Sample records for ultra-intense laser light

  1. A Novel Femtosecond-gated, High-resolution, Frequency-shifted Shearing Interferometry Technique for Probing Pre-plasma Expansion in Ultra-intense Laser Experiments

    DTIC Science & Technology

    2014-07-17

    frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction

  2. Measurement and compensation schemes for the pulse front distortion of ultra-intensity ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin

    2016-11-01

    Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.

  3. ICPP: Relativistic Plasma Physics with Ultra-Short High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Meyer-Ter-Vehn, Juergen

    2000-10-01

    Recent progress in generating ultra-short high-intensity laser pulses has opened a new branch of relativistic plasma physics, which is discussed in this talk in terms of particle-in-cell (PIC) simulations. These pulses create small plasma volumes of high-density plasma with plasma fields above 10^12 V/m and 10^8 Gauss. At intensities beyond 10^18 W/cm^2, now available from table-top systems, they drive relativistic electron currents in self-focussing plasma channels. These currents are close to the Alfven limit and allow to study relativistic current filamentation. A most remarkable feature is the generation of well collimated relativistic electron beams emerging from the channels with energies up to GeV. In dense matter they trigger cascades of gamma-rays, e^+e^- pairs, and a host of nuclear and particle processes. One of the applications may be fast ignition of compressed inertial fusion targets. Above 10^23 W/cm^2, expected to be achieved in the future, solid-density matter becomes relativistically transparent for optical light, and the acceleration of protons to multi-GeV energies is predicted in plasma layers less than 1 mm thick. These results open completely new perspectives for plasma-based accelerator schemes. Three-dimensional PIC simulations turn out to be the superior tool to explore the relativistic plasma kinetics at such intensities. Results obtained with the VLPL code [1] are presented. Different mechanisms of particle acceleration are discussed. Both laser wakefield and direct laser acceleration in plasma channels (by a mechanism similar to inverse free electron lasers) have been identified. The latter describes recent MPQ experimental results. [1] A. Pukhov, J. Plasma Physics 61, 425 - 433 (1999): Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Laboratory).

  4. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  5. Ultra-intense Pair Creation using the Texas Petawatt Laser and Applications

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Lo, Willie; Chaguine, Petr; Dyer, Gilliss; Riley, Nathan; Serratto, Kristina; Donovan, Michael; Ditmire, Todd

    2014-10-01

    Pair plasmas and intense gamma-ray sources are ubiquitous in the high-energy universe, from pulser winds to gamma-ray bursts (GRB). Their study can be greatly enhanced if such sources can be recreated in the laboratory under controlled conditions. In 2012 and 2013, a joint Rice-University of Texas team performed over 130 laser shots on thick gold and platinum targets using the 100 Joule Texas Petawatt Laser in Austin. The laser intensity of many shots exceeded 1021 W.cm-2 with pulses as short as 130 fs. These experiments probe a new extreme regime of ultra-intense laser - high-Z solid target interactions never achieved before. In addition to creating copious pairs with the highest density (>1015/cc) and emergent e +/e- ratio exceeding 20% in many shots, these experiments also created the highest density multi-MeV gamma-rays, comparable in absolute numbers to those found inside a gamma-ray burst (GRB). Potential applications of such intense pair and gamma-ray sources to laboratory astrophysics and innovative technologies will be discussed. Work supported by DOE HEDLP program.

  6. Three dimensional particle-in-cell simulations of electron beams created via reflection of intense laser light from a water target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngirmang, Gregory K., E-mail: ngirmang.1@osu.edu; Orban, Chris; Feister, Scott

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution;more » the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.« less

  7. How short are ultra short light pulses? (looking back to the mid sixties)

    NASA Astrophysics Data System (ADS)

    Weber, H. P.; Dändliker, R.

    2010-09-01

    With the arrival of mode locking for Q-switched lasers to generate ultra short light pulses, a method to measure their expected time duration in the psec range was needed. A novel method, based on an intensity correlation measurement using optical second harmonic generation, was developed. Other reported approaches for the same purpose were critically analysed. Theoretical and subsequent experimental studies lead to surprising new insight into the ultra fast temporal behaviour of broadband laser radiation: Any non mode locked multimode emission of a laser consists of random intensity fluctuations with duration of the total inverse band width of emitted radiation. However, it was shown, that with mode locking isolated ultra short pulses of psec duration can be generated. This article summarizes activities performed in the mid sixties at the University of Berne, Switzerland.

  8. Second order nonlinear QED processes in ultra-strong laser fields

    NASA Astrophysics Data System (ADS)

    Mackenroth, Felix

    2017-10-01

    In the interaction of ultra-intense laser fields with matter the ever increasing peak laser intensities render nonlinear QED effects ever more important. For long, ultra-intense laser pulses scattering large systems, like a macroscopic plasma, the interaction time can be longer than the scattering time, leading to multiple scatterings. These are usually approximated as incoherent cascades of single-vertex processes. Under certain conditions, however, this common cascade approximation may be insufficient, as it disregards several effects such as coherent processes, quantum interferences or pulse shape effects. Quantifying deviations of the full amplitude of multiple scatterings from the commonly employed cascade approximations is a formidable, yet unaccomplished task. In this talk we are going to discuss how to compute second order nonlinear QED amplitudes and relate them to the conventional cascade approximation. We present examples for typical second order processes and benchmark the full result against common approximations. We demonstrate that the approximation of multiple nonlinear QED scatterings as a cascade of single interactions has certain limitations and discuss these limits in light of upcoming experimental tests.

  9. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C.; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiersmore » synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre

  10. First light from the Diocles laser: Relativistic laser-plasmas and beams

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2007-06-01

    Reported are first experimental results from a new high-power (150 TW) laser, Diocles, now in operation at the University of Nebraska, Lincoln. Discussed are novel approaches to using the ultra-high-intensity light from this laser to study relativistic laser plasma interactions. Bright, ultrashort duration (femtosecond ) pulses of energetic (keV -- MeV) x-ray and charged-particle beams are generated through these interactions. Also covered in this talk will be applications of these unique radiation sources for research in the physical sciences, as well as biomedicine, defense and homeland security.

  11. Megagauss magnetic fields in ultra-intense laser generated dense plasmas

    NASA Astrophysics Data System (ADS)

    Shaikh, Moniruzzaman; Lad, Amit D.; Jana, Kamalesh; Sarkar, Deep; Dey, Indranuj; Kumar, G. Ravindra

    2017-01-01

    Table-top terawatt lasers can create relativistic light intensities and launch megaampere electron pulses in a solid. These pulses induce megagauss (MG) magnetic pulses, which in turn strongly affect the hot electron transport via electromagnetic instabilities. It is therefore crucial to characterize the MG magnetic fields in great detail. Here, we present measurements of the spatio-temporal evolution of MG magnetic fields produced by a high contrast (picosecond intensity contrast 10-9) laser in a dense plasma on a solid target. The MG magnetic field is measured using the magneto-optic Cotton-Mouton effect, with a time delayed second harmonic (400 nm) probe. The magnetic pulse created by the high contrast laser in a glass target peaks much faster and has a more rapid fall than that induced by a low contrast (10-6) laser.

  12. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, S.; Green, B.; Golz, T.

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  13. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates.

    PubMed

    Kovalev, S; Green, B; Golz, T; Maehrlein, S; Stojanovic, N; Fisher, A S; Kampfrath, T; Gensch, M

    2017-03-01

    Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.

  14. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE PAGES

    Kovalev, S.; Green, B.; Golz, T.; ...

    2017-03-06

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  15. The role of lasers and intense pulsed light technology in dermatology

    PubMed Central

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  16. Extraordinary variation of pump light intensity inside a four-level solid-state laser medium

    NASA Astrophysics Data System (ADS)

    Qin, Hua; Fu, Rulian; Wang, Zhaoqi; Liu, Juan

    2008-08-01

    A theoretical investigation of the absorption of the pump light at different intensities through a four-level solid-state laser medium is presented. It is found that the variation of the pump intensity inside the laser medium cannot always simply be dominated by Beer's law. Transmission of the pump light through this laser medium is closely related to the pump intensity itself. In fact, when the pump intensity is relatively low, whose values depend on the characteristics of the medium, the variation of the pump light through the laser medium is consistent with Beer's law. However, while the pump intensity is high enough, the relationship between the transmission of the pump light and its propagation distance is demonstrated to be linear. These theoretical results have been confirmed by the experiment with a medium of YAG:Nd.

  17. Control of ultra-intense single attosecond pulse generation in laser-driven overdense plasmas.

    PubMed

    Liu, Qingcao; Xu, Yanxia; Qi, Xin; Zhao, Xiaoying; Ji, Liangliang; Yu, Tongpu; Wei, Luo; Yang, Lei; Hu, Bitao

    2013-12-30

    Ultra-intense single attosecond pulse (AP) can be obtained from circularly polarized (CP) laser interacting with overdense plasma. High harmonics are naturally generated in the reflected laser pulses due to the laser-induced one-time drastic oscillation of the plasma boundary. Using two-dimensional (2D) planar particle-in-cell (PIC) simulations and analytical model, we show that multi-dimensional effects have great influence on the generation of AP. Self-focusing and defocusing phenomena occur in front of the compressed plasma boundary, which lead to the dispersion of the generated AP in the far field. We propose to control the reflected high harmonics by employing a density-modulated foil target (DMFT). When the target density distribution fits the laser intensity profile, the intensity of the attosecond pulse generated from the center part of the plasma has a flatten profile within the center range in the transverse direction. It is shown that a single 300 attosecond (1 as = 10(-18)s) pulse with the intensity of 1.4 × 10(21) W cm(-2) can be naturally generated. Further simulations reveal that the reflected high harmonics properties are highly related to the modulated density distribution and the phase offset between laser field and the carrier envelope. The emission direction of the AP generated from the plasma boundary can be controlled in a very wide range in front of the plasma surface by combining the DMFT and a suitable driving laser.

  18. A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement

    NASA Astrophysics Data System (ADS)

    Ge, Xulei; Yuan, Xiaohui; Yang, Su; Deng, Yanqing; Wei, Wenqing; Fang, Yuan; Gao, Jian; Liu, Feng; Chen, Min; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie

    2018-04-01

    We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications.

  19. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  20. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    NASA Astrophysics Data System (ADS)

    Domanski, Jaroslaw; Badziak, Jan

    2018-01-01

    One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  1. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, H.; Mori, Y.; Kitagawa, Y.

    2013-08-28

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  2. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Xun; College of Electronic Engineering, Wuhan 430019; Ma, Yan-Yun, E-mail: yanyunma@126.com

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positronmore » beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.« less

  3. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction

    NASA Astrophysics Data System (ADS)

    Morrison, John T.; Feister, Scott; Frische, Kyle D.; Austin, Drake R.; Ngirmang, Gregory K.; Murphy, Neil R.; Orban, Chris; Chowdhury, Enam A.; Roquemore, W. M.

    2018-02-01

    Laser acceleration of ions to ≳MeV energies has been achieved on a variety of Petawatt laser systems, raising the prospect of ion beam applications using compact ultra-intense laser technology. However, translation from proof-of-concept laser experiment into real-world application requires MeV-scale ion energies and an appreciable repetition rate (>Hz). We demonstrate, for the first time, proton acceleration up to 2 MeV energies at a kHz repetition rate using a milli-joule-class short-pulse laser system. In these experiments, 5 mJ of ultrashort-pulse laser energy is delivered at an intensity near 5× {10}18 {{W}} {cm}}-2 onto a thin-sheet, liquid-density target. Key to this effort is a flowing liquid ethylene glycol target formed in vacuum with thicknesses down to 400 nm and full recovery at 70 μs, suggesting its potential use at ≫kHz rate. Novel detectors and experimental methods tailored to high-repetition-rate ion acceleration by lasers were essential to this study and are described. In addition, particle-in-cell simulations of the laser-plasma interaction show good agreement with experimental observations.

  4. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.

    2017-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  5. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  6. Intense ionizing radiation from laser-induced processes in ultra-dense deuterium D(-1)

    NASA Astrophysics Data System (ADS)

    Olofson, Frans; Holmlid, Leif

    2014-09-01

    Nuclear fusion in ultra-dense deuterium D(-1) has been reported from our laboratory in a few studies using pulsed lasers with energy < 0.2 J. The direct observation of massive particles with energy 1-20 MeV u-1 is conclusive proof for fusion processes, either as a cause or as a result. Continuing the step-wise approach necessary for untangling a complex problem, the high-energy photons from the laser-induced plasma are now studied. The focus is here on the photoelectrons formed. The photons penetrating a copper foil have energy > 80 keV. The total charge created is up to 2 μC or 1 × 1013 photoelectrons per laser shot at 0.13 J pulse energy, assuming isotropic photon emission. The variation of the photoelectron current with laser intensity is faster than linear for some systems, which indicates rapid approach to volume ignition. On a permanent magnet at approximately 1 T, a laser pulse-energy threshold exists for the laser-induced processes probably due to the floating of most clusters of D(-1) in the magnetic field. This Meissner effect was reported previously.

  7. Au-C allotrope nano-composite films at extreme conditions generated by intense ultra-short laser

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Saravanan, K.; Tayyab, M.; Bagchi, S.; Avasthi, D. K.

    2016-07-01

    Structural evolution of gold-carbon allotrope nano-composite films under relativistically intense, ultra-short laser pulse irradiation is studied in this work. Au-C nano-composite films, having 4 and 10 at.% of Au, were deposited by co-sputtering technique on silicon substrates. Au-C60 NC films with 2.5 at.% Au were deposited on 12 μm thick Al foil using co-evaporation technique. These samples were radiated with single pulse from 45 fs, 10 TW Ti:Sapphire Laser at RRCAT at an intensity of 3 × 1018 W cm-2. The morphological and compositional changes were investigated using scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS) techniques. Laser pulse created three morphologically distinct zones around the point of impact on samples with silicon substrates. The gold content in 600 μm circular region around a point of impact is found to reduce by a factor of five. Annular rings of ∼70 nm in diameter were observed in case of Au-C NC film after irradiation. Laser pulse created a hole of about 400 μm in the sample with Al foil as substrate and wavy structures of 6 μm wavelength are found to be created around this hole. The study shows radial variation in nano-structure formation with varying local intensity of laser pulse.

  8. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    NASA Astrophysics Data System (ADS)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  9. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  10. Spectral and angular distribution of photons via radiative damping in extreme ultra-intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko

    2012-10-01

    Spectral and angular distribution of photons produced in the interaction of extremely intense laser (> 10^22,/cm^2) with dense plasma are studied with a help of a collisional particle-in-cell simulation, PICLS. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. We had developed numerical models of these processes in PICLS and study the spectrum and the angular distribution of γ-rays produced in the relativistic laser regime. Such relativistic γ-rays have wide range of frequencies and the angular distribution depends on the hot electron source. From the power loss calculation in PICLS we found that the Bremsstrahlung will get saturated at I > 10^22,/cm^2 while the radiative damping will continuously increase. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and how to catch the signature of the radiative damping in future experiments.

  11. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    DOE PAGES

    Poole, P. L.; Willis, C.; Cochran, G. E.; ...

    2016-10-10

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less

  12. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, P. L.; Willis, C.; Cochran, G. E.

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less

  13. Efficient energy absorption of intense ps-laser pulse into nanowire target

    NASA Astrophysics Data System (ADS)

    Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.

    2016-06-01

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  14. Efficient energy absorption of intense ps-laser pulse into nanowire target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habara, H.; Honda, S.; Katayama, M.

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. Thesemore » features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.« less

  15. Creating Extended and Dense Plasma Channels in Air by Using Spatially and Temporally Shaped Ultra-Intense Laser Pulses

    DTIC Science & Technology

    2011-08-16

    Wolf, Phys. Rev. Lett. 104, 103903 (2010). 6. M. Aközbek, M. Scalora , C. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001). 7. A. Couairon, Phys...Aközbek, M. Scalora , C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in

  16. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  17. Reflectivity and laser ablation of ZrB2/Cu ultra high temperature ceramic

    NASA Astrophysics Data System (ADS)

    Yan, Zhenyu; Ma, Zhuang; Zhu, Shizhen; Liu, Ling; Xu, Qiang

    2013-05-01

    Ultra high temperature ceramics (UHTCs) were thought to be candidates for laser protective materials due to their high melting point, thermal shock and ablation resistance. The ablation behaviors of UHTCs like ZrB2 and its composite had been intensely investigated by the means of arc, plasma, oxyacetylene ablation. However, the ablation behavior under laser irradiation was still unknown by now. In this paper, the dense bulk composites of ZrB2/Cu were successfully sintered by spark plasma sintering (SPS) at 1650 degree C for 3min. The reflectivity of the composites measured by spectrophotometry achieved 60% in near infrared range and it decreased with the increasing wavelength of incident light. High intensity laser ablation was carried out on the ZrB2/Cu surface. The phase composition and microstructure changes before and after laser irradiation were characterized by X-ray diffraction and SEM respectively. The results revealed that the oxidation and melting were the main mechanisms during the ablation processing.

  18. Plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Yanxia; Wang, Jiaxiang; Hora, Heinrich; Qi, Xin; Xing, Yifan; Yang, Lei; Zhu, Wenjun

    2018-04-01

    A new scheme of plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse with intensity I ˜ 1022 W/cm2 is investigated via two-dimensional particle-in-cell simulations. The targets are composed of a pre-target of low-density aluminium plasma and an overdense main-target of hydrogen plasma. Through intensive parameter optimization, we have observed highly efficient plasma block accelerations with a monochromatic proton beam peaked at GeVs. The underlying mechanism is attributed to the enhancement of the charge separation field due to the properly selected pre-target.

  19. Ultra-narrow-linewidth Brillouin/erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Mo; Wang, Chenyu; Wang, Jianfei; Luo, Hong; Meng, Zhou

    2018-02-01

    Ultra-narrow-linewidth lasers are of great interest in many applications, such as precise spectroscopy, optical communications, and sensors. Stimulated Brillouin scattering (SBS), as one of the main nonlinear effects in fibers, is capable of generating narrow-linewidth light emission. We establish a compact Brillouin/erbium fiber laser (BEFL) utilizing 4-m erbium-doped fiber as both the Brillouin gain and linear media. A 360-kHz-linewidth laser diode is injected into the cavity as the Brillouin pump (BP) light and generates Brillouin Stokes lasing light. Both of the phase noise of the BP and BEFL output are measured by a high-accuracy unbalanced Michelson interferometer. It is demonstrated that 53- dB phase noise reduction is achieved after the BP is transferred into Brillouin Stokes emission. The linewidth of the BEFL is indicated at Hz-range by both calculation and experiment.

  20. Transparency of near-critical density plasmas under extreme laser intensities

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang; Shen, Baifei; Zhang, Xiaomei

    2018-05-01

    We investigated transparency of near-critical plasma targets for highly intense incident lasers and discovered that beyond relativistic transparency, there exists an anomalous opacity regime, where the plasma target tend to be opaque at extreme light intensities. The unexpected phenomenon is found to originate from the trapping of ions under exotic conditions. We found out the propagation velocity and the amplitude of the laser-driven charge separation field in a large parameter range and derived the trapping probability of ions. The model successfully interpolates the emergence of anomalous opacity in simulations. The trend is more significant when radiation reaction comes into effect, leaving a transparency window in the intensity domain. Transparency of a plasma target defines the electron dynamics and thereby the emission mechanisms of gamma-photons in the ultra-relativistic regime. Our findings are not only of fundamental interest but also imply the proper mechanisms for generating desired electron/gamma sources.

  1. Experimental Study of Proton Acceleration from Ultra Intense Laser Matter Interactions

    NASA Astrophysics Data System (ADS)

    Paudel, Yadab Kumar

    This dissertation describes proton and ion acceleration measurements from high intensity (˜ 1019 Wcm-2) laser interactions with thin foil targets. Protons and ions accelerated from the back surface of a target driven by a high intensity laser are detected using solid-state nuclear track detector CR39. A simple digital imaging technique, with an adjustable halogen light source shined on CR39 and use of a digital camera with suitable f-number and exposure time, is used to detect particles tracks. This new technique improves the quality 2D image with vivid track patterns in CR39. Our technique allows us to quickly record and sort CR39 pieces for further analysis. This is followed by detailed quantitative information on the protons and ions. Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time a self-radiograph of the target with a glass stalk holding the target itself in the stacked radiochromic films (RCF) placed behind the target. The self-radiography indicates that the fast ions accelerated backward, in a direction opposite to the laser propagation, are turning around in strong magnetic fields. This unique result is a signature of long-living (ns time scale) magnetic fields in the expanding plasma, which are important in energy transport during the intense laser irradiation and have never been considered in the previous studies. The magnetic fields induced by the main pulse near the absorption point expand rapidly with the backward accelerated protons in the pre-formed plasma. The protons are rotated by these magnetic fields and they are recorded in the RCF, making the self-radiography. Angular profiles of protons and multicharged ions accelerated from the target rear surface have been studied with the subpicosecond

  2. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  3. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  4. Intense pulsed light and laser treatment regimen improves scar evolution after cleft lip repair surgery.

    PubMed

    Peng, Lihong; Tang, Shijie; Li, Qin

    2018-06-19

    To observe the effects of intense pulsed light (IPL) and lattice CO 2 laser treatment on scar evolution following cleft lip repair. Fifty cleft lip repair patients were enrolled in this study. Twenty-five patients used conventional approach with scar cream massage combined with silica gel products after operation. While other 25 patients which received IPL and lattice CO 2 laser treatments. The treatments commenced 1 week after removal of stitches and observation of scar hyperplasia. Scar evolution was evaluated with the Vancouver scar scale (VSS) by postoperative photographs. Relative to the conventional approach, the laser treatments showed improved scar softening and flattening. These differences were reflected in the groups' significantly different VSS scores. Intense pulsed light combined with lattice CO 2 laser treatment can improve cleft lip surgery scar pliability and appearance, while alleviating children from having to endure the pain of scar massage. © 2018 Wiley Periodicals, Inc.

  5. Light intensity-voltage correlations and leakage-current excess noise in a single-mode semiconductor laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurin, I.; Bramati, A.; Giacobino, E.

    2005-09-15

    Semiconductor lasers are particularly well suited for the implementation of pump-noise suppression, yielding a reduction of the intensity noise in the laser. In this simple picture, the maximal amount of squeezing is equal to the quantum efficiency. However, experimental results on intensity noise reduction by pump-noise suppression are usually above this limit. This discrepancy suggests that additional noise sources must be involved. Here we successful y interpret the full noise behavior of a single-mode laser diode far above threshold by considering two excess noise sources: the leakage current fluctuations across the laser and the Petermann excess noise. We have estimatedmore » the contribution of each noise source using the results of the correlations between the laser output intensity noise and the voltage fluctuations across the laser diode (light-voltage correlations) and obtained good agreement between our theory and experimental results.« less

  6. Direct acceleration in intense laser fields used for bunch amplification of relativistic electrons

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Schnürer, M.

    2017-05-01

    A method, how electrons can be directly accelerated in intense laser fields, is investigated experimentally and discussed with numerical and analytical simulation. When ultrathin foil targets are exposed with peak laser intensities of 1x1020 W/cm2 , slow electrons ( keV kinetic energy), that are emitted from the ultrathin foil target along laser propagation direction, are post-accelerated in the transmitted laser field. They received significant higher kinetic energies (MeV), when this interaction was limited in duration and an enhanced number of fast electrons were detected. The decoupling of the light field from the electron interaction we realized with a second separator foil, blocking the transmitted laser light at a particular distance and allowing the fast electrons to pass. Variation of the propagation distance in the laser field results in different energy gains for the electrons. This finding is explained with electron acceleration in the electromagnetic field of a light pulse and confirms a concept being discussed for some time. In the experiments the effect manifests in an electron number amplification of about 3 times around a peak at 1 MeV electron energy. Measurements confirmed that the overall number in the whole bunch is enhanced to about 109 electrons covering kinetic energies between 0.5 to 5 MeV. The method holds promise for ultrashort electron bunch generation at MeV energies for direct application, e.g. ultra-fast electron diffraction, or for injection into post accelerator stages for different purposes.

  7. Effects of Radiation Damping in Extreme Ultra-intense Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi R.

    Recent advances in the development of intense short pulse lasers are significant. Now it is available to access a laser with intensity 1021W/cm2 by focusing a petawatt class laser. In a few years, the intensity will exceed 1022W/cm2 , at which intensity electrons accelerated by the laser get energy more than 100 MeV and start to emit radiation strongly. Resultingly, the damping of electron motion can become large. In order to study this problem, we developed a code to solve a set of equations describing the evolution of a strong electromagnetic wave interacting with a single electron. Usually the equation of motion of an electron including radiation damping under the influence of electromagnetic fields is derived from the Lorentz-Dirac equation treating the damping as a perturbation. So far people had used the first order damping equation. This is because the second order term seems to be small and actually it is negligible under 1022W/cm2 intensity. The derivation of 2nd order equation is also complicated and challenging. We derived the second order damping equations for the first time and implemented in the code. The code was then tested via single particle motion in the extreme intensity laser. It was found that the 1st order damping term is reasonable up to the intensity 1022W/cm2, but the 2nd oder term becomes not negligible and comparable in magnitude to the first order term beyond 1023W/cm2. The radiation damping model was introduced using a one-dimensional particle-in-cell code (PIC), and tested in the laser-plasma interaction at extreme intensity. The strong damping of hot electrons in high energy tail was demonstrated in PIC simulations.

  8. The life cycle of infrared ultra-short high intensity laser pulses in air

    NASA Astrophysics Data System (ADS)

    Ma, Cunliang; Lin, Wenbin

    2015-08-01

    The life cycle of ultra-short high intensity laser pulses propagation in air is studied. As the controversial of the high-order Kerr indices measured by Loriot et al. [Opt. Express 18, 3011 (2010)], we focus on two models which are high-order Kerr effect included and not included. Two factors are mainly analyzed, group-velocity-dispersion and the energy evolution of the pulse. It is found that the group-velocity-dispersion can not be simply ignored even though the pulse's duration is as long as several hundreds femtoseconds. The energy loss due to the multi-photon-absorption is very small, and it may hardly change the propagation length of the pulse. Another contribution of this work is to introduce a probability quantity, which may be useful in validating the positive and negative alternating of the Kerr and high-order Kerr indices.

  9. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  10. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Klim, Adam; Morrison, J. T.; Orban, C.; Feister, S.; Ngirmang, G. K.; Smith, J.; Frische, K.; Peterson, A. C.; Chowdhury, E. A.; Freeman, R. R.; Roquemore, W. M.

    2016-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) water sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. We present results from liquid water targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  11. Enhanced laser absorption from radiation pressure in intense laser plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dollar, F.; Zulick, C.; Raymond, A.

    The reflectivity of a short-pulse laser at intensities of 2 x 10 21Wcm -2 with ultra-high contrast (10 -15) on sub-micrometer silicon nitride foilswas studied experimentally using varying polarizations and target thicknesses. Furthermore, the reflected intensity and beam quality were found to be relatively constant with respect to intensity for bulk targets. For submicron targets, the measured reflectivity drops substantially without a corresponding increase in transmission, indicating increased conversion of fundamental to other wavelengths and particle heating. The experimental results and trends we observed in 3D particle-in-cell simulations emphasize the critical role of ion motion due to radiation pressure onmore » the absorption process. Ion motion during ultra-short pulses enhances the electron heating, which subsequently transfers more energy to the ions.« less

  12. Enhanced laser absorption from radiation pressure in intense laser plasma interactions

    DOE PAGES

    Dollar, F.; Zulick, C.; Raymond, A.; ...

    2017-06-06

    The reflectivity of a short-pulse laser at intensities of 2 x 10 21Wcm -2 with ultra-high contrast (10 -15) on sub-micrometer silicon nitride foilswas studied experimentally using varying polarizations and target thicknesses. Furthermore, the reflected intensity and beam quality were found to be relatively constant with respect to intensity for bulk targets. For submicron targets, the measured reflectivity drops substantially without a corresponding increase in transmission, indicating increased conversion of fundamental to other wavelengths and particle heating. The experimental results and trends we observed in 3D particle-in-cell simulations emphasize the critical role of ion motion due to radiation pressure onmore » the absorption process. Ion motion during ultra-short pulses enhances the electron heating, which subsequently transfers more energy to the ions.« less

  13. Laser- and Particle-Beam Chemical Processes on Surfaces. Volume 129

    DTIC Science & Technology

    1989-12-26

    explosive decomposition of organometallic compounds with single pulse laser irradiation . This new... ultrashort , meaning ultra high intensity , excimer laser pulses , two-photon absorption becomes important and limits the penetration depth of the laser ...requires a higher photon load before suffering damage to its chemical structure. With extremely high light intensities , ultrashort excimer laser pulses

  14. Developing a new supplemental lighting device with ultra-bright white LED for vegetables

    NASA Astrophysics Data System (ADS)

    Hu, Yongguang; Li, Pingping; Jiang, Jianghai

    2007-02-01

    It has been proved that monochromatic or compound light-emitting diode (LED) or laser diode (LD) can promote the photosynthesis of horticultural crops, but the promotion of polychromatic light like white LED is unclear. A new type of ultra-bright white LED (LUW56843, InGaN, \

  15. Underwater Test Diagnostics Using Explosively Excited Argon And Laser Light Photography Techniques

    NASA Astrophysics Data System (ADS)

    Wisotski, John

    1990-01-01

    This paper presents results of photographic methods employed in underwater tests used to study high-velocity fragment deceleration, deformation and fracture during the perforation of water-backed plates. These methods employed overlapping ultra-high and very high speed camera recordings using explosively excited argon and ruby-laser light sources that gave ample light to penetrate across a 2.3-meter (7.54-foot) diameter tank of water with enough intensity to photograph displacement-time histories of steel cubes with impact speeds of 1000 to 1500 m/s (3280 to 4920 ft/s) at camera framing rates of 250,000 and 17,000 fr/s, respectively.

  16. Thomson scattering in high-intensity chirped laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in; Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion ofmore » its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.« less

  17. The Effect of Background Pressure on Electron Acceleration from Ultra-Intense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William

    2017-10-01

    We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  18. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, U.; Rao, B. S.; Arora, V.

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  19. Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd

    2013-10-01

    We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.

  20. Apparatus and process for active pulse intensity control of laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  1. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  2. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  3. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Liu, Jin-Jin; Yin, Yan; Zhu, Xing-Long; Capdessus, Remi; Pegoraro, Francesco; Sheng, Zheng-Ming; McKenna, Paul; Shao, Fu-Qiu

    2017-12-11

    Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~10 24  Wcm -2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 10 22-23  Wcm -2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~10 25 photons/s/mm 2 /mrad 2 /0.1%BW at 15 MeV and intensity of 5 × 10 23  Wcm -2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 10 22 cm -3 and flux of 1.6 × 10 10 /shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.

  4. Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers

    PubMed Central

    Niittynen, Juha; Sowade, Enrico; Kang, Hyunkyoo; Baumann, Reinhard R.; Mäntysalo, Matti

    2015-01-01

    In this contribution we discuss the sintering of an inkjet-printed copper nanoparticle ink based on electrical performance and microstructure analysis. Laser and intense pulsed light (IPL) sintering are employed in order to compare the different techniques and their feasibility for electronics manufacturing. A conductivity of more than 20% of that of bulk copper material has been obtained with both sintering methods. Laser and IPL sintering techniques are considered to be complementary techniques and are highly suitable in different application fields. PMID:25743631

  5. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    DTIC Science & Technology

    2016-08-19

    New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser ...Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser -plasma,mass-limited, fast electrons, sheath...field Abstract Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron

  6. Spatiotemporal control of laser intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.

    The controlled coupling of a laser to a plasma has the potential to address grand scientific challenges including reaching the Schwinger limit, developing compact free electron lasers, extending linear colliders to TeV energies, and generating novel light sources for probing electron dynamics within molecules. Currently, many such applications have limited flexibility and poor control over the laser focal volume. Here we present an advanced focusing scheme called a “flying focus” where a chromatic focusing system combined with chirped laser pulses enables a small–diameter laser focus to propagate nearly 100 times its Rayleigh length, while decoupling the speed at which themore » peak intensity moves from its group velocity. This unprecedented spatiotemporal control over the laser focal volume allows the laser focus to co- or counter–propagate along its axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal spot velocities generating a nearly constant peak intensity over 4.5 mm.« less

  7. Spatiotemporal control of laser intensity

    DOE PAGES

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; ...

    2018-03-12

    The controlled coupling of a laser to a plasma has the potential to address grand scientific challenges including reaching the Schwinger limit, developing compact free electron lasers, extending linear colliders to TeV energies, and generating novel light sources for probing electron dynamics within molecules. Currently, many such applications have limited flexibility and poor control over the laser focal volume. Here we present an advanced focusing scheme called a “flying focus” where a chromatic focusing system combined with chirped laser pulses enables a small–diameter laser focus to propagate nearly 100 times its Rayleigh length, while decoupling the speed at which themore » peak intensity moves from its group velocity. This unprecedented spatiotemporal control over the laser focal volume allows the laser focus to co- or counter–propagate along its axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal spot velocities generating a nearly constant peak intensity over 4.5 mm.« less

  8. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets whenmore » intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at

  9. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  10. Lateral scattered light used to study laser light propagation in turbid media phantoms

    NASA Astrophysics Data System (ADS)

    Valdes, Claudia; Solarte, Efrain

    2010-02-01

    Laser light propagation in soft tissues is important because of the growing biomedical applications of lasers and the need to optically characterize the biological media. Following previous developments of the group, we have developed low cost models, Phantoms, of soft tissue. The process was developed in a clean room to avoid the medium contamination. Each model was characterized by measuring the refractive index, and spectral reflectance and transmittance. To study the laser light propagation, each model was illuminated with a clean beam of laser light, using sources such as He-Ne (632nm) and DPSSL (473 nm). Laterally scattered light was imaged and these images were digitally processed. We analyzed the intensity distribution of the scattered radiation in order to obtain details of the beam evolution in the medium. Line profiles taken from the intensity distribution surface allow measuring the beam spread, and to find expressions for the longitudinal (along the beam incident direction) and transversal (across the beam incident direction) intensities distributions. From these behaviors, the radiation penetration depth and the total coefficient of extinction have been determined. The multiple scattering effects were remarkable, especially for the low wavelength laser beam.

  11. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  12. Low-intensity red and infrared lasers on XPA and XPC gene expression

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Ferreira-Machado, S. C.; Geller, M.; Paoli, F.

    2014-09-01

    Laser devices emit monochromatic, coherent, and highly collimated intense beams of light that are useful for a number of biomedical applications. However, for low-intensity lasers, possible adverse effects of laser light on DNA are still controversial. In this work, the expression of XPA and XPC genes in skin and muscle tissue exposed to low-intensity red and infrared lasers was evaluated. Skin and muscle tissue of Wistar rats were exposed to low-intensity red and infrared lasers at different fluences in continuous mode emission. Skin and muscle tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of actin gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of XPA and XPC mRNA differently in skin and muscle tissue of Wistar rats, depending on physical (fluence and wavelength) and biological (tissue) parameters. Laser light could modify expression of genes related to the nucleotide excision repair pathway at fluences and wavelengths used in clinical protocols.

  13. Guidelines of care for vascular lasers and intense pulse light sources from the European Society for Laser Dermatology.

    PubMed

    Adamič, M; Pavlović, M D; Troilius Rubin, A; Palmetun-Ekbäck, M; Boixeda, P

    2015-09-01

    Lasers and non-coherent intense pulse light sources (IPLS) are based on the principle of selective photothermolysis and can be used for the treatment of many vascular skin lesions. A variety of lasers has been developed for the treatment of congenital and acquired vascular lesions which incorporate these concepts into their design. Although laser and light sources are very popular due to their non-invasive nature, caution should be considered by practitioners and patients to avoid permanent side-effects. The aim of these guidelines is to give evidence-based recommendations for the use of lasers and IPLS in the treatment of vascular lesions. These guidelines were produced by a Consensus Panel made up of experts in the field of vascular laser surgery under the auspices of the European Society of Laser Dermatology. Recommendations on the use of vascular lasers and IPLS were made based on the quality of evidence for efficacy, safety, tolerability, cosmetic outcome, patient satisfaction/preference and, where appropriate, on the experts' opinion. The recommendations of these guidelines are graded according to the American College of Chest Physicians Task Force recommendations on Grading Strength of Recommendations and Quality of Evidence in Clinical Guidelines. Lasers and IPLS are very useful and sometimes the only available method to treat various vascular lesions. It is of a paramount importance that the type of laser or IPLS and their specific parameters are adapted to the indication but also that the treating physician is familiar with the device to be used. The crucial issue in treating vascular lesions is to recognize the immediate end-point after laser treatment. This is the single most important factor to ensure both the efficacy of the treatment and avoidance of serious side-effects. © 2015 European Academy of Dermatology and Venereology.

  14. Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0)

    PubMed Central

    2017-01-01

    Large signals of charged light mesons are observed in the laser-induced particle flux from ultra-dense hydrogen H(0) layers. The mesons are formed in such layers on metal surfaces using < 200 mJ laser pulse-energy. The time variation of the signal to metal foil collectors and the magnetic deflection to a movable pin collector are now studied. Relativistic charged particles with velocity up to 500 MeV u-1 thus 0.75 c are observed. Characteristic decay time constants for meson decay are observed, for charged and neutral kaons and also for charged pions. Magnetic deflections agree with charged pions and kaons. Theoretical predictions of the decay chains from kaons to muons in the particle beam agree with the results. Muons are detected separately by standard scintillation detectors in laser-induced processes in ultra-dense hydrogen H(0) as published previously. The muons formed do not decay appreciably within the flight distances used here. Most of the laser-ejected particle flux with MeV energy is not deflected by the magnetic fields and is thus neutral, either being neutral kaons or the ultra-dense HN(0) precursor clusters. Photons give only a minor part of the detected signals. PACS: 67.63.Gh, 14.40.-n, 79.20.Ds, 52.57.-z. PMID:28081199

  15. Towards manipulating relativistic laser pulses with micro-tube plasma lenses

    PubMed Central

    Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially overdense flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities ≥1023 Wcm−2 could be achieved with current tabletop lasers coupled to micro-engineered plasma lenses. We show that these plasma optical elements act as a lens to focus laser light. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities. PMID:26979657

  16. Laser-driven ion acceleration: methods, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  17. Laser-induced photo emission detection: data acquisition based on light intensity counting

    NASA Astrophysics Data System (ADS)

    Yulianto, N.; Yudasari, N.; Putri, K. Y.

    2017-04-01

    Laser Induced Breakdown Detection (LIBD) is one of the quantification techniques for colloids. There are two ways of detection in LIBD: optical detection and acoustic detection. LIBD is based on the detection of plasma emission due to the interaction between particle and laser beam. In this research, the changing of light intensity during plasma formations was detected by a photodiode sensor. A photo emission data acquisition system was built to collect and transform them into digital counts. The real-time system used data acquisition device National Instrument DAQ 6009 and LABVIEW software. The system has been tested on distilled water and tap water samples. The result showed 99.8% accuracy by using counting technique in comparison to the acoustic detection with sample rate of 10 Hz, thus the acquisition system can be applied as an alternative method to the existing LIBD acquisition system.

  18. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  19. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  20. Numerical simulation of laser ion acceleration at ultra high intensity

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Popescu, Alexandra; d'Humières, Emmanuel; Vizman, Daniel

    2017-01-01

    With the latest advances in attainable laser intensity, the need to obtain better quality ion and electron beams has been a major field of research. This paper studies the effects of different target density profiles on the spatial distribution of the accelerated particles, the maximum energies achieved, and the characteristics of the electromagnetic fields using the same laser pulse parameters. The study starts by describing a baseline for a flat target which presents a proton-rich microdot on its backside. The effects of introducing a target curvature and, further on, a cone laser focusing structure are compared with the flat target baseline results. The maximum energy obtained increases when using complex structures, and also a smaller divergence of the ion beam is observed.

  1. QED effects induced harmonics generation in extreme intense laser foil interaction

    NASA Astrophysics Data System (ADS)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  2. Ion acceleration in electrostatic field of charged cavity created by ultra-short laser pulses of 1020-1021 W/cm2

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Yu.; Singh, P. K.; Ahmed, H.; Kakolee, K. F.; Scullion, C.; Jeong, T. W.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2017-01-01

    Ion acceleration resulting from the interaction of ultra-high intensity and ultra-high contrast (˜10-10) laser pulses with thin A l foil targets at 30° angle of laser incidence is studied. Proton maximum energies of 30 and 18 MeV are measured along the target normal rear and front sides, respectively, showing intensity scaling as Ib . For the target front bf r o n t= 0.5-0.6 and for the target rear br e a r= 0.7-0.8 is observed in the intensity range 1020-1021 W/cm2. The fast scaling from the target rear ˜I0.75 can be attributed enhancement of laser energy absorption as already observed at relatively low intensities. The backward acceleration of the front side protons with intensity scaling as ˜I0.5 can be attributed to the to the formation of a positively charged cavity at the target front via ponderomotive displacement of the target electrons at the interaction of relativistic intense laser pulses with a solid target. The experimental results are in a good agreement with theoretical predictions.

  3. Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Longqing, E-mail: yi@uni-duesseldorf.de; State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800; Pukhov, Alexander

    When a high-contrast ultra-relativistic (>10{sup 20} W/cm{sup 2}) laser beam enters a micro-sized plasma waveguide, the pulse energy is coupled into waveguide modes, which significantly modifies the interaction between the electrons and electromagnetic wave. Electrons pulled out from the walls of the waveguide form a dense helical bunch inside the channel and are efficiently accelerated by the transverse magnetic modes to hundreds of MeV. The asymmetry in the transverse electric and magnetic fields drives strong oscillations, which lead to the emission of bright, well-collimated, hard X-rays. In this paper, we present our study on the underlying physics in the aforementioned processmore » using 3D particle-in-cell simulations. The mechanism of electron acceleration and the dependence of radiation properties on different laser plasma parameters are addressed. An analytic model and basic scalings for X-ray emission are also presented by considering the lowest optical modes in the waveguide, which is adequate to describe the basic phenomenon. In addition, the effects of high-order modes as well as laser polarization are also qualitatively discussed. The considered X-ray source has promising features, potentially making it a competitive candidate for a future tabletop synchrotron source.« less

  4. Laser-Based Lighting: Experimental Analysis and Perspectives

    PubMed Central

    Yushchenko, Maksym; Buffolo, Matteo; Meneghini, Matteo; Zanoni, Enrico

    2017-01-01

    This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes. PMID:29019958

  5. Efficient generation of ultra-intense few-cycle radially polarized laser pulses.

    PubMed

    Carbajo, Sergio; Granados, Eduardo; Schimpf, Damian; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Kärtner, Franz X

    2014-04-15

    We report on efficient generation of millijoule-level, kilohertz-repetition-rate few-cycle laser pulses with radial polarization by combining a gas-filled hollow-waveguide compression technique with a suitable polarization mode converter. Peak power levels >85  GW are routinely achieved, capable of reaching relativistic intensities >10(19)  W/cm2 with carrier-envelope-phase control, by employing readily accessible ultrafast high-energy laser technology.

  6. Lasers and intense pulsed light (IPL) association with cancerous lesions.

    PubMed

    Ash, Caerwyn; Town, Godfrey; Whittall, Rebecca; Tooze, Louise; Phillips, Jaymie

    2017-11-01

    The development and use of light and lasers for medical and cosmetic procedures has increased exponentially over the past decade. This review article focuses on the incidence of reported cases of skin cancer post laser or IPL treatment. The existing evidence base of over 25 years of laser and IPL use to date has not raised any concerns regarding its long-term safety with only a few anecdotal cases of melanoma post treatment over two decades of use; therefore, there is no evidence to suggest that there is a credible cancer risk. Although laser and IPL technology has not been known to cause skin cancer, this does not mean that laser and IPL therapies are without long-term risks. Light therapies and lasers to treat existing lesions and CO 2 laser resurfacing can be a preventative measure against BCC and SCC tumour formation by removing photo-damaged keratinocytes and encouraged re-epithelisation from stem cells located deeper in the epidermis. A review of the relevant literature has been performed to address the issue of long-term IPL safety, focussing on DNA damage, oxidative stress induction and the impact of adverse events.

  7. Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Wu, Zhouling

    2013-07-01

    Glass panel substrates have been widely used in consumer electronics such as in flat panel TVs, laptops, and cell phones. With the advancement in the industry, the glass substrates are becoming thinner and stronger for reduced weight and volume, which brings great challenges for traditional mechanical processes in terms of cut quality, yield, and throughput. Laser glass cutting provides a non-contact process with minimum impact and superior quality compared to the mechanical counterparts. In this paper, we presented recent progresses in advanced laser processing of ultra-thin glass substrates, especially laser-cutting of ultra-thin glasses by a high power laser through a nonlinear interaction effect. Our results indicate that this technique has great potential of application for mass production of ultra-thin glass substrates.

  8. Luminescent light source for laser pumping and laser system containing same

    DOEpatents

    Hamil, Roy A.; Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.

    1994-01-01

    The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

  9. Modelling short pulse, high intensity laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Evans, R. G.

    2006-06-01

    Modelling the interaction of ultra-intense laser pulses with solid targets is made difficult through the large range of length and time scales involved in the transport of relativistic electrons. An implicit hybrid PIC-fluid model using the commercial code LSP (LSP is marketed by MRC (Albuquerque), New Mexico, USA) reveals a variety of complex phenomena which seem to be borne out in experiments and some existing theories.

  10. Propagation of an ultra-short, intense laser in a relativistic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlapmore » with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.« less

  11. Double core-hole emissivity of transient aluminum plasmas produced in the interaction with ultra-intense x-ray laser pulse

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2015-11-01

    Emissivity of single core-hole (SCH) and double core-hole (DCH) states of aluminum plasmas produced in the interaction with ultra-intense x-ray laser pulse interaction are investigated systematically by solving the time-dependent rate equation implemented in the detailed level accounting approximation. We first demonstrated the plasma density effects on level populations and charge state distribution. Compared with recent experiments, it is shown that the plasma density effects play important roles in the evolution dynamics. Then we systematically investigated the emissivity of the transient aluminum plasmas produced by the x-ray laser pulses with a few photon energies above the threshold photon energy to create DCH states. For the laser photon energy where there are resonant absorptions (RA), 1s-np transitions with both full 1s and SCH 1s states play important roles in time evolution of the population and DCH emission spectroscopy. The significant RA effects are illustrated in detail for x-ray pulses, which creates the 1s-2p resonant absorption from the SCH states of Al VII. With the increase of the photon energy, the emissions from lower charge states become larger.

  12. Biomodulation of light on cells in laser surgery

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Li, Yan; Duan, Rui; Cai, Xiongwei

    2002-04-01

    In laser surgery, it has been observed pulsed 532-nm laser can avoid postoperative purpura, but pulsed 585-nm, 595-nm or 600-nm lasers nonetheless cause purpura when they were used to treat port-wine stains; the XeCl excimer laser (308 nm) can safely and effectively clear psoriasis; both XeCl excimer laser and Ho:YAG laser were used in coronary interventions, but only former was approved by the FDA; open channels after ultraviolet (UV) laser treatment and closed channels with infrared (IR) lasers for transmyocardial laser revascularization; and so on. In this paper, the biological information model of low intensity laser (BIML) is extended to include UVA biomodulation and is used to understand these phenomena. Although the central intensity of the laser beam is so intense that it destroys the tissue, the edge intensity is so low that it can induce biomodulation. Our investigation showed that biomodulation of light on cells might play an important role in the long-term effects of laser surgery.

  13. Biophysical principles of regulatory action of low-intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Plavskaja, Ljudmila G.

    1996-01-01

    The investigations carried out in our group on biological systems of various organization level (enzyme molecules in solution, human and animal cell cultures), allowed us to conclude, that the light-induced changes of spatial structure of cells components form the basis of biological activity (and as a consequence therapeutic effect) of various wavelength low-intensity laser emission. Photophysical mechanism of these changes lies in the reorientation of highregulated anisotropic parts (domains) with the liquid-crystalline type of ordering of the cell components due to the interaction between the electric field and the light induced integral electric dipole of the domain. The mechanism of such reorientation is well established in physics of liquid crystals of nematic type and is known as light induced analogue of Frederix's effect. The following results enable us to draw the conclusion about the determining role of the orientations effects on the biological activity mechanism of low-intensity laser radiation: (1) the possibility of reversible modification of spatial structure and enzyme molecules functional activity under the influence of laser radiation outside the band of their own or admixture absorption; (2) the dependence of biological effect of laser radiation on the functional activity of cells vs. polarization degree of the light with the maximum photobiological effects observed for linear-polarized radiation; (3) the equivalence of a static magnetic field and low-intensity laser radiation in action on functional activity of the cells and the lowering of the laser field intensity for the achieving the definite changes of the cell functional activity in the presence of static magnetic field.

  14. Novel high-energy physics studies using intense lasers and plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric

    2015-06-29

    In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPAmore » regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.« less

  15. Laser induced white lighting of tungsten filament

    NASA Astrophysics Data System (ADS)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  16. Guiding of High Laser Intensities in Long Plasma Channels

    NASA Astrophysics Data System (ADS)

    Levin, M.; Eisenmann, S.; Palchan, T.; Zigler, A.; Sugiyama, K.; Nakajima, K.; Kaganovich, D.; Hubbard, R. F.; Ting, A.; Gordon, D. F.; Sprangle, P.; Fraenkel, M.; Maman, S.; Henis, Z.

    Plasma channels have been widely used to guide intense laser pulses over many Rayleigh lengths. Using optimized segmented capillary discharges, we demonstrated guided propagation of ultra short (100 fs) high intensity (1016 W/cm-2, limited by the laser system) pulses over distances up to 12.6 cm and intensities above 1018W/cm2 for 1.5cm boron nitride capillary. Both radial and longitudinal density profiles of plasma channels were studied under various discharge conditions. A new diagnostic technique is presented in which the transport of a guided laser pulse at different delay times from the initiation of the discharge is sampled on a single discharge shot. Using external, 10 nsec Nd YAG laser of several tenths of milijoules to ignite polyethylene capillaries we have demonstrated channels of various length in density range of 1017 - 1019 cm-3 and up to 25% deep. The longitudinal profiles were found to be remarkably uniform in both short and long capillaries. The Boron Nitride capillary has provided a guiding medium that can withstand more than 1000 shots. Using these capillaries we have guided laser intensities above 1018W/cm2. The laser ignition of capillary discharge provided reliable almost jitter free approach. The concerns related to influence of relatively high current density flow through capillary on the injected electrons were studied extensively by us both theoretically and experimentally using a simple injection method. The method is based on the interaction of a high intensity laser pulse with a thin wire placed near capillary entrance. The influence of magnetic fields was found to be insignificant. Using this method we have studied transport of electrons though capillary discharge.

  17. Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V., E-mail: arora@rrcat.gov.in; Chakera, J. A.; Naik, P. A.

    2015-07-31

    X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available formore » time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.« less

  18. Extreme Light Infrastructure - Nuclear Physics pillar (ELI-NP) : new horizons in physics with high power lasers and brilliant gamma beams.

    PubMed

    Gales, Sydney; Tanaka, Kazuo A; Balabanski, D L; Negoita, Florin; Stutman, D; Ur, Calin Alexander; Tesileanu, Ovidiu; Ursescu, Daniel; Ghita, Dan Gabriel; Andrei, I; Ataman, Stefan; Cernaianu, M O; D'Alessi, L; Dancus, I; Diaconescu, B; Djourelov, N; Filipescu, D; Ghenuche, P; Matei, C; Seto Kei, K; Zeng, M; Zamfir, Victor Nicolae

    2018-06-28

    The European Strategic Forum for Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser elds with intensities reaching up to 10221023 W/cm2 called \\ELI" for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011 2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientic research at the frontier of knowledge involving two domains. The rst one is laser-driven experiments related to nuclear physics, strong-eld quantum electrodynamics and associated vacuum eects. The second is based on a Comptonbackscattering high-brilliance and intense low-energy gamma beam (< 20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with signicant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by \\Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and Multi-MeV brilliant gamma beam scientic and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The

  19. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  20. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  1. High-Speed Terahertz Waveform Measurement for Intense Terahertz Light Using 100-kHz Yb-Doped Fiber Laser.

    PubMed

    Tsubouchi, Masaaki; Nagashima, Keisuke

    2018-06-14

    We demonstrate a high-speed terahertz (THz) waveform measurement system for intense THz light with a scan rate of 100 Hz. To realize the high scan rate, a loudspeaker vibrating at 50 Hz is employed to scan the delay time between THz light and electro-optic sampling light. Because the fast scan system requires a high data sampling rate, we develop an Yb-doped fiber laser with a repetition rate of 100 kHz optimized for effective THz light generation with the output electric field of 1 kV/cm. The present system drastically reduces the measurement time of the THz waveform from several minutes to 10 ms.

  2. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  3. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  4. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    NASA Astrophysics Data System (ADS)

    Higginson, Drew Pitney

    at Los Alamos National Laboratory and at the low-contrast Titan laser at Lawrence Livermore National Laboratory. The targets were irradiated using these 1.054 microm wavelength lasers at intensities from 1019 to 10 20 W/cm2. The coupling of energy into the Cu wire was found to be 2.7x higher when the preplasma was reduced using high-contrast. Additionally, higher laser intensity elongated the effective path-length of electrons within the wire, indicating that their kinetic energy was higher. To understand the physics behind laser-acceleration of electrons and to examine how this mechanism is affected by the presence of preplasma, simulations were performed to model the laser interaction. This simulations modeled the interaction using a 0.1 to 3 microm exponential preplasma scale length for the high-contrast cases and hydronamically simulated longer scale preplasma (˜25 microm) for the low-contrast case. The simulations show that absorption of laser light increases from only 20% with a 0.1 microm scale length to nearly 90% with a long low-contrast-type preplasma. However, as observed in experiments, a smaller fraction of this absorbed energy is transported to the diagnostic wire, which is due to an increased distance that the electrons must travel to reach the wire and increase angular divergence of the electrons. The simulations show that increasing the preplasma scale length from 0.1 to 3 microm increases the average energy by a factor of 2.5x. This is consistent with an increased interaction length over which the electrons can gain energy from the laser. The simulated electrons are compared with experimental data by injecting them into another simulation modeling the transport of electrons through the cone-wire target. This method quantitatively reproduced the experimentally measured the Kalpha x-ray emission profiles in the high-contrast cases, which gives confidence in the simulations and the generated electron distributions. By showing that the reduction of

  5. Influence of surface light scattering in hydrophobic acrylic intraocular lenses on laser beam transmittance.

    PubMed

    Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori

    2017-02-01

    The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.

  6. Intensity and angle-of-arrival spectra of laser light propagating through axially homogeneous buoyancy-driven turbulence.

    PubMed

    Pawar, Shashikant S; Arakeri, Jaywant H

    2016-08-01

    Frequency spectra obtained from the measurements of light intensity and angle of arrival (AOA) of parallel laser light propagating through the axially homogeneous, axisymmetric buoyancy-driven turbulent flow at high Rayleigh numbers in a long (length-to-diameter ratio of about 10) vertical tube are reported. The flow is driven by an unstable density difference created across the tube ends using brine and fresh water. The highest Rayleigh number is about 8×109. The aim of the present work is to find whether the conventional Obukhov-Corrsin scaling or Bolgiano-Obukhov (BO) scaling is obtained for the intensity and AOA spectra in the case of light propagation in a buoyancy-driven turbulent medium. Theoretical relations for the frequency spectra of log amplitude and AOA fluctuations developed for homogeneous isotropic turbulent media are modified for the buoyancy-driven flow in the present case to obtain the asymptotic scalings for the high and low frequency ranges. For low frequencies, the spectra of intensity and vertical AOA fluctuations obtained from measurements follow BO scaling, while scaling for the spectra of horizontal AOA fluctuations shows a small departure from BO scaling.

  7. Acceleration of electron bunches by intense laser pulse in vacuum

    NASA Astrophysics Data System (ADS)

    Hua, J. F.; Ho, Y. K.; Lin, Y. Z.; Cao, N.

    2003-08-01

    This paper addresses the output characteristics of real electron bunches accelerated with ultra-intense laser pulse in vacuum by the capture & acceleration scenario (CAS) scheme (see, e.g., Phys. Rev. E66 (2002) 066501). Normally, the size of an electron bunch is much larger than that of a tightly focused and compressed laser pulse. We examine in detail the features of the intersection region, the distribution of electrons which can experience an intense laser field and be accelerated to high energy. Furthermore, the output properties of the accelerated CAS electrons, such as the energy spectra, the angular distributions, the energy-angle correlations, the acceleration gradient, the energy which can be reached with this scheme, the emittances of the outgoing electron bunches, and the dependence of the output properties on the incident electron beam qualities such as the emittance, focusing status, etc. were studied and explained. We found that with intense laser systems and electron beam technology currently available nowadays, the number of CAS electrons can reach 10 4-10 5, when the total number of incident electrons in the practical bunch reaches ˜10 8. These results demonstrate that CAS is promising to become a novel mechanism of vacuum laser accelerators.

  8. Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called π-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur,more » the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.« less

  9. Efficient monoenergetic proton beam from ultra-fast laser interaction with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Fazeli, R.

    2018-03-01

    The broad energy spectrum of laser-accelerated proton beams is the most important difficulty associated with such particle sources on the way to future applications such as medical therapy, proton imaging, inertial fusion, and high-energy physics. The generation of proton beams with enhanced monoenergetic features through an ultra-intense laser interaction with optimized nanostructured targets is reported. Targets were irradiated by 40 fs laser pulses of intensity 5.5 ×1020 W c m -2 and wavelength 1 μm. The results of multi-parametric Particle-in-Cell calculations showed that proton beams with considerably reduced energy spread can be obtained by using the proposed nanostructured target. At optimized target dimensions, the proton spectrum was found to exhibit a narrow peak at about 63 MeV with a relative energy spread of ΔE /Epeak˜ 5 % which is efficiently lower than what is expected for unstructured double layer targets (˜70%).

  10. High brightness diode laser module development at nLIGHT Photonics

    NASA Astrophysics Data System (ADS)

    Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob

    2009-05-01

    We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.

  11. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  12. Current Trends in Intense Pulsed Light

    PubMed Central

    2012-01-01

    Intense pulsed light technologies have evolved significantly since their introduction to the medical community 20 years ago. Now such devices can be used safely and effectively for the cosmetic treatment of many vascular lesions, unwanted hair, and pigmented lesions. Newer technologies often give results equal to those of laser treatments. PMID:22768357

  13. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers.

    PubMed

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-05-23

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.

  14. Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

    PubMed Central

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-01-01

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072

  15. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    PubMed

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  16. Plasma density limits for hole boring by intense laser pulses.

    PubMed

    Iwata, Natsumi; Kojima, Sadaoki; Sentoku, Yasuhiko; Hata, Masayasu; Mima, Kunioki

    2018-02-12

    High-power lasers in the relativistic intensity regime with multi-picosecond pulse durations are available in many laboratories around the world. Laser pulses at these intensities reach giga-bar level radiation pressures, which can push the plasma critical surface where laser light is reflected. This process is referred to as the laser hole boring (HB), which is critical for plasma heating, hence essential for laser-based applications. Here we derive the limit density for HB, which is the maximum plasma density the laser can reach, as a function of laser intensity. The time scale for when the laser pulse reaches the limit density is also derived. These theories are confirmed by a series of particle-in-cell simulations. After reaching the limit density, the plasma starts to blowout back toward the laser, and is accompanied by copious superthermal electrons; therefore, the electron energy can be determined by varying the laser pulse length.

  17. Hanle effect in nonmonochromatic laser light

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; Bergeman, T. H.

    1991-06-01

    We report results of calculations on the Hanle effect in a J=0⇆J=1 atomic transition with three types of model fluctuating light fields: (a) the Brownian-motion phase-diffusion field, as produced in recent experiments by Arnett et al. [Phys. Rev. A 41, 2580 (1990)]; (b) Gaussian amplitude fluctuations; and (c) the chaotic field model, in which real and imaginary parts of the electric-field amplitude fluctuate. For the stochastic density-matrix equations, we use methods developed by Zoller and co-workers [e.g., Dixit, Zoller, and Lambropoulos, Phys. Rev. A 21, 1289 (1980)] employing the Fokker-Planck operator and leading to matrix continued-fraction expansions. The Hanle effect is of interest as a prototype for multisublevel atomic transitions. The width of the Hanle dip at zero magnetic field reflects the tendency of the light field to preserve the coherence between excited-state sublevels. For monochromatic light, the Hanle dip width increases as the square root of light intensity. When the laser bandwidth increases, power broadening of the coherence dip normally decreases. However, with the Brownian-motion phase-diffusion model, if the laser spectral profile is nearly Gaussian, broadening the laser up to several times the natural width of the atomic line does not diminish the Hanle dip width. With amplitude fluctuations, even in the limit of monochromatic light, power broadening of the Hanle dip with intensity is reduced by one-third to one-half depending on the particular model.

  18. Effect of health messages about "Light" and "Ultra Light" cigarettes on beliefs and quitting intent.

    PubMed

    Shiffman, S; Pillitteri, J L; Burton, S L; Rohay, J M; Gitchell, J G

    2001-01-01

    To test the impact of three health messages focusing on vent holes, sensory effects of Light and Ultra Light cigarettes, or health consequences of smoking, respectively, on beliefs and quitting intentions. In the course of a random digit dialed telephone survey, subjects were randomised to hear one of three messages. To test the effects of the messages, beliefs and quitting intentions were assessed both pre- and post-message. Daily smokers (n = 2120) of Regular (46%), Light (39%), and Ultra Light (15%) cigarettes in the USA. The sample was weighted to match the US smoker population on age, sex, and ethnicity. Beliefs were summarised on three dimensions: Safety (reduced health risk), Delivery (lower tar and nicotine delivery), and Sensation (less harsh). Quitting interest was captured by the "quit index", an aggregate measure of quitting interest and intent. The message focusing on smokers' sensory perceptions of Light and Ultra Light cigarettes resulted in the most positive change in beliefs about safety, delivery, and intent to quit, and was particularly effective among those who believed that these cigarettes were less harsh. The effect was most pronounced among young adults, and among smokers of Light and Ultra Light brands who most endorsed their sensory benefits. Addressing smokers' sensory experience that Light and Ultra Light cigarettes feel less harsh may be a promising strategy for changing their misconceptions about these cigarettes and enhancing their interest in quitting. Media counter-advertising on Lights and Ultra Lights, focusing on sensory aspects of these cigarettes, may be an important part of tobacco control efforts.

  19. Compliance of Ultra-Orthodox and secular pedestrians with traffic lights in Ultra-Orthodox and secular locations.

    PubMed

    Rosenbloom, Tova; Shahar, Amit; Perlman, Amotz

    2008-11-01

    Following a previous study that revealed the disobedience of Ultra-Orthodox citizens, as compared to secular citizens, of traffic lights at crosswalks, the present study examined the road habits of 995 Ultra-Orthodox and secular pedestrians in neighboring Ultra-Orthodox and secular cities. Using an observation grid designed specially for this study, the pedestrians were observed at two crosswalks--one in an Ultra-Orthodox city and one in a secular city--as far as similar traffic parameters, using a logistic regression. The tendency to cross on a red light was assessed as a function of estimated age, gender, religiosity, location (religious/secular), the duration of the red light, the number of vehicles crossing and the number of pedestrians waiting at the curb. Ultra-Orthodox pedestrians committed more violations than secular pedestrians did, and there were more road violations in the Ultra-Orthodox location than there were in the secular location. Fewer traffic violations were committed by "local" pedestrians (Ultra-Orthodox pedestrians in the Ultra-Orthodox location and secular pedestrians in the secular location) than by "foreigners" (Ultra-Orthodox pedestrians in the secular location and secular pedestrians in the Ultra-Orthodox location). The odds of crossing on a red light decreased as a function of both the number of people waiting at the curb and the number of vehicles. Consistent with previous research, males crossed on red much more than females did, regardless of religiosity and location. Our discussion focuses on theoretical and practical explanations of the findings.

  20. Cavity mode-width spectroscopy with widely tunable ultra narrow laser.

    PubMed

    Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman

    2013-12-02

    We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.

  1. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  2. Molecular mechanism of biological and therapeutical effect of low-intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Plavskaja, Ljudmila G.; Morozova, Raisa P.

    1995-05-01

    The investigations carried out in our group on biological systems of various organization level (enzyme molecules in solution, human and animal cell cultures), allowed us to conclude, that the light-induced changes of spatial structure of cells components form the basis of biological activity (and as a consequence therapeutic effect) of various wavelength low-intensity laser emission. Photophysical mechanism of these changes lies in the reorientation of highregulated anisotropic parts (domains) with the liquid-crystalline type of ordering of the cell components due to the interaction between the electric field and the light induced integral electric dipole of the domain. The mechanism of such reorientation is well established in physics of liquid crystals of nematic type and is known as light induced analogue of Frederix's effect. The following results enable us to draw the conclusion about the determining role of the orientations effects on the biological activity mechanism of low-intensity laser radiation: (i) the possibility of reversible modification of spatial structure and enzyme molecules functional activity under the influence of laser radiation outside the band of their own or admixture absorption; (ii) the dependence of biological effect of laser radiation on the functional activity of cells vs. polarization degree of the light with the maximum photobiological effects observed for linear-polarized radiation; (iii) the equivalence of a static magnetic field and low-intensity laser radiation in action on functional activity of the cells and the lowering of the laser field intensity for the achieving the difinite changes of the cell functional activity in the presence of static magnetic field.

  3. Impact of mismatched and misaligned laser light sheet profiles on PIV performance

    NASA Astrophysics Data System (ADS)

    Grayson, K.; de Silva, C. M.; Hutchins, N.; Marusic, I.

    2018-01-01

    The effect of mismatched or misaligned laser light sheet profiles on the quality of particle image velocimetry (PIV) results is considered in this study. Light sheet profiles with differing widths, shapes, or alignment can reduce the correlation between PIV images and increase experimental errors. Systematic PIV simulations isolate these behaviours to assess the sensitivity and implications of light sheet mismatch on measurements. The simulations in this work use flow fields from a turbulent boundary layer; however, the behaviours and impacts of laser profile mismatch are highly relevant to any fluid flow or PIV application. Experimental measurements from a turbulent boundary layer facility are incorporated, as well as additional simulations matched to experimental image characteristics, to validate the synthetic image analysis. Experimental laser profiles are captured using a modular laser profiling camera, designed to quantify the distribution of laser light sheet intensities and inform any corrective adjustments to an experimental configuration. Results suggest that an offset of just 1.35 standard deviations in the Gaussian light sheet intensity distributions can cause a 40% reduction in the average correlation coefficient and a 45% increase in spurious vectors. Errors in measured flow statistics are also amplified when two successive laser profiles are no longer well matched in alignment or intensity distribution. Consequently, an awareness of how laser light sheet overlap influences PIV results can guide faster setup of an experiment, as well as achieve superior experimental measurements.

  4. Intense excitation source of blue-green laser

    NASA Astrophysics Data System (ADS)

    Han, K. S.

    1985-10-01

    An intense and efficient excitation source for blue-green lasers useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, hypocycloidal pinch plasma (HCP), and a newly designed dense-plasma focus (DPF) can produce intense UV photons (200 to 300 nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400 nm). During the current project period, the successful enhancement of blue-green laser output of both Coumarin 503 and LD490 dye through the spectral conversion of the HCP pumping light has been achieved with a converter dye BBQ. The factor of enhancement in the blue-green laser output energy of both Coumarin 503 and LD490 is almost 73%. This enhancement will definitely be helpful in achieving the direct high power blue-green laser (> 1 MW) with the existing blue green dye laser. On the other hand the dense-plasma focus (DPF) with new optical coupling has been designed and constructed. For the optimization of the DPF device as the UV pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as function of argon or argon-deuterium fill gas pressure. Finally, the blue-green dye laser (LD490) has been pumped with the DPF device for preliminary tests. Experimental results with the DPF device show that the velocity of the current sheath follows the inverse relation of sq st. of pressure as expected. The blue-green dye (LD490) laser output exceeded 3.1 m at the best cavity tuning of laser system. This corresponds to 3J/1 cu cm laser energy extraction.

  5. Intense excitation source of blue-green laser

    NASA Astrophysics Data System (ADS)

    Han, Kwang S.

    1986-10-01

    An intense and efficient source for blue green laser useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, the hypocycloidal pinch plasma (HCP), and the dense plasma focus (DPF) can produce intense uv photons (200 to 400nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400nm). As a result of optimization of the DPF light at 355nm, the blue green dye (LD490) laser output exceeding 4mJ was obtained at the best cavity tunning of the laser system. With the HCP pumped system a significant enhancement of the blue green laser outputs with dye LD490 and coumarin 503 has been achieved through the spectrum conversion of the pumping light by mixing a converter dye BBQ. The maximum increase of laser output with the dye mixture of LD490+BBQ and coumarin 503+BBQ was greater than 80%. In addition, the untunned near UV lasers were also obtained. The near UV laser output energy of P-terphenyl dye was 0.5mJ at lambda sub C=337nm with the bandwidth of 3n m for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2microsec.

  6. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  7. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  8. Ultra-Stable Laser Clock.

    DTIC Science & Technology

    1983-03-01

    43. L circumference of ring laser cavity 44. LF pathlength through Faraday rotator 45. 1 distance between resonator mirrors of linear laser 46. M...limited clock stability 68. q mode number 69. Ri reflectivity of mirror i 70. eF angle between magnetic field and direction of light propagation 71...containing low pressure methane. The light reflects off a mirror and passes back through the cell. Then the light reflects from the beam splitter into

  9. Enhanced dense attosecond electron bunch generation by irradiating an intense laser on a cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu

    By using two-dimensional particle-in-cell simulations, we demonstrate enhanced spatially periodic attosecond electron bunches generation with an average density of about 10n{sub c} and cut-off energy up to 380 MeV. These bunches are acquired from the interaction of an ultra-short ultra-intense laser pulse with a cone target. The laser oscillating field pulls out the cone surface electrons periodically and accelerates them forward via laser pondermotive force. The inner cone wall can effectively guide these bunches and lead to their stable propagation in the cone, resulting in overdense energetic attosecond electron generation. We also consider the influence of laser and cone target parametersmore » on the bunch properties. It indicates that the attosecond electron bunch acceleration and propagation could be significantly enhanced without evident divergency by attaching a plasma capillary to the original cone tip.« less

  10. Propagation of intense short laser pulses in the atmosphere.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B

    2002-10-01

    The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.

  11. Intense Excitation Source of Blue-Green Laser.

    DTIC Science & Technology

    1985-10-15

    plasma focus (DPF) can produce intense uv photons (200-300nm) which match the absorption spectra of both near uv and blue green dye lasers (300-400nm...existing blue green dye laser. On the other hand the dense- plasma focus (DPF) with new optical coupling has been designed and constructed. For the...optimization of the DPF device as the uv pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as

  12. Development of a Low cost Ultra tiny Line Laser Range Sensor

    DTIC Science & Technology

    2016-12-01

    Development of a Low-cost Ultra-tiny Line Laser Range Sensor Xiangyu Chen∗, Moju Zhao∗, Lingzhu Xiang†, Fumihito Sugai∗, Hiroaki Yaguchi∗, Kei Okada...and Masayuki Inaba∗ Abstract— To enable robotic sensing for tasks with require- ments on weight, size, and cost, we develop an ultra-tiny line laser ...view customizable using different laser lenses. The optimal measurement range of the sensor is 0.05[m] ∼ 2[m]. Higher sampling rates can be achieved

  13. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  14. Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser

    NASA Astrophysics Data System (ADS)

    Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan

    2015-02-01

    With the development of ultra-intense laser technology, MeV ions can be obtained from laser-foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre-Gaussian (LG) laser is used for the first time to examine laser-plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment.

  15. Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser.

    PubMed

    Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan

    2015-02-05

    With the development of ultra-intense laser technology, MeV ions can be obtained from laser-foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre-Gaussian (LG) laser is used for the first time to examine laser-plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment.

  16. Generation of UV light by intense ultrashort laser pulses in air

    NASA Astrophysics Data System (ADS)

    Alexeev, Ilya; Ting, Antonio; Gordon, Daniel; Briscoe, Eldridge; Penano, Joe; Sprangle, Phillip

    2004-11-01

    The propagation of collimated high-peak-power ultrashort laser pulses in air has attracted considerable attention, which may have a variety of important applications including remote sensing and chemical-biological aerosols standoff detection. Sub-millimeter diameter laser filaments can develop without any focusing optics and instead solely from laser self-focusing and plasma formation in air. These filaments can produce ultraviolet radiations in the form of the 3rd harmonic of the fundamental frequency and also through spectral broadening due to self-phase modulation of the laser pulse. Using femtosecond laser pulses produced by a high power Ti:Sapphire laser (0.8 TW, 50 fs, 800 nm) we observed generation of the third harmonic radiation light in air (centered around 267 nm) by the laser filaments. Characterization of the 3rd harmonic generation with respect to the major gas components of the air will be reported. Supported by the ONR and RDECOM. I. Alexeev is NRC/NRL Post-Doc.

  17. Laser Light Scattering by Shock Waves

    NASA Technical Reports Server (NTRS)

    Panda, J.; Adamovsky, G.

    1995-01-01

    Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.

  18. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGES

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  19. A review of astrophysics experiments on intense lasers

    NASA Astrophysics Data System (ADS)

    Remington, B. A.

    1999-11-01

    Modern, high power laser facilities open new possibilities for simulating astrophysical systems in the laboratory.(S.J. Rose, Laser & Part. Beams 9, 869 (1991); B.H. Ripin et al., Laser & Part. Beams 8, 183 (1990); B.A. Remington et al., Science 284, 1488 (1999); H. Takabe et al., Plasma Phys. Contr. Fusion 41, A75 (1999); R.P. Drake, J. Geophys. Res. 104, 14505 (1999).) Scaled investigations of the hydrodynamics.(J. Kane et al., Phys. Plasmas 6, 2065 (1999); R.P. Drake et al., Ap. J. 500, L157 (1998); D. Ryutov et al., Ap. J. 518, 821 (1999).) and radiative transfer.(J. Wark et al., Phys. Plasmas 4, 2004 (1997); P.K. Patel et al., JQSRT 58, 835 (1997).) relevant to supernovae, and opacities relevant to stellar interiors.(F.J. Rogers and C.A. Iglesias, Science 263, 50 (1994); H. Merdji et al., JSQRT 58, 783 (1997).) are now possible with laser experiments. Equations of state relevant to the interiors of giant planets and brown dwarfs are also being experimentally accessed.(G.W. Collins et al., Science 281, 1178 (1998); A. Benuzzi et al., Phys. Rev. E 54, 2162 (1996).) With the construction of the NIF laser in the U.S., and the LIL and LMJ lasers in France, controlled investigations of thermonuclear burn physics will become possible in the next decade. And with existing and future ultra-high intensity short pulse lasers, investigations of relativistic astrophysical plasmas are becoming possible.(M.H. Key et al., Phys. Plasmas 5, 1966 (1998); F. Pegoraro et al., Plasma Phys. Contr. Fus. 39, B261 (1997).) A review of laboratory astrophysics experiments using intense lasers will be presented, and the potential for the future will be discussed.

  20. Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Purnawirman, Purnawirman; Magden, E. Salih; Singh, Gurpreet; Singh, Neetesh; Baldycheva, Anna; Hosseini, Ehsan S.; Sun, Jie; Moresco, Michele; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Bradley, Jonathan D. B.; Watts, Michael R.

    2018-02-01

    We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 +/- 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 +/- 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.

  1. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism.

    PubMed

    Puri, Neerja

    2015-01-01

    Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, <25% reduction in hair density. It was seen that the percentage of hair reduction after two sessions of treatment was maximum (40%) in the diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  2. Multimodal evaluation of ultra-short laser pulses treatment for skin burn injuries.

    PubMed

    Santos, Moises Oliveira Dos; Latrive, Anne; De Castro, Pedro Arthur Augusto; De Rossi, Wagner; Zorn, Telma Maria Tenorio; Samad, Ricardo Elgul; Freitas, Anderson Zanardi; Cesar, Carlos Lenz; Junior, Nilson Dias Vieira; Zezell, Denise Maria

    2017-03-01

    Thousands of people die every year from burn injuries. The aim of this study is to evaluate the feasibility of high intensity femtosecond lasers as an auxiliary treatment of skin burns. We used an in vivo animal model and monitored the healing process using 4 different imaging modalities: histology, Optical Coherence Tomography (OCT), Second Harmonic Generation (SHG), and Fourier Transform Infrared (FTIR) spectroscopy. 3 dorsal areas of 20 anesthetized Wistar rats were burned by water vapor exposure and subsequently treated either by classical surgical debridement, by laser ablation, or left without treatment. Skin burn tissues were non-invasively characterized by OCT images and biopsied for further histopathology analysis, SHG imaging and FTIR spectroscopy at 3, 5, 7 and 14 days after burn. The laser protocol was found as efficient as the classical treatment for promoting the healing process. The study concludes to the validation of femtosecond ultra-short pulses laser treatment for skinburns, with the advantage of minimizing operatory trauma.

  3. Visible light laser voltage probing on thinned substrates

    DOEpatents

    Beutler, Joshua; Clement, John Joseph; Miller, Mary A.; Stevens, Jeffrey; Cole, Jr., Edward I.

    2017-03-21

    The various technologies presented herein relate to utilizing visible light in conjunction with a thinned structure to enable characterization of operation of one or more features included in an integrated circuit (IC). Short wavelength illumination (e.g., visible light) is applied to thinned samples (e.g., ultra-thinned samples) to achieve a spatial resolution for laser voltage probing (LVP) analysis to be performed on smaller technology node silicon-on-insulator (SOI) and bulk devices. Thinning of a semiconductor material included in the IC (e.g., backside material) can be controlled such that the thinned semiconductor material has sufficient thickness to enable operation of one or more features comprising the IC during LVP investigation.

  4. Ultra-fast movies of thin-film laser ablation

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  5. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-02-06

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  6. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  7. Are Light and Ultra-Light Cigarettes Safer: Perceptions of College Students

    ERIC Educational Resources Information Center

    Zank, Gail M.; Smith, Karen H.; Stutts, Mary Ann

    2008-01-01

    The reported study investigates college students' perceptions of light compared to regular and ultra-light compared to light cigarettes, and whether perceptions vary by smoking status (nonsmoker, former smoker, social smoker, or regular smoker) and gender. A survey of 172 college students found that all four smoking status groups perceived light…

  8. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy

    PubMed Central

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2016-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  9. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy.

    PubMed

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka

    2016-03-22

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT.

  10. Optimization of Nanocomposite Solar Cell/Liquid Crystal Matrix to Diminish High Intensity Laser Light Relevant to Aviation Safety Applications

    NASA Astrophysics Data System (ADS)

    Hofmann, James A.

    V when exposed to both light sources. Additionally, the performance of the DSSCs were correlated to molecular modeling predictions using Spartan software. The stability of TiO2-dye interactions indicated that dye adsorption to the surface of the nanocomposite directly impacted the performance of the DSSCs. Implementation of a LC and DSSC system forces the LCs to transition between its nematic and crystalline phases depending on the wavelength of light that is illuminating the DSSC. This research explores the practicality of using LCs and DSSCs as a preliminary approach to mitigating green laser light illumination on aircraft. Experimental results have shown that DSSCs alone are not capable of forcing a phase transitions in LCs which can entirely mitigate incoming laser light. The intense laser light required to generate substantial voltage (3V) from the DSSCs penetrates the crystalline phase of the LC with minimal attenuation of 5%.

  11. Characterization of electrical noise limits in ultra-stable laser systems.

    PubMed

    Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H

    2016-12-01

    We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.

  12. [Flexible Guidance of Ultra-Short Laser Pulses in Ophthalmic Therapy Systems].

    PubMed

    Blum, J; Blum, M; Rill, M S; Haueisen, J

    2017-01-01

    In the last 20 years, the role of ultrashort pulsed lasers in ophthalmology has become increasingly important. However, it is still impossible to guide ultra-short laser pulses with standard glass fibres. The highly energetic femtosecond pulses would destroy the fibre material, and non-linear dispersion effects would significantly change beam parameters. In contrast, photonic crystal fibres mainly guide the laser pulses in air, so that absorption and dispersive pulse broadening have essentially no effect. This article compares classical beam guidance with mirrors, lenses and prisms with photonic crystal fibres and describes the underlying concepts and the current state of technology. A classical mirror arm possesses more variable optical properties, while the HCF (Hollow-Core Photonic Crystal Fibre) must be matched in terms of the laser energy and the laser spectrum. In contrast, the HCF has more advantages in respect of handling, system integration and costs. For applications based on photodisruptive laser-tissue interaction, the relatively low damage threshold of photonic crystal fibres compared to classic beam guiding systems is unacceptable. If, however, pulsed laser radiation has a sufficiently low peak intensity, e.g. as used for plasma-induced ablation, photonic crystal fibres can definitely be considered as an alternative solution to classic beam guidance. Georg Thieme Verlag KG Stuttgart · New York.

  13. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less

  14. Laser Induced Nuclear Fusion, LINF, In Muonic Molecules With Ultrashort Super Intense Laser Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandrauk, Andre D.; Paramonov, Gennady K.

    2010-02-02

    Muonium molecules where muons replace electrons increase the stability of molecules to ionization at superhigh intensities, I>10{sup 20} W/cm{sup 2}. We show furthermore from numerical simulations that in the nonsymmetric series, pdu, dtu, ptu, the permanent dipole moments can be used to enhance LINF, Laser Induced Nuclear Fusion by laser induced recollision of the light nucleus with the heavier nucleus.

  15. Hollow screw-like drill in plasma using an intense Laguerre–Gaussian laser

    PubMed Central

    Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan

    2015-01-01

    With the development of ultra-intense laser technology, MeV ions can be obtained from laser–foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre–Gaussian (LG) laser is used for the first time to examine laser–plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment. PMID:25651780

  16. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  17. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  18. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  19. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers.

    PubMed

    Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F

    2015-10-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.

  20. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    PubMed Central

    Fonseca, A.S.; Campos, V.M.A.; Magalhães, L.A.G.; Paoli, F.

    2015-01-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. PMID:26445337

  1. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Obenschain, S. P.; McLean, E. A.; Lehmberg, R. H.

    2008-11-01

    With the short wavelength (248 nm), large bandwidth (1˜2 THz), and ISI beam smoothing, Nike KrF laser is expected to have higher LPI thresholds than observed at other laser facilities. Previous measurements using the Nike laser [J. L. Weaver et al, Phys. Plasmas 14, 056316 (2007)] showed no LPI evidence from CH targets up to I˜2x10^15 W/cm^2. For further experiments to detect LPI excitation, Nike capabilities have been extended to achieve higher laser intensities by tighter beam focusing and higher power pulses. This talk will present results of a recent LPI experiment with the extended Nike capabilities focusing on light emission data in spectral ranges relevant to the Raman (SRS) and Two-Plasmon Decay (TPD) instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. The measurements were conducted at laser intensities of 10^15˜10^16 W/cm^2 on planar targets of CH solids and RF foams.

  2. Towards highest peak intensities for ultra-short MeV-range ion bunches

    NASA Astrophysics Data System (ADS)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  3. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  4. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  5. Intense laser pulse propagation in ionizing gases

    NASA Astrophysics Data System (ADS)

    Bian, Zhigang

    2003-10-01

    There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The

  6. Improving the intensity of a focused laser beam

    NASA Astrophysics Data System (ADS)

    Haddadi, Sofiane; Fromager, Michael; Louhibi, Djelloul; Hasnaoui, Abdelkrim; Harfouche, Ali; Cagniot, Emmanuel; ńit-Ameur, Kamel

    2015-03-01

    Let us consider the family of symmetrical Laguerre-Gaus modes of zero azimuthal order which will be denoted as LGp0 . The latter is made up of central lobe surrounded by p concentric rings of light. The fundamental mode LG00 is a Gaussian beam of width W. The focusing of a LGp0 beam of power P by a converging lens of focal length f produces a focal spot keeping the LGp0 -shape and having a central intensity I0= 2PW2/(λf)2 whatever the value of the radial order p. Many applications of lasers (laser marking, laser ablation, …) seek nowadays for a focal laser spot with the highest as possible intensity. For a given power P, increasing intensity I0 can be achieved by increasing W and reducing the focal length f. However, this way of doing is in fact limited because the ratio W/f cannot increase indefinitely at the risk of introducing a huge truncation upon the edge of the lens. In fact, it is possible to produce a single-lobed focal spot with a central intensity of about p times the intensity I0. This result has been obtained by reshaping (rectification) a LGp0 beam thanks to a proper Binary Diffractive Optical Element (BDOE). In addition, forcing a laser cavity to oscillate upon a LGp0 can improve the power extract due to a mode volume increasing with the mode order p. This could allow envisaging an economy of scale in term of laser pumping power for producing a given intensity I0. In addition, we have demonstrated that a rectified LGp0 beam better stand the lens spherical aberration than the usual Gaussian beam.

  7. Backward-propagating MeV electrons in ultra-intense laser interactions: Standing wave acceleration and coupling to the reflected laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orban, Chris, E-mail: orban@physics.osu.edu; Feister, Scott; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459

    Laser-accelerated electron beams have been created at a kHz repetition rate from the reflection of intense (∼10{sup 18 }W/cm{sup 2}), ∼40 fs laser pulses focused on a continuous water-jet in an experiment at the Air Force Research Laboratory. This paper investigates Particle-in-Cell simulations of the laser-target interaction to identify the physical mechanisms of electron acceleration in this experiment. We find that the standing-wave pattern created by the overlap of the incident and reflected laser is particularly important because this standing wave can “inject” electrons into the reflected laser pulse where the electrons are further accelerated. We identify two regimes of standingmore » wave acceleration: a highly relativistic case (a{sub 0} ≥ 1), and a moderately relativistic case (a{sub 0} ∼ 0.5) which operates over a larger fraction of the laser period. In previous studies, other groups have investigated the highly relativistic case for its usefulness in launching electrons in the forward direction. We extend this by investigating electron acceleration in the specular (back reflection) direction and over a wide range of intensities (10{sup 17}–10{sup 19 }W cm{sup −2})« less

  8. Measuring the Dispersion in Laser Cavity Mirrors using White-Light Interferometry

    DTIC Science & Technology

    2008-03-01

    mirrors. Two AlGaInP (aluminum gallium indium phosphide ) diode lasers are aligned such that one is polarized vertically while one is polarized...linear crystals, where the index of refraction depends on beam intensity. Short pulses with high peak intensities are well 14 suited to induce the...MEASURING THE DISPERSION OF LASER CAVITY MIRRORS USING WHITE-LIGHT INTERFEROMETRY THESIS Allison S

  9. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    NASA Astrophysics Data System (ADS)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  10. Modification in oxidative processes in muscle tissues exposed to laser- and light-emitting diode radiation.

    PubMed

    Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L

    2018-01-01

    Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.

  11. How to harvest efficient laser from solar light

    NASA Astrophysics Data System (ADS)

    Zhao, Changming; Guan, Zhe; Zhang, Haiyang

    2018-02-01

    Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.

  12. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism

    PubMed Central

    Puri, Neerja

    2015-01-01

    Introduction: Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. Aims: To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum — garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Materials and Methods: Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, <25% reduction in hair density. Results: It was seen that the percentage of hair reduction after two sessions of treatment was maximum (40%) in the diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. Conclusions: To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser. PMID:26157309

  13. An Intense Excitation Source for High Power (Blue-Green) Laser.

    DTIC Science & Technology

    1983-11-22

    mild and forms plasma rings near the edges of the center holes as indicated by the circular line in Figure 1. For dye laser pumping, the high pressure... ring formation, and the heavy gas plasmas produce more high-intensity light pulses than light gas. It is also possible to adjust the diameter of plasma ...sheets into the center hole; 5. the formation of plasma rings ; 6. the expansion and radiative cooling of the plasma which results in 7. the intense

  14. Influence of the platform jitter on intensity fluctuation for laser launch system

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Qiao, Chunhong; Huang, Tong; Zhang, Jinghui; Fan, Chengyu

    2017-10-01

    The jitter of the transmitting system can cause the light intensity fluctuation at the target position of the laser transmission, which affects the performance of the laser communication, imaging and the adaptive optical system. In this paper, the platform jitter is modeled by Gaussian random fluctuation phase and the analytic expression of the system jitter effect on the fluctuation of light intensity is obtained under the vacuum condition based on extended Huygens-Fresnel principle. The numerical simulation is compared with the theoretical expression and the consistency is obtained. At the same time, the influence of the jitter of the launch system on the intensity fluctuation of the target system under different turbulence conditions is analyzed by numerical simulation. The result show that normalized intensity fluctuation variance induced by platform jitter seems to be unrestricted. The jitter of the transmitting system has a more important influence on the fluctuation of the target position caused by the atmospheric turbulence, as the jitter increase. This result provides a reference for the application of the actual laser transmission system.

  15. Plasma-based polarizer and waveplate at large laser intensity

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2018-06-01

    A plasma photonic crystal consists of a plasma density grating which is created in underdense plasma by counterpropagating laser beams. When a high-power laser pulse impinges the crystal, it might be reflected or transmitted. So far only one type of pulse polarization, namely the so-called s wave (or TE mode) was investigated (when the electric field vector is perpendicular to the plane of incidence). Here, when investigating also so-called p waves (or TM modes, where the magnetic field vector is perpendicular to the plane of incidence), it is detected that the transmission and reflection properties of the plasma photonic crystal depend on polarization. A simple analytic model of the crystal allows one to make precise predictions. The first conclusion is that in some operational regime the crystal can act as a plasma polarizer for high-intensity laser pulses. Also, differences in phase velocities for grazing incidence between s and p polarization are found. Thus, secondly, the crystal can be utilized as a waveplate, e.g., transforming linearly polarized laser light into circular polarization. All these processes extend to laser intensities beyond the damage intensities of so far used solid state devices.

  16. Characteristics of GeV Electron Bunches Accelerated by Intense Lasers in Vacuum

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Ho, Y. K.; Kong, Q.; Yuan, X. Q.; Cao, N.; Feng, L.

    This paper studies the characteristics of GeV electron bunches driven by ultra-intense lasers in vacuum based on the mechanism of capture and violent acceleration scenario [CAS, see, e.g. J. X. Wang et al., Phys. Rev. E58, 6575 (1998)], which shows an interesting prospect of becoming a new principle of laser-driven accelerators. It has been found that the accelerated GeV electron bunch is a macro-pulse composed of a lot of micro-pulses, which is analogous to the structure of the bunches produced by conventional linacs. The macro-pulse corresponds to the duration of the laser pulse while the micro-pulse corresponds to the periodicity of the laser wave. Therefore, provided that the incoming electron bunch with comparable sizes as that of the laser pulse synchronously impinges on the laser pulse, the total fraction of electrons captured and accelerated to GeV energy can reach more than 20%. These results demonstrate that the mechanisms of CAS is a relatively effective accelerator mechanism.

  17. Process Properties of Electronic High Voltage Discharges Triggered by Ultra-short Pulsed Laser Filaments

    NASA Astrophysics Data System (ADS)

    Cvecek, Kristian; Gröschel, Benjamin; Schmidt, Michael

    Remote processing of metallic workpieces by techniques based on electric arc discharge or laser irradiation for joining or cutting has a long tradition and is still being intensively investigated in present-day research. In applications that require high power processing, both approaches exhibit certain advantages and disadvantages that make them specific for a given task. While several hybrid approaches exist that try to combine the benefits of both techniques, none were as successful in providing a fixed electric discharge direction as discharges triggered by plasma filaments generated by ultra-short pulsed lasers. In this work we investigate spatial and temporal aspects of laser filament guided discharges and give an upper time delay between the filament creation and the electrical build-up of a dischargeable voltage for a successful filament triggered discharge.

  18. Signal intensity enhancement of laser ablated volume holograms

    NASA Astrophysics Data System (ADS)

    Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.

    2017-11-01

    Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to

  19. Control of Laser High-Harmonic Generation with Counterpropagating Light

    NASA Astrophysics Data System (ADS)

    Voronov, S. L.; Kohl, I.; Madsen, J. B.; Simmons, J.; Terry, N.; Titensor, J.; Wang, Q.; Peatross, J.

    2001-09-01

    Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are ``shut down'' with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.

  20. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse

    NASA Astrophysics Data System (ADS)

    Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Takeda, K.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.; Hoshino, M.; Takabe, H.

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  1. Ultra short laser pulse modification of wave guides

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arkadi; Ashkenasi, David

    2003-11-01

    The high peak powers of ultra short (ps and sub-ps) pulsed lasers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has shown the potential of ultra short laser processing. In this study, the micro structuring of bulk transparent media was used to modify fused silica and especially the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress to overcome the barrier for enhanced optical out-coupling. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the subsurface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  2. Ultra-thin, light-trapping silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.

  3. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  4. Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.

    PubMed

    Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-01-10

    Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.

  5. Laser Radiation Pressure Acceleration of Monoenergetic Protons in an Ultra-Thin Foil

    NASA Astrophysics Data System (ADS)

    Eliasson, Bengt; Liu, Chuan S.; Shao, Xi; Sagdeev, Roald Z.; Shukla, Padma K.

    2009-11-01

    We present theoretical and numerical studies of the acceleration of monoenergetic protons in a double layer formed by the laser irradiation of an ultra-thin film. The stability of the foil is investigated by direct Vlasov-Maxwell simulations for different sets of laser-plasma parameters. It is found that the foil is stable, due to the trapping of both electrons and ions in the thin laser-plasma interaction region, where the electrons are trapped in a potential well composed of the ponderomo-tive potential of the laser light and the electrostatic potential due to the ions, and the ions are trapped in a potential well composed of the inertial potential in an accelerated frame and the electrostatic potential due to the electrons. The result is a stable double layer, where the trapped ions are accelerated to monoenergetic energies up to 100 MeV and beyond, which makes them suitable for medical applications cancer treatment. The underlying physics of trapped and untapped ions in a double layer is also investigated theoretically and numerically.

  6. Excitation Anisotropy in Laser-Induced-Fluorescence Spectroscopy —High-Intensity, Broad-Line Excitation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Atsumu; Nambu, Yoshihiro; Fujimoto, Takashi

    1986-10-01

    The problem of excitation anisotropy in laser-induced-fluorescence spectroscopy (LIFS) was investigated for the intense excitation case under the broad-line condition. The depolarization coefficient for the fluorescence light was derived in the intense-excitation limit (linearly-polarized or unpolarized light excitation) and the results are presented in tables. In the region of intermediate intensity, between the weak and intense-excitation limits, the master equation was solved for a specific example of atomic transitions and its result is compared with experimental results.

  7. Attosecond control of electronic processes by intense light fields.

    PubMed

    Baltuska, A; Udem, Th; Uiberacker, M; Hentschel, M; Goulielmakis, E; Gohle, Ch; Holzwarth, R; Yakovlev, V S; Scrinzi, A; Hänsch, T W; Krausz, F

    2003-02-06

    The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10(-15) s) timescale. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak. This so-called carrier-envelope phase has been predicted and observed to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 x 10(-18) s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents--these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.

  8. LIGHT - from laser ion acceleration to future applications

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  9. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  10. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    NASA Astrophysics Data System (ADS)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  11. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity

    NASA Astrophysics Data System (ADS)

    Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin

    2017-04-01

    We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.

  12. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; ...

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  13. A review of melasma treatment focusing on laser and light devices.

    PubMed

    Li, Janet Y; Geddes, Elizabeth Rc; Robinson, Deanne M; Friedman, Paul M

    2016-12-01

    Melasma is a pigmentary disorder of unclear etiology with numerous treatment options and high recurrence rates. Laser and light therapies may be utilized cautiously as second- or third-line options for recalcitrant melasma, but low-energy settings are preferred due to the risk of postinflammatory hyperpigmentation and melasma stimulation. Commonly used lasers include the low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, nonablative fractionated lasers, and intense pulsed light. Strict sun protection, concomitant use of bleaching agents, and maintenance treatments are necessary. A variety of other treatments that may also help to improve results are now being more widely adopted, including oral tranexamic acid, pulsed dye laser, antioxidants, and laser-assisted drug delivery. ©2016 Frontline Medical Communications.

  14. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  15. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendonça, J. T., E-mail: josetitomend@gmail.com; Vieira, J., E-mail: jorge.vieira@ist.utl.pt

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able tomore » show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.« less

  16. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  17. Automatic Suppression of Intense Monochromatic Light in Electro-Optical Sensors

    PubMed Central

    Ritt, Gunnar; Eberle, Bernd

    2012-01-01

    Electro-optical imaging sensors are widely distributed and used for many different tasks. Due to technical improvements, their pixel size has been steadily decreasing, resulting in a reduced saturation capacity. As a consequence, this progress makes them susceptible to intense point light sources. Developments in laser technology have led to very compact and powerful laser sources of any wavelength in the visible and near infrared spectral region, offered as laser pointers. The manifold of wavelengths makes it difficult to encounter sensor saturation over the complete operating waveband by conventional measures like absorption or interference filters. We present a concept for electro-optical sensors to suppress overexposure in the visible spectral region. The key element of the concept is a spatial light modulator in combination with wavelength multiplexing. This approach allows spectral filtering within a localized area in the field of view of the sensor. The system offers the possibility of automatic reduction of overexposure by monochromatic laser radiation. PMID:23202039

  18. Light and Laser Modalities in the Treatment of Cutaneous Sarcoidosis: A Systematic Review.

    PubMed

    Lima, Ana Luiza; Goetze, Steven; Illing, Tanja; Elsner, Peter

    2018-04-27

    Sarcoidosis is a systemic non-caseating granulomatous disease of unknown aetiology. Cutaneous manifestations are present in approximately 10-30% of the patients with the systemic form. Therapy is indicated in case of disabling symptoms, organ dysfunction or cosmetically distressing manifestation. Despite different therapeutic possibilities, cutaneous sarcoidosis remains exceptionally difficult to treat. Light and laser therapy may be a promising alternative. In this systematic review, we summarised the available treatments according to the literature concerning light and laser therapy for cutaneous sarcoidosis. Publications written in English and German, published between January 1990 and July 2016 in the database PubMed, MEDLINE, Embase, and Scopus were analysed. Light therapy with intense pulsed light, photodynamic therapy, and ultraviolet A light therapy, as well as laser therapy with pulsed dye laser, YAG laser, and Q-switched ruby laser were described. The results are based on individual case reports and small case series. Randomised controlled studies are lacking.

  19. Light-curve and spectral properties of ultra-stripped core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2017-11-01

    We discuss light-curve and spectral properties of ultra-stripped core-collapse supernovae. Ultra-stripped supernovae are supernovae with ejecta masses of only ~0.1M ⊙ whose progenitors lose their envelopes due to binary interactions with their compact companion stars. We follow the evolution of an ultra-stripped supernova progenitor until core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultra-stripped supernovae based on the nucleosynthesis results. We show that ultra-stripped supernovae synthesize ~0.01M ⊙ of the radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5 - 10 days. By comparing synthesized and observed spectra, we find that SN 2005ek and some of so-called calcium-rich gap transients like PTF10iuv may be related to ultra-stripped supernovae.

  20. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  1. The LAMP instrument at the Linac Coherent Light Source free-electron laser

    DOE PAGES

    Osipov, Timur; Bostedt, Christoph; Castagna, J. -C.; ...

    2018-03-23

    The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusivemore » metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here in this paper we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.« less

  2. The LAMP instrument at the Linac Coherent Light Source free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, Timur; Bostedt, Christoph; Castagna, J. -C.

    The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusivemore » metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here in this paper we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.« less

  3. The LAMP instrument at the Linac Coherent Light Source free-electron laser

    NASA Astrophysics Data System (ADS)

    Osipov, Timur; Bostedt, Christoph; Castagna, J.-C.; Ferguson, Ken R.; Bucher, Maximilian; Montero, Sebastian C.; Swiggers, Michele L.; Obaid, Razib; Rolles, Daniel; Rudenko, Artem; Bozek, John D.; Berrah, Nora

    2018-03-01

    The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusive metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.

  4. Controlled nanostructrures formation by ultra fast laser pulses for color marking.

    PubMed

    Dusser, B; Sagan, Z; Soder, H; Faure, N; Colombier, J P; Jourlin, M; Audouard, E

    2010-02-01

    Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes.

  5. Patterning of OPV modules by ultra-fast laser

    NASA Astrophysics Data System (ADS)

    Kubiš, Peter; Lucera, Luca; Guo, Fei; Spyropolous, George; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    A novel production process combining slot-die coating, transparent flexible IMI (ITO-Metal-ITO) electrodes and ultra-fast laser ablation can be used for the realization of P3HT:PCBM based thin film flexible OPV modules. The fast and precise laser ablation allows an overall efficiency over 3 % and a device geometric fill factor (GFF) over 95 %. Three functional layers can be ablated using the same wavelength only with varying the laser fluence and overlap. Different OPV device architectures with multilayers utilizing various materials are challenging for ablation but can be structured by using a systematical approach.

  6. Laser-driven ultrafast antiproton beam

    NASA Astrophysics Data System (ADS)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  7. Investigation on laser-plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target

    NASA Astrophysics Data System (ADS)

    Cristoforetti, G.; Anzalone, A.; Baffigi, F.; Bussolino, G.; D'Arrigo, G.; Fulgentini, L.; Giulietti, A.; Koester, P.; Labate, L.; Tudisco, S.; Gizzi, L. A.

    2014-09-01

    One of the most interesting research fields in laser-matter interaction studies is the investigation of effects and mechanisms produced by nano- or micro-structured targets, mainly devoted to the enhancing of laser-target or laser-plasma coupling. In intense and ultra-intense laser interaction regimes, the observed enhancement of x-ray plasma emission and/or hot electron conversion efficiency is explained by a variety of mechanisms depending on the dimensions and shape of the structures irradiated. In the present work, the attention is mainly focused on the lowering of the plasma formation threshold which is induced by the larger absorptivity. Flat and nanostructured silicon targets were here irradiated with an ultrashort laser pulse, in the range 1 × 1017-2 × 1018 W µm2 cm-2. The effects of structures on laser-plasma coupling were investigated at different laser pulse polarizations, by utilizing x-ray yield and 3/2ω harmonics emission. While the measured enhancement of x-ray emission is negligible at intensities larger than 1018 W µm2 cm-2, due to the destruction of the structures by the amplified spontaneous emission (ASE) pre-pulse, a dramatic enhancement, strongly dependent on pulse polarization, was observed at intensities lower than ˜3.5 × 1017 W µm2 cm-2. Relying on the three-halves harmonic emission and on the non-isotropic character of the x-ray yield, induced by the two-plasmon decay instability, the results are explained by the significant lowering of the plasma threshold produced by the nanostructures. In this view, the strong x-ray enhancement obtained by s-polarized pulses is produced by the interaction of the laser pulse with the preplasma, resulting from the interaction of the ASE pedestal with the nanostructures.

  8. Medical applications of ultra-short pulse lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment communitymore » perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.« less

  9. Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation.

    PubMed

    Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong

    2009-09-14

    A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.

  10. Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20  μm.

    PubMed

    Steinle, Tobias; Mörz, Florian; Steinmann, Andy; Giessen, Harald

    2016-11-01

    A highly stable 350 fs laser system with a gap-free tunability from 1.33 to 2.0 μm and 2.13 to 20 μm is demonstrated. Nanojoule-level pulse energy is achieved in the mid-infrared at a 43 MHz repetition rate. The system utilizes a post-amplified fiber-feedback optical parametric oscillator followed by difference frequency generation between the signal and idler. No locking or synchronization electronics are required to achieve outstanding free-running output power and spectral stability of the whole system. Ultra-low intensity noise, close to the pump laser's noise figure, enables shot-noise limited measurements.

  11. Electron beam cooling in intense focussed laser pulses

    NASA Astrophysics Data System (ADS)

    Yoffe, Samuel R.; Noble, Adam; Macleod, Alexander J.; Jaroszynski, Dino A.

    2017-05-01

    In the coming years, a new generation of high-power laser facilities (such as the Extreme Light Infrastructure) will become operational, for which it is important to understand how the interaction with intense laser pulses affects the bulk properties of relativistic electron bunches. At such high field intensities, we expect both radiation reaction and quantum effects to have a dominant role to play in determining the dynamics. The reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction has been shown to occur equally in the longitudinal and transverse directions, whereas this symmetry is broken when the theory is extended to approximate certain quantum effects. The reduction in longitudinal cooling suggests that the effects of radiation reaction could be better observed in measurements of the transverse distribution, which for real-world laser pulses motivates the investigation of the angular dependence of the interaction. Using a stochastic single-photon emission model with a (Gaussian beam) focussed pulse, we find strong angular dependence of the stochastic heating.

  12. Negative response of HgCdTe photodiode induced by nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Zuodong; Zhang, Jianmin; Lin, Xinwei; Shao, Bibo; Yang, Pengling

    2017-05-01

    Photodetectors' behavior and mechanism of transient response are still not understood very well, especially under high photon injection. Most of the researches on this topic were carried out with ultra-short laser pulse, whose pulse width ranged from femtosecond scale to picosecond scale. However, in many applications the durations of incident light are in nanosecond order and the light intensities are strong. To investigate the transient response characteristics and mechanisms of narrow-bandgap photovoltaic detectors under short laser irradiation, we performed an experiment on HgCdTe photodiodes. The n+-on-p type HgCdTe photodiodes in the experiment were designed to work in spectrum from 1.0μm to 3.0μm, with conditions of zero bias and room temperature. They were exposed to in-band short laser pulses with dwell time of 20 nanosecond. When the intensity of incident laser beam rose to 0.1J/cm2 order, the photodiodes' response characteristics turned to be bipolar from unipolar. A much longer negative response with duration of about 10μs to 100μs followed the positive light response. The amplitude of the negative response increased with the laser intensity, while the dwell time of positive response decreased with the laser intensity. Considering the response characteristics and the device structure, it is proposed that the negative response was caused by space charge effect at the electrodes. Under intense laser irradiation, a temperature gradient formed in the HgCdTe material. Due to the temperature gradient, the majority carriers diffused away from upper surface and left space charge at the electrodes. Then negative response voltage could be measured in the external circuit. With higher incident laser intensity, the degree of the space charge effect would become higher, and then the negative response would come earlier and show larger amplitude.

  13. Efficient coupling of high intensity short laser pulses into snow clusters

    NASA Astrophysics Data System (ADS)

    Palchan, T.; Pecker, S.; Henis, Z.; Eisenmann, S.; Zigler, A.

    2007-01-01

    Measurements of energy absorption of high intensity laser pulses in snow clusters are reported. Targets consisting of sapphire coated with snow nanoparticles were found to absorb more than 95% of the incident light compared to 50% absorption in flat sapphire targets.

  14. A microchip laser source with stable intensity and frequency used for self-mixing interferometry.

    PubMed

    Zhang, Shaohui; Zhang, Shulian; Tan, Yidong; Sun, Liqun

    2016-05-01

    We present a stable 40 × 40 × 30 mm(3) Laser-diode (LD)-pumped-microchip laser (ML) laser source used for self-mixing interferometry which can measure non-cooperative targets. We simplify the coupling process of pump light in order to make its polarization and intensity robust against environmental disturbance. Thermal frequency stabilization technology is used to stabilize the laser frequency of both LD and ML. Frequency stability of about 1 × 10(-7) and short-term intensity fluctuation of 0.1% are achieved. The theoretical long-term displacement accuracy limited by frequency and intensity fluctuation is about 10 nm when the measuring range is 0.1 m. The line-width of this laser is about 25 kHz corresponding to 12 km coherent length and 6 km measurement range for self-mixing interference. The laser source has been equipped to a self-mixing interferometer, and it works very well.

  15. Determination of ultra-short laser induced damage threshold of KH{sub 2}PO{sub 4} crystal: Numerical calculation and experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian; Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210; Chen, Mingjun, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu

    Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionizationmore » and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.« less

  16. Diode laser for endodontic treatment: investigations of light distribution and disinfection efficiency

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Graser, Rainer; Udart, Martin; Kienle, Alwin; Hibst, Raimund

    2011-03-01

    Diode lasers are used in dentistry mainly for oral surgery and disinfection of root canals in endodontic treatment. The purpose of this study was to investigate and to improve the laser induced bacteria inactivation in endodontic treatment. An essential prerequisite of the optimization of the irradiation process and device is the knowledge about the determinative factors of bacteria killing: light intensity? light dosis? temperature? In order to find out whether high power NIR laser bacterial killing is caused by a photochemical or a photothermal process we heated bacteria suspensions of E. coli K12 by a water bath and by a diode laser (940 nm) with the same temporal temperature course. Furthermore, bacteria suspensions were irradiated while the temperature was fixed by ice water. Killing of bacteria was measured via fluorescence labeling. In order to optimize the irradiation of the root canal, we designed special fiber tips with radial light emission characteristic by optical ray tracing simulations. Also, we calculated the resulting light distribution in dentin by voxelbased Monte Carlo simulations. Furthermore, we irradiated root canals of extracted human teeth using different fiber tip geometries and measured the resulting light and heat distribution by CCD-camera and thermography. Comparison of killing rates between laser and water based heating shows no significant differences, and irradiation of ice cooled suspensions has no substantial killing effect. Thus, the most important parameter for bacterial killing is the maximum temperature. Irradiation of root canals using fiber tips with radial light emission results in a more defined irradiated area with minor irradiation of the apex and higher intensity and therefore higher temperature increase on root canal surface. In conclusion, our experiments show that at least for E. coli bacteria inactivation by NIR laser irradiation is solely based on a thermal process and that heat distribution in root canal can be

  17. Post-filamentation high-intensive light channels formation upon ultrashort laser pulses self-focusing in air

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemlyanov, A. A.

    2017-01-01

    Experimental and theoretical study of the post-filamentation stage of focused high-power Ti:Sa laser pulses in air is presented. Angular divergence of the laser beam, as well as angular and spatial characteristics of specific spatially localized light structures, the post-filament channels (PFCs), under different initial focusing conditions and laser beam energy are investigated. We show that PFC angular divergence is always less than that of the whole laser beam and tends to decrease with laser pulse energy increase and beam focal length elongation.

  18. Dependence of anti-Stokes/Stokes intensity ratios on substrate optical properties for Brillouin light scattering from ultrathin iron films

    NASA Astrophysics Data System (ADS)

    Cochran, J. F.; From, M.; Heinrich, B.

    1998-06-01

    Brillouin light scattering experiments have been used to investigate the intensity of 5145 Å laser light backscattered from spin waves in 20 monolayer thick Fe(001) films. The experiments have shown that the ratio of frequency upshifted light intensity to frequency downshifted light intensity depends upon the material of the substrate used to support the iron films. For a fixed magnetic field and for a fixed angle of incidence of the laser light this intensity ratio is much larger for an iron film deposited on a sulphur passivated GaAs(001) substrate than for an iron film deposited on a Ag(001) substrate. The data have been compared with a calculation that takes into account multiple scattering of the optical waves in the iron film and in a protective gold overlayer. The observations are in qualitative agreement with the theory, except for angles of incidence greater than 60°.

  19. Theoretical investigation of the ultra-intense laser interaction with plasma mirrors in radiation pressure dominant regime

    NASA Astrophysics Data System (ADS)

    Sonia, Krishna Kumar; Maheshwari, K. P.; Jaiman, N. K.

    2017-05-01

    At laser intensity in the range ~ 1022 -1023W/cm2, the radiation pressure starts to play a key role in the interaction of an intense electromagnetic wave with a dense plasma foil. Depending upon the incident laser intensity, polarization of the incident beam and also on the density of the thin plasma layer the mirror motion may be assumed to be uniform, accelerated, or oscillatory. A solid dense plasma slab, accelerated in the radiation pressure dominant (RPD) regime, can efficiently reflect a counter-propagating relativistically strong source pulse consisting of up-shifted frequency and high harmonics. In this RPD regime we present our numerical results for the frequency and brightness of the reflected radiation from a uniformly moving plasma mirror. Our numerical results show that for the appropriate laser and plasma parameters in the case 2γ < {({n}e{λ }s3)}1/6 there are approximately 8.03 × 1042 photons / (mm2 - mrad2 - sec.-0.1% bandwidth) in the energy range ~ 10keV. In the case when 2γ > {({n}e{λ }s3)}1/6 for the same parameters and ad = 300, λd = 0.8 μm, the brightness is found to be 3.27 × 1034 photons / (mm2 - mrad2 - sec. - 0.1% bandwidth) in the energy range ~100 keV.

  20. Designing Light Beam Transmittance Measuring Tool Using a Laser Pointer

    NASA Astrophysics Data System (ADS)

    Nuroso, H.; Kurniawan, W.; Marwoto, P.

    2016-08-01

    A simple instrument used for measuring light beam transmittance percentage made of window film has been developed. The instrument uses a laser pointer of 405 nm and 650 nm ±10% as a light source. Its accuracy approaches 80%. Transmittance data was found by comparing the light beam before and after passing the window film. The light intensity measuring unit was deleted by splitting the light source into two beams through a beam splitter. The light beam was changed into resistance by a NORP12 LDR sensor designed at a circuit of voltage divider rule of Khirchoff's laws. This conversion system will produce light beam intensity received by the sensor to become an equal voltage. This voltage will, then, be presented on the computer screen in the form of a real time graph via a 2.0 USB data transfer.

  1. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  2. OCT imaging with temporal dispersion induced intense and short coherence laser source

    NASA Astrophysics Data System (ADS)

    Manna, Suman K.; le Gall, Stephen; Li, Guoqiang

    2016-10-01

    Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.

  3. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  4. Gas bubble formation in fused silica generated by ultra-short laser pulses.

    PubMed

    Cvecek, Kristian; Miyamoto, Isamu; Schmidt, Michael

    2014-06-30

    During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles.

  5. Stretched Lens Array (SLA) for Collection and Conversion of Infrared Laser Light: 45% Efficiency Demonstrated for Near-Term 800 W/kg Space Power System

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; Howell, Joe; Fikes, John; Fork, Richard; Phillips, Dane; Aiken, Dan; McDanal, A. J.

    2006-01-01

    For the past 2% years, our team has been developing a unique photovoltaic concentrator array for collection and conversion of infrared laser light. This laser-receiving array has evolved from the solar-receiving Stretched Lens Array (SLA). The laser-receiving version of SLA is being developed for space power applications when or where sunlight is not available (e.g., the eternally dark lunar polar craters). The laser-receiving SLA can efficiently collect and convert beamed laser power from orbiting spacecraft or other sources (e.g., solar-powered lasers on the permanently illuminated ridges of lunar polar craters). A dual-use version of SLA can produce power from sunlight during sunlit portions of the mission, and from beamed laser light during dark portions of the mission. SLA minimizes the cost and mass of photovoltaic cells by using gossamer-like Fresnel lenses to capture and focus incoming light (solar or laser) by a factor of 8.5X, thereby providing a cost-effective, ultra-light space power system.

  6. Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting

    PubMed Central

    Krasnoshchoka, Anastasiia; Dam-Hansen, Carsten; Corell, Dennis Dan; Petersen, Paul Michael

    2017-01-01

    We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems. PMID:29292770

  7. Technique for compressing light intensity ranges utilizing a specifically designed liquid crystal notch filter

    DOEpatents

    Rushford, Michael C.

    1988-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten metal in an atomic vapor laser isotope separation (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. To accomplish this, the assembly utilizes the combination of interference filter and a liquid crystal notch filter. The latter which preferably includes a cholesteric liquid crystal arrangement is configured to pass light at all wavelengths, except a relatively narrow wavelength band which defines the filter's notch, and includes means for causing the notch to vary to at least a limited extent with the intensity of light at its light incidence surface.

  8. Low-intensity laser therapy to treat dentin hypersensitivity: comparative clinical study using different light doses

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane F. Z.; Mazzetto, Marcello O.; Bagnato, Vanderlei S.

    2001-04-01

    Dentin hypersensitivity is the most common patient's complain related to pain. In fact, this is a challenge to treat specially if conventional techniques are used. The possibility to treat pain through a low intensity laser gives us an opportunity to solve this important clinical problem without promote a discomfort to patient. The main point here is not if this kind of treatment is anti- inflammatory to pulp and/or biostimulatory to production of irregular secondary dentin. The most important point here is to understand how much energy is necessary to reach conditions where to tooth become insensible to external stimulus. Our double-blinded study compared a group without laser (Placebo) with five other groups where different doses at 660 nm low intensity laser were employed. The final conclusion is that for 660 nm laser therapy, the doses from 0.13 to 2.0 J/cm2 were more efficiency than the others. The follow up care in this study was of 45 days.

  9. Modeling of photoluminescence in laser-based lighting systems

    NASA Astrophysics Data System (ADS)

    Chatzizyrli, Elisavet; Tinne, Nadine; Lachmayer, Roland; Neumann, Jörg; Kracht, Dietmar

    2017-12-01

    The development of laser-based lighting systems has been the latest step towards a revolution in illumination technology brought about by solid-state lighting. Laser-activated remote phosphor systems produce white light sources with significantly higher luminance than LEDs. The weak point of such systems is often considered to be the conversion element. The high-intensity exciting laser beam in combination with the limited thermal conductivity of ceramic phosphor materials leads to thermal quenching, the phenomenon in which the emission efficiency decreases as temperature rises. For this reason, the aim of the presented study is the modeling of remote phosphor systems in order to investigate their thermal limitations and to calculate the parameters for optimizing the efficiency of such systems. The common approach to simulate remote phosphor systems utilizes a combination of different tools such as ray tracing algorithms and wave optics tools for describing the incident and converted light, whereas the modeling of the conversion process itself, i.e. photoluminescence, in most cases is circumvented by using the absorption and emission spectra of the phosphor material. In this study, we describe the processes involved in luminescence quantum-mechanically using the single-configurational-coordinate diagram as well as the Franck-Condon principle and propose a simulation model that incorporates the temperature dependence of these processes. Following an increasing awareness of climate change and environmental issues, the development of ecologically friendly lighting systems featuring low power consumption and high luminous efficiency is imperative more than ever. The better understanding of laser-based lighting systems is an important step towards that aim as they may improve on LEDs in the near future.

  10. First PIC simulations modeling the interaction of ultra-intense lasers with sub-micron, liquid crystal targets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Poole, Patrick; Willis, Christopher; Andereck, David; Schumacher, Douglass

    2014-10-01

    We recently introduced liquid crystal films as on-demand, variable thickness (50-5000 nanometers), low cost targets for intense laser experiments. Here we present the first particle-in-cell (PIC) simulations of short pulse laser excitation of liquid crystal targets treating Scarlet (OSU) class lasers using the PIC code LSP. In order to accurately model the target evolution, a low starting temperature and field ionization model are employed. This is essential as large starting temperatures, often used to achieve large Debye lengths, lead to expansion of the target causing significant reduction of the target density before the laser pulse can interact. We also present an investigation of the modification of laser pulses by very thin targets. This work was supported by the DARPA PULSE program through a grant from ARMDEC, by the US Department of Energy under Contract No. DE-NA0001976, and allocations of computing time from the Ohio Supercomputing Center.

  11. Next Generation Driver for Attosecond and Laser-plasma Physics.

    PubMed

    Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L

    2017-07-12

    The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20  W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

  12. Penetration parameters of low-intensity laser light in dental configurations for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Uzunov, Tzonko; Gizbreht, Alexander I.; Nenchev, Marin N.

    1996-12-01

    The results of the measurement of the penetration of the laser light inside dental configurations are reported. The illumination of the pulp chamber is carried out. The results can be employed in clinical practice for dosage in treatment of periodontal diseases.

  13. Detection of calculus by laser-induced breakdown spectroscopy (LIBS) using an ultra-short pulse laser system (USPL)

    NASA Astrophysics Data System (ADS)

    Schelle, F.; Brede, O.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.

    2011-03-01

    The aim of this study was to assess the detection of calculus by Laser Induced Breakdown Spectroscopy (LIBS). The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz at an average power of 5 W was used. Employing a focusing lense, intensities of the order of 1011 W/cm2 were reached on the tooth surface. These high intensities led to the generation of a plasma. The light emitted by the plasma was collimated into a fibre and then analyzed by an echelle spectroscope in the wavelength region from 220 nm - 900 nm. A total number of 15 freshly extracted teeth was used for this study. For each tooth the spectra of calculus and cementum were assessed separately. Comprising all single measurements median values were calculated for the whole spectrum, leading to two specific spectra, one for calculus and one for cementum. For further statistical analysis 28 areas of interest were defined as wavelength regions, in which the signal strength differed regarding the material. In 7 areas the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p < 0.05). Thus it can be concluded that Laser Induced Breakdown Spectroscopy is well suited as method for a reliable diagnostic of calculus. Further studies are necessary to verify that LIBS is a minimally invasive method allowing a safe application in laser-guided dentistry.

  14. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  15. Nanostructure array plasmas generated by femtosecond pulses at highly relativistic intensities

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Wong, Y.; Wong, S.; Rockwood, A.; Glasby, J.; Shlyaptsev, V.; Rocca, J. J.; Capeluto, M. G.; Kaymak, V.; Pukhov, A.

    2017-10-01

    The irradiation of high aspect ratio ordered nanostructure arrays with ultra-high contrast femtosecond laser pulses of relativistic intensity provides a unique combination of nearly complete optical absorption and drastically enhanced light penetration into near-solid density targets. This allows the material to be volumetrically heated deep into the ultra-high energy density regime. In previous experiments we have shown that irradiation of Ni and Au nanostructures with femtosecond pulses focused to an intensity of 5x1018 Wcm-2 generate multi-KeV near solid density plasmas in which atoms are ionized to the Ni+26 and Au+52 charge states. Here we present the first results of the irradiation of nanostructure arrays with highly relativistic pulses of intensities up to 5x1021Wcm-2. Silver and Rhodium nanowire arrays were irradiated with frequency-doubled pulses of 30 fs duration from a petawatt-class Ti:Sa laser. Time integrated x-ray spectra show the presence of He-like and Li-like emission. Results of experiments conducted with a variety of different nanowires diameters with a range of interwire spacings will be presented and compared to the result of 3D particle-in-cell-simulations. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy.

  16. Quantum-electrodynamic cascades in intense laser fields

    NASA Astrophysics Data System (ADS)

    Narozhny, N. B.; Fedotov, A. M.

    2015-01-01

    It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.

  17. Ultra-short wavelength operation in Thulium-doped silica fiber laser with bidirectional pumping

    NASA Astrophysics Data System (ADS)

    Xiao, Xusheng; Guo, Haitao; Yan, Zhijun; Wang, Hushan; Xu, Yantao; Lu, Min; Wang, Yishan; Peng, Bo

    2017-02-01

    An ultra-short wavelength operation of Tm-doped all fiber laser based on fiber Bragg gratings (FBGs) was developed. A bi-directional pump configuration for the ultra-short wavelength operation was designed and investigated for the first time. the laser yielded 3.15W of continuous-wave output at 1706.75nm with a narrow-linewidth of 50pm and a maximum slope efficiency of 42.1%. The dependencies of the slope efficiencies and pump threshold of the laser versus the length of active fiber and reflectivity of the output mirror (FBG) were investigated in detail. An experimental comparative study between two Thulium-doped fiber lasers (TDFLs) with two different pumping configuration(forward unidirectional pumping and bidirectional pumping) was presented. It is indisputable that the development of 1.7μm silicate fiber lasers with Watt-level output power open up a number of heart-stirring and tempting application windows.

  18. Progress toward a practical laser driven ion source using variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Cochran, Ginevra; Zeil, Karl; Metzkes, Josephine; Obst, Lieselotte; Kluge, Thomas; Schlenvoigt, Hans-Peter; Prencipe, Irene; Cowan, Tom; Schramm, Uli; Schumacher, Douglass

    2016-10-01

    Ion acceleration from ultra-intense laser interaction has been long investigated in pursuit of requisite energies and spectral distributions for applications like proton cancer therapy. However, the details of ion acceleration mechanisms and their laser intensity scaling are not fully understood, especially the complete role of pulse contrast and target thickness. Additionally, target delivery and alignment at appropriate rates for study and subsequent treatment pose significant challenges. We present results from a campaign on the Draco laser using liquid crystal targets that have on-demand, in-situ thickness tunability over more than three orders of magnitude, enabling rapid data collection due to <1 minute, automatically aligned target formation. Diagnostics include spectral and spatial measurement of ions, electrons, and reflected and transmitted light, all with thickness, laser focus, and pulse contrast variations. In particular we discuss optimal thickness vs. contrast and details of ultra-thin target normal ion acceleration, along with supporting particle-in-cell studies. This work was supported by the DARPA PULSE program through AMRDEC, by the NNSA (DE-NA0001976), by EC Horizon 2020 LASERLAB-EUROPE/LEPP (654148), and by the German Federal Ministry of Education and Research (BMBF, 03Z1O511).

  19. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE PAGES

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan; ...

    2017-09-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  20. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  1. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    PubMed Central

    Buzmakov, Alexey; Jurek, Zoltan; Loh, Ne-Te Duane; Samoylova, Liubov; Santra, Robin; Schneidmiller, Evgeny A.; Tschentscher, Thomas; Yakubov, Sergey; Yoon, Chun Hong; Yurkov, Michael V.; Ziaja-Motyka, Beata; Mancuso, Adrian P.

    2017-01-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs. PMID:28989713

  2. Integrated InAs/InP quantum-dot coherence comb lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Zhenguo; Liu, Jiaren; Poole, Philip J.; Song, Chun-Ying; Webber, John; Mao, Linda; Chang, Shoude; Ding, Heping; Barrios, Pedro J.; Poitras, Daniel; Janz, Siegfried

    2017-02-01

    Current communication networks needs to keep up with the exponential growth of today's internet traffic, and telecommunications industry is looking for radically new integrated photonics components for new generation optical networks. We at National Research Council (NRC) Canada have successfully developed nanostructure InAs/InP quantum dot (QD) coherence comb lasers (CCLs) around 1.55 μm. Unlike uniform semiconductor layers in most telecommunication lasers, in these QD CCLs light is emitted and amplified by millions of semiconductor QDs less than 60 nm in diameter. Each QD acts like an isolated light source acting independently of its neighbours, and each QD emits light at its own unique wavelength. The end result is a QD CCL is more stable and has ultra-low timing jitter. But most importantly, a single QD CCL can simultaneously produce 50 or more separate laser beams at distinct wavelengths over the telecommunications C-band. Utilizing those unique properties we have put considerable effort well to design, grow and fabricate InAs/InP QD gain materials. After our integrated packaging and using electrical feedback-loop control systems, we have successfully demonstrated ultra-low intensity and phase noise, frequency-stabilized integrated QD CCLs with the repetition rates from 10 GHz to 100 GHz and the total output power up to 60 mW at room temperature. We have investigated their relative intensity noises, phase noises, RF beating signals and other performance of both filtered individual channel and the whole CCLs. Those highly phase-coherence comb lasers are the promising candidates for flexible bandwidth terabit coherent optical networks and signal processing applications.

  3. The interaction of intense subpicosecond laser pulses with underdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10 16 W/cm 2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L plasma ≥ 2L Rayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n o ≤ 0.05n cr). Specifically, themore » parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.« less

  4. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    NASA Astrophysics Data System (ADS)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  5. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  6. Joining of thin glass with semiconductors by ultra-fast high-repetition laser welding

    NASA Astrophysics Data System (ADS)

    Horn, Alexander; Mingaeev, Ilja; Werth, Alexander; Kachel, Martin

    2008-02-01

    Lighting applications like OLED or on silicon for electro-optical applications need a reproducible sealing process. The joining has to be strong, the permeability for gasses and humidity very low and the process itself has to be very localized not affecting any organic or electronic parts inside the sealed region. The actual sealing process using glue does not fulfil these industrial needs. A new joining process using ultra-fast laser radiation offers a very precise joining with geometry dimensions smaller than 50 μm. Ultra-fast laser radiation is absorbed by multi-photon absorption in the glass. Due to the very definite threshold for melting and ablation the process of localized heating can be controlled without cracking. Repeating the irradiation at times smaller than the heat diffusion time the temperature in the focus is increased by heat accumulation reaching melting of the glass. Mowing the substrate relatively to the laser beam generates a seal of re-solidified glass. Joining of glass is achieved by positioning the laser focus at the interface. A similar approach is used for glass-silicon joining. The investigations presented will demonstrate the joining geometry by microscopy of cross-sections achieved by welding two glass plates (Schott D263 and AF45) with focused IR femtosecond laser radiation (wavelength λ = 1045nm, repetition rate f = 1 MHz, pulse duration t p = 500 fs, focus diameter w 0 = 4 μm, feeding velocity v= 1-10 mm/s). The strength of the welding seam is measured by tensile stress measurements and the gas and humidity is detected. A new diagnostic method for the on-line detection of the welding seam properties will be presented. Using a non-interferometric technique by quantitative phase microscopy the refractive index is measured during welding of glass in the time regime 0-2 μs. By calibration of the measured refractive index with a relation between refractive index and temperature a online-temperature detection can be achieved.

  7. [94 km Brillouin distributed optical fiber sensors based on ultra-long fiber ring laser pumping].

    PubMed

    Yuan, Cheng-Xu; Wang, Zi-Nan; Jia, Xin-Hong; Li, Jin; Yan, Xiao-Dong; Cui, An-Bin

    2014-05-01

    A novel optical amplification configuration based on ultra-long fiber laser with a ring cavity was proposed and applied to Brillouin optical time-domain analysis (BOTDA) sensing system, in order to extend the measurement distance significantly. The parameters used in the experiment were optimized, considering the main limitations of the setup, such as depletion, self-phase modulation (SPM) and pump-signal relative intensity noise (RIN) transfer. Through analyzing Brillouin gain spectrum, we demonstrated distributed sensing over 94 km of standard single-mode fiber with 3 meter spatial resolution and strain/temperature accuracy of 28 /1. 4 degree C.

  8. Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivancic, S.; Haberberger, D.; Habara, H.

    Channeling experiments were performed that demonstrate the transport of high-intensity (>10¹⁸ W/cm²), multikilojoule laser light through a millimeter-sized, inhomogeneous (~300-μm density scale length) laser produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.

  9. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays.

    PubMed

    Rudenko, A; Inhester, L; Hanasaki, K; Li, X; Robatjazi, S J; Erk, B; Boll, R; Toyota, K; Hao, Y; Vendrell, O; Bomme, C; Savelyev, E; Rudek, B; Foucar, L; Southworth, S H; Lehmann, C S; Kraessig, B; Marchenko, T; Simon, M; Ueda, K; Ferguson, K R; Bucher, M; Gorkhover, T; Carron, S; Alonso-Mori, R; Koglin, J E; Correa, J; Williams, G J; Boutet, S; Young, L; Bostedt, C; Son, S-K; Santra, R; Rolles, D

    2017-06-01

    X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is

  10. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays

    DOE PAGES

    Rudenko, A.; Inhester, L.; Hanasaki, K.; ...

    2017-05-31

    We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization

  11. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudenko, A.; Inhester, L.; Hanasaki, K.

    We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization

  12. Ultra-long fiber Raman lasers: design considerations

    NASA Astrophysics Data System (ADS)

    Koltchanov, I.; Kroushkov, D. I.; Richter, A.

    2015-03-01

    In frame of the European Marie Currie project GRIFFON [http://astonishgriffon.net/] the usage of a green approach in terms of reduced power consumption and maintenance costs is envisioned for long-span fiber networks. This shall be accomplished by coherent transmission in unrepeatered links (100 km - 350 km) utilizing ultra-long Raman fiber laser (URFL)-based distributed amplification, multi-level modulation formats, and adapted Digital Signal Processing (DSP) algorithms. The URFL uses a cascaded 2-order pumping scheme where two (co- and counter-) ˜ 1365 nm pumps illuminate the fiber. The URFL oscillates at ˜ 1450 nm whereas amplification is provided by stimulated Raman scattering (SRS) of the ˜ 1365 nm pumps and the optical feedback is realized by two Fiber Bragg gratings (FBGs) at the fiber ends reflecting at 1450 nm. The light field at 1450 nm provides amplification for signal waves in the 1550 nm range due to SRS. In this work we present URFL design studies intended to characterize and optimize the power and noise characteristics of the fiber links. We use a bidirectional fiber model describing propagation of the signal, pump and noise powers along the fiber length. From the numerical solution we evaluate the on/off Raman gain and its bandwidth, the signal excursion over the fiber length, OSNR spectra, and the accumulated nonlinearities. To achieve best performance for these characteristics the laser design is optimized with respect to the forward/backward pump powers and wavelengths, input/output signal powers, reflectivity profile of the FBGs and other parameters.

  13. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  14. The Interaction of Intense Laser Pulses with Preformed Plasmas for Fast Ignitor Studies

    NASA Astrophysics Data System (ADS)

    MacKinnon, A. J.

    1998-11-01

    The understanding of the interaction of intense picosecond laser pulses with preformed plasmas is essential for the fast ignitor concept. One of the major issues for this scheme concerns the propagation of ultra intense laser pulses through near critical density plasmas. Measurements of self-channelling of picosecond pulses due to relativistic and ponderomotive expulsion effects have recently been obtained in preformed plasmas at laser irradiances between 5-9x10^18 Wcm-2 footnote M. Borghesi et al, Phys. Rev Lett 78, 879 (1997).. The channel expansion after the laser pulse has been measured and an expansion velocity up to 1x10^9cms-1. was observed, implying ion energies around 1MeV. In addition, it was observed via Faraday rotation of an optical probe that the self focused channel is surrounded by a multi-megagauss magnetic field as predicted by 3D PIC simulations footnote A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev Lett 76, 3975 (1996); M. Borghesi et al, Phys. Rev. Lett. 80, 5137 (1998).. The existence of this magnetic field is important for magnetic self-channelling of the relativistic electrons to high plasma densities. Good agreement was observed between the measurements and the 3D PIC simulations. The experimental results and PIC simulations will be presented and their relevance to the fast ignitor concept will be discussed.

  15. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, N.; Cardoso, L.; Geada, J.

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  16. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE PAGES

    Lemos, N.; Cardoso, L.; Geada, J.; ...

    2018-02-16

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  17. Photothermal and photochemical effects of laser light absorption by indocyanine green (ICG)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Diagaradjane, Parmeswaran; Pikkula, Brian M.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2005-04-01

    Indocyanine Green (ICG) is clinically used as a fluorescent dye for imaging purposes. Its rapid circulation kinetics and minimal toxicity has prompted investigation into ICG's utility as a photosentitizer for therapeutic applications. Traditionally, optically mediated tumor therapy has focused on photodynamic therapy, which employs a photochemical mechanism resulting from the absorption of low intensity CW laser light by localized photosensitizers such as Photofrin II, Benzoporphyrin Derivative (BPD), ICG. Treatment of cutaneous vascular malformations such as port-wine stains, on the other hand, is based on a photothermal mechanism resulting from the absorption of high intensity pulsed laser light by hemoglobin. In this study, we compared the effectiveness of combining photochemical and photothermal mechanisms during application of ICG in conjunction with laser irradiation with the intention that the combined approach may lead to a reduction in the threshold dose of pulsed laser light required to treat hypervascular malformations. The blood vessels in rabbit ears were used as an in vivo model for targeted vasculature. Irradiation of the ears with IR light (λ=785 nm, Δτ = 3 min, Io = 120 mW) was used to elicit photochemical damage, while photothermal damage was brought about using pulses from a ruby laser (λ=694 nm, τ = 3 ms) with different fluences. For the combined modality, photochemical damage was induced first and followed by photothermal irradiation. This modality was compared with photothermal irradiation alone. The effectiveness of each irradiation scheme was assessed using histopathological analysis. We present preliminary data that suggests that pretreatment with photodynamic therapy before photothermal coagulation results in more severe vascular damage with lower photothermal fluence levels. The results of this study provide the foundation work for further exploration of the therapeutic potentials of photochemical and photothermal effects during

  18. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  19. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Boucerredj, N.; Beggas, K.

    2016-10-01

    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  20. Long-pulsed Nd:YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial.

    PubMed

    Ismail, S A

    2012-02-01

    Although several lasers meet the wavelength criteria for selective follicular destruction, the treatment of darker skin phototypes is particularly challenging because absorption of laser energy by the targeted hairs is compromised by an increased concentration of epidermal melanin. To compare satisfaction level, safety and effectiveness of a long-pulsed Nd:YAG laser and intense pulsed light (IPL) in axillary hair reduction in subjects with dark skin. The study design was a within-patient, right-left, assessor-blinded, comparison of long-pulsed Nd:YAG laser and IPL. Fifty women (skin phototypes IV-VI) volunteered for removal of axillary hair. Five sessions at 4- to 6-week intervals were performed. Hair counts at both sides were compared at baseline and 6months after the last session. Final overall evaluations were performed by subjects and clinician at the end of the study. Satisfaction was scored for both devices. Thirty-nine women completed the study. At 6months, the decrease in hair counts on the laser side (79·4%, P<0·001 vs. pretreatment) was significantly (P<0·01) greater than that on the IPL side (54·4%, P<0·01 vs. pretreatment). Only temporary adverse effects were reported at both sides. Higher pain scores and more inflammation were reported with Nd:YAG laser; however, it was preferred by 29 volunteers (74%). Volunteers reported higher satisfaction score with Nd:YAG laser (P<0·01). Dark skin can be treated by both systems safely and effectively; however, long-pulsed (1064 nm) Nd:YAG laser is more effective as reported by both subjects and clinician. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  1. Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO

    NASA Astrophysics Data System (ADS)

    Suemasa, Aru; Shimo-oku, Ayumi; Nakagawa, Ken'ichi; Musha, Mitsuru

    2017-12-01

    In Japan, not only the ground-based gravitational wave (GW) detector mission KAGRA but also the space GW detector mission DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) and its milestone mission B-DECIGO have been promoted. The designed strain sensitivity of DECIGO and B-DECIGO are δL/ L < 10-23. Since the GW detector requires high power and highly-stable light source, we have developed the light source with high frequency and intensity stability for DECIGO and B-DECIGO. The frequency of the Yb-doped fiber DFB lasers are stabilized to the iodine saturated absorption at 515 nm, and the intensity of the laser at 1 Hz (observation band) is stabilized by controlling the pump source of an Yb-doped fiber amplifier. The intensity of the laser at 200 kHz (modulation band) is also stabilized using an acousto-optic modulator to improve the frequency stability of the laser. In the consequences, we obtain the frequency stability of δf = 0.4 Hz/√Hz (in-loop) at 1 Hz, and the intensity stability of δI/ I = 1.2 × 10-7/√Hz (out-of-loop) and δI/I = 1.5 × 10-7/√Hz (in-loop) at 1 Hz and 200 kHz, respectively.

  2. Spatiotemporal control of laser intensity

    NASA Astrophysics Data System (ADS)

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; Kessler, Terrance J.; Haberberger, Dan; Palastro, John P.; Bahk, Seung-Whan; Begishev, Ildar A.; Boni, Robert; Bucht, Sara; Katz, Joseph; Shaw, Jessica L.

    2018-05-01

    The controlled coupling of a laser to plasma has the potential to address grand scientific challenges1-6, but many applications have limited flexibility and poor control over the laser focal volume. Here, we present an advanced focusing scheme called a `flying focus', where a chromatic focusing system combined with chirped laser pulses enables a small-diameter laser focus to propagate nearly 100 times its Rayleigh length. Furthermore, the speed at which the focus moves (and hence the peak intensity) is decoupled from the group velocity of the laser. It can co- or counter-propagate along the laser axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal-spot velocities, generating a nearly constant peak intensity over 4.5 mm. Among possible applications, the flying focus could be applied to a photon accelerator7 to mitigate dephasing, facilitating the production of tunable XUV sources.

  3. Laser and Light-based Treatment of Keloids – A Review

    PubMed Central

    Mamalis, A.D.; Lev-Tov, H.; Nguyen, D.H.; Jagdeo, J.R.

    2015-01-01

    Keloids are an overgrowth of fibrotic tissue outside the original boundaries of an injury and occur secondary to defective wound healing. Keloids often have a functional, aesthetic, or psychosocial impact on patients as highlighted by quality-of-life studies. Our goal is to provide clinicians and scientists an overview of the data available on laser and light-based therapies for treatment of keloids, and highlight emerging light-based therapeutic technologies and the evidence available to support their use. We employed the following search strategy to identify the clinical evidence reported in the biomedical literature: in November 2012, we searched PubMed.gov, Ovid MEDLINE, Embase, and Cochrane Reviews (1980-present) for published randomized clinical trials, clinical studies, case series, and case reports related to the treatment of keloids. The search terms we utilized were ‘keloid(s)’ AND ‘laser’ OR ‘light-emitting diode’ OR ‘photodynamic therapy’ OR ‘intense pulsed light’ OR ‘low level light’ OR ‘phototherapy.’ Our search yielded 347 unique articles. Of these, 33 articles met our inclusion and exclusion criteria. We qualitatively conclude that laser and light-based treatment modalities may achieve favorable patient outcomes. Clinical studies using CO2 laser are more prevalent in current literature and a combination regimen may be an adequate ablative approach. Adding light-based treatments, such as LED phototherapy or photodynamic therapy, to laser treatment regimens may enhance patient outcomes. Lasers and other light-based technology have introduced new ways to manage keloids that may result in improved aesthetic and symptomatic outcomes and decreased keloid recurrence. PMID:24033440

  4. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation.

    PubMed

    Kiro, N E; Hamblin, M R; Abrahamse, H

    2017-06-01

    Breast and cervical cancers are dangerous threats with regard to the health of women. The two malignancies have reached the highest record in terms of cancer-related deaths among women worldwide. Despite the use of novel strategies with the aim to treat and cure advanced stages of cancer, post-therapeutic relapse believed to be caused by cancer stem cells is one of the challenges encountered during tumor therapy. Therefore, further attention should be paid to cancer stem cells when developing novel anti-tumor therapeutic approaches. Low-intensity laser irradiation is a form of phototherapy making use of visible light in the wavelength range of 630-905 nm. Low-intensity laser irradiation has shown remarkable results in a wide range of medical applications due to its biphasic dose and wavelength effect at a cellular level. Overall, this article focuses on the cellular responses of healthy and cancer cells after treatment with low-intensity laser irradiation alone or in combination with a photosensitizer as photodynamic therapy and the influence that various wavelengths and fluencies could have on the therapeutic outcome. Attention will be paid to the biomodulative effect of low-intensity laser irradiation on cancer stem cells.

  5. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    NASA Astrophysics Data System (ADS)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  6. An ultra-sensitive biophysical risk assessment of light effect on skin cells.

    PubMed

    Bennet, Devasier; Viswanath, Buddolla; Kim, Sanghyo; An, Jeong Ho

    2017-07-18

    The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.

  7. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field

    NASA Astrophysics Data System (ADS)

    Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.

    2017-02-01

    In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.

  8. Review on recent research progress on laser power measurement based on light pressure

    NASA Astrophysics Data System (ADS)

    Lai, WenChang; Zhou, Pu

    2018-03-01

    Accurate measuring the laser power is one of the most important issue to evaluate the performance of high power laser. For the time being, most of the demonstrated technique could be attributed to direct measuring route. Indirect measuring laser power based on light pressure, which has been under intensive investigation, has the advantages such as fast response, real-time measuring and high accuracy, compared with direct measuring route. In this paper, we will review several non-traditional methods based on light pressure to precisely measure the laser power proposed recently. The system setup, measuring principle and scaling methods would be introduced and analyzed in detail. We also compare the benefit and the drawback of these methods and analyze the uncertainties of the measurements.

  9. Low-intensity infrared laser effects on zymosan-induced articular inflammatory response

    NASA Astrophysics Data System (ADS)

    Januária dos Anjos, Lúcia Mara; da Fonseca, Adenilson d. S.; Gameiro, Jacy; de Paoli, Flávia

    2015-03-01

    Low-level therapy laser is a phototherapy treatment that involves the application of low power light in the red or infrared wavelengths in various diseases such as arthritis. In this work, we investigated whether low-intensity infrared laser therapy could cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosaninduced articular inflammatory process. Inflammatory process was induced in C57BL/6 mouse by intra-articular injection of zymosan into rear tibio-tarsal joints. Thirty animals were divided in five groups: (I) control, (II) laser, (III) zymosan-induced, (IV) zymosan-induced + laser and (V). Laser exposure was performed after zymosan administration with low-intensity infrared laser (830 nm), power 10 mW, fluence 3.0 J/cm2 at continuous mode emission, in five doses. Twenty-four hours after last irradiation, the animals were sacrificed and the right joints fixed and demineralized. Morphological analysis was observed by hematoxylin and eosin stain, pro-apoptotic (caspase-6) was analyzed by immunocytochemistry and DNA fragmentation was performed by TUNEL assay in articular cartilage cells. Inflammatory process was observed in connective tissue near to articular cartilage, in IV and V groups, indicating zymosan effect. This process was decreased in both groups after laser treatment and dexamethasone. Although groups III and IV presented higher caspase-6 and DNA fragmentation percentages, statistical differences were not observed when compared to groups I and II. Our results suggest that therapies based on low-intensity infrared lasers could reduce inflammatory process and could not cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosan-induced articular inflammatory process.

  10. Possibilities of lasers within NOTES.

    PubMed

    Stepp, Herbert; Sroka, Ronald

    2010-10-01

    Lasers possess unique properties that render them versatile light sources particularly for NOTES. Depending on the laser light sources used, diagnostic as well as therapeutic purposes can be achieved. The diagnostic potential offered by innovative concepts such as new types of ultra-thin endoscopes and optical probes supports the physician with optical information of ultra-high resolution, tissue discrimination and manifold types of fluorescence detection. In addition, the potential 3-D capability promises enhanced recognition of tissue type and pathological status. These diagnostic techniques might enable or at least contribute to accurate and safe procedures within the spatial restrictions inherent with NOTES. The therapeutic potential ranges from induction of phototoxic effects over tissue welding, coagulation and tissue cutting to stone fragmentation. As proven in many therapeutic laser endoscopic treatment concepts, laser surgery is potentially bloodless and transmits the energy without mechanical forces. Specialized NOTES endoscopes will likely incorporate suitable probes for improving diagnostic procedures, laser fibres with advantageous light delivery possibility or innovative laser beam manipulation systems. NOTES training centres may support the propagation of the complex handling and the safety aspects for clinical use to the benefit of the patient.

  11. Application of a liquid crystal spatial light modulator to laser marking.

    PubMed

    Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P

    2011-04-20

    Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America

  12. Physics of giant electromagnetic pulse generation in short-pulse laser experiments.

    PubMed

    Poyé, A; Hulin, S; Bailly-Grandvaux, M; Dubois, J-L; Ribolzi, J; Raffestin, D; Bardon, M; Lubrano-Lavaderci, F; D'Humières, E; Santos, J J; Nicolaï, Ph; Tikhonchuk, V

    2015-04-01

    In this paper we describe the physical processes that lead to the generation of giant electromagnetic pulses (GEMPs) at powerful laser facilities. Our study is based on experimental measurements of both the charging of a solid target irradiated by an ultra-short, ultra-intense laser and the detection of the electromagnetic emission in the GHz domain. An unambiguous correlation between the neutralization current in the target holder and the electromagnetic emission shows that the source of the GEMP is the remaining positive charge inside the target after the escape of fast electrons accelerated by the ultra-intense laser. A simple model for calculating this charge in the thick target case is presented. From this model and knowing the geometry of the target holder, it becomes possible to estimate the intensity and the dominant frequencies of the GEMP at any facility.

  13. Hyperchaotic Dynamics for Light Polarization in a Laser Diode

    NASA Astrophysics Data System (ADS)

    Bonatto, Cristian

    2018-04-01

    It is shown that a highly randomlike behavior of light polarization states in the output of a free-running laser diode, covering the whole Poincaré sphere, arises as a result from a fully deterministic nonlinear process, which is characterized by a hyperchaotic dynamics of two polarization modes nonlinearly coupled with a semiconductor medium, inside the optical cavity. A number of statistical distributions were found to describe the deterministic data of the low-dimensional nonlinear flow, such as lognormal distribution for the light intensity, Gaussian distributions for the electric field components and electron densities, Rice and Rayleigh distributions, and Weibull and negative exponential distributions, for the modulus and intensity of the orthogonal linear components of the electric field, respectively. The presented results could be relevant for the generation of single units of compact light source devices to be used in low-dimensional optical hyperchaos-based applications.

  14. Relativistically Induced Transparency Acceleration (RITA) - laser-plasma accelerated quasi-monoenergetic GeV ion-beams with existing lasers?

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.

    2013-10-01

    Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from

  15. Giant enhancement of upconversion in ultra-small Er3+/Yb3+:NaYF4 nanoparticles via laser annealing

    NASA Astrophysics Data System (ADS)

    Bednarkiewicz, A.; Wawrzynczyk, D.; Gagor, A.; Kepinski, L.; Kurnatowska, M.; Krajczyk, L.; Nyk, M.; Samoc, M.; Strek, W.

    2012-04-01

    Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ˜8 nm NaYF4 nanocrystals (NCs) co-doped with 2% Er3+ and 20% Yb3+ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm-2 (˜354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications.

  16. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO 2 laser

    DOE PAGES

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; ...

    2016-01-20

    Here we discuss how expanding the scope of relativistic plasma research to wavelengths longer than λ/≈0.8₋1.1μm covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ=9₋11 μm CO 2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time tomore » molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One for example is shock-wave ion acceleration from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR laser BESTIA will open new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of Laser Wake Field Accelerator (LWFA) studies into unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100-TW CO2 laser beam will be capable to efficiently generate plasma “bubbles” thousand times bigger in volume compared to a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate study of external seeding and staging of LWFA.« less

  17. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    NASA Astrophysics Data System (ADS)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  18. AOM optimization with ultra stable high power CO2 lasers for fast laser engraving

    NASA Astrophysics Data System (ADS)

    Bohrer, Markus

    2015-05-01

    A new ultra stable CO2 laser in carbon fibre resonator technology with an average power of more than 600W has been developed especially as basis for the use with AOMs. Stability of linear polarisation and beam pointing stability are important issues as well as appropriate shaping of the incident beam. AOMs are tested close to the laser-induced damage threshold with pulses on demand close to one megahertz. Transversal and rotational optimization of the AOMs benefits from the parallel-kinematic principle of a hexapod used for this research.

  19. Spectral singularities, threshold gain, and output intensity for a slab laser with mirrors

    NASA Astrophysics Data System (ADS)

    Doğan, Keremcan; Mostafazadeh, Ali; Sarısaman, Mustafa

    2018-05-01

    We explore the consequences of the emergence of linear and nonlinear spectral singularities in TE modes of a homogeneous slab of active optical material that is placed between two mirrors. We use the results together with two basic postulates regarding the behavior of laser light emission to derive explicit expressions for the laser threshold condition and output intensity for these modes of the slab and discuss their physical implications. In particular, we reveal the details of the dependence of the threshold gain and output intensity on the position and properties of the mirrors and on the real part of the refractive index of the gain material.

  20. Laser printed nano-gratings: orientation and period peculiarities

    NASA Astrophysics Data System (ADS)

    Stankevič, Valdemar; Račiukaitis, Gediminas; Bragheri, Francesca; Wang, Xuewen; Gamaly, Eugene G.; Osellame, Roberto; Juodkazis, Saulius

    2017-01-01

    Understanding of material behaviour at nanoscale under intense laser excitation is becoming critical for future application of nanotechnologies. Nanograting formation by linearly polarised ultra-short laser pulses has been studied systematically in fused silica for various pulse energies at 3D laser printing/writing conditions, typically used for the industrial fabrication of optical elements. The period of the nanogratings revealed a dependence on the orientation of the scanning direction. A tilt of the nanograting wave vector at a fixed laser polarisation was also observed. The mechanism responsible for this peculiar dependency of several features of the nanogratings on the writing direction is qualitatively explained by considering the heat transport flux in the presence of a linearly polarised electric field, rather than by temporal and spatial chirp of the laser beam. The confirmed vectorial nature of the light-matter interaction opens new control of material processing with nanoscale precision.

  1. Ultra-high brightness wavelength-stabilized kW-class fiber coupled diode laser

    NASA Astrophysics Data System (ADS)

    Huang, Robin K.; Chann, Bien; Glenn, John D.

    2011-03-01

    TeraDiode has produced a fiber-coupled direct diode laser with a power level of 1,040 W from a 200 μm core diameter, 0.18 numerical aperture (NA) output fiber at a single center wavelength. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 18 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. The laser has been used to demonstrate laser cutting and welding of steel sheet metal up to 6.65 mm thick. Further advances of these ultra-bright lasers are also projected.

  2. Light scattering from laser induced pit ensembles on high power laser optics

    DOE PAGES

    Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore » to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less

  3. The distribution of the scattered laser light in laser-plate-target coupling

    NASA Astrophysics Data System (ADS)

    Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng

    1997-04-01

    Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.

  4. Modelling of a laser-pumped light source for endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Nadeau, Valerie J.; Elson, Daniel S.; Hanna, George B.; Neil, Mark A. A.

    2008-09-01

    A white light source, based on illumination of a yellow phosphor with a fibre-coupled blue-violet diode laser, has been designed and built for use in endoscopic surgery. This narrow light probe can be integrated into a standard laparoscope or inserted into the patient separately via a needle. We present a Monte Carlo model of light scattering and phosphorescence within the phosphor/silicone matrix at the probe tip, and measurements of the colour, intensity, and uniformity of the illumination. Images obtained under illumination with this light source are also presented, demonstrating the improvement in illumination quality over existing endoscopic light sources. This new approach to endoscopic lighting has the advantages of compact design, improved ergonomics, and more uniform illumination in comparison with current technologies.

  5. Flying mirror model for interaction of a super-intense laser pulse with a thin plasma layer: Transparency and shaping of linearly polarized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulagin, Victor V.; Cherepenin, Vladimir A.; Hur, Min Sup

    2007-11-15

    A self-consistent one-dimensional (1D) flying mirror model is developed for description of an interaction of an ultra-intense laser pulse with a thin plasma layer (foil). In this model, electrons of the foil can have large longitudinal displacements and relativistic longitudinal momenta. An approximate analytical solution for a transmitted field is derived. Transmittance of the foil shows not only a nonlinear dependence on the amplitude of the incident laser pulse, but also time dependence and shape dependence in the high-transparency regime. The results are compared with particle-in-cell (PIC) simulations and a good agreement is ascertained. Shaping of incident laser pulses usingmore » the flying mirror model is also considered. It can be used either for removing a prepulse or for reducing the length of a short laser pulse. The parameters of the system for effective shaping are specified. Predictions of the flying mirror model for shaping are compared with the 1D PIC simulations, showing good agreement.« less

  6. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets

    NASA Astrophysics Data System (ADS)

    Zhu, Xing-Long; Chen, Min; Yu, Tong-Pu; Weng, Su-Ming; Hu, Li-Xiang; McKenna, Paul; Sheng, Zheng-Ming

    2018-04-01

    Attosecond light sources have the potential to open up totally unexplored research avenues in ultrafast science. However, the photon energies achievable using existing generation schemes are limited to the keV range. Here, we propose and numerically demonstrate an all-optical mechanism for the generation of bright MeV attosecond γ-photon beams with desirable angular momentum. Using a circularly polarized Laguerre-Gaussian laser pulse focused onto a cone-foil target, dense attosecond bunches ( ≲ 170 as ) of electrons are produced. The electrons interact with the laser pulse which is reflected by a plasma mirror, producing ultra-brilliant (˜1023 photons/s/mm2/mrad2/0.1%BW) multi-MeV (Eγ,max > 30 MeV) isolated attosecond ( ≲ 260 as ) γ-ray pulse trains. Moreover, the angular momentum is transferred to γ-photon beams via nonlinear Compton scattering of ultra-intense tightly focused laser pulse by energetic electrons. Such a brilliant attosecond γ-photon source would provide the possibilities in attosecond nuclear science.

  7. A digital intensity stabilization system for HeNe laser

    NASA Astrophysics Data System (ADS)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  8. Exploring novel structures for manipulating relativistic laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang

    2016-10-01

    The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).

  9. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    PubMed

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  10. Femtosecond laser texturing of glass substrates for improved light in-coupling in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.

    2017-12-01

    Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.

  11. Development of a PC interface board for true color control using an Ar Kr white-light laser

    NASA Astrophysics Data System (ADS)

    Shin, Yongjin; Park, Sohee; Kim, Youngseop; Lee, Jangwoen

    2006-06-01

    For the optimal laser display, it is crucial to select and control color signals of proper wavelengths in order to construct a wide range of laser display colors. In traditional laser display schemes, color control has been achieved through the mechanical manipulation of red, green, and blue (RGB) laser beam intensities using color filters. To maximize the effect of a laser display and its color contents, it is desirable to generate laser beams with wide selection of wavelengths. We present an innovative laser display control technique, which generates six channel laser wavelengths from a white-light laser using a RF-controlled polychromatic acousto optical modulator (PCAOM). This technique enables us not only to control the intensity of individual channels, but also to achieve true color signals for the laser beam display including RGB, yellow, cyan, and violet (YCV), and other intermediate colors. For the optimal control of the PCAOM and galvano-mirror, we designed and fabricated a PC interface board. Using this PC control, we separated the white-light from an Ar-Kr mixed gas laser into various wavelengths and reconstructed them into different color schemes. Also we demonstrated the effective control and simultaneous display of reconstructed true color laser beams on a flat screen.

  12. Intense X-ray and EUV light source

    DOEpatents

    Coleman, Joshua; Ekdahl, Carl; Oertel, John

    2017-06-20

    An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.

  13. Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array.

    PubMed

    Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon

    2014-11-01

    Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.

  14. Apparatus for injecting high power laser light into a fiber optic cable

    DOEpatents

    Sweatt, William C.

    1997-01-01

    High intensity laser light is evenly injected into an optical fiber by the combination of a converging lens and a multisegment kinoform (binary optical element). The segments preferably have multi-order gratings on each which are aligned parallel to a radial line emanating from the center of the kinoform and pass through the center of the element. The grating in each segment causes circumferential (lateral) dispersion of the light, thereby avoiding detrimental concentration of light energy within the optical fiber.

  15. Dense gamma-ray and pair creation using ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Lo, Willie; Hasson, Hannah; Dyer, Gilliss; Clarke, Taylor; Fasanelli, Fabio; Yao, Kelly; Marchenka, Ilija; Henderson, Alexander; Dashko, Andriy; Zhang, Yuling; Ditmire, Todd

    2016-10-01

    We report recent results of gamma-ray and e +e- pair creation experiments using the Texas Petawatt laser (TPW) in Austin and the Trident laser at LANL irradiating solid high-Z targets. In addition to achieving record high densities of emerging gamma-rays and pairs at TPW, we measured in detail the spectra of hot electrons, positrons, and gamma-rays, and studied their spectral variation with laser and target parameters. A new type of gamma-ray spectrometer, called the scintillator attenuation spectrometer (SAS), was successfully demonstrated in Trident experiments in 2015. We will discuss the design and results of the SAS. Preliminary results of new experiments at TPW carried out in the summer of 2016 will also be presented.

  16. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, J.

    2018-02-01

    In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.

  17. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications.

    PubMed

    Rimell, J T; Marquis, P M

    2000-01-01

    Rapid prototyping is a relatively new technology, which although prominent in the engineering industry is only just starting to make an impact in the medical field. Its current medical uses are mainly confined to surgical planning and teaching, but the technology also has the potential to allow for patient-tailored prostheses. The work reported here describes the application of a simplified selective laser sintering apparatus with ultra high molecular weight polyethylene (UHMWPE). The morphology and chemistry of the starting powders and lased material have been characterized using Fourier Transform Infra Red spectroscopy and a combination of light and scanning electron microscopy. It was found that solid linear continuous bodies could be formed, but material shrinkage caused problems when trying to form sheet-like structures. The porosity of the formed material was also a concern. The material exposed to the laser beam was shown to have undergone degradation in terms of chain scission, cross-linking, and oxidation. It has been concluded that to apply this technology to the fabrication of UHMWPE devices requires the development of improved starting powders, in particular with increased density. Copyright 2000 John Wiley & Sons, Inc.

  18. Inertial fusion program and national laser users facility program

    NASA Astrophysics Data System (ADS)

    1995-01-01

    This is the 1994 annual report for the University of Rochester, Laboratory for Laser Energetics. The report is presented as a series of research type reports. The titles emphasize the breadth of work carried out. They are: stability analysis of unsteady ablation fronts; characterization of laser-produced plasma density profiles using grid image refractometry; transport and sound waves in plasmas with light and heavy ions; three-halves-harmonic radiation from long-scale-length plasmas revisited; OMEGA upgrade status report; target imaging and backlighting diagnosis; effect of electron collisions on ion-acoustic waves and heat flow; particle-in-cell code simulations of the interaction of gaussian ultrashort laser pulses with targets of varying initial scale lengths; characterization of thick cryogenic fuel layers: compensation for the lens effect using convergent beam interferometry; compact, multijoule-output, Nd:Glass, large-aperture ring amplifier; atomic force microscopy observation of water-induced morphological changes in Y2O3 monolayer coatings; observation of longitudinal acceleration of electrons born in a high-intensity laser focus; spatial intensity nonuniformities of an OMEGA beam due to nonlinear beam propagation; calculated X-ray backlighting images of mixed imploded targets; evaluation of cosmic rays for use in the monitoring of the MEDUSA scintillator-photomultiplier diagnostic array; highly efficient second-harmonic generation of ultra-intense Nd:Glass laser pulses multiple cutoff wave numbers of the ablative Rayleigh-Taylor instability; ultrafast, all-silicon light modulator; angular dependence of the stimulated Brillouin scattering in homogeneous plasma; and femtosecond excited-state dynamics of a conjugated ladder polymer.

  19. Application of low-intensity laser in the treatment of Herpes simplex recidivans

    NASA Astrophysics Data System (ADS)

    Uzunov, Tzonko T.; Uzunov, T.; Grozdanova, R.

    2004-06-01

    We made our aim to investigate the effect of the low intensive laser with λ=630 nm in the visible red spectrum of light at Herpes simplex treatment. For this purpose we carried out a clinical research upon 62 persons with Herpes simplex lesions which have been divided into two groups of 31 persons. At the first group the effect of laser with power density 100 mW/cm2 +/- 5 mW/cm2 and time of exposure 3 min. on field was traced out. At the second group the low intensive laser with the same characteristics has been used but in combination with the patent medicine Granofurin H as a photosensibilizer. The clinical approbations of this method showed high therapeutical effectiveness. The obtained results showed that at both groups there is an expressed anaesthetic, anti-inflammatory and regeneration stimulating effect and at the second group with the use of Granofurin H the reconvalescent period is shorter.

  20. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber.

    PubMed

    Guo, Huiyong; Liu, Fang; Yuan, Yinquan; Yu, Haihu; Yang, Minghong

    2015-02-23

    For the online writing of ultra-weak fiber Bragg gratings (FBGs) in the drawing optical fibers, the effects of the intensity profile, pulse fluctuation and pulse width of the excimer laser, as well as the transverse and longitudinal vibrations of the optical fiber have been investigated. Firstly, using Lorentz-Loren equation, Gladstone-Dale mixing rule and continuity equation, we have derived the refractive index (RI) fluctuation along the optical fiber and the RI distribution in the FBG, they are linear with the gradient of longitudinal vibration velocity. Then, we have prepared huge amounts of ultra-weak FBGs in the non-moving optical fiber and obtained their reflection spectra, the measured reflection spectra shows that the intensity profile and pulse fluctuation of the excimer laser, as well as the transverse vibration of the optical fiber are little responsible for the inconsistency of ultra-weak FBGs. Finally, the effect of the longitudinal vibration of the optical fiber on the inconsistency of ultra-weak FBGs has been discussed, and the vibration equations of the drawing optical fiber are given in the appendix.

  1. Measurement of Laser Plasma Instability (LPI) Driven Light Scattering from Plasmas Produced by Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.

    2010-11-01

    With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.

  2. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocca, Jorge J.

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achievedmore » using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm -3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.« less

  3. Long-pulsed Nd: YAG Laser and Intense Pulse Light-755 nm for Idiopathic Facial Hirsutism: A Comparative Study.

    PubMed

    Shrimal, Arpit; Sardar, Souvik; Roychoudhury, Soumyajit; Sarkar, Somenath

    2017-01-01

    Hirsutism means excessive terminal hair growth in a female in male pattern distribution. Perception of hirsutism is subjective. Permanent laser hair reduction is a slow process taking many sessions and tracking of improvement parameters is tedious. Hence, a lot of confusion still exists regarding the type of laser most beneficial for treatment. The aim of this study was to compare the effectiveness and safety profile of long-pulsed Nd: YAG laser (1064 nm) and intense pulse light (IPL)-755 nm in management of idiopathic facial hirsutism. Open-labelled, randomly allocated experimental study. The study included 33 cases of idiopathic facial hirsutism. Patients were randomly divided into Group A, treated with long-pulsed Nd: YAG laser and Group B, treated with IPL-755 for a total of six sessions at 1 month interval. Chi-square test was used in Medcalc ® version 9.0 and the test of significance was taken to be P < 0.05. Average percentage of improvement in Group A, according to patients at each sessions were 46.33%, 70.66%, 81.66%, 84.67%, 85.33%, 87.33% and that in Group B were 28.06%, 39.72%, 52.22%, 64.72%, 67.78%, 71.11%, respectively. Excellent response (>75% reduction in hair) after six sessions in Group A was seen in fourteen (93.33%) out of fifteen patients, whereas in Group B, it was seen only in three (16.66%) out of eighteen patients. In Group A, erythema was seen in 26.67%, perifollicular edema and hyperpigmentation in 13.33% each. In Group B, erythema was seen in 50% patients, perifollicular edema in 16.67% and hyperpigmentation in 38.89% patients. Long-pulsed Nd: YAG Laser (1064 nm) is better than IPL-755 nm in terms of safety and effectiveness in the management of idiopathic facial hirsutism.

  4. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Consentino, A.; Irwin, D.

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  5. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE PAGES

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-05-18

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  6. Dependency between light intensity and refractive development under light-dark cycles.

    PubMed

    Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Solomon, Arieh S; Polat, Uri

    2011-01-01

    The emmetropization process involves fine-tuning the refractive state by altering the refractive components toward zero refraction. In this study, we provided light-dark cycle conditions at several intensities and examined the effect of light intensity on the progression of chicks' emmetropization. Chicks under high-, medium-, and low-light intensities (10,000, 500, and 50 lux, respectively) were followed for 90 days by retinoscopy, keratometry, as well as ultrasound measurements. Emmetropization was reached from days 30-50 and from days 50-60 for the low- and medium-intensity groups, respectively. On day 90, most chicks in the low-intensity group were myopic, with a mean refraction of -2.41D (95% confidence interval (CI) -2.9 to -1.8D), whereas no chicks in the high-intensity group developed myopia, but they exhibited a stable mean hyperopia of +1.1D. The medium-intensity group had a mean refraction of +0.03D. The low-intensity group had a deeper vitreous chamber depth and a longer axial length compared with the high-intensity group, and shifted refraction to the myopic side. The low-intensity group had a flatter corneal curvature, a deeper anterior chamber, and a thinner lens compared with the high-intensity group, and shifted refraction to the hyperopic side. In all groups the corneal power was correlated with the three examined levels of log light intensity for all examined times (e.g., day 20 r = 0.6 P < 0.0001, day 90 r = 0.56 P < 0.0001). Thus, under light-dark cycles, light intensity is an environmental factor that modulates the process of emmetropization, and the low intensity of ambient light is a risk factor for developing myopia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Laser Ablation of Poly(methylmethacrylate) Doped with Aromatic Compounds: Laser Intensity Dependence of Absorption Coefficient

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    1999-02-01

    We developed a novel method of obtaining an absorption coefficient which depends on the laser intensity, since a single-photon absorption coefficient of a polymer could not be applied to laser ablation. The relationship between the nonlinear absorption coefficient and the laser intensity was derived from experimental data of transmission and incident laser intensities. Using the nonlinear absorption coefficient of poly(methylmethacrylate) doped with benzil and pyrene, we succeeded in fitting the relationship of etch depth and laser intensity, obtained experimentally, and discussed the energy absorbed by the polymer at the threshold fluence.

  8. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I = 3.43 × 106...

  9. Radiation Generation from Ultra Intense Laser Plasma Interactions with Solid Density Plasmas for Active Interrogation of Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Zulick, Calvin Andrew

    The development of short pulse high power lasers has led to interest in laser based particle accelerators. Laser produced plasmas have been shown to support quasi-static TeV/m acceleration gradients which are more than four orders of magnitude stronger than conventional accelerators. These high gradients have the potential to allow compact particle accelerators for active interrogation of nuclear material. In order to better understand this application, several experiments have been conducted at the HERCULES and Lambda Cubed lasers as the Center for Ultrafast Optical Science at the University of Michigan. Electron acceleration and bremsstrahlung generation were studied on the Lambda Cubed laser. The scaling of the intensity, angular, and material dependence of bremsstrahlung radiation from an intense (I > 10 18 W/cm2 ) laser-solid interaction has been characterized at energies between 100 keV and 1 MeV. These were the first high resolution (lambda / d lambda > 100) measurements of bremsstrahlung photons from a relativistic laser plasma interaction. The electron populations and bremsstrahlung temperatures were modeled in the particle-in-cell code OSIRIS and the Monte Carlo code MCNPX and were in good agreement with the experimental results. Proton acceleration was studied on the HERCULES laser. The effect of three dimensional perturbations of electron sheaths on proton acceleration was investigated through the use of foil, grid, and wire targets. Hot electron density, as measured with an imaging Cu Kalpha crystal, increased as the target surface area was reduced and was correlated to an increase in the temperature of the accelerated proton beam. Additionally, experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8 (+/-0.3) MeV using (d,n) and (p,n) reactions. Efficient (d,n) reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D2O layer

  10. Plasma-wall interaction in laser inertial fusion reactors: novel proposals for radiation tests of first wall materials

    NASA Astrophysics Data System (ADS)

    Alvarez Ruiz, J.; Rivera, A.; Mima, K.; Garoz, D.; Gonzalez-Arrabal, R.; Gordillo, N.; Fuchs, J.; Tanaka, K.; Fernández, I.; Briones, F.; Perlado, J.

    2012-12-01

    Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m-2 and implant more than 1018 particles m-2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

  11. Current indications and new applications of intense pulsed light.

    PubMed

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  12. Chronic neuropathic facial pain after intense pulsed light hair removal. Clinical features and pharmacological management.

    PubMed

    Gay-Escoda, Cosme; Párraga-Manzol, Gabriela; Sánchez-Torres, Alba; Moreno-Arias, Gerardo

    2015-10-01

    Intense Pulsed Light (IPL) photodepilation is usually performed as a hair removal method. The treatment is recommended to be indicated by a physician, depending on each patient and on its characteristics. However, the use of laser devices by medical laypersons is frequent and it can suppose a risk of damage for the patients. Most side effects associated to IPL photodepilation are transient, minimal and disappear without sequelae. However, permanent side effects can occur. Some of the complications are laser related but many of them are caused by an operator error or mismanagement. In this work, we report a clinical case of a patient that developed a chronic neuropathic facial pain following IPL hair removal for unwanted hair in the upper lip. The specific diagnosis was painful post-traumatic trigeminal neuropathy, reference 13.1.2.3 according to the International Headache Society (IHS). Neuropathic facial pain, photodepilation, intense pulse light.

  13. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights shall be calculated by using the formula: I=3.43×106×T...

  14. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I=3.43×106 ×T...

  15. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I=3.43×106 ×T...

  16. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights shall be calculated by using the formula: I=3.43×106×T...

  17. Shine on: Review of Laser- and Light-Based Therapies for the Treatment of Burn Scars

    PubMed Central

    Hultman, C. Scott; Edkins, Renee E.; Lee, Clara N.; Calvert, Catherine T.; Cairns, Bruce A.

    2012-01-01

    Restoration of form and function after burn injury remains challenging, but emerging laser and pulsed light technologies now offer hope for patients with hypertrophic scars, which may be associated with persistent hyperemia, chronic folliculitis, intense pruritis, and neuropathic pain. In addition to impairing body image, these scars may limit functional recovery, compromise activities of daily living, and prevent return to work. Three different platforms are now poised to alter our reconstructive algorithm: (1) vascular-specific pulsed dye laser (PDL) to reduce hyperemia, (2) ablative fractional CO2 laser to improve texture and pliability of the burn scar, and (3) intense pulsed light (IPL) to correct burn scar dyschromia and alleviate chronic folliculitis. In this paper, we will provide an overview of our work in this area, which includes a systematic review, a retrospective analysis of our preliminary experience, and interim data from our on-going, prospective, before-after cohort trial. We will demonstrate that laser- and light-based therapies can be combined with each other safely to yield superior results, often at lower cost, by reducing the need for reconstructive surgery. Modulating the burn scar, through minimally invasive modalities, may replace conventional methods of burn scar excision and yield outcomes not previously possible or conceivable. PMID:22778719

  18. Determination of SBS induced damage limits in large fused silica optics for intense, time varying laser pulses

    NASA Astrophysics Data System (ADS)

    Kyrazis, D. T.; Weiland, T. L.

    1990-10-01

    The propagation of intense 3rd harmonic light (0.351 micron) through large optical components of the Nova laser results in fracture damage of the center of the component. This damage is caused by an intense acoustical wave brought to focus in the center by reflecting off the circular edge of the optic. The source of this wave is light generated by transverse stimulated Brillouin scattering (SBS). By taking into account the transient gain characteristics of the SBS, the pulse energy can be correctly predicted that would cause damage for any time variation in intensity in the pump beam, and predict the relative intensity of the Brillouin light. The model is based on the transient behavior of a first order linear system.

  19. Computational study of hot electron generation and energy transport in intense laser produced hot dense matter

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini

    Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.

  20. Photosynthetically supplemental lighting for vegetable crop production with super-bright laser diode

    NASA Astrophysics Data System (ADS)

    Hu, Yongguang; Li, Pingping; Shi, Jintong

    2007-02-01

    Although many artificial light sources like high-pressure sodium lamp, metal halide lamp, fluorescent lamp and so on are commonly used in horticulture, they are not widely applied because of the disadvantages of unreasonable spectra, high cost and complex control. Recently new light sources of light-emitting diode (LED) and laser diode (LD) are becoming more and more popular in the field of display and illumination with the improvement of material and manufacturing, long life-span and increasingly low cost. A new type of super-bright red LD (BL650, central wavelength is 650 nm) was selected to make up of the supplemental lighting panel, on which LDs were distributed with regular hexagon array. Drive circuit was designed to power it and adjust light intensity. System performance including temperature rise and light intensity distribution under different vertical/horizontal distances were tested. Photosynthesis of sweet pepper and eggplant leaf under LD was measured with LI-6400 to show the supplemental lighting effects. The results show that LD system can supply the maximum light intensity of 180 μmol/m2 •s at the distance of 50 mm below the panel and the temperature rise is little within 1 °C. Net photosynthetic rate became faster when LD system increased light intensity. Compared with sunlight and LED supplemental lighting system, LD's promotion on photosynthesis is in the middle. Thus it is feasible for LD light source to supplement light for vegetable crops. Further study would focus on the integration of LD and other artificial light sources.

  1. Correlated-Intensity velocimeter for Arbitrary Reflector

    DOEpatents

    Wang, Zhehui; Luo, Shengnian; Barnes, Cris W.; Paul, Stephen F.

    2008-11-11

    A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms

  2. Broadband enhancement of dielectric light trapping nanostructure used in ultra-thin solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Xu, Zhaopeng; Bian, Fei; Wang, Haiyan; Wang, Jiazhuang; Sun, Lu

    2018-03-01

    A dielectric fishnet nanostructure is designed to increase the light trapping capability of ultra-thin solar cells. The complex performance of ultra-thin cells such as the optical response and electrical response are fully quantified in simulation through a complete optoelectronic investigation. The results show that the optimized light trapping nanostructure can enhances the electromagnetic resonance in active layer then lead to extraordinary enhancement of both absorption and light-conversion capabilities in the solar cell. The short-circuit current density increases by 49.46% from 9.40 mA/cm2 to 14.05 mA/cm2 and light-conversion efficiency increases by 51.84% from 9.51% to 14.44% compared to the benchmark, a solar cell with an ITO-GaAs-Ag structure.

  3. Sharp focusing of laser light by multilayer cylinders with circular cross-section

    NASA Astrophysics Data System (ADS)

    Kozlova, E. S.

    2018-04-01

    In this paper, the focusing of laser light at 532 nm by dielectric cylinders with a metal shells is studied by using COMSOL Multiphysics. The analysis of cylinder design which proposed multilayered shell shows that a microcylinder with a gold-silver (or silver-gold) shell can improve the focusing process, especially in the case of TM polarization. The microcylinder with thin internal silver layer of 1 nm and outside gold layer of 9 nm focus TE-polarized light to nanojet with maximal intensity of 5.65 a.u., full width and full length at half maximum of intensity of of 0.39λ and 0.72λ, respectively.

  4. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    PubMed

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was

  5. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  6. Toward compact and ultra-intense laser-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Sebban, S.; Depresseux, A.; Oliva, E.; Gautier, J.; Tissandier, F.; Nejdl, J.; Kozlova, M.; Maynard, G.; Goddet, J. P.; Tafzi, A.; Lifschitz, A.; Kim, H. T.; Jacquemot, S.; Rousseau, P.; Zeitoun, P.; Rousse, A.

    2018-01-01

    We report here recent work on an optical field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by OFI when focusing a 1 J, 30 fs, circularly-polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94d (J = 0) → 3d94p (J = 1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs full width at half-maximum as the amplification peak rose from 150 to 1200 with an increase of the plasma density from 3 × 1018 to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 2 cm), yielding EUV outputs up to 14 μJ.

  7. X-Ray Laser Program Final Report for FY92

    DTIC Science & Technology

    1993-07-01

    also produced population inversion. Ultra- intense , femtosecond- pulsed laboratory lasers ranging from the ultraviolet to the infrared represent an...with pulse lengths of 650 femtoseconds normally Incident on a 2p. thick planar aluminum slab. Comparisons are made for two laser Intensities , two...prepulse is subsequently irradiated by the main high intensity pulse . The persistence of the heliumlike ground state raises the possibility that a photon

  8. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

    NASA Astrophysics Data System (ADS)

    Petersen, Christian Rosenberg; Møller, Uffe; Kubat, Irnis; Zhou, Binbin; Dupont, Sune; Ramsay, Jacob; Benson, Trevor; Sujecki, Slawomir; Abdel-Moneim, Nabil; Tang, Zhuoqi; Furniss, David; Seddon, Angela; Bang, Ole

    2014-11-01

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. To date, the limitations of mid-infrared light sources such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation have precluded mid-infrared applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central wavelength of either 4.5 μm or 6.3 μm into short pieces of ultra-high numerical-aperture step-index chalcogenide glass optical fibre generates a mid-infrared supercontinuum spanning 1.5 μm to 11.7 μm and 1.4 μm to 13.3 μm, respectively. This is the first experimental demonstration to truly reveal the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control.

  9. Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization

    NASA Astrophysics Data System (ADS)

    Chin, S. L.; Lagacé, S.

    1996-02-01

    An intense femtosecond Ti-sapphire laser pulse was focused into water, leading to self-focusing. Apart from generating a white light (supercontinuum), the intense laser field in the self-focusing regions of the laser pulse dissociated the water molecules, giving rise to hydrogen and oxygen gas as well as hydrogen peroxide. Our analysis shows that the formation of free radicals O, H, and OH preceded the formation of the stable products of H2, O2, and H2O2. Because O radicals and H2O2 are strong oxydizing agents, one can take advantage of this phenomenon to design a laser scheme for sterilization in medical and biological applications.

  10. Localization of intense electromagnetic waves in plasmas.

    PubMed

    Shukla, Padma Kant; Eliasson, Bengt

    2008-05-28

    We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser-plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between the laser light and the plasma, we can have trapping of electrons in the intense wakefield of the laser pulse and the formation of relativistic electron holes (REHs) in which laser light is trapped. Such electron holes are characterized by a non-Maxwellian distribution of electrons where we have trapped and free electron populations. We present a model for the interaction between laser light and REHs, and computer simulations that show the stability and dynamics of the coupled electron hole and EMW envelopes.

  11. Chronic neuropathic facial pain after intense pulsed light hair removal. Clinical features and pharmacological management

    PubMed Central

    Párraga-Manzol, Gabriela; Sánchez-Torres, Alba; Moreno-Arias, Gerardo

    2015-01-01

    Intense Pulsed Light (IPL) photodepilation is usually performed as a hair removal method. The treatment is recommended to be indicated by a physician, depending on each patient and on its characteristics. However, the use of laser devices by medical laypersons is frequent and it can suppose a risk of damage for the patients. Most side effects associated to IPL photodepilation are transient, minimal and disappear without sequelae. However, permanent side effects can occur. Some of the complications are laser related but many of them are caused by an operator error or mismanagement. In this work, we report a clinical case of a patient that developed a chronic neuropathic facial pain following IPL hair removal for unwanted hair in the upper lip. The specific diagnosis was painful post-traumatic trigeminal neuropathy, reference 13.1.2.3 according to the International Headache Society (IHS). Key words:Neuropathic facial pain, photodepilation, intense pulse light. PMID:26535105

  12. Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.

    2016-06-07

    The studies on the effect of input laser intensity, through the variation of laser focusing geometry, on radio frequency (RF) emissions, over 30–1000 MHz from nanosecond (ns) and picosecond (ps) laser induced breakdown (LIB) of atmospheric air are presented. The RF emissions from the ns and ps LIB were observed to be decreasing and increasing, respectively, when traversed from tight to loose focusing conditions. The angular and radial intensities of the RF emissions from the ns and ps LIB are found to be consistent with sin{sup 2}θ/r{sup 2} dependence of the electric dipole radiation. The normalized RF emissions were observed tomore » vary with incident laser intensity (Iλ{sup 2}), indicating the increase in the induced dipole moment at moderate input laser intensities and the damping of radiation due to higher recombination rate of plasma at higher input laser intensities.« less

  13. Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Yu, J. Y.; Liu, W. Y.; Weng, S. M.; Yuan, X. H.; Luo, W.; Chen, M.; Sheng, Z. M.; Zhang, J.

    2018-06-01

    Two-dimensional particle-in-cell simulations have been performed to study electron-positron pair production and cascade development in single ultra-relativistic laser interaction with solid targets. The spatiotemporal distributions of particles produced via QED processes are illustrated and their dependence on laser polarizations is investigated. The evolution of particle generation displays clear QED cascade characters. Studies show that although a circularly polarized laser delays the QED process due to the effective ion acceleration, it can reduce the target heating and confine high-energy charged particles, which leads to deeper QED cascade order and denser pair plasma production than linearly polarized lasers. These findings may benefit the understanding of the coming experimental studies of ultra-relativistic laser target interaction in the QED dominated regime.

  14. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with 44 beam-lines of Nike KrF Laser^*

    NASA Astrophysics Data System (ADS)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.

    2009-11-01

    With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  15. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    PubMed

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P < 0.001). Combination therapy showed significantly greater improvements compared to monotherapy at two follow-up visits (P < 0.05). Combination therapy is a safe and more effective strategy than IPL monotherapy for skin rejuvenation in Asian people.

  16. Fabrication et applications des reseaux de Bragg ultra-longs

    NASA Astrophysics Data System (ADS)

    Gagne, Mathieu

    This thesis presents the principal accomplishments realized during the PhD project. The thesis is presented by publication format and is a collection of four published articles having fiber Bragg gratings as a central theme. First achieved in 1978, UV writing of fiber Bragg gratings is nowadays a common and mature technology being present in both industry and academia. The property of reflecting light guided by optical fibers lead to diverse applications in telecommunication, lasers as well as several types of sensors. The conventional fabrication technique is generally based on the use of generally expensive phase masks which determine the obtained characteristics of the fiber Bragg grating. The fiber being photosensitive at those wavelengths, a periodic pattern can be written into it. The maximal length, the period, the chirp, the index contrast and the apodisation are all characteristics that depend on the phase mask. The first objective of the research project is to be able to go beyond this strong dependance on the phase mask without deteriorating grating quality. This is what really sets apart the technique presented in this thesis from other long fiber Bragg grating fabrication techniques available in the literature. The fundamental approach to obtain ultra long fiber Bragg gratings of arbitrary profile is to replace the scheme of scanning a UV beam across a phase mask to expose a fixed fiber by a scheme where the UV beam and phase mask are fixed and where the fiber is moving instead. To obtain a periodic index variation, the interference pattern itself must be synchronized with the moving fiber. Two variations of this scheme were implanted: the first one using electro-optical phase modulator placed in each arm of a Talbot interferometer and the second one using a phase mask mounted on a piezo electric actuator. A new scheme that imparts fine movements of the interferometer is also implemented for the first time and showed to be essential to achieve high

  17. Room temperature optical anisotropy of a LaMnO 3 thin-film induced by ultra-short pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun

    Ultra-short laser pulse induced optical anisotropy of LaMnO 3 thin films grown on SrTiO 3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm 2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn 3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnOmore » 3 is a result of photo-induced symmetry breaking of the orbital ordering for an optically excited state.« less

  18. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  19. Integrated RGB laser light module for autostereoscopic outdoor displays

    NASA Astrophysics Data System (ADS)

    Reitterer, Jörg; Fidler, Franz; Hambeck, Christian; Saint Julien-Wallsee, Ferdinand; Najda, Stephen; Perlin, Piotr; Stanczyk, Szymon; Czernecki, Robert; McDougall, Stewart D.; Meredith, Wyn; Vickers, Garrie; Landles, Kennedy; Schmid, Ulrich

    2015-02-01

    We have developed highly compact RGB laser light modules to be used as light sources in multi-view autostereoscopic outdoor displays and projection devices. Each light module consists of an AlGaInP red laser diode, a GaInN blue laser diode, a GaInN green laser diode, as well as a common cylindrical microlens. The plano-convex microlens is a so-called "fast axis collimator", which is widely used for collimating light beams emitted from high-power laser diode bars, and has been optimized for polychromatic RGB laser diodes. The three light beams emitted from the red, green, and blue laser diodes are collimated in only one transverse direction, the so-called "fast axis", and in the orthogonal direction, the so-called "slow axis", the beams pass the microlens uncollimated. In the far field of the integrated RGB light module this produces Gaussian beams with a large ellipticity which are required, e.g., for the application in autostereoscopic outdoor displays. For this application only very low optical output powers of a few milliwatts per laser diode are required and therefore we have developed tailored low-power laser diode chips with short cavity lengths of 250 μm for red and 300 μm for blue. Our RGB laser light module including the three laser diode chips, associated monitor photodiodes, the common microlens, as well as the hermetically sealed package has a total volume of only 0.45 cm³, which to our knowledge is the smallest RGB laser light source to date.

  20. White organic light-emitting diodes with ultra-thin mixed emitting layer

    NASA Astrophysics Data System (ADS)

    Jeon, T.; Forget, S.; Chenais, S.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Ishow, E.

    2012-02-01

    White light can be obtained from Organic Light Emitting Diodes by mixing three primary colors, (i.e. red, green and blue) or two complementary colors in the emissive layer. In order to improve the efficiency and stability of the devices, a host-guest system is generally used as an emitting layer. However, the color balance to obtain white light is difficult to control and optimize because the spectrum is very sensitive to doping concentration (especially when a small amount of material is used). We use here an ultra-thin mixed emitting layer (UML) deposited by thermal evaporation to fabricate white organic light emitting diodes (WOLEDs) without co-evaporation. The UML was inserted in the hole-transporting layer consisting of 4, 4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (α-NPB) instead of using a conventional doping process. The UML was formed from a single evaporation boat containing a mixture of two dipolar starbust triarylamine molecules (fvin and fcho) presenting very similar structures and thermal properties and emitting in complementary spectral regions (orange and blue respectively) and mixed according to their weight ratio. The composition of the UML specifically allows for fine tuning of the emission color despite its very thin thickness down to 1 nm. Competitive energy transfer processes from fcho and the host interface toward fvin are key parameters to control the relative intensity between red and blue emission. White light with very good CIE 1931 color coordinate (0.34, 0.34) was obtained by simply adjusting the UML film composition.

  1. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  2. Studies on acute toxic effects to keratinocytes induced by hematoporphyrin derivatives and laser light.

    PubMed

    Artuc, M; Ramshad, M; Kappus, H

    1989-01-01

    Human epidermal keratinocytes were grown in culture and the uptake of hematoporphyrin derivatives (HPDs) used in photodynamic therapy was estimated. Keratinocytes loaded with HPDs were irradiated with laser light of 632 nm generated by a helium-neon laser and cell toxicity was determined by the trypan blue exclusion test and the measurement of enzyme release. With increasing intracellular concentration of HPDs and with increasing intensity of the laser light, an increasing number of cells took up trypan blue and released the cytosolic enzyme lactate dehydrogenase and the lysosomal enzyme acid phosphatase after 1 h incubation of the irradiated cells at 37 degrees C. Cytotoxicity was less pronounced when the irradiated cells were incubated at 0 degree C indicating the involvement of enzyme reactions in cell death. No lipid peroxidation as measured by malondialdehyde and ethane formation was detectable. Our results suggest that during photodynamic therapy with HPDs and laser light epidermal keratinocytes may be seriously damaged. The data indicate that not lipid peroxidation but rather the activation of lysosomal enzymes is responsible for the cytotoxicity observed.

  3. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  4. A data processing method based on tracking light spot for the laser differential confocal component parameters measurement system

    NASA Astrophysics Data System (ADS)

    Shao, Rongjun; Qiu, Lirong; Yang, Jiamiao; Zhao, Weiqian; Zhang, Xin

    2013-12-01

    We have proposed the component parameters measuring method based on the differential confocal focusing theory. In order to improve the positioning precision of the laser differential confocal component parameters measurement system (LDDCPMS), the paper provides a data processing method based on tracking light spot. To reduce the error caused by the light point moving in collecting the axial intensity signal, the image centroiding algorithm is used to find and track the center of Airy disk of the images collected by the laser differential confocal system. For weakening the influence of higher harmonic noises during the measurement, Gaussian filter is used to process the axial intensity signal. Ultimately the zero point corresponding to the focus of the objective in a differential confocal system is achieved by linear fitting for the differential confocal axial intensity data. Preliminary experiments indicate that the method based on tracking light spot can accurately collect the axial intensity response signal of the virtual pinhole, and improve the anti-interference ability of system. Thus it improves the system positioning accuracy.

  5. The effect of external magnetic field on the bremsstrahlung nonlinear absorption mechanism in the interaction of high intensity short laser pulse with collisional underdense plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B., E-mail: b-shokri@sbu.ac.ir

    2015-03-15

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of themore » electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.« less

  6. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatchmore » between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are

  7. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    NASA Astrophysics Data System (ADS)

    Roos, C.; Santos, J. N.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2013-07-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm-2) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms.

  8. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; ...

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  9. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  10. Controllable robust laser driven ion acceleration from near-critical density relativistic self-transparent plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Meyer-Ter-Vehn, Juergen; Ruhl, Hartmut

    2017-10-01

    We introduce an alternative approach for laser driven self-injected high quality ion acceleration. We call it ion wave breaking acceleration. It operates in relativistic self-transparent plasma for ultra-intense ultra-short laser pulses. Laser propagating in a transparent plasma excites an electron wave as well as an ion wave. When the ion wave breaks, a fraction of ions is self-injected into the positive part of the laser driven wake. This leads to a superior ion pulse with peaked energy spectra; in particular in realistic three-dimensional geometry, the injection occurs localized close to the laser axis producing highly directed bunches. A theory is developed to investigate the ion wave breaking dynamics. Three dimensional Particle-in-Cell simulations with pure-gaussian laser pulses and pre-expanded near-critical density plasma targets have been done to verify the theoretical results. It is shown that hundreds of MeV, easily controllable and manipulable, micron-scale size, highly collimated and quasi-mono-energetic ion beams can be produced by using ultra-intense ultra-short laser pulses with total laser energies less than 10 Joules. Such ion beams may find important applications in tumour therapy. B. Liu acknowledges support from the Alexander von Humboldt Foundation. B. Liu and H. Ruhl acknowledge supports from the Gauss Centre for Supercomputing (GCS), and the Cluster-of-Excellence Munich Centre for Advanced Photonics (MAP).

  11. The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers

    NASA Astrophysics Data System (ADS)

    Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.

    2017-06-01

    Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.

  12. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  13. Study of laser preheating dependence on laser wavelength and intensity for MagLIF

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Harvey-Thompson, A. J.; Glinsky, M.; Nagayama, T.; Weis, M.; Geissel, M.; Peterson, K.; Fooks, J.; Krauland, C.; Giraldez, E.; Davies, J.; Campbell, E. M.; Bahr, R.; Edgell, D.; Stoeckl, C.; Glebov, V.; Emig, J.; Heeter, R.; Strozzi, D.

    2017-10-01

    The magnetized liner inertial fusion (MagLIF) scheme requires preheating underdense fuel to 100's eV temperature by a TW-scale long pulse laser via collisional absorption. To better understand how laser preheat scales with laser wavelength and intensity as well as to provide data for code validation, we have conducted a well-characterized experiment on OMEGA to directly compare laser propagation, energy deposition and laser plasma instabilities (LPI) using 2 ω (527 nm) and 3 ω (351 nm) lasers with intensity in the range of (1-5)x1014 Wcm-2. The laser beam (1 - 1.5 ns square pulse) enters the gas-filled plastic liner though a 2-µm thick polyimide window to heat an underdense Ar-doped deuterium gas with electron density of 5.5% of critical density. Laser propagation and plasma temperature are diagnosed by time-resolved 2D x-ray images and Ar emission spectroscopy, respectively. LPI is monitored by backscattering and hard x-ray diagnostics. The 2 ω beam propagation shows a noticeable larger lateral spread than the 3 ω beam, indicating laser spray due to filamentation. LPI is observed to increase with laser intensity and the 2 ω beam produces more hot electrons compared with the 3 ω beam under similar conditions. Results will be compared with radiation hydrodynamic simulations. Work supported by the U.S. DOE ARPA-E and NNSA.

  14. Short-pulse lasers for weather control

    NASA Astrophysics Data System (ADS)

    Wolf, J. P.

    2018-02-01

    Filamentation of ultra-short TW-class lasers recently opened new perspectives in atmospheric research. Laser filaments are self-sustained light structures of 0.1–1 mm in diameter, spanning over hundreds of meters in length, and producing a low density plasma (1015–1017 cm‑3) along their path. They stem from the dynamic balance between Kerr self-focusing and defocusing by the self-generated plasma and/or non-linear polarization saturation. While non-linearly propagating in air, these filamentary structures produce a coherent supercontinuum (from 230 nm to 4 µm, for a 800 nm laser wavelength) by self-phase modulation (SPM), which can be used for remote 3D-monitoring of atmospheric components by Lidar (Light Detection and Ranging). However, due to their high intensity (1013–1014 W cm‑2), they also modify the chemical composition of the air via photo-ionization and photo-dissociation of the molecules and aerosols present in the laser path. These unique properties were recently exploited for investigating the capability of modulating some key atmospheric processes, like lightning from thunderclouds, water vapor condensation, fog formation and dissipation, and light scattering (albedo) from high altitude clouds for radiative forcing management. Here we review recent spectacular advances in this context, achieved both in the laboratory and in the field, reveal their underlying mechanisms, and discuss the applicability of using these new non-linear photonic catalysts for real scale weather control.

  15. Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Dong, Lin

    Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.

  16. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, Martin S.

    1993-01-01

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  17. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, M.S.

    1993-05-18

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  18. Violet laser diodes as light sources for cytometry.

    PubMed

    Shapiro, H M; Perlmutter, N G

    2001-06-01

    Violet laser diodes have recently become commercially available. These devices emit 5-25 mW in the range of 395-415 nm, and are available in systems that incorporate the diodes with collimating optics and regulated power supplies in housing incorporating thermoelectric coolers, which are necessary to maintain stable output. Such systems now cost several thousand dollars, but are expected to drop substantially in price. Materials and Methods A 4-mW, 397-nm violet diode system was used in a laboratory-built flow cytometer to excite fluorescence of DAPI and Hoechst dyes in permeabilized and intact cells. Forward and orthogonal light scattering were also measured. DNA content histograms with good precision (G(0)/G(1) coefficient of variation 1.7%) were obtained with DAPI staining; precision was lower using Hoechst 33342. Hoechst 34580, with an excitation maximum nearer 400 nm, yielded the highest fluorescence intensity, but appeared to decompose after a short time in solution. Scatter signals exhibited relatively broad distributions. Violet laser diodes are relatively inexpensive, compact, efficient, and quiet light sources for DNA fluorescence measurement using DAPI and Hoechst dyes; they can also excite several other fluorescent probes. Copyright 2001 Wiley-Liss, Inc.

  19. On the number of light rings in curved spacetimes of ultra-compact objects

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-01-01

    In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.

  20. Blood cell counting and classification by nonflowing laser light scattering method

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Jiang, Dazong; Yeo, Joon Hock

    1999-11-01

    A new non-flowing laser light scattering method for counting and classifying blood cells is presented. A linear charge- coupled device with 1024 elements is used to detect the scattered light intensity distribution of the blood cells. A pinhole plate is combined with the CCD to compete the focusing of the measurement system. An isotropic sphere is used to simulate the blood cell. Mie theory is used to describe the scattering of blood cells. In order to inverse the size distribution of blood cells from their scattered light intensity distribution, Powell method combined with precision punishment method is used as a dependent model method for measurement red blood cells and blood plates. Non-negative constraint least square method combined with Powell method and precision punishment method is used as an independent model for measuring white blood cells. The size distributions of white blood cells and red blood cells, and the mean diameter of red blood cells are measured by this method. White blood cells can be divided into three classes: lymphocytes, middle-sized cells and neutrocytes according to their sizes. And the number of blood cells in unit volume can also be measured by the linear dependence of blood cells concentration on scattered light intensity.

  1. Impact of light exposure on thyroid-stimulating hormone results using the Siemens Advia Centaur TSH-3Ultra assay.

    PubMed

    Armer, Jane; Giles, Diane; Lancaster, Ian; Brownbill, Kathryn

    2017-09-01

    Background Thyroid-stimulating hormone (TSH) is used as the first-line test of thyroid function. Siemens Healthcare Diagnostics recommend that Siemens Centaur reagents must be protected from light in the assay information and on reagent packaging. We have compared the effect of light exposure on results using Siemens TSH-3Ultra and follicle-stimulating hormone reagents. The thyroid-stimulating hormone reagent includes fluoroscein thiocyanate whereas the follicle-stimulating hormone reagent does not. Methods Three levels of quality controls were analysed using SiemensTSH-3Ultra and follicle-stimulating hormone reagent packs that had been kept protected from light or exposed to light at 6-h intervals for 48 h and then at 96 h. Results Thyroid-stimulating hormone results were significantly lower after exposure of TSH-3Ultra reagent packs to light. Results were >15% lower at all three levels of quality control following 18 h of light exposure and continued to decrease until 96 h. There was no significant difference in follicle-stimulating hormone results whether reagents had been exposed to or protected from light. Conclusions Thyroid-stimulating hormone results but not follicle-stimulating hormone results are lowered after exposure of reagent packs to light. Laboratories must ensure that TSH-3Ultra reagents are not exposed to light and analyse quality control samples on every reagent pack to check that there has not been light exposure prior to delivery. The labelling on TSH-3Ultra reagent packs should reflect the significant effect of light exposure compared with the follicle-stimulating hormone reagent. We propose that the effect of light exposure on binding of fluoroscein thiocyanate to the solid phase antibody causes the falsely low results.

  2. An Experimental Study of Ultra-Wide-Band and Ultra-Wide-Aperture Non-Collinear Acousto-Optic Diffraction in an Optically Biaxial Potassium Arsenate Titanyl Crystal

    NASA Astrophysics Data System (ADS)

    Milkov, M. G.; Voloshinov, V. B.; Isaenko, L. I.; Vedenyapin, V. N.

    2018-01-01

    Acousto-optic interaction in an optically biaxial crystalline medium under propagation of light close to one of the optical axes of a potassium arsenate titanyl KTiOAsO4 crystal has been studied. The experimental dependences of the intensity of a diffracted optical beam on the angle of light incidence on an ultrasonic wave have been obtained. It has been shown that a flat cut of a wave-vector surface provides development of an ultra-wide-aperture and ultra-wide-band acousto-optic deflector to control radiation in the visible and infrared electromagnetic spectral ranges.

  3. Production of Ultra-Light Normal Incidence Mirrors

    NASA Technical Reports Server (NTRS)

    Jones, Ruth; Muntele, Iulia; Muntele, Claudiu; Zimmerman, Robert L.; Ila, Daryush; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Mirrors fabrication for large aperture telescopes is an important aspect in space exploration programs. One of the cost effective techniques to obtain such mirrors is electroplating of Ni-Co alloys from sulfamate solution. The Center for Irradiation of Materials at Alabama A&M University - Research Institute has been involved in a NASA-MSFC project for producing ultra-light Ni-Co alloy mirrors since the summer of year 2000. The goal of this project is to obtain ultra-light, high strength electroformed large aperture normal incidence replicated mirrors, (weighting less than 5 kg/m2), free of stress, with a good figure and reproducible thickness variation. In order to simplify the control of parameters such as temperature gradient, concentration gradient, distribution of the electric field lines and flow control, the proposed geometry involves a cylindrical main tank contained in another cylindrical tank, which plays the role of a weir. Designs were created to accommodate the new horizontal position of the mandrel and the pipes fitting through the outer tank's lid. The inner tank contains the working electrodes and a series of sensors for monitoring temperature, flow, stress and pH. The outer tank holds the electric heaters, the filters and a part of the piping system. Another two tanks complete the setup and serve for rinsing/preheating and equilibrating the electroplating bath. This paper will describe advantages of the new experimental setup and the parameters achieved in the electroplating bath for the proposed geometry.

  4. Supercontinuum white light lasers for flow cytometry

    PubMed Central

    Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2009-01-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836

  5. GreenLight laser vs diode laser vaporization of the prostate: 3-year results of a prospective nonrandomized study.

    PubMed

    Guo, Sanwei; Müller, Georg; Bonkat, Gernot; Püschel, Heike; Gasser, Thomas; Bachmann, Alexander; Rieken, Malte

    2015-04-01

    Laser vaporization of the prostate is one of the alternatives to transurethral resection of the prostate. Short-term studies report a comparable outcome after laser vaporization with the 532 nm 120-W GreenLight high-performance system (HPS) laser and the 980 nm 200 W high-intensity diode (diode) laser. In this study, we analyzed the intermediate-term results of both techniques. From January 2007 to January 2008, 112 consecutive patients with symptomatic benign prostate enlargement were nonrandomly assigned to treatment with the GreenLight laser or the diode laser. Perioperative parameters, postoperative functional outcome, complications, and the reoperation rate at 3 years were analyzed. Improvement of voiding symptoms (International Prostate Symptom Score, quality-of-life) and micturition parameters (maximum flow rate, postvoid residual volume) showed no significant difference between the HPS group and the diode group. A significantly higher reoperation rate was observed in the diode group in comparison to the HPS group (37.5% vs 8.9%, p=0.0003) due to obstructive necrotic tissue (16.1% vs 0%, p=0.0018), bladder neck stricture (16.1% vs 1.8%, p=0.008), and persisting or recurrent adenoma (5.4% vs 7.1%, p=0.70), respectively. Both lasers lead to comparable improvement of voiding parameters and micturition symptoms. Treatment with the 200 W diode laser led to a significantly higher reoperation rate, which might be attributed to a higher degree of coagulation necrosis. Thus, a careful clinical application of this diode laser type is warranted.

  6. Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E. K.; Prokofiev, A. V.; Velichko, E. N.; Pleshakov, I. V.; Kuzmin, Yu I.

    2017-06-01

    Investigation of magnetooptical characteristics of ferrofluids is an important task aimed at the development of novel optoelectronic systems. This article reports on the results obtained in the experimental studies of the factors that affect the intensity and spatial distribution of the laser radiation scattered by magnetic particles and their agglomerates in a magnetic field. Laser correlation spectroscopy and direct measurements of laser radiation scattering for studies of the interactions and magnetooptical properties of magnetic particles in solutions were employed. The objects were samples of nanodispersed magnetite (Fe3O4) suspended in kerosene and in water. Our studies revealed some new behavior of magnetic particles in external magnetic and light fields, which make ferrofluids promising candidates for optical devices.

  7. Clusters in intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Bostedt, Christoph

    2012-06-01

    Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster

  8. Interaction of intense laser pulses with hydrogen atomic clusters

    NASA Astrophysics Data System (ADS)

    Du, Hong-Chuan; Wang, Hui-Qiao; Liu, Zuo-Ye; Sun, Shao-Hua; Li, Lu; Ma, Ling-Ling; Hu, Bi-Tao

    2010-03-01

    The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.

  9. Lasers | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-05-01

    Laser light is an intense, focused beam of visible light radiation. Lasers are used in many workplaces, including construction, surveying and medicine. High-powered laser light can cause severe skin burns and permanent eye damage.

  10. Super-luminescent jet light generated by femtosecond laser pulses

    PubMed Central

    Xu, Zhijun; Zhu, Xiaonong; Yu, Yang; Zhang, Nan; Zhao, Jiefeng

    2014-01-01

    Phenomena of nonlinear light-matter interaction that occur during the propagation of intense ultrashort laser pulses in continuous media have been extensively studied in ultrafast optical science. In this vibrant research field, conversion of the input laser beam into optical filament(s) is commonly encountered. Here, we demonstrate generation of distinctive single or double super-luminescent optical jet beams as a result of strong spatial-temporal nonlinear interaction between focused 50 fs millijoule laser pulses and their induced micro air plasma. Such jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are largely different from optical filaments, and obtainable when the focal lens of proper f-number is slightly tilted or shifted. Once being collimated, the jet beams can propagate over a long distance in air. These beams not only reveal a potentially useful approach to coherent optical wave generation, but also may find applications in remote sensing. PMID:24463611

  11. BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research

    DOE PAGES

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less

  12. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  13. Ultra-Shallow Junctions Fabrication by Plasma Immersion Implantation on PULSION registered Followed by Laser Thermal Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Sempere, Guillaume

    In order to achieve the requirements for P+/N junctions for <45 nm ITRS nodes, ultra low energy and high dose implantations are needed. Classical beamline implantation is now limited in low energies, compared to Plasma Immersion Ion Implantation (PIII) which efficiency is no more to prove for the realization of Ultra-Shallow Junctions (USJ) in semiconductor applications : this technique allows to get ultimate shallow profiles (as implanted) due to no lower limitation of energy and high dose rate. Electrical activation is also a big issue since it has to afford high electrical activation rate with very low diffusion. Laser annealingmore » is one of the candidates for the 45 nm node. This paper presents electrical and physico-chemical characterizations of junctions realized with BF3 PIII followed by laser thermal processing with aim to obtain ultra-shallow junctions. Different implantation conditions (acceleration voltage/dose) and laser conditions (laser types, fluence/number of shots) are used for this study. Pre-amorphization is also used to confine the junction depth, and is shown to have a positive effect on junction depth but leads in higher junction leakage due to the remaining of EOR defects. The characterization is done using Optical characterization tool (SEMILAB) for sheet resistance and junction leakage measurements. SIMS is used for Boron profile and junction depth.« less

  14. Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing.

    PubMed

    Bednarkiewicz, A; Wawrzynczyk, D; Gagor, A; Kepinski, L; Kurnatowska, M; Krajczyk, L; Nyk, M; Samoc, M; Strek, W

    2012-04-13

    Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ∼8 nm NaYF₄ nanocrystals (NCs) co-doped with 2% Er³⁺ and 20% Yb³⁺ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm⁻² (∼354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications.

  15. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    PubMed

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  16. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  17. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  18. High-power laser phosphor light source with liquid cooling for digital cinema applications

    NASA Astrophysics Data System (ADS)

    Li, Kenneth

    2014-02-01

    Laser excited phosphor has been used to excite phosphor material, producing high intensity light output with smaller etendue than that of LEDs with the same long lifetime. But due to the high intensity of the laser light, phosphor with organic binder burns at low power, which requires the phosphor to be deposited on a rotating wheel in practical applications. Phosphor with inorganic binders, commonly known as ceramic phosphor, on the other hand, does not burn, but efficiency goes down as temperature goes up under high power excitation. This paper describes cooling schemes in sealed chambers such that the phosphor materials using organic or inorganic binders can be liquid cooled for high efficiency operations. Confined air bubbles are introduced into the sealed chamber accommodating the differential thermal expansion of the liquid and the chamber. For even higher power operation suitable for digital cinema, a suspension of phosphor in liquid is described suitable for screen brightness of over 30,000 lumens. The aging issues of phosphor can also be solved by using replaceable phosphor cartridges.

  19. Target micro-displacement measurement by a "comb" structure of intensity distribution in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.

    2015-05-01

    A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.

  20. Diffraction effects in mechanically chopped laser pulses

    NASA Astrophysics Data System (ADS)

    Gambhir, Samridhi; Singh, Mandip

    2018-06-01

    A mechanical beam chopper consists of a rotating disc of regularly spaced wide slits which allow light to pass through them. A continuous light beam, after passing through the rotating disc, is switched-on and switched-off periodically, and a series of optical pulses are produced. The intensity of each pulse is expected to rise and fall smoothly with time. However, a careful study has revealed that the edges of mechanically chopped laser light pulses consist of periodic intensity undulations which can be detected with a photo detector. In this paper, it is shown that the intensity undulations in mechanically chopped laser pulses are produced by diffraction of light from the rotating disc, and a detailed explanation is given of the intensity undulations in mechanically chopped laser pulses. An experiment presented in this paper provides an efficient method to capture a one dimensional diffraction profile of light from a straight sharp-edge in the time domain. In addition, the experiment accurately measures wavelengths of three different laser beams from the undulations in mechanically chopped laser light pulses.

  1. LPP-EUV light source for HVM lithography

    NASA Astrophysics Data System (ADS)

    Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.

    2017-01-01

    We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.

  2. Laser fiber-optic sensors for investigation of influences ultra weak cosmic radiation on the people.

    NASA Astrophysics Data System (ADS)

    Rzhavin, Yu.; Ignatiev, A.

    The present work describes investigation of influences ultra weak cosmic radiation on the people, using laser fiber-optic bio sensors. Potential of the people measurements is made on the basis of two Mach-Zender interferometers. The measuring and reference channels of the device are made in the form of signal-mode light guides with w-profile, which retain the polarization of light [1].The effect of measurements leads to axial compression of the w-fiber guides in the measuring channel. The measured signal is recorded by the relative displasement of the structure of the interference pattern, which is caused by phase modulation of a coherent light wave [2] propagating in the measuring channel. The light guides in the measuring channel reeled up on a flat surface on a cirle by a diameter 1.8 meter. Length light guides made 100 meters. The people approached on distance of 0.3 meters to flat surfased. It has been demonstrated that the method based on calculation of the mutual correlation function of the output signals of the interferometers makes it possible to raise the signal/noise ratio of the device by eliminating irregular noise waves and reproducing an accurate shape of the measured signal.As the light source, we have used single-frequency semiconductor injection laser which external resonator was used and one of a resonator mirrors was the w-lightguide end with reflection structure deposited on it .The w-lightguidess had the cup-off wave length 1,1 um, the degree of retention of polarization 99 %. It has been demonstrated experimentally that the of the developed sensor, under constant level of the cosmic radiation measured bio potential of the people was defined from age, weight, and psychological of the condition. REFERENCES 1.Yu.I .Rzhavin et.al. Proceeding SPIE , vol. 2349 , pp.154-157 2. Yu.I.Rzhavin Proceeding SPIE , vol. 4827 , pp.253-257

  3. Small bore ceramic laser tube inspection light table

    DOEpatents

    Updike, Earl O.

    1990-01-01

    Apparatus for inspecting small bore ceramic laser tubes, which includes a support base with one or more support rollers. A fluorescent light tube is inserted within the laser tube and the laser tube is supported by the support rollers so that a gap is maintained between the laser tube and the fluorescent tube to enable rotation of the laser tube. In operation, the ceramic tube is illuminated from the inside by the fluorescent tube to facilitate visual inspection. Centering the tube around the axial light of the fluorescent tube provides information about straightness and wall thickness of the laser tube itself.

  4. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    PubMed Central

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-01-01

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021  W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017  W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems. PMID:26330230

  5. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    DOE PAGES

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; ...

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10 21 W/cm 2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E 4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery,more » changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10 17 W/cm 2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.« less

  6. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  7. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R.F.; Moore, C.I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approximately}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported. {copyright} {ital 1999 American Institute of Physics.}« less

  8. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R. F.; Moore, C. I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approx}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported.« less

  9. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, F.; Bohler, D.; Ding, Y.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less

  10. Low intensity laser therapy: the clinical approach

    NASA Astrophysics Data System (ADS)

    Kahn, Fred

    2006-02-01

    Recently, there has been significant improvement in the process of research and application of Low Intensity Laser Therapy (LILT). Despite this positive direction, a wide discrepancy between the research component and clinical understanding of the technology remains. In our efforts to achieve better clinical results and more fully comprehend the mechanisms of interaction between light and cells, further studies are required. The clinical results presented in this paper are extrapolated from a wide range of musculoskeletal problems including degenerative osteoarthritis, repetitive motion injuries, sports injuries, etc. The paper includes three separate clinical studies comprising 151, 286 and 576 consecutive patient discharges at our clinic. Each patient studied received a specific course of treatment that was designed for that individual and was modified on a continuing basis as the healing process advanced. On each visit, clinical status correlation with the duration, dosage and other parameters was carried out. The essentials of the treatment consisted of a three stage approach. This involved a photon stream emanating from a number of specified gallium-aluminum-arsenide diodes; stage one, red light array, stage two consisting of an array of infrared diodes and stage three consisting of the application of an infrared laser diode probe. On average, each of these groups required less than 10 treatments per patient and resulted in a significant improvement / cure rate greater than 90% in all conditions treated. This report clearly demonstrates the benefits of LILT, indicating that it should be more widely adapted in all medical therapeutic settings.

  11. Transcranial light-tissue interaction analysis

    NASA Astrophysics Data System (ADS)

    Aulakh, Kavleen; Zakaib, Scott; Willmore, William G.; Ye, Winnie N.

    2016-03-01

    The penetration depth of light plays a crucial role in therapeutic medical applications. In order to design effective medical photonic devices, an in-depth understanding of light's ability to penetrate tissues (including bone, skin, and fat) is necessary. The amount of light energy absorbed or scattered by tissues affects the intensity of light reaching an intended target in vivo. In this study, we examine the transmittance of light through a variety of cranial tissues for the purpose of determining the efficacy of neuro stimulation using a transcranial laser. Tissue samples collected from a pig were irradiated with a pulsed laser. We first determine the optimal irradiation wavelength of the laser to be 808nm. With varying peak and average power of the laser, we found an inverse and logarithmic relationship between the penetration depth and the intensity of the light. After penetrating the skin and skull of the pig, the light decreases in intensity at a rate of approximately 90.8 (+/-0.4) percent for every 5 mm of brain tissue penetrated. We also found the correlation between the irradiation time and dosage, using three different lasers (with peak power of 500, 1000, and 1500mW respectively). These data will help deduce what laser power is required to achieve a clinically-realistic model for a given irradiation time. This work is fundamental and the experimental data can be used to supplement existing and future research on the effects of laser light on brain tissue for the design of medical devices.

  12. Spectral irradiance of singly and doubly ionized zinc in low-intensity laser-plasma ultraviolet light sources

    NASA Astrophysics Data System (ADS)

    Szilagyi, John; Parchamy, Homaira; Masnavi, Majid; Richardson, Martin

    2017-01-01

    The absolute spectral irradiances of laser-plasmas produced from planar zinc targets are determined over a wavelength region of 150 to 250 nm. Strong spectral radiation is generated using 60 ns full-width-at-half-maximum, 1.0 μm wavelength laser pulses with incident laser intensities as low as ˜5 × 108 W cm-2. A typical radiation conversion efficiency of ˜2%/2πsr is measured. Numerical calculations using a comprehensive radiation-hydrodynamics model reveal the strong experimental spectra to originate mainly from 3d94s4p-3d94s2, 3d94s4d-3d94s4p, and 3d94p-3d94s, 3d94d-3d94p unresolved-transition arrays in singly and doubly ionized zinc, respectively.

  13. 14 CFR 23.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities...

  14. 14 CFR 23.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities...

  15. 14 CFR 23.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities...

  16. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    DOEpatents

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  17. Plasma-based generation and control of a single few-cycle high-energy ultrahigh-intensity laser pulse.

    PubMed

    Tamburini, M; Di Piazza, A; Liseykina, T V; Keitel, C H

    2014-07-11

    A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. Here we show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh-intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive result is explained with the larger reflectivity of a heavy foil, which compensates for its lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our multidimensional particle-in-cell simulations show that even few-cycle counterpropagating laser pulses can be further shortened (both temporally and in the number of laser cycles) with pulse amplification. A single few-cycle, multipetawatt laser pulse with several joules of energy and with a peak intensity exceeding 10(23)  W/cm(2) can be generated already employing next-generation high-power laser systems. In addition, the carrier-envelope phase of the generated few-cycle pulse can be tuned provided that the carrier-envelope phase of the initial counterpropagating pulse is controlled.

  18. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  19. Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sebban, Stéphane

    2017-05-01

    We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.

  20. Laser-assisted heating of a plasmonic nanofluid in a microchannel

    NASA Astrophysics Data System (ADS)

    Walsh, Timothy

    The work presented in this study analyses the theoretical modeling and experimentation of laser-assisted heating of plasmonic nanofluids (PNFs) in a microchannel for accurate, efficient, and ultra-fast heating of a microdroplet. Suspended plasmonic nanoparticles exhibit strong light absorption and scattering upon the excitation of localized surface plasmons (LSPs), resulting in intense and rapid photothermal heating. Several multi-stepped computational models were utilized to theoretically characterize and verify the laser-assisted heating behavior of gold nanoshells (GNS) and gold nanorod (GNR) plasmonic nanofluid droplets in a microchannel. From the experimental investigation, a full range of controllable steady-state temperatures, room temperature to 100°C, are confirmed to be achievable for the 780-nm-tuned plasmonic nanofluid. Droplet fluid heating is verified to occur as a result of LSP excitation, in time scales of milliseconds, and to be repeatable over many cycles. Additionally, the significance and effects of parameters in the process, such as nanoparticle structure, volumetric concentration, microchannel depth, and laser power density are established. The obtained results in this research may be integrated into other existing microfluidic technologies and biological techniques, such as the polymerase chain reaction, where accurate and ultra-fast heating of microdroplets in a microchannel can greatly improve efficiency.

  1. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.

    2017-02-01

    White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.

  2. Dissimilarity of yellow-blue surfaces under neutral light sources differing in intensity: separate contributions of light intensity and chroma.

    PubMed

    Tokunaga, Rumi; Logvinenko, Alexander D; Maloney, Laurence T

    2008-01-01

    Observers viewed two side-by-side arrays each of which contained three yellow Munsell papers, three blue, and one neutral Munsell. Each array was illuminated uniformly and independently of the other. The neutral light source intensities were 1380, 125, or 20 lux. All six possible combinations of light intensities were set as illumination conditions. On each trial, observers were asked to rate the dissimilarity between each chip in one array and each chip in the other by using a 30-point scale. Each pair of surfaces in each illumination condition was judged five times. We analyzed this data using non-metric multi-dimensional scaling to determine how light intensity and surface chroma contributed to dissimilarity and how they interacted. Dissimilarities were captured by a three-dimensional configuration in which one dimension corresponded to differences in light intensity.

  3. Diffraction Gratings for High-Intensity Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britten, J

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy havemore » further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.« less

  4. Using compressive measurement to obtain images at ultra low-light-level

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Wei, Ping

    2013-08-01

    In this paper, a compressive imaging architecture is used for ultra low-light-level imaging. In such a system, features, instead of object pixels, are imaged onto a photocathode, and then magnified by an image intensifier. By doing so, system measurement SNR is increased significantly. Therefore, the new system can image objects at ultra low-ligh-level, while a conventional system has difficulty. PCA projection is used to collect feature measurements in this work. Linear Wiener operator and nonlinear method based on FoE model are used to reconstruct objects. Root mean square error (RMSE) is used to quantify system reconstruction quality.

  5. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors.

    PubMed

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M; Speck, James S; Nakamura, Shuji; Ooi, Boon S; DenBaars, Steven P

    2017-07-24

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021¯)  substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  6. Effect of pulsed laser light in patients with dry eye syndrome.

    PubMed

    Guilloto Caballero, S; García Madrona, J L; Colmenero Reina, E

    2017-11-01

    The objective of this study was to determine the clinical benefits of pulsed light therapy for the treatment of Dry Eye Syndrome (DES) due to the decrease in aqueous tear production (aqueous deficient DES) and/or excessive tear evaporation (evaporative DES) due to Meibomian Gland Dysfunction (MGD). A study was conducted on 72 eyes corresponding to 36 patients with DES. Out of these 72 eyes, 60 underwent refractive surgery (48 with femtosecond laser, 6 were operated with a mechanical microkeratome, and 6 with refractive photo-keratectomy[RPK], 6 treated with phacoemulsification, and 6 with no previous surgical treatment. Pulsed laser light (Intense Pulsed Light Regulated [IRPL ® ]) was use to stimulate the secretion of the Meibomian glands during 4 sessions, one every 15 days. Patients with aqueous deficient DES did not show any improvement. Eyes with no previous surgery and those treated with phacoemulsification and PRK had a favourable outcome. On the other hand, less conclusive results were observed in the eyes treated with excimer laser. This treatment could be very helpful to treat evaporative DES produced by MGD. On the other hand, it is not helpful for those cases related to an isolated damage in the aqueous phase, or the mucin phase. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Synchronization of video recording and laser pulses including background light suppression

    NASA Technical Reports Server (NTRS)

    Kalshoven, Jr., James E. (Inventor); Tierney, Jr., Michael (Inventor); Dabney, Philip W. (Inventor)

    2004-01-01

    An apparatus for and a method of triggering a pulsed light source, in particular a laser light source, for predictable capture of the source by video equipment. A frame synchronization signal is derived from the video signal of a camera to trigger the laser and position the resulting laser light pulse in the appropriate field of the video frame and during the opening of the electronic shutter, if such shutter is included in the camera. Positioning of the laser pulse in the proper video field allows, after recording, for the viewing of the laser light image with a video monitor using the pause mode on a standard cassette-type VCR. This invention also allows for fine positioning of the laser pulse to fall within the electronic shutter opening. For cameras with externally controllable electronic shutters, the invention provides for background light suppression by increasing shutter speed during the frame in which the laser light image is captured. This results in the laser light appearing in one frame in which the background scene is suppressed with the laser light being uneffected, while in all other frames, the shutter speed is slower, allowing for the normal recording of the background scene. This invention also allows for arbitrary (manual or external) triggering of the laser with full video synchronization and background light suppression.

  8. Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips

    NASA Astrophysics Data System (ADS)

    Malek, C. Khan; Robert, L.; Salut, R.

    2009-04-01

    A hybrid process compatible with reel-to-reel manufacturing is developed for ultra low-cost large-scale manufacture of disposable microfluidic chips. It combines ultra-short laser microstructuring and lamination technology. Microchannels in polyester foils were formed using focused, high-intensity femtosecond laser pulses. Lamination using a commercial SU8-epoxy resist layer was used to seal the microchannel layer and cover foil. This hybrid process also enables heterogeneous material structuration and integration.

  9. Low intensity infrared laser induces filamentation in Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Presta, G. A.; Geller, M.; Paoli, F.

    2011-10-01

    Low intensity continuous wave and pulsed emission modes laser is used in treating many diseases and the resulting biostimulative effect on tissues has been described, yet the photobiological basis is not well understood. The aim of this wok was to evaluate, using bacterial filamentation assay, effects of laser on Escherichia coli cultures in exponential and stationary growth phase. E. coli cultures, proficient and deficient on DNA repair, in exponential and stationary growth phase, were exposed to low intensity infrared laser, aliquots were spread onto microscopic slides, stained by Gram method, visualized by optical microscopy, photographed and percentage of bacterial filamentation were determined. Low intensity infrared laser with therapeutic fluencies and different emission modes can induce bacterial filamentation in cultures of E. coli wild type, fpg/ mutM, endonuclease III and exonuclease III mutants in exponential and stationary growth phase. This study showed induction of bacterial, filamentation in E. coli cultures expose to low intensity infrared laser and attention to laser therapy protocols, which should take into account fluencies, wavelengths, tissue conditions, and genetic characteristics of cells before beginning treatment.

  10. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  11. Lasers and light sources for rosacea.

    PubMed

    Goldberg, David J

    2005-03-01

    Pharmacologic agents remain the mainstay for initial and maintenance treatment of rosacea. However, monochromatic (i.e., laser) and polychromatic light-based therapies are increasingly being used for the treatment of certain signs of rosacea. Despite the increased use of lasers and other light-based therapies, few well-controlled studies have been conducted on their use for the treatment of rosacea. The studies that do exist suggest that these modalities have value in treating erythematotelangiectatic rosacea, including persistent erythema and phymatous rosacea. Light-based therapies should be strongly considered in cases of serious erythema, flushing, and telangiectasia because these signs are not optimally addressed by pharmacologic interventions.

  12. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    NASA Astrophysics Data System (ADS)

    Wieg, A. T.; Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Garay, J. E.

    2016-12-01

    We introduce high thermal conductivity aluminum nitride (AlN) as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL) emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l'Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  13. Interaction of Intense Lasers with Plasmas

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady

    1995-01-01

    This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that a<<1, where a=eA/mc^2 is a dimensionless vector potential. This formalism borrows the diagrammatic techniques from quantum field theory, yet remains classical. This classical field theory, which treats cold plasma as a relativistic field interacting with the electromagnetic fields, introduces an artificial length scale which is smaller than any physically relevant spatial scale. By adopting a special (Arnowitt -Fickler) gauge, electromagnetic waves in a cold relativistic plasma are separated into "photons" and "plasmons" which are the relativistic extensions of electrostatic and electromagnetic waves in a cold stationary plasma. The field-theoretical formalism is applied to a variety of nonlinear problems including harmonic generation, parametric instabilities, and nonlinear corrections to the index of refraction. For the first time the rate of the second harmonic emission from a homogeneous plasma is calculated and its dependence on the polarization of the incident radiation is studied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field

  14. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Changhai; Tian, Ye; Li, Wentao

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside themore » overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.« less

  15. Using the ultra-long pulse width pulsed dye laser and elliptical spot to treat resistant nasal telangiectasia.

    PubMed

    Madan, Vishal; Ferguson, Janice

    2010-01-01

    Thick linear telangiectasia on the ala nasi and nasolabial crease can be resistant to treatment with the potassium-titanyl-phosphate (KTP) laser and the traditional round spot on a pulsed dye laser (PDL). We evaluated the efficacy of a 3 mm x 10 mm elliptical spot using the ultra-long pulse width on a Candela Vbeam(R) PDL for treatment of PDL- and KTP laser-resistant nasal telangiectasia. Nasal telangiectasia resistant to PDL (12 patients) and KTP laser (12 patients) in 18 patients were treated with a 3 mm x 10 mm elliptical spot on the ultra-long pulse pulsed dye laser (ULPDL) utilising long pulse width [595 nm, 40 ms, double pulse, 30:20 dynamic cooling device (DCD)]. Six patients had previously received treatment with both PDL and KTP laser prior to ULPDL (40 treatments, range1-4, mean 2.2). Complete clearance was seen in ten patients, and eight patients displayed more than 80% improvement after ULPDL treatment. Self-limiting purpura occurred with round spot PDL and erythema with KTP laser and ULPDL. Subtle linear furrows along the treatment sites were seen in three patients treated with the KTP laser. ULPDL treatment delivered using a 3 mm x 10 mm elliptical spot was non-purpuric and highly effective in the treatment of nasal telangiectasia resistant to KTP laser and PDL.

  16. High-Power, High-Intensity Laser Propagation and Interactions

    DTIC Science & Technology

    2014-03-10

    wave Brillouin mixing [89,90]. transmitted beam is phase conjugated target initial wave front nn  1 turbulent air Figure 14. Using phase and...discussed in connection with both high-power and high-intensity lasers is propagation in a turbulent atmosphere . Laser propagation in atmospheric ... turbulence can results in beam centroid wander, spreading and intensity scintillation. A phase conjugation technique to mitigate the effects of atmospheric

  17. Nonlinear Electron and Ion Density Modulations Driven by Interfering High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Chen, S.; Zhang, P.; Saleh, N.; Sheng, Z. M.; Widjaja, C.; Umstadter, D.

    2002-11-01

    The optical spectrum from interaction of two crossed ultra short laser beams (400 fs) with underdense plasma is measured at various angles. Enhancement and broadening of the spectrum in the forward direction of one of the beams shows evidence of energy transfer between the two laser beams(G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. E 60, 2218 (1999).), which is confirmed by a 2-D PIC simulation. The spectrum and scattered power indicate that a large amplitude electron density modulation is driven, which is attributed to the ponderomotive force of the interference, in agreement with simple analysis and simulation(δn/n_0>10). Stokes and anti-Stokes satellites reveals that the energy transfer is accompanied by a large amplitude nonlinear ion acoustic wave created by the laser interference in the strongly driven limit. The wavelength shift indicates that the ion acoustic wave's speed is 2.3×10^6m/s, corresponding to the electron temperature 119 keV, which is attributed to stochastic heating, also found in the simulation. Besides being of interest in basic plasma physics, this research is also relevant to fast igniter fusion or ion acceleration experiments, in which a laser pulse may potentially beat with a reflected weaker pulse, with intensities comparable to those used in the experiment(Y. Sentoku, et al., Appl. Phys. B 74, 207-215 (2002).).

  18. Generation of flower high-order Poincaré sphere laser beams from a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lu, T. H.; Huang, T. D.; Wang, J. G.; Wang, L. W.; Alfano, R. R.

    2016-12-01

    We propose and experimentally demonstrate a new complex laser beam with inhomogeneous polarization distributions mapping onto high-order Poincaré spheres (HOPSs). The complex laser mode is achieved by superposition of Laguerre-Gaussian modes and manifests exotic flower-like localization on intensity and phase profiles. A simple optical system is used to generate a polarization-variant distribution on the complex laser mode by superposition of orthogonal circular polarizations with opposite topological charges. Numerical analyses of the polarization distribution are consistent with the experimental results. The novel flower HOPS beams can act as a new light source for photonic applications.

  19. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  20. The LILIA (laser induced light ions acceleration) experiment at LNF

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Anania, M. P.; Caresana, M.; Cirrone, G. A. P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L. A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.; Varoli, V.; Velardi, L.

    2014-07-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50-75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  1. Laser intensity modulated real time monitoring cell growth sensor for bioprocess applications

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Babu, P. Ravindra; Devi, V. Rama; Maunika, T.; Soujanya, P.; Kishore, P. V. N.; Dinakar, D.

    2016-04-01

    This article proposes an optical method for monitoring the growth of Escherichia coli in Luria Bertani medium and Saccharomyces cereviciae in YPD. Suitable light is selected which on interaction with the analyte under consideration, gets adsorption / scattered. Required electronic circuitry is designed to drive the laser source and to detect the intensity of light using Photo-detector. All these components are embedded and arranged in a proper way and monitored the growth of the microbs in real time. The sensors results are compared with standard techniques such as colorimeter, Nephelometer and hemocytometer. The experimental results are in good agreement with the existed techniques and well suitable for real time monitoring applications of the growth of the microbs.

  2. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    PubMed Central

    Poole, P. L.; Krygier, A.; Cochran, G. E.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-01-01

    We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592

  3. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    DOE PAGES

    Poole, P. L.; Krygier, A.; Cochran, G. E.; ...

    2016-08-25

    Here, we describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating.more » Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors.« less

  4. Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping.

    PubMed

    Liu, Hui; Gredat, Gregory; De, Syamsundar; Fsaifes, Ihsan; Ly, Aliou; Vatré, Rémy; Baili, Ghaya; Bouchoule, Sophie; Goldfarb, Fabienne; Bretenaker, Fabien

    2018-04-15

    An ultra-low intensity and beatnote phase noise dual-frequency vertical-external-cavity surface-emitting laser is built at telecom wavelength. The pump laser is realized by polarization combining two single-mode fibered laser diodes in a single-mode fiber, leading to a 100% in-phase correlation of the pump noises for the two modes. The relative intensity noise is lower than -140  dB/Hz, and the beatnote phase noise is suppressed by 30 dB, getting close to the spontaneous emission limit. The role of the imperfect cancellation of the thermal effect resulting from unbalanced pumping of the two modes in the residual phase noise is evidenced.

  5. The Clinical Efficacy of Autologous Platelet-Rich Plasma Combined with Ultra-Pulsed Fractional CO2 Laser Therapy for Facial Rejuvenation

    PubMed Central

    Hui, Qiang; Chang, Peng; Guo, Bingyu; Zhang, Yu

    2017-01-01

    Abstract Ultra-pulsed fractional CO2 laser is an efficient, precise, and safe therapeutic intervention for skin refreshing, although accompanied with prolonged edema and erythema. In recent years, autologous platelet-rich plasma (PRP) has been proven to promote wound and soft tissue healing and collagen regeneration. To investigate whether the combination of PRP and ultra-pulsed fractional CO2 laser had a synergistic effect on therapy for facial rejuvenation. Totally, 13 facial aging females were treated with ultra-pulsed fractional CO2 laser. One side of the face was randomly selected as experimental group and injected with PRP, the other side acted as the control group and was injected with physiological saline at the same dose. Comprehensive assessment of clinical efficacy was performed by satisfaction scores, dermatologists' double-blind evaluation and the VISIA skin analysis system. After treatment for 3 months, subjective scores of facial wrinkles, skin texture, and skin elasticity were higher than that in the control group. Similarly, improvement of skin wrinkles, texture, and tightness in the experimental group was better compared with the control group. Additionally, the total duration of erythema, edema, and crusting was decreased, in the experimental group compared with the control group. PRP combined with ultra-pulsed fractional CO2 laser had a synergistic effect on facial rejuvenation, shortening duration of side effects, and promoting better therapeutic effect. PMID:27222038

  6. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    PubMed

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  7. Ultra-stable clock laser system development towards space applications.

    PubMed

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-26

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.

  8. Electron dynamics characteristics in high-intensity laser fields

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Ho, Y. K.; Cao, N.; Pang, J.; Wang, P. X.; Shao, L.

    This paper addresses the conditions under which the vacuum laser acceleration scheme CAS (capture and acceleration scenario), newly proposed by the authors (see, e.g., P.X. Wang et al., Appl. Phys. Lett. 78, 2253 (2001)), can be observed. Specifically, the laser intensity threshold (a0)th and the range of the electron incident momentum for the CAS scheme to emerge are examined. We found that (a0)th is critically dependent on the laser beam width w0. At kw0=60, (a0)th=8, which is an intensity obtainable using present laser systems. The required energy of the incident electron is in the range 5-15 MeV. This study is of significance in designing an experimental setup to test CAS and helpful in understanding the basic physics of CAS.

  9. Nonlinear propagation of light in Dirac matter.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-09-01

    The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.

  10. Observation of vasculature alternation by intense pulsed light combined with physicochemical methods.

    PubMed

    Son, Taeyoon; Kang, Heesung; Jung, Byungjo

    2016-05-01

    Intense pulsed light (IPL) with low energy insufficient to completely destroy a vasculature was applied to rabbit ears to investigate vasculature alteration. Glycerol was combined with IPL to enhance the transfer efficacy of IPL energy. Both trans-illumination and laser speckle contrast images were obtained and analyzed after treatment. The application of IPL and glycerol combination induced vasodilation and improvement in blood flow. Moreover, such phenomenon was maintained over time. IPL may be applied to treat blood circulatory diseases by inducing vasodilation and to improve blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    PubMed Central

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-01

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851

  12. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  13. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.

    PubMed

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  14. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE PAGES

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  15. A method for improving the light intensity distribution in dental light-curing units.

    PubMed

    Arikawa, Hiroyuki; Takahashi, Hideo; Minesaki, Yoshito; Muraguchi, Kouichi; Matsuyama, Takashi; Kanie, Takahito; Ban, Seiji

    2011-01-01

    A method for improving the uniformity of the radiation light from dental light-curing units (LCUs), and the effect on the polymerization of light-activated composite resin are investigated. Quartz-tungsten halogen, plasma-arc, and light-emitting diode LCUs were used, and additional optical elements such as a mixing tube and diffusing screen were employed to reduce the inhomogeneity of the radiation light. The distribution of the light intensity from the light guide tip was measured across the guide tip, as well as the distribution of the surface hardness of the light-activated resin emitted with the LCUs. Although the additional optical elements caused 13.2-25.9% attenuation of the light intensity, the uniformity of the light intensity of the LCUs was significantly improved in the modified LCUs, and the uniformity of the surface hardness of the resin was also improved. Our results indicate that the addition of optical elements to the LCU may be a simple and effective method for reducing inhomogeneity in radiation light from the LCUs.

  16. The Impact of Environmental Light Intensity on Experimental Tumor Growth.

    PubMed

    Suckow, Mark A; Wolter, William R; Duffield, Giles E

    2017-09-01

    Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p≤0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Fast neutron production from lithium converters and laser driven protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, M.; Jiang, S.; Wertepny, D.

    2013-05-15

    Experiments to generate neutrons from the {sup 7}Li(p,n){sup 7}Be reaction with 60 J, 180 fs laser pulses have been performed at the Texas Petawatt Laser Facility at the University of Texas at Austin. The protons were accelerated from the rear surface of a thin target membrane using the target-normal-sheath-acceleration mechanism. The neutrons were generated in nuclear reactions caused by the subsequent proton bombardment of a pure lithium foil of natural isotopic abundance. The neutron energy ranged up to 2.9 MeV. The total yield was estimated to be 1.6 × 10{sup 7} neutrons per steradian. An extreme ultra-violet light camera, usedmore » to image the target rear surface, correlated variations in the proton yield and peak energy to target rear surface ablation. Calculations using the hydrodynamics code FLASH indicated that the ablation resulted from a laser pre-pulse of prolonged intensity. The ablation severely limited the proton acceleration and neutron yield.« less

  18. Light intensity modulates corneal power and refraction in the chick eye exposed to continuous light.

    PubMed

    Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Avni, Isaac; Polat, Uri

    2008-09-01

    Continuous exposure of chicks to light was shown to result in severe hyperopia, accompanied by anterior segment changes, such as severe corneal flattening. Since rearing chicks in complete darkness results only in mild hyperopia and minor changes in corneal curvature, we hypothesized that light intensity may play a role in the development of refractive changes under continuous light illumination. To test this hypothesis, we examined the effects of rearing chicks under various continuous light intensities. More specifically, we investigated the refractive parameters of the chicks' eyes, and avoided light cycling effects on ocular development. To this end, thirty-eight chicks were reared under 24-h incandescent illumination, at three different light intensities: 10,000 lux (n=13), 500 lux (n=12), and 50 lux (n=13). Their eyes underwent repeated retinoscopy, keratometry, and ultrasound biometry, as well as caliper measurements of enucleated eyes. Both refraction and corneal refractive power were found to be correlated with light intensity. On day 90 after hatching, exposure to light intensities of 10,000, 500, and 50 lux resulted in hyperopia of +11.97+/-3.7 (mean+/-SD) +7.9+/-4.08 and +0.63+/-3.61 diopters (D), respectively. Under those intensities, corneal refractive power was 46.10+/-3.62, 49.72+/-4.16, and 56.88+/-4.92D, respectively. Axial length did not differ significantly among the groups. The vitreous chamber was significantly deeper in the high than in the low-intensity groups. Thus, during the early life of chicks exposed to continuous lighting, light intensity affects the vitreous chamber depth as well as the anterior segment parameters, most notably the cornea. The higher the intensity, the more severe was the corneal flattening observed and the hyperopia that developed, whereas continuous illumination at low intensities resulted in emmetropia. Thus, light intensity is an important factor that should be taken into account when studying refractive

  19. Multi-keV X-ray area source intensity at SGII laser facility

    NASA Astrophysics Data System (ADS)

    Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei

    2018-05-01

    Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.

  20. Perceiving the Intensity of Light

    ERIC Educational Resources Information Center

    Purves, Dale; Williams, S. Mark; Nundy, Surajit; Lotto, R. Beau

    2004-01-01

    The relationship between luminance (i.e., the photometric intensity of light) and its perception (i.e., sensations of lightness or brightness) has long been a puzzle. In addition to the mystery of why these perceptual qualities do not scale with luminance in any simple way, "illusions" such as simultaneous brightness contrast, Mach bands,…

  1. 1-J white-light continuum from 100-TW laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Yannick; Henin, Stefano; Bejot, Pierre

    2011-01-15

    We experimentally measured the supercontinuum generation using 3-J, 30-fs laser pulses and measured white-light generation at the level of 1 J. Such high energy is allowed by a strong contribution to the continuum by the photon bath, as compared to the self-guided filaments. This contribution due to the recently observed congestion of the filament number density in the beam profile at very high intensity also results in a wider broadening for positively chirped pulses rather than for negatively chirped ones, similar to broadening in hollow-core fibers.

  2. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  3. X-Ray generation by the laser-plasma interaction in the regime of relativistic electronic spring

    NASA Astrophysics Data System (ADS)

    Gonoskov, Arkady; Blackburn, Thomas; Blanco, Manuel; Flores-Arias, M. T.; Wettervik, Benjamin; Marklund, Mattias

    2017-10-01

    Inducing and controlling relativistic motion of surface electrons in overdense plasmas with high-intensity lasers is a promising way to produce X-rays with unique properties, including high brightness, ultra-short duration and tunable polarization. Although the well-studied relativistic oscillating mirror (ROM) regime provides robust generation of high harmonics, the amplitude of the outgoing light in this regime is always equal to that of the incident radiation because the conversion takes place continuously without energy accumulation. This restriction can be overcome by increasing the laser intensity and/or decreasing the plasma density such that n / a < 10 . In this case the plasma acts as a spring, first accumulating up to 60% of the energy of one laser cycle, then re-emitting it in the form of a burst of high harmonics. Under optimal conditions this burst can be both 100 times shorter in duration and 100 times higher in intensity. The theory of relativistic electronic spring (RES) describes a wide variety of interaction scenarios in this regime and provides insight into the underlying physics. The talk will concern the prospects of creating and controlling XUV bursts of exceptional brightness in the RES regime.

  4. Flying Focus: Spatiotemporal Control of the Laser Beam Intensity

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Turnbull, D.; Kessler, T. J.; Haberberger, D.; Bahk, S.-W.; Begishev, I. A.; Boni, R.; Bucht, S.; Davies, A.; Katz, J.; Sefkow, A. B.; Shaw, J. L.

    2017-10-01

    A ``flying focus'' is presented: this advanced focusing scheme provides unprecedented spatiotemporal control over the laser focal volume. A chromatic focusing system combined with chirped laser pulses enabled the speed of a small-diameter laser focus to propagate over nearly 100 × its Rayleigh length. Furthermore, the flying focus decouples the speed at which the peak intensity propagates from the group velocity of the laser pulse, allowing the laser focus to co- or counter-propagate along its axis at any velocity. Experiments have demonstrated a nearly constant intensity over 4.5 mm while the velocity of the focus ranged from subluminal (0.01 c) to superluminal (15 c) . These properties could provide the opportunity to overcome current fundamental limitations in laser-plasma amplifiers, laser-wakefield accelerators, photon accelerators, ion accelerators, and high-order frequency conversion. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Abnormal environmental light exposure in the intensive care environment.

    PubMed

    Fan, Emily P; Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C; Maas, Matthew B

    2017-08-01

    We sought to characterize ambient light exposure in the intensive care unit (ICU) environment to identify patterns of light exposure relevant to circadian regulation. A light monitor was affixed to subjects' bed at eye level in a modern intensive care unit and continuously recorded illuminescence for at least 24h per subject. Blood was sampled hourly and measured for plasma melatonin. Subjects underwent hourly vital sign and bedside neurologic assessments. Care protocols and the ICU environment were not modified for the study. A total of 67,324 30-second epochs of light data were collected from 17 subjects. Light intensity peaked in the late morning, median 64.1 (interquartile range 19.7-138.7) lux. The 75th percentile of light intensity exceeded 100lx only between 9AM and noon, and never exceeded 150lx. There was no correlation between melatonin amplitude and daytime, nighttime or total light exposure (Spearman's correlation coefficients all <0.2 and p>0.5). Patients' environmental light exposure in the intensive care unit is consistently low and follows a diurnal pattern. No effect of nighttime light exposure was observed on melatonin secretion. Inadequate daytime light exposure in the ICU may contribute to abnormal circadian rhythms. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Method and apparatus for measuring the intensity and phase of an ultrashort light pulse

    DOEpatents

    Kane, Daniel J.; Trebino, Rick P.

    1998-01-01

    The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.

  7. Light Intensity Physical Activity Trial

    ClinicalTrials.gov

    2018-01-30

    Diabetes Mellitus; Physical Exercise; Light Intensity Physical Activity; Arterial Stiffness; Aortic Stiffness; Pulse Wave Velocity; Type2 Diabetes; Sedentary Lifestyle; Artery Disease; Physical Activity

  8. Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities

    NASA Astrophysics Data System (ADS)

    Ping, Yuan

    2005-10-01

    We present the first absorption measurements at laser intensity between 10^17 to 10^20 W/cm^2 using an intergrating sphere and a suite of diagnostics that measures scale length, hot electrons and laser harmonics. A much-enhanced absorption in the regime of relativestic electron heating was observed. Furthermore, we present measurements on the partitioning of absorbed laser energy into thermal and non-thermal electrons when illuminating solid targets from 10^17 to 10^19 W/cm^2. This was measured using a sub-picosecond x-ray streak camera interfaced to a dual crystal von H'amos crystal spectrograph, a spherical crystal x-ray imaging spectrometer, an electron spectrometer and optical spectrometer. Our data suggests an intensity dependent energy-coupling transition with greater energy portion into non-thermal electrons that rapidly transition to thermal electrons. The details of these experimental results and modeling simulations will be presented.

  9. Reporting guide for laser-light shows and displays (21 CFR 1002)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The guide is to be used for reporting laser-light shows or displays incorporating Class IIIb or Class IV lasers only. Separate reports are not required for shows or displays that incorporate Class I, IIa, II, or IIIa laser-projection systems. Such show descriptions must be included in the user instructions and the report for the laser projector. Laser projectors used in any light shows or displays regardless of the class of the projector must be certified by the manufacturer and reported using the guide titled, Guide for Preparing Initial Reports and Model Change Reports on Lasers and Products Containing Lasers, HHSmore » Publication FDA 86-8259. These guides assist manufacturers in providing the information that the Center for Devices and Radiological Health (CDRH) needs to determine how laser-light-shown projections and laser-light shows comply with the Federal standard for laser products (21 CDR 1040.10 and 1040.11) and with the conditions of an approved variance.« less

  10. Physics of light and lasers.

    PubMed

    Absten, G T

    1991-09-01

    Because most laser procedures use the heating effect of the light and given the number of parameters that may be varied--such as power density, power, pulsing, and heating of fiber tips and probes--significant overlap in applications of the various lasers can result. This is readily apparent in the conflicting claims of laser manufacturers seen in promotional materials. Despite this, each type has its strengths. The CO2 laser is a specialty instrument, particularly for microscopic applications in neurosurgery, otolaryngology, and gynecology. Its hemostasis and vaporizing abilities allow its use in dermatology and in general surgery for tumor resection and hemostasis. In gynecology it seems best for colposcopy (cervical and vaginal) and, through a micromanipulator, for laparotomy. The beam is focused and delivered by handpieces and micromanipulators on microscopes. Through the laparoscope, it requires the use of a special laser coupler on a special laser laparoscope to allow for line-of-sight delivery of the beam through the operating channel. Waveguide delivery systems have been introduced for CO2 laser laparoscopy using standard laparoscopes. These function as hollow, slender tubes through which the beam is transmitted by means of hundreds of glancing internal reflections in the tube, which emits the beam at its tip. This eliminates many of the alignment problems of coupler cube-type systems and allows the beam to be delivered close to the target. The Nd:YAG laser is the primary endoscopic instrument in pulmonology, gastroenterology, and urology. The use of contact tips, though not a panacea, increases its applications, particularly in general surgery. Its primary use in gynecology is for endometrial ablation with bare fibers for deep coagulation. Its use for laparoscopy with contact probes or sculpted fibers is quickly growing. Green light lasers (argon and KTP) are color-selective photocoagulators and may be used to cut tissue. They are fiberoptically delivered

  11. Effects of LED or laser phototherapy on bone defects grafted with MTA and irradiated with laser or LED light: a comparative Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio L. B.; Soares, Luiz G. P.; Barbosa, Artur Felipe S.; Silveira, Landulfo, Jr.

    2012-03-01

    We studied peaks of calcium hydroxyapatite - CHA on defects grafted with MTA, treated or not with Light Emitting Diode - LED or IR Laser. 54 rats were divided in 6 groups each subdivided into 3 subgroups (15,21,30d). LED (λ850 +/- 10nm) or IR Laser (λ850 nm) was applied over (LED) or in 4 points around the defect at 48 h intervals for 15 days. Raman readings were taken at the surface of the defect. The smaller overall intensity of the peak was found in Group MTA + Laser (1510.2 +/- 274.1) and the highest on Group LED (2322 +/- 715). There were no statistically significant differences between non-irradiated subjects on regards the CHA peaks. On the other hand, there were statistically significant differences between the Group Clot and LED, Clot and Laser, and Clot and MTA + Laser (p =0.01, p = 0.02, p = 0.003). There were no significant differences between Group MTA and MTA + LED (p=0.2) but significant differences were seen between Groups MTA and MTA + Laser (p=0.01). Significant differences were also observed between Groups LED and Laser (p <0.001) and between Groups MTA + LED and MTA + Laser (p=0.009). MTA, due to its characteristics, seemed to be directly affected by the light. However, the use of either phototherapy positively affected bone healing similarly as observed on different studies using other biomaterials. The overall analysis of our results indicated that the use of either light source resulted in a better, more advanced, and of quality bone repair.

  12. [Light, laser and PDT therapy for acne].

    PubMed

    Borelli, C; Merk, K; Plewig, G; Degitz, K

    2005-11-01

    In recent years, a number of studies have evaluated the treatment of acne using electromagnetic waves, such as lasers, photodynamic therapy, visible light or radio waves. While the efficacy of laser treatment is still uncertain, photodynamic therapy shows promising results, but with marked side-effects, as destruction of sebaceous glands. Treatment with blue light (405-420 nm wavelength) also appears effective and can be regarded as an treatment option for inflammatory acne.

  13. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    PubMed Central

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-01-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage. PMID:27279565

  14. Ultra-short laser interactions with nanoparticles in different media: from electromagnetic to thermal and electrostatic effects

    NASA Astrophysics Data System (ADS)

    Itina, Tatiana E.

    2017-02-01

    Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.

  15. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less

  16. An Investigation of Laser Lighting Systems to Assist Aircraft

    DOT National Transportation Integrated Search

    1979-01-01

    A model for the visual detectability of narrow light beams was developed and used to evaluate the system performance of two laser lighting system configurations: (1) a laser VASI and (2) a crossed beam glide path indicator. Laboratory experiments con...

  17. Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.

    PubMed

    Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei

    2012-08-27

    A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.

  18. Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility

    NASA Astrophysics Data System (ADS)

    Yang, Jinwen; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Yang, Ming; Yang, Weiming; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-10-01

    Significant electromagnetic pulses (EMP) can be generated by the intensive laser irradiating solid targets in inertial confinement fusion (ICF). To evaluate the EMP intensity and distribution in and outside the laser chamber, we designed and fabricated a discone antenna with ultra-wide bands of over 10 GHz. The return loss (S11 parameter) of this antenna was below -10 dB and could even achieve under -30 dB at 3.1 GHz. The EMP intensity in this study at 80 cm and 40 cm away from the target chamber center (TCC) reached 400 kV/m and 2000 kV/m. The current results are expected to offer preliminary information to study physics regarding laser plasma interactions and will also lay experimental foundation for EMI shielding design to protect various diagnostics. supported by the Fundamental Research Funds for the Central Universities of China (No. ZYGX2015J108) and National Natural Science Foundation of China (Nos. 11575166 and 51581140)

  19. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  20. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  1. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  2. Quasi-monoenergetic proton beam from a proton-layer embedded metal foil irradiated by an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung Nam; Lee, Kitae, E-mail: klee@kaeri.re.kr; Kumar, Manoj

    A target structure, ion-layer embedded foil (ILEF) is proposed for producing a quasi-monoenergetic proton beam by utilizing a bulk electrostatic field, which is generated by irradiating the target with an ultra-intense laser pulse, inside the plasma. Compared with the case of a single metal foil in which the proton layer is initially present on the surface, in the ILEF target, the proton layer is initially located inside a metal foil. A two-dimensional particle-in-cell (PIC) simulation shows that the target generates a proton beam with a narrow energy spread. With a laser intensity of 2 × 10{sup 19 }W/cm{sup 2}, a 22-MeV proton beammore » with an energy spread of 8% at the full-width-half-maximum (FWHM) is obtained when the proton layer is located at 0.4 μm inside the rear surface of a 2.4 μm-thick copper foil. When the proton layer moves toward the front side, a proton beam with a flat-top energy distribution ranging from 15 MeV to 35 MeV is obtained. Further, with a higher laser intensity of 10{sup 21 }W/cm{sup 2}, a proton beam with the maximum energy of 345 MeV and FWHM energy spread of 7.2% is obtained. The analysis of the PIC simulation with an aid of a fluid analysis shows that the spectrum is affected by the initial position of the proton layer, its initial spread during the formation of the sheath field, and the space charge effect.« less

  3. Only lasers can be used for low level laser therapy

    PubMed Central

    Moskvin, Sergey Vladimirovich

    2017-01-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! PMID:29130447

  4. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2016-08-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  5. Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range

    NASA Astrophysics Data System (ADS)

    Dolgovskiy, Vladimir; Schilt, Stéphane; Bucalovic, Nikola; Di Domenico, Gianni; Grop, Serge; Dubois, Benoît; Giordano, Vincent; Südmeyer, Thomas

    2014-09-01

    We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry-Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured -125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.

  6. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...

  7. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...

  8. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...

  9. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...

  10. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    PubMed

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.

  11. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  12. Solid-density plasma expansion in intense ultra-short laser irradiation measured on nanometer scale and in real time

    NASA Astrophysics Data System (ADS)

    Kluge, T.; Metzkes, J.; Pelka, A.; Laso Garcia, A.; Prencipe, I.; Bussmann, M.; Zeil, K.; Schoenherr, T.; Hartley, N.; Gutt, C.; Galtier, E.; Nam, I.; Lee, Hj; McBride, Ee; Glenzer, S.; Huebner, U.; Roedel, C.; Nakatsutsumi, M.; Roedel, M.; Rehwald, M.; Garten, M.; Zacharias, M.; Schramm, U.; Cowan, T. E.

    2017-10-01

    Small Angle X-ray Scattering (SAXS) is discussed to allow unprecedented direct measurements limited only by the probe X-ray wavelength and duration. Here we present the first direct in-situ measurement of intense short-pulse laser - solid interaction that allows nanometer and high temporal resolution at the same time. A 120 fs laser pulse with energy 1 J was focused on a silicon membrane. The density was probed with an X-ray beam of 49 fs duration by SAXS. Despite prepulses, we can exclude premature bulk expansion. The plasma expansion is triggered only shortly before the main pulse, when an expansion of 10 nm within less than 200 fs was measured. Analysis of scattering patterns allows the first direct verification of numerical simulations. Supported by DOE FWP 100182, SF00515; EC FP7 LASERLAB-EUROPE/CHARPAC (contract 284464); German Federal Ministry of Education and Research (BMBF) under Contract Number 03Z1O511; MG and MZ supported by the European Union's Horizon 2020 No 654220.

  13. Nonlinear threshold effect in the Z-scan method of characterizing limiters for high-intensity laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tereshchenko, S. A., E-mail: tsa@miee.ru; Savelyev, M. S.; Podgaetsky, V. M.

    A threshold model is described which permits one to determine the properties of limiters for high-powered laser light. It takes into account the threshold characteristics of the nonlinear optical interaction between the laser beam and the limiter working material. The traditional non-threshold model is a particular case of the threshold model when the limiting threshold is zero. The nonlinear characteristics of carbon nanotubes in liquid and solid media are obtained from experimental Z-scan data. Specifically, the nonlinear threshold effect was observed for aqueous dispersions of nanotubes, but not for nanotubes in solid polymethylmethacrylate. The threshold model fits the experimental Z-scanmore » data better than the non-threshold model. Output characteristics were obtained that integrally describe the nonlinear properties of the optical limiters.« less

  14. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...

  15. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...

  16. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...

  17. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...

  18. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...

  19. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...

  20. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...

  1. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...

  2. Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser.

    PubMed

    Juan, Yu-Shan; Lin, Fan-Yi

    2010-04-26

    We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.

  3. Effect of void shape in Czochralski-Si wafers on the intensity of laser-scattering

    NASA Astrophysics Data System (ADS)

    Takahashi, J.; Kawakami, K.; Nakai, K.

    2001-06-01

    The shape effect of anisotropic-shaped microvoid defects in Czochralski-grown silicon wafers on the intensity of laser scattering has been investigated. The size and shape of the defects were examined by means of transmission electron microscopy. Octahedral voids in conventional (nitrogen-undoped) wafers showed an almost isotropic scattering property under the incident condition of a p-polarization beam. On the other hand, parallelepiped-plate-shaped voids in nitrogen-doped wafers showed an anisotropic scattering property on both p- and s-polarized components of scattered light, depending strongly on the incident laser direction. The measured results were explained not by scattering calculation using Born approximation but by calculation based on Rayleigh scattering. It was found that the s component is explained by an inclination of a dipole moment induced on a defect from the scattering plane. Furthermore, using numerical electromagnetic analysis it was shown that the asymmetric behavior of the s component on the parallelepiped-plate voids is ascribed to the parallelepiped shape effect. These results suggest that correction of the scattering intensity is necessary to evaluate the size and volume of anisotropic-shaped defects from the scattered intensity.

  4. On-line depth measurement for laser-drilled holes based on the intensity of plasma emission

    NASA Astrophysics Data System (ADS)

    Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung

    2014-09-01

    The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.

  5. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    PubMed

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  6. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  7. QED-driven laser absorption

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Blackburn, T.; Ratan, N.; Sadler, J.; Ridgers, C.; Kasim, M.; Ceurvorst, L.; Holloway, J.; Baring, M.; Bell, A.; Glenzer, S.; Gregori, G.; Ilderton, A.; Marklund, M.; Tabak, M.; Wilks, S.; Norreys, P.

    2016-10-01

    Absorption covers the physical processes which convert intense photon flux into energetic particles when a high-power laser (I >1018 W cm-2 where I is intensity at 1 μm wavelength) illuminates optically-thick matter. It underpins important applications of petawatt laser systems today, e.g., in isochoric heating of materials. Next-generation lasers such as ELI are anticipated to produce quantum electrodynamical (QED) bursts of γ-rays and anti-matter via the multiphoton Breit-Wheeler process which could enable scaled laboratory probes, e.g., of black hole winds. Here, applying strong-field QED to advances in plasma kinematic theory, we present a model elucidating absorption limited only by an avalanche of self-created electron-positron pairs at ultra-high-field. The model, confirmed by multidimensional QED-PIC simulations, works over six orders of magnitude in optical intensity and reveals this cascade is initiated at 1.8 x 1025 W cm-2 using a realistic linearly-polarized laser pulse. Here the laser couples its energy into highly-collimated electrons, ions, γ-rays, and positrons at 12%, 6%, 58% and 13% efficiency, respectively. We remark on attributes of the QED plasma state and possible applications.

  8. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  9. Generation and acceleration of neutral atoms in intense laser plasma experiments

    NASA Astrophysics Data System (ADS)

    Tata, Sheroy; Mondal, Angana; Sarkar, Shobhik; Ved, Yash; Lad, Amit D.; Pasley, John; Colgan, James; Krishnamurthy, M.

    2017-10-01

    The interaction of a high intensity (>=1018 W/cm2), high contrast (>=109), ultra-short (30fs) laser with solid targets generates a highly dense hot plasma. The quasi-static electric fields in such plasmas are well known for ion acceleration via the target normal sheath acceleration process. Under such conditions charge reduction to generate fast neutral atoms is almost inhibited. Improvised Thomson parabola spectrometry with improved signal to noise ratio has enabled us to measure the signals of fast neutral atoms and negative ions having energies in excess of tens of keV. A study on the neutralization of accelerated protons in plasma shows that the neutral atom to all particle ratio rises sharply from a few percent at the highest detectable energy to 50 % at 15 keV. Using usual charge transfer reactions the generation of neutral atoms can not be explained, thus we conjecture that the neutralization of the accelerated ions is not from the hot dense region of the plasma but neutral atom formation takes place by co-propagating ions with low energy electrons enhancing the effective neutral ratio.

  10. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen-shuai; Cai, Hong-bo, E-mail: Cai-hongbo@iapcm.ac.cn; HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10{sup 19 }W/cm{sup 2}) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition.more » Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.« less

  11. Measurement and calculation of ternary oxide mixtures for thin films for ultra short pulse laser optics

    NASA Astrophysics Data System (ADS)

    Jupé, M.; Mende, M.; Kolleck, C.; Ristau, D.; Gallais, L.; Mangote, B.

    2011-12-01

    The femto-second technology gains of increasing importance in industrial applications. In this context, a new generation of compact and low cost laser sources has to be provided on a commercial basis. Typical pulse durations of these sources are specified in the range from a few hundred femtoup to some pico-seconds, and typical wavelengths are centered around 1030-1080nm. As a consequence, also the demands imposed on high power optical components for these laser sources are rapidly increasing, especially in respect to their power handling capability in the ultra-short pulse range. The present contribution is dedicated to some aspects for improving this quality parameter of optical coatings. The study is based on a set of hafnia and silica mixtures with different compositions and optical band gaps. This material combination displays under ultra-short pulse laser irradiation effects, which are typically for thermal processes. For instance, melting had been observed in the morphology of damaged sides. In this context, models for a prediction of the laser damage thresholds and scaling laws are scrutinized, and have been modified calculating the energy of the electron ensemble. Furthermore, a simple first order approach for the calculation of the temperature was included.

  12. Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters

    PubMed Central

    Rocha-Mendoza, Israel; Licea-Rodriguez, Jacob; Marro, Mónica; Olarte, Omar E.; Plata-Sanchez, Marcos; Loza-Alvarez, Pablo

    2015-01-01

    We perform rapid spontaneous Raman 2D imaging in light-sheet microscopy using continuous wave lasers and interferometric tunable filters. By angularly tuning the filter, the cut-on/off edge transitions are scanned along the excited Stokes wavelengths. This allows obtaining cumulative intensity profiles of the scanned vibrational bands, which are recorded on image stacks; resembling a spectral version of the knife-edge technique to measure intensity profiles. A further differentiation of the stack retrieves the Raman spectra at each pixel of the image which inherits the 3D resolution of the host light sheet system. We demonstrate this technique using solvent solutions and composites of polystyrene beads and lipid droplets immersed in agar and by imaging the C–H (2800-3100cm−1) region in a C. elegans worm. The image acquisition time results in 4 orders of magnitude faster than confocal point scanning Raman systems, allowing the possibility of performing fast spontaneous Raman·3D-imaging on biological samples. PMID:26417514

  13. Interaction of intense ultrashort pulse lasers with clusters.

    NASA Astrophysics Data System (ADS)

    Petrov, George

    2007-11-01

    The last ten years have witnessed an explosion of activity involving the interaction of clusters with intense ultrashort pulse lasers. Atomic or molecular clusters are targets with unique properties, as they are halfway between solid and gases. The intense laser radiation creates hot dense plasma, which can provide a compact source of x-rays and energetic particles. The focus of this investigation is to understand the salient features of energy absorption and Coulomb explosion by clusters. The evolution of clusters is modeled with a relativistic time-dependent 3D Molecular Dynamics (MD) model [1]. The Coulomb interaction between particles is handled by a fast tree algorithm, which allows large number of particles to be used in simulations [2]. The time histories of all particles in a cluster are followed in time and space. The model accounts for ionization-ignition effects (enhancement of the laser field in the vicinity of ions) and a variety of elementary processes for free electrons and charged ions, such as optical field and collisional ionization, outer ionization and electron recapture. The MD model was applied to study small clusters (1-20 nm) irradiated by a high-intensity (10^16-10^20 W/cm^2) sub-picosecond laser pulse. We studied fundamental cluster features such as energy absorption, x-ray emission, particle distribution, average charge per atom, and cluster explosion as a function of initial cluster radius, laser peak intensity and wavelength. Simulations of novel applications, such as table-top nuclear fusion from exploding deuterium clusters [3] and high power synchrotron radiation for biological applications and imaging [4] have been performed. The application for nuclear fusion was motivated by the efficient absorption of laser energy (˜100%) and its high conversion efficiency into ion kinetic energy (˜50%), resulting in neutron yield of 10^6 neutrons/Joule laser energy. Contributors: J. Davis and A. L. Velikovich. [1] G. M. Petrov, et al Phys

  14. Performance of Arrowroot (Marantha arundinacea) in various light intensities

    NASA Astrophysics Data System (ADS)

    Oktafani, M. B.; Supriyono; Budiastuti, MTh S.; Purnomo, D.

    2018-03-01

    Arrowroot (Marantha arundinacea) is one of the potential food crops to support food security programs. Light intensity is one of the important factors for plant growth. Arrowroot cultivation technology still need further development. Traditionally, arrowroot grows wild under canopy without intentisification of cultivating which have low productivity. The purpose of research was to investigate the suitable light intensity for arrowroot. The experiment was conducted at Jumantono as Experimental Field of Faculty of Agricultural, University of Sebelas Maret Surakarta located in Karanganyar, from March to September 2016. The experiment used a complete randomized block design (CRBD) of light intensity level there are 27400 lux (full sun light), 18900 lux (shaded 31%), 13500 lux (shaded 51%) and 7400 lux (shaded 72%). Each treatment was replicated six times so there were 24 experimental units. The results showed that arrowroot is a low light adaptive plant. Arrowroot under the light intensity 7400 lux (27% full light), the number of leaves and tillers is not significantly different than under full light, although the plant is higher. The highest tuber diameter and length were 1.91 and 25.06 cm, respectively, and tuber weight reached 607.5-651.67 g per plant.

  15. Photoelectrolysis of water at high current density - Use of laser light excitation of semiconductor-based photoelectrochemical cells

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.; Bocarsley, A. B.; Bolts, J. M.

    1978-01-01

    In the present paper, some results are given for UV laser light irradiation of the photoanode (SnO2, SrTiO3, or TiO2) in a cell for the light-driven electrolysis of H2O, at radiation intensities of up to 380 W/sq cm. The properties of the anode material are found to be independent of light intensity. Conversion of UV light to stored chemical energy in the form of 2H2/O2 from H2O was driven at a rate of up to 30 W/sq cm. High O2 evolution rates at the irradiated anodes without changes in the current-voltage curves are attributed to the excess oxidizing power associated with photogenerated holes. A test for this sort of hypothesis for H2 evolution at p-type materials is proposed.

  16. Advances in endonasal low intensity laser irradiation therapy

    NASA Astrophysics Data System (ADS)

    Jiao, Jian-Ling; Liu, Timon C.; Liu, Jiang; Cui, Li-Ping; Liu, Song-hao

    2005-07-01

    Endonasal low intensity laser therapy (ELILT) began in China in 1998. Now in China it is widely applied to treat hyperlipidemia and brain diseases such as Alzheimer's disease, Parkinson's disease, insomnia, poststroke depression, intractable headache, ache in head or face, cerebral thrombosis, acute ischemic cerebrovascular disease, migraine, brain lesion and mild cognitive impairment. There are four pathways mediating EILILT, Yangming channel, autonomic nervous systems and blood cells. Two unhealth acupoints of Yangming channal inside nose might mediate the one as is low intensity laser acupuncture. Unbalance autonomic nervous systems might be modulated. Blood cells might mediate the one as is intravascular low intensity laser therapy. These three pathways are integrated in ELILT so that serum amyloid β protein, malformation rate of erythrocyte, CCK-8, the level of viscosity at lower shear rates and hematocrit, or serum lipid might decrease, and melanin production/SOD activity or β endorphin might increase after ELILT treatment. These results indicate ELILT might work, but it need to be verified by randomized placebo-controlled trial.

  17. Strong light illumination on gain-switched semiconductor lasers helps the eavesdropper in practical quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Fei, Yang-yang; Meng, Xiang-dong; Gao, Ming; Yang, Yi; Wang, Hong; Ma, Zhi

    2018-07-01

    The temperature of the semiconductor diode increases under strong light illumination whether thermoelectric cooler is installed or not, which changes the output wavelength of the laser (Lee et al., 2017). However, other characteristics also vary as temperature increases. These variations may help the eavesdropper in practical quantum key distribution systems. We study the effects of temperature increase on gain-switched semiconductor lasers by simulating temperature dependent rate equations. The results show that temperature increase may cause large intensity fluctuation, decrease the output intensity and lead the signal state and decoy state distinguishable. We also propose a modified photon number splitting attack by exploiting the effects of temperature increase. Countermeasures are also proposed.

  18. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  19. Intensity output and effectiveness of light curing units in dental offices.

    PubMed

    Omidi, Baharan-Ranjbar; Gosili, Armin; Jaber-Ansari, Mona; Mahdkhah, Ailin

    2018-06-01

    The aims of the study were measuring the light intensity of light curing units used in Qazvin's dental offices, determining the relationship between the clinical age of these units and their light intensity, and identifying the reasons for repairing them. In this cross-sectional study, the output intensity of 95 light curing devices was evaluated using a radiometer. The average output intensity was divided up into four categories (less than 200, 200-299, 300-500, and more than 500 mW/cm2). In addition, a questionnaire was designed to obtain information mainly about the type, clinical age, and frequency of maintenance of the units and the reasons for fixing them. Data were analyzed using Kolmogorov-Smirnov, chi-squared, and t-tests ( p < 0.05) on SPSS 24. A total of 95 light curing units were examined, with 61 (64.2%) of them being of the LED type and 34 (35.8%) of the QTH type. While average light intensity in LED units was significantly higher than in QTH devices, the two device types were not significantly different regarding desirable light intensity (i.e., ≥ 300 mw/cm2). A negative correlation was observed between clinical age and light intensity. In addition, bulb replacement in QTH devices was over three times as much as in LED units. Also, repairing QTHs was more than twice as much frequent as fixing LEDs. The most common reason for repair was the breakage of the tip of the device. The light intensity of LED units is significantly higher than that of QTH devices, and the frequency of repairing in QTHs was significantly more than in LEDs. Furthermore, light intensity decreases with aging, and dentists should regularly monitor the conditions of light units. Key words: Light curing unit, radiometer, light intensity, dental equipment, dental offices.

  20. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.

    2017-05-01

    In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and