

    Gopalaswamy, Arjun M; Royle, J Andrew; Delampady, Mohan; Nichols, James D; Karanth, K Ullas; Macdonald, David W

    2012-07-01

    A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture-recapture data. The model, which combined information, provided the most precise estimate of density (8.5 +/- 1.95 tigers/100 km2 [posterior mean +/- SD]) relative to a model that utilized only one data source (photographic, 12.02 +/- 3.02 tigers/100 km2 and fecal DNA, 6.65 +/- 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.

  5. Advanced technique for ultra-thin residue inspection with sub-10nm thickness using high-energy back-scattered electrons

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee

    2018-03-01

    Recently the aspect ratio of capacitor and via hole of memory semiconductor device has been dramatically increasing in order to store more information in a limited area. A small amount of remained residues after etch process on the bottom of the high aspect ratio structure can make a critical failure in device operation. Back-scattered electrons (BSE) are mainly used for inspecting the defect located at the bottom of the high aspect ratio structure or analyzing the overlay of the multi-layer structure because these electrons have a high linearity with the direction of emission and a high kinetic energy above 50eV. However, there is a limitation on that it cannot detect ultra-thin residue material having a thickness of several nanometers because the surface sensitivity is extremely low. We studied the characteristics of BSE spectra using Monte Carlo simulations for several cases which the high aspect ratio structures have extreme microscopic residues. Based on the assumption that most of the electrons emitted without energy loss are localized on the surface, we selected the detection energy window which has a range of 20eV below the maximum energy of the BSE. This window section is named as the high-energy BSE region. As a result of comparing the detection sensitivity of the conventional and the high-energy BSE detection mode, we found that the detection sensitivity for the residuals which have 2nm thickness is improved by more than 10 times in the high-energy BSE mode. This BSE technology is a new inspection method that can greatly be improved the inspection sensitivity for the ultra-thin residual material presented in the high aspect ratio structure, and its application will be expanded.

  6. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    NASA Astrophysics Data System (ADS)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  7. Road density

    EPA Pesticide Factsheets

    Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  8. Thermodynamical transcription of density functional theory with minimum Fisher information

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2018-03-01

    Ghosh, Berkowitz and Parr designed a thermodynamical transcription of the ground-state density functional theory and introduced a local temperature that varies from point to point. The theory, however, is not unique because the kinetic energy density is not uniquely defined. Here we derive the expression of the phase-space Fisher information in the GBP theory taking the inverse temperature as the Fisher parameter. It is proved that this Fisher information takes its minimum for the case of constant temperature. This result is consistent with the recently proven theorem that the phase-space Shannon information entropy attains its maximum at constant temperature.

  9. Cortico-Striatal GABAergic and Glutamatergic Dysregulations in Subjects at Ultra-High Risk for Psychosis Investigated with Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Reyes-Madrigal, Francisco; Mao, Xiangling; León-Ortiz, Pablo; Rodríguez-Mayoral, Oscar; Solís-Vivanco, Rodolfo; Favila, Rafael; Graff-Guerrero, Ariel; Shungu, Dikoma C.

    2016-01-01

    Background: Dysregulations of the major inhibitory and excitatory amino neurotransmitter systems of γ-aminobutyric acid and glutamate, respectively, have been described in patients with schizophrenia. However, it is unclear whether these abnormalities are present in subjects at ultra-high risk for psychosis. Methods: Twenty-three antipsychotic naïve subjects at ultra-high risk and 24 healthy control subjects, matched for age, sex, handedness, cigarette smoking, and parental education, underwent proton magnetic resonance spectroscopy scans in the dorsal caudate bilaterally and the medial prefrontal cortex at 3T. Levels of γ-aminobutyric acid and of the combined resonance of glutamate and glutamine (Glx) were obtained using the standard J-editing technique and expressed as peak area ratios relative to the synchronously acquired unsuppressed voxel water signal. Results: Higher levels of γ-aminobutyric acid (P<.001) and Glx (P=.007) were found in the dorsal caudate of the subjects at ultra-high risk than in the healthy controls. In the medial prefrontal cortex, likewise, both γ-aminobutyric acid (P=.03) and Glx (P=.006) levels were higher in the ultra-high risk group than in the healthy controls. No group differences were found for any of the other metabolites (N-acetylaspartate, total choline, or total creatine) in the 2 regions of interest. Conclusions: This study presents the first evidence of abnormal elevations, in subjects at ultra-high risk, of γ-aminobutyric acid and Glx in 2 brain regions that have been implicated in the pathophysiology of psychosis, warranting longitudinal studies to assess whether these neurotransmitter abnormalities can serve as noninvasive biomarkers of conversion risk to psychosis as well as of illness progression and treatment response. PMID:26364273

  10. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  11. High-Density Stretchable Electrode Grids for Chronic Neural Recording

    PubMed Central

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F.; Buzsáki, György; Vörös, János

    2018-01-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. PMID:29488263

  12. Challenges of assessment and treatment of ultra high risk for psychosis in an adolescent.

    PubMed

    Boričević Maršanić, Vlatka; Jukić, Josipa; Flander, Mia

    2018-06-01

    The onset of psychosis is typically preceded by a prodromal phase that is characterised by the emergence of "attenuated" psychotic symptoms. This phase is described as ultra-high risk (UHR) or at-risk mental state (ARMS) of psychosis. Criteria have been established for identifying these young people who are at clinical high risk. People at ultra-high risk (UHR) of psychosis have about 30% chance of developing the illness within two years. This category was introduced with the goal of developing treatments for prevention of psychotic disorders. Recent research suggests that early interventions appear to be effective in delaying and even preventing the onset of psychosis. These treatments include antipsychotic medication, nutritional supplements such as omega-3 fatty acids and psychological treatment. Cognitive behavioral therapy (CBT) has been tested as a potentially effective intervention in this group. Here we describe a case of a male adolescent with UHR psychotic symptoms with focus on challenges of assessing the UHR in adolescents and issues of providing effective age appropriate interventions.

  13. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets whenmore » intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at

  14. Contributions and mechanisms of action of graphite nanomaterials in ultra high performance concrete

    NASA Astrophysics Data System (ADS)

    Sbia, Libya Ahmed

    Ultra-high performance concrete (UHPC) reaches high strength and impermeability levels by using a relatively large volume fraction of a dense binder with fine microstructure in combination with high-quality aggregates of relatively small particle size, and reinforcing fibers. The dense microstructure of the cementitions binder is achieved by raising the packing density of the particulate matter, which covers sizes ranging from few hundred nanometers to few millimeters. The fine microstructure of binder in UHPC is realized by effective use of pozzolans to largely eliminate the coarse crystalline particles which exist among cement hydrates. UHPC incorporates (steel) fibers to overcome the brittleness of its dense, finely structured cementitious binder. The main thrust of this research is to evaluate the benefits of nanmaterials in UHPC. The dense, finely structure cementitious binder as well as the large volume fraction of the binder in UHPC benefit the dispersion of nanomaterials, and their interfacial interactions. The relatively close spacing of nanomaterials within the cementitious binder of UHPC enables them to render local reinforcement effects in critically stressed regions such as those in the vicinity of steel reinforcement and prestressing strands as well as fibers. Nanomaterials can also raise the density of the binder in UHPC by extending the particle size distribution down to the few nanometers range. Comprehensive experimental studies supported by theoretical investigations were undertake in order to optimize the use of nanomaterials in UHPC, identity the UHPC (mechanical) properties which benefit from the introduction of nanomaterials, and define the mechanisms of action of nanomaterials in UHPC. Carbon nanofiber was the primary nanomaterial used in this investigation. Some work was also conducted with graphite nanoplates. The key hypotheses of the project were as follows: (i) nanomaterials can make important contributions to the packing density of the

  15. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less

  16. Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared

    NASA Technical Reports Server (NTRS)

    Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.

  17. Optical Method for Detecting Displacements and Strains at Ultra-High Temperatures During Thermo-Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Roth, Mark C. (Inventor); Smith, Russell W. (Inventor); Sikora, Joseph G. (Inventor); Rivers, H. Kevin (Inventor); Johnston, William M. (Inventor)

    2016-01-01

    An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.

  18. Ultra-high-resolution X-ray structure of proteins.

    PubMed

    Lecomte, C; Guillot, B; Muzet, N; Pichon-Pesme, V; Jelsch, C

    2004-04-01

    The constant advances in synchrotron radiation sources and crystallogenesis methods and the impulse of structural genomics projects have brought biocrystallography to a context favorable to subatomic resolution protein and nucleic acid structures. Thus, as soon as such precision can be frequently obtained, the amount of information available in the precise electron density should also be easily and naturally exploited, similarly to the field of small molecule charge density studies. Indeed, the use of a nonspherical model for the atomic electron density in the refinement of subatomic resolution protein structures allows the experimental description of their electrostatic properties. Some methods we have developed and implemented in our multipolar refinement program MoPro for this purpose are presented. Examples of successful applications to several subatomic resolution protein structures, including the 0.66 angstrom resolution human aldose reductase, are described.

  19. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  20. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  1. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE PAGES

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...

    2017-06-12

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  2. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  3. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    PubMed

    Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A

    2016-09-28

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  4. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    PubMed Central

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  5. X-ray Emission Characteristics of Ultra-High Energy Density Relativistic Plasmas Created by Ultrafast Laser Irradiation of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.

    2014-10-01

    Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  6. The enigmatic ultra-long run-out of seafloor density driven flows

    NASA Astrophysics Data System (ADS)

    Dorrell, R. M.

    2017-12-01

    Dilute, particulate-laden, density-driven flows - turbidity currents - are a predominant mechanism for transporting sediment from source to sink in deep marine environments. These flows sculpt channels on the seafloor and, as evidenced by a wealth of bathymetric data, can travel for >1000km, forming some of the largest sedimentary landforms on the planet. For turbidity currents to travel such large dsitances, sediment must be self-maintained in suspension, i.e., be in a state of autosuspension. It has been shown that such self-maintained sediment suspensions can only occur whilst inertial forces are greater than gravitational forces, entailing supercritical flow. This conclusion is paradoxical, as inertia dominated flows rapidly entrain fluid, thereby thickening and slowing to become subcritical. However, current theory can only truly be applied to the proximal upper slope regions of seafloor channels where incised flows are fully confined. This contrasts with the distal reaches of long run out turbidity current systems, where the flow is only partially confined through self-channelization. Here it is shown that overspill of partially confined flow has a significant effect on the hydro- and morphodynamics of turbidity current systems. A new model is derived that shows that channel overspill acts to negate the effects of ambient fluid entrainment: a dynamic balance that limits increases in flow depth and maintains supercritical flow throughout the channel. In the new model mass, momentum and energy conservation is modulated by flow overspill onto channel banks, necessarily requiring description of the vertical structure of the flow. Analysis of continuously stratified steady state flow dynamics shows that the integration of overspill and stratification is necessary to enable maintained autosuspension and thus predict the ultra-long run-out of turbidity currents.

  7. Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates, and enhanced features

    NASA Astrophysics Data System (ADS)

    Gelderblom, Erik C.; Vos, Hendrik J.; Mastik, Frits; Faez, Telli; Luan, Ying; Kokhuis, Tom J. A.; van der Steen, Antonius F. W.; Lohse, Detlef; de Jong, Nico; Versluis, Michel

    2012-10-01

    The Brandaris 128 ultra-high-speed imaging facility has been updated over the last 10 years through modifications made to the camera's hardware and software. At its introduction the camera was able to record 6 sequences of 128 images (500 × 292 pixels) at a maximum frame rate of 25 Mfps. The segmented mode of the camera was revised to allow for subdivision of the 128 image sensors into arbitrary segments (1-128) with an inter-segment time of 17 μs. Furthermore, a region of interest can be selected to increase the number of recordings within a single run of the camera from 6 up to 125. By extending the imaging system with a laser-induced fluorescence setup, time-resolved ultra-high-speed fluorescence imaging of microscopic objects has been enabled. Minor updates to the system are also reported here.

  8. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  9. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  10. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  11. Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping.

    PubMed

    Branco, Paulo; Seixas, Daniela; Castro, São Luís

    2018-03-01

    Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Ultra-high-sensitive optical micro-angiography provides depth resolved visualization of microcirculations within human skin under psoriatic conditions

    NASA Astrophysics Data System (ADS)

    Qin, Jia; An, Lin; Wang, Ruikang

    2011-03-01

    Adequate functioning of the peripheral micro vascular in human skin is necessary to maintain optimal tissue perfusion and preserve normal hemodynamic function. There is a growing body of evidence suggests that vascular abnormalities may directly related to several dermatologic diseases, such as psoriasis, port-wine stain, skin cancer, etc. New in vivo imaging modalities to aid volumetric microvascular blood perfusion imaging are there for highly desirable. To address this need, we demonstrate the capability of ultra-high sensitive optical micro angiography to allow blood flow visualization and quantification of vascular densities of lesional psoriasis area in human subject in vivo. The microcirculation networks of lesion and non-lesion skin were obtained after post processing the data sets captured by the system. With our image resolution (~20 μm), we could compare these two types of microcirculation networks both qualitatively and quantitatively. The B-scan (lateral or x direction) cross section images, en-face (x-y plane) images and the volumetric in vivo perfusion map of lesion and non-lesion skin areas were obtained using UHS-OMAG. Characteristic perfusion map features were identified between lesional and non-lesional skin area. A statistically significant difference between vascular densities of lesion and non-lesion skin area was also found using a histogram based analysis. UHS-OMAG has the potential to differentiate the normal skin microcirculation from abnormal human skin microcirculation non-invasively with high speed and sensitivity. The presented data demonstrates the great potential of UHS-OMAG for detecting and diagnosing skin disease such as psoriasis in human subjects.

  13. Experimental evidence of mobility enhancement in short-channel ultra-thin body double-gate MOSFETs by magnetoresistance technique

    NASA Astrophysics Data System (ADS)

    Chaisantikulwat, W.; Mouis, M.; Ghibaudo, G.; Cristoloveanu, S.; Widiez, J.; Vinet, M.; Deleonibus, S.

    2007-11-01

    Double-gate transistor with ultra-thin body (UTB) has proved to offer advantages over bulk device for high-speed, low-power applications. There is thus a strong need to obtain an accurate understanding of carrier transport and mobility in such device. In this work, we report for the first time an experimental evidence of mobility enhancement in UTB double-gate (DG) MOSFETs using magnetoresistance mobility extraction technique. Mobility in planar DG transistor operating in single- and double-gate mode is compared. The influence of different scattering mechanisms in the channel is also investigated by obtaining mobility values at low temperatures. The results show a clear mobility improvement in double-gate mode compared to single-gate mode mobility at the same inversion charge density. This is explained by the role of volume inversion in ultra-thin body transistor operating in DG mode. Volume inversion is found to be especially beneficial in terms of mobility gain at low-inversion densities.

  14. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, Nathaniel J.

    2014-01-08

    The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new formsmore » of current drive in regimes appropriate for new fusion concepts.« less

  15. The Galactic Magnetic Field and Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Urban, Federico R.

    The Galactic Magnetic Field is a peeving and importune screen between Ultra-High Energy Cosmic Rays and us cosmologists, engaged in the combat to unveil their properties and origin, as it deviates their paths towards the Earth in unpredictable ways. I will, in this order: briefly review the available field models on the market; explain a little trick which allows one to obtain cosmic rays deflection variances without even knowing what the (random) GMF model is; and argue that there is a lack of anisotropy in the large scales cosmic rays signal, which the Galactic field can do nothing about.

  16. Institute for High Energy Density Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, Alan

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  17. Information theory lateral density distribution for Earth inferred from global gravity field

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1981-01-01

    Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.

  18. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  19. Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)

    NASA Technical Reports Server (NTRS)

    Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.

    1991-01-01

    The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.

  20. Raman spectroscopy on simple molecular systems at very high density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; LeSar, R.S.; Moore, D.S.

    1988-01-01

    We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoreticalmore » understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs.« less

  1. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners.

    PubMed

    Chlíbková, Daniela; Knechtle, Beat; Rosemann, Thomas; Tomášková, Ivana; Novotný, Jan; Žákovská, Alena; Uher, Tomáš

    2015-01-01

    Exercise-associated hyponatremia (EAH), rhabdomyolysis and renal failure appear to be a unique problem in ultra-endurance racers. We investigated the combined occurrence of EAH and rhabdomyolysis in seven different ultra-endurance races and disciplines (i.e. multi-stage mountain biking, 24-h mountain biking, 24-h ultra-running and 100-km ultra-running). Two (15.4%) ultra-runners (man and woman) from hyponatremic ultra-athletes (n = 13) and four (4%) ultra-runners (four men) from the normonatremic group (n = 100) showed rhabdomyolysis following elevated blood creatine kinase (CK) levels > 10,000 U/L without the development of renal failure and the necessity of a medical treatment. Post-race creatine kinase, plasma and urine creatinine significantly increased, while plasma [Na(+)] and creatine clearance decreased in hyponatremic and normonatremic athletes, respectively. The percentage increase of CK was higher in the hyponatremic compared to the normonatremic group (P < 0.05). Post-race CK levels were higher in ultra-runners compared to mountain bikers (P < 0.01), in faster normonatremic (P < 0.05) and older and more experienced hyponatremic ultra-athletes (P < 0.05). In all finishers, pre-race plasma [K(+)] was related to post-race CK (P < 0.05). Hyponatremic ultra-athletes tended to develop exercise-induced rhabdomyolysis more frequently than normonatremic ultra-athletes. Ultra-runners tended to develop rhabdomyolysis more frequently than mountain bikers. We found no association between post-race plasma [Na(+)] and CK concentration in both hypo- and normonatremic ultra-athletes.

  2. High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices.

    PubMed

    Wang, Wenyan; Hao, Yuying; Cui, Yanxia; Tian, Ximin; Zhang, Ye; Wang, Hua; Shi, Fang; Wei, Bin; Huang, Wei

    2014-03-10

    Metal nanogratings as one of the promising architectures for effective light trapping in organic photovoltaics (OPVs) have been actively studied over the past decade. Here we designed a novel metal nanowall grating with ultra-small period and ultra-high aspect-ratio as the back electrode of the OPV device. Such grating results in the strong hot spot effect in-between the neighboring nanowalls and the localized surface plasmon effect at the corners of nanowalls. These combined effects make the integrated absorption efficiency of light over the wavelength range from 400 to 650 nm in the active layer for the proposed structure, with respect to the equivalent planar structure, increases by 102% at TM polarization and by 36.5% at the TM/TE hybrid polarization, respectively. Moreover, it is noted that the hot spot effect in the proposed structure is more effective for ultra-thin active layers, which is very favorable for the exciton dissociation and charge collection. Therefore such a nanowall grating is expected to improve the overall performance of OPV devices.

  3. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  4. High-Density Lipoproteins (HDL) – Nature’s Multi-Functional Nanoparticles

    PubMed Central

    Kuai, Rui; Li, Dan; Chen, Y. Eugene; Moon, James J.; Schwendeman, Anna

    2016-01-01

    High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well known as the ―good‖ cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and anti-oxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultra-small size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 hours), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize: a) clinical pharmacokinetics and safety of reconstituted HDL products, b) comparison of HDL with inorganic and other organic nanoparticles, c) the rationale for using HDL as drug delivery vehicles for important therapeutic indications, d) the current state-of-the-art in HDL production, and e) HDL-based drug delivery strategies for small molecules, peptides/proteins, nucleic acids, and imaging agents targeted to various organs. PMID:26889958

  5. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  6. Review of total cross sections and forward scattering parameters at ultra-high energies

    NASA Astrophysics Data System (ADS)

    Block, M. M.; White, A. R.

    1991-10-01

    We review the field of the elastic scattering of pp and (bar p)p at the ultra-high energies. The recent total cross section, sigma (sub tot), and rho-value results from the Fermilab Tevatron Collider experiments presented at the 4th 'Blois' Workshop on Elastic and Diffractive Scattering (Elba, Italy, in May, 1991), allow us a comprehensive overview of the field.

  7. Anterior Diabetic Retinopathy Studied by Ultra-widefield Angiography

    PubMed Central

    Bae, Kunho; Lee, Ju Yeon; Kim, Tae Hyup; Cho, Ga Eun; Ahn, Jeeyun; Kim, Sang Jin; Kim, Jae Hyun

    2016-01-01

    Purpose To evaluate the prevalence of anterior type diabetic retinopathy (DR) using ultra-widefield fluorescein angiography and to identify the factors associated with anterior type DR incidence. Methods A retrospective case review was used in this study. Patients with non-proliferative diabetic retinopathy (NPDR) underwent examination by ultra-widefield fluorescein angiography, and were classified into anterior, posterior, or diffuse DR groups. Anterior DR was defined if diabetic retinal changes were noted only at the location anterior to the imaginary circle bordered by the Early Treatment Diabetic Retinopathy Study seven-standard fields. Correlations between demographic data, as well as systemic and ocular factors, and the incidence of NPDR types were evaluated. Results Among the 234 eyes of 234 patients with NPDR, 25 eyes (10.7%) demonstrated anterior DR. Anterior DR was observed in 10 eyes (30.3%) of patients having mild NPDR, three eyes (4.8%) of moderate NPDR patients, and in 12 eyes (7.1%) of severe NPDR patients (p < 0.001). The incidence of anterior DR positively correlated with lower hemoglobin A1c levels and with greater high-density lipoprotein levels following multiple logistic regression analysis (p < 0.001). The mean hemoglobin A1c level was 7.03 ± 0.99% in anterior DR, 7.99 ± 1.74% in posterior DR, and 7.94 ± 1.39% in diffuse DR patients (p = 0.003). The mean high-density lipoprotein level was 51.2 ± 12.5 mg/dL in anterior, 49.7 ± 15.2 mg/dL in posterior, and 45.2 ± 13.1 mg/dL in diffuse DR patients (p = 0.010). Conclusions Diabetic retinal changes confined to an anterior location were more frequently noted in earlier stages of NPDR. The incidence of DR sparing posterior retinal involvement was related to favorable blood sugar and lipid profiles. PMID:27729754

  8. Anterior Diabetic Retinopathy Studied by Ultra-widefield Angiography.

    PubMed

    Bae, Kunho; Lee, Ju Yeon; Kim, Tae Hyup; Cho, Ga Eun; Ahn, Jeeyun; Kim, Sang Jin; Kim, Jae Hyun; Kang, Se Woong

    2016-10-01

    To evaluate the prevalence of anterior type diabetic retinopathy (DR) using ultra-widefield fluorescein angiography and to identify the factors associated with anterior type DR incidence. A retrospective case review was used in this study. Patients with non-proliferative diabetic retinopathy (NPDR) underwent examination by ultra-widefield fluorescein angiography, and were classified into anterior, posterior, or diffuse DR groups. Anterior DR was defined if diabetic retinal changes were noted only at the location anterior to the imaginary circle bordered by the Early Treatment Diabetic Retinopathy Study seven-standard fields. Correlations between demographic data, as well as systemic and ocular factors, and the incidence of NPDR types were evaluated. Among the 234 eyes of 234 patients with NPDR, 25 eyes (10.7%) demonstrated anterior DR. Anterior DR was observed in 10 eyes (30.3%) of patients having mild NPDR, three eyes (4.8%) of moderate NPDR patients, and in 12 eyes (7.1%) of severe NPDR patients ( p < 0.001). The incidence of anterior DR positively correlated with lower hemoglobin A1c levels and with greater high-density lipoprotein levels following multiple logistic regression analysis ( p < 0.001). The mean hemoglobin A1c level was 7.03 ± 0.99% in anterior DR, 7.99 ± 1.74% in posterior DR, and 7.94 ± 1.39% in diffuse DR patients ( p = 0.003). The mean high-density lipoprotein level was 51.2 ± 12.5 mg/dL in anterior, 49.7 ± 15.2 mg/dL in posterior, and 45.2 ± 13.1 mg/dL in diffuse DR patients ( p = 0.010). Diabetic retinal changes confined to an anterior location were more frequently noted in earlier stages of NPDR. The incidence of DR sparing posterior retinal involvement was related to favorable blood sugar and lipid profiles.

  9. Carbon fiber on polyimide ultra-microelectrodes

    NASA Astrophysics Data System (ADS)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  10. Carbon fiber on polyimide ultra-microelectrodes.

    PubMed

    Gillis, Winthrop F; Lissandrello, Charles A; Shen, Jun; Pearre, Ben W; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J; Chew, Daniel J; White, Alice E; Otchy, Timothy M; Gardner, Timothy J

    2018-02-01

    Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.

  11. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    NASA Astrophysics Data System (ADS)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-11-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  12. Control of Hydrogen Environment Embrittlement of Ultra-High Strength Steel for Naval Application

    DTIC Science & Technology

    2005-07-01

    load cracking behavior of maraging steels in hydrogen. Corrosion , 29, 1973, 299-304. D.A. Jones, A.F. Jankowski and G.A. Davidson, "Diffusion of...short crack case. This behavior is relevant to small surface cracks in coated UHSS components such as a landing gear. IV.B. Effect of Steel Composition ...PRESSURE (k N /m 2) Figure 26. The effect of H2 pressure on the HEAC growth rate for a ultra-high strength 18Ni Maraging steel stressed in a highly

  13. Characterization of an Ultra-High Temperature Ceramic Composite

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Opila, Elizabeth J.; Robinson, Raymond C.; Lorincz, Jonathan A.

    2004-01-01

    Ultra-high temperature ceramics (UHTC) are of interest for hypersonic vehicle leading edge applications. Monolithic UHTCs are of concern because of their low fracture toughness and brittle behavior. UHTC composites (UHTCC) are being investigated as a possible approach to overcome these deficiencies. In this study a small sample of a UHTCC was evaluated by limited mechanical property tests, furnace oxidation exposures, and oxidation exposures in a flowing environment generated by an oxy-acetylene torch. The composite was prepared from a carbon fiber perform using ceramic particulates and a pre-cerns about microcracking due to thermal expansion mismatch between the matrix and the carbon fiber reinforcements, and about the oxidation resistance of the HfB2-SiC coating layer and the composite constituents. However, positive performance in the torch test warrants further study of this concept.

  14. Physics of ultra-high bioproductivity in algal photobioreactors

    NASA Astrophysics Data System (ADS)

    Greenwald, Efrat; Gordon, Jeffrey M.; Zarmi, Yair

    2012-04-01

    Cultivating algae at high densities in thin photobioreactors engenders time scales for random cell motion that approach photosynthetic rate-limiting time scales. This synchronization allows bioproductivity above that achieved with conventional strategies. We show that a diffusion model for cell motion (1) accounts for high bioproductivity at irradiance values previously deemed restricted by photoinhibition, (2) predicts the existence of optimal culture densities and their dependence on irradiance, consistent with available data, (3) accounts for the observed degree to which mixing improves bioproductivity, and (4) provides an estimate of effective cell diffusion coefficients, in accord with independent hydrodynamic estimates.

  15. High-Density Stretchable Electrode Grids for Chronic Neural Recording.

    PubMed

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János

    2018-04-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Kinematics of Ultra-high-velocity Gas in the Expanding Molecular Shell Adjacent to the W44 Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Yamada, Masaya; Oka, Tomoharu; Takekawa, Shunya; Iwata, Yuhei; Tsujimoto, Shiho; Tokuyama, Sekito; Furusawa, Maiko; Tanabe, Keisuke; Nomura, Mariko

    2017-01-01

    We mapped the ultra-high-velocity feature (the “Bullet”) detected in the expanding molecular shell associated with the W44 supernova remnant using the Nobeyama Radio Observatory 45 m telescope and the Atacama Submillimeter Telescope Experiment 10 m telescope. The Bullet clearly appears in the CO J = 1-0, CO J = 3-2, CO J = 4-3, and HCO+ J = 1-0 maps with a compact appearance (0.5 × 0.8 pc2) and an extremely broad-velocity width (ΔV ≃ 100 km s-1). The line intensities indicate that the Bullet has a higher density and temperature than those in the expanding molecular shell. The kinetic energy of the Bullet amounts to 1048.0 erg, which is approximately 1.5 orders of magnitude greater than the kinetic energy shared to the small solid angle of it. Two possible formation scenarios with an inactive isolated black hole are presented.

  17. KINEMATICS OF ULTRA-HIGH-VELOCITY GAS IN THE EXPANDING MOLECULAR SHELL ADJACENT TO THE W44 SUPERNOVA REMNANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Masaya; Oka, Tomoharu; Takekawa, Shunya

    We mapped the ultra-high-velocity feature (the “Bullet”) detected in the expanding molecular shell associated with the W44 supernova remnant using the Nobeyama Radio Observatory 45 m telescope and the Atacama Submillimeter Telescope Experiment 10 m telescope. The Bullet clearly appears in the CO J = 1–0, CO J = 3–2, CO J = 4–3, and HCO{sup +} J = 1–0 maps with a compact appearance (0.5 × 0.8 pc{sup 2}) and an extremely broad-velocity width (Δ V ≃ 100 km s{sup −1}). The line intensities indicate that the Bullet has a higher density and temperature than those in the expandingmore » molecular shell. The kinetic energy of the Bullet amounts to 10{sup 48.0} erg, which is approximately 1.5 orders of magnitude greater than the kinetic energy shared to the small solid angle of it. Two possible formation scenarios with an inactive isolated black hole are presented.« less

  18. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010.

    PubMed

    Juul, Filippa; Hemmingsson, Erik

    2015-12-01

    To investigate how consumption of ultra-processed foods has changed in Sweden in relation to obesity. Nationwide ecological analysis of changes in processed foods along with corresponding changes in obesity. Trends in per capita food consumption during 1960-2010 were investigated using data from the Swedish Board of Agriculture. Food items were classified as group 1 (unprocessed/minimally processed), group 2 (processed culinary ingredients) or group 3 (3·1, processed food products; and 3·2, ultra-processed products). Obesity prevalence data were pooled from the peer-reviewed literature, Statistics Sweden and the WHO Global Health Observatory. Nationwide analysis in Sweden, 1960-2010. Swedish nationals aged 18 years and older. During the study period consumption of group 1 foods (minimal processing) decreased by 2 %, while consumption of group 2 foods (processed ingredients) decreased by 34 %. Consumption of group 3·1 foods (processed food products) increased by 116 % and group 3·2 foods (ultra-processed products) increased by 142 %. Among ultra-processed products, there were particularly large increases in soda (315 %; 22 v. 92 litres/capita per annum) and snack foods such as crisps and candies (367 %; 7 v. 34 kg/capita per annum). In parallel to these changes in ultra-processed products, rates of adult obesity increased from 5 % in 1980 to over 11 % in 2010. The consumption of ultra-processed products (i.e. foods with low nutritional value but high energy density) has increased dramatically in Sweden since 1960, which mirrors the increased prevalence of obesity. Future research should clarify the potential causal role of ultra-processed products in weight gain and obesity.

  19. Fast determination of virgin olive oil phenolic metabolites in human high-density lipoproteins.

    PubMed

    Fernández-Ávila, C; Montes, R; Castellote, A I; Chisaguano, A M; Fitó, M; Covas, M I; Muñoz-Aguallo, D; Nyyssönen, K; Zunft, H J; López-Sabater, M C

    2015-07-01

    In recent years it has been confirmed that the consumption of olive oil prevents the oxidation of biomolecules owing to its monounsaturated fatty acids (MUFA) and phenolic content. The main objective of the study was to develop an ultra-high-performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the determination of phenolic compounds in human high-density lipoprotein (HDL) samples. At the same time, the influence of olive oil consumption on the phenolic metabolite levels was evaluated in a European population. The participants were 51 healthy men, aged 20-60. They were randomized to two consecutive intervention periods with the administration of raw olive oil with low and high polyphenolic content. The UHPLC-MS/MS analytical method has been validated for hydroxytyrosol and homovanillic acid in terms of linearity (r(2)  = 0.99 and 1.00), repeatability (5.7 and 6.5%) reproducibility (6.2 and 7%), recovery (98 to 97%), limits of detection (1.7 to 1.8 ppb) and quantification (5.8 and 6.3 ppb).The levels of the studied metabolites increased significantly after high polyphenolic content virgin olive oil ingestion (p <0.05) compared with lowpolyphenolic content olive oil. Virgin olive oil consumption increases the levels of phenolic metabolites in HDL and thus provides human HDL with more efficient antioxidant protection. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Ultra-high pressure LC for astaxanthin determination in shrimp by-products and active food packaging.

    PubMed

    Sanches-Silva, A; Ribeiro, T; Albuquerque, T G; Paseiro, P; Sendón, R; de Quirós, A Bernaldo; López-Cervantes, J; Sánchez-Machado, D I; Soto Valdez, H; Angulo, I; Aurrekoetxea, G P; Costa, H S

    2013-06-01

    Nowadays, there is increasing interest in natural antioxidants from food by-products. Astaxanthin is a potent antioxidant and one of the major carotenoids in crustaceans and salmonids. An ultra-high pressure liquid chromatographic method was developed and validated for the determination of astaxanthin in shrimp by-products, and its migration from new packaging materials to food simulants was also studied. The method uses an UPLC® BEH guard-column (2.1 × 5 mm, 1.7 µm particle size) and an UPLC® BEH analytical column (2.1 × 50 mm, 1.7 µm particle size). Chromatographic separation was achieved using a programmed gradient mobile phase consisting of (A) acetonitrile-methanol (containing 0.05 m ammonium acetate)-dichloromethane (75:20:5, v/v/v) and (B) ultrapure water. This method was evaluated with respect to validation parameters such as linearity, precision, limit of detection, limit of quantification and recovery. Low-density polyethylene films were prepared with different amounts of the lipid fraction of fermented shrimp waste by extrusion, and migration was evaluated into food simulants (isooctane and ethanol 95%, v/v). Migration was not detected under the tested conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  1. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  2. Collagen production of osteoblasts revealed by ultra-high voltage electron microscopy.

    PubMed

    Hosaki-Takamiya, Rumiko; Hashimoto, Mana; Imai, Yuichi; Nishida, Tomoki; Yamada, Naoko; Mori, Hirotaro; Tanaka, Tomoyo; Kawanabe, Noriaki; Yamashiro, Takashi; Kamioka, Hiroshi

    2016-09-01

    In the bone, collagen fibrils form a lamellar structure called the "twisted plywood-like model." Because of this unique structure, bone can withstand various mechanical stresses. However, the formation of this structure has not been elucidated because of the difficulty of observing the collagen fibril production of the osteoblasts via currently available methods. This is because the formation occurs in the very limited space between the osteoblast layer and bone matrix. In this study, we used ultra-high-voltage electron microscopy (UHVEM) to observe collagen fibril production three-dimensionally. UHVEM has 3-MV acceleration voltage and enables us to use thicker sections. We observed collagen fibrils that were beneath the cell membrane of osteoblasts elongated to the outside of the cell. We also observed that osteoblasts produced collagen fibrils with polarity. By using AVIZO software, we observed collagen fibrils produced by osteoblasts along the contour of the osteoblasts toward the bone matrix area. Immediately after being released from the cell, the fibrils run randomly and sparsely. But as they recede from the osteoblast, the fibrils began to run parallel to the definite direction and became thick, and we observed a periodical stripe at that area. Furthermore, we also observed membrane structures wrapped around filamentous structures inside the osteoblasts. The filamentous structures had densities similar to the collagen fibrils and a columnar form and diameter. Our results suggested that collagen fibrils run parallel and thickly, which may be related to the lateral movement of the osteoblasts. UHVEM is a powerful tool for observing collagen fibril production.

  3. Ultra-high-energy cosmic rays from radio galaxies

    NASA Astrophysics Data System (ADS)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  4. Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field

    PubMed Central

    Raven, Erika P.; Duyn, Jeff H.

    2016-01-01

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain–heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain–heart interactions. PMID:27044994

  5. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field.

    PubMed

    Chang, Catie; Raven, Erika P; Duyn, Jeff H

    2016-05-13

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. © 2016 The Author(s).

  6. The Design of an Ultra High Capacity Long Range Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Bucci, Gregory; Hare, Angela; Szolwinski, Matthew

    1993-01-01

    This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.

  7. Pulp extrusion at ultra-high consistencies : selection of water soluble polymers for process optimization

    Treesearch

    C. Tim Scott

    2002-01-01

    Pulp extrusion at ultra-high consistencies (20% to 40% solids) is a new process developed at USDA Forest Service, Forest Products Laboratory (FPL) to convert recovered papers, wastepaper, and papermill residuals into solid sheets or profiles for compression molding. This process requires adding a water-soluble polymer (WSP) to alter the rheological properties of the...

  8. An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH)2/MnO2@Carbon Nanotube and Activated Polyaniline-Derived Carbon.

    PubMed

    Shen, Juanjuan; Li, Xiaocheng; Wan, Liu; Liang, Kun; Tay, Beng Kang; Kong, Lingbin; Yan, Xingbin

    2017-01-11

    Development of a supercapacitor device with both high gravimetric and volumetric energy density is one of the most important requirements for their practical application in energy storage/conversion systems. Currently, improvement of the gravimetric/volumetric energy density of a supercapacitor is restricted by the insufficient utilization of positive materials at high loading density and the inferior capacitive behavior of negative electrodes. To solve these problems, we elaborately designed and prepared a 3D core-shell structured Ni(OH) 2 /MnO 2 @carbon nanotube (CNT) composite via a facile solvothermal process by using the thermal chemical vapor deposition grown-CNTs as support. Owing to the superiorities of core-shell architecture in improving the service efficiency of pseudocapacitive materials at high loading density, the prepared Ni(OH) 2 /MnO 2 @CNT electrode demonstrated a high capacitance value of 2648 F g -1 (1 A g -1 ) at a high loading density of 6.52 mg cm -2 . Coupled with high-performance activated polyaniline-derived carbon (APDC, 400 F g -1 at 1 A g -1 ), the assembled Ni(OH) 2 /MnO 2 @CNT//APDC asymmetric device delivered both high gravimetric and volumetric energy density (126.4 Wh kg -1 and 10.9 mWh cm -3 , respectively), together with superb rate performance and cycling lifetime. Moreover, we demonstrate an effective approach for building a high-performance supercapacitor with high gravimetric/volumetric energy density.

  9. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  10. Effect of ultra-high pressure on small animals, tardigrades and Artemia

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Mori, Yoshihisa; Takarabe, Kenichi; Fujii, Akiko; Saigusa, Masayuki; Matsushima, Yasushi; Yamazaki, Daisuke; Ito, Eiji; Galas, Simon; Saini, Naurang L.

    2016-12-01

    This research shows that small animals, tardigrades (Milnesium tardigradum) in tun (dehydrated) state and Artemia salina cists (dried eggs) can tolerate the very high hydrostatic pressure of 7.5 GPa. It was really surprising that living organisms can survive after exposure to such a high pressure. We extended these studies to the extremely high pressure of 20 GPa by using a Kawai-type octahedral anvil press. After exposure to this pressure for 30 min, the tardigrades were soaked in pure water and investigated under a microscope. Their bodies regained metabolic state and no serious injury could be seen. But they were not alive. A few of Artemia eggs went part of the way to hatching after soaked in sea water, but they never grew any further. Comparing with the case of blue-green alga, these animals are weaker under ultra-high pressure.

  11. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  12. Mechanical flip-chip for ultra-high electron mobility devices

    DOE PAGES

    Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; ...

    2015-09-22

    In this study, electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. Thismore » approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.« less

  13. Search for Ultra-High-Energy Neutrinos with AMANDA-II

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Auffenberg, J.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Beimforde, M.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; De Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Hasegawa, Y.; Hauschildt, T.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kawai, H.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Leier, D.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meagher, K.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Olivas, A.; Ono, M.; Patton, S.; Pérez de los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Robbins, W. J.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schultz, O.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Song, C.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Viscomi, V.; Vogt, C.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Waldenmaier, T.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wiedemann, C.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.; IceCube Collaboration

    2008-03-01

    A search for diffuse neutrinos with energies in excess of 105 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 107 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra-high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E2Φ90% CL < 2.7 × 10-7 GeV cm-2 s-1 sr-1 valid over the energy range of 2 × 105 to 109 GeV. A number of models that predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.

  14. Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Buchalla, R.; Schüttler, C.; Bögl, K. W.

    1995-02-01

    Sterilization by ionizing radiation has become, next to ethylene oxide treament, the most important "cold" sterilization process for medical devices made from plastics. The effects of ionizing radiation on the most important polymer for medical devices, ultra-high molecular-weight polyethylene, are briefly described in this review.

  15. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dyemore » loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.« less

  16. Influence of hydrogen on the structure and stability of ultra-thin ZnO on metal substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniek, Bjoern; Hofmann, Oliver T.; Institut für Festkörperphysik, TU Graz, 8010 Graz

    2015-03-30

    We investigate the atomic and electronic structure of ultra-thin ZnO films (1 to 4 layers) on the (111) surfaces of Ag, Cu, Pd, Pt, Ni, and Rh by means of density-functional theory. The ZnO monolayer is found to adopt an α-BN structure on the metal substrates with coincidence structures in good agreement with experiment. Thicker ZnO layers change into a wurtzite structure. The films exhibit a strong corrugation, which can be smoothed by hydrogen (H) adsorption. An H over-layer with 50% coverage is formed at chemical potentials that range from low to ultra-high vacuum H{sub 2} pressures. For the Agmore » substrate, both α-BN and wurtzite ZnO films are accessible in this pressure range, while for Cu, Pd, Pt, Rh, and Ni wurtzite films are favored. The surface structure and the density of states of these H passivated ZnO thin films agree well with those of the bulk ZnO(0001{sup ¯})-2×1-H surface.« less

  17. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    PubMed

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  18. Ultra-stiff large-area carpets of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Meysami, Seyyed Shayan; Dallas, Panagiotis; Britton, Jude; Lozano, Juan G.; Murdock, Adrian T.; Ferraro, Claudio; Gutierrez, Eduardo Saiz; Rijnveld, Niek; Holdway, Philip; Porfyrakis, Kyriakos; Grobert, Nicole

    2016-06-01

    Herewith, we report the influence of post-synthesis heat treatment (<=2350 °C and plasma temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of free-standing large-area (several cm2) carpets of ultra-long (several mm) vertically aligned multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large quantities (20-30 g per batch) using a semi-scaled-up aerosol-assisted chemical vapour deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 2350 °C under inert atmosphere purifies, removes residual catalyst particles, and partially aligns adjacent single crystals (crystallites) in polycrystalline MWCNTs. The purification and improvement in the crystallites alignment within the MWCNTs resulted in reduced dispersibility of the VA-MWCNTs in liquid media. High-resolution microscopy revealed that the crystallinity is improved in scales of few tens of nanometres while the point defects remain largely unaffected. The heat treatment also had a marked benefit on the mechanical properties of the carpets. For the first time, we report compression moduli as high as 120 MPa for VA-MWCNT carpets, i.e. an order of magnitude higher than previously reported figures. The application of higher temperatures (arc-discharge plasma, >=4000 °C) resulted in the formation of a novel graphite-matrix composite reinforced with CVD and arc-discharge-like carbon nanotubes.Herewith, we report the influence of post-synthesis heat treatment (<=2350 °C and plasma temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of free-standing large-area (several cm2) carpets of ultra-long (several mm) vertically aligned multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large quantities (20-30 g per batch) using a semi-scaled-up aerosol-assisted chemical vapour deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 2350 °C under

  19. Future Road Density

    EPA Pesticide Factsheets

    Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  20. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    NASA Astrophysics Data System (ADS)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  1. Consumers' conceptualization of ultra-processed foods.

    PubMed

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The estimation of dynamic contact angle of ultra-hydrophobic surfaces using inclined surface and impinging droplet methods

    NASA Astrophysics Data System (ADS)

    Jasikova, Darina; Kotek, Michal

    2014-03-01

    The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.

  3. Assessment of the State of the Art of Ultra High Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  4. Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase

    NASA Astrophysics Data System (ADS)

    Spettl, A.; Wimmer, R.; Werz, T.; Heinze, M.; Odenbach, S.; Krill, C. E., III; Schmidt, V.

    2015-09-01

    We present a (dynamic) stochastic simulation model for 3D grain morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening. For low volume fractions of the coarsening phase, the classical LSW theory predicts a power-law evolution of the mean particle size and convergence toward self-similarity of the particle size distribution; experiments suggest that this behavior holds also for high volume fractions. In the present work, we have analyzed 3D images that were recorded in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions of the coarsening (solid) phase. Using this information we developed a stochastic simulation model for the 3D morphology of the coarsening grains at arbitrary time steps. Our stochastic model is based on random Laguerre tessellations and is by definition self-similar—i.e. it depends only on the mean particle diameter, which in turn can be estimated at each point in time. For a given mean diameter, the stochastic model requires only three additional scalar parameters, which influence the distribution of particle sizes and their shapes. An evaluation shows that even with this minimal information the stochastic model yields an excellent representation of the statistical properties of the experimental data.

  5. Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry.

    PubMed

    Godlewska, Beata R; Clare, Stuart; Cowen, Philip J; Emir, Uzay E

    2017-01-01

    The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders.

  6. Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry

    PubMed Central

    Godlewska, Beata R.; Clare, Stuart; Cowen, Philip J.; Emir, Uzay E.

    2017-01-01

    The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders. PMID:28744229

  7. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast

  8. Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowes, Ted

    Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number ofmore » fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The

  9. Future ultra-speed tube-flight

    NASA Astrophysics Data System (ADS)

    Salter, Robert M.

    1994-05-01

    Future long-link, ultra-speed, surface transport systems will require electromagnetically (EM) driven and restrained vehicles operating under reduced-atmosphere in very straight tubes. Such tube-flight trains will be safe, energy conservative, pollution-free, and in a protected environment. Hypersonic (and even hyperballistic) speeds are theoretically achievable. Ultimate system choices will represent tradeoffs between amoritized capital costs (ACC) and operating costs. For example, long coasting links might employ aerodynamic lift coupled with EM restraint and drag make-up. Optimized, combined EM lift, and thrust vectors could reduce energy costs but at increased ACC. (Repulsive levitation can produce lift-over-drag l/d ratios a decade greater than aerodynamic), Alternatively, vehicle-emanated, induced-mirror fields in a conducting (aluminum sheet) road bed could reduce ACC but at substantial energy costs. Ultra-speed tube flight will demand fast-acting, high-precision sensors and computerized magnetic shimming. This same control system can maintain a magnetic 'guide way' invariant in inertial space with inertial detectors imbedded in tube structures to sense and correct for earth tremors. Ultra-speed tube flight can complete with aircraft for transit time and can provide even greater passenger convenience by single-model connections with local subways and feeder lines. Although cargo transport generally will not need to be performed at ultra speeds, such speeds may well be desirable for high throughput to optimize channel costs. Thus, a large and expensive pipeline might be replaced with small EM-driven pallets at high speeds.

  10. Future ultra-speed tube-flight

    NASA Technical Reports Server (NTRS)

    Salter, Robert M.

    1994-01-01

    Future long-link, ultra-speed, surface transport systems will require electromagnetically (EM) driven and restrained vehicles operating under reduced-atmosphere in very straight tubes. Such tube-flight trains will be safe, energy conservative, pollution-free, and in a protected environment. Hypersonic (and even hyperballistic) speeds are theoretically achievable. Ultimate system choices will represent tradeoffs between amoritized capital costs (ACC) and operating costs. For example, long coasting links might employ aerodynamic lift coupled with EM restraint and drag make-up. Optimized, combined EM lift, and thrust vectors could reduce energy costs but at increased ACC. (Repulsive levitation can produce lift-over-drag l/d ratios a decade greater than aerodynamic), Alternatively, vehicle-emanated, induced-mirror fields in a conducting (aluminum sheet) road bed could reduce ACC but at substantial energy costs. Ultra-speed tube flight will demand fast-acting, high-precision sensors and computerized magnetic shimming. This same control system can maintain a magnetic 'guide way' invariant in inertial space with inertial detectors imbedded in tube structures to sense and correct for earth tremors. Ultra-speed tube flight can complete with aircraft for transit time and can provide even greater passenger convenience by single-model connections with local subways and feeder lines. Although cargo transport generally will not need to be performed at ultra speeds, such speeds may well be desirable for high throughput to optimize channel costs. Thus, a large and expensive pipeline might be replaced with small EM-driven pallets at high speeds.

  11. Social Cognition in Individuals at Ultra-High Risk for Psychosis: A Meta-Analysis

    PubMed Central

    van Donkersgoed, R. J. M.; Wunderink, L.; Nieboer, R.; Aleman, A.; Pijnenborg, G. H. M.

    2015-01-01

    Objective Treatment in the ultra-high risk stage for a psychotic episode is critical to the course of symptoms. Markers for the development of psychosis have been studied, to optimize the detection of people at risk of psychosis. One possible marker for the transition to psychosis is social cognition. To estimate effect sizes for social cognition based on a quantitative integration of the published evidence, we conducted a meta-analysis of social cognitive performance in people at ultra high risk (UHR). Methods A literature search (1970-July 2015) was performed in PubMed, PsychINFO, Medline, Embase, and ISI Web of Science, using the search terms ‘social cognition’, ‘theory of mind’, ‘emotion recognition’, ‘attributional style’, ‘social knowledge’, ‘social perception’, ‘empathy’, ‘at risk mental state’, ‘clinical high risk’, ‘psychosis prodrome’, and ‘ultra high risk’. The pooled effect size (Cohen’s D) and the effect sizes for each domain of social cognition were calculated. A random effects model with 95% confidence intervals was used. Results Seventeen studies were included in the analysis. The overall significant effect was of medium magnitude (d = 0.52, 95% Cl = 0.38–0.65). No moderator effects were found for age, gender and sample size. Sub-analyses demonstrated that individuals in the UHR phase show significant moderate deficits in affect recognition and affect discrimination in faces as well as in voices and in verbal Theory of Mind (TOM). Due to an insufficient amount of studies, we did not calculate an effect size for attributional bias and social perception/ knowledge. A majority of studies did not find a correlation between social cognition deficits and transition to psychosis, which may suggest that social cognition in general is not a useful marker for the development of psychosis. However some studies suggest the possible predictive value of verbal TOM and the recognition of specific emotions in faces

  12. ASBESTOS EXPOSURES DURING ROUTINE FLOOR TILE MAINTENANCE. PART 2: ULTRA HIGH SPEED BURNISHING AND WET-STRIPPING

    EPA Science Inventory

    This study was conducted to evaluate airborne asbestos concentrations during ultra high speed (UHS) burnishing and wet-stripping of asbestos-containing resilient floor tile under two levels of floor care condition (poor and good). Airborne asbestos concentrations were measured by...

  13. High Precision 2-D Grating Groove Density Measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxiao; McEntaffer, Randall; Tedesco, Ross

    2017-08-01

    Our research group at Penn State University is working on producing X-ray reflection gratings with high spectral resolving power and high diffraction efficiency. To estimate our fabrication accuracy, we apply a precise 2-D grating groove density measurement to plot groove density distributions of gratings on 6-inch wafers. In addition to plotting a fixed groove density distribution, this method is also sensitive to measuring the variation of the groove density simultaneously. This system can reach a measuring accuracy (ΔN/N) of 10-3. Here we present this groove density measurement and some applications.

  14. A comparison of the wear of cross-linked polyethylene against itself with the wear of ultra-high molecular weight polyethylene against itself.

    PubMed

    Joyce, T J; Unsworth, A

    1996-01-01

    Wear tests were carried out on reciprocating pin-on-plate machines which had pins loaded at 10 N and 40 N. The materials tested were irradiated cross-linked polyethylene sliding against itself, irradiated ultra-high molecular weight polyethylene sliding against itself and non-irradiated ultra-high molecular weight polyethylene sliding against itself. After 153.5 km of sliding, the non-irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads, or a nominal contact stress of 0.51 MPa, of 84.0 x 10(-6) mm3/N m for the plates and 81.3 x 10(-6) mm3/N m for the pins. Under 40 N loads, or a nominal contact stress of 2.04 MPa, the non-irradiated ultra-high molecular weight polyethylene pins sheared at 22.3 km. At the last measurement point prior to this failure, 19.1 km, wear factors of 158 x 10(-6) mm3/N m for the plates and 85.0 x 10(-6) mm3/N m for the pins had been measured. After 152.8 km. the irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads of 59.8 x 10(-6) mm3/N m for the plates and 31.1 x 10(-6) mm3/N m for the pins. In contrast, after 150.2 km, a mean wear factor of 0.72 x 10(-6) mm3/N m was found for the irradiated cross-linked polyethylene plates compared with 0.053 x 10(-6) mm3/N m for the irradiated cross-linked polyethylene pins.

  15. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage

    NASA Astrophysics Data System (ADS)

    Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua

    2014-11-01

    Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high

  16. Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team

    2018-03-01

    One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.

  17. Development, characterization and applications of a non proprietary ultra high performance concrete for highway bridges : final report.

    DOT National Transportation Integrated Search

    2016-03-14

    Ultra-high performance concrete (UHPC) is a new class of cementitious materials that have : exceptional mechanical and durability characteristics. UHPC is commercially available. : However, its cost for construction of highway structures is prohibiti...

  18. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  19. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  20. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.