Sample records for ultra-high intensity attosecond

  1. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  2. Control of ultra-intense single attosecond pulse generation in laser-driven overdense plasmas.

    PubMed

    Liu, Qingcao; Xu, Yanxia; Qi, Xin; Zhao, Xiaoying; Ji, Liangliang; Yu, Tongpu; Wei, Luo; Yang, Lei; Hu, Bitao

    2013-12-30

    Ultra-intense single attosecond pulse (AP) can be obtained from circularly polarized (CP) laser interacting with overdense plasma. High harmonics are naturally generated in the reflected laser pulses due to the laser-induced one-time drastic oscillation of the plasma boundary. Using two-dimensional (2D) planar particle-in-cell (PIC) simulations and analytical model, we show that multi-dimensional effects have great influence on the generation of AP. Self-focusing and defocusing phenomena occur in front of the compressed plasma boundary, which lead to the dispersion of the generated AP in the far field. We propose to control the reflected high harmonics by employing a density-modulated foil target (DMFT). When the target density distribution fits the laser intensity profile, the intensity of the attosecond pulse generated from the center part of the plasma has a flatten profile within the center range in the transverse direction. It is shown that a single 300 attosecond (1 as = 10(-18)s) pulse with the intensity of 1.4 × 10(21) W cm(-2) can be naturally generated. Further simulations reveal that the reflected high harmonics properties are highly related to the modulated density distribution and the phase offset between laser field and the carrier envelope. The emission direction of the AP generated from the plasma boundary can be controlled in a very wide range in front of the plasma surface by combining the DMFT and a suitable driving laser.

  3. Generation of short and intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Khan, Sabih Ud Din

    Extremely broad bandwidth attosecond pulses (which can support 16as pulses) have been demonstrated in our lab based on spectral measurements, however, compensation of intrinsic chirp and their characterization has been a major bottleneck. In this work, we developed an attosecond streak camera using a multi-layer Mo/Si mirror (bandwidth can support ˜100as pulses) and position sensitive time-of-flight detector, and the shortest measured pulse was 107.5as using DOG, which is close to the mirror bandwidth. We also developed a PCGPA based FROG-CRAB algorithm to characterize such short pulses, however, it uses the central momentum approximation and cannot be used for ultra-broad bandwidth pulses. To facilitate the characterization of such pulses, we developed PROOF using Fourier filtering and an evolutionary algorithm. We have demonstrated the characterization of pulses with a bandwidth corresponding to ˜20as using synthetic data. We also for the first time demonstrated single attosecond pulses (SAP) generated using GDOG with a narrow gate width from a multi-cycle driving laser without CE-phase lock, which opens the possibility of scaling attosecond photon flux by extending the technique to peta-watt class lasers. Further, we generated intense attosecond pulse trains (APT) from laser ablated carbon plasmas and demonstrated ˜9.5 times more intense pulses as compared to those from argon gas and for the first time demonstrated a broad continuum from a carbon plasma using DOG. Additionally, we demonstrated ˜100 times enhancement in APT from gases by switching to 400 nm (blue) driving pulses instead of 800 nm (red) pulses. We measured the ellipticity dependence of high harmonics from blue pulses in argon, neon and helium, and developed a simple theoretical model to numerically calculate the ellipticity dependence with good agreement with experiments. Based on the ellipticity dependence, we proposed a new scheme of blue GDOG which we predict can be employed to extract

  4. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  5. Enhanced dense attosecond electron bunch generation by irradiating an intense laser on a cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu

    By using two-dimensional particle-in-cell simulations, we demonstrate enhanced spatially periodic attosecond electron bunches generation with an average density of about 10n{sub c} and cut-off energy up to 380 MeV. These bunches are acquired from the interaction of an ultra-short ultra-intense laser pulse with a cone target. The laser oscillating field pulls out the cone surface electrons periodically and accelerates them forward via laser pondermotive force. The inner cone wall can effectively guide these bunches and lead to their stable propagation in the cone, resulting in overdense energetic attosecond electron generation. We also consider the influence of laser and cone target parametersmore » on the bunch properties. It indicates that the attosecond electron bunch acceleration and propagation could be significantly enhanced without evident divergency by attaching a plasma capillary to the original cone tip.« less

  6. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Alexander Roy; Krushelnick, Karl

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactionsmore » at 10 21 Wcm -2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.« less

  7. Compensation of high order harmonic long quantum-path attosecond chirp

    NASA Astrophysics Data System (ADS)

    Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.

    2017-12-01

    We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.

  8. Next Generation Driver for Attosecond and Laser-plasma Physics.

    PubMed

    Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L

    2017-07-12

    The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20  W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

  9. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses

    PubMed Central

    Takahashi, Eiji J.; Lan, Pengfei; Mücke, Oliver D.; Nabekawa, Yasuo; Midorikawa, Katsumi

    2013-01-01

    High-energy isolated attosecond pulses required for the most intriguing nonlinear attosecond experiments as well as for attosecond-pump/attosecond-probe spectroscopy are still lacking at present. Here we propose and demonstrate a robust generation method of intense isolated attosecond pulses, which enable us to perform a nonlinear attosecond optics experiment. By combining a two-colour field synthesis and an energy-scaling method of high-order harmonic generation, the maximum pulse energy of the isolated attosecond pulse reaches as high as 1.3 μJ. The generated pulse with a duration of 500 as, as characterized by a nonlinear autocorrelation measurement, is the shortest and highest-energy pulse ever with the ability to induce nonlinear phenomena. The peak power of our tabletop light source reaches 2.6 GW, which even surpasses that of an extreme-ultraviolet free-electron laser. PMID:24158092

  10. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets

    NASA Astrophysics Data System (ADS)

    Zhu, Xing-Long; Chen, Min; Yu, Tong-Pu; Weng, Su-Ming; Hu, Li-Xiang; McKenna, Paul; Sheng, Zheng-Ming

    2018-04-01

    Attosecond light sources have the potential to open up totally unexplored research avenues in ultrafast science. However, the photon energies achievable using existing generation schemes are limited to the keV range. Here, we propose and numerically demonstrate an all-optical mechanism for the generation of bright MeV attosecond γ-photon beams with desirable angular momentum. Using a circularly polarized Laguerre-Gaussian laser pulse focused onto a cone-foil target, dense attosecond bunches ( ≲ 170 as ) of electrons are produced. The electrons interact with the laser pulse which is reflected by a plasma mirror, producing ultra-brilliant (˜1023 photons/s/mm2/mrad2/0.1%BW) multi-MeV (Eγ,max > 30 MeV) isolated attosecond ( ≲ 260 as ) γ-ray pulse trains. Moreover, the angular momentum is transferred to γ-photon beams via nonlinear Compton scattering of ultra-intense tightly focused laser pulse by energetic electrons. Such a brilliant attosecond γ-photon source would provide the possibilities in attosecond nuclear science.

  11. EDITORIAL: Focus on Attosecond Physics

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Krausz, Ferenc; Starace, Anthony F.

    2008-02-01

    Chelkowski and A D Bandrauk Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses Miaochan Zhi and Alexei V Sokolov Ultrafast nanoplasmonics under coherent control Mark I Stockman Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse Liang-You Peng, Evgeny A Pronin and Anthony F Starace Angular encoding in attosecond recollision Markus Kitzler, Xinhua Xie, Stefan Roither, Armin Scrinzi and Andrius Baltuska Polarization-resolved pump-probe spectroscopy with high harmonics Y Mairesse, S Haessler, B Fabre, J Higuet, W Boutu, P Breger, E Constant, D Descamps, E Mével, S Petit and P Salières Macroscopic effects in attosecond pulse generation T Ruchon, C P Hauri, K Varjú, E Mansten, M Swoboda, R López-Martens and A L'Huillier Monitoring long-term evolution of molecular vibrational wave packet using high-order harmonic generation M Yu Emelin, M Yu Ryabikin and A M Sergeev Intense single attosecond pulses from surface harmonics using the polarization gating technique S G Rykovanov, M Geissler, J Meyer-ter-Vehn and G D Tsakiris Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields M F Kling, J Rauschenberger, A J Verhoef, E Hasović, T Uphues, D B Milošević, H G Muller and M J J Vrakking Self-compression of optical laser pulses by filamentation A Mysyrowicz, A Couairon and U Keller Towards efficient generation of attosecond pulses from overdense plasma targets N M Naumova, C P Hauri, J A Nees, I V Sokolov, R Lopez-Martens and G A Mourou Quantum-path control in high-order harmonic generation at high photon energies Xiaoshi Zhang, Amy L Lytle, Oren Cohen, Margaret M Murnane and Henry C Kapteyn Time-resolved mapping of correlated electron emission from helium atom in an intense laser pulse C Ruiz and A Becker Pump and probe ultrafast electron dynamics in LiH: a computational study

  12. Experimental observation of attosecond control over relativistic electron bunches with two-colour fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, M.; Rykovanov, S.; Bierbach, J.

    2016-12-05

    Energy coupling during relativistically intense laser–matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma–vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light–matter interaction phenomena, including those at the forefront of extreme laser–plasma science such as laser-driven ion acceleration, bright attosecond pulse generation and efficient energy coupling for the generation and study of warm dense matter. Here in this paper, we experimentally demonstrate that by precisely adjusting the relative phase of an additional laser beam operating at the second harmonic of themore » driving laser it is possible to control the trajectories of relativistic electron bunches formed during the interaction with a solid target at the attosecond scale. Finally, we observe significant enhancements in the resulting high-harmonic yield, suggesting potential applications for sources of ultra-bright, extreme ultraviolet attosecond radiation to be used in atomic and molecular pump–probe experiments« less

  13. Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten

    2016-05-01

    Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.

  14. Attosecond Pulse Carrier-Envelope Phase Effects: Roles of Frequency, Intensity and an Additional IR Pulse

    NASA Astrophysics Data System (ADS)

    Pronin, Evgeny A.; Peng, Liang-You; Starace, Anthony F.

    2008-05-01

    The effects of the carrier-envelope phase (CEP) of a few-cycle attosecond pulse on ionized electron momentum and energy spectra are analyzed, both with and without an additional few-cycle IR pulse [1, 2]. In the absence of an IR pulse, the CEP-induced asymmetries in the ionized electron momentum distributions are shown to vary as the 3/2 power of the attosecond pulse intensity. These asymmetries are also found to satisfy an approximate scaling law involving the frequency and intensity of the attosecond pulse. In the presence of even a very weak IR pulse, the attosecond pulse CEP-induced asymmetries are found to be significantly augmented. In addition, for higher IR laser intensities, we observe for low electron energies peaks separated by the IR photon energy in one electron momentum direction along the laser polarization axis; in the opposite direction, we find structured peaks that are spaced by twice the IR photon energy. Possible physical mechanisms for such asymmetric, low-energy structures in the ionized electron momentum distribution are proposed. Our results are based on single-active-electron solutions of the 3D TDSE for H and He. [1] Peng LY, Pronin EA, and Starace AF, New J. Phys. 10, xxx (2008); [2] Peng LY, Starace AF, Phys. Rev. A 76, 043401 (2007)

  15. EDITORIAL: Attosecond and x-ray free-electron laser physics Attosecond and x-ray free-electron laser physics

    NASA Astrophysics Data System (ADS)

    Moshammer, R.; Ullrich, J.

    2009-07-01

    Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is

  16. Overview of options for generating high-brightness attosecond x-ray pulses at free-electron lasers and applications at the European XFEL

    NASA Astrophysics Data System (ADS)

    Serkez, S.; Geloni, G.; Tomin, S.; Feng, G.; Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Meyer, M.

    2018-02-01

    The generation of attosecond, highbrightness x-ray pulses is a matter of great interest given their applications in the study of ultra-fast processes. In recent years, the production of x-ray pulses of high brightness, both in the soft and in the hard x-ray range, has been enabled by x-ray free-electron lasers (XFELs). In contrast to conventional quantum lasers, XFELs are based on the use of an ultra-relativistic electron beam as gain medium. They often work in the self-amplified spontaneous emission (SASE) regime, which provides pulses of duration down to a few femtoseconds, composed of several longitudinal modes. In order to further decrease the duration of these pulses, special methods need to be implemented. In this paper we review available methods, with particular focus on the x-ray laser-enhanced attosecond pulse generation, which is one of the most promising techniques. We illustrate the method using the SASE3 soft x-ray undulator of the European XFEL facility as a case study, emphasizing the importance of high-repetition rate attosecond x-ray pulses. The expected attosecond-level radiation output is used for simulations of sequential ionization processes in atoms in the case of ionization in the soft x-ray regime, demonstrating the importance of this opportunity for the user community.

  17. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence.

    PubMed

    Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng

    2018-02-19

    The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.

  18. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE PAGES

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; ...

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  19. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  20. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields.

    PubMed

    Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M

    2017-08-11

    High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.

  1. Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi

    2012-06-22

    Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase belowmore » 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.« less

  2. Attosecond control of electronic processes by intense light fields.

    PubMed

    Baltuska, A; Udem, Th; Uiberacker, M; Hentschel, M; Goulielmakis, E; Gohle, Ch; Holzwarth, R; Yakovlev, V S; Scrinzi, A; Hänsch, T W; Krausz, F

    2003-02-06

    The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10(-15) s) timescale. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak. This so-called carrier-envelope phase has been predicted and observed to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 x 10(-18) s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents--these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.

  3. Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan Pengfei; Lu Peixiang; Cao Wei

    2007-08-15

    High-order harmonic generation from asymmetric molecules is investigated, and the concept of phase-stabilized infrared ultrashort laser pulses is extended to the extreme ultraviolet regime. It is shown that the ionization symmetry in consecutive half optical cycles is broken for asymmetric molecules, and both even and odd harmonics with comparable intensity are produced. In the time domain, only one attosecond pulse is generated in each cycle of the driving field, and the carrier-envelope phases of the attosecond pulses are equal. Consequently, a clean attosecond pulse train with the same carrier-envelope phase from pulse to pulse is obtained in the extreme ultravioletmore » regime.« less

  4. Attosecond science

    NASA Astrophysics Data System (ADS)

    Villeneuve, D. M.

    2018-01-01

    Scientists have been developing sources of light with ever-shorter pulse durations, in order to study motion in systems ranging from a golfer's swing to the motion of atoms within molecules. The shortest pulses produced to date are under 60 attoseconds, i.e. ? s. One attosecond is to one second as one second is to the age of the universe. For comparison, the classical orbital period of an electron in a hydrogen atom is 150 attoseconds. Attosecond pulses were first produced in 2001. This article describes how attosecond pulses are generated and how they are measured. Some applications of attosecond pulses are described, such as measuring the delay in photoionisation, or observing molecular dissociation dynamics.

  5. Attosecond physics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Landsman, A. S.; Okell, W. A.; Zherebtsov, S.; Förg, B.; Schötz, J.; Seiffert, L.; Fennel, T.; Shaaran, T.; Zimmermann, T.; Chacón, A.; Guichard, R.; Zaïr, A.; Tisch, J. W. G.; Marangos, J. P.; Witting, T.; Braun, A.; Maier, S. A.; Roso, L.; Krüger, M.; Hommelhoff, P.; Kling, M. F.; Krausz, F.; Lewenstein, M.

    2017-05-01

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ˜152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  6. Attosecond physics at the nanoscale.

    PubMed

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Okell, W A; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M

    2017-05-01

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10 -18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  7. Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: towards chiral attosecond pulses

    DOE PAGES

    Kfir, Ofer; Grychtol, Patrik; Turgut, Emrah; ...

    2016-05-23

    Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching.more » Here, we find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. Lastly, this feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments.« less

  8. Strong-field and attosecond physics in solids

    DOE PAGES

    Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...

    2014-10-08

    We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential

  9. Intensity distributions and isolated attosecond pulse generation from molecular high-order harmonic generation in H2+ driven by nonhomogeneous field

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Chu, Tianshu

    2017-10-01

    Intensity distributions and isolated attosecond pulse generation from the molecular high-order harmonic generation (MHHG) in H2+ and T2+ driven by the nonhomogeneous field have been theoretically investigated. (i) Generally speaking, the intensities of the harmonics driven by the homogeneous field can be enhanced as the initial vibrational state increases and much more intense harmonics can be obtained from the light nuclei. However, with the introduction of the nonhomogeneous effect, the enhanced ratios of the harmonic yields are decreased as the initial vibrational state increases. Moreover, the intensities of the harmonics from H2+ and T2+ are very sensitive to the nonhomogeneous effect of the laser field. (ii) The contributions of the MHHG from the two-H nuclei present the periodic variation as a function of the laser phase for the case of the symmetric nonhomogeneous field. However, for the case of the positive and the negative asymmetric nonhomogeneous fields, the left-H and the right-H play the dominating role in the MHHG, respectively. Moreover, as the angle between the laser polarization direction and the molecular axis increases, the intensity differences of the harmonics from the two-H nuclei are increased. (iii) By properly adding a half-cycle pulse into the positive asymmetric nonhomogeneous field, a supercontinuum with the bandwidth of 279 eV and an isolated 25 as pulse can be obtained.

  10. Progress in Attosecond Metrology

    NASA Astrophysics Data System (ADS)

    Kienberger, R.; Krausz, F.

    Fundamental processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length scales tends to unfold within tens to thousands of attoseconds (1 as = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics. The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 fs = 1000 as). Atoms exposed to a few oscillation cycles of intense laser light are able to emit a single XUV burst lasting less than 1 fs. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles have recently allowed the reproducible generation and measurement of isolated 250-as XUV pulses, constituting the shortest reproducible events and fastest measurement to date. These tools have enabled us to visualize the oscillating electric field of visible light with an attosecond "oscilloscope" and observing the motion of electrons in and around atoms in real time. Recent experiments hold promise for the development of an attosecond hard X-ray source, which may pave the way toward 4D electron imaging with subatomic resolution in space and time.

  11. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  12. A Novel Femtosecond-gated, High-resolution, Frequency-shifted Shearing Interferometry Technique for Probing Pre-plasma Expansion in Ultra-intense Laser Experiments

    DTIC Science & Technology

    2014-07-17

    frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction

  13. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave

    PubMed Central

    Jung, Kwangyun; Kim, Jungwon

    2015-01-01

    High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramatically improve many high-precision comb applications. To date, ultrahigh quality-factor (Q) optical resonators have been used to achieve the highest-level repetition-rate stabilization of mode-locked lasers. However, ultrahigh-Q optical-resonator-based methods are often fragile, alignment sensitive and complex, which limits their widespread use. Here we demonstrate a fibre-delay line-based repetition-rate stabilization method that enables the all-fibre photonic generation of optical pulse trains with 980-as (20-fs) absolute r.m.s. timing jitter accumulated over 0.01 s (1 s). This simple approach is based on standard off-the-shelf fibre components and can therefore be readily used in various comb applications that require ultra-stable microwave frequency and attosecond optical timing. PMID:26531777

  14. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Guangjin, E-mail: guangjin.ma@mpq.mpg.de; Max-Planck-Institut für Quantenoptik, D-85748 Garching; Dallari, William

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  15. Influence of vibrational states on high-order-harmonic generation and an isolated attosecond pulse from a N2 molecule

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Ge, Xin-Lei; Zhong, Huiying; Zhao, Xi; Zhang, Meixia; Jiang, Yuanfei; Liu, Xue-Shen

    2014-11-01

    The high-order-harmonic generation (HHG) from the N2 molecule in an intense laser field is investigated by applying the Lewenstein method. The initial state is constructed as a linear combination of the highest occupied molecular orbital (HOMO) and the lower-lying orbital below the HOMO, which is well described by a Gaussian wave packet generated by using the gamess-uk package. The HHG with different vibrational states of N2 are calculated and our results show that the harmonic intensity can be enhanced by higher vibrational states, which can be explained by the ionization probability. We also compared the cases with a different full width at half maximum of laser fields together, which can be well understood by the time-frequency analysis and the three-step model. Finally, the attosecond pulse generation is studied with different vibrational states, where a series of attosecond pulses can be produced with the shortest being 91 as.

  16. Sub-cycle light transients for attosecond, X-ray, four-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Fattahi, Hanieh

    2016-10-01

    This paper reviews the revolutionary development of ultra-short, multi-TW laser pulse generation made possible by current laser technology. The design of the unified laser architecture discussed in this paper, based on the synthesis of ultrabroadband optical parametric chirped-pulse amplifiers, promises to provide powerful light transients with electromagnetic forces engineerable on the electron time scale. By coherent combination of multiple amplifiers operating in different wavelength ranges, pulses with wavelength spectra extending from less than 1 ?m to more than 10 ?m, with sub-cycle duration at unprecedented peak and average power levels can be generated. It is shown theoretically that these light transients enable the efficient generation of attosecond X-ray pulses with photon flux sufficient to image, for the first time, picometre-attosecond trajectories of electrons, by means of X-ray diffraction and record the electron dynamics by attosecond spectroscopy. The proposed system leads to a tool with sub-atomic spatio-temporal resolution for studying different processes deep inside matter.

  17. From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

    NASA Astrophysics Data System (ADS)

    Wang, He

    The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.

  18. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses.

    PubMed

    Hu, Li-Xiang; Yu, Tong-Pu; Sheng, Zheng-Ming; Vieira, Jorge; Zou, De-Bin; Yin, Yan; McKenna, Paul; Shao, Fu-Qiu

    2018-05-08

    Generation of attosecond bunches of energetic electrons offers significant potential from ultrafast physics to novel radiation sources. However, it is still a great challenge to stably produce such electron beams with lasers, since the typical subfemtosecond electron bunches from laser-plasma interactions either carry low beam charge, or propagate for only several tens of femtoseconds. Here we propose an all-optical scheme for generating dense attosecond electron bunches via the interaction of an intense Laguerre-Gaussian (LG) laser pulse with a nanofiber. The dense bunch train results from the unique field structure of a circularly polarized LG laser pulse, enabling each bunch to be phase-locked and accelerated forward with low divergence, high beam charge and large beam-angular-momentum. This paves the way for wide applications in various fields, e.g., ultrabrilliant attosecond x/γ-ray emission.

  19. Effect of the carrier-envelope phase of the driving laser field on the high-order harmonic attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng Zhinan; Li Ruxin; Yu Wei

    2003-01-01

    The effect of the carrier-envelope phase of a few-cycle driving laser field on the generation and measurement of high-order harmonic attosecond pulses is investigated theoretically. We find that the position of the generated attosecond soft-x-ray pulse in the cutoff region is locked to the oscillation of the driving laser field, but not to the envelope of the laser pulse. This property ensures the success of the width measurement of an attosecond soft-x-ray pulse based on the cross correlation between the attosecond pulse and its driving laser pulse [M. Hentschel et al., Nature (London) 414, 509 (2001)]. However, there still existsmore » a timing jitter of the order of tens of attoseconds between the attosecond pulse and its driving laser field. We also propose a method to detect the carrier-envelope phase of the driving laser field by measuring the spatial distribution of the photoelectrons induced by the attosecond soft-x-ray pulse and its driving laser pulse.« less

  20. Circularly polarized attosecond pulse generation and applications to ultrafast magnetism

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Guo, Jing; Yuan, Kai-Jun

    2017-12-01

    Attosecond science is a growing new field of research and potential applications which relies on the development of attosecond light sources. Achievements in the generation and application of attosecond pulses enable to investigate electron dynamics in the nonlinear nonperturbative regime of laser-matter interactions on the electron’s natural time scale, the attosecond. In this review, we describe the generation of circularly polarized attosecond pulses and their applications to induce attosecond magnetic fields, new tools for ultrafast magnetism. Simulations are performed on aligned one-electron molecular ions by using nonperturbative nonlinear solutions of the time-dependent Schrödinger equation. We discuss how bichromatic circularly polarized laser pulses with co-rotating or counter-rotating components induce electron-parent ion recollisions, thus producing circularly polarized high-order harmonic generation, the source of circularly polarized attosecond pulses. Ultrafast quantum electron currents created by the generated attosecond pulses give rise to attosecond magnetic field pulses. The results provide a guiding principle for producing circularly polarized attosecond pulses and ultrafast magnetic fields in complex molecular systems for future research in ultrafast magneto-optics.

  1. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi

    2010-11-15

    We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulsemore » duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.« less

  2. Attosecond time-energy structure of X-ray free-electron laser pulses

    NASA Astrophysics Data System (ADS)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  3. Attosecond vacuum UV coherent control of molecular dynamics

    PubMed Central

    Ranitovic, Predrag; Hogle, Craig W.; Rivière, Paula; Palacios, Alicia; Tong, Xiao-Ming; Toshima, Nobuyuki; González-Castrillo, Alberto; Martin, Leigh; Martín, Fernando; Murnane, Margaret M.; Kapteyn, Henry

    2014-01-01

    High harmonic light sources make it possible to access attosecond timescales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized; this is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep UV, which have not yet been synthesized. Here, we present a unique approach using attosecond vacuum UV pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born–Oppenheimer regime. By controlling the interfering pathways of electron wave packets in the excited neutral and singly ionized molecule, we unambiguously show that we can switch the excited electronic state on attosecond timescales, coherently guide the nuclear wave packets to dictate the way a neutral molecule vibrates, and steer and manipulate the ionization and dissociation channels. Furthermore, through advanced theory, we succeed in rigorously modeling multiscale electron and nuclear quantum control in a molecule. The observed richness and complexity of the dynamics, even in this very simplest of molecules, is both remarkable and daunting, and presents intriguing new possibilities for bridging the gap between attosecond physics and attochemistry. PMID:24395768

  4. Radially polarized, half-cycle, attosecond pulses from laser wakefields through coherent synchrotronlike radiation.

    PubMed

    Li, F Y; Sheng, Z M; Chen, M; Yu, L L; Meyer-ter-Vehn, J; Mori, W B; Zhang, J

    2014-10-01

    Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications.

  5. Integrating solids and gases for attosecond pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei

    Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less

  6. Integrating solids and gases for attosecond pulse generation

    DOE PAGES

    Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei; ...

    2017-08-21

    Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less

  7. Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

    DTIC Science & Technology

    2016-05-23

    Invited Article Helicity-selective phase-matching and quasi -phase matching of circularly polarized high-order harmonics: towards chiral attosecond...chromatic lasers was recently predicted theoretically and demonstrated experimentally . In that work, phase matching was analyzed by assuming that the...Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization

  8. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  9. Isolated attosecond pulses in the water window

    NASA Astrophysics Data System (ADS)

    Chang, Zenghu

    Millijoule level, few-cycle, carrier-envelope phase (CEP) stable Ti:Sapphire lasers have been the workhorse for the first generation attosecond light sources in the last decade. The spectral range of isolated attosecond pulses with sufficient photon flux for time-resolved pump-probe experiments has been limited to extreme ultraviolet (10 to 150 eV). The shortest pulses achieved are 67 as. The center wavelength of Ti:Sapphire lasers is 800 nm. It was demonstrated in 2001 that the cutoff photon energy of the high harmonic spectrum can be extended by increasing the center wavelength of the driving lasers. In recent years, mJ level, two-cycle, carrier-envelope phase stabilized lasers at 1.6 to 2.1 micron have been developed by compressing pulses from Optical Parametric Amplifiers with gas-filled hollow-core fibers or by implementing Optical Parametric Chirped Pulse Amplification (OPCPA) techniques. Recently, when long wavelength driving was combined with polarization gating, isolated soft x-rays in the water window (280-530 eV) were generated in our laboratory. The number of x-ray photons in the 120-400 eV range is comparable to that generated with Ti:Sapphire lasers in the 50 to 150 eV range. The yield of harmonic generation depends strongly on the ellipticity of the driving fields, which is the foundation of polarization gating. When the width of the gate was set to less than one half of the laser cycle, a soft x-ray supercontinuum was generated. The intensity of the gated x-ray spectrum is sensitive to the carrier-envelope phase of the driving laser, which indicates that single isolated attosecond pulses were generated. The ultrabroadband isolated x-ray pulses with 53 as duration were characterized by attosecond streaking measurements. This work has been supported by the DARPA PULSE program (W31P4Q1310017); the Army Research Office (W911NF-14-1-0383, W911NF-15-1- 0336); the Air Force Office of Scientific Research (FA9550-15-1-0037, FA9550-16-1-0149), and NSF 1506345.

  10. Generation and manipulation of attosecond light pulses

    NASA Astrophysics Data System (ADS)

    Gaarde, Mette

    2006-05-01

    Attosecond pulses of light can be generated in the extremely non-linear interactions between an ultrashort, intense laser pulse and a gas of atoms, via the process of high harmonic generation [1,2]. In one approach, a number of odd harmonics of rougly equal strength are combined to form a train of sub-femtosecond pulses. If the harmonics are locked in phase to each other, the train will consist of the emission of one attosecond pulse every half cycle of the driving laser field [1,3]. It is in general not trivial to ensure that the harmonics are phase-locked as they are generated with intrinsically different phases. These phases originate in the strong field dynamics of the light-matter interaction [4].We will discuss different ways of generating and manipulating attosecond pulses via high harmonic generation. We will show how the harmonics can be phase-locked and better synchronized so as to form optimal pulse trains [3]. We will also show that it is possible to generate trains of pulses separated by a full laser cycle, by combining the driving laser field with its second harmonic [5]. The strong field continuum dynamics driven by the two-color field is very different from that of the one-color field and varies strongly with the delay between the two laser fields [6]. (1) P. M. Paul et al, Science 292, 1689 (2001).(2) M. Hentschel et al, Nature 414, 509 (2001).(3) R. Lopez-Martens et al, PRL 94, 033001 (2005).(4) P. Antoine, A. L'Huillier, and M. Lewenstein, PRL 77, 1234 (1996).(5) J. Mauritsson et al, in preparation (2006).(6) M. B. Gaarde et al, in preparation (2006).

  11. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 10{sup 20 }W/cm{sup 2} irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 10{sup 17 }W/cm{sup 2} interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon fluxmore » rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV) to 6.0 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.« less

  12. Generation of intense high-order vortex harmonics.

    PubMed

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  13. Generating coherent broadband continuum soft-x-ray radiation by attosecond ionization gating.

    PubMed

    Pfeifer, Thomas; Jullien, Aurélie; Abel, Mark J; Nagel, Phillip M; Gallmann, Lukas; Neumark, Daniel M; Leone, Stephen R

    2007-12-10

    The current paradigm of isolated attosecond pulse production requires a few-cycle pulse as the driver for high-harmonic generation that has a cosine-like electric field stabilized with respect to the peak of the pulse envelope. Here, we present simulations and experimental evidence that the production of high-harmonic light can be restricted to one or a few cycles on the leading edge of a laser pulse by a gating mechanism that employs time-dependent ionization of the conversion medium. This scheme enables the generation of broadband and tunable attosecond pulses. Instead of fixing the carrier-envelope phase to produce a cosine driver pulse, the phase becomes a control parameter for the center frequency of the attosecond pulse. A method to assess the multiplicity of attosecond pulses in the pulse train is also presented. The results of our study suggest an avenue towards relaxing the requirement of few-cycle pulses for isolated attosecond pulse generation.

  14. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectramore » for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.« less

  15. New generation attosecond light sources

    NASA Astrophysics Data System (ADS)

    Chang, Zenghu

    2017-04-01

    Millijoule level, few-cycle, carrier-envelope phase (CEP) stable Ti:Sapphire lasers centered at 800 nm have been the workhorse for the first generation attosecond light sources in the last 16 years. The spectral range of isolated attosecond pulses with sufficient photon flux for time-resolved pump-probe experiments has been limited to extreme ultraviolet (10 to 150 eV). The shortest pulses achieved are 67 as. It was demonstrated in 2001 that the cutoff photon energy of the high harmonic spectrum could be extended by increasing the center wavelength of the driving lasers. In recent years, mJ level, two-cycle, carrier-envelope phase stabilized lasers at 1.6 to 2.1 micron have been developed by implementing Optical Parametric Chirped Pulse Amplification (OPCPA) techniques. Recently, when long wavelength driving was combined with polarization gating, isolated soft x-rays in the water window (280-530 eV) were generated in our laboratory. The number of x-ray photons in the 120-400 eV range is comparable to that generated with Ti:Sapphire lasers in the 50 to 150 eV range. The ultrabroadband isolated x-ray pulses with 53 as duration were characterized by attosecond streaking measurements. The new generation attosecond soft X-ray sources open the door for studying electron dynamics with element specificity through core to valence transitions. NSF (1068604), ARO (W911NF-14-1-0383), AFOSR (FA9550-15-1-0037, FA9550-16-1-0013), DARPA-PULSE (W31P4Q1310017).

  16. Extracting attosecond delays from spectrally overlapping interferograms

    NASA Astrophysics Data System (ADS)

    Jordan, Inga; Wörner, Hans Jakob

    2018-02-01

    Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.

  17. Dynamic Chirp Control and Pulse Compression for Attosecond High-Order Harmonic Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Yinghui; Zeng Zhinan; Zou Pu

    2009-07-24

    We propose a scheme to compensate dynamically the intrinsic chirp of the attosecond harmonic pulses. By adding a weak second harmonic laser field to the driving laser field, the chirp compensation can be varied from the negative to the positive continuously by simply adjusting the relative time delay between the two-color pulses. Using this technique, the compensation of the negative chirp in harmonic emission is demonstrated experimentally for the first time and the nearly transform-limited attosecond pulse trains are obtained.

  18. Attosecond Streaking in the Water Window: A New Regime of Attosecond Pulse Characterization

    NASA Astrophysics Data System (ADS)

    Cousin, Seth L.; Di Palo, Nicola; Buades, Bárbara; Teichmann, Stephan M.; Reduzzi, M.; Devetta, M.; Kheifets, A.; Sansone, G.; Biegert, Jens

    2017-10-01

    We report on the first streaking measurement of water-window attosecond pulses generated via high-harmonic generation, driven by sub-2-cycle, carrier-to-envelope-phase-stable, 1850-nm laser pulses. Both the central photon energy and the energy bandwidth far exceed what has been demonstrated thus far, warranting the investigation of the attosecond streaking technique for the soft-x-ray regime and the limits of the frogcrab retrieval algorithm under such conditions. We also discuss the problem of attochirp compensation and issues regarding much lower photoionization cross sections compared with the extreme ultraviolet in addition to the fact that several shells of target gases are accessed simultaneously. Based on our investigation, we caution that the vastly different conditions in the soft-x-ray regime warrant a diligent examination of the fidelity of the measurement and the retrieval procedure.

  19. An Attosecond Transient Absorption Spectroscopy Setup with a Water Window Attosecond source

    NASA Astrophysics Data System (ADS)

    Chew, Andrew; Yin, Yanchun; Li, Jie; Ren, Xiaoming; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-01

    Attosecond transient absorption, or time-resolved pump-probe spectroscopy, are excellent tools that can be used to investigate fast electron dynamics for a given atomic or molecular system. Recent push for high energy long wavelength few cycle laser sources has resulted in the production of x-ray spectra that would allow the probing of electron dynamics at the carbon k-edge in molecules such as CH4 and CO2. The motion of charges can be caused by photo-dissociation and charge migration. We present here the first results from our experimental setup where we produce a broadband attosecond pulse with spectra that stretches into the water window. National Science Foundation (1068604), Army Research Oce (W911NF-14-1-0383), Air Force Oce of Scientic Research (FA9550-15-1-0037, FA9550-16-1-0013) and the DARPA PULSE program by a Grant from AMRDEC (W31P4Q1310017).

  20. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C.; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiersmore » synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre

  1. Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity

    NASA Astrophysics Data System (ADS)

    Fan, Xu-Dong; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-09-01

    Schroeder diffusers, as a classical design of acoustic diffusers proposed over 40 years ago, play key roles in many practical scenarios ranging from architectural acoustics to noise control to particle manipulation. Despite the great success of conventional acoustic diffusers, it is still worth pursuing ideal acoustic diffusers that are essentially expected to produce perfect sound diffuse reflection within the unlimited bandwidth. Here, we propose a different mechanism for designing acoustic diffusers to overcome the basic limits in intensity uniformity and working bandwidth in the previous designs and demonstrate a practical implementation by acoustic metamaterials with dispersionless phase-steering capability. In stark contrast to the existing production of diffuse fields relying on random scattering of sound energy by using a specific mathematical number sequence of periodically distributed unit cells, we directly mold the reflected wavefront into the desired shape by precisely manipulating the local phases of individual subwavelength metastructures. We also benchmark our design via numerical simulation with a commercially available Schroeder diffuser, and the results verify that our proposed diffuser scatters incident acoustic energy into all directions more uniformly within an ultra-broad band regardless of the incident angle. Furthermore, our design enables further improvement of the working bandwidth just by simply downscaling each individual element. With ultra-broadband functionality and high uniformity of reflected intensity, our metamaterial-based production of the diffusive field opens a route to the design and application of acoustic diffusers and may have a significant impact on various fields such as architectural acoustics and medical ultrasound imaging/treatment.

  2. Attosecond Spectroscopy Probing Electron Correlation Dynamics

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.

    Electrons are the driving force behind every chemical reaction. The exchange, ionization, or even relaxation of electrons is behind every bond broken or formed. According to the Bohr model of the atom, it takes an electron 150 as to orbit a proton[6]. With this as a unit time scale for an electron, it is clear that a pulse duration of several femtoseconds will not be sufficient to understanding electron dynamics. Our work demonstrates both technical and scientific achievements that push the boundaries of attosecond dynamics. TDSE studies show that amplification the yield of high harmonic generation (HHG) may be possible with transverse confinement of the electron. XUV-pump-XUV-probe shows that the yield of APT train can be sufficient for 2-photon double ionization studies. A zero dead-time detection system allows for the measurement of state-resolved double ionization for the first time. Exploiting attosecond angular streaking[7] probes sequential and non-sequential double ionization via electron-electron correlations with attosecond time resolution. Finally, using recoil frame momentum correlation, the fast dissociation of CH 3I reveals important orbital ionization dynamics of non-dissociative & dissociative, single & double ionization.

  3. Characterization and Application of Isolated Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Wei, Hui

    Isolated attosecond pulse (IAP) is a tool of probing electronic dynamics occurring in atoms, molecules, clusters and solids, since the time scale of electronic motion is on the order of attoseconds. The generation, characterization and applications of IAPs has become one of the fast frontiers of laser experiments. This dissertation focuses on several aspects of attosecond physics. First, we study the driving wavelength scaling of the yield of high-order harmonic generation (HHG) by applying the quantum orbit theory. The unfavorable scaling law especially for the short quantum orbit is of great importance to attoseond pulse generation toward hundreds of eVs or keV photon energy region by mid-infrared (mid-IR) lasers. Second, we investigate the accuracy of the current frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG-CRAB) and phase retrieval by omega oscillation filtering (PROOF) methods for IAP characterization by simulating the experimental data by theoretical calculation. This calibration is critical but has not been carefully carried out before. We also present an improved method, namely the swPROOF which is more universal and robust than the original PROOF method. Third, we investigate the controversial topic of photoionization time delay. We find the limitation of the FROG-CRAB method which has been used to extract the photoionization time delay between the 2s and 2p channels in neon. The time delay retrieval is sensitive to the attochirp of the XUV pulse, which may lead to discrepancies between experiment and theory. A new fitting method is proposed in order to overcome the limitations of FROG-CRAB. Finally, IAPs are used to probe the dynamic of electron correlation in helium atom by means of attosecond transient absorption spectroscopy. The agreement between the measurement and our analytical model verifies the observation of time-dependent build up of the 2s2p Fano resonance.

  4. The life cycle of infrared ultra-short high intensity laser pulses in air

    NASA Astrophysics Data System (ADS)

    Ma, Cunliang; Lin, Wenbin

    2015-08-01

    The life cycle of ultra-short high intensity laser pulses propagation in air is studied. As the controversial of the high-order Kerr indices measured by Loriot et al. [Opt. Express 18, 3011 (2010)], we focus on two models which are high-order Kerr effect included and not included. Two factors are mainly analyzed, group-velocity-dispersion and the energy evolution of the pulse. It is found that the group-velocity-dispersion can not be simply ignored even though the pulse's duration is as long as several hundreds femtoseconds. The energy loss due to the multi-photon-absorption is very small, and it may hardly change the propagation length of the pulse. Another contribution of this work is to introduce a probability quantity, which may be useful in validating the positive and negative alternating of the Kerr and high-order Kerr indices.

  5. Multidimensional Attosecond Resonant X-Ray Spectroscopy of Molecules: Lessons from the Optical Regime

    PubMed Central

    Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.

    2013-01-01

    New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522

  6. Enhanced attosecond pulse generation in the vacuum ultraviolet using a two-colour driving field for high harmonic generation

    NASA Astrophysics Data System (ADS)

    Matía-Hernando, P.; Witting, T.; Walke, D. J.; Marangos, J. P.; Tisch, J. W. G.

    2018-03-01

    High-harmonic radiation in the extreme ultraviolet and soft X-ray spectral regions can be used to generate attosecond pulses and to obtain structural and dynamic information in atoms and molecules. However, these sources typically suffer from a limited photon flux. An additional issue at lower photon energies is the appearance of satellites in the time domain, stemming from insufficient temporal gating and the spectral filtering required for the isolation of attosecond pulses. Such satellites limit the temporal resolution. The use of multi-colour driving fields has been proven to enhance the harmonic yield and provide additional control, using the relative delays between the different spectral components for waveform shaping. We describe here a two-colour high-harmonic source that combines a few-cycle near-infrared pulse with a multi-cycle second harmonic pulse, with both relative phase and carrier-envelope phase stabilization. We observe strong modulations in the harmonic flux, and present simulations and experimental results supporting the suppression of satellites in sub-femtosecond pulses at 20 eV compared to the single colour field case, an important requirement for attosecond pump-probe measurements.

  7. Phase control of attosecond pulses in a train

    NASA Astrophysics Data System (ADS)

    Guo, Chen; Harth, Anne; Carlström, Stefanos; Cheng, Yu-Chen; Mikaelsson, Sara; Mårsell, Erik; Heyl, Christoph; Miranda, Miguel; Gisselbrecht, Mathieu; Gaarde, Mette B.; Schafer, Kenneth J.; Mikkelsen, Anders; Mauritsson, Johan; Arnold, Cord L.; L'Huillier, Anne

    2018-02-01

    Ultrafast processes in matter can be captured and even controlled by using sequences of few-cycle optical pulses, which need to be well characterized, both in amplitude and phase. The same degree of control has not yet been achieved for few-cycle extreme ultraviolet pulses generated by high-order harmonic generation (HHG) in gases, with duration in the attosecond range. Here, we show that by varying the spectral phase and carrier-envelope phase (CEP) of a high-repetition rate laser, using dispersion in glass, we achieve a high degree of control of the relative phase and CEP between consecutive attosecond pulses. The experimental results are supported by a detailed theoretical analysis based upon the semi-classical three-step model for HHG.

  8. Characterizing isolated attosecond pulses with angular streaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Siqi; Guo, Zhaoheng; Coffee, Ryan N.

    Here, we present a reconstruction algorithm for isolated attosecond pulses, which exploits the phase dependent energy modulation of a photoelectron ionized in the presence of a strong laser field. The energy modulation due to a circularly polarized laser field is manifest strongly in the angle-resolved photoelectron momentum distribution, allowing for complete reconstruction of the temporal and spectral profile of an attosecond burst. We show that this type of reconstruction algorithm is robust against counting noise and suitable for single-shot experiments. This algorithm holds potential for a variety of applications for attosecond pulse sources.

  9. Characterizing isolated attosecond pulses with angular streaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sigi; Guo, Zhaoheng; Coffee, Ryan N.

    We present a reconstruction algorithm for isolated attosecond pulses, which exploits the phase dependent energy modulation of a photoelectron ionized in the presence of a strong laser field. The energy modulation due to a circularly polarized laser field is manifest strongly in the angle-resolved photoelectron momentum distribution, allowing for complete reconstruction of the temporal and spectral profile of an attosecond burst. We show that this type of reconstruction algorithm is robust against counting noise and suitable for single-shot experiments. This algorithm holds potential for a variety of applications for attosecond pulse sources.

  10. Characterizing isolated attosecond pulses with angular streaking

    DOE PAGES

    Li, Siqi; Guo, Zhaoheng; Coffee, Ryan N.; ...

    2018-02-12

    Here, we present a reconstruction algorithm for isolated attosecond pulses, which exploits the phase dependent energy modulation of a photoelectron ionized in the presence of a strong laser field. The energy modulation due to a circularly polarized laser field is manifest strongly in the angle-resolved photoelectron momentum distribution, allowing for complete reconstruction of the temporal and spectral profile of an attosecond burst. We show that this type of reconstruction algorithm is robust against counting noise and suitable for single-shot experiments. This algorithm holds potential for a variety of applications for attosecond pulse sources.

  11. Characterizing isolated attosecond pulses with angular streaking

    DOE PAGES

    Li, Sigi; Guo, Zhaoheng; Coffee, Ryan N.; ...

    2018-02-13

    We present a reconstruction algorithm for isolated attosecond pulses, which exploits the phase dependent energy modulation of a photoelectron ionized in the presence of a strong laser field. The energy modulation due to a circularly polarized laser field is manifest strongly in the angle-resolved photoelectron momentum distribution, allowing for complete reconstruction of the temporal and spectral profile of an attosecond burst. We show that this type of reconstruction algorithm is robust against counting noise and suitable for single-shot experiments. This algorithm holds potential for a variety of applications for attosecond pulse sources.

  12. Spatial control of recollision wave packets with attosecond precision.

    PubMed

    Kitzler, Markus; Lezius, Matthias

    2005-12-16

    We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.

  13. ICPP: Relativistic Plasma Physics with Ultra-Short High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Meyer-Ter-Vehn, Juergen

    2000-10-01

    Recent progress in generating ultra-short high-intensity laser pulses has opened a new branch of relativistic plasma physics, which is discussed in this talk in terms of particle-in-cell (PIC) simulations. These pulses create small plasma volumes of high-density plasma with plasma fields above 10^12 V/m and 10^8 Gauss. At intensities beyond 10^18 W/cm^2, now available from table-top systems, they drive relativistic electron currents in self-focussing plasma channels. These currents are close to the Alfven limit and allow to study relativistic current filamentation. A most remarkable feature is the generation of well collimated relativistic electron beams emerging from the channels with energies up to GeV. In dense matter they trigger cascades of gamma-rays, e^+e^- pairs, and a host of nuclear and particle processes. One of the applications may be fast ignition of compressed inertial fusion targets. Above 10^23 W/cm^2, expected to be achieved in the future, solid-density matter becomes relativistically transparent for optical light, and the acceleration of protons to multi-GeV energies is predicted in plasma layers less than 1 mm thick. These results open completely new perspectives for plasma-based accelerator schemes. Three-dimensional PIC simulations turn out to be the superior tool to explore the relativistic plasma kinetics at such intensities. Results obtained with the VLPL code [1] are presented. Different mechanisms of particle acceleration are discussed. Both laser wakefield and direct laser acceleration in plasma channels (by a mechanism similar to inverse free electron lasers) have been identified. The latter describes recent MPQ experimental results. [1] A. Pukhov, J. Plasma Physics 61, 425 - 433 (1999): Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Laboratory).

  14. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less

  15. Measurement and compensation schemes for the pulse front distortion of ultra-intensity ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin

    2016-11-01

    Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.

  16. Robust generation of isolated attosecond pulse against the variation of carrier envelope phase of driving laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Pu; Zeng Zhinan; Zheng Yinghui

    2010-11-15

    We propose a scheme for generating isolated attosecond pulse (IAP) via high-order harmonic generation in gases using a chirped two-color laser field of multicycle duration. In contrast to previous techniques where the stable carrier-envelope phase (CEP) of the driving laser pulses is a prerequisite for IAP generation, the proposed scheme is robust against the large variation of CEP. We show the generation of IAP with an intensity fluctuation less than 50% and an intensity contrast ratio higher than 5:1 when the CEP shift is as large as 1.35{pi}.

  17. Attosecond nanoscale near-field sampling

    PubMed Central

    Förg, B.; Schötz, J.; Süßmann, F.; Förster, M.; Krüger, M.; Ahn, B.; Okell, W. A.; Wintersperger, K.; Zherebtsov, S.; Guggenmos, A.; Pervak, V.; Kessel, A.; Trushin, S. A.; Azzeer, A. M.; Stockman, M. I.; Kim, D.; Krausz, F.; Hommelhoff, P.; Kling, M. F.

    2016-01-01

    The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted. PMID:27241851

  18. Attosecond nanoscale near-field sampling

    DOE PAGES

    Forg, B.; Schotz, J.; SuBmann, F.; ...

    2016-05-31

    The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. Furthermore, by comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.

  19. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Xun; College of Electronic Engineering, Wuhan 430019; Ma, Yan-Yun, E-mail: yanyunma@126.com

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positronmore » beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.« less

  20. Laser-plasma accelerator-based single-cycle attosecond undulator source

    NASA Astrophysics Data System (ADS)

    Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.

    2018-06-01

    Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

  1. Connecting Lab-Based Attosecond Science with FEL research

    ScienceCinema

    Vrakking, Marc

    2017-12-09

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is performed using x-ray photons. Following the absorption of x-rays, ejected photoelectrons can be used as a probe of the (time-evolving) molecular structure, making use of intra-molecular electron diffraction. This amounts, as some have stated, to “illuminating the molecule from within”. I will present the present status of our experiments on this topic making use of the FLASH free electron laser in Hamburg. Future progress in this research field not only depends on the availability of better and more powerful light sources, but also requires sophisticated detector strategies. In my talk I will explain how we are trying to meet some of the experimental challenges by using the Medipix family of detectors, which we have already used for time- and space-resolved imaging of electrons and ions.

  2. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    PubMed Central

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-01-01

    We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785

  3. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2016-08-15

    Here, we propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained.more » This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.« less

  4. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

    PubMed Central

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2014-01-01

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866

  5. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    PubMed

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  6. Ultracold-atom quantum simulator for attosecond science

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Förster, Johann; Saenz, Alejandro

    2017-01-01

    A quantum simulator based on ultracold optically trapped atoms for simulating the physics of atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about 13 orders of magnitude allows one to watch in slow motion the tunneling and recollision processes that form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper understanding of strong-field physics, especially for many-body systems beyond the reach of classical computers. The quantum simulator can experimentally straightforwardly be realized and is shown to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.

  7. Theory of attosecond delays in molecular photoionization.

    PubMed

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-03-28

    We present a theoretical formalism for the calculation of attosecond delays in molecular photoionization. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith delays, can be obtained from the complex dipole matrix elements provided by molecular quantum scattering theory. These results are used to derive formulae for the delays measured by two-photon attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared pulse. These effective delays are first expressed in the molecular frame where maximal information about the molecular photoionization dynamics is available. The effects of averaging over the emission direction of the electron and the molecular orientation are introduced analytically. We illustrate this general formalism for the case of two polyatomic molecules. N 2 O serves as an example of a polar linear molecule characterized by complex photoionization dynamics resulting from the presence of molecular shape resonances. H 2 O illustrates the case of a non-linear molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our theory establishes the foundation for interpreting measurements of the photoionization dynamics of all molecules by attosecond metrology.

  8. Attomicroscopy: from femtosecond to attosecond electron microscopy

    NASA Astrophysics Data System (ADS)

    Hassan, Mohammed Th

    2018-02-01

    In the last decade, the development of ultrafast electron diffraction (UED) and microscopy (UEM) have enabled the imaging of atomic motion in real time and space. These pivotal table-top tools opened the door for a vast range of applications in different areas of science spanning chemistry, physics, materials science, and biology. We first discuss the basic principles and recent advancements, including some of the important applications, of both UED and UEM. Then, we discuss the recent advances in the field that have enhanced the spatial and temporal resolutions, where the latter, is however, still limited to a few hundreds of femtoseconds, preventing the imaging of ultrafast dynamics of matter lasting few tens of femtoseconds. Then, we present our new optical gating approach for generating an isolated 30 fs electron pulse with sufficient intensity to attain a temporal resolution on the same time scale. This achievement allows, for the first time, imaging the electron dynamics of matter. Finally, we demonstrate the feasibility of the optical gating approach to generate an isolated attosecond electron pulse, utilizing our recently demonstrated optical attosecond laser pulse, which paves the way for establishing the field of ‘Attomicroscopy’, ultimately enabling us to image the electron motion in action.

  9. Generation of Gigawatt Circularly Polarized Attosecond-Pulse Pairs

    NASA Astrophysics Data System (ADS)

    Hu, K.; Wu, H.-C.

    2017-12-01

    A novel scheme for generating a pair of gigawatt attosecond pulses by coherent Thomson scattering from relativistic electron sheets is proposed. With a circularly polarized relativistic laser pulse, the scattered x-ray signal can have a saddlelike temporal profile, where the lower electromagnetic frequencies are found mostly in the center region of this saddlelike profile. By filtering out the latter, we can obtain two few-attosecond pulses separated by a subfemtosecond interval, which is tunable by controlling the energy of the sheet electrons. Such a pulse pair can be useful for an attosecond pump probe at an unprecedented time resolution and for ultrafast chiral studies in molecules and materials.

  10. Attosecond control of orbital parity mix interferences and the relative phase of even and odd harmonics in an attosecond pulse train.

    PubMed

    Laurent, G; Cao, W; Li, H; Wang, Z; Ben-Itzhak, I; Cocke, C L

    2012-08-24

    We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train.

  11. Towards attosecond measurement in molecules and at surfaces

    NASA Astrophysics Data System (ADS)

    Marangos, Jonathan

    2015-05-01

    1) We will present a number of experimental approaches that are being developed at Imperial College to make attosecond timescale measurements of electronic dynamics in suddenly photoionized molecules and at surfaces. A brief overview will be given of some of the unanswered questions in ultrafast electron and hole dynamics in molecules and solids. These questions include the existence of electronic charge migration in molecules and how this process might couple to nuclear motion even on the few femtosecond timescale. How the timescale of photoemission from a surface may differ from that of an isolated atom, e.g. due to electron transport phenomena associated with the distance from the surface of the emitting atom and the electron dispersion relation, is also an open question. 2) The measurement techniques we are currently developing to answer these questions are HHG spectroscopy, attosecond pump-probe photoelectron/photoion studies, and attosecond pump-probe transient absorption as well as attosecond streaking for measuring surface emission. We will present recent advances in generating two synchronized isolated attosecond pulses at different colours for pump-probe measurements (at 20 eV and 90 eV respectively). Results on generation of isolated attosecond pulses at 300 eV and higher photon energy using a few-cycle 1800 nm OPG source will be presented. The use of these resources for making pump-probe measurements will be discussed. Finally we will present the results of streaking measurement of photoemission wavepackets from two types of surface (WO3 and a evaporated Au film) that show a temporal broadening of ~ 100 as compared to atomic streaks that is consistent with the electron mean free path in these materials. Work supported by ERC and EPSRC.

  12. Diffraction and microscopy with attosecond electron pulse trains

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a < 10-as delay of Bragg emission and demonstrates the possibility of analytic attosecond-ångström diffraction. Real-space electron microscopy visualizes with sub-light-cycle resolution how an optical wave propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  13. Attosecond electron pulses for 4D diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2007-01-01

    In this contribution, we consider the advancement of ultrafast electron diffraction and microscopy to cover the attosecond time domain. The concept is centered on the compression of femtosecond electron packets to trains of 15-attosecond pulses by the use of the ponderomotive force in synthesized gratings of optical fields. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (≈50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics, especially of atomic structures, clusters of atoms, and some materials. PMID:18000040

  14. Birth of a resonant attosecond wavepacket

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Gruson, V.; Barreau, L.; Jimenez-Galan, A.; Risoud, F.; Caillat, J.; Maquet, A.; Carre, B.; Lepetit, F.; Hergott, J.-F.; Ruchon, T.; Taieb, R.; Martin, F.; Salieres, P.

    2016-05-01

    Both amplitude and phase are needed to characterize the dynamics of a wavepacket. However, such characterization is difficult when both attosecond and femtosecond timescales are involved, as it is the case for broadband photoionization to a continuum encompassing autoionizing states. Here we demonstrate that Rainbow RABBIT, a new attosecond interferometry, allows the measurement of amplitude and phase of a photoelectron wavepacket created through a Fano resonance with unprecedented precision. In the experiment, a tunable attosecond pulse train is combined with the fundamental laser pulse to induce two-photon transitions in helium via an intermediate autoionizing state. From the energy and time-delay resolved signal, we fully reconstruct the resonant electron wavepacket as it builds up in the continuum. Measurements accurately match the predictions of a new time-resolved multi-photon resonant model, known to reproduce ab initio calculations. This agreement confirms the potential of Rainbow RABBIT to investigate photoemission delays in ultrafast processes governed by electron correlation, as well as to control structured electron wavepackets. now at Univ. Central Florida, Orlando, FL (USA).

  15. Do nuclei move on an attosecond timescale in strong-field photodissociation?

    NASA Astrophysics Data System (ADS)

    Esry, B. D.

    2017-04-01

    Without the ready availability of single attosecond pulses with sufficient energy to perform pump-probe experiments, the push to measure electronic dynamics on its natural timescale of attoseconds has enlisted less direct measurements. Photoionization ``time delays'', in particular, have been measured and calculated to be on the attosecond timescale and thus have attracted considerable attention. The ultimate goal of such attosecond-scale measurements is the molecular movie - i.e., making movies of the electronic motion during chemical reactions. It has been universally assumed, however, that any measured attosecond timescales in observables relate exclusively to electronic dynamics, even during a reaction which necessarily includes nuclear motion. I will explore some of the limits of this assumption and highlight a few specific cases where it fails, emphasizing in the process that phases should be favored over ``time delays''. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  16. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  17. In situ attosecond pulse characterization techniques to measure the electromagnetic phase

    NASA Astrophysics Data System (ADS)

    Spanner, M.; Bertrand, J. B.; Villeneuve, D. M.

    2016-08-01

    A number of techniques have been developed to characterize the attosecond emission from high-order-harmonic sources. These techniques are broadly classified as ex situ, where the attosecond pulse train photoionizes a target gas in the presence of an infrared field, and in situ, where the measurement takes place in the medium in which the attosecond pulses are generated. It is accepted that ex situ techniques measure the characteristics of the electromagnetic field, including the phase of the recombination transition moment of the emitting atom or molecule, when the phase of the second medium is known. However, there is debate about whether in situ techniques measure the electromagnetic field, or only the characteristics of the recolliding electron before recombination occurs. We show numerically that in situ measurements are not sensitive to the recombination phase, when implemented in the perturbative regime as originally envisioned, and that they do not measure the electromagnetic phase of the emission.

  18. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, S. J., E-mail: sebastien.weber@cea.fr; Manschwetus, B.; Billon, M.

    2015-03-15

    We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using bothmore » experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.« less

  19. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses.

    PubMed

    Calegari, F; Ayuso, D; Trabattoni, A; Belshaw, L; De Camillis, S; Anumula, S; Frassetto, F; Poletto, L; Palacios, A; Decleva, P; Greenwood, J B; Martín, F; Nisoli, M

    2014-10-17

    In the past decade, attosecond technology has opened up the investigation of ultrafast electronic processes in atoms, simple molecules, and solids. Here, we report the application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine and the subsequent detection of ultrafast dynamics on a sub-4.5-femtosecond temporal scale, which is shorter than the vibrational response of the molecule. The ability to initiate and observe such electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond science, which is progressively moving toward the investigation of more and more complex systems. Copyright © 2014, American Association for the Advancement of Science.

  20. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.

    PubMed

    Yang, Ying-Ying; Scrinzi, Armin; Husakou, Anton; Li, Qian-Guang; Stebbings, Sarah L; Süßmann, Frederik; Yu, Hai-Juan; Kim, Seungchul; Rühl, Eckart; Herrmann, Joachim; Lin, Xue-Chun; Kling, Matthias F

    2013-01-28

    Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two.

  1. Ultrafast laser control of autoionizing resonances observed in attosecond transient absorption

    NASA Astrophysics Data System (ADS)

    Liao, Chen-Ting; Harkema, Nathan; Sandhu, Arvinder

    2017-04-01

    Attosecond and femtosecond extreme ultraviolet (XUV) pulses can be used to probe electron dynamics in high-lying excited states that autoionize on a femtosecond timescale, thus providing information on the process of Auger decay and its interference with the continua. Here we utilize XUV pulses in connection with infrared (IR) pulses to perform attosecond transient absorption spectroscopy of the impulsive response of argon autoionizing Rydberg states in the vicinity of the 3s-1 4 p resonance. We show that by tuning the time delay and field polarization of IR pulse, it is possible to control the dipolar coupling between neighboring states and hence the spectral line shape of the resonance, such as the transition between Breit-Wigner to Beutler-Fano profiles. NSF Grant No. PHY-1505556.

  2. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    NASA Astrophysics Data System (ADS)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  3. Full characterization of an attosecond pulse generated using an infrared driver

    PubMed Central

    Zhang, Chunmei; Brown, Graham G.; Kim, Kyung Taec; Villeneuve, D. M.; Corkum, P. B.

    2016-01-01

    The physics of attosecond pulse generation requires using infrared driving wavelength to reach the soft X-rays. However, with longer driving wavelength, the harmonic conversion efficiency drops significantly. It makes the conventional attosecond pulse measurement using streaking very difficult due to the low photoionization cross section in the soft X-rays region. In-situ measurement was developed for precisely this purpose. We use in-situ measurement to characterize, in both space and time, an attosecond pulse produced by ultrafast wavefront rotation of a 1.8 μm fundamental beam. We confirm what models suggest – that each beamlet is an isolated attosecond pulse in the time domain. We get almost constant flat wavefront curvature through the whole photon energy range. The measurement method is scalable to the soft X-ray spectral region. PMID:27230961

  4. Relativistic plasma control for single attosecond x-ray burst generation

    NASA Astrophysics Data System (ADS)

    Baeva, T.; Gordienko, S.; Pukhov, A.

    2006-12-01

    We show that managing time-dependent polarization of the relativistically intense laser pulse incident on a plasma surface allows us to gate a single (sub)attosecond x-ray burst even when a multicycle driver is used. The single x-ray burst is emitted when the tangential component of the vector potential at the plasma surface vanishes. This relativistic plasma control is based on the theory of relativistic spikes [T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046404 (2006)]. The relativistic plasma control is demonstrated here numerically by particle-in-cell simulations.

  5. Dynamics of electronic transitions and reemission spectra of attosecond electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.

    2014-05-01

    The processes of reemission of attosecond electromagnetic pulses by systems in nonstationary states have been considered. The probabilities of the reemission of attosecond electromagnetic pulses at the resonance charge exchange of a proton on a hydrogen atom and at the decay of a quasistationary state, as well as the probabilities of the reemission of attosecond pulses by a system in a resonance external field, have been calculated as examples. The developed method can be applied to more complex targets, including targets in the collision state, and to various chemical reactions.

  6. Ultra-intense Pair Creation using the Texas Petawatt Laser and Applications

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Lo, Willie; Chaguine, Petr; Dyer, Gilliss; Riley, Nathan; Serratto, Kristina; Donovan, Michael; Ditmire, Todd

    2014-10-01

    Pair plasmas and intense gamma-ray sources are ubiquitous in the high-energy universe, from pulser winds to gamma-ray bursts (GRB). Their study can be greatly enhanced if such sources can be recreated in the laboratory under controlled conditions. In 2012 and 2013, a joint Rice-University of Texas team performed over 130 laser shots on thick gold and platinum targets using the 100 Joule Texas Petawatt Laser in Austin. The laser intensity of many shots exceeded 1021 W.cm-2 with pulses as short as 130 fs. These experiments probe a new extreme regime of ultra-intense laser - high-Z solid target interactions never achieved before. In addition to creating copious pairs with the highest density (>1015/cc) and emergent e +/e- ratio exceeding 20% in many shots, these experiments also created the highest density multi-MeV gamma-rays, comparable in absolute numbers to those found inside a gamma-ray burst (GRB). Potential applications of such intense pair and gamma-ray sources to laboratory astrophysics and innovative technologies will be discussed. Work supported by DOE HEDLP program.

  7. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  8. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-Y.; Starace, Anthony F.

    2007-10-15

    We analyze carrier-envelope phase (CEP) effects on electron wave-packet momentum and energy spectra produced by one or two few-cycle attosecond xuv pulses. The few-cycle attosecond pulses are assumed to have arbitrary phases. We predict CEP effects on ionized electron wave-packet momentum distributions produced by attosecond pulses having durations comparable to those obtained by Sansone et al. [Science 314, 443 (2006)]. The onset of significant CEP effects is predicted to occur for attosecond pulse field strengths close to those possible with current experimental capabilities. Our results are based on single-active-electron solutions of the three-dimensional, time-dependent Schroedinger equation including atomic potentials appropriatemore » for the H and He atoms.« less

  9. Probing electronic binding potentials with attosecond photoelectron wavepackets

    NASA Astrophysics Data System (ADS)

    Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.

    2018-01-01

    The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

  10. Attosecond Delays in Molecular Photoionization.

    PubMed

    Huppert, Martin; Jordan, Inga; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob

    2016-08-26

    We report measurements of energy-dependent photoionization delays between the two outermost valence shells of N_{2}O and H_{2}O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N_{2}O, whereas the delays in H_{2}O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N_{2}O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to ∼110 as. The unstructured continua of H_{2}O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.

  11. Attosecond light sources in the water window

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu

    2018-02-01

    As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.

  12. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime

    NASA Astrophysics Data System (ADS)

    Ahn, B.; Schötz, J.; Kang, M.; Okell, W. A.; Mitra, S.; Förg, B.; Zherebtsov, S.; Süßmann, F.; Burger, C.; Kübel, M.; Liu, C.; Wirth, A.; Di Fabrizio, E.; Yanagisawa, H.; Kim, D.; Kim, B.; Kling, M. F.

    2017-03-01

    Metal nanotip photoemitters have proven to be versatile in fundamental nanoplasmonics research and applications, including, e.g., the generation of ultrafast electron pulses, the adiabatic focusing of plasmons, and as light-triggered electron sources for microscopy. Here, we report the generation of high energy photoelectrons (up to 160 eV) in photoemission from single-crystalline nanowire tips in few-cycle, 750-nm laser fields at peak intensities of (2-7.3) × 1012 W/cm2. Recording the carrier-envelope phase (CEP)-dependent photoemission from the nanowire tips allows us to identify rescattering contributions and also permits us to determine the high-energy cutoff of the electron spectra as a function of laser intensity. So far these types of experiments from metal nanotips have been limited to an emission regime with less than one electron per pulse. We detect up to 13 e/shot and given the limited detection efficiency, we expect up to a few ten times more electrons being emitted from the nanowire. Within the investigated intensity range, we find linear scaling of cutoff energies. The nonlinear scaling of electron count rates is consistent with tunneling photoemission occurring in the absence of significant charge interaction. The high electron energy gain is attributed to field-induced rescattering in the enhanced nanolocalized fields at the wires apex, where a strong CEP-modulation is indicative of the attosecond control of photoemission.

  13. 0.5-keV Soft X-ray attosecond continua

    PubMed Central

    Teichmann, S. M.; Silva, F.; Cousin, S. L.; Hemmer, M.; Biegert, J.

    2016-01-01

    Attosecond light pulses in the extreme ultraviolet have drawn a great deal of attention due to their ability to interrogate electronic dynamics in real time. Nevertheless, to follow charge dynamics and excitations in materials, element selectivity is a prerequisite, which demands such pulses in the soft X-ray region, above 200 eV, to simultaneously cover several fundamental absorption edges of the constituents of the materials. Here, we experimentally demonstrate the exploitation of a transient phase matching regime to generate carrier envelope controlled soft X-ray supercontinua with pulse energies up to 2.9±0.1 pJ and a flux of (7.3±0.1) × 107 photons per second across the entire water window and attosecond pulses with 13 as transform limit. Our results herald attosecond science at the fundamental absorption edges of matter by bridging the gap between ultrafast temporal resolution and element specific probing. PMID:27167525

  14. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology

    PubMed Central

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    2016-01-01

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date. PMID:26989782

  15. High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses

    PubMed Central

    Brahms, Christian; Gregory, Andrew; Tisch, John W. G.; Marangos, Jon P.

    2018-01-01

    Laser-driven high-harmonic generation provides the only demonstrated route to generating stable, tabletop attosecond x-ray pulses but has low flux compared to other x-ray technologies. We show that high-harmonic generation can produce higher photon energies and flux by using higher laser intensities than are typical, strongly ionizing the medium and creating plasma that reshapes the driving laser field. We obtain high harmonics capable of supporting attosecond pulses up to photon energies of 600 eV and a photon flux inside the water window (284 to 540 eV) 10 times higher than previous attosecond sources. We demonstrate that operating in this regime is key for attosecond pulse generation in the x-ray range and will become increasingly important as harmonic generation moves to fields that drive even longer wavelengths. PMID:29756033

  16. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  17. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  18. Attosecond control of electron beams at dielectric and absorbing membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  19. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocca, Jorge J.

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achievedmore » using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm -3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.« less

  20. Attosecond control of electrons emitted from a nanoscale metal tip.

    PubMed

    Krüger, Michael; Schenk, Markus; Hommelhoff, Peter

    2011-07-06

    Attosecond science is based on steering electrons with the electric field of well controlled femtosecond laser pulses. It has led to the generation of extreme-ultraviolet pulses with a duration of less than 100 attoseconds (ref. 3; 1 as = 10(-18) s), to the measurement of intramolecular dynamics (by diffraction of an electron taken from the molecule under scrutiny) and to ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Electrons liberated from solids by few-cycle laser pulses are also predicted to show a strong light-phase sensitivity, but only very small effects have been observed. Here we report that the spectra of electrons undergoing photoemission from a nanometre-scale tungsten tip show a dependence on the carrier-envelope phase of the laser, with a current modulation of up to 100 per cent. Depending on the carrier-envelope phase, electrons are emitted either from a single sub-500-attosecond interval of the 6-femtosecond laser pulse, or from two such intervals; the latter case leads to spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Owing to field enhancement at the tip, a simple laser oscillator reaches the peak electric field strengths required for attosecond experiments at 100-megahertz repetition rates, rendering complex amplified laser systems dispensable. Practically, this work represents a simple, extremely sensitive carrier-envelope phase sensor, which could be shrunk in volume to about one cubic centimetre. Our results indicate that the attosecond techniques developed with (and for) atoms and molecules can also be used with solids. In particular, we foresee subfemtosecond, subnanometre probing of collective electron dynamics (such as plasmon polaritons) in solid-state systems ranging in scale from mesoscopic solids to clusters and to single protruding atoms. ©2011 Macmillan Publishers Limited. All rights

  1. Ramsey method for Auger-electron interference induced by an attosecond twin pulse

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Schafer, Kenneth J.

    2015-02-01

    We examine the archetype of an interference experiment for Auger electrons: two electron wave packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with a variable time delay. This setting is an attosecond realization of the Ramsey method of separated oscillatory fields. Interference of the two ejected Auger-electron wave packets is predicted, indicating that the coherence between the two pulses is passed to the Auger electrons. For the detection of the interference pattern an accurate coincidence measurement of photo- and Auger electrons is necessary. The method allows one to control inner-shell electron dynamics on an attosecond timescale and represents a sensitive indicator for decoherence.

  2. Attosecond-resolved photoionization of chiral molecules.

    PubMed

    Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y

    2017-12-08

    Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Attosecond twin-pulse control by generalized kinetic heterodyne mixing.

    PubMed

    Raith, Philipp; Ott, Christian; Pfeifer, Thomas

    2011-01-15

    Attosecond double-pulse (twin-pulse) production in high-order harmonic generation is manipulated by a combination of two-color and carrier-envelope phase-control methods. As we show in numerical simulations, both relative amplitude and phase of the double pulse can be independently set by making use of multidimensional parameter control. Two technical implementation routes are discussed: kinetic heterodyning using second-harmonic generation and split-spectrum phase-step control.

  4. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  5. Absorption and emission of single attosecond light pulses in an autoionizing gaseous medium dressed by a time-delayed control field

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Chun; Lin, C. D.

    2013-01-01

    An extreme ultraviolet (EUV) single attosecond pulse passing through a laser-dressed dense gas is studied theoretically. The weak EUV pulse pumps the helium gas from the ground state to the 2s2p(1P) autoionizing state, which is coupled to the 2s2(1S) autoionizing state by a femtosecond infrared laser with the intensity in the order of 1012 W/cm2. The simulation shows how the transient absorption and emission of the EUV are modified by the coupling laser. A simple analytical expression for the atomic response derived for δ-function pulses reveals the strong modification of the Fano lineshape in the spectra, where these features are quite universal and remain valid for realistic pulse conditions. We further account for the propagation of pulses in the medium and show that the EUV signal at the atomic resonance can be enhanced in the gaseous medium by more than 50% for specifically adjusted laser parameters, and that this enhancement persists as the EUV propagates in the gaseous medium. Our result demonstrates the high-level control of nonlinear optical effects that are achievable with attosecond pulses.

  6. Laser Instrumentation for Attosecond Experimentation

    DTIC Science & Technology

    2009-06-15

    Spectroscopy Principal Investigator: Jun Ye, JILA, NIST and University of Colorado, Boulder With revolutionary impact on precision metrology and...geometry, one of the focusing cavity mirrors had a 100-mm hole drilled in the middle. The coupling efficiency and cavity loss associated with such...carried out by the Leone and Neumark groups. These studies provided a gauge of the plasmon-field ponderomotive forces. Attosecond experiments were prepared

  7. Isolated Attosecond Pulse Generation without the Need to Stabilize the Carrier-Envelope Phase of Driving Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertson, Steve; Khan, Sabih D.; Wu Yi

    2010-08-27

    Single isolated attosecond pulses can be extracted from a pulse train with an ultrafast gate in the generation target. By setting the gate width sufficiently narrow with the generalized double optical gating, we demonstrate that single isolated attosecond pulses can be generated with any arbitrary carrier-envelope phase value of the driving laser. The carrier-envelope phase only affects the photon flux, not the pulse duration or contrast. Our results show that isolated attosecond pulses can be generated using carrier-envelope phase unstabilized 23 fs pulses directly from chirped pulse amplifiers.

  8. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    PubMed Central

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  9. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  10. Spectral phase measurement of a Fano resonance using tunable attosecond pulses

    PubMed Central

    Kotur, M.; Guénot, D.; Jiménez-Galán, Á; Kroon, D.; Larsen, E. W.; Louisy, M.; Bengtsson, S.; Miranda, M.; Mauritsson, J.; Arnold, C. L.; Canton, S. E.; Gisselbrecht, M.; Carette, T.; Dahlström, J. M.; Lindroth, E.; Maquet, A.; Argenti, L.; Martín, F.; L'Huillier, A.

    2016-01-01

    Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time. PMID:26887682

  11. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids

    DOE PAGES

    Tao, Z.; Chen, C.; Szilvasi, T.; ...

    2016-06-01

    Attosecond spectroscopic techniques have made it possible to measure differences in transport times for photoelectrons from localized core levels and delocalized valence bands in solids. Here, we report the application of attosecond pulse trains to directly and unambiguously measure the difference in lifetimes between photoelectrons born into free electron–like states and those excited into unoccupied excited states in the band structure of nickel (111). An enormous increase in lifetime of 212 ± 30 attoseconds occurs when the final state coincides with a short-lived excited state. Moreover, a strong dependence of this lifetime on emission angle is directly related to themore » final-state band dispersion as a function of electron transverse momentum. Our finding underscores the importance of the material band structure in determining photoelectron lifetimes and corresponding electron escape depths.« less

  12. Plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Yanxia; Wang, Jiaxiang; Hora, Heinrich; Qi, Xin; Xing, Yifan; Yang, Lei; Zhu, Wenjun

    2018-04-01

    A new scheme of plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse with intensity I ˜ 1022 W/cm2 is investigated via two-dimensional particle-in-cell simulations. The targets are composed of a pre-target of low-density aluminium plasma and an overdense main-target of hydrogen plasma. Through intensive parameter optimization, we have observed highly efficient plasma block accelerations with a monochromatic proton beam peaked at GeVs. The underlying mechanism is attributed to the enhancement of the charge separation field due to the properly selected pre-target.

  13. Attosecond electronic recollision as field detector

    NASA Astrophysics Data System (ADS)

    Carpeggiani, P. A.; Reduzzi, M.; Comby, A.; Ahmadi, H.; Kühn, S.; Frassetto, F.; Poletto, L.; Hoff, D.; Ullrich, J.; Schröter, C. D.; Moshammer, R.; Paulus, G. G.; Sansone, G.

    2018-05-01

    We demonstrate the complete reconstruction of the electric field of visible–infrared pulses with energy as low as a few tens of nanojoules. The technique allows for the reconstruction of the instantaneous electric field vector direction and magnitude, thus giving access to the characterization of pulses with an arbitrary time-dependent polarization state. The technique combines extreme ultraviolet interferometry with the generation of isolated attosecond pulses.

  14. Thomson scattering in high-intensity chirped laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in; Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion ofmore » its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.« less

  15. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    NASA Astrophysics Data System (ADS)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  16. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    PubMed

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  17. Wavelength-dependence of double optical gating for attosecond pulse generation

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Li, Min; Yu, Ji-Zhou; Deng, Yong-Kai; Liu, Yun-Quan

    2014-10-01

    Both polarization gating (PG) and double optical gating (DOG) are productive methods to generate single attosecond (as) pulses. In this paper, considering the ground-state depletion effect, we investigate the wavelength-dependence of the DOG method in order to optimize the generation of single attosecond pulses for the future application. By calculating the ionization probabilities of the leading edge of the pulse at different driving laser wavelengths, we obtain the upper limit of duration for the driving laser pulse for the DOG setup. We find that the upper limit duration increases with the increase of laser wavelength. We further describe the technical method of choosing and calculating the thickness values of optical components for the DOG setup.

  18. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors

  19. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    DOE PAGES

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  20. Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called π-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur,more » the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.« less

  1. Nanostructure array plasmas generated by femtosecond pulses at highly relativistic intensities

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Wong, Y.; Wong, S.; Rockwood, A.; Glasby, J.; Shlyaptsev, V.; Rocca, J. J.; Capeluto, M. G.; Kaymak, V.; Pukhov, A.

    2017-10-01

    The irradiation of high aspect ratio ordered nanostructure arrays with ultra-high contrast femtosecond laser pulses of relativistic intensity provides a unique combination of nearly complete optical absorption and drastically enhanced light penetration into near-solid density targets. This allows the material to be volumetrically heated deep into the ultra-high energy density regime. In previous experiments we have shown that irradiation of Ni and Au nanostructures with femtosecond pulses focused to an intensity of 5x1018 Wcm-2 generate multi-KeV near solid density plasmas in which atoms are ionized to the Ni+26 and Au+52 charge states. Here we present the first results of the irradiation of nanostructure arrays with highly relativistic pulses of intensities up to 5x1021Wcm-2. Silver and Rhodium nanowire arrays were irradiated with frequency-doubled pulses of 30 fs duration from a petawatt-class Ti:Sa laser. Time integrated x-ray spectra show the presence of He-like and Li-like emission. Results of experiments conducted with a variety of different nanowires diameters with a range of interwire spacings will be presented and compared to the result of 3D particle-in-cell-simulations. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy.

  2. Isolated terawatt attosecond hard X-ray pulse generated from single current spike.

    PubMed

    Shim, Chi Hyun; Parc, Yong Woon; Kumar, Sandeep; Ko, In Soo; Kim, Dong Eon

    2018-05-10

    Isolated terawatt (TW) attosecond (as) hard X-ray pulse is greatly desired for four-dimensional investigations of natural phenomena with picometer spatial and attosecond temporal resolutions. Since the demand for such sources is continuously increasing, the possibility of generating such pulse by a single current spike without the use of optical or electron delay units in an undulator line is addressed. The conditions of a current spike (width and height) and a modulation laser pulse (wavelength and power) is also discussed. We demonstrate that an isolated TW-level as a hard X-ray can be produced by a properly chosen single current spike in an electron bunch with simulation results. By using realistic specifications of an electron bunch of the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL), we show that an isolated, >1.0 TW and ~36 as X-ray pulse at 12.4 keV can be generated in an optimized-tapered undulator line. This result opens a new vista for current XFEL operation: the attosecond XFEL.

  3. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  4. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band

    NASA Astrophysics Data System (ADS)

    Schlaepfer, F.; Lucchini, M.; Sato, S. A.; Volkov, M.; Kasmi, L.; Hartmann, N.; Rubio, A.; Gallmann, L.; Keller, U.

    2018-06-01

    Resolving the fundamental carrier dynamics induced in solids by strong electric fields is essential for future applications, ranging from nanoscale transistors1,2 to high-speed electro-optical switches3. How fast and at what rate can electrons be injected into the conduction band of a solid? Here, we investigate the sub-femtosecond response of GaAs induced by resonant intense near-infrared laser pulses using attosecond transient absorption spectroscopy. In particular, we unravel the distinct role of intra- versus interband transitions. Surprisingly, we found that despite the resonant driving laser, the optical response during the light-matter interaction is dominated by intraband motion. Furthermore, we observed that the coupling between the two mechanisms results in a significant enhancement of the carrier injection from the valence into the conduction band. This is especially unexpected as the intraband mechanism itself can accelerate carriers only within the same band. This physical phenomenon could be used to control ultrafast carrier excitation and boost injection rates in electronic switches in the petahertz regime.

  5. Ultra High Bypass Integrated System Test

    NASA Image and Video Library

    2015-09-14

    NASA’s Environmentally Responsible Aviation Project, in collaboration with the Federal Aviation Administration (FAA) and Pratt & Whitney, completed testing of an Ultra High Bypass Ratio Turbofan Model in the 9’ x 15’ Low Speed Wind Tunnel at NASA Glenn Research Center. The fan model is representative of the next generation of efficient and quiet Ultra High Bypass Ratio Turbofan Engine designs.

  6. A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement

    NASA Astrophysics Data System (ADS)

    Ge, Xulei; Yuan, Xiaohui; Yang, Su; Deng, Yanqing; Wei, Wenqing; Fang, Yuan; Gao, Jian; Liu, Feng; Chen, Min; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie

    2018-04-01

    We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications.

  7. Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces

    NASA Astrophysics Data System (ADS)

    Tsarev, M. V.; Baum, P.

    2018-03-01

    We consider analytically and numerically the emission of coherent transition radiation by few-femtosecond and attosecond electron pulses. With optimized geometries based on tilted surfaces we avoid the influences of the beam diameter and velocity mismatch for sub-relativistic pulses. We predict the emission of visible and ultraviolet optical radiation that characterizes few-femtosecond or attosecond electron pulses in time. The total amount of radiation depends on the source’ repetition rate and number of electrons per macro/microbunch and is in many cases sufficient for pulse length characterization in the emerging experiments.

  8. Photoelectron spectrometer for liquid and gas-phase attosecond spectroscopy with field-free and magnetic bottle operation modes

    NASA Astrophysics Data System (ADS)

    Jordan, Inga; Jain, Arohi; Gaumnitz, Thomas; Ma, Jun; Wörner, Hans Jakob

    2018-05-01

    A compact time-of-flight spectrometer for applications in attosecond spectroscopy in the liquid and gas phases is presented. It allows for altering the collection efficiency by transitioning between field-free and magnetic-bottle operation modes. High energy resolution (ΔE/E = 0.03 for kinetic energies >20 eV) is achieved despite the short flight-tube length through a homogeneous deceleration potential at the beginning of the flight tube. A closing mechanism allows isolating the vacuum system of the flight tube from the interaction region in order to efficiently perform liquid-microjet experiments. The capabilities of the instrument are demonstrated through photoelectron spectra from multiphoton ionization of argon and xenon, as well as photoelectron spectra of liquid and gaseous water generated by an attosecond pulse train.

  9. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.

    PubMed

    Chang, Hung-Tzu; Zürch, Michael; Kraus, Peter M; Borja, Lauren J; Neumark, Daniel M; Leone, Stephen R

    2016-11-15

    Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 μJ for the 400 nm pulses and 750 μJ for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments.

  10. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    PubMed

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  12. Decoherence in attosecond photoionization.

    PubMed

    Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin

    2011-02-04

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  13. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, Nathaniel J.

    2014-01-08

    The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new formsmore » of current drive in regimes appropriate for new fusion concepts.« less

  14. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy.

    PubMed

    Kärtner, F X; Ahr, F; Calendron, A-L; Çankaya, H; Carbajo, S; Chang, G; Cirmi, G; Dörner, K; Dorda, U; Fallahi, A; Hartin, A; Hemmer, M; Hobbs, R; Hua, Y; Huang, W R; Letrun, R; Matlis, N; Mazalova, V; Mücke, O D; Nanni, E; Putnam, W; Ravi, K; Reichert, F; Sarrou, I; Wu, X; Yahaghi, A; Ye, H; Zapata, L; Zhang, D; Zhou, C; Miller, R J D; Berggren, K K; Graafsma, H; Meents, A; Assmann, R W; Chapman, H N; Fromme, P

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven atto-second X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  15. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  16. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    DTIC Science & Technology

    2016-08-19

    New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser ...Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser -plasma,mass-limited, fast electrons, sheath...field Abstract Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron

  17. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, S.; Green, B.; Golz, T.

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  18. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates.

    PubMed

    Kovalev, S; Green, B; Golz, T; Maehrlein, S; Stojanovic, N; Fisher, A S; Kampfrath, T; Gensch, M

    2017-03-01

    Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.

  19. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE PAGES

    Kovalev, S.; Green, B.; Golz, T.; ...

    2017-03-06

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  20. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    NASA Astrophysics Data System (ADS)

    Domanski, Jaroslaw; Badziak, Jan

    2018-01-01

    One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  1. Watching the Real-time Evolution of a Laser Modified Atom Using Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Shivaram, Niranjan; Timmers, Henry; Tong, Xiao-Min; Sandhu, Arvinder

    2011-10-01

    In the presence of even moderately strong laser fields, atomic states are heavily modified and develop rich structure. Such a laser dressed atom can be described using the Floquet theory in which the laser dressed states called Floquet states are composed of different Fourier components. In this work we use XUV attosecond pulses to excite a He atom from its ground state to near-infrared (NIR) laser dressed Floquet states, which are ionized by the dressing laser field. Quantum interferences between Fourier components of these Floquet states lead to oscillations in He ion yield as a function of time-delay between the XUV and NIR pulses. From the ion yield signal we measure the quantum phase difference between transition matrix elements to two different Fourier components as a function of both time-delay (instantaneous NIR intensity) and NIR pulse peak intensity. These measurements along with information from time-dependent Schrodinger equation simulations enable us to observe the real-time evolution of the laser modified atom as the dominant Floquet state mediating the ionization changes from the 5p Floquet state to the 2p Floquet state with increasing NIR intensity.

  2. Attosecond transient absorption of a bound wave packet coupled to a smooth continuum

    DOE PAGES

    Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva

    2017-10-16

    Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less

  3. Attosecond transient absorption of a bound wave packet coupled to a smooth continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva

    Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less

  4. Molecular interferometer to decode attosecond electron-nuclear dynamics.

    PubMed

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2014-03-18

    Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.

  5. Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion.

    PubMed

    Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter

    2012-08-27

    We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

  6. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays.

    PubMed

    Rudenko, A; Inhester, L; Hanasaki, K; Li, X; Robatjazi, S J; Erk, B; Boll, R; Toyota, K; Hao, Y; Vendrell, O; Bomme, C; Savelyev, E; Rudek, B; Foucar, L; Southworth, S H; Lehmann, C S; Kraessig, B; Marchenko, T; Simon, M; Ueda, K; Ferguson, K R; Bucher, M; Gorkhover, T; Carron, S; Alonso-Mori, R; Koglin, J E; Correa, J; Williams, G J; Boutet, S; Young, L; Bostedt, C; Son, S-K; Santra, R; Rolles, D

    2017-06-01

    X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is

  7. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays

    DOE PAGES

    Rudenko, A.; Inhester, L.; Hanasaki, K.; ...

    2017-05-31

    We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization

  8. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudenko, A.; Inhester, L.; Hanasaki, K.

    We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization

  9. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  10. Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension

    PubMed Central

    Wang, Lan; Wu, Yichao

    2012-01-01

    Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity which assumes that only a small number of covariates influence the conditional distribution of the response variable given all candidate covariates; however, the sets of relevant covariates may differ when we consider different segments of the conditional distribution. In this framework, we investigate the methodology and theory of nonconvex penalized quantile regression in ultra-high dimension. The proposed approach has two distinctive features: (1) it enables us to explore the entire conditional distribution of the response variable given the ultra-high dimensional covariates and provides a more realistic picture of the sparsity pattern; (2) it requires substantially weaker conditions compared with alternative methods in the literature; thus, it greatly alleviates the difficulty of model checking in the ultra-high dimension. In theoretic development, it is challenging to deal with both the nonsmooth loss function and the nonconvex penalty function in ultra-high dimensional parameter space. We introduce a novel sufficient optimality condition which relies on a convex differencing representation of the penalized loss function and the subdifferential calculus. Exploring this optimality condition enables us to establish the oracle property for sparse quantile regression in the ultra-high dimension under relaxed conditions. The proposed method greatly enhances existing tools for ultra-high dimensional data analysis. Monte Carlo simulations demonstrate the usefulness of the proposed procedure. The real data example we analyzed demonstrates that the new approach reveals substantially more information compared with alternative methods. PMID:23082036

  11. Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pronin, E. A.; Starace, Anthony F.; Peng Liangyou

    2011-07-15

    The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys.more » Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry.« less

  12. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W.; College of Science, National University of Defense Technology, Changsha 410073; Zhuo, H. B.

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecondmore » physics.”.« less

  13. Spectra for the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2017-08-01

    Based on the analytical solution of the Schrödinger equation, we have considered the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms in the sudden perturbation approximation. We have developed a technique of calculating the spectra for the reemission of attosecond and shorter electromagnetic pulses by neutral multielectron atoms with nuclear charges from 1 to 92. The results are presented in the form of analytical formulas dependent on several coefficients and screening parameters tabulated for all of the atoms whose electron densities are described by the well-known Dirac-Hartree-Fock-Slater model. As examples we have calculated the spectra for the reemission by lithium, carbon, calcium, and iron atoms for two types of incident pulse: Gaussian and "sombrero."

  14. 2012 MULTIPHOTON PROCESSES GRC, JUNE 3-8, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Barry

    2012-03-08

    The sessions will focus on:  Attosecond science;  Strong-field processes in molecules and solids;  Generation of harmonics and attosecond pulses;  Free-electron laser experiments and theory;  Ultrafast imaging;  Applications of very high intensity lasers;  Propagation of intense laser fields.

  15. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, H.; Mori, Y.; Kitagawa, Y.

    2013-08-28

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  16. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  17. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, U.; Rao, B. S.; Arora, V.

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  18. Attosecond time-resolved streaked photoemission from Mg-covered W(110) surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Thumm, Uwe

    2015-05-01

    We formulate a quantum-mechanical model for infrared-streaked photoelectron emission by an ultrashort extreme ultraviolet pulse from adsorbate-covered metal surfaces. Applying this numerical model to ultrathin Mg adsorbates on W(110) substrates, we analyze streaked photoelectron spectra and attosecond streaking time delays for photoemission from the Mg/W(110) conduction band and Mg(2p) and W(4f) core levels. Based on this analysis, we propose the use of attosecond streaking spectroscopy on adsorbate-covered surfaces with variable adsorbate thickness as a method for investigating (a) electron transport in condensed-matter systems and (b) metal-adsorbate-interface properties at subatomic length and time scales. Our calculated streaked photoemission spectra and time delays agree with recently obtained experimental data. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant No. DE-FG02-86ER13491 and NSF Grant PHY-1068752.

  19. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  20. Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography.

    PubMed

    Bourke, Levi; Blaikie, Richard J

    2017-12-01

    Dielectric waveguide resonant underlayers are employed in ultra-high NA interference photolithography to effectively double the depth of field. Generally a single high refractive index waveguiding layer is employed. Here multilayer Herpin effective medium methods are explored to develop equivalent multilayer waveguiding layers. Herpin equivalent resonant underlayers are shown to be suitable replacements provided at least one layer within the Herpin trilayer supports propagating fields. In addition, a method of increasing the intensity incident upon the photoresist using resonant overlayers is also developed. This method is shown to greatly enhance the intensity within the photoresist making the use of thicker, safer, non-absorbing, low refractive index matching liquids potentially suitable for large-scale applications.

  1. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  2. Sub-10-fs control of dissociation pathways in the hydrogen molecular ion with a few-pulse attosecond pulse train

    NASA Astrophysics Data System (ADS)

    Nabekawa, Yasuo; Furukawa, Yusuke; Okino, Tomoya; Amani Eilanlou, A.; Takahashi, Eiji J.; Yamanouchi, Kaoru; Midorikawa, Katsumi

    2016-09-01

    The control of the electronic states of a hydrogen molecular ion by photoexcitation is considerably difficult because it requires multiple sub-10 fs light pulses in the extreme ultraviolet (XUV) wavelength region with a sufficiently high intensity. Here, we demonstrate the control of the dissociation pathway originating from the 2pσu electronic state against that originating from the 2pπu electronic state in a hydrogen molecular ion by using a pair of attosecond pulse trains in the XUV wavelength region with a train-envelope duration of ~4 fs. The switching time from the peak to the valley in the oscillation caused by the vibrational wavepacket motion in the 1sσg ground electronic state is only 8 fs. This result can be classified as the fastest control, to the best of our knowledge, of a molecular reaction in the simplest molecule on the basis of the XUV-pump and XUV-probe scheme.

  3. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets whenmore » intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at

  4. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  5. Formal thought disorder in people at ultra-high risk of psychosis

    PubMed Central

    Weinstein, Sara; Stahl, Daniel; Day, Fern; Valmaggia, Lucia; Rutigliano, Grazia; De Micheli, Andrea; Fusar-Poli, Paolo; McGuire, Philip

    2017-01-01

    Background Formal thought disorder is a cardinal feature of psychosis. However, the extent to which formal thought disorder is evident in ultra-high-risk individuals and whether it is linked to the progression to psychosis remains unclear. Aims Examine the severity of formal thought disorder in ultra-high-risk participants and its association with future psychosis. Method The Thought and Language Index (TLI) was used to assess 24 ultra-high-risk participants, 16 people with first-episode psychosis and 13 healthy controls. Ultra-high-risk individuals were followed up for a mean duration of 7 years (s.d.=1.5) to determine the relationship between formal thought disorder at baseline and transition to psychosis. Results TLI scores were significantly greater in the ultra-high-risk group compared with the healthy control group (effect size (ES)=1.2), but lower than in people with first-episode psychosis (ES=0.8). Total and negative TLI scores were higher in ultra-high-risk individuals who developed psychosis, but this was not significant. Combining negative TLI scores with attenuated psychotic symptoms and basic symptoms predicted transition to psychosis (P=0.04; ES=1.04). Conclusions TLI is beneficial in evaluating formal thought disorder in ultra-high-risk participants, and complements existing instruments for the evaluation of psychopathology in this group. Declaration of interests None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28713586

  6. A comparison of ultra-endurance cyclists in a qualifying ultra-cycling race for Paris-Brest-Paris and Race Across America-Swiss cycling marathon.

    PubMed

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rüst, Christoph Alexander; Rosemann, Thomas

    2012-02-01

    Ultra-endurance events test the adaptation of human physiology to extreme physical and mental demands, high levels of training, motivation, and physical conditioning among participants. To understand basic differences among participants according to the severity of the race, participants in qualifying events for two ultra-endurance cycling races, differing in length and intensity, were compared on measures of anthropometry, training, and support. One race was four times longer, required supporting teams, and racers typically had little sleep, which should lead to the qualifiers being substantially more highly trained than those from the shorter race. The qualifiers in the longer race had greater intensity in training while the qualifiers in the shorter race relied more on training volume. Different strategies and types of training reflected the different demands of the races. Future studies should evaluate personality and motivational differences in ultra-endurance events and between these athletes and athletes in other sports.

  7. Reflectivity and laser ablation of ZrB2/Cu ultra high temperature ceramic

    NASA Astrophysics Data System (ADS)

    Yan, Zhenyu; Ma, Zhuang; Zhu, Shizhen; Liu, Ling; Xu, Qiang

    2013-05-01

    Ultra high temperature ceramics (UHTCs) were thought to be candidates for laser protective materials due to their high melting point, thermal shock and ablation resistance. The ablation behaviors of UHTCs like ZrB2 and its composite had been intensely investigated by the means of arc, plasma, oxyacetylene ablation. However, the ablation behavior under laser irradiation was still unknown by now. In this paper, the dense bulk composites of ZrB2/Cu were successfully sintered by spark plasma sintering (SPS) at 1650 degree C for 3min. The reflectivity of the composites measured by spectrophotometry achieved 60% in near infrared range and it decreased with the increasing wavelength of incident light. High intensity laser ablation was carried out on the ZrB2/Cu surface. The phase composition and microstructure changes before and after laser irradiation were characterized by X-ray diffraction and SEM respectively. The results revealed that the oxidation and melting were the main mechanisms during the ablation processing.

  8. Ultra High Energy Cosmic Rays: Strangelets?

    NASA Astrophysics Data System (ADS)

    Xu, Ren-Xin; Wu, Fei

    2003-06-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of TeV-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3×1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  9. How can attosecond pulse train interferometry interrogate electron dynamics?

    NASA Astrophysics Data System (ADS)

    Arnold, C. L.; Isinger, M.; Busto, D.; Guénot, D.; Nandi, S.; Zhong, S.; Dahlström, J. M.; Gisselbrecht, M.; l'Huillier, A.

    2018-04-01

    Light pulses of sub-100 as (1 as=10-18 s) duration, with photon energies in the extreme-ultraviolet (XUV) spectral domain, represent the shortest event in time ever made and controlled by human beings. Their first experimental observation in 2001 has opened the door to investigating the fundamental dynamics of the quantum world on the natural time scale for electrons in atoms, molecules and solids and marks the beginning of the scientific field now called attosecond science.

  10. Ellipticity dependence of high harmonics generated using 400 nm driving lasers

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Khan, Sabih; Zhao, Kun; Zhao, Baozhen; Chini, Michael; Chang, Zenghu

    2011-05-01

    High order harmonics generated from 400 nm driving pulses hold promise of scaling photon flux of single attosecond pulses by one to two orders of magnitude. We report ellipticity dependence and phase matching of high order harmonics generated from such pulses in Neon gas target and compared them with similar measurements using 800 nm driving pulses. Based on measured ellipticity dependence, we predict that double optical gating (DOG) and generalized double optical gating (GDOG) can be employed to extract intense single attosecond pulses from pulse train, while polarization gating (PG) may not work for this purpose. This material is supported by the U.S. Army Research Office under grant number W911NF-07-1-0475, and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  11. Linking high harmonics from gases and solids.

    PubMed

    Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B

    2015-06-25

    When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.

  12. Fusion: ultra-high-speed and IR image sensors

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  13. Novel high-energy physics studies using intense lasers and plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric

    2015-06-29

    In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPAmore » regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.« less

  14. Towards highest peak intensities for ultra-short MeV-range ion bunches

    NASA Astrophysics Data System (ADS)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  15. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  16. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  17. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction

    NASA Astrophysics Data System (ADS)

    Morrison, John T.; Feister, Scott; Frische, Kyle D.; Austin, Drake R.; Ngirmang, Gregory K.; Murphy, Neil R.; Orban, Chris; Chowdhury, Enam A.; Roquemore, W. M.

    2018-02-01

    Laser acceleration of ions to ≳MeV energies has been achieved on a variety of Petawatt laser systems, raising the prospect of ion beam applications using compact ultra-intense laser technology. However, translation from proof-of-concept laser experiment into real-world application requires MeV-scale ion energies and an appreciable repetition rate (>Hz). We demonstrate, for the first time, proton acceleration up to 2 MeV energies at a kHz repetition rate using a milli-joule-class short-pulse laser system. In these experiments, 5 mJ of ultrashort-pulse laser energy is delivered at an intensity near 5× {10}18 {{W}} {cm}}-2 onto a thin-sheet, liquid-density target. Key to this effort is a flowing liquid ethylene glycol target formed in vacuum with thicknesses down to 400 nm and full recovery at 70 μs, suggesting its potential use at ≫kHz rate. Novel detectors and experimental methods tailored to high-repetition-rate ion acceleration by lasers were essential to this study and are described. In addition, particle-in-cell simulations of the laser-plasma interaction show good agreement with experimental observations.

  18. (Ultra) High Pressure Homogenization for Continuous High Pressure Sterilization of Pumpable Foods – A Review

    PubMed Central

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work. PMID:25988118

  19. Attosecond-resolution Hong-Ou-Mandel interferometry.

    PubMed

    Lyons, Ashley; Knee, George C; Bolduc, Eliot; Roger, Thomas; Leach, Jonathan; Gauger, Erik M; Faccio, Daniele

    2018-05-01

    When two indistinguishable photons are each incident on separate input ports of a beamsplitter, they "bunch" deterministically, exiting via the same port as a direct consequence of their bosonic nature. This two-photon interference effect has long-held the potential for application in precision measurement of time delays, such as those induced by transparent specimens with unknown thickness profiles. However, the technique has never achieved resolutions significantly better than the few-femtosecond (micrometer) scale other than in a common-path geometry that severely limits applications. We develop the precision of Hong-Ou-Mandel interferometry toward the ultimate limits dictated by statistical estimation theory, achieving few-attosecond (or nanometer path length) scale resolutions in a dual-arm geometry, thus providing access to length scales pertinent to cell biology and monoatomic layer two-dimensional materials.

  20. Theoretical exploration of control factors for the high-order harmonic generation (HHG) spectrum in two-color field.

    PubMed

    Huang, Xinting; Yang, Dapeng; Yao, Li

    2014-09-15

    In this work, the laser-parameter effects on the high-order harmonic generation (HHG) spectrum and attosecond trains by mixing two-color laser field, a visible light field of 800 nm and a mid-infrared (mid-IR) laser pulses of 2400 nm, are theoretically demonstrated for the first time. Different schemes are applied to discuss the function of intensity, carrier-envelope phase (CEP) and pulse duration on the generation of an isolated attosecond pulse. As a consequence, an isolated 16as pulse is obtained by Fourier transforming an ultrabroad XUV continuum of 208 eV with the fundamental field of duration of 6 fs, 9×10(14)W/cm2 of intensity, the duration of 12 fs, the CEPs of the two driving pulses of -π and the relative strength ratio √R=0.2. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. [Extreme (complicated, ultra-high) refractive errors: terminological misconceptions!?

    PubMed

    Avetisov, S E

    2018-01-01

    The article reviews development mechanisms of different refractive errors accompanied by marked defocus of light rays reaching the retina. Terminology used for such ametropias includes terms extreme, ultra-high and complicated. Justification of their usage for primary ametropias, whose symptom complex is based on changes in axial eye length, is an ongoing discussion. To comply with thesaurus definitions of 'diagnosis' and 'pathogenesis', to characterize refractive and anatomical-functional disorders in patients with primary ametropias it is proposed to use the terms 'hyperaxial and hypoaxial syndromes' with elaboration of specific symptoms instead of such expressions as extreme (ultra-high) myopia and hypermetropia.

  2. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  3. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  4. Guiding of High Laser Intensities in Long Plasma Channels

    NASA Astrophysics Data System (ADS)

    Levin, M.; Eisenmann, S.; Palchan, T.; Zigler, A.; Sugiyama, K.; Nakajima, K.; Kaganovich, D.; Hubbard, R. F.; Ting, A.; Gordon, D. F.; Sprangle, P.; Fraenkel, M.; Maman, S.; Henis, Z.

    Plasma channels have been widely used to guide intense laser pulses over many Rayleigh lengths. Using optimized segmented capillary discharges, we demonstrated guided propagation of ultra short (100 fs) high intensity (1016 W/cm-2, limited by the laser system) pulses over distances up to 12.6 cm and intensities above 1018W/cm2 for 1.5cm boron nitride capillary. Both radial and longitudinal density profiles of plasma channels were studied under various discharge conditions. A new diagnostic technique is presented in which the transport of a guided laser pulse at different delay times from the initiation of the discharge is sampled on a single discharge shot. Using external, 10 nsec Nd YAG laser of several tenths of milijoules to ignite polyethylene capillaries we have demonstrated channels of various length in density range of 1017 - 1019 cm-3 and up to 25% deep. The longitudinal profiles were found to be remarkably uniform in both short and long capillaries. The Boron Nitride capillary has provided a guiding medium that can withstand more than 1000 shots. Using these capillaries we have guided laser intensities above 1018W/cm2. The laser ignition of capillary discharge provided reliable almost jitter free approach. The concerns related to influence of relatively high current density flow through capillary on the injected electrons were studied extensively by us both theoretically and experimentally using a simple injection method. The method is based on the interaction of a high intensity laser pulse with a thin wire placed near capillary entrance. The influence of magnetic fields was found to be insignificant. Using this method we have studied transport of electrons though capillary discharge.

  5. Ultra-High Surface Speed for Metal Removal, Artillery Shell

    DTIC Science & Technology

    1981-07-01

    TECHNICAL LIBRARY "y/a^^cr^ AD-E400 660 CONTRACTOR REPORT ARLCD-CR- 81019 ULTRA-HIGH SURFACE SPEED FOR METAL REMOVAL, ARTILLERY SHELL RICHARD F...Report ARLCD-CR- 81019 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) ULTRA-HIGH SURFACE SPEED FOR METAL...UNIT* tuiPPtO 1 MIL -STD-43CA i, ASTM A-274-64 EF A1SI~1340 SEHI FIN FORGING STEEL 6 RC SQ ■ IP 120093* a LIFTS 38 PCS

  6. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE PAGES

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; ...

    2017-05-25

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  7. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  8. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    NASA Astrophysics Data System (ADS)

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-11-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  9. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    PubMed Central

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-01-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date. PMID:27869119

  10. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials.

    PubMed

    Lecaplain, C; Javerzac-Galy, C; Gorodetsky, M L; Kippenberg, T J

    2016-11-21

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF 2 , CaF 2 , MgF 2 and SrF 2 microresonators. We show that MgF 2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF 2 and BaF 2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  11. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  12. An all-reflective polarization rotator

    NASA Astrophysics Data System (ADS)

    Bohus, J.; Budai, Judit; Kalashnikov, M.; Osvay, K.

    2017-05-01

    The conceptual design and proof of principle experimental results of a polarization rotator based on mirrors are presented. The device is suitable for any-angle, online rotation of the plane of polarization of high peak intensity ultrashort laser pulses. Controllable rotation of the polarization vector of short laser pulses with a broad bandwidth requires achromatic retarding plates which have a limited scalability and the substantial plate thickness can lead to pulse broadening and inaccurate polarization rotation. Polarization rotators based on reflective optical elements are preferable alternatives to wave plates especially when used in high average power or high peak intensity ultra-short laser systems. The control of the polarization state is desirable in many laser-matter interaction experiments e.g., high harmonic and attosecond pulse generation, electron, proton and ion acceleration, electron-positron pair creating, vacuum nonlinear polarization effect. The device can also serve as a beam attenuator, in combination with a linear polarizer.

  13. Analytical model for atomic resonant attosecond transient absorption

    NASA Astrophysics Data System (ADS)

    Cariker, C.; Kjellson, T.; Lindroth, E.; Argenti, L.

    2017-04-01

    Recent advancements in ultrafast laser technology have made it possible to probe electron dynamics in highly excited atomic states that autoionize on a femtosecond timescale, thus giving insight into the dynamics of Auger decay and its interference with the continuum. These experiments provide a stringent test for time-resolved analytical models of autoionization. Here we present a finite-pulse, multi-photon perturbative model which is used in conjunction with ab-initio structure calculations to predict the attosecond transient absorption spectrum (ATAS) of an atom above the ionization threshold. We apply this model to compute the ATAS of argon in the vicinity of the 3s-1 4 p resonance as a function of the time delay between an extreme ultraviolet (XUV) and an infrared (IR) pulse, as well as of the angle between their polarization. We show that by modulating the parameters of the IR pulse it is possible to control the dipolar coupling between neighboring states and hence the lineshape of the 3s-1 4 p resonance. NSF Grant No. 1607588.

  14. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  15. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    DOE PAGES

    Poole, P. L.; Willis, C.; Cochran, G. E.; ...

    2016-10-10

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less

  16. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, P. L.; Willis, C.; Cochran, G. E.

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less

  17. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  18. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  19. Advanced germanium layer transfer for ultra thin body on insulator structure

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuro; Chang, Wen-Hsin; Irisawa, Toshifumi; Ishii, Hiroyuki; Hattori, Hiroyuki; Poborchii, Vladimir; Kurashima, Yuuichi; Takagi, Hideki; Uchida, Noriyuki

    2016-12-01

    We present the HEtero-Layer Lift-Off (HELLO) technique to obtain ultra thin body (UTB) Ge on insulator (GeOI) substrates. The transferred ultra thin Ge layers are characterized by the Raman spectroscopy measurements down to the thickness of ˜1 nm, observing a strong Raman intensity enhancement for high quality GeOI structure in ultra thin regime due to quantum size effect. This advanced Ge layer transfer technique enabled us to demonstrate UTB-GeOI nMOSFETs with the body thickness of only 4 nm.

  20. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation

    PubMed Central

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-01-01

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams –or “structured attosecond light springs”– with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging. PMID:28281655

  1. Tunneling time in attosecond experiments, intrinsic-type of time. Keldysh, and Mandelstam-Tamm time

    NASA Astrophysics Data System (ADS)

    Kullie, Ossama

    2016-05-01

    Tunneling time in attosecond and strong-field experiments is one of the most controversial issues in current research, because of its importance to the theory of time, the time operator and the time-energy uncertainty relation in quantum mechanics. In Kullie (2015 Phys. Rev. A 92 052118) we derived an estimation of the (real) tunneling time, which shows an excellent agreement with the time measured in attosecond experiments, our derivation is found by utilizing the time-energy uncertainty relation, and it represents a quantum clock. In this work, we show different aspects of the tunneling time in attosecond experiments, we discuss and compare the different views and approaches, which are used to calculate the tunneling time, i.e. Keldysh time (as a real or imaginary quantity), Mandelstam-Tamm time, the classical view of the time measurement and our tunneling time relation(s). We draw some conclusions concerning the validity and the relation between the different types of the tunneling time with the hope that they will help to answer the question put forward by Orlando et al (2014 J. Phys. B 47 204002, 2014 Phys. Rev. A 89 014102): tunneling time, what does it mean? However, as we will see, the important question is a more general one: how to understand the time and the measurement of the time of a quantum system? In respect to our result, the time in quantum mechanics can be, in more general fashion, classified in two types, intrinsic dynamically connected, and external dynamically not connected to the system, and consequently (perhaps only) classical Newtonian time remains as a parametric type of time.

  2. Modelling short pulse, high intensity laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Evans, R. G.

    2006-06-01

    Modelling the interaction of ultra-intense laser pulses with solid targets is made difficult through the large range of length and time scales involved in the transport of relativistic electrons. An implicit hybrid PIC-fluid model using the commercial code LSP (LSP is marketed by MRC (Albuquerque), New Mexico, USA) reveals a variety of complex phenomena which seem to be borne out in experiments and some existing theories.

  3. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  4. Effects of High-Intensity Interval Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin

    PubMed Central

    Mueller, Alexander; Groeschl, Werner; Pieber, Thomas R.; Obermayer-Pietsch, Barbara; Koehler, Gerd; Hofmann, Peter

    2015-01-01

    Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/ Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25% (A), 50% (B), and 75% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM. Trial Registration ClinicalTrials.gov NCT02075567 http

  5. Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Dinh, Toan; Ina, Ginnosuke; Kermany, Atieh Ranjbar; Qamar, Afzaal; Han, Jisheng; Namazu, Takahiro; Maeda, Ryutaro; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-04-01

    Strain engineering has attracted great attention, particularly for epitaxial films grown on a different substrate. Residual strains of SiC have been widely employed to form ultra-high frequency and high Q factor resonators. However, to date, the highest residual strain of SiC was reported to be limited to approximately 0.6%. Large strains induced into SiC could lead to several interesting physical phenomena, as well as significant improvement of resonant frequencies. We report an unprecedented nanostrain-amplifier structure with an ultra-high residual strain up to 8% utilizing the natural residual stress between epitaxial 3C-SiC and Si. In addition, the applied strain can be tuned by changing the dimensions of the amplifier structure. The possibility of introducing such a controllable and ultra-high strain will open the door to investigating the physics of SiC in large strain regimes and the development of ultra sensitive mechanical sensors.

  6. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity

    PubMed Central

    Liu, Xi; Gu, Leilei; Zhang, Qianpeng; Wu, Jiyuan; Long, Yunze; Fan, Zhiyong

    2014-01-01

    High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 1017 Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry. PMID:24898081

  7. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity.

    PubMed

    Liu, Xi; Gu, Leilei; Zhang, Qianpeng; Wu, Jiyuan; Long, Yunze; Fan, Zhiyong

    2014-06-05

    High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 10(17) Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry.

  8. Tailoring the transverse mode of a high-finesse optical resonator with stepped mirrors

    NASA Astrophysics Data System (ADS)

    Högner, M.; Saule, T.; Lilienfein, N.; Pervak, V.; Pupeza, I.

    2018-02-01

    Enhancement cavities (ECs) seeded with femtosecond pulses have developed into the most powerful technique for high-order harmonic generation (HHG) at repetition rates in the tens of MHz. Here, we demonstrate the feasibility of controlling the phase front of the excited transverse eigenmode of a ring EC by using mirrors with stepped surface profiles, while maintaining the high finesse required to reach the peak intensities necessary for HHG. The two lobes of a {{TEM}}01 mode of a 3.93 m long EC, seeded with a single-frequency laser, are delayed by 15.6 fs with respect to each other before a tight focus, and the delay is reversed after the focus. The tailored transverse mode exhibits an on-axis intensity maximum in the focus. Furthermore, the geometry is designed to generate a rotating wavefront in the focus when few-cycle pulses circulate in the EC. This paves the way to gating isolated attosecond pulses (IAPs) in a transverse manner (similarly to the attosecond lighthouse), heralding IAPs at repetition rates well into the multi-10 MHz range. In addition, these results promise high-efficiency harmonic output coupling from ECs in general, with an unparalleled power scalability. These prospects are expected to tremendously benefit photoelectron spectroscopy and extreme-ultraviolet frequency comb spectroscopy.

  9. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  10. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  11. Attosecond control of dissociative ionization of O{sub 2} molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.; Kelkensberg, F.; Gademann, G.

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  12. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  13. Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis.

    PubMed

    Kraus, Michael; Rapisarda, Attilio; Lam, Max; Thong, Jamie Y J; Lee, Jimmy; Subramaniam, Mythily; Collinson, Simon L; Chong, Siow Ann; Keefe, Richard S E

    2016-12-01

    The addition of off-the-shelf cognitive measures to established prodromal criteria has resulted in limited improvement in the prediction of conversion to psychosis. Tests that assess cognitive processes central to schizophrenia might better identify those at highest risk. The latent inhibition paradigm assesses a subject's tendency to ignore irrelevant stimuli, a process integral to healthy perceptual and cognitive function that has been hypothesized to be a key deficit underlying the development of schizophrenia. In this study, 142 young people at ultra high-risk for developing psychosis and 105 controls were tested on a within-subject latent inhibition paradigm. Additionally, we later inquired about the strategy that each subject employed to complete the test, and further investigated the relationship between reported strategy and the extent of latent inhibition exhibited. Unlike controls, ultra high-risk subjects did not demonstrate a significant latent inhibition effect. This difference between groups became greater when controlling for strategy. The lack of latent inhibition effect in our ultra high-risk sample suggests that individuals at ultra high-risk for psychosis are impaired in their allocation of attentional resources based on past predictive value of repeated stimuli. This fundamental deficit in the allocation of attention may contribute to the broader array of cognitive impairments and clinical symptoms displayed by individuals at ultra high-risk for psychosis.

  14. Intense ionizing radiation from laser-induced processes in ultra-dense deuterium D(-1)

    NASA Astrophysics Data System (ADS)

    Olofson, Frans; Holmlid, Leif

    2014-09-01

    Nuclear fusion in ultra-dense deuterium D(-1) has been reported from our laboratory in a few studies using pulsed lasers with energy < 0.2 J. The direct observation of massive particles with energy 1-20 MeV u-1 is conclusive proof for fusion processes, either as a cause or as a result. Continuing the step-wise approach necessary for untangling a complex problem, the high-energy photons from the laser-induced plasma are now studied. The focus is here on the photoelectrons formed. The photons penetrating a copper foil have energy > 80 keV. The total charge created is up to 2 μC or 1 × 1013 photoelectrons per laser shot at 0.13 J pulse energy, assuming isotropic photon emission. The variation of the photoelectron current with laser intensity is faster than linear for some systems, which indicates rapid approach to volume ignition. On a permanent magnet at approximately 1 T, a laser pulse-energy threshold exists for the laser-induced processes probably due to the floating of most clusters of D(-1) in the magnetic field. This Meissner effect was reported previously.

  15. Search for ultra high energy astrophysical neutrinos with the ANITA experiment

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew

    2010-12-01

    This work describes a search for cosmogenic neutrinos at energies above 1018 eV with the Antarctic Impulsive Transient Antenna (ANITA). ANITA is a balloon-borne radio interferometer designed to measure radio impulsive emission from particle showers produced in the Antarctic ice-sheet by ultra-high energy neutrinos (UHEnu). Flying at 37 km altitude the ANITA detector is sensitive to 1M km3 of ice and is expected to produce the highest exposure to ultra high energy neutrinos to date. The design, flight performance, and analysis of the first flight of ANITA in 2006 are the subject of this dissertation. Due to sparse anthropogenic backgrounds throughout the Antarctic continent, the ANITA analysis depends on high resolution directional reconstruction. An interferometric method was developed that not only provides high resolution but is also sensitive to very weak radio emissions. The results of ANITA provide the strongest constraints on current ultra-high energy neutrino models. In addition there was a serendipitous observation of ultra-high energy cosmic ray geosynchrotron emissions that are of distinct character from the expected neutrino signal. This thesis includes a study of the radio Cherenkov emission from ultra-high energy electromagnetic showers in ice in the time-domain. All previous simulations computed the radio pulse frequency spectrum. I developed a purely time-domain algorithm for computing radiation using the vector potentials of charged particle tracks. The results are fully consistent with previous frequency domain calculations and shed new light into the properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly related to the depth development of the excess charge in the shower and its width to the observation angle with respect to the Cherenkov direction. This information can be of great practical importance for interpreting actual data.

  16. Physiological intensity profile, exercise load and performance predictors of a 65-km mountain ultra-marathon.

    PubMed

    Fornasiero, Alessandro; Savoldelli, Aldo; Fruet, Damiano; Boccia, Gennaro; Pellegrini, Barbara; Schena, Federico

    2018-06-01

    The aims of the study were to describe the physiological profile of a 65-km (4000-m cumulative elevation gain) running mountain ultra-marathon (MUM) and to identify predictors of MUM performance. Twenty-three amateur trail-runners performed anthropometric evaluations and an uphill graded exercise test (GXT) for VO 2max, ventilatory thresholds (VTs), power outputs (PMax, PVTs) and heart rate response (HRmax, HR@VTs). Heart rate (HR) was monitored during the race and intensity was expressed as: Zone I (VT2) for exercise load calculation (training impulse, TRIMP). Mean race intensity was 77.1%±4.4% of HRmax distributed as: 85.7%±19.4% Zone I, 13.9%±18.6% Zone II, 0.4%±0.9% Zone III. Exercise load was 766±110 TRIMP units. Race time (11.8±1.6h) was negatively correlated with VO 2max (r = -0.66, P <0.001) and PMax (r = -0.73, P <0.001), resulting these variables determinant in predicting MUM performance, whereas exercise thresholds did not improve performance prediction. Laboratory variables explained only 59% of race time variance, underlining the multi-factorial character of MUM performance. Our results support the idea that VT1 represents a boundary of tolerable intensity in this kind of events, where exercise load is extremely high. This information can be helpful in identifying optimal pacing strategies to complete such extremely demanding MUMs.

  17. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation

    NASA Astrophysics Data System (ADS)

    He, Yixin; Wang, Yuye; Xu, Degang; Nie, Meitong; Yan, Chao; Tang, Longhuang; Shi, Jia; Feng, Jiachen; Yan, Dexian; Liu, Hongxiang; Teng, Bing; Feng, Hua; Yao, Jianquan

    2018-01-01

    We have demonstrated a high-energy and broadly tunable monochromatic terahertz (THz) source based on difference frequency generation (DFG) in DAST crystal. A high-energy dual-wavelength optical parametric oscillator with two KTP crystals was constructed as a light source for DFG, where the effect of blue light was first observed accompanying with tunable dual-wavelength pump light due to different nonlinear processes. The THz frequency was tuned randomly in the range of 0.3-19.6 THz. The highest energy of 870 nJ/pulse was obtained at 18.9 THz under the intense pump intensity of 247 MW/cm2. The THz energy dips above 3 THz have been analyzed and mainly attributed to the resonance absorption induced by lattice vibration in DAST crystal. The dependence of THz output on the input energy was studied experimentally, and THz output saturation was observed. Furthermore, tests of transmission spectroscopy of four typical samples were demonstrated with this ultra-wideband THz source.

  18. Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing.

    PubMed

    Morey, Rajendra A; Inan, Seniha; Mitchell, Teresa V; Perkins, Diana O; Lieberman, Jeffrey A; Belger, Aysenil

    2005-03-01

    Individuals experiencing prodromal symptoms of schizophrenia (ultra-high-risk group) demonstrate impaired performance on tasks of executive function, attention, and working memory. The neurobiological underpinnings of such executive deficits in ultra-high-risk individuals remains unclear. We assessed frontal and striatal functions during a visual oddball continuous performance task, in ultra-high-risk, early, and chronic schizophrenic patients with the use of functional magnetic resonance imaging. Cross-sectional case-control design. Community; outpatient clinic. Patients Fifty-two individuals (control, n = 16; ultra-high risk, n = 10; early, n = 15; chronic, n = 11) from a referred clinical sample and age- and sex-matched control volunteers underwent scanning. Percentage of active voxels and percentage signal change calculated for the anterior cingulate gyrus (ACG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), basal ganglia, and thalamus. Performance on the visual oddball task was measured with percentage of hits and d' (a measure based on the hit rate and the false-alarm rate). The ultra-high-risk group showed significantly smaller differential activation between task-relevant and task-irrelevant stimuli in the frontal regions (ACG, IFG, MFG) than the control group. Frontostriatal activation associated with target stimuli in the early and chronic groups was significantly lower than the control group, while the ultra-high-risk group showed a trend toward the early group. Our findings suggest that prefrontal function begins to decline before the onset of syndromally defined illness and hence may represent a vulnerability marker in assessing the risk of developing psychotic disorders among ultra-high-risk individuals.

  19. Disordering of ultra thin WO3 films by high-energy ions

    NASA Astrophysics Data System (ADS)

    Matsunami, N.; Kato, M.; Sataka, M.; Okayasu, S.

    2017-10-01

    We have studied disordering or atomic structure modification of ultra thin WO3 films under impact of high-energy ions with non-equilibrium and equilibrium charge incidence, by means of X-ray diffraction (XRD). WO3 films were prepared by thermal oxidation of W deposited on MgO substrate. Film thickness obtained by Rutherford backscattering spectrometry (RBS) is as low as 2 nm. Smoothness of film surface was observed by atomic force microscopy. It is found that the ratio of XRD intensity degradation per 90 MeV Ni+10 ion (the incident charge is lower than the equilibrium charge) to that per 90 MeV Ni ion with the equilibrium charge depends on the film thickness. Also, film thickness dependence is observed for 100 MeV Xe+14. By comparison of the experimental result with a simple model calculation based on the assumption that the mean charge of ions along the depth follows a saturation curve with power-law approximation to the charge dependent electronic stopping power, the characteristic length attaining the equilibrium charge is obtained to be ∼7 nm for 90 MeV Ni+10 ion incidence or the electron loss cross section of ∼1016 cm2, demonstrating that disordering of ultra WO3 films has been observed and a fundamental quantity can be derived through material modification.

  20. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    DTIC Science & Technology

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  1. Fast and sensitive analysis of beta blockers by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry.

    PubMed

    Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan

    2017-07-01

    This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Steering attosecond electron wave packets with light.

    PubMed

    Kienberger, R; Hentschel, M; Uiberacker, M; Spielmann, Ch; Kitzler, M; Scrinzi, A; Wieland, M; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F

    2002-08-16

    Photoelectrons excited by extreme ultraviolet or x-ray photons in the presence of a strong laser field generally suffer a spread of their energies due to the absorption and emission of laser photons. We demonstrate that if the emitted electron wave packet is temporally confined to a small fraction of the oscillation period of the interacting light wave, its energy spectrum can be up- or downshifted by many times the laser photon energy without substantial broadening. The light wave can accelerate or decelerate the electron's drift velocity, i.e., steer the electron wave packet like a classical particle. This capability strictly relies on a sub-femtosecond duration of the ionizing x-ray pulse and on its timing to the phase of the light wave with a similar accuracy, offering a simple and potentially single-shot diagnostic tool for attosecond pump-probe spectroscopy.

  3. Time and Space Resolved High Harmonic Imaging of Electron Tunnelling from Molecules

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2009-05-01

    High harmonic generation in intense laser fields carries the promise of combining sub-Angstrom spatial and attosecond temporal resolution of electronic structures and dynamics in molecules, see e.g. [1-3]. High harmonic emission occurs when an electron detached from a molecule by an intense laser field recombines with the parent ion [4]. Similar to Young's double-slit experiment, recombination to several ``lobes'' of the same molecular orbital can produce interference minima and maxima in harmonic intensities [1]. These minima (maxima) carry structural information -- they occur when the de-Broglie wavelength of the recombining electron matches distances between the centers. We demonstrate both theoretically and experimentally that amplitude minima (maxima) in the harmonic spectra can also have dynamical origin, reflecting multi-electron dynamics in the molecule. We use high harmonic spectra to record this dynamics and reconstruct the position of the hole left in the molecule after ionization. Experimental data are consistent with the hole starting in different places as the ionization dynamics changes from tunnelling to the multi-photon regime. Importantly, hole localization and subsequent attosecond dynamics are induced even in the tunnelling limit. Thus, even ``static'' tunnelling induced by a tip of a tunnelling microscope will generate similar attosecond dynamics in a sample. We anticipate that our approach will become standard in disentangling spatial and temporal information from high harmonic spectra of molecules.[4pt] In collaboration with Serguei Patchkovskii, National Research Council, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada; Yann Mairesse, NRC Canada and CELIA, Universit'e Bordeaux I, UMR 5107 (CNRS, Bordeaux 1, CEA), 351 Cours de la Lib'eration, 33405 Talence Cedex, France; Nirit Dudovich, NRC Canada and Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; David Villeneuve, Paul Corkum, NRC Canada

  4. BAKABLE ULTRA-HIGH VACUUM VALVE

    DOEpatents

    Mark, J.T.; Gantz, I.H.

    1962-07-10

    S>This patent relates to a valve useful in applications involving successively closing and opening a communication between a chamber evacuated to an ultra-high vacuum condition of the order of 10/sup -10/ millimeters of mercury and another chamber or the ambient. The valve is capable of withstanding extended baking at 450 deg C and repeated opening and closing without repiacement of the valve seat (approximately 200 cycle limit). The seal is formed by mutual interdiffusion weld, coerced by a pneumatic actuator. (AEC)

  5. Spacewalking_in_Ultra_High_Definition

    NASA Image and Video Library

    2017-07-21

    Ever wonder what the spacewalker sees while you’re looking at him or her? Here’s your answer, courtesy of NASA astronaut Jack Fischer. This Ultra High Definition clip shows Fischer outside the International Space Station during a spacewalk on Expedition 51 in May 2017, and the view from a small camera attached to his spacesuit at the same time. Music by Joakim Karud. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  6. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum

    NASA Astrophysics Data System (ADS)

    Kozák, M.; Eckstein, T.; Schönenberger, N.; Hommelhoff, P.

    2018-02-01

    In the early days of quantum mechanics Kapitza and Dirac predicted that matter waves would scatter off the optical intensity grating formed by two counter-propagating light waves. This interaction, driven by the ponderomotive potential of the optical standing wave, was both studied theoretically and demonstrated experimentally for atoms and electrons. In the original version of the experiment, only the transverse momentum of particles was varied, but their energy and longitudinal momentum remained unchanged after the interaction. Here, we report on the generalization of the Kapitza-Dirac effect. We demonstrate that the energy of sub-relativistic electrons is strongly modulated on the few-femtosecond timescale via the interaction with a travelling wave created in vacuum by two colliding laser pulses at different frequencies. This effect extends the possibilities of temporal control of freely propagating particles with coherent light and can serve the attosecond ballistic bunching of electrons, or for the acceleration of neutral atoms or molecules by light.

  7. Attosecond transient absorption probing of electronic superpositions of bound states in neon. Detection of quantum beats

    DOE PAGES

    Beck, Annelise R; Bernhardt, Birgitta; Warrick, Erika R.; ...

    2014-11-07

    Electronic wavepackets composed of multiple bound excited states of atomic neon lying between 19.6 and 21.5 eV are launched using an isolated attosecond pulse. Individual quantum beats of the wavepacket are detected by perturbing the induced polarization of the medium with a time-delayed few-femtosecond near-infrared (NIR) pulse via coupling the individual states to multiple neighboring levels. All of the initially excited states are monitored simultaneously in the attosecond transient absorption spectrum, revealing Lorentzian to Fano lineshape spectral changes as well as quantum beats. The most prominent beating of the several that were observed was in the spin–orbit split 3d absorptionmore » features, which has a 40 femtosecond period that corresponds to the spin–orbit splitting of 0.1 eV. The few-level models and multilevel calculations confirm that the observed magnitude of oscillation depends strongly on the spectral bandwidth and tuning of the NIR pulse and on the location of possible coupling states.« less

  8. Generation of isolated attosecond pulses with enhancement cavities—a theoretical study

    NASA Astrophysics Data System (ADS)

    Högner, M.; Tosa, V.; Pupeza, I.

    2017-03-01

    The generation of extreme-ultraviolet (XUV) isolated attosecond pulses (IAPs) has enabled experimental access to the fastest phenomena in nature observed so far, namely the dynamics of electrons in atoms, molecules and solids. However, nowadays the highest repetition rates at which IAPs can be generated lies in the {kHz} range. This represents a rather severe restriction for numerous experiments involving the detection of charged particles, where the desired number of generated particles per shot is limited by space charge effects to ideally one. Here, we present a theoretical study on the possibility of efficiently producing IAPs at multi-{MHz} repetition rates via cavity-enhanced high-harmonic generation (HHG). To this end, we assume parameters of state-of-the-art Yb-based femtosecond laser technology to evaluate several time-gating methods which could generate IAPs in enhancement cavities. We identify polarization gating and a new method, employing non-collinear optical gating in a tailored transverse cavity mode, as suitable candidates and analyze these via extensive numerical modeling. The latter, which we dub transverse mode gating (TMG) promises the highest efficiency and robustness. Assuming 0.7 μ {{J}}, 5-cycle pulses from the seeding laser and a state-of-the-art enhancement cavity, we show that TMG bares the potential to generate IAPs with photon energies around 100 {eV} and a photon flux of at least {10}8 {photons} {{{s}}}-1 at repetition rates of 10 {MHz} and higher. This result reveals a roadmap towards a dramatic decrease in measurement time (and, equivalently, an increase in the signal-to-noise ratio) in photoelectron spectroscopy and microscopy. In particular, it paves the way to combining attosecond streaking with photoelectron emission microscopy, affording, for the first time, the spatially and temporally resolved observation of plasmonic fields in nanostructures. Furthermore, it promises the generation of frequency combs with an unprecedented

  9. Simple Method to Generate Terawatt-Attosecond X-Ray Free-Electron-Laser Pulses.

    PubMed

    Prat, Eduard; Reiche, Sven

    2015-06-19

    X-ray free-electron lasers (XFELs) are cutting-edge research tools that produce almost fully coherent radiation with high power and short-pulse length with applications in multiple science fields. There is a strong demand to achieve even shorter pulses and higher radiation powers than the ones obtained at state-of-the-art XFEL facilities. In this context we propose a novel method to generate terawatt-attosecond XFEL pulses, where an XFEL pulse is pushed through several short good-beam regions of the electron bunch. In addition to the elements of conventional XFEL facilities, the method uses only a multiple-slotted foil and small electron delays between undulator sections. Our scheme is thus simple, compact, and easy to implement both in already operating as well as future XFEL projects. We present numerical simulations that confirm the feasibility and validity of our proposal.

  10. Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory.

    PubMed

    De Giovannini, Umberto; Brunetto, Gustavo; Castro, Alberto; Walkenhorst, Jessica; Rubio, Angel

    2013-05-10

    Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ultra-high vacuum compatible induction-heated rod casting furnace

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  12. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  13. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  14. High harmonic generation in rare gas solids

    NASA Astrophysics Data System (ADS)

    Reis, David

    2015-05-01

    There has recently been renewed interest in the interaction of strong optical fields with large band-gap solids. The response is known to involve the attosecond dynamics of the electrons and includes the generation of non-perturbative high-order harmonics. However, the detailed mechanism remain a matter of intense debate. Here we report on high harmonic generation in rare gas solids as compared to a dilute gas. The measured spectrum in the solid exhibits a secondary plateau and a subsequent high-energy cut-off that extends well beyond the gas phase, while the ellipticity dependence is simlar to the gas phase and suggests importance of coherent single-site recombination.

  15. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Boll, D. I. R.; Fojón, O. A.

    2017-12-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.

  16. Search for Ultra-High Energy Photons with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homola, Piotr

    One of key scientific objectives of the Pierre Auger Observatory is the search for ultra-high energy photons. Such photons could originate either in the interactions of energetic cosmic-ray nuclei with the cosmic microwave background (so-called cosmogenic photons) or in the exotic scenarios, e.g. those assuming a production and decay of some hypothetical super-massive particles. The latter category of models would imply relatively large fluxes of photons with ultra-high energies at Earth, while the former, involving interactions of cosmic-ray nuclei with the microwave background - just the contrary: very small fractions. The investigations on the data collected so far in themore » Pierre Auger Observatory led to placing very stringent limits to ultra-high energy photon fluxes: below the predictions of the most of the exotic models and nearing the predicted fluxes of the cosmogenic photons. In this paper the status of these investigations and perspectives for further studies are summarized.« less

  17. High-volume intensive training course: a new paradigm for video-assisted thoracoscopic surgery education.

    PubMed

    Sihoe, Alan D L; Gonzalez-Rivas, Diego; Yang, Timothy Y; Zhu, Yuming; Jiang, Gening

    2018-03-27

    The emergence of ultra-high-volume centres promises new opportunities for thoracic surgical training. The goal of this study was to investigate the effectiveness of a novel observership course in teaching video-assisted thoracoscopic surgery (VATS) at an ultra-high-volume centre. Two-week courses in VATS at a specialist unit now performing >10 000 major lung resections annually (>50 daily on average) were attended by 230 surgeons from around the world from 2013 to 2016. An online survey preserving responder anonymity was completed by 156 attendees (67.8%). Attendees included 37% from Western Europe, 18% from Eastern Europe and 17% from Latin America. Experience with open thoracic surgery for more than 5 years was reported by 67%, but 79% had less than 5 years of VATS lobectomy experience. During the course, 70% observed over 30 uniportal VATS operations (including 38% observing over 50), and 69% attended an animal wet lab. Although 72% of the responders attended the course less than 12 months ago, the number of ports used (P < 0.001), operation times (P < 0.001) and conversion rates (P < 0.001) reported by the responders were reduced significantly after the course. Improvements in the problem areas of tissue retraction, instrumentation, stapler application and coordination with the assistant during VATS were reported by 56%, 57%, 58% and 53%, respectively. Of those who had attended other VATS courses previously, 87% preferred the training from this high-volume course. High-volume intensive observership training at an ultra-high-volume centre may improve VATS proficiency in a short period of time, and may provide a time-efficient modality for future thoracic surgical training.

  18. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    PubMed Central

    Poole, P. L.; Krygier, A.; Cochran, G. E.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-01-01

    We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592

  19. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    DOE PAGES

    Poole, P. L.; Krygier, A.; Cochran, G. E.; ...

    2016-08-25

    Here, we describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating.more » Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors.« less

  20. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  1. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  2. Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions

    DOE PAGES

    Zulick, C.; Raymond, A.; McKelvey, A.; ...

    2016-06-15

    Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a K α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.

  3. Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate.

    PubMed

    Süssmann, F; Zherebtsov, S; Plenge, J; Johnson, Nora G; Kübel, M; Sayler, A M; Mondes, V; Graf, C; Rühl, E; Paulus, G G; Schmischke, D; Swrschek, P; Kling, M F

    2011-09-01

    High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camera software allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈10(13) W/cm(2)) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO(2) nanospheres. © 2011 American Institute of Physics

  4. High-order harmonic generation of CO and N2 molecules under linearly- and bi circularly-polarized laser pulses by TD-DFT

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-07-01

    We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.

  5. New-type steel plate with ultra high crack-arrestability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.

    1995-12-31

    A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less

  6. Application of ultra-high performance concrete to bridge girders.

    DOT National Transportation Integrated Search

    2009-02-01

    "Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...

  7. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    NASA Astrophysics Data System (ADS)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  8. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  9. Ultra high vacuum test setup for electron gun

    NASA Astrophysics Data System (ADS)

    Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.

    2008-05-01

    Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.

  10. Anisotropic attosecond charge carrier dynamics and layer decoupling in quasi-2D layered SnS 2

    DOE PAGES

    Eads, Calley N.; Bandak, Dmytro; Neupane, Mahesh R.; ...

    2017-11-08

    Strong quantum confinement effects lead to striking new physics in two-dimensional materials such as graphene or transition metal dichalcogenides. While spectroscopic fingerprints of such quantum confinement have been demonstrated widely, the consequences for carrier dynamics are at present less clear, particularly on ultrafast timescales. This is important for tailoring, probing, and understanding spin and electron dynamics in layered and two-dimensional materials even in cases where the desired bandgap engineering has been achieved. Here in this paper we show by means of core–hole clock spectroscopy that SnS 2 exhibits spindependent attosecond charge delocalization times (τ deloc) for carriers confined within amore » layer, τ deloc < 400 as, whereas interlayer charge delocalization is dynamically quenched in excess of a factor of 10, τ deloc > 2.7 fs. These layer decoupling dynamics are a direct consequence of strongly anisotropic screening established within attoseconds, and demonstrate that important two-dimensional characteristics are also present in bulk crystals of van der Waalslayered materials, at least on ultrafast timescales.« less

  11. Bond behavior of reinforcing steel in ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2014-10-01

    Ultra-High Performance Concrete (UHPC) is a relatively new class of advanced cementitious composite : materials, which exhibits high compressive [above 21.7 ksi (150 MPa)] and tensile [above 0.72 ksi (5 MPa)] : strengths. The discrete steel fiber rei...

  12. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses.

    PubMed

    Mondal, S; Wei, Q; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T

    2017-01-10

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  13. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    PubMed Central

    Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.

    2017-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20–200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results. PMID:28071764

  14. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.

    2017-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  15. Ultra-high-energy cosmic rays from radio galaxies

    NASA Astrophysics Data System (ADS)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  16. Large-scale atomistic calculations of clusters in intense x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Phay J.; Knight, Chris

    Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less

  17. Large-scale atomistic calculations of clusters in intense x-ray pulses

    DOE PAGES

    Ho, Phay J.; Knight, Chris

    2017-04-28

    Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less

  18. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    NASA Astrophysics Data System (ADS)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  19. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  20. Monitoring long-range electron transfer pathways in proteins by stimulated attosecond broadband X-ray Raman spectroscopy

    DOE PAGES

    Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; ...

    2014-10-09

    In this study, long-range electron transfer (ET) plays a key role in many biological energy conversion and synthesis processes. We show that nonlinear spectroscopy with attosecond X-ray pulses provides a real time movie of the evolving oxidation states and electron densities around atoms, and can probe these processes with high spatial and temporal resolution. This is demonstrated in a simulation study of the stimulated X-ray Raman (SXRS) signals in Re-modified azurin, which had long served as a benchmark for long-range ET in proteins. Nonlinear SXRS signals are sensitive to the local electronic structure and should offer a novel window formore » long-range ET.« less

  1. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  2. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    NASA Astrophysics Data System (ADS)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  3. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.

    PubMed

    Tien, Ming-Chun; Bauters, Jared F; Heck, Martijn J R; Blumenthal, Daniel J; Bowers, John E

    2010-11-08

    We investigate the nonlinearity of ultra-low loss Si3N4-core and SiO2-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell's wave equation with a small amount of refractive index perturbation. Effective n2 is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n2 measured using continuous-wave self-phase modulation shows agreement with the theoretical calculation. The waveguide with 2.8-μm wide and 80-nm thick Si3N4 core has low loss and high power handling capability, with an effective n2 of about 9×10(-16) cm2/W.

  4. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  5. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  6. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE PAGES

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...

    2016-01-18

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  7. Spatially-Resolved Characterization Techniques to Investigate Impact Damage in Ultra-High Performance Concretes

    DTIC Science & Technology

    2013-04-01

    Concretes G eo te ch n ic al a n d S tr u ct u re s La b or at or y Robert D. Moser, Paul G. Allison, and Mei Q. Chandler April 2013 Approved...Impact Damage in Ultra-High Performance Concretes Robert D. Moser, Paul G. Allison, and Mei Q. Chandler Geotechnical and Structures Laboratory US...Portland Cement concrete (OPC) and Ultra-High Performance Concretes (UHPCs) under high-strain impact and penetration loads at lower length scales

  8. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  9. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    NASA Astrophysics Data System (ADS)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  10. Link and Network Layers Design for Ultra-High-Speed Terahertz-Band Communications Networks

    DTIC Science & Technology

    2017-01-01

    throughput, and identify the optimal parameter values for their design (Sec. 6.2.3). Moreover, we validate and test the scheme with experimental data obtained...LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH- SPEED TERAHERTZ-BAND COMMUNICATIONS NETWORKS STATE UNIVERSITY OF NEW YORK (SUNY) AT BUFFALO JANUARY...TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) FEB 2015 – SEP 2016 4. TITLE AND SUBTITLE LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH

  11. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    NASA Astrophysics Data System (ADS)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  12. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  13. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    NASA Astrophysics Data System (ADS)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  14. FAST TRACK COMMUNICATION: Attosecond correlation dynamics during electron tunnelling from molecules

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.; Smirnova, Olga

    2010-08-01

    In this communication, we present an analytical theory of strong-field ionization of molecules, which takes into account the rearrangement of multiple interacting electrons during the ionization process. We show that such rearrangement offers an alternative pathway to the ionization of orbitals more deeply bound than the highest occupied molecular orbital. This pathway is not subject to the full exponential suppression characteristic of direct tunnel ionization from the deeper orbitals. The departing electron produces an 'attosecond correlation pulse' which controls the rearrangement during the tunnelling process. The shape and duration of this pulse are determined by the electronic structure of the relevant states, molecular orientation and laser parameters.

  15. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  16. Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2014-11-01

    Ultra-high performance concrete (UHPC) has garnered interest from the highway infrastructure community for its greatly enhanced mechanical and durability properties. The objective of this research is to extensively evaluate the factors that affect bo...

  17. Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20  μm.

    PubMed

    Steinle, Tobias; Mörz, Florian; Steinmann, Andy; Giessen, Harald

    2016-11-01

    A highly stable 350 fs laser system with a gap-free tunability from 1.33 to 2.0 μm and 2.13 to 20 μm is demonstrated. Nanojoule-level pulse energy is achieved in the mid-infrared at a 43 MHz repetition rate. The system utilizes a post-amplified fiber-feedback optical parametric oscillator followed by difference frequency generation between the signal and idler. No locking or synchronization electronics are required to achieve outstanding free-running output power and spectral stability of the whole system. Ultra-low intensity noise, close to the pump laser's noise figure, enables shot-noise limited measurements.

  18. Effect of attochirp on attosecond streaking time delay in photoionization of atoms

    NASA Astrophysics Data System (ADS)

    Goldsmith, C.; Jaroń-Becker, A.; Becker, A.

    2018-01-01

    We present a theoretical analysis of the effect of the attochirp on the streaking time delay, intrinsic to photoionization of an atom by an attosecond laser pulse at extreme ultraviolet wavelengths superposed by a femtosecond streaking pulse. To this end, we determine the expectation value of the delay in a chirped pulse using a recently developed model formula. Results of our calculations show that the attochirp can be relevant for photoemission from the 3p shell in argon atom at frequencies near the Cooper minimum, while it is negligible if the photoionization cross section as a function of frequency varies smoothly.

  19. Waste heat recovery with ultra high-speed turbomachinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakkilainen, E.; Larjola, J.; Lindgren, O.

    1984-08-01

    A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.

  20. Process Properties of Electronic High Voltage Discharges Triggered by Ultra-short Pulsed Laser Filaments

    NASA Astrophysics Data System (ADS)

    Cvecek, Kristian; Gröschel, Benjamin; Schmidt, Michael

    Remote processing of metallic workpieces by techniques based on electric arc discharge or laser irradiation for joining or cutting has a long tradition and is still being intensively investigated in present-day research. In applications that require high power processing, both approaches exhibit certain advantages and disadvantages that make them specific for a given task. While several hybrid approaches exist that try to combine the benefits of both techniques, none were as successful in providing a fixed electric discharge direction as discharges triggered by plasma filaments generated by ultra-short pulsed lasers. In this work we investigate spatial and temporal aspects of laser filament guided discharges and give an upper time delay between the filament creation and the electrical build-up of a dischargeable voltage for a successful filament triggered discharge.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierbach, Jana; Yeung, Mark; Eckner, Erich

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  2. Au-C allotrope nano-composite films at extreme conditions generated by intense ultra-short laser

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Saravanan, K.; Tayyab, M.; Bagchi, S.; Avasthi, D. K.

    2016-07-01

    Structural evolution of gold-carbon allotrope nano-composite films under relativistically intense, ultra-short laser pulse irradiation is studied in this work. Au-C nano-composite films, having 4 and 10 at.% of Au, were deposited by co-sputtering technique on silicon substrates. Au-C60 NC films with 2.5 at.% Au were deposited on 12 μm thick Al foil using co-evaporation technique. These samples were radiated with single pulse from 45 fs, 10 TW Ti:Sapphire Laser at RRCAT at an intensity of 3 × 1018 W cm-2. The morphological and compositional changes were investigated using scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS) techniques. Laser pulse created three morphologically distinct zones around the point of impact on samples with silicon substrates. The gold content in 600 μm circular region around a point of impact is found to reduce by a factor of five. Annular rings of ∼70 nm in diameter were observed in case of Au-C NC film after irradiation. Laser pulse created a hole of about 400 μm in the sample with Al foil as substrate and wavy structures of 6 μm wavelength are found to be created around this hole. The study shows radial variation in nano-structure formation with varying local intensity of laser pulse.

  3. Development of Non-Proprietary Ultra-High Performance Concrete : Final Report

    DOT National Transportation Integrated Search

    2017-12-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...

  4. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Nonlinear modulation of the HI power spectrum on ultra-large scales. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeh, Obinna; Maartens, Roy; Santos, Mario, E-mail: umeobinna@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: mgrsantos@uwc.ac.za

    2016-03-01

    Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they may bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates the nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolutionmore » bias. It also introduces a term that mimics white noise. These effects may influence forecasting analysis on ultra-large scales.« less

  6. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  7. The discovery and properties of the ultra-soft X-ray transient EXO 1846-031

    NASA Technical Reports Server (NTRS)

    Parmar, A. N.; Angelini, L.; Roche, P.; White, N. E.

    1993-01-01

    We report the discovery of a previously uncataloged ultra-soft X-ray transient EXO 1846-031 which was in outburst during 1985 April to September. The X-ray spectrum consists of an ultra-soft component and a high-energy power-law tail that extends to at least 25 keV. The ultra-soft component may be modeled by either a cutoff power-law or a multicolor blackbody disk model. The latter model allows the evolution in spectrum and intensity observed during the outburst to be accounted for by the change in a single parameter - the temperature at the innermost disk radius. We demonstrate that at least one other accretion disk model is able to account for these changes by the variation of a single parameter. During one of the three EXOSAT observations, EXO 1846-031 exhibited significant intensity variability which probably originates from the power-law component. We derive a position for this unidentified source and present the results of a search for the optical counterpart.

  8. The effect of cognitive remediation in individuals at ultra-high risk for psychosis: a systematic review.

    PubMed

    Glenthøj, Louise Birkedal; Hjorthøj, Carsten; Kristensen, Tina Dam; Davidson, Charlie Andrew; Nordentoft, Merete

    2017-01-01

    Cognitive deficits are prominent features of the ultra-high risk state for psychosis that are known to impact functioning and course of illness. Cognitive remediation appears to be the most promising treatment approach to alleviate the cognitive deficits, which may translate into functional improvements. This study systematically reviewed the evidence on the effectiveness of cognitive remediation in the ultra-high risk population. The electronic databases MEDLINE, PsycINFO, and Embase were searched using keywords related to cognitive remediation and the UHR state. Studies were included if they were peer-reviewed, written in English, and included a population meeting standardized ultra-high risk criteria. Six original research articles were identified. All the studies provided computerized, bottom-up-based cognitive remediation, predominantly targeting neurocognitive function. Four out of five studies that reported a cognitive outcome found cognitive remediation to improve cognition in the domains of verbal memory, attention, and processing speed. Two out of four studies that reported on functional outcome found cognitive remediation to improve the functional outcome in the domains of social functioning and social adjustment. Zero out of the five studies that reported such an outcome found cognitive remediation to affect the magnitude of clinical symptoms. Research on the effect of cognitive remediation in the ultra-high risk state is still scarce. The current state of evidence indicates an effect of cognitive remediation on cognition and functioning in ultra-high risk individuals. More research on cognitive remediation in ultra-high risk is needed, notably in large-scale trials assessing the effect of neurocognitive and/or social cognitive remediation on multiple outcomes.

  9. Numerical simulation of laser ion acceleration at ultra high intensity

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Popescu, Alexandra; d'Humières, Emmanuel; Vizman, Daniel

    2017-01-01

    With the latest advances in attainable laser intensity, the need to obtain better quality ion and electron beams has been a major field of research. This paper studies the effects of different target density profiles on the spatial distribution of the accelerated particles, the maximum energies achieved, and the characteristics of the electromagnetic fields using the same laser pulse parameters. The study starts by describing a baseline for a flat target which presents a proton-rich microdot on its backside. The effects of introducing a target curvature and, further on, a cone laser focusing structure are compared with the flat target baseline results. The maximum energy obtained increases when using complex structures, and also a smaller divergence of the ion beam is observed.

  10. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields.

    PubMed

    Jin, Cheng; Wang, Guoli; Wei, Hui; Le, Anh-Thu; Lin, C D

    2014-05-30

    High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to increase harmonic yields by several orders to make harmonics feasible in the near future as general bright tabletop light sources, including intense attosecond pulses.

  11. The control of electron quantum trajectories on the high-order harmonic generation of CO and N2 molecules in the presence of a low frequency field.

    PubMed

    Koushki, A M; Sadighi-Bonabi, R; Mohsen-Nia, M; Irani, E

    2018-04-14

    In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N 2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.

  12. The control of electron quantum trajectories on the high-order harmonic generation of CO and N2 molecules in the presence of a low frequency field

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-04-01

    In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.

  13. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  14. Physiology and Pathophysiology in Ultra-Marathon Running

    PubMed Central

    Knechtle, Beat; Nikolaidis, Pantelis T.

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  15. Physiology and Pathophysiology in Ultra-Marathon Running.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10-20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35-45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  16. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  17. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Neufeld, Ofer; Cohen, Oren

    2018-03-01

    Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  18. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.

    PubMed

    Neufeld, Ofer; Cohen, Oren

    2018-03-30

    Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  19. Chirp of the single attosecond pulse generated by a polarization gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Zenghu

    2005-02-01

    The chirp of the xuv supercontinuum generated by a polarization gating is investigated by comparing three-dimensional nonadiabatic numerical simulations with classical calculations. The origin of the chirp is the dependence of the energy gain by an electron on the return time. The chirp is positive and its value is almost the same as that when a linearly polarized laser is used. Although the 250-eV-wide supercontinuum corresponds to a single attosecond pulse, the shortest duration of the pulse is limited by the chirp. By compensating the positive chirp with the negative group velocity dispersion of a Sn filter, it is predictedmore » that a single 58-as pulse can be generated.« less

  20. Enhanced laser absorption from radiation pressure in intense laser plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dollar, F.; Zulick, C.; Raymond, A.

    The reflectivity of a short-pulse laser at intensities of 2 x 10 21Wcm -2 with ultra-high contrast (10 -15) on sub-micrometer silicon nitride foilswas studied experimentally using varying polarizations and target thicknesses. Furthermore, the reflected intensity and beam quality were found to be relatively constant with respect to intensity for bulk targets. For submicron targets, the measured reflectivity drops substantially without a corresponding increase in transmission, indicating increased conversion of fundamental to other wavelengths and particle heating. The experimental results and trends we observed in 3D particle-in-cell simulations emphasize the critical role of ion motion due to radiation pressure onmore » the absorption process. Ion motion during ultra-short pulses enhances the electron heating, which subsequently transfers more energy to the ions.« less

  1. Enhanced laser absorption from radiation pressure in intense laser plasma interactions

    DOE PAGES

    Dollar, F.; Zulick, C.; Raymond, A.; ...

    2017-06-06

    The reflectivity of a short-pulse laser at intensities of 2 x 10 21Wcm -2 with ultra-high contrast (10 -15) on sub-micrometer silicon nitride foilswas studied experimentally using varying polarizations and target thicknesses. Furthermore, the reflected intensity and beam quality were found to be relatively constant with respect to intensity for bulk targets. For submicron targets, the measured reflectivity drops substantially without a corresponding increase in transmission, indicating increased conversion of fundamental to other wavelengths and particle heating. The experimental results and trends we observed in 3D particle-in-cell simulations emphasize the critical role of ion motion due to radiation pressure onmore » the absorption process. Ion motion during ultra-short pulses enhances the electron heating, which subsequently transfers more energy to the ions.« less

  2. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Gil, J. M.; Rodríguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Mínguez, E.; Sauvan, P.; Angelo, P.; Schott, R.; Dalimier, E.; Mancini, R.

    2008-10-01

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph (λ/Δλ≈6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Lyα, Heβ, Heγ, Lyβ and Lyγ line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  3. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    NASA Astrophysics Data System (ADS)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  4. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons

    PubMed Central

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-01-01

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm−2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon–phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth. PMID:26514372

  5. Design of Ultra-High Temperature Ceramics for Improved Performance

    DTIC Science & Technology

    2009-02-28

    e.g., grain boundary chemistry or change in impurity concentrations) or physical (e.g., residual stress) effects. 600 co 500 a. oi400 c CD i...SA037 Effects of oxygen content on the properties of supcr-high-teiiiperature resistant Si-AI- C fibers D.f. Zhao (National University of Defense...of Technology, China) 15:05 S A034 Oxyacetylene ablation behavior of carbon fibers reinforced carbon matrix and ultra-high temperature

  6. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    PubMed

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or

  7. MDOT aims for lower-cost ultra-high performance concrete : research spotlight.

    DOT National Transportation Integrated Search

    2016-08-01

    In recent years, several vendors have developed ultra-high performance : concrete (UHPC) that surpasses traditional concrete mixes by offering : exceptional freeze-thaw resistance, reduced susceptibility to cracking : and far less reinforcement corro...

  8. Multilayer ultra-high-temperature ceramic coatings

    DOEpatents

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  9. Ultra-high-speed variable focus optics for novel applications in advanced imaging

    NASA Astrophysics Data System (ADS)

    Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.

    2018-02-01

    With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.

  10. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  11. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendonça, J. T., E-mail: josetitomend@gmail.com; Vieira, J., E-mail: jorge.vieira@ist.utl.pt

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able tomore » show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.« less

  12. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  13. Examining the association between social cognition and functioning in individuals at ultra-high risk for psychosis.

    PubMed

    Cotter, Jack; Bartholomeusz, Cali; Papas, Alicia; Allott, Kelly; Nelson, Barnaby; Yung, Alison R; Thompson, Andrew

    2017-01-01

    Social and role functioning are compromised for the majority of individuals at ultra-high risk of psychosis, and it is important to identify factors that contribute to this functional decline. This study aimed to investigate social cognitive abilities, which have previously been linked to functioning in schizophrenia, as potential factors that impact social, role and global functioning in ultra-high risk patients. A total of 30 ultra-high risk patients were recruited from an established at-risk clinical service in Melbourne, Australia, and completed a battery of social cognitive, neurocognitive, clinical and functioning measures. We examined the relationships between all four core domains of social cognition (emotion recognition, theory of mind, social perception and attributional style), neurocognitive, clinical and demographic variables with three measures of functioning (the Global Functioning Social and Role scales and the Social and Occupational Functioning Assessment Scale) using correlational and multiple regression analyses. Performance on a visual theory of mind task (visual jokes task) was significantly correlated with both concurrent role ( r = 0.425, p = 0.019) and global functioning ( r = 0.540, p = 0.002). In multivariate analyses, it also accounted for unique variance in global, but not role functioning after adjusting for negative symptoms and stress. Social functioning was not associated with performance on any of the social cognition tasks. Among specific social cognitive abilities, only a test of theory of mind was associated with functioning in our ultra-high risk sample. Further longitudinal research is needed to examine the impact of social cognitive deficits on long-term functional outcome in the ultra-high risk group. Identifying social cognitive abilities that significantly impact functioning is important to inform the development of targeted intervention programmes for ultra-high risk individuals.

  14. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversionmore » efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.« less

  15. Development of Non-Proprietary Ultra-High Performance Concrete : Project Summary Report

    DOT National Transportation Integrated Search

    2017-12-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Thus, elements made with UHPC can be thinner/lighter than elements made with conventional concrete. The enhanced durabilit...

  16. Defects in regular nanosystems and interference spectra at reemission of electromagnetic field attosecond pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.

    2017-01-01

    The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.

  17. Processes of ionization of atoms in nonstationary states by the field of an attosecond pulse

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2015-02-01

    Processes of ionization at the interaction of attosecond pulses of an electromagnetic field with atoms in nonstationary states have been considered. The probabilities and ionization cross section at the radiative relaxation of an excited state of a single-electron atom and at the Auger decay of the autoionization state of a two-electron atom have been calculated. The developed method allows the expansion to the case of more complex targets, including those in the collision state, and to various chemical reactions.

  18. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  19. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  20. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  1. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.

    PubMed

    Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun

    2016-08-30

    Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.

  2. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.

    PubMed

    Gencur, Sara J; Rimnac, Clare M; Kurtz, Steven M

    2006-03-01

    To prolong the life of total joint replacements, highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) have been introduced to improve the wear resistance of the articulating surfaces. However, there are concerns regarding the loss of ductility and potential loss in fatigue crack propagation (FCP) resistance. The objective of this study was to evaluate the effects of gamma radiation-induced crosslinking with two different post-irradiation thermal treatments on the FCP resistance of UHMWPE. Two highly crosslinked and one virgin UHMWPE treatment groups (ram-extruded, orthopedic grade, GUR 1050) were examined. For the two highly crosslinked treatment groups, UHMWPE rods were exposed to 100 kGy and then underwent post-irradiation thermal processing either above the melt temperature or below the melt temperature (2 h-150 degrees C, 110 degrees C). Compact tension specimens were cyclically loaded to failure and the fatigue crack growth rate, da/dN, vs. cyclic stress intensity factor, DeltaK, behavior was determined and compared between groups. Scanning electron microscopy was used to examine fracture surface characteristics. Crosslinking was found to decrease the ability of UHMWPE to resist crack inception and propagation under cyclic loading. The findings also suggested that annealing as a post-irradiation treatment may be somewhat less detrimental to FCP resistance of UHMWPE than remelting. Scanning electron microscopy examination of the fracture surfaces demonstrated that the virgin treatment group failed in a more ductile manner than the two highly crosslinked treatment groups.

  3. Development of a Family of Ultra-High Performance Concrete Pi-Girders

    DOT National Transportation Integrated Search

    2014-01-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material, which tends to exhibit superior properties such as exceptional durability, increased strength, and long-term stability. (See references 1-4.) The use of existing s...

  4. Ultra-high performance concrete for Michigan bridges, material performance : phase I.

    DOT National Transportation Integrated Search

    2008-10-13

    One of the latest advancements in concrete technology is Ultra-High Performance Concrete (UHPC). UHPC is : defined as concretes attaining compressive strengths exceeding 25 ksi (175 MPa). It is a fiber-reinforced, denselypacked : concrete material wh...

  5. Symmetry in circularly polarized molecular high-order harmonic generation with intense bicircular laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2018-02-01

    We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.

  6. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected

  7. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

    PubMed Central

    Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.

    2013-01-01

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  8. Caveats when Analyzing Ultra-high Molar Mass Polymers by SEC

    USDA-ARS?s Scientific Manuscript database

    The analysis of ultra-high molar mass (M > 1 million g/mol) polymers via size-exclusion chromatography (SEC) presents a number of non-trivial challenges. Dissolution and full solvation may take days, as is the case for cellulose dissolution in non-complexing non degrading solvents; very low concent...

  9. How to understand the tunneling in attosecond experiment?. Bohr-Einstein photon box Gedanken experiment, tunneling time and the wave particle duality

    NASA Astrophysics Data System (ADS)

    Kullie, Ossama

    2018-02-01

    The measurement of the tunneling time (T-time) in today's attosecond and strong field (low-frequency) experiments, despite its controversial discussion, offers a fruitful opportunity to understand time measurement and the time in quantum mechanics. In addition, as we will see in this work, a related controversial issue is the particulate nature of the radiation. The T-time in attosecond experiment and its different aspects and models, is discussed in this work, especially in relation to my model of real T-time (Kullie, 2015), where a good agreement with the experiment and an intriguing similarity to the Bohr-Einstein photon box Gedanken experiment was found. The tunneling process itself is still not well understood, but I am arguing that a scattering mechanism (by the laser wave packet) offers a possibility to understand the tunneling process in the tunneling region. This is related to the question about the corpuscular nature of light which is widely discussed in modern quantum optics experiments.

  10. Differential renal effects of candesartan at high and ultra-high doses in diabetic mice–potential role of the ACE2/AT2R/Mas axis

    PubMed Central

    Callera, Glaucia E.; Antunes, Tayze T.; Correa, Jose W.; Moorman, Danielle; Gutsol, Alexey; He, Ying; Cat, Aurelie Nguyen Dinh; Briones, Ana M.; Montezano, Augusto C.; Burns, Kevin D.; Touyz, Rhian M.

    2016-01-01

    High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes. PMID:27612496

  11. Spectral and angular distribution of photons via radiative damping in extreme ultra-intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko

    2012-10-01

    Spectral and angular distribution of photons produced in the interaction of extremely intense laser (> 10^22,/cm^2) with dense plasma are studied with a help of a collisional particle-in-cell simulation, PICLS. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. We had developed numerical models of these processes in PICLS and study the spectrum and the angular distribution of γ-rays produced in the relativistic laser regime. Such relativistic γ-rays have wide range of frequencies and the angular distribution depends on the hot electron source. From the power loss calculation in PICLS we found that the Bremsstrahlung will get saturated at I > 10^22,/cm^2 while the radiative damping will continuously increase. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and how to catch the signature of the radiative damping in future experiments.

  12. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Ultra-High Temperature Materials Characterization for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high

  14. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    NASA Astrophysics Data System (ADS)

    Higginson, Drew Pitney

    The cone-guided fast ignition approach to Inertial Confinement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the first time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of Kalpha x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an effective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser

  15. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Frisari, M.; Thissen, R.; Dutuit, O.; Bonnet, J.-Y.; Quirico, E.; Sciamma O'Brien, E.; Szopa, C.; Carrasco, N.; Somogyi, A.; Smith, M.; Hörst, S. M.; Yelle, R.

    2010-04-01

    We propose here a systematic ultra-high resolution mass spectrometry and MS/MS study in order to provide a more coherent and complete characterization of the structure of the molecules making up the soluble fraction of the Titan tholins.

  17. The Bendability of Ultra High strength Steels

    NASA Astrophysics Data System (ADS)

    Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.

    2016-08-01

    Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.

  18. Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wake plasma wave.

    PubMed

    Isanin, A V; Bulanov, S S; Kamenets, F F; Pegoraro, F

    2005-03-01

    During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted electromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.

  19. Development of Non-Proprietary Ultra-High Performance Concrete : Research Topic Statement

    DOT National Transportation Integrated Search

    2014-05-29

    Ultra-high performance concrete became commercially available in the U.S. in 2000. Since then, UHPC has been actively promoted by the Federal Highway Administration. UHPC has mostly been used in the U.S. for field-cast connections of prefabricated br...

  20. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  1. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses.

    PubMed

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kitano, Kenta; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2014-01-01

    High harmonic generation (HHG) using waveform-controlled, few-cycle pulses from Ti:sapphire lasers has opened emerging researches in strong-field and attosecond physics. However, the maximum photon energy of attosecond pulses via HHG remains limited to the extreme ultraviolet region. Long-wavelength light sources with carrier-envelope phase stabilization are promising to extend the photon energy of attosecond pulses into the soft X-ray region. Here we demonstrate carrier-envelope phase-dependent HHG in the water window using sub-two-cycle optical pulses at 1,600 nm. Experimental and simulated results indicate the confinement of soft X-ray emission in a single recombination event with a bandwidth of 75 eV around the carbon K edge. Control of high harmonics by the waveform of few-cycle infrared pulses is a key milestone to generate soft X-ray attosecond pulses. We measure a dependence of half-cycle bursts on the gas pressure, which indicates subcycle deformation of the waveform of the infrared drive pulses in the HHG process.

  2. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses

    PubMed Central

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kitano, Kenta; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2014-01-01

    High harmonic generation (HHG) using waveform-controlled, few-cycle pulses from Ti:sapphire lasers has opened emerging researches in strong-field and attosecond physics. However, the maximum photon energy of attosecond pulses via HHG remains limited to the extreme ultraviolet region. Long-wavelength light sources with carrier-envelope phase stabilization are promising to extend the photon energy of attosecond pulses into the soft X-ray region. Here we demonstrate carrier-envelope phase-dependent HHG in the water window using sub-two-cycle optical pulses at 1,600 nm. Experimental and simulated results indicate the confinement of soft X-ray emission in a single recombination event with a bandwidth of 75 eV around the carbon K edge. Control of high harmonics by the waveform of few-cycle infrared pulses is a key milestone to generate soft X-ray attosecond pulses. We measure a dependence of half-cycle bursts on the gas pressure, which indicates subcycle deformation of the waveform of the infrared drive pulses in the HHG process. PMID:24535006

  3. A swimming pool array for ultra high energy showers

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  4. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  5. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  6. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Li Long; Ma Ruiqiong

    2005-07-15

    Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less

  7. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  8. Case study: dairies utilizing ultra-high stock density grazing in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing has gained interest in the forage industry. However, little credible research exists to support anecdotal claims that forage and soil improvement occur through trampling high proportions (75+%) of mature forage into the soil by grazing dense groups of cattle o...

  9. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

    NASA Astrophysics Data System (ADS)

    Petersen, Christian Rosenberg; Møller, Uffe; Kubat, Irnis; Zhou, Binbin; Dupont, Sune; Ramsay, Jacob; Benson, Trevor; Sujecki, Slawomir; Abdel-Moneim, Nabil; Tang, Zhuoqi; Furniss, David; Seddon, Angela; Bang, Ole

    2014-11-01

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. To date, the limitations of mid-infrared light sources such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation have precluded mid-infrared applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central wavelength of either 4.5 μm or 6.3 μm into short pieces of ultra-high numerical-aperture step-index chalcogenide glass optical fibre generates a mid-infrared supercontinuum spanning 1.5 μm to 11.7 μm and 1.4 μm to 13.3 μm, respectively. This is the first experimental demonstration to truly reveal the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control.

  10. Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention.

    PubMed

    Boakye, Cedar H A; Patel, Ketan; Doddapaneni, Ravi; Bagde, Arvind; Behl, Gautam; Chowdhury, Nusrat; Safe, Stephen; Singh, Mandip

    2016-07-01

    In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis. UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo. DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (p<0.01) skin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (p<0.05) the number of tumors observed in SKH-1 mice (3.33-fold), which was comparable to pretreatment with sunscreen (SPF30). Also, DIM-D-UltraFLEX-Nano caused decrease (p<0.05) in UV-induced DNA damage (8-hydroxydeoxyguanosine), skin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21). UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30

  11. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  12. Ion acceleration in electrostatic field of charged cavity created by ultra-short laser pulses of 1020-1021 W/cm2

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Yu.; Singh, P. K.; Ahmed, H.; Kakolee, K. F.; Scullion, C.; Jeong, T. W.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2017-01-01

    Ion acceleration resulting from the interaction of ultra-high intensity and ultra-high contrast (˜10-10) laser pulses with thin A l foil targets at 30° angle of laser incidence is studied. Proton maximum energies of 30 and 18 MeV are measured along the target normal rear and front sides, respectively, showing intensity scaling as Ib . For the target front bf r o n t= 0.5-0.6 and for the target rear br e a r= 0.7-0.8 is observed in the intensity range 1020-1021 W/cm2. The fast scaling from the target rear ˜I0.75 can be attributed enhancement of laser energy absorption as already observed at relatively low intensities. The backward acceleration of the front side protons with intensity scaling as ˜I0.5 can be attributed to the to the formation of a positively charged cavity at the target front via ponderomotive displacement of the target electrons at the interaction of relativistic intense laser pulses with a solid target. The experimental results are in a good agreement with theoretical predictions.

  13. Simultaneous structural and environmental loading of an ultra-high performance concrete component

    DOT National Transportation Integrated Search

    2010-07-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which tends to exhibit superior properties such as increased durability, strength, and long-term stability. This experimental investigation focused on the flexural ...

  14. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  15. Effect of nuclear motion on molecular high order harmonic pump probe spectroscopy.

    PubMed

    Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, André D

    2012-11-26

    We study pump-probe schemes for the real time observation of electronic motion on attosecond time scale in the molecular ion H(2)(+) and its heavier isotope T(2)(+) while these molecules dissociate on femtosecond time scale by solving numerically the non-Born-Oppenheimer time-dependent Schrödinger equation. The UV pump laser pulse prepares a coherent superposition of the three lowest lying quantum states and the time-delayed mid-infrared, intense few-femtosecond probe pulse subsequently generates molecular high-order harmonics (MHOHG) from this coherent electron-nuclear wavepacket (CENWP). Varying the pump-probe time delay by a few hundreds of attoseconds, the MHOHG signal intensity is shown to vary by orders of magnitude. Due to nuclear movement, the coherence of these two upper states and the ground state is lost after a few femtoseconds and the MHOHG intensity variations as function of pump-probe delay time are shown to be equal to the period of electron oscillation in the coherent superposition of the two upper dissociative quantum states. Although this electron oscillation period and hence the periodicity of the harmonic spectra are quite constant over a wide range of internuclear distances, a strong signature of nuclear motion is seen in the actual shapes and ways in which these spectra change as a function of pump-probe delay time, which is illustrated by comparison of the MHOHG spectra generated by the two isotopes H(2)(+) and T(2)(+). Two different regimes corresponding roughly to internuclear distances R < 4a(0) and R > 4a(0) are identified: For R < 4a(0), the intensity of a whole range of frequencies in the plateau region is decreased by orders of magnitude when the delay time is changed by a few hundred attoseconds whereas in the cutoff region the peaks in the MHOHG spectra are red-shifted with increasing pump-probe time delay. For R > 4a(0), on the other hand, the peaks both in the cutoff and plateau region are red-shifted with increasing delay times

  16. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  18. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  19. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sha; Jones, R. R.

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  20. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE PAGES

    Li, Sha; Jones, R. R.

    2016-11-10

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  1. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  2. Ultra-high performance liquid chromatography tandem high-resolution mass spectrometry study of tricyclazole photodegradation products in water.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Bolfi, Bianca; Marengo, Emilio

    2015-06-01

    This paper reports the study of the photodegradation reactions that tricyclazole can naturally undergo, under the action of sunlight, in aqueous solutions of standard tricyclazole and of the commercial BEAM(TM) formulation. The analyses are carried out by ultra-high performance liquid chromatography technique coupled with high-resolution tandem mass spectrometry. Analysis of both tricyclazole and BEAM(TM) water solutions undergone to hydrolysis does not evidence new chromatographic peaks with respect to the not treated solutions. On the contrary, analysis of the same samples subjected to sunlight irradiation shows a decreased intensity of tricyclazole signal and the presence of new chromatographic peaks. Two photodegradation products of tricyclazole have been identified, one of which has been also quantified, being the commercial standard available. The pattern is similar for the solutions of the standard fungicide and of the BEAM(TM) formulation. The results obtained from eco-toxicological tests show that toxicity of tricyclazole standard solutions is greater than that of the irradiated ones, whereas toxicity levels of all the BEAM(TM) solutions investigated (non-irradiated, irradiated, and hydrolyzed) are comparable and lower than those shown by tricyclazole standard solutions. Experiments performed in paddy water solution show that there is no difference in the degradation products formed.

  3. Laser waveform control of extreme ultraviolet high harmonics from solids.

    PubMed

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  4. Retrieving plasmonic field information from metallic nanospheres using attosecond photoelectron streaking spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2017-04-01

    Streaked photoemission by attosecond extreme ultraviolet (XUV) pulses into an infrared (IR) or visible streaking pulse, holds promise for imaging with sub-fs time resolution the dielectric plasmonic response of metallic nanoparticles to the IR or visible streaking pulse. We calculated the plasmonic field induced by streaking pulses for 10 to 200 nm diameter Au, Ag, and Cu nanospheres and obtained streaked photoelectron spectra by employing our quantum-mechanical model. Our simulated spectra show significant oscillation-amplitude enhancements and phase shifts for all three metals (relative to spectra that are calculated without including the induced plasmonic field) and allow the reconstruction of the plasmonic field enhancements and phase shifts for each material. Supported by the US NSD-EPSCoR program, NSF, and DoE.

  5. Megagauss magnetic fields in ultra-intense laser generated dense plasmas

    NASA Astrophysics Data System (ADS)

    Shaikh, Moniruzzaman; Lad, Amit D.; Jana, Kamalesh; Sarkar, Deep; Dey, Indranuj; Kumar, G. Ravindra

    2017-01-01

    Table-top terawatt lasers can create relativistic light intensities and launch megaampere electron pulses in a solid. These pulses induce megagauss (MG) magnetic pulses, which in turn strongly affect the hot electron transport via electromagnetic instabilities. It is therefore crucial to characterize the MG magnetic fields in great detail. Here, we present measurements of the spatio-temporal evolution of MG magnetic fields produced by a high contrast (picosecond intensity contrast 10-9) laser in a dense plasma on a solid target. The MG magnetic field is measured using the magneto-optic Cotton-Mouton effect, with a time delayed second harmonic (400 nm) probe. The magnetic pulse created by the high contrast laser in a glass target peaks much faster and has a more rapid fall than that induced by a low contrast (10-6) laser.

  6. Microstructure of ultra high performance concrete containing lithium slag.

    PubMed

    He, Zhi-Hai; Du, Shi-Gui; Chen, Deng

    2018-04-03

    Lithium slag (LS) is discharged as a byproduct in the process of the lithium carbonate, and it is very urgent to explore an efficient way to recycle LS in order to protect the environments and save resources. Many available supplementary cementitious materials for partial replacement of cement and/or silica fume (SF) can be used to prepare ultra high performance concrete (UHPC). The effect of LS to replace SF partially by weight used as a supplementary cementitious material (0%, 5%, 10% and 15% of binder) on the compressive strengths and microstructure evolution of UHPC has experimentally been studied by multi-techniques including mercury intrusion porosimetry, scanning electron microscope and nanoindentation technique. The results show that the use of LS degrades the microstructure of UHPC at early ages, and however, the use of LS with the appropriate content improves microstructure of UHPC at later ages. The hydration products of UHPC are mainly dominated by ultra-high density calcium-silicate-hydrate (UHD C-S-H) and interfacial transition zone (ITZ) in UHPC has similar compact microstructure with the matrix. The use of LS improves the hydration degree of UHPC and increases the elastic modulus of ITZ in UHPC. LS is a promising substitute for SF for preparation UHPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Development of Non-Proprietary Ultra High Performance Concrete : Final Presentation : November, 2017

    DOT National Transportation Integrated Search

    2017-11-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...

  8. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation Volume II : behavior of ultra-high strength concrete bridge deck panels compared to conventional stay-in-place deck panels

    DOT National Transportation Integrated Search

    2017-08-01

    The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...

  9. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less

  10. Nanosystems in ultrafast and superstrong fields: attosecond phenomena (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stockman, Mark I.

    2017-02-01

    in Strong Ultrafast Optical Fields, Phys. Rev. B 88, 245438-1-7 (2013). 6. V. Apalkov and M. I. Stockman, Theory of Dielectric Nanofilms in Strong Ultrafast Optical Fields, Phys. Rev. B 86, 165118-1-13 (2012). 7. F. Krausz and M. I. Stockman, Attosecond Metrology: From Electron Capture to Future Signal Processing, Nat. Phot. 8, 205-213 (2014). 8. O. Kwon, T. Paasch-Colberg, V. Apalkov, B.-K. Kim, J.-J. Kim, M. I. Stockman, and D. E. Kim, Semimetallization of Dielectrics in Strong Optical Fields, Sci. Rep, 6, 21272-1-9 (2016). 9. T. Higuchi, M. I. Stockman, and P. Hommelhoff, Strong-Field Perspective on High-Harmonic Radiation from Bulk Solids, Phys. Rev. Lett. 113, 213901-1-5 (2014). 10. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Wannier-Stark States of Graphene in Strong Electric Field, Phys. Rev. B 90, 085313-1-11 (2014). 11. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Graphene in Ultrafast and Superstrong Laser Fields, Phys. Rev. B 91, 0454391-8 (2015). 12. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Attosecond Strong-Field Interferometry in Graphene: Chirality, Singularity, and Berry Phase, Phys. Rev. B 93, 155434-1-7 (2016). 13. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Ultrafast Field Control of Symmetry, Reciprocity, and Reversibility in Buckled Graphene-Like Materials, Phys. Rev. B 92, 045413-1-9 (2015).

  11. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins.

    PubMed

    Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping

    2016-02-20

    Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    PubMed Central

    Li, Sha; Jones, R. R.

    2016-01-01

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nmhigh-energy electron emission is predicted to be confined to a single burst, potentially enabling a variety of applications. PMID:27830701

  13. Ultra-high cooling rate utilizing thin film evaporation

    NASA Astrophysics Data System (ADS)

    Su, Fengmin; Ma, Hongbin; Han, Xu; Chen, Hsiu-hung; Tian, Bohan

    2012-09-01

    This research introduces a cell cryopreservation method, which utilizes thin film evaporation and provides an ultra-high cooling rate. The microstructured surface forming the thin film evaporation was fabricated from copper microparticles with an average diameter of 50 μm. Experimental results showed that a cooling rate of approximately 5×104 °C/min was achieved in a temperature range from 10 °C to -187 °C. The current investigation will give birth to a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.

  14. SU-F-J-45: Sparing Normal Tissue with Ultra-High Dose Rate in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y

    Purpose: To spare normal tissue by reducing the location uncertainty of a moving target, we proposed an ultra-high dose rate system and evaluated. Methods: High energy electrons generated with a linear accelerator were injected into a storage ring to be accumulated. The number of the electrons in the ring was determined based on the prescribed radiation dose. The dose was delivered within a millisecond, when an online imaging system found that the target was in the position that was consistent with that in a treatment plan. In such a short time period, the displacement of the target was negligible. Themore » margin added to the clinical target volume (CTV) could be reduced that was evaluated by comparing of volumes between CTV and ITV in 14 cases of lung stereotactic body radiation therapy (SBRT) treatments. A design of the ultra-high dose rate system was evaluated based clinical needs and the recent developments of low energy (a few MeV) electron storage ring. Results: This design of ultra-high dose rate system was feasible based on the techniques currently available. The reduction of a target volume was significant by reducing the margin that accounted the motion of the target. ∼50% volume reduction of the internal target volume (ITV) could be achieved in lung SBRT treatments. Conclusion: With this innovation of ultra-high dose rate system, the margin of target is able to be significantly reduced. It will reduce treatment time of gating and allow precisely specified gating window to improve the accuracy of dose delivering.« less

  15. Rapid brain MRI acquisition techniques at ultra-high fields

    PubMed Central

    Setsompop, Kawin; Feinberg, David A.; Polimeni, Jonathan R.

    2017-01-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher spatial resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, is a concurrent increased image encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI—particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development—such as the move from conventional 2D slice-by-slice imaging to more efficient Simultaneous MultiSlice (SMS) or MultiBand imaging (which can be viewed as “pseudo-3D” encoding) as well as full 3D imaging—have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multi-channel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. PMID:26835884

  16. Live Ultra-High Definition from the International Space Station

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; George, Sandy

    2017-01-01

    The first ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a 'Super Session' at the National Association of Broadcasters (NAB) in April 2017. The Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. HEVC may also enable live Virtual Reality video downlinks from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a 'live' event was staged when the UHD coming from the ISS had a latency of 10+ seconds. Finally, the paper will discuss how NASA is leveraging commercial technologies for use on-orbit vs. creating technology as was required during the Apollo Moon Program and early space age.

  17. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  18. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    NASA Astrophysics Data System (ADS)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of

  19. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  20. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    PubMed Central

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You

    2018-01-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519

  1. Ultra-High Temperature Materials Characterization for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.

  2. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients.

    PubMed

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-10-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Ultra-high resolution and high-brightness AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  4. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  5. The UltraLightweight Technology for Research in Astronomy (ULTRA) Project

    NASA Astrophysics Data System (ADS)

    Twarog, B. A.; Anthony-Twarog, B. J.; Shawl, S. J.; Hale, R.; Taghavi, R.; Fesen, R.; Etzel, P. B.; Martin, R.; Romeo, R.

    2004-12-01

    The collaborative focus of four academic departments (Univ. of Kansas Aerospace Engineering, Univ. of Kansas Physics & Astronomy, San Diego State University Astronomy and Dartmouth College Astronomy) and a private industry partner (Composite Mirror Applications, Inc.-CMA, Inc.) is a three-year plan to develop and test UltraLightweight Technology for Research in Astronomy (ULTRA). The ULTRA technology, using graphite fiber composites to fabricate mirrors and telescope structures, offers a versatile and cost-effective tool for optical astronomy, including the economical fabrication and operation of telescopes ranging from small (1m or smaller) aperture for education and research to extremely large (30m+) segmented telescopes (ELTs). The specific goal of this NSF-funded three-year Major Research Instrumentation project is to design, build, and test a 1m-class optical tube assembly (OTA) and mirrors constructed entirely from composites. In the first year of the project, the team has built and is field-testing two 0.4m prototypes to validate the optical surfaces and figures of the mirrors and to test and refine the structural dynamics of the OTA. Preparation for design and construction of the 1m telescope is underway. When completed in late 2005, the ULTRA telescope will be operated remotely from Mt. Laguna Observatory east of San Diego, where it will undergo a period of intensive optical and imaging tests. A 0.4m prototype OTA with mirrors (12 kg total weight) will be on display at the meeting. Support of this work by NSF through grants AST-0320784 and AST-0321247, NASA grant NCC5-600, the University of Kansas, and San Diego State University is gratefully acknowledged.

  6. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  7. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  8. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  9. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  10. Ultra high-definition video: convergence toward 100Gbps and beyond for digital A/V connectivity with fiber optics

    NASA Astrophysics Data System (ADS)

    Parekh, Devang; Nguyen, Nguyen X.

    2018-02-01

    The recent advent of Ultra-high-definition television (also known as Ultra HD television, Ultra HD, UHDTV, UHD and Super Hi-Vision) has accelerated a demand for a Fiber-in-the-Premises video communication (VCOM) solution that converges toward 100Gbps and Beyond. Hybrid Active-Optical-Cables (AOC) is a holistic connectivity platform well suited for this "The Last Yard" connectivity; as it combines both copper and fiber optics to deliver a high data-rate and power transmission needed. While technically feasible yet challenging to manufacture, hybrid-AOC could be a holygrail fiber-optics solution that dwarfs the volume of both telecom and datacom connection in the foreseeable future.

  11. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beznosyuk, Sergey A., E-mail: bsa1953@mail.ru; Maslova, Olga A., E-mail: maslova-o.a@mail.ru; Zhukovsky, Mark S., E-mail: zhukovsky@list.ru

    2015-10-27

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru{submore » 256}, Rh{sub 256}, Pd{sub 256}) accumulate next storage energies: E{sub Ru} = 2.27 eV/at, E{sub Rh} = 1.67 eV/at, E{sub Pd} = 3.02 eV/at.« less

  12. Ultra-high resolution spectral domain optical coherence tomography using supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yatagai, Toyohiko; Otani, Yukitoshi

    2016-04-01

    An ultra-high resolution spectral domain optical coherence tomography (SD-OCT) was developed using a cost-effective supercontinuum laser. A spectral filter consists of a dispersive prism, a cylindrical lens and a right-angle prism was built to transmit the wavelengths in range 680-940 nm to the OCT system. The SD-OCT has achieved 1.9 μm axial resolution and the sensitivity was estimated to be 91.5 dB. A zero-crossing fringes matching method which maps the wavelengths to the pixel indices of the spectrometer was proposed for the OCT spectral calibration. A double sided foam tape as a static sample and the tip of a middle finger as a biological sample were measured by the OCT. The adhesive and the internal structure of the foam of the tape were successfully visualized in three dimensions. Sweat ducts was clearly observed in the OCT images at very high resolution. To the best of our knowledge, this is the first demonstration of ultra-high resolution visualization of sweat duct by OCT.

  13. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  14. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor

    PubMed Central

    Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Chen, Lei; Li, Ruifang; Ma, Rui; Liu, Chang; Zhang, Jinqiannan; Ye, Han

    2017-01-01

    In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices. PMID:28332629

  15. High-Power, High-Intensity Laser Propagation and Interactions

    DTIC Science & Technology

    2014-03-10

    wave Brillouin mixing [89,90]. transmitted beam is phase conjugated target initial wave front nn  1 turbulent air Figure 14. Using phase and...discussed in connection with both high-power and high-intensity lasers is propagation in a turbulent atmosphere . Laser propagation in atmospheric ... turbulence can results in beam centroid wander, spreading and intensity scintillation. A phase conjugation technique to mitigate the effects of atmospheric

  16. A Novel Method for Electroplating Ultra-High-Strength Glassy Metals

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.

  17. Fast Spectroscopic Imaging and Field Compensation Using Frequency Modulation at Ultra-High-Field

    NASA Astrophysics Data System (ADS)

    Jang, Albert Woo Ju

    The high energy phosphates (HEP) in the myocardium, which are critical to understanding the cardiac function in both normal and pathophysiologic states, can be assessed non-invasively in vivo using phosphorus-31 (31P) spectroscopy. Compared to proton, for the same volume and magnetic field strength, the available signal-to-noise (SNR) ratio of the HEP metabolites is orders of magnitude lower mainly due to its intrinsically low concentration. Hence, cardiac spectroscopy greatly benefits when performed at ultra-high-fields (UHF, ≥ 7 T), both in terms of increased SNR and increased spectroscopic resolution. However, at ultra-high-field strengths, complications arise from the RF transmit wavelength becoming comparable or smaller than the field-of-view (FOV), thus exhibiting wave-like behavior. Furthermore, even with the spectroscopic resolution afforded at UHF, measuring myocardial inorganic phosphate (Pi) is still a challenge and has been a major barrier in extracting the ATP turnover rate. Recently, an indirect way of extracting the ATP hydrolysis rate forgoing direct measurement of Pi was established. In this work, we combine this method with the T1 nom method to monitor the transmural distribution of forward creatine kinase reaction (kf,CK) and ATP hydrolysis rate (kr,ATPase) of the myocardium, effectively reducing data acquisition time by up to an order of magnitude. In addition, a new class of 2D FM pulses and multidimensional adiabatic pulses are presented, which can compensate for B1 inhomogeneity through its spatiotemporal properties. These pulses should be valuable for spectroscopic applications at ultra-high-fields.

  18. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheli, Leonardo, E-mail: lm409@exeter.ac.uk; Mallick, Tapas K., E-mail: T.K.Mallick@exeter.ac.uk; Fernandez, Eduardo F., E-mail: E.Fernandez-Fernandez2@exeter.ac.uk

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the resultsmore » of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.« less

  19. Durability and smart condition assessment of ultra-high performance concrete in cold climates.

    DOT National Transportation Integrated Search

    2016-12-31

    The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...

  20. Effects of Radiation Damping in Extreme Ultra-intense Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi R.

    Recent advances in the development of intense short pulse lasers are significant. Now it is available to access a laser with intensity 1021W/cm2 by focusing a petawatt class laser. In a few years, the intensity will exceed 1022W/cm2 , at which intensity electrons accelerated by the laser get energy more than 100 MeV and start to emit radiation strongly. Resultingly, the damping of electron motion can become large. In order to study this problem, we developed a code to solve a set of equations describing the evolution of a strong electromagnetic wave interacting with a single electron. Usually the equation of motion of an electron including radiation damping under the influence of electromagnetic fields is derived from the Lorentz-Dirac equation treating the damping as a perturbation. So far people had used the first order damping equation. This is because the second order term seems to be small and actually it is negligible under 1022W/cm2 intensity. The derivation of 2nd order equation is also complicated and challenging. We derived the second order damping equations for the first time and implemented in the code. The code was then tested via single particle motion in the extreme intensity laser. It was found that the 1st order damping term is reasonable up to the intensity 1022W/cm2, but the 2nd oder term becomes not negligible and comparable in magnitude to the first order term beyond 1023W/cm2. The radiation damping model was introduced using a one-dimensional particle-in-cell code (PIC), and tested in the laser-plasma interaction at extreme intensity. The strong damping of hot electrons in high energy tail was demonstrated in PIC simulations.

  1. Nanoporous membrane device for ultra high heat flux thermal management

    NASA Astrophysics Data System (ADS)

    Hanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.

    2018-02-01

    High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat flux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high heat flux dissipation using evaporation from a nanoporous silicon membrane. With 100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fluxes of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high flux thermal management strategy over large areas for high-performance electronics.

  2. Interpersonal sensitivity and functioning impairment in youth at ultra-high risk for psychosis.

    PubMed

    Masillo, A; Valmaggia, L R; Saba, R; Brandizzi, M; Lindau, J F; Solfanelli, A; Curto, M; Narilli, F; Telesforo, L; Kotzalidis, G D; Di Pietro, D; D'Alema, M; Girardi, P; Fiori Nastro, P

    2016-01-01

    A personality trait that often elicits poor and uneasy interpersonal relationships is interpersonal sensitivity. The aim of the present study was to explore the relationship between interpersonal sensitivity and psychosocial functioning in individuals at ultra-high risk for psychosis as compared to help-seeking individuals who screened negative for an ultra-high risk of psychosis. A total sample of 147 adolescents and young adult who were help seeking for emerging mental health problems participated in the study. The sample was divided into two groups: 39 individuals who met criteria for an ultra-high-risk mental state (UHR), and 108 (NS). The whole sample completed the Interpersonal Sensitivity Measure (IPSM) and the Global Functioning: Social and Role Scale (GF:SS; GF:RS). Mediation analysis was used to explore whether attenuated negative symptoms mediated the relationship between interpersonal sensitivity and social functioning. Individuals with UHR state showed higher IPSM scores and lower GF:SS and GF:RS scores than NS participants. A statistically negative significant correlation between two IPSM subscales (Interpersonal Awareness and Timidity) and GF:SS was found in both groups. Our results also suggest that the relationship between the aforementioned aspects of interpersonal sensitivity and social functioning was not mediated by negative prodromal symptoms. This study suggests that some aspects of interpersonal sensitivity were associated with low level of social functioning. Assessing and treating interpersonal sensitivity may be a promising therapeutic target to improve social functioning in young help-seeking individuals.

  3. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2009-09-01

    "Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...

  4. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2009-09-01

    Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possibl...

  5. Characterization of the punching shear capacity of thin ultra-high performance concrete slabs.

    DOT National Transportation Integrated Search

    2005-01-01

    Ultra-high performance concrete (UHPC) is a relatively new type of concrete that exhibits mechanical properties that are far superior to those of conventional concrete and in some cases rival those of steel. The main characteristics that distinguish ...

  6. How short are ultra short light pulses? (looking back to the mid sixties)

    NASA Astrophysics Data System (ADS)

    Weber, H. P.; Dändliker, R.

    2010-09-01

    With the arrival of mode locking for Q-switched lasers to generate ultra short light pulses, a method to measure their expected time duration in the psec range was needed. A novel method, based on an intensity correlation measurement using optical second harmonic generation, was developed. Other reported approaches for the same purpose were critically analysed. Theoretical and subsequent experimental studies lead to surprising new insight into the ultra fast temporal behaviour of broadband laser radiation: Any non mode locked multimode emission of a laser consists of random intensity fluctuations with duration of the total inverse band width of emitted radiation. However, it was shown, that with mode locking isolated ultra short pulses of psec duration can be generated. This article summarizes activities performed in the mid sixties at the University of Berne, Switzerland.

  7. Ultra-low frequency Raman spectroscopy of SWNTs under high pressure

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Quirke, N.; Zerulla, D.

    2016-09-01

    Radial deformation phenomena of carbon nanotubes (CNTs) are attracting increased attention because even minimal changes of the CNT's cross section can result in significant changes of their electronic and optical properties. It is therefore important to have the ability to sensitively probe and characterize this radial deformation. High pressure Raman spectroscopy offers a general and powerful method to study such effects in SWNTs. In this experimental work, we focus in particular on one theoretically predicted Raman vibrational mode, the so-called "Squash Mode" (SM), named after its vibrational mode pattern, which has an E2g symmetry representation and exists at shifts below the radial breathing mode (RBM) region. The Squash mode was predicted to be more sensitive to environmental changes than the RBM. Here we report on a detailed, experimental detection of SMs of aligned SWNT arrays with peaks as close as 18 cm-1 to the laser excitation energy. Furthermore, we investigate how the SM of aligned CNT arrays reacts when exposed to a high pressure environment of up to 9 GPa. The results confirm the theoretical predictions regarding the angular and polarization dependent variations of the SM's intensity with respect to their excitation. Furthermore, clear Raman upshifts of SM under pressures of up to 9 GPa are presented. The relative changes of these upshifts, and hence the sensitivity, are much higher than that of RBMs because of larger radial displacement of some of the participating carbon atoms during the SM vibration. These novel ultra-sensitive Raman SM shifts of SWNTs provide enhanced sensitivity and demonstrate new opportunities for nano-optical sensors applications.

  8. Case study: dairies utilizing ultra-high stock density grazing in the northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing (also loosely referred to as ‘mob grazing’) has attracted a lot of attention and press in the forage industry. Numerous anecdotal articles can be found in trade magazines that promote the perceived benefits of UHSD grazing. However, there is little credible re...

  9. Attosecond Electron Correlation Dynamics in Double Ionization of Benzene Probed with Two-Electron Angular Streaking

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen

    2017-09-01

    With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.

  10. Approaches for springback reduction when forming ultra high-strength sheet metals

    NASA Astrophysics Data System (ADS)

    Radonjic, R.; Liewald, M.

    2016-11-01

    Nowadays, the automotive industry is challenged constantly by increasing environmental regulations and the continuous enhancement of standards with regard to passenger's safety (NCAP, Part 1). In order to fulfil the aforementioned requirements, the use of ultra high-strength steels in research and industrial applications is of high interest. When forming such materials, the main problem results from the large amount of springback which occurs after the release of the part. This paper shows the applicability of several approaches for the reduction of springback amount by forming of one hat channel shaped component. A novel approach for springack reduction which is based on forming with an alternating blank draw-in is presented as well. In this investigation an ultra high-strength steel of the grade DP 980 was used. The part's measurements were taken at significant cross-sections in order to provide a qualitative comparison between the reference geometry and the part's released shape. The obtained results were analysed and used in order to quantify the success of particular approaches for springback reduction. When taking a curved hat channel shaped component as an example, the results achieved in the investigations showed that it is possible to reduce part shape deviations significantly when using DP 980 as workpiece material.

  11. Study on Structural and Dielectric Properties of Ultra-Low-Fire Integratable Dielectric Film for High-Frequency and Microwave Application

    NASA Astrophysics Data System (ADS)

    Qu, Sheng; Zhang, Jihua; Wu, Kaituo; Wang, Lei; Chen, Hongwei

    2018-03-01

    In this study, ultra-low-fire ceramic composites of Zn2Te3O8-30 wt.%TiTe3O8 (ZTT) were prepared by a solid-state reaction method. Densified at 600°C, the best microwave dielectric properties at 8.5 GHz were measured with the ɛ r , tan δ, Q × f, and τ f as 25.6, 1.5 × 10-4, 56191 GHz and 1.66 ppm/°C, respectively. Thin films of ultra-low-fire ZTT were prepared by a radio-frequency magnetron sputtering method. ZTT films which deposited on Au/NiCr/SiO2/Si (100) substrates at 200°C showed good adhesion. From ultra-low-fire ceramic to ultra-low-fire ZTT thin films, the latter maintained all the good high-frequency dielectric properties of the former: high dielectric constant ( ɛ r ˜ 25) and low dissipation factor (tan δ < 5×10-3), low leakage current density (˜ 10-9 A/cm2) and ultra low processing temperature. These excellent properties of the ultra-low-fire ZTT thin film make it possible to be integrated in MMIC and be applied in the research of GaN and GaAs MOSFET devices.

  12. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  13. High-order harmonic generation enhanced by XUV light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buth, Christian; Kohler, Markus C.; Ullrich, Joachim

    2012-03-19

    The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d {yields} 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10{sup 14} Wcm{sup 2}more » and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10{sup 13}-10{sup 16} Wcm{sup 2}. Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals.« less

  14. Ultra High Strain Rate Nanoindentation Testing.

    PubMed

    Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl

    2017-06-17

    Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.

  15. Synthesis and photoluminescence of ultra-pure germanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.

    2011-09-01

    We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.

  16. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    PubMed Central

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied. PMID:22163498

  17. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    PubMed

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  18. Measuring the Non-Line-of-Sight Ultra-High-Frequency Channel in Mountainous Terrain: A Spread-Spectrum, Portable Channel Sounder

    DTIC Science & Technology

    2018-03-01

    ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain

  19. High-intensity low energy titanium ion implantation into zirconium alloy

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  20. World's first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed “KIZUNA”

    PubMed Central

    Sawai, Takashi; Uzuki, Miwa; Miura, Yasuhiro; Kamataki, Akihisa; Matsumura, Tsubasa; Saito, Kenji; Kurose, Akira; Osamura, Yoshiyuki R.; Yoshimi, Naoki; Kanno, Hiroyuki; Moriya, Takuya; Ishida, Yoji; Satoh, Yohichi; Nakao, Masahiro; Ogawa, Emiko; Matsuo, Satoshi; Kasai, Hiroyuki; Kumagai, Kazuhiro; Motoda, Toshihiro; Hopson, Nathan

    2013-01-01

    Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA) has developed the “Kizuna” ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS) ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing) with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan), Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also for

  1. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Nimore » nanowire arrays irradiated at an intensity of 4 x 10 19 W cm -2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 10 10 J cm -3, equivalent to a pressure of 0.35 Tbar.« less

  2. Development of ultra-high temperature material characterization capabilities using digital image correlation analysis

    NASA Astrophysics Data System (ADS)

    Cline, Julia Elaine

    2011-12-01

    Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.

  3. Attosecond relative delay among xenon 5p, 5s, and 4d photoionization

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Attosecond Wigner-Smith (WS) time delays of the photoemissions of Xe valence 5p, 5s, and core 4d electrons are investigated in details using the time-dependent local density approximation (TDLDA). Electron correlations determine the energy-dependent structures in ionization phases of the dipole channels and in the resulting WS delays at various shape resonances, induced by the collective motion of 4d electrons, and at various Cooper minima. We find that our calculation closely agrees with the streaking measurement for the delay of 4d relative to 5s, and predicts accelerated emission of 5p with respect to 4d as was experimentally observed at similar photon energies for Xe atoms adsorbed on the tungsten surface. This work was supported by the U.S. National Science Foundation.

  4. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber.

    PubMed

    Guo, Huiyong; Liu, Fang; Yuan, Yinquan; Yu, Haihu; Yang, Minghong

    2015-02-23

    For the online writing of ultra-weak fiber Bragg gratings (FBGs) in the drawing optical fibers, the effects of the intensity profile, pulse fluctuation and pulse width of the excimer laser, as well as the transverse and longitudinal vibrations of the optical fiber have been investigated. Firstly, using Lorentz-Loren equation, Gladstone-Dale mixing rule and continuity equation, we have derived the refractive index (RI) fluctuation along the optical fiber and the RI distribution in the FBG, they are linear with the gradient of longitudinal vibration velocity. Then, we have prepared huge amounts of ultra-weak FBGs in the non-moving optical fiber and obtained their reflection spectra, the measured reflection spectra shows that the intensity profile and pulse fluctuation of the excimer laser, as well as the transverse vibration of the optical fiber are little responsible for the inconsistency of ultra-weak FBGs. Finally, the effect of the longitudinal vibration of the optical fiber on the inconsistency of ultra-weak FBGs has been discussed, and the vibration equations of the drawing optical fiber are given in the appendix.

  5. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  6. Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Longqing, E-mail: yi@uni-duesseldorf.de; State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800; Pukhov, Alexander

    When a high-contrast ultra-relativistic (>10{sup 20} W/cm{sup 2}) laser beam enters a micro-sized plasma waveguide, the pulse energy is coupled into waveguide modes, which significantly modifies the interaction between the electrons and electromagnetic wave. Electrons pulled out from the walls of the waveguide form a dense helical bunch inside the channel and are efficiently accelerated by the transverse magnetic modes to hundreds of MeV. The asymmetry in the transverse electric and magnetic fields drives strong oscillations, which lead to the emission of bright, well-collimated, hard X-rays. In this paper, we present our study on the underlying physics in the aforementioned processmore » using 3D particle-in-cell simulations. The mechanism of electron acceleration and the dependence of radiation properties on different laser plasma parameters are addressed. An analytic model and basic scalings for X-ray emission are also presented by considering the lowest optical modes in the waveguide, which is adequate to describe the basic phenomenon. In addition, the effects of high-order modes as well as laser polarization are also qualitatively discussed. The considered X-ray source has promising features, potentially making it a competitive candidate for a future tabletop synchrotron source.« less

  7. Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III

    2001-01-01

    After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.

  8. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  9. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  10. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator

    NASA Astrophysics Data System (ADS)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2018-05-01

    We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra-high quality factor of 1.5 × 104 at 0.62 THz. The WGMs are observed in a high resistivity float zone silicon spherical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker theory allows us to unambiguously identify the observed higher order radial THz WGMs.

  11. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers.

    PubMed

    Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G

    2008-05-06

    Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.

  12. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    PubMed

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  13. Ultra-high performance concrete : a state-of-the-art report for the bridge community.

    DOT National Transportation Integrated Search

    2013-06-01

    "The term Ultra-High Performance Concrete (UHPC) refers to a relatively new class of advanced cementitious : composite materials whose mechanical and durability properties far surpass those of conventional concrete. This : class of concrete has been ...

  14. Ultra High Definition Video from the International Space Station (Reel 1)

    NASA Image and Video Library

    2015-06-15

    The view of life in space is getting a major boost with the introduction of 4K Ultra High-Definition (UHD) video, providing an unprecedented look at what it's like to live and work aboard the International Space Station. This important new capability will allow researchers to acquire high resolution - high frame rate video to provide new insight into the vast array of experiments taking place every day. It will also bestow the most breathtaking views of planet Earth and space station activities ever acquired for consumption by those still dreaming of making the trip to outer space.

  15. "Ultra High Dilution 1994" revisited 2015--the state of follow-up research.

    PubMed

    Endler, P Christian; Schulte, Jurgen; Stock-Schroeer, Beate; Stephen, Saundra

    2015-10-01

    The "Ultra High Dilution 1994" project was an endeavour to take stock of the findings and theories on homeopathic extreme dilutions that were under research at the time in areas of biology, biophysics, physics and medicine. The project finally materialized into an anthology assembling contributions of leading scientists in the field. Over the following two decades, it became widely quoted within the homeopathic community and also known in other research communities. The aim of the present project was to re-visit and review the 1994 studies from the perspective of 2015. The original authors from 1994 or close laboratory colleagues were asked to contribute papers covering their research efforts and learnings in the period from 1994 up to 2015. These contributions were edited and cross-referenced, and a selection of further contributions was added. About a dozen contributions reported on follow-up experiments and studies, including further developments in theory. Only few of the models that had seemed promising in 1994 had not been followed up later. Most models presented in the original publication had meanwhile been submitted to intra-laboratory, multicentre or independent scrutiny. The results of the follow-up research seemed to have rewarded the efforts. Furthermore, contributions were provided on new models that had been inspired by the original ones or that may be candidates for further in-depth ultra high dilution (UHD) research. The project "Ultra High Dilution 1994 revisited 2015" is the latest output of what might be considered the "buena vista social club" of homeopathy research. However, it presents new developments and results of the older, established experimental models as well as a general survey of the state of UHD research. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  16. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  17. UltraNet Target Parameters. Chapter 1

    NASA Technical Reports Server (NTRS)

    Kislitzin, Katherine T.; Blaylock, Bruce T. (Technical Monitor)

    1992-01-01

    The UltraNet is a high speed network capable of rates up to one gigabit per second. It is a hub based network with four optical fiber links connecting each hub. Each link can carry up to 256 megabits of data, and the hub backplane is capable of one gigabit aggregate throughput. Host connections to the hub may be fiber, coax, or channel based. Bus based machines have adapter boards that connect to transceivers in the hub, while channel based machines use a personality module in the hub. One way that the UltraNet achieves its high transfer rates is by off-loading the protocol processing from the hosts to special purpose protocol engines in the UltraNet hubs. In addition, every hub has a PC connected to it by StarLAN for network management purposes. Although there is hub resident and PC resident UltraNet software, this document treats only the host resident UltraNet software.

  18. Selectivity of Electronic Coherence and Attosecond Ionization Delays in Strong-Field Double Ionization

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.

    2018-06-01

    Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between P3 2 0-P3 0 0 of Xe2 + , whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe+ formation, are also measured for the P2 3 , P0 3 , and P1 3 states of Xe2 + , respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.

  19. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  20. Gradient and shim technologies for ultra high field MRI

    PubMed Central

    Winkler, Simone A.; Schmitt, Franz; Landes, Hermann; DeBever, Josh; Wade, Trevor; Alejski, Andrew

    2017-01-01

    Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging. PMID:27915120

  1. Fatigue Properties of the Ultra-High Strength Steel TM210A

    PubMed Central

    Kang, Xia; Zhao, Gui-ping

    2017-01-01

    This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = −1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 107 cycles. A double weighted least square method was then used to fit the stress-life (S–N) curve. The S–N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69. PMID:28891934

  2. Stunning Aurora Borealis from Space - Ultra-High Definition 4K

    NASA Image and Video Library

    2016-04-17

    NASA Television’s newest offering, NASA TV UHD, brings ultra-high definition video to a new level with the kind of imagery only the world’s leader in space exploration could provide. Harmonic produced this show exclusively for NASA TV UHD, using time-lapses shot from the International Space Station, showing both the Aurora Borealis and Aurora Australis phenomena that occur when electrically charged electrons and protons in the Earth's magnetic field collide with neutral atoms in the upper atmosphere.

  3. Ultra-high-pressure liquid chromatography-tandem mass spectrometry method for the determination of alkylphenols in soil.

    PubMed

    Wang, Jing; Pan, Hefang; Liu, Zhengzheng; Ge, Fei

    2009-03-20

    A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 microm, 50 mm x 2.1mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0-103.4%, with the RSD<15%. The calibration curves for alkylphenols were linear within the range of 0.01-0.4 microg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 microg/kg.

  4. Laboratory Astrophysics Using High Intensity Particle and Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin

    History has shown that the symbiosis between direct observations and laboratory studies is instrumental in the progress of astrophysics. Recent years have seen growing interests in the laboratory investigation of astrophysical phenomena that can be addressed by high densities and advancement of technologies in lasers as well as high-energy particle beams. We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory setting. Finally, we describe a possible laboratory astrophysics facility to be developed at SLAC.

  5. Ultra-high polarity ceramics induced extrinsic high permittivity of polymers contributing to high permittivity of 2-2 series composites

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi

    2018-01-01

    Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity

  6. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  7. Ultra high energy events in ECHOS series and primary energy spectrum

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Iwai, J.; Ogata, T.

    1985-01-01

    The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (P sub t) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.

  8. High-frequency, high-intensity photoionization

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  9. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  10. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations

    DOE PAGES

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin; ...

    2017-01-18

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less

  11. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  12. Ultra High Quality Factor Microtoroid for Chemical and Biomedical Sensing Applications

    DTIC Science & Technology

    2013-08-01

    PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS resonator...PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Lan Yang 314-935-9543 3. DATES COVERED (From - To...change. By using this ultra high-Q WGM resonator, radius >75nm polystyrene nanoparticle are detected in aquatic environment. In addition to polystyrene

  13. Design, construction, and field testing of an ultra high performance concrete pi-girder bridge.

    DOT National Transportation Integrated Search

    2011-01-01

    The Jakway Park Bridge in Buchanan County, Iowa is the first bridge constructed with a new prestesssed girder system composed of : precast Ultra-High Performance Concrete (UHPC). These girders employ an integral deck to facilitate construction and ar...

  14. Design optimization of ultra-high concentrator photovoltaic system using two-stage non-imaging solar concentrator

    NASA Astrophysics Data System (ADS)

    Wong, C.-W.; Yew, T.-K.; Chong, K.-K.; Tan, W.-C.; Tan, M.-H.; Lim, B.-H.

    2017-11-01

    This paper presents a systematic approach for optimizing the design of ultra-high concentrator photovoltaic (UHCPV) system comprised of non-imaging dish concentrator (primary optical element) and crossed compound parabolic concentrator (secondary optical element). The optimization process includes the design of primary and secondary optics by considering the focal distance, spillage losses and rim angle of the dish concentrator. The imperfection factors, i.e. mirror reflectivity of 93%, lens’ optical efficiency of 85%, circumsolar ratio of 0.2 and mirror surface slope error of 2 mrad, were considered in the simulation to avoid the overestimation of output power. The proposed UHCPV system is capable of attaining effective ultra-high solar concentration ratio of 1475 suns and DC system efficiency of 31.8%.

  15. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Muratoglu, Orhun K.

    2007-12-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.

  16. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    NASA Astrophysics Data System (ADS)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  17. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  18. Design of ultra high performance concrete as an overlay in pavements and bridge decks.

    DOT National Transportation Integrated Search

    2014-08-01

    The main objective of this research was to develop ultra-high performance concrete (UHPC) as a reliable, economic, low carbon foot : print and durable concrete overlay material that can offer shorter traffic closures due to faster construction. The U...

  19. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    NASA Astrophysics Data System (ADS)

    Fowler, T. Kenneth; Li, Hui

    2016-10-01

    > eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Experiments and simulations are suggested to verify the acceleration process.

  20. Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter.

    PubMed

    Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei

    2012-05-20

    We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.

  1. Ultra-high vacuum compatible preparation chain for intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  2. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  3. Repeated high-intensity exercise in professional rugby union.

    PubMed

    Austin, Damien; Gabbett, Tim; Jenkins, David

    2011-07-01

    The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union.

  4. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    NASA Astrophysics Data System (ADS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  5. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  6. Coherent synchrotron emission in transmission with double foil target

    NASA Astrophysics Data System (ADS)

    Xu, X. R.; Qiao, B.; Chang, H. X.; Zhang, Y. X.; Zhang, H.; Zhong, C. L.; Zhou, C. T.; Zhu, S. P.; He, X. T.

    2018-04-01

    Generation of intense single attosecond pulses from coherent synchrotron emission (CSE), in the transmitted direction of the laser-irradiated double foil targets, has been investigated theoretically and numerically. Unlike conventional CSE in the single foil target case, here the dense electron nanobunch is formed in the vacuum gap between two foils, which is composed of the electrons blown out from the first ultrathin foil. Owing to the existence of the vacuum gap, the electron nanobunch can be accelerated to more energy. In addition, more laser energy can penetrate through the nanobunch and get reflected from the second foil. These reflected lasers and electron nanobunches interact with each other and results in enhanced CSE and consequently, the generation of intense attosecond pulses. Particle-in-cell simulations show that a single attosecond pulse with duration of 18 {as}, photon energy > 0.16 {keV} and peak intensity of 1.7× {10}20 {{W}}/{cm}}2 can be obtained from the double-foil targets irradiated by a laser at intensity of 7.7× {10}21 {{W}}/{cm}}2.

  7. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Liu, Jin-Jin; Yin, Yan; Zhu, Xing-Long; Capdessus, Remi; Pegoraro, Francesco; Sheng, Zheng-Ming; McKenna, Paul; Shao, Fu-Qiu

    2017-12-11

    Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~10 24  Wcm -2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 10 22-23  Wcm -2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~10 25 photons/s/mm 2 /mrad 2 /0.1%BW at 15 MeV and intensity of 5 × 10 23  Wcm -2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 10 22 cm -3 and flux of 1.6 × 10 10 /shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.

  8. Application of Magnetic Suspension and Balance Systems to Ultra-High Reynolds Number Facilities

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1996-01-01

    The current status of wind tunnel magnetic suspension and balance system development is briefly reviewed. Technical work currently underway at NASA Langley Research Center is detailed, where it relates to the ultra-high Reynolds number application. The application itself is addressed, concluded to be quite feasible, and broad design recommendations given.

  9. Neutrinos, ultra-high-energy cosmic rays and fundamental physics

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2001-05-01

    In the first lecture, aspects of neutrino physics beyond the Standard Model are emphasized, including the emerging default options for atmospheric and solar neutrino oscillations, namely νμ-->ντ and νe-->νμ,τ respectively, and the need to check them, the prospects opened up by the successful starts of SNO and K2K and the opportunities for future long-baseline neutrino experiments. In the second lecture, it is discussed how cosmic rays may provide opportunities for probing fundamental physics. For example, ultra-high-energy cosmic rays might originate from the decays of metastable heavy particles, and astrophysical γ rays can be used to test models of quantum gravity. Both scenarios offer ways to avoid the GZK cut-off, and might best be probed using high-energy astrophysical neutrinos. .

  10. An Experimental Study of Ultra-Wide-Band and Ultra-Wide-Aperture Non-Collinear Acousto-Optic Diffraction in an Optically Biaxial Potassium Arsenate Titanyl Crystal

    NASA Astrophysics Data System (ADS)

    Milkov, M. G.; Voloshinov, V. B.; Isaenko, L. I.; Vedenyapin, V. N.

    2018-01-01

    Acousto-optic interaction in an optically biaxial crystalline medium under propagation of light close to one of the optical axes of a potassium arsenate titanyl KTiOAsO4 crystal has been studied. The experimental dependences of the intensity of a diffracted optical beam on the angle of light incidence on an ultrasonic wave have been obtained. It has been shown that a flat cut of a wave-vector surface provides development of an ultra-wide-aperture and ultra-wide-band acousto-optic deflector to control radiation in the visible and infrared electromagnetic spectral ranges.

  11. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  12. High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces

    NASA Astrophysics Data System (ADS)

    Ozdemir, Aytekin

    Metasurfaces which emerged as two-dimensional counterparts of metamaterials, facilitate the realization of arbitrary phase distributions using large arrays with subwavelength and ultra-thin features. Even if metasurfaces are ultra-thin, they still effectively manipulate the phase, amplitude, and polarization of light in transmission or reflection mode. In contrast, conventional optical components are bulky, and they lose their functionality at sub-wavelength scales, which requires conceptually new types of nanoscale optical devices. On the other hand, as the optical systems shrink in size day by day, conventional bulky optical components will have tighter alignment and fabrication tolerances. Since metasurfaces can be fabricated lithographically, alignment can be done during lithographic fabrication, thus eliminating the need for post-fabrication alignments. In this work, various types of metasurface applications are thoroughly investigated for robust wavefront engineering with enhanced characteristics in terms of broad bandwidth, high efficiency and active tunability, while beneficial for application. Plasmonic metasurfaces are not compatible with the CMOS process flow, and, additionally their high absorption and ohmic loss is problematic in transmission based applications. Dielectric metasurfaces, however, offer a strong magnetic response at optical frequencies, and thus they can offer great opportunities for interacting not only with the electric component of a light field, but also with its magnetic component. They show great potential to enable practical device functionalities at optical frequencies, which motivates us to explore them one step further on wavefront engineering and imaging sensor platforms. Therefore, we proposed an efficient ultra-thin flat metalens at near-infrared regime constituted by silicon nanodisks which can support both electric and magnetic dipolar Mie-type resonances. These two dipole resonances can be overlapped at the same frequency

  13. Modification of Existing Prestressed Girder Cross-Sections for the Optimal Structural Use of Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2008-10-22

    Ultra High Performance Concrete (UHPC) is a class of cementitious materials that share similar characteristics including very large compressive strengths, tensile strength greater than conventional concrete and high durability. The material consists ...

  14. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    DOEpatents

    Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  15. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  16. Chemical fingerprint of Ganmaoling granule by double-wavelength ultra high performance liquid chromatography and ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Lou, Qiong; Ye, Xiaolan; Zhou, Yingyi; Li, Hua; Song, Fenyun

    2015-06-01

    A method incorporating double-wavelength ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was developed for the investigation of the chemical fingerprint of Ganmaoling granule. The chromatographic separations were performed on an ACQUITY UPLC HSS C18 column (2.1 × 50 mm, 1.8 μm) at 30°C using gradient elution with water/formic acid (1%) and acetonitrile at a flow rate of 0.4 mL/min. A total of 11 chemical constituents of Ganmaoling granule were identified from their molecular weight, UV spectra, tandem mass spectrometry data, and retention behavior by comparing the results with those of the reference standards or literature. And 25 peaks were selected as the common peaks for fingerprint analysis to evaluate the similarities among 25 batches of Ganmaoling granule. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis showed that the important chemical markers that could distinguish the different batches were revealed as 4,5-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4-O-caffeoylquinic acid. This is the first report of the ultra high performance liquid chromatography chemical fingerprint and component identification of Ganmaoling granule, which could lay a foundation for further studies of Ganmaoling granule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  18. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  19. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  20. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.