Sample records for ultra-low specific on-resistance

  1. Ultra-low specific on-resistance 700V LDMOS with a buried super junction layer

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Shi; Li, Zhi-you; Li, Ke; Qiao, Ming

    2018-01-01

    An ultra-low specific on-resistance 700 V lateral double-diffused MOSFET (LDMOS) with a buried super junction (BSJ) layer is proposed. [1-9] Buried P-pillars in the LDMOS can be depleted by neighboring N-pillars, overlying and underlying N-drift regions simultaneously, thus allowing a higher doping concentration. Consequently, the doping concentration of either the N-drift regions or N-pillars, or both, may also be increased therewith to compensate the surplus charges in the P-pillars. Compared with conventional surface super junction (SSJ) LDMOS, in which the super junction layer is implemented at the upper surface of the drift region, and P-pillars can only be depleted by the adjacent N-pillars and the N-drift regions beneath, the proposed novel LDMOS structure may have a lower specific on-resistance (Ron,sp) while maintain the same breakdown voltage (BV). Simulation results indicate that the Ron,sp of the novel structure is only 80.5 mΩ cm2 with a high BV of 750 V, which is reduced by 17% in comparison with the Ron,sp of a conventional SSJ LDMOS.

  2. GaN on Diamond with Ultra-Low Thermal Barrier Resistance

    DTIC Science & Technology

    2016-03-31

    GaN-on-Diamond with Ultra-Low Thermal Barrier Resistance Xing Gu1, Cathy Lee1, Jinqiao Xie1, Edward Beam1, Michael Becker2, Timothy A. Grotjohn2...Bristol BS8 1TL, UK Abstract: We investigated the effective thermal boundary resistance (TBReff) of GaN-on-Diamond interfaces for diamond growth... thermal boundary resistance; TBReff , interfacial layers; high density dielectric Introduction While GaN-based RF transistors, typically on SiC

  3. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths.

    PubMed

    Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan

    2015-10-28

    The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p(+)-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I-V) curves combined with the temperature dependence of the I-V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole-Frenkel (P-F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM.

  4. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths

    PubMed Central

    Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan

    2015-01-01

    The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p+-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I–V ) curves combined with the temperature dependence of the I–V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole–Frenkel (P–F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM. PMID:26508086

  5. Ultra-low specific contact resistivity (1.4 × 10-9 Ω.cm2) for metal contacts on in-situ Ga-doped Ge0.95Sn0.05 film

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Luo, Sheng; Wang, Wei; Masudy-Panah, Saeid; Lei, Dian; Liang, Gengchiau; Gong, Xiao; Yeo, Yee-Chia

    2017-12-01

    A heavily Ga-doped Ge0.95Sn0.05 layer was grown on the Ge (100) substrate by molecular beam epitaxy (MBE), achieving an active doping concentration of 1.6 × 1020 cm-3 without the use of ion implantation and high temperature annealing that could cause Sn precipitation or surface segregation. An advanced nano-scale transfer length method was used to extract the specific contact resistivity ρc between the metal and the heavily doped p-Ge0.95Sn0.05 layer. By incorporating Sn into Ge and in-situ Ga doping during the MBE growth, an ultra-low ρc of 1.4 × 10-9 Ω.cm2 was achieved, which is 50% lower than the ρc of p+-Ge control and is also the lowest value obtained for metal/p-type semiconductor contacts.

  6. Low resistance contacts for shallow junction semiconductors

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S. (Inventor); Weizer, Victor G. (Inventor)

    1994-01-01

    A method of enhancing the specific contact resistivity in InP semiconductor devices and improved devices produced thereby are disclosed. Low resistivity values are obtained by using gold ohmic contacts that contain small amounts of gallium or indium and by depositing a thin gold phosphide interlayer between the surface of the InP device and the ohmic contact. When both the thin interlayer and the gold-gallium or gold-indium contact metallizations are used, ultra low specific contact resistivities are achieved. Thermal stability with good contact resistivity is achieved by depositing a layer of refractory metal over the gold phosphide interlayer.

  7. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics.

    PubMed

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-02-17

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10(-8) (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10(-8) to 5.08 × 10(-8) (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved.

  8. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics

    PubMed Central

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-01-01

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10−8 (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10−8 to 5.08 × 10−8 (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved. PMID:26883558

  9. Effect of Diluent on Ultra-low Temperature Curable Conductive Silver Adhesive

    NASA Astrophysics Data System (ADS)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Du, Haibo; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive needed urgently for the surface conductive treatment of piezoelectric composite material. The effect of diluent acetone on ultra-low temperature curable conductive silver adhesive were investigated for surface conductive treatment of piezoelectric composite material. In order to improve the operability and extend the life of the conductive adhesive, the diluent was added to dissolve and disperse conductive adhesive. With the increase of the content of diluent, the volume resistivity of conductive adhesive decreased at first and then increased, and the shear strength increased at first and then decreased. When the acetone content is 10%, the silver flaky bonded together, arranged the neatest, the smallest gap, the most closely connected, the surface can form a complete conductive network, and the volume resistivity is 2.37 × 10-4Ω · cm, the shear strength is 5.13MPa.

  10. Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...

  11. Low-Cost Ultra-Wide Genotyping Using Roche/454 Pyrosequencing for Surveillance of HIV Drug Resistance

    PubMed Central

    Dudley, Dawn M.; Chin, Emily N.; Bimber, Benjamin N.; Sanabani, Sabri S.; Tarosso, Leandro F.; Costa, Priscilla R.; Sauer, Mariana M.; Kallas, Esper G.; O.’Connor, David H.

    2012-01-01

    Background Great efforts have been made to increase accessibility of HIV antiretroviral therapy (ART) in low and middle-income countries. The threat of wide-scale emergence of drug resistance could severely hamper ART scale-up efforts. Population-based surveillance of transmitted HIV drug resistance ensures the use of appropriate first-line regimens to maximize efficacy of ART programs where drug options are limited. However, traditional HIV genotyping is extremely expensive, providing a cost barrier to wide-scale and frequent HIV drug resistance surveillance. Methods/Results We have developed a low-cost laboratory-scale next-generation sequencing-based genotyping method to monitor drug resistance. We designed primers specifically to amplify protease and reverse transcriptase from Brazilian HIV subtypes and developed a multiplexing scheme using multiplex identifier tags to minimize cost while providing more robust data than traditional genotyping techniques. Using this approach, we characterized drug resistance from plasma in 81 HIV infected individuals collected in São Paulo, Brazil. We describe the complexities of analyzing next-generation sequencing data and present a simplified open-source workflow to analyze drug resistance data. From this data, we identified drug resistance mutations in 20% of treatment naïve individuals in our cohort, which is similar to frequencies identified using traditional genotyping in Brazilian patient samples. Conclusion The developed ultra-wide sequencing approach described here allows multiplexing of at least 48 patient samples per sequencing run, 4 times more than the current genotyping method. This method is also 4-fold more sensitive (5% minimal detection frequency vs. 20%) at a cost 3–5× less than the traditional Sanger-based genotyping method. Lastly, by using a benchtop next-generation sequencer (Roche/454 GS Junior), this approach can be more easily implemented in low-resource settings. This data provides proof

  12. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading

    NASA Astrophysics Data System (ADS)

    Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.

    2017-10-01

    Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.

  13. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  14. RuO2 Thermometer for Ultra-Low Temperatures

    NASA Technical Reports Server (NTRS)

    Hait, Thomas; Shirron, Peter J.; DiPirro, Michael

    2009-01-01

    A small, high-resolution, low-power thermometer has been developed for use in ultra-low temperatures that uses multiple RuO2 chip resistors. The use of commercially available thick-film RuO2 chip resistors for measuring cryogenic temperatures is well known due to their low cost, long-term stability, and large resistance change.

  15. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    NASA Astrophysics Data System (ADS)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  16. Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin.

    PubMed

    Wang, Hong; Zhu, Bowen; Wang, Hua; Ma, Xiaohua; Hao, Yue; Chen, Xiaodong

    2016-07-01

    Ultra-lightweight resistive switching memory based on protein has been demonstrated. The memory foil is 0.4 mg cm(-2) , which is 320-fold lighter than silicon substrate, 20-fold lighter than office paper and can be sustained by a human hair. Additionally, high resistance OFF/ON ratio of 10(5) , retention time of 10(4) s, and excellent flexibility (bending radius of 800 μm) have been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cryogenic ultra-low-noise SiGe transistor amplifier.

    PubMed

    Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G

    2011-10-01

    An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.

  18. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Rui-Rui

    2015-02-14

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials.more » This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator

  19. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study.

    PubMed

    Dorman, Susan E; Schumacher, Samuel G; Alland, David; Nabeta, Pamela; Armstrong, Derek T; King, Bonnie; Hall, Sandra L; Chakravorty, Soumitesh; Cirillo, Daniela M; Tukvadze, Nestani; Bablishvili, Nino; Stevens, Wendy; Scott, Lesley; Rodrigues, Camilla; Kazi, Mubin I; Joloba, Moses; Nakiyingi, Lydia; Nicol, Mark P; Ghebrekristos, Yonas; Anyango, Irene; Murithi, Wilfred; Dietze, Reynaldo; Lyrio Peres, Renata; Skrahina, Alena; Auchynka, Vera; Chopra, Kamal Kishore; Hanif, Mahmud; Liu, Xin; Yuan, Xing; Boehme, Catharina C; Ellner, Jerrold J; Denkinger, Claudia M

    2018-01-01

    The Xpert MTB/RIF assay is an automated molecular test that has improved the detection of tuberculosis and rifampicin resistance, but its sensitivity is inadequate in patients with paucibacillary disease or HIV. Xpert MTB/RIF Ultra (Xpert Ultra) was developed to overcome this limitation. We compared the diagnostic performance of Xpert Ultra with that of Xpert for detection of tuberculosis and rifampicin resistance. In this prospective, multicentre, diagnostic accuracy study, we recruited adults with pulmonary tuberculosis symptoms presenting at primary health-care centres and hospitals in eight countries (South Africa, Uganda, Kenya, India, China, Georgia, Belarus, and Brazil). Participants were allocated to the case detection group if no drugs had been taken for tuberculosis in the past 6 months or to the multidrug-resistance risk group if drugs for tuberculosis had been taken in the past 6 months, but drug resistance was suspected. Demographic information, medical history, chest imaging results, and HIV test results were recorded at enrolment, and each participant gave at least three sputum specimen on 2 separate days. Xpert and Xpert Ultra diagnostic performance in the same sputum specimen was compared with culture tests and drug susceptibility testing as reference standards. The primary objectives were to estimate and compare the sensitivity of Xpert Ultra test with that of Xpert for detection of smear-negative tuberculosis and rifampicin resistance and to estimate and compare Xpert Ultra and Xpert specificities for detection of rifampicin resistance. Study participants in the case detection group were included in all analyses, whereas participants in the multidrug-resistance risk group were only included in analyses of rifampicin-resistance detection. Between Feb 18, and Dec 24, 2016, we enrolled 2368 participants for sputum sampling. 248 participants were excluded from the analysis, and 1753 participants were distributed to the case detection group (n=1439

  20. Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity

    DOEpatents

    Werner, T.R.; Falco, C.M.; Schuller, I.K.

    1982-08-31

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  1. Brain MR imaging at ultra-low radiofrequency power.

    PubMed

    Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B

    2011-05-01

    To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011

  2. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  3. Local Resistance Profiling of Ultra Shallow Junction Annealed with Combination of Spike Lamp and Laser Annealing Processes using Scanning Spreading Resistance Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abo, Satoshi; Nishikawa, Kazuhisa; Ushigome, Naoya

    2011-01-07

    Local resistance profiles of ultra shallow boron and arsenic implanted into silicon with energies of 2.0 and 4.0 keV and doses of 2.0x10{sup 15} and 1.0x10{sup 15} ions/cm{sup 2} activated by a combination of conventional spike lamp and laser annealing processes were measured by scanning spreading resistance microscope (SSRM) with a depth resolution of less than 10 nm. The lowest local resistance at the low resistance region in 2.0 keV boron implanted silicon with 1050 deg. C spike lamp annealing followed by 0.35 kW/mm{sup 2} laser annealing was half of that without laser annealing. The lowest local resistance at themore » low resistance region in the arsenic implanted silicon activated by 1050 deg. C spike lamp annealing followed by 0.39 kW/mm{sup 2} laser annealing was 74% lower than that followed by 0.36 kW/mm{sup 2} laser annealing. The lowest local resistances at the low resistance regions in the arsenic implanted silicon with 0.36 and 0.39 kW/mm{sup 2} laser annealing followed by 1050 deg. C spike lamp annealing were 41 and 33% lower than those with spike lamp annealing followed by laser annealing. Laser annealing followed by spike lamp annealing could suppress the diffusion of the impurities and was suitable for making the ultra shallow and low resistance regions.« less

  4. Comparative performance analysis for computer aided lung nodule detection and segmentation on ultra-low-dose vs. standard-dose CT

    NASA Astrophysics Data System (ADS)

    Wiemker, Rafael; Rogalla, Patrik; Opfer, Roland; Ekin, Ahmet; Romano, Valentina; Bülow, Thomas

    2006-03-01

    The performance of computer aided lung nodule detection (CAD) and computer aided nodule volumetry is compared between standard-dose (70-100 mAs) and ultra-low-dose CT images (5-10 mAs). A direct quantitative performance comparison was possible, since for each patient both an ultra-low-dose and a standard-dose CT scan were acquired within the same examination session. The data sets were recorded with a multi-slice CT scanner at the Charite university hospital Berlin with 1 mm slice thickness. Our computer aided nodule detection and segmentation algorithms were deployed on both ultra-low-dose and standard-dose CT data without any dose-specific fine-tuning or preprocessing. As a reference standard 292 nodules from 20 patients were visually identified, each nodule both in ultra-low-dose and standard-dose data sets. The CAD performance was analyzed by virtue of multiple FROC curves for different lower thresholds of the nodule diameter. For nodules with a volume-equivalent diameter equal or larger than 4 mm (149 nodules pairs), we observed a detection rate of 88% at a median false positive rate of 2 per patient in standard-dose images, and 86% detection rate in ultra-low-dose images, also at 2 FPs per patient. Including even smaller nodules equal or larger than 2 mm (272 nodules pairs), we observed a detection rate of 86% in standard-dose images, and 84% detection rate in ultra-low-dose images, both at a rate of 5 FPs per patient. Moreover, we observed a correlation of 94% between the volume-equivalent nodule diameter as automatically measured on ultra-low-dose versus on standard-dose images, indicating that ultra-low-dose CT is also feasible for growth-rate assessment in follow-up examinations. The comparable performance of lung nodule CAD in ultra-low-dose and standard-dose images is of particular interest with respect to lung cancer screening of asymptomatic patients.

  5. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grezes, C.; Alzate, J. G.; Cai, X.

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memorymore » and logic integrated circuits.« less

  6. Magnetic Resonance Relaxometry at Low and Ultra low Fields.

    PubMed

    Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited.

  7. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  8. Morbidity after Ultra Low Anterior Resection of the Rectum.

    PubMed

    Straja, N D; Ionescu, S; Brătucu, E; Alecu, M; Simion, L

    2015-01-01

    Anterior resections of the rectum, used as an alternative to amputation of the rectum, are performed more and more frequently, being presently indicated for neoplasms located ata distance of 7 to 4 cm from the anus. Complications of low and ultra low anterior resections are not at all negligible, and local neoplastic recurrence rate is significantly higher than after amputation of the rectum. However, literature data recommends low and ultra low anterior rectal resections, even if sometimes the method indications are pushed to the limit or the interventions are performed at the patient's request, in order to avoid permanent colostomy. The authors of this article aim to outline a true picture of the changes caused by anterior resections of the rectum, low and ultra low, so that, without denying the merits of these resections, the entire postoperative pathology that occurs in these patients is depicted and understood. Ultra low rectal resections, up to 3-4 cm from the anus, bring important morphological and functional changes to the act of defecation and to anal continence. These changes in colo-anal bowel movement have a much higher incidence than postoperative genitourinary disorders. Another important aspect emerging from the present study is related to the increased incidence of anastomotic disunity, stenosis and various degrees of incontinence, complications that often can only be solved by completion of rectum amputation and permanent colostomy. In addition, the functional outcomes of these ultra low resections are not always at the level expected by the patient. Also, in terms of surgical performance, the higher share of specific complications of the procedure raises questions with regard to the technique. For all these reasons the authors consider it necessary to review the lower limit to which an anterior rectal resection can descend. Celsius.

  9. Ultra-Low-Power MEMS Selective Gas Sensors

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph

    2012-01-01

    This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.

  10. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less

  11. Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve

    Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.

  12. Low-cost ultra-thin broadband terahertz beam-splitter.

    PubMed

    Ung, Benjamin S-Y; Fumeaux, Christophe; Lin, Hungyen; Fischer, Bernd M; Ng, Brian W-H; Abbott, Derek

    2012-02-27

    A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer--thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.

  13. Multilayer ultra thick resist development for MEMS

    NASA Astrophysics Data System (ADS)

    Washio, Yasushi; Senzaki, Takahiro; Masuda, Yasuo; Saito, Koji; Obiya, Hiroyuki

    2005-05-01

    MEMS (Micro-Electro-Mechanical Systems) is achieved through a process technology, called Micro-machining. There are two distinct methods to manufacture a MEMS-product. One method is to form permanent film through photolithography, and the other is to form a non-permanent film resist after photolithography proceeded by etch or plating process. The three-dimensional ultra-fine processing technology based on photolithography, and is assembled by processes, such as anode junction, and post lithography processes such as etching and plating. Currently ORDYL PR-100 (Dry Film Type) is used for the permanent resist process. TOK has developed TMMR S2000 (Liquid Type) and TMMF S2000 (Dry Film Type) also. TOK has developed a new process utilizing these resist. The electro-forming method by photolithography is developed as one of the methods for enabling high resolution and high aspect formation. In recent years, it has become possible to manufacture conventionally difficult multilayer through our development with material and equipment project (M&E). As for material for electro-forming, it was checked that chemically amplified resist is optimal from the reaction mechanism as it is easily removed by the clean solution. Moreover, multiple plating formations were enabled with the resist through a new process. As for the equipment, TOK developed Applicator (It can apply 500 or more μms) and Developer, which achieves high throughput and quality. The detailed plating formations, which a path differs, and air wiring are realizable through M&E. From the above results, opposed to metallic mold plating, electro-forming method by resist, enabled to form high resolution and aspect pattern, at low cost. It is thought that the infinite possibility spreads by applying this process.

  14. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  15. Ultra-low dose naltrexone enhances cannabinoid-induced antinociception.

    PubMed

    Paquette, Jay; Olmstead, Mary C; Olmstead, Mary

    2005-12-01

    Both opioids and cannabinoids have inhibitory effects at micromolar doses, which are mediated by activated receptors coupling to Gi/o-proteins. Surprisingly, the analgesic effects of opioids are enhanced by ultra-low doses (nanomolar to picomolar) of the opioid antagonist, naltrexone. As opioid and cannabinoid systems interact, this study investigated whether ultra-low dose naltrexone also influences cannabinoid-induced antinociception. Separate groups of Long-Evans rats were tested for antinociception following an injection of vehicle, a sub-maximal dose of the cannabinoid agonist WIN 55 212-2, naltrexone (an ultra-low or a high dose) or a combination of WIN 55 212-2 and naltrexone doses. Tail-flick latencies were recorded for 3 h, at 10-min intervals for the first hour, and at 15-min intervals thereafter. Ultra-low dose naltrexone elevated WIN 55 212-2-induced tail flick thresholds without extending its duration of action. This enhancement was replicated in animals receiving intraperitoneal or intravenous injections. A high dose of naltrexone had no effect on WIN 55 212-2-induced tail flick latencies, but a high dose of the cannabinoid 1 receptor antagonist SR 141716 blocked the elevated tail-flick thresholds produced by WIN 55 212-2+ultra-low dose naltrexone. These data suggest a mechanism of cannabinoid-opioid interaction whereby activated opioid receptors that couple to Gs-proteins may attenuate cannabinoid-induced antinociception and/or motor functioning.

  16. Ultra-low contact resistance in graphene devices at the Dirac point

    NASA Astrophysics Data System (ADS)

    Anzi, Luca; Mansouri, Aida; Pedrinazzi, Paolo; Guerriero, Erica; Fiocco, Marco; Pesquera, Amaia; Centeno, Alba; Zurutuza, Amaia; Behnam, Ashkan; Carrion, Enrique A.; Pop, Eric; Sordan, Roman

    2018-04-01

    Contact resistance is one of the main factors limiting performance of short-channel graphene field-effect transistors (GFETs), preventing their use in low-voltage applications. Here we investigated the contact resistance between graphene grown by chemical vapor deposition (CVD) and different metals, and found that etching holes in graphene below the contacts consistently reduced the contact resistance, down to 23 Ω \\cdot μ m with Au contacts. This low contact resistance was obtained at the Dirac point of graphene, in contrast to previous studies where the lowest contact resistance was obtained at the highest carrier density in graphene (here 200 Ω \\cdot μ m was obtained under such conditions). The ‘holey’ Au contacts were implemented in GFETs which exhibited an average transconductance of 940 S m-1 at a drain bias of only 0.8 V and gate length of 500 nm, which out-perform GFETs with conventional Au contacts.

  17. Feasibility study of SiGHT: a novel ultra low background photosensor for low temperature operation

    DOE PAGES

    Wang, Y.; Fan, A.; Fiorillo, G.; ...

    2017-02-27

    Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less

  18. Ultra-low-noise transition edge sensors for the SAFARI L-band on SPICA

    NASA Astrophysics Data System (ADS)

    Goldie, D. J.; Gao, J. R.; Glowacka, D. M.; Griffin, D. K.; Hijmering, R.; Khosropanah, P.; Jackson, B. D.; Mauskopf, P. D.; Morozov, D.; Murphy, J. A.; Ridder, M.; Trappe, N.; O'Sullivan, C.; Withington, S.

    2012-09-01

    The Far-Infrared Fourier transform spectrometer instrument SAFARI-SPICA which will operate with cooled optics in a low-background space environment requires ultra-sensitive detector arrays with high optical coupling efficiencies over extremely wide bandwidths. In earlier papers we described the design, fabrication and performance of ultra-low-noise Transition Edge Sensors (TESs) operated close to 100mk having dark Noise Equivalent Powers (NEPs) of order 4 × 10-19W/√Hz close to the phonon noise limit and an improvement of two orders of magnitude over TESs for ground-based applications. Here we describe the design, fabrication and testing of 388-element arrays of MoAu TESs integrated with far-infrared absorbers and optical coupling structures in a geometry appropriate for the SAFARI L-band (110 - 210 μm). The measured performance shows intrinsic response time τ ~ 11ms and saturation powers of order 10 fW, and a dark noise equivalent powers of order 7 × 10-19W/√Hz. The 100 × 100μm2 MoAu TESs have transition temperatures of order 110mK and are coupled to 320×320μm2 thin-film β-phase Ta absorbers to provide impedance matching to the incoming fields. We describe results of dark tests (i.e without optical power) to determine intrinsic pixel characteristics and their uniformity, and measurements of the optical performance of representative pixels operated with flat back-shorts coupled to pyramidal horn arrays. The measured and modeled optical efficiency is dominated by the 95Ω sheet resistance of the Ta absorbers, indicating a clear route to achieve the required performance in these ultra-sensitive detectors.

  19. Study on Ultra-deep Azimuthal Electromagnetic Resistivity LWD Tool by Influence Quantification on Azimuthal Depth of Investigation and Real Signal

    NASA Astrophysics Data System (ADS)

    Li, Kesai; Gao, Jie; Ju, Xiaodong; Zhu, Jun; Xiong, Yanchun; Liu, Shuai

    2018-05-01

    This paper proposes a new tool design of ultra-deep azimuthal electromagnetic (EM) resistivity logging while drilling (LWD) for deeper geosteering and formation evaluation, which can benefit hydrocarbon exploration and development. First, a forward numerical simulation of azimuthal EM resistivity LWD is created based on the fast Hankel transform (FHT) method, and its accuracy is confirmed under classic formation conditions. Then, a reasonable range of tool parameters is designed by analyzing the logging response. However, modern technological limitations pose challenges to selecting appropriate tool parameters for ultra-deep azimuthal detection under detectable signal conditions. Therefore, this paper uses grey relational analysis (GRA) to quantify the influence of tool parameters on voltage and azimuthal investigation depth. After analyzing thousands of simulation data under different environmental conditions, the random forest is used to fit data and identify an optimal combination of tool parameters due to its high efficiency and accuracy. Finally, the structure of the ultra-deep azimuthal EM resistivity LWD tool is designed with a theoretical azimuthal investigation depth of 27.42-29.89 m in classic different isotropic and anisotropic formations. This design serves as a reliable theoretical foundation for efficient geosteering and formation evaluation in high-angle and horizontal (HA/HZ) wells in the future.

  20. Ultra-low dose (+)-naloxone restores the thermal threshold of morphine tolerant rats.

    PubMed

    Chou, Kuang-Yi; Tsai, Ru-Yin; Tsai, Wei-Yuan; Wu, Ching-Tang; Yeh, Chun-Chang; Cherng, Chen-Hwan; Wong, Chih-Shung

    2013-12-01

    As known, long-term morphine infusion leads to tolerance. We previously demonstrated that both co-infusion and post-administration of ultra-low dose (±)-naloxone restores the antinociceptive effect of morphine in morphine-tolerant rats. However, whether the mechanism of the action of ultra-low dose (±)-naloxone is through opioid receptors or not. Therefore, in the present study, we further investigated the effect of ultra-low dose (+)-naloxone, it does not bind to opioid receptors, on the antinociceptive effect of morphine. Male Wistar rats were implanted with one or two intrathecal (i.t.) catheters; one catheter was connected to a mini-osmotic pump, used for morphine (15 μg/h), ultra-low dose (+)-naloxone (15 pg/h), morphine plus ultra-low dose (+)-naloxone (15 pg/h) or saline (1 μl/h) infusion for 5 days. On day 5, either ultra-low dose (+)-naloxone (15 pg) or saline (5 μl) was injected via the other catheter immediately after discontinued morphine or saline infusion. Three hours later, morphine (15 μg in 5 μl saline) or saline were given intrathecally. All rats received nociceptive tail-flick test every 30 minutes for 120 minutes after morphine challenge at different temperature (45-52°C, respective). Our results showed that, both co-infusion and post-treatment of ultra-low dose (+)-naloxone with morphine preserves the antinociceptive effect of morphine. Moreover, in the post administration rats, ultra-low dose (+)-naloxone further enhances the antinociceptive effect of morphine. This study provides an evidence for ultra-low dose (+)-naloxone as a therapeutic adjuvant for patients who need long-term opioid administration for pain management. Copyright © 2013. Published by Elsevier B.V.

  1. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  2. An ultra-low-power filtering technique for biomedical applications.

    PubMed

    Zhang, Tan-Tan; Mak, Pui-In; Vai, Mang-I; Mak, Peng-Un; Wan, Feng; Martins, R P

    2011-01-01

    This paper describes an ultra-low-power filtering technique for biomedical applications designated as T-wave sensing in heart-activities detection systems. The topology is based on a source-follower-based Biquad operating in the sub-threshold region. With the intrinsic advantages of simplicity and high linearity of the source-follower, ultra-low-cutoff filtering can be achieved, simultaneously with ultra low power and good linearity. An 8(th)-order 2.4-Hz lowpass filter design example optimized in a 0.35-μm CMOS process was designed achieving over 85-dB dynamic range, 74-dB stopband attenuation and consuming only 0.36 nW at a 3-V supply.

  3. Ultra-low background DNA cloning system.

    PubMed

    Goto, Kenta; Nagano, Yukio

    2013-01-01

    Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.

  4. Note: Ultra-low birefringence dodecagonal vacuum glass cell.

    PubMed

    Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-01

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10(-8). After baking the cell at 150 °C, we reach a pressure below 10(-10) mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  5. Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-01

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

  6. Resistive switching of organic-inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films.

    PubMed

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-29

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO 2 ultra-thin films. The SiO 2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO 2 ∣PEDOT:PSS architecture show good resistive switching performance with set-reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO 2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO 2 interface.

  7. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  8. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brakhane, Stefan, E-mail: brakhane@iap.uni-bonn.de; Alt, Wolfgang; Meschede, Dieter

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  9. Dedicated power supply subsystem for ultra-low noise preamplifiers and biophotonic sensors

    NASA Astrophysics Data System (ADS)

    SuraŻyński, Łukasz; Wierzba, Paweł; Zienkiewicz, Aleksandra

    2013-11-01

    It is very common for noise to have an influence on analog circuits. In order to preserve the quality of measurements taken by specific sensors and any noise dependent amplifiers which are correlated to them, all of these devices must be powered by low-noise power supplies. Therefore a necessity exists to develop new ultra-low noise power supplies which can cooperate with specified amplifiers and preamplifiers. Many well-known power supplies are particularly expensive and yet still have their disadvantages. This paper proposes a simple and inexpensive solution, which fulfills a specific criteria and can be treated as a base for improvement.

  10. Ultra-low-power wearable biopotential sensor nodes.

    PubMed

    Yazicioglu, R F; Torfs, T; Penders, J; Romero, I; Kim, H; Merken, P; Gyselinckx, B; Yoo, H J; Van Hoof, C

    2009-01-01

    This paper discusses ultra-low-power wireless sensor nodes intended for wearable biopotential monitoring. Specific attention is given to mixed-signal design approaches and their impact on the overall system power dissipation. Examples of trade-offs in power dissipation between analog front-ends and digital signal processing are also given. It is shown how signal filtering can further reduce the internal power consumption of a node. Such power saving approaches are indispensable as real-life tests of custom wireless ECG patches reveal the need for artifact detection and correction. The power consumption of such additional features has to come from power savings elsewhere in the system as the overall power budget cannot increase.

  11. Study on Structural and Dielectric Properties of Ultra-Low-Fire Integratable Dielectric Film for High-Frequency and Microwave Application

    NASA Astrophysics Data System (ADS)

    Qu, Sheng; Zhang, Jihua; Wu, Kaituo; Wang, Lei; Chen, Hongwei

    2018-03-01

    In this study, ultra-low-fire ceramic composites of Zn2Te3O8-30 wt.%TiTe3O8 (ZTT) were prepared by a solid-state reaction method. Densified at 600°C, the best microwave dielectric properties at 8.5 GHz were measured with the ɛ r , tan δ, Q × f, and τ f as 25.6, 1.5 × 10-4, 56191 GHz and 1.66 ppm/°C, respectively. Thin films of ultra-low-fire ZTT were prepared by a radio-frequency magnetron sputtering method. ZTT films which deposited on Au/NiCr/SiO2/Si (100) substrates at 200°C showed good adhesion. From ultra-low-fire ceramic to ultra-low-fire ZTT thin films, the latter maintained all the good high-frequency dielectric properties of the former: high dielectric constant ( ɛ r ˜ 25) and low dissipation factor (tan δ < 5×10-3), low leakage current density (˜ 10-9 A/cm2) and ultra low processing temperature. These excellent properties of the ultra-low-fire ZTT thin film make it possible to be integrated in MMIC and be applied in the research of GaN and GaAs MOSFET devices.

  12. Convolutional auto-encoder for image denoising of ultra-low-dose CT.

    PubMed

    Nishio, Mizuho; Nagashima, Chihiro; Hirabayashi, Saori; Ohnishi, Akinori; Sasaki, Kaori; Sagawa, Tomoyuki; Hamada, Masayuki; Yamashita, Tatsuo

    2017-08-01

    The purpose of this study was to validate a patch-based image denoising method for ultra-low-dose CT images. Neural network with convolutional auto-encoder and pairs of standard-dose CT and ultra-low-dose CT image patches were used for image denoising. The performance of the proposed method was measured by using a chest phantom. Standard-dose and ultra-low-dose CT images of the chest phantom were acquired. The tube currents for standard-dose and ultra-low-dose CT were 300 and 10 mA, respectively. Ultra-low-dose CT images were denoised with our proposed method using neural network, large-scale nonlocal mean, and block-matching and 3D filtering. Five radiologists and three technologists assessed the denoised ultra-low-dose CT images visually and recorded their subjective impressions of streak artifacts, noise other than streak artifacts, visualization of pulmonary vessels, and overall image quality. For the streak artifacts, noise other than streak artifacts, and visualization of pulmonary vessels, the results of our proposed method were statistically better than those of block-matching and 3D filtering (p-values < 0.05). On the other hand, the difference in the overall image quality between our proposed method and block-matching and 3D filtering was not statistically significant (p-value = 0.07272). The p-values obtained between our proposed method and large-scale nonlocal mean were all less than 0.05. Neural network with convolutional auto-encoder could be trained using pairs of standard-dose and ultra-low-dose CT image patches. According to the visual assessment by radiologists and technologists, the performance of our proposed method was superior to that of large-scale nonlocal mean and block-matching and 3D filtering.

  13. The effect of ultra-violet light curing on the molecular structure and fracture properties of an ultra low-k material

    NASA Astrophysics Data System (ADS)

    Smith, Ryan Scott

    As the gate density increases in microelectronic devices, the interconnect delay or RC response also increases and has become the limiting delay to faster devices. In order to decrease the RC time delay, a new metallization scheme has been chosen by the semiconductor industry. Copper has replaced aluminum as the metal lines and new low-k dielectric materials are being developed to replace silicon dioxide. A promising low-k material is porous organosilicate glass or p-OSG. The p-OSG film is a hybrid material where the silicon dioxide backbone is terminated with methyl or hydrogen, reducing the dielectric constant and creating mechanically weak films that are prone to fracture. A few methods of improving the mechanical properties of p-OSG films have been attempted-- exposing the film to hydrogen plasma, electron beam curing, and ultra-violet light curing. Hydrogen plasma and electron-beam curing suffer from a lack of specificity and can cause charging damage to the gates. Therefore, ultra-violet light curing (UV curing) is preferable. The effect of UV curing on an ultra-low-k, k~2.5, p-OSG film is studied in this dissertation. Changes in the molecular structure were measured with Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The evolution of the molecular structure with UV curing was correlated with material and fracture properties. The material properties were film shrinkage, densification, and an increase in dielectric constant. From the changes in molecular structure and material properties, a set of condensation reactions with UV light are predicted. The connectivity of the film increases with the condensation reactions and, therefore, the fracture toughness should also increase. The effect of UV curing on the critical and sub-critical fracture toughness was also studied. The critical fracture toughness was measured at four different mode-mixes-- zero, 15°, 32°, and 42°. It was found that the critical fracture toughness

  14. Carbon transfer from magnesia-graphite ladle refractories to ultra-low carbon steel

    NASA Astrophysics Data System (ADS)

    Russo, Andrew Arthur

    Ultra-low carbon steels are utilized in processes which require maximum ductility. Increases in interstitial carbon lower the ductility of steel; therefore, it is important to examine possible sources of carbon. The refractory ladle lining is one such source. Ladle refractories often contain graphite for its desirable thermal shock and slag corrosion resistance. This graphite is a possible source of carbon increase in ultra-low carbon steels. The goal of this research is to understand and evaluate the mechanisms by which carbon transfers to ultra-low carbon steel from magnesia-graphite ladle refractory. Laboratory dip tests were performed in a vacuum induction furnace under an argon atmosphere to investigate these mechanisms. Commercial ladle refractories with carbon contents between 4-12 wt% were used to investigate the effect of refractory carbon content. Slag-free dip tests and slag-containing dip tests with varying MgO concentrations were performed to investigate the influence of slag. Carbon transfer to the steel was controlled by steel penetrating into the refractory and dissolving carbon in dip tests where no slag was present. The rate limiting step for this mechanism is convective mass transport of carbon into the bulk steel. No detectable carbon transfer occurred in dip tests with 4 and 6 wt%C refractories without slag because no significant steel penetration occurred. Carbon transfer was controlled by the corrosion of refractory by slag in dip tests where slag was present.

  15. The cannabinoid anticonvulsant effect on pentylenetetrazole-induced seizure is potentiated by ultra-low dose naltrexone in mice.

    PubMed

    Bahremand, Arash; Shafaroodi, Hamed; Ghasemi, Mehdi; Nasrabady, Sara Ebrahimi; Gholizadeh, Shervin; Dehpour, Ahmad Reza

    2008-09-01

    Cannabinoid compounds are anticonvulsant since they have inhibitory effects at micromolar doses, which are mediated by activated receptors coupling to G(i/o) proteins. Surprisingly, both the analgesic and anticonvulsant effects of opioids are enhanced by ultra-low doses (nanomolar to picomolar) of the opioid antagonist naltrexone and as opioid and cannabinoid systems interact, it has been shown that ultra-low dose naltrexone also enhances cannabinoid-induced antinociception. Thus, concerning the seizure modulating properties of both classes of receptors this study investigated whether the ultra-low dose opioid antagonist naltrexone influences cannabinoid anticonvulsant effects. The clonic seizure threshold was tested in separate groups of male NMRI mice following injection of vehicle, the cannabinoid selective agonist arachidonyl-2-chloroethylamide (ACEA) and ultra-low doses of the opioid receptor antagonist naltrexone and a combination of ACEA and naltrexone doses in a model of clonic seizure induced by pentylenetetrazole (PTZ). Systemic injection of ultra-low doses of naltrexone (1pg/kg to 1ng/kg, i.p.) significantly potentiated the anticonvulsant effect of ACEA (1mg/kg, i.p.). Moreover, the very low dose of naltrexone (500pg/kg) unmasked a strong anticonvulsant effect for very low doses of ACEA (10 and 100microg/kg). A similar potentiation by naltrexone (500pg/kg) of anticonvulsant effects of non-effective dose of ACEA (1mg/kg) was also observed in the generalized tonic-clonic model of seizure. The present data indicate that the interaction between opioid and cannabinoid systems extends to ultra-low dose levels and ultra-low doses of opioid receptor antagonist in conjunction with very low doses of cannabinoids may provide a potent strategy to modulate seizure susceptibility.

  16. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-07-01

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young’s modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  17. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection.

    PubMed

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-04-18

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  18. Microscopic origin of read current noise in TaOx-based resistive switching memory by ultra-low temperature measurement

    NASA Astrophysics Data System (ADS)

    Pan, Yue; Cai, Yimao; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru

    2016-04-01

    TaOx-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaOx-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaOx RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaOx RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.

  19. Traceable low and ultra-low temperatures in The Netherlands

    NASA Astrophysics Data System (ADS)

    Peruzzi, A.; Bosch, W. A.

    2009-02-01

    The basis for worldwide uniformity of low and ultra-low temperature measurements is provided by two international temperature scales, the International Temperature Scale of 1990 (ITS-90) for temperatures above 0.65 K and the Provisional Low Temperature Scale of 2000 (PLTS-2000) for temperatures in the range 0.9 mK to 1 K. Over the past 10 years, the thermometry research in the Netherlands provided substantial contributions to the definition, realization and dissemination of these scales. We first give an overview of the Dutch contributions to the ITS-90 realization: a) 3He and 4He vapour pressure thermometer range of the ITS-90, 0.65 K to 4 K (1997), b) 4He interpolating constant volume gas thermometry for the ITS-90 range 3 K to 24.5 K (2007) and c) cryogenic fixed points for the ITS-90 range 13.8 K to 273.16 K (2005). Then we highlight our work on 3He melting pressure thermometry from 10 mK to 1 K (2003) to support the dissemination of the PLTS-2000. Finally we present the current status of the Dutch calibration facilities and dissemination devices providing for traceable low and ultra-low temperatures for use in science and industry: a) the NMi-VSL cryogenic calibration facility for the range 0.65 K to 273.16 K and b) the SRD1000 superconductive reference devices for the range 10 mK to 1 K.

  20. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.

    PubMed

    Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M

    2010-04-16

    The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone

  1. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  2. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  3. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  4. Background characterization of an ultra-low background liquid scintillation counter

    DOE PAGES

    Erchinger, J. L.; Orrell, John L.; Aalseth, C. E.; ...

    2017-01-26

    The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3–3600 keV can be realized. Finally, initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.

  5. Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Bauters, Jared F.

    The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.

  6. Calibration of an Ultra-Low-Background Proportional Counter for Measuring 37Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifert, Allen; Aalseth, Craig E.; Bonicalzi, Ricco

    Abstract. An ultra-low-background proportional counter (ULBPC) design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electrochemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) constructed at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14C/3H, age-dating of groundwater with 39Ar, and soil-gas assay for 37Ar to support On-Site Inspection (OSI). On-Site Inspection is a key componentmore » of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37Ar samples over a broad range of pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37Ar soil gas background studies.« less

  7. Suppression of surface segregation of the phosphorous δ-doping layer by insertion of an ultra-thin silicon layer for ultra-shallow Ohmic contacts on n-type germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-28

    We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.

  8. Non-destructive, ultra-low resistance, thermally stable contacts for use on shallow junction InP solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Fatemi, N. S.; Korenyi-Both, A. L.

    1993-01-01

    Contact formation to InP is plagued by violent metal-semiconductor intermixing that takes place during the contact sintering process. Because of this the InP solar cell cannot be sintered after contact deposition. This results in cell contact resistances that are orders of magnitude higher than those that could be achieved if sintering could be performed in a non-destructive manner. We report here on a truly unique contact system involving Au and Ge, which is easily fabricated, which exhibits extremely low values of contact resistivity, and in which there is virtually no metal-semiconductor interdiffusion, even after extended sintering. We present a description of this contact system and suggest possible mechanisms to explain the observed behavior.

  9. Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Rayl, G.

    1978-01-01

    A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.

  10. Sex hormone-binding globulin and antithrombin III activity in women with oral ultra-low-dose estradiol.

    PubMed

    Matsui, Sumika; Yasui, Toshiyuki; Kasai, Kana; Keyama, Kaoru; Yoshida, Kanako; Kato, Takeshi; Uemura, Hirokazu; Kuwahara, Akira; Matsuzaki, Toshiya; Irahara, Minoru

    2017-07-01

    Oral oestrogen increases the risk of venous thromboembolism (VTE) and increases production of sex hormone-binding globulin (SHBG) in a dose-dependent manner. SHBG has been suggested to be involved in venous thromboembolism. We examined the effects of oral ultra-low-dose oestradiol on circulating levels of SHBG and coagulation parameters, and we compared the effects to those of transdermal oestradiol. Twenty women received oral oestradiol (500 μg) every day (oral ultra-low-dose group) and 20 women received a transdermal patch (50 μg) as a transdermal group. In addition, the women received dydrogesterone continuously (5 mg) except for women who underwent hysterectomy. Circulating SHBG, antithrombin III (ATIII) activity, d-dimer, thrombin-antithrombin complex and plasmin-α2 plasmin inhibitor complex were measured before and 3 months after the start of treatment. SHBG was significantly increased at 3 months in the oral ultra-low-dose group, but not in the transdermal group. However, percent changes in SHBG were not significantly different between the two groups. In both groups, ATIII was significantly decreased at 3 months. In conclusion, even ultra-low-dose oestradiol orally increases circulating SHBG level. However, the magnitude of change in SHBG caused by oral ultra-low-dose oestradiol is small and is comparable to that caused by transdermal oestradiol. Impact statement Oral oestrogen replacement therapy increases production of SHBG which may be related to increase in VTE risk. However, the effect of oral ultra-low-dose oestradiol on SHBG has not been clarified. Even ultra-low-dose oestradiol orally increases circulating SHBG levels, but the magnitude of change in SHBG caused by oral ultra-low-dose oestradiol is small and is comparable to that caused by transdermal oestradiol. VTE risk in women receiving oral ultra-low-dose oestradiol may be comparable to that in women receiving transdermal oestradiol.

  11. Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use.

    PubMed

    Le, Thuy; Chiarella, Jennifer; Simen, Birgitte B; Hanczaruk, Bozena; Egholm, Michael; Landry, Marie L; Dieckhaus, Kevin; Rosen, Marc I; Kozal, Michael J

    2009-06-29

    It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species) are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL) were obtained from a specimen bank (from 2004-2007). The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36%) detected by deep sequencing; the majority of these (95%) were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85-5.53). The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%). When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5-74.3, p = 0.0016). Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional genotyping. The majority of unrecognized resistant mutations correlate with

  12. Low-Abundance HIV Drug-Resistant Viral Variants in Treatment-Experienced Persons Correlate with Historical Antiretroviral Use

    PubMed Central

    Le, Thuy; Chiarella, Jennifer; Simen, Birgitte B.; Hanczaruk, Bozena; Egholm, Michael; Landry, Marie L.; Dieckhaus, Kevin; Rosen, Marc I.; Kozal, Michael J.

    2009-01-01

    Background It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species) are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. Methodology/Principal Findings Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL) were obtained from a specimen bank (from 2004–2007). The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36%) detected by deep sequencing; the majority of these (95%) were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85–5.53). The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%). When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5–74.3, p = 0.0016). Conclusions/Significance Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional

  13. Ultra-low magnetic damping in metallic and half-metallic systems

    NASA Astrophysics Data System (ADS)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  14. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Cheng, Robert K.; Therkelsen, Peter L.

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements,more » researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than

  15. Simulation study on AlGaN/GaN diode with Γ-shaped anode for ultra-low turn-on voltage

    NASA Astrophysics Data System (ADS)

    Wang, Zeheng; Chen, Wanjun; Wang, Fangzhou; Cao, Jun; Sun, Ruize; Ren, Kailin; Luo, Yi; Guo, Songnan; Wang, Zirui; Jin, Xiaosheng; Yang, Lei; Zhang, Bo

    2018-05-01

    An ultra-low turn-on voltage (VT) Γ-shaped anode AlGaN/GaN Schottky barrier diode (GA-SBD) is proposed via modeling and simulation for the first time, in which a Γ-shaped anode consists of a metal-2DEG junction together with a metal-AlGaN junction beside a shallowly recessed MIS field plate (MFP). An analytic forward current-voltage model matching the simulation results well is presented where an ultra-low VT of 0.08 V is obtained. The turn-on and blocking mechanisms are investigated to reveal the GA-SBD's great potential for applications of highly efficient power ICs.

  16. Ultra Low Outgassing silicone performance in a simulated space ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Velderrain, M.; Malave, V.; Taylor, E. W.

    2010-09-01

    The improvement of silicone-based materials used in space and aerospace environments has garnered much attention for several decades. Most recently, an Ultra Low Outgassing™ silicone incorporating innovative reinforcing and functional fillers has shown that silicone elastomers with unique and specific properties can be developed to meet applications requiring stringent outgassing requirements. This paper will report on the next crucial step in qualifying these materials for spacecraft applications requiring chemical and physical stability in the presence of ionizing radiation. As a first step in this process, selected materials were irradiated with Co-60 gamma-rays to simulate the total dose received in near- Earth orbits. The paper will present pre-and post-irradiation response data of Ultra Low Outgassing silicone samples exposed under ambient air environment coupled with measurements of collected volatile condensable material (CVCM) and total mass loss (TML) per the standard conditions in ASTM E 595. The data will show an insignificant effect on the CVCMs and TMLs after exposure to various dosages of gamma radiation. This data may favorably impact new applications for these silicone materials for use as an improved sealant for space solar cell systems, space structures, satellite systems and aerospace systems.

  17. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kirby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; hide

    2010-01-01

    We present results of ultra-low dose-rate irradiations on a variety of commercial and radiation hardened bipolar circuits. We observed enhanced degradations at dose rates lower than 10 mrad(Si)/s in some devices.

  18. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera-Palmer, Belkis; Barton, Paul

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detectormore » with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.« less

  19. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  20. Janus nanoparticles for stable microemulsions with ultra-low IFT values

    NASA Astrophysics Data System (ADS)

    Nava, Ilse; Diaz, Agustin; Yu, Yi-Hsien; Cheng, Zhengdong

    2015-03-01

    Janus particles are an influential type of materials used in foams, detergents, surfactants and cosmetics. Due to their demonstrated flexibility and non-toxicity, they have the potential to replace molecular surfactants, and thanks to their amphiphilicity, they can stabilize immiscible biphasic systems. Disk-based Janus particles best perform this stabilization. Graphene has been used to manufacture this class of particles; however, their fabrication in high yield by short and atomically economic syntheses remains a challenge. In this project we report the first synthesis of monolayer disks by a one pot reaction under microwave energy. Using a scalable method, these disks were synthesized, emulsified (in an oil/water system), and chemically reacted to obtain the Janus nanodisks with an efficient method. Our nanosheets production technique is a promising approach for the fabrication of Janus nanodisks via emulsification as it produces IFT (interfacial tension) values in a lower range than that of the molecular surfactants. These ultra-low values, in conjunction with the sheets' salt resistance, temperature resistance, and non-toxicity position Janus particles as the next generation of nanosurfactants.

  1. Ultra-Low-Dose Fetal CT With Model-Based Iterative Reconstruction: A Prospective Pilot Study.

    PubMed

    Imai, Rumi; Miyazaki, Osamu; Horiuchi, Tetsuya; Asano, Keisuke; Nishimura, Gen; Sago, Haruhiko; Nosaka, Shunsuke

    2017-06-01

    Prenatal diagnosis of skeletal dysplasia by means of 3D skeletal CT examination is highly accurate. However, it carries a risk of fetal exposure to radiation. Model-based iterative reconstruction (MBIR) technology can reduce radiation exposure; however, to our knowledge, the lower limit of an optimal dose is currently unknown. The objectives of this study are to establish ultra-low-dose fetal CT as a method for prenatal diagnosis of skeletal dysplasia and to evaluate the appropriate radiation dose for ultra-low-dose fetal CT. Relationships between tube current and image noise in adaptive statistical iterative reconstruction and MBIR were examined using a 32-cm CT dose index (CTDI) phantom. On the basis of the results of this examination and the recommended methods for the MBIR option and the known relationship between noise and tube current for filtered back projection, as represented by the expression SD = (milliamperes) -0.5 , the lower limit of the optimal dose in ultra-low-dose fetal CT with MBIR was set. The diagnostic power of the CT images obtained using the aforementioned scanning conditions was evaluated, and the radiation exposure associated with ultra-low-dose fetal CT was compared with that noted in previous reports. Noise increased in nearly inverse proportion to the square root of the dose in adaptive statistical iterative reconstruction and in inverse proportion to the fourth root of the dose in MBIR. Ultra-low-dose fetal CT was found to have a volume CTDI of 0.5 mGy. Prenatal diagnosis was accurately performed on the basis of ultra-low-dose fetal CT images that were obtained using this protocol. The level of fetal exposure to radiation was 0.7 mSv. The use of ultra-low-dose fetal CT with MBIR led to a substantial reduction in radiation exposure, compared with the CT imaging method currently used at our institution, but it still enabled diagnosis of skeletal dysplasia without reducing diagnostic power.

  2. An ultra-low power output capacitor-less low-dropout regulator with slew-rate-enhanced circuit

    NASA Astrophysics Data System (ADS)

    Cheng, Xin; Zhang, Yu; Xie, Guangjun; Yang, Yizhong; Zhang, Zhang

    2018-03-01

    An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE) circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA. The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV. Moreover, the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively. Project supported by the National Natural Science Foundation of China (Nos. 61401137, 61404043, 61674049).

  3. Microscopic origin of read current noise in TaO{sub x}-based resistive switching memory by ultra-low temperature measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yue; Cai, Yimao, E-mail: caiyimao@pku.edu.cn; Liu, Yefan

    TaO{sub x}-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO{sub x}-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO{sub x} RRAM devices. A statisticalmore » comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO{sub x} RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.« less

  4. Using compressive measurement to obtain images at ultra low-light-level

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Wei, Ping

    2013-08-01

    In this paper, a compressive imaging architecture is used for ultra low-light-level imaging. In such a system, features, instead of object pixels, are imaged onto a photocathode, and then magnified by an image intensifier. By doing so, system measurement SNR is increased significantly. Therefore, the new system can image objects at ultra low-ligh-level, while a conventional system has difficulty. PCA projection is used to collect feature measurements in this work. Linear Wiener operator and nonlinear method based on FoE model are used to reconstruct objects. Root mean square error (RMSE) is used to quantify system reconstruction quality.

  5. Human abuse liability assessment of oxycodone combined with ultra-low-dose naltrexone.

    PubMed

    Tompkins, David Andrew; Lanier, Ryan K; Harrison, Joseph A; Strain, Eric C; Bigelow, George E

    2010-07-01

    Prescription opioid abuse has risen dramatically in the United States as clinicians have increased opioid prescribing for alleviation of both acute and chronic pain. Opioid analgesics with decreased risk for abuse are needed. Preclinical and clinical studies have shown that opioids combined with ultra-low-dose naltrexone (NTX) may have increased analgesic potency and have suggested reduced abuse or dependence liability. This study addressed whether addition of ultra-low-dose naltrexone might decrease the abuse liability of oxycodone (OXY) in humans. This double-blind, placebo-controlled study systematically examined the subjective and physiological effects of combining oral OXY and ultra-low NTX doses in 14 experienced opioid abusers. Seven acute drug conditions given at least 5 days apart were compared in a within-subject crossover design: placebo, OXY 20 mg, OXY 40 mg, plus each of the active OXY doses combined with 0.0001 and 0.001 mg NTX. The methods were sensitive to detecting opioid effects on abuse liability indices, with significant differences between all OXY conditions and placebo as well as between 20 and 40 mg OXY doses on positive subjective ratings (e.g., "I feel a good drug effect" or "I like the drug"), on observer- and participant-rated opioid agonist effects, and on a drug-versus-money value rating. There were no significant differences or evident trends associated with the addition of either NTX dose on any abuse liability indices. The addition of ultra-low-dose NTX to OXY did not decrease abuse liability of acutely administered OXY in experienced opioid abusers.

  6. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing.

    PubMed

    Chakravorty, Soumitesh; Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M; Davidow, Amy; Denkinger, Claudia M; Persing, David; Kwiatkowski, Robert; Jones, Martin; Alland, David

    2017-08-29

    The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. IMPORTANCE The Xpert MTB/RIF assay (Xpert), the first point-of-care assay for tuberculosis (TB), was endorsed by the World Health Organization in December 2010. Since then, 23 million Xpert tests have been procured in 130 countries. Although Xpert showed high overall sensitivity and

  7. Resistance of CFRP structures to environmental degradation in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Suliga, Agnieszka

    Within this study, a development of a protection strategy for ultra-thin CFRP structures from degrading effects of low Earth orbit (LEO) is presented. The proposed strategy involves an application of a modified epoxy resin system on outer layers of the structure, which is cycloaliphatic in its chemical character and reinforced with POSS nanoparticles. The core of the CFRP structure is manufactured using a highly aromatic epoxy resin system which provides excellent mechanical properties, however, its long-term ageing performance in space is not satisfactory, and hence a surface treatment is required to improve its longevity. The developed resin system presented in this thesis is a hybrid material, designed in such a way that its individual constituents each contribute to combating the detrimental effects of radiation, atomic oxygen (AO), temperature extremes and vacuum induced outgassing of exposed material surfaces while operating in LEO. The cycloaliphatic nature of the outer epoxy increases UV resistance and the embedded silicon nanoparticles improve AO and thermal stability. During the study, a material characterization of the developed cycloaliphatic epoxy resins was performed including the effects of nanoparticles on morphology, curing behaviour, thermal-mechanical properties and surface chemistry. Following on that, the efficacy of the modified resin system on space-like resistance was studied. It was found that when the ultra-thin CFRP structures are covered with the developed resin system, their AO resistance is approximately doubled, UV susceptibility decreased by 80% and thermal stability improved by 20%. Following on the successful launch of the InflateSail mission earlier this year, which demonstrated a sail deployment and a controlled de-orbiting, the findings of this study are of importance for the future generation of similar, but significantly longer missions. Ensuring resistance of CFRP structures in a highly corrosive LEO environment is a critical

  8. Development of a Low cost Ultra tiny Line Laser Range Sensor

    DTIC Science & Technology

    2016-12-01

    Development of a Low-cost Ultra-tiny Line Laser Range Sensor Xiangyu Chen∗, Moju Zhao∗, Lingzhu Xiang†, Fumihito Sugai∗, Hiroaki Yaguchi∗, Kei Okada...and Masayuki Inaba∗ Abstract— To enable robotic sensing for tasks with require- ments on weight, size, and cost, we develop an ultra-tiny line laser ...view customizable using different laser lenses. The optimal measurement range of the sensor is 0.05[m] ∼ 2[m]. Higher sampling rates can be achieved

  9. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations.

    PubMed

    Jones, K; Bishop, P; Hunter, G; Fleisig, G

    2001-08-01

    The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p < 0.05; +22.7 vs. + 16.1 kg). The results of this study support the use of a combination of heavier training loads and IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.

  10. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior. © 2013 Published by Elsevier Ltd.

  11. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes

    NASA Astrophysics Data System (ADS)

    Li, Long; Lv, Zhiyong

    2017-08-01

    In this paper, a metamaterial absorber is designed, fabricated, and experimentally demonstrated to realize ultra-wideband absorption, which is composed of three layers of square resistive metasurfaces with different dimensions. Multilayer resistive metasurfaces can not only broaden the absorption bandwidth but also adjust the impedance matching based on multi-resonant modes. The total thickness of the proposed absorber is 3.8 mm, which is only 0.09 λ at the lowest frequency. The bandwidth of absorptivity more than 90% is from 7.0 GHz to 37.4 GHz, and the relative absorption bandwidth is about 137%. The proposed absorber has good polarization-insensitiveness and wide incident angle stability. The measured results agree well with the theoretical design and the numerical simulations.

  12. Virtual Colonoscopy Screening With Ultra Low-Dose CT and Less-Stressful Bowel Preparation: A Computer Simulation Study

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Su; Li, Lihong; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2008-10-01

    Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient compliance. However, current CTC delivers excessive X-ray radiation to the patient during data acquisition. The radiation is a major concern for screening application of CTC. In this work, we performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient CTC images acquired with normal dose scans at 100 mA s levels. The simulated noisy sinogram or projection data were first processed by a Karhunen-Loeve domain penalized weighted least-squares (KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp can be detected in an ultra low-dose level below 50 mA s. Polyp detection can be found more easily by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.

  13. Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaborin, Alexander; Smith, Daniel; Garfield, Kevin

    We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candidamore » taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a “commensal lifestyle.” However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.« less

  14. Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness

    DOE PAGES

    Zaborin, Alexander; Smith, Daniel; Garfield, Kevin; ...

    2014-09-23

    We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candidamore » taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a “commensal lifestyle.” However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.« less

  15. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (<1000 Hz), with an ultra-light areal mass density (<1.6 kg/m2) and an ultra-thin thickness (1000 times smaller than the operating wavelength). The underlying physical mechanism of such extraordinary sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  16. Tribological performance of ultra-low viscosity composite base fluid with bio-derived fluid

    USDA-ARS?s Scientific Manuscript database

    One obvious approach to increase efficiencies in many lubricated systems such as ICE and gearbox is the reduction in viscosity of oil lubricant. Indeed, ultra-low viscosity engine oils are now commercially available. One approach to the development of ultra-low viscosity lubricants without compromis...

  17. Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Khosropanah, P.; Suzuki, T.; Ridder, M. L.; Hijmering, R. A.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Gao, J. R.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.

  18. Controlling Low-Rate Signal Path Microdischarge for an Ultra-Low-Background Proportional Counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco

    2013-05-01

    ABSTRACT Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) made of high purity copper. These detectors are part of an ultra-low-background counting system (ULBCS) in the newly constructed shallow underground laboratory at PNNL (at a depth of ~30 meters water-equivalent). To control backgrounds, the current preamplifier electronics are located outside the ULBCS shielding. Thus the signal from the detector travels through ~1 meter of cable and is potentially susceptible to high voltage microdischarge and other sources of electronic noise. Based on initial successful tests, commercial cables and connectors were used for this critical signal path. Subsequentmore » testing across different batches of commercial cables and connectors, however, showed unwanted (but still low) rates of microdischarge noise. To control this noise source, two approaches were pursued: first, to carefully validate cables, connectors, and other commercial components in this critical signal path, making modifications where necessary; second, to develop a custom low-noise, low-background preamplifier that can be integrated with the ULBPC and thus remove most commercial components from the critical signal path. This integrated preamplifier approach is based on the Amptek A250 low-noise charge-integrating preamplifier module. The initial microdischarge signals observed are presented and characterized according to the suspected source. Each of the approaches for mitigation is described, and the results from both are compared with each other and with the original performance seen with commercial cables and connectors.« less

  19. Study on biocompatibility, tribological property and wear debris characterization of ultra-low-wear polyethylene as artificial joint materials.

    PubMed

    Bian, Yan-Yan; Zhou, Lei; Zhou, Gang; Jin, Zhong-Min; Xin, Shi-Xuan; Hua, Zi-Kai; Weng, Xi-Sheng

    2018-06-01

    Ultra-low-wear polyethylene (ULWPE) is a new type polyethylene made by experts who are from China petrochemical research institute, which is easy to process and implant. Preliminary test showed it was more resistant to wear than that of Ultra-high-molecular weight polyethylene (UHMWPE). The purpose of the research is to study biocompatibility, bio-tribological properties and debris characterization of ULWPE. Cytotoxicity test, hemolysis test, acute/chronic toxicity and muscular implantation test were conducted according to national standard GB/T-16886/ISO-10993 for evaluation requirements of medical surgical implants. We obtained that this novel material had good biocompatibility and biological safety. The wear performance of ULWPE and UHMWPE was evaluated in a pin-on-disc (POD) wear tester within two million cycles and a knee wear simulator within six million cycles. We found that the ULWPE was higher abrasion resistance than the UHMWPE, the wear rate of ULWPE by POD test and knee wear simulator was 0.4 mg/10 6 cycles and (16.9 ± 1.8)mg/10 6 cycles respectively, while that of UHMWPE was 1.8 mg/10 6 cycles and (24.6 ± 2.4)mg/10 6 cycles. The morphology of wear debris is also an important factor to evaluate artificial joint materials, this study showed that the ULWPE wear debris gotten from the simulator had various different shapes, including spherical, block, tear, etc. The morphology of worn surface and wear debris analysis showed that wear mechanisms of ULWPE were adhesion wear, abrasive wear and fatigue wear and other wear forms, which were consistent with that of UHMWPE. Thus we conclude that ULWPE is expected to be a lifetime implantation of artificial joint. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    EPA Science Inventory

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  1. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    NASA Astrophysics Data System (ADS)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  2. Ultra-Low Power Optical Sensor for Xylophagous Insect Detection in Wood.

    PubMed

    Perles, Angel; Mercado, Ricardo; Capella, Juan V; Serrano, Juan José

    2016-11-23

    The early detection of pests is key for the maintenance of high-value masterpieces and historical buildings made of wood. In this work, we the present detailed design of an ultra-low power sensor device that permits the continuous monitoring of the presence of termites and other xylophagous insects. The operating principle of the sensor is based on the variations of reflected light induced by the presence of termites, and specific processing algorithms that deal with the behavior of the electronics and the natural ageing of components. With a typical CR2032 lithium battery, the device lasts more than nine years, and is ideal for incorporation in more complex monitoring systems where maintenance tasks should be minimized.

  3. Ultra-Low Power Optical Sensor for Xylophagous Insect Detection in Wood

    PubMed Central

    Perles, Angel; Mercado, Ricardo; Capella, Juan V.; Serrano, Juan José

    2016-01-01

    The early detection of pests is key for the maintenance of high-value masterpieces and historical buildings made of wood. In this work, we the present detailed design of an ultra-low power sensor device that permits the continuous monitoring of the presence of termites and other xylophagous insects. The operating principle of the sensor is based on the variations of reflected light induced by the presence of termites, and specific processing algorithms that deal with the behavior of the electronics and the natural ageing of components. With a typical CR2032 lithium battery, the device lasts more than nine years, and is ideal for incorporation in more complex monitoring systems where maintenance tasks should be minimized. PMID:27886082

  4. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    NASA Astrophysics Data System (ADS)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  5. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  6. Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism

    PubMed Central

    Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre

    2015-01-01

    HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds. PMID:26585833

  7. Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism.

    PubMed

    Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre

    2015-11-20

    HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.

  8. Antibiotic resistance in hospitals: a ward-specific random effect model in a low antibiotic consumption environment.

    PubMed

    Aldrin, Magne; Raastad, Ragnhild; Tvete, Ingunn Fride; Berild, Dag; Frigessi, Arnoldo; Leegaard, Truls; Monnet, Dominique L; Walberg, Mette; Müller, Fredrik

    2013-04-15

    Association between previous antibiotic use and emergence of antibiotic resistance has been reported for several microorganisms. The relationship has been extensively studied, and although the causes of antibiotic resistance are multi-factorial, clear evidence of antibiotic use as a major risk factor exists. Most studies are carried out in countries with high consumption of antibiotics and corresponding high levels of antibiotic resistance, and currently, little is known whether and at what level the associations are detectable in a low antibiotic consumption environment. We conduct an ecological, retrospective study aimed at determining the impact of antibiotic consumption on antibiotic-resistant Pseudomonas aeruginosa in three hospitals in Norway, a country with low levels of antibiotic use. We construct a sophisticated statistical model to capture such low signals. To reduce noise, we conduct our study at hospital ward level. We propose a random effect Poisson or binomial regression model, with a reparametrisation that allows us to reduce the number of parameters. Inference is likelihood based. Through scenario simulation, we study the potential effects of reduced or increased antibiotic use. Results clearly indicate that the effects of consumption on resistance are present under conditions with relatively low use of antibiotic agents. This strengthens the recommendation on prudent use of antibiotics, even when consumption is relatively low. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Ultra-broadband microwave metamaterial absorber based on resistive sheets

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2017-01-01

    We investigate a broadband perfect absorber for microwave frequencies, with a wide incident angle, using resistive sheets, based on both simulation and experiment. The absorber uses periodically-arranged meta-atoms, consisting of snake-shape metallic patterns and metal planes separated by three resistive sheet layers between four dielectric layers. We demonstrate the mechanism of the broadband by impedance matching with free space, and the distribution of surface currents at specific frequencies. In simulation, the absorption was over 96% in 1.4-6.0 GHz. The corresponding experimental absorption band over 96% was 1.4-4.0 GHz, however, the absorption was lower than 96% in the 4.0-6.0 GHz range because of the rather irregular thickness of the resistive sheets. Furthermore, it works for wide incident angles and is relatively independent of polarization. The design is scalable to smaller sizes in the THz range. The results of this study show potential for real applications in prevention of microwave frequency exposure, with devices such as cell phones, monitors, and microwave equipment.

  10. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  11. An ultra low power ECG signal processor design for cardiovascular disease detection.

    PubMed

    Jain, Sanjeev Kumar; Bhaumik, Basabi

    2015-08-01

    This paper presents an ultra low power ASIC design based on a new cardiovascular disease diagnostic algorithm. This new algorithm based on forward search is designed for real time ECG signal processing. The algorithm is evaluated for Physionet PTB database from the point of view of cardiovascular disease diagnosis. The failed detection rate of QRS complex peak detection of our algorithm ranges from 0.07% to 0.26% for multi lead ECG signal. The ASIC is designed using 130-nm CMOS low leakage process technology. The area of ASIC is 1.21 mm(2). This ASIC consumes only 96 nW at an operating frequency of 1 kHz with a supply voltage of 0.9 V. Due to ultra low power consumption, our proposed ASIC design is most suitable for energy efficient wearable ECG monitoring devices.

  12. Noise thermometry at ultra-low temperatures.

    PubMed

    Rothfuss, D; Reiser, A; Fleischmann, A; Enss, C

    2016-03-28

    The options for primary thermometry at ultra-low temperatures are rather limited. In practice, most laboratories are using (195)Pt NMR thermometers in the microkelvin range. In recent years, current sensing direct current superconducting quantum interference devices (DC-SQUIDs) have enabled the use of noise thermometry in this temperature range. Such devices have also demonstrated the potential for primary thermometry. One major advantage of noise thermometry is the fact that no driving current is needed to operate the device and thus the heat dissipation within the thermometer can be reduced to a minimum. Ultimately, the intrinsic power dissipation is given by the negligible back action of the readout SQUID. For thermometry in low-temperature experiments, current noise thermometers and magnetic flux fluctuation thermometers have proved to be most suitable. To make use of such thermometers at ultra-low temperatures, we have developed a cross-correlation technique that reduces the amplifier noise contribution to a negligible value. For this, the magnetic flux fluctuations caused by the Brownian motion of the electrons in our noise source are measured inductively by two DC-SQUID magnetometers simultaneously and the signals from these two channels are cross-correlated. Experimentally, we have characterized a thermometer made of a cold-worked high-purity copper cylinder with a diameter of 5 mm and a length of 20 mm for temperatures between 42 μK and 0.8 K. For a given temperature, a measuring time below 1 min is sufficient to reach a precision of better than 1%. The extremely low power dissipation in the thermometer allows continuous operation without heating effects. © 2016 The Author(s).

  13. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei

    2013-08-12

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm{sup −3}. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ∼22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth onmore » conductors.« less

  14. Ultra Thin Poly-Si Nanosheet Junctionless Field-Effect Transistor with Nickel Silicide Contact

    PubMed Central

    Lin, Yu-Ru; Tsai, Wan-Ting; Wu, Yung-Chun; Lin, Yu-Hsien

    2017-01-01

    This study demonstrated an ultra thin poly-Si junctionless nanosheet field-effect transistor (JL NS-FET) with nickel silicide contact. For the nickel silicide film, two-step annealing and a Ti capping layer were adopted to form an ultra thin uniform nickel silicide film with low sheet resistance (Rs). The JL NS-FET with nickel silicide contact exhibited favorable electrical properties, including a high driving current (>107A), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this study compared the electrical characteristics of JL NS-FETs with and without nickel silicide contact. PMID:29112139

  15. Ultra Thin Poly-Si Nanosheet Junctionless Field-Effect Transistor with Nickel Silicide Contact.

    PubMed

    Lin, Yu-Ru; Tsai, Wan-Ting; Wu, Yung-Chun; Lin, Yu-Hsien

    2017-11-07

    This study demonstrated an ultra thin poly-Si junctionless nanosheet field-effect transistor (JL NS-FET) with nickel silicide contact. For the nickel silicide film, two-step annealing and a Ti capping layer were adopted to form an ultra thin uniform nickel silicide film with low sheet resistance (Rs). The JL NS-FET with nickel silicide contact exhibited favorable electrical properties, including a high driving current (>10⁷A), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this study compared the electrical characteristics of JL NS-FETs with and without nickel silicide contact.

  16. Economic method for measuring ultra-low flow rates of fluids

    NASA Technical Reports Server (NTRS)

    Bogdanovic, J. A.; Keller, W. F.

    1970-01-01

    Capillary tube flowmeter measures ultra-low flows of very corrosive fluids /such as chlorine trifluoride and liquid fluorine/ and other liquids with reasonable accuracy. Flowmeter utilizes differential pressure transducer and operates on the principle that for laminar flow in the tube, pressure drop is proportional to flow rate.

  17. Ultra-Low-Dropout Linear Regulator

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  18. Using the ultra-long pulse width pulsed dye laser and elliptical spot to treat resistant nasal telangiectasia.

    PubMed

    Madan, Vishal; Ferguson, Janice

    2010-01-01

    Thick linear telangiectasia on the ala nasi and nasolabial crease can be resistant to treatment with the potassium-titanyl-phosphate (KTP) laser and the traditional round spot on a pulsed dye laser (PDL). We evaluated the efficacy of a 3 mm x 10 mm elliptical spot using the ultra-long pulse width on a Candela Vbeam(R) PDL for treatment of PDL- and KTP laser-resistant nasal telangiectasia. Nasal telangiectasia resistant to PDL (12 patients) and KTP laser (12 patients) in 18 patients were treated with a 3 mm x 10 mm elliptical spot on the ultra-long pulse pulsed dye laser (ULPDL) utilising long pulse width [595 nm, 40 ms, double pulse, 30:20 dynamic cooling device (DCD)]. Six patients had previously received treatment with both PDL and KTP laser prior to ULPDL (40 treatments, range1-4, mean 2.2). Complete clearance was seen in ten patients, and eight patients displayed more than 80% improvement after ULPDL treatment. Self-limiting purpura occurred with round spot PDL and erythema with KTP laser and ULPDL. Subtle linear furrows along the treatment sites were seen in three patients treated with the KTP laser. ULPDL treatment delivered using a 3 mm x 10 mm elliptical spot was non-purpuric and highly effective in the treatment of nasal telangiectasia resistant to KTP laser and PDL.

  19. Ultra-low thermal conductivity of high-interface density Si/Ge amorphous multilayers

    NASA Astrophysics Data System (ADS)

    Goto, Masahiro; Xu, Yibin; Zhan, Tianzhuo; Sasaki, Michiko; Nishimura, Chikashi; Kinoshita, Yohei; Ishikiriyama, Mamoru

    2018-04-01

    Owing to their phonon scattering and interfacial thermal resistance (ITR) characteristics, inorganic multilayers (MLs) have attracted considerable attention for thermal barrier applications. In this study, a-Si/a-Ge MLs with layer thicknesses ranging from 0.3 to 5 nm and different interfacial elemental mixture states were fabricated using a combinatorial sputter-coating system, and their thermal conductivities were measured via a frequency-domain thermo-reflectance method. An ultra-low thermal conductivity of κ = 0.29 ± 0.01 W K-1 m-1 was achieved for a layer thickness of 0.8 nm. The ITR was found to decrease from 8.5 × 10-9 to 3.6 × 10-9 m2 K W-1 when the interfacial density increases from 0.15 to 0.77 nm-1.

  20. Ultra-low-loss optical fiber nanotapers.

    PubMed

    Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David

    2004-05-17

    Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

  1. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-04-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  2. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low- k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-07-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low- k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low- k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low- k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  3. Ultra-low-cost clinical pulse oximetry.

    PubMed

    Petersen, Christian L; Gan, Heng; MacInnis, Martin J; Dumont, Guy A; Ansermino, J Mark

    2013-01-01

    An ultra-low-cost pulse oximeter is presented that interfaces a conventional clinical finger sensor with a mobile phone through the headset jack audio interface. All signal processing is performed using the audio subsystem of the phone. In a preliminary volunteer study in a hypoxia chamber, we compared the oxygen saturation obtained with the audio pulse oximeter against a commercially available (and FDA approved) reference pulse oximeter (Nonin Xpod). Good agreement was found between the outputs of the two devices.

  4. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  5. Early study on the application of Nexcera ultra low thermal expansion ceramic to space telescopes

    NASA Astrophysics Data System (ADS)

    Kamiya, Tomohiro; Sugawara, Jun; Mizutani, Tadahito; Yasuda, Susumu; Kitamoto, Kazuya

    2017-09-01

    Optical mirrors for space telescopes, which require high precision and high thermal stability, have commonly been made of glass materials such as ultra low expansion glass (e.g. ULE®) or extremely low expansion glassceramic (e.g. ZERODUR® or CLEARCERAM®). These materials have been well-known for their reliability due to their long history of achievements in many space applications.

  6. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, W.G.

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  7. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear

    PubMed

    Chhowalla; Amaratunga

    2000-09-14

    The tribological properties of solid lubricants such as graphite and the metal dichalcogenides MX2 (where M is molybdenum or tungsten and X is sulphur or selenium) are of technological interest for reducing wear in circumstances where liquid lubricants are impractical, such as in space technology, ultra-high vacuum or automotive transport. These materials are characterized by weak interatomic interactions (van der Waals forces) between their layered structures, allowing easy, low-strength shearing. Although these materials exhibit excellent friction and wear resistance and extended lifetime in vacuum, their tribological properties remain poor in the presence of humidity or oxygen, thereby limiting their technological applications in the Earth's atmosphere. But using MX2 in the form of isolated inorganic fullerene-like hollow nanoparticles similar to carbon fullerenes and nanotubes can improve its performance. Here we show that thin films of hollow MoS2 nanoparticles, deposited by a localized high-pressure arc discharge method, exhibit ultra-low friction (an order of magnitude lower than for sputtered MoS2 thin films) and wear in nitrogen and 45% humidity. We attribute this 'dry' behaviour in humid environments to the presence of curved S-Mo-S planes that prevent oxidation and preserve the layered structure.

  8. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear

    NASA Astrophysics Data System (ADS)

    Chhowalla, Manish; Amaratunga, Gehan A. J.

    2000-09-01

    The tribological properties of solid lubricants such as graphite and the metal dichalcogenides MX2 (where M is molybdenum or tungsten and X is sulphur or selenium) are of technological interest for reducing wear in circumstances where liquid lubricants are impractical, such as in space technology, ultra-high vacuum or automotive transport. These materials are characterized by weak interatomic interactions (van der Waals forces) between their layered structures, allowing easy, low-strength shearing. Although these materials exhibit excellent friction and wear resistance and extended lifetime in vacuum, their tribological properties remain poor in the presence of humidity or oxygen, thereby limiting their technological applications in the Earth's atmosphere. But using MX2 in the form of isolated inorganic fullerene-like hollow nanoparticles similar to carbon fullerenes and nanotubes can improve its performance. Here we show that thin films of hollow MoS2 nanoparticles, deposited by a localized high-pressure arc discharge method, exhibit ultra-low friction (an order of magnitude lower than for sputtered MoS2 thin films) and wear in nitrogen and 45% humidity. We attribute this `dry' behaviour in humid environments to the presence of curved S-Mo-S planes that prevent oxidation and preserve the layered structure.

  9. Oxycodone Plus Ultra-Low-Dose Naltrexone Attenuates Neuropathic Pain and Associated μ-Opioid Receptor–Gs Coupling

    PubMed Central

    Largent-Milnes, Tally M.; Guo, Wenhong; Wang, Hoau-Yan; Burns, Lindsay H.; Vanderah, Todd W.

    2017-01-01

    Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in μ-opioid receptor (MOR)–G protein coupling from Gi/o to Gs that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L5/L6 spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to Gs in the damaged (ipsilateral) spinal dorsal horn. This MOR-Gs coupling occurred without changing Gi/o coupling levels and without changing the expression of MOR or Gα proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-Gs coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-Gs coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this Gs coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-Gs coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. PMID:18468954

  10. A non-volatile flip-flop based on diode-selected PCM for ultra-low power systems

    NASA Astrophysics Data System (ADS)

    Ye, Yong; Du, Yuan; Gao, Dan; Kang, Yong; Song, Zhitang; Chen, Bomy

    2016-10-01

    As the process technology is continuously shrinking, low power consumption is a major issue in VLSI Systems-on-Chip (SoCs), especially for standby-power-critical applications. Recently, the emerging CMOS-compatible non-volatile memories (NVMs), such as Phase Change Memory (PCM), have been used as on-chip storage elements, which can obtain non-volatile processing, nearly-zero standby power and instant-on capability. PCM has been considered as the best candidate for the next generation of NVMs for its low cost, high density and high resistance transformation ratio. In this paper, for the first time, we present a diode-selected PCM based non-volatile flip-flop (NVFF) which is optimized for better power consumption and process variation tolerance. With dual trench isolation process, the diode-selected PCM realizes ultra small area, which is very suitable for multi-context configuration and large scale flip-flops matrix. Since the MOS-selected PCM is hard to shrink further due to large amount of PCM write current, the proposed NVFF achieves higher power efficiency without loss of current driving capability. Using the 40nm manufacturing process, the area of the cell (1D1R) is as small as 0.016 μm2. Simulation results show that the energy consumption during the recall operation is 62 fJ with 1.1 standard supply voltage, which is reduced by 54.9% compared to the previous 2T2R based NVFF. When the supply voltage reduces to 0.7 V, the recall energy is as low as 17 fJ. With the great advantages in cell size and energy, the proposed diode-selected NVFF is very applicable and cost-effective for ULP systems.

  11. Effect of ultra-low doses, ASIR and MBIR on density and noise levels of MDCT images of dental implant sites.

    PubMed

    Widmann, Gerlig; Al-Shawaf, Reema; Schullian, Peter; Al-Sadhan, Ra'ed; Hörmann, Romed; Al-Ekrish, Asma'a A

    2017-05-01

    Differences in noise and density values in MDCT images obtained using ultra-low doses with FBP, ASIR, and MBIR may possibly affect implant site density analysis. The aim of this study was to compare density and noise measurements recorded from dental implant sites using ultra-low doses combined with FBP, ASIR, and MBIR. Cadavers were scanned using a standard protocol and four low-dose protocols. Scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Density (mean Hounsfield units [HUs]) of alveolar bone and noise levels (mean standard deviation of HUs) was recorded from all datasets and measurements were compared by paired t tests and two-way ANOVA with repeated measures. Significant differences in density and noise were found between the reference dose/FBP protocol and almost all test combinations. Maximum mean differences in HU were 178.35 (bone kernel) and 273.74 (standard kernel), and in noise, were 243.73 (bone kernel) and 153.88 (standard kernel). Decreasing radiation dose increased density and noise regardless of reconstruction technique and kernel. The effect of reconstruction technique on density and noise depends on the reconstruction kernel used. • Ultra-low-dose MDCT protocols allowed more than 90 % reductions in dose. • Decreasing the dose generally increased density and noise. • Effect of IRT on density and noise varies with reconstruction kernel. • Accuracy of low-dose protocols for interpretation of bony anatomy not known. • Effect of low doses on accuracy of computer-aided design models unknown.

  12. Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model

    PubMed Central

    Rakwal, Randeep; Agrawal, Ganesh Kumar; Shibato, Junko; Imanaka, Tetsuji; Fukutani, Satoshi; Tamogami, Shigeru; Endo, Satoru; Sahoo, Sarata Kumar; Masuo, Yoshinori; Kimura, Shinzo

    2009-01-01

    We report molecular changes in leaves of rice plants (Oryza sativa L. - reference crop plant and grass model) exposed to ultra low-dose ionizing radiation, first using contaminated soil from the exclusion zone around Chernobyl reactor site. Results revealed induction of stress-related marker genes (Northern blot) and secondary metabolites (LC-MS/MS) in irradiated leaf segments over appropriate control. Second, employing the same in vitro model system, we replicated results of the first experiment using in-house fabricated sources of ultra low-dose gamma (γ) rays and selected marker genes by RT-PCR. Results suggest the usefulness of the rice model in studying ultra low-dose radiation response/s. PMID:19399245

  13. Oxycodone plus ultra-low-dose naltrexone attenuates neuropathic pain and associated mu-opioid receptor-Gs coupling.

    PubMed

    Largent-Milnes, Tally M; Guo, Wenhong; Wang, Hoau-Yan; Burns, Lindsay H; Vanderah, Todd W

    2008-08-01

    Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in mu-opioid receptor (MOR)-G protein coupling from G(i/o) to G(s) that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L(5)/L(6) spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to G(s) in the damaged (ipsilateral) spinal dorsal horn. This MOR-G(s) coupling occurred without changing G(i/o) coupling levels and without changing the expression of MOR or Galpha proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-G(s) coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-G(s) coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this G(s) coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-G(s) coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. The current study investigates whether Oxytrex (oxycodone with an ultra-low dose of naltrexone) alleviates mechanical and thermal hypersensitivities in an animal model of neuropathic pain over a period of 7 days, given locally or systemically. In this report, we first describe an injury-induced shift in mu-opioid receptor coupling from G(i/o) to G(s), suggesting

  14. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing

    PubMed Central

    Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P.; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G.; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M.; Davidow, Amy; Denkinger, Claudia M.; Persing, David; Kwiatkowski, Robert; Jones, Martin

    2017-01-01

    ABSTRACT The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. PMID:28851844

  15. [Electric traction magnetic fields of ultra-low frequency as an occupational risk factor of ischemic heart disease].

    PubMed

    Ptitsyna, N G; Kudrin, V A; Villorezi, D; Kopytenko, Iu A; Tiasto, M I; Kopytenko, E A; Bochko, V A; Iuchchi, N

    1996-01-01

    The study was inspired by earlier results that displayed influence of variable natural geomagnetic field (0.005-10 Hz range-ultra-low frequencies) on circulatory system, indicated possible correlation between industrial ultra-low frequency fields and prevalence of myocardial infarction. The authors conducted unique measurements of ultra-low frequency fields produced by electric engines. The results were compared with data on morbidity among railway transport workers. The findings are that level of magnetic variations in electric locomotive cabin can exceed 280 micro Tesla, whereas that in car sections reaches 50 micro Tesla. Occurrence of coronary heart disease among the locomotive operators appeared to be 2.0 + 0.2 times higher than that among the car section operators. Higher risk of coronary heart disease in the locomotive operators is associated with their increased occupational magnetic load.

  16. A programmable ultra-low noise X-band exciter.

    PubMed

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry.

  17. Ultra Low Power Signal Oriented Approach for Wireless Health Monitoring

    PubMed Central

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios. PMID:22969379

  18. Ultra low power signal oriented approach for wireless health monitoring.

    PubMed

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  19. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  20. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  1. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} hbox {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 \\upmu hbox {m}) and narrower ({<}1 \\upmu hbox {m}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu hbox {m}), narrow (0.5-0.7 \\upmu hbox {m}), and long (340-460 \\upmu hbox {m}) SiN legs and show Tc of {˜ }93 hbox {mK} and Rn of {˜ }158 hbox {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} hbox {W}/√{{ {Hz}}} with a reasonable response speed ({<}1 hbox {ms}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher hbox {NEP}_{el} ({˜ }5 × 10^{-19} hbox {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  2. A high-specific-strength and corrosion-resistant magnesium alloy

    NASA Astrophysics Data System (ADS)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  3. A high-specific-strength and corrosion-resistant magnesium alloy.

    PubMed

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  4. Avatar Therapy for Persistent Auditory Verbal Hallucinations in an Ultra-Resistant Schizophrenia Patient: A Case Report.

    PubMed

    Dellazizzo, Laura; Potvin, Stéphane; Phraxayavong, Kingsada; Lalonde, Pierre; Dumais, Alexandre

    2018-01-01

    Effective treatment strategies for schizophrenia remain very challenging and many treatment-resistant patients will suffer from persistent auditory verbal hallucinations (AVH). While clozapine is the gold-standard medication for this complex population, many will not respond to this molecule. For these ultra-resistant patients, limited options are available. Cognitive-behavioral therapy (CBT) is the most widely used psychological intervention, though it offers modest effects. With the interpersonal dimension of AVH being recognized, Avatar Therapy (AT), a novel experiential treatment enabling patients to create an avatar of their persecutor and allowing them to gain control over their symptoms, was developed and tested. Results have shown significant improvements in AVH symptomatology. This paper details a case report showcasing the beneficial results of AT for even the most severe and symptomatic cases of schizophrenia. Mr. Smith has been afflicted with the persistency of all his voices for almost 20 years. To our knowledge, this patient tried almost all possible treatments with little efficacy. This case highlights the difficulty of finding an adequate treatment for ultra-resistant patients. Mr. Smith first followed CBT before initiating AT. With AT, he significantly improved in a way that was not observed with any other intervention and these improvements remained afterward. The severity of his positive symptoms as well as his depressive symptoms diminished, and his most distressing persecutory voice disappeared. He was able to regain a life. The effects of AT went well beyond the patient, the morale of the entire family improved. This ultra-resistant case suggests that AT may be a promising intervention for refractory AVH in schizophrenia.

  5. Evolution of simeprevir-resistant variants over time by ultra-deep sequencing in HCV genotype 1b.

    PubMed

    Akuta, Norio; Suzuki, Fumitaka; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Ikeda, Kenji; Kumada, Hiromitsu

    2014-08-01

    Using ultra-deep sequencing technology, the present study was designed to investigate the evolution of simeprevir-resistant variants (amino acid substitutions of aa80, aa155, aa156, and aa168 positions in HCV NS3 region) over time. In Toranomon Hospital, 18 Japanese patients infected with HCV genotype 1b, received triple therapy of simeprevir/PEG-IFN/ribavirin (DRAGON or CONCERT study). Sustained virological response rate was 67%, and that was significantly higher in patients with IL28B rs8099917 TT than in those with non-TT. Six patients, who did not achieve sustained virological response, were tested for resistant variants by ultra-deep sequencing, at the baseline, at the time of re-elevation of viral loads, and at 96 weeks after the completion of treatment. Twelve of 18 resistant variants, detected at re-elevation of viral load, were de novo resistant variants. Ten of 12 de novo resistant variants become undetectable over time, and that five of seven resistant variants, detected at baseline, persisted over time. In one patient, variants of Q80R at baseline (0.3%) increased at 96-week after the cessation of treatment (10.2%), and de novo resistant variants of D168E (0.3%) also increased at 96-week after the cessation of treatment (9.7%). In conclusion, the present study indicates that the emergence of simeprevir-resistant variants after the start of treatment could not be predicted at baseline, and the majority of de novo resistant variants become undetectable over time. Further large-scale prospective studies should be performed to investigate the clinical utility in detecting simeprevir-resistant variants. © 2014 Wiley Periodicals, Inc.

  6. An Ultra Low Cost Wireless Communications Laboratory for Education and Research

    ERIC Educational Resources Information Center

    Linn, Y.

    2012-01-01

    This paper presents an ultra-low-cost wireless communications laboratory that is based on a commercial off-the-shelf field programmable gate array (FPGA) development board that is both inexpensive and available worldwide. The total cost of the laboratory is under USD $200, but it includes complete transmission, channel emulation, reception…

  7. CMOS Ultra Low Power Radiation Tolerant (CULPRiT) Microelectronics

    NASA Technical Reports Server (NTRS)

    Yeh, Penshu; Maki, Gary

    2007-01-01

    Space Electronics needs Radiation Tolerance or hardness to withstand the harsh space environment: high-energy particles can change the state of the electronics or puncture transistors making them disfunctional. This viewgraph document reviews the use of CMOS Ultra Low Power Radiation Tolerant circuits for NASA's electronic requirements.

  8. Oxytrex: an oxycodone and ultra-low-dose naltrexone formulation.

    PubMed

    Webster, Lynn R

    2007-08-01

    Oxytrex (Pain Therapeutics, Inc.) is an oral opioid that combines a therapeutic amount of oxycodone with an ultra-low dose of the antagonist naltrexone. Animal data indicate that this combination minimizes the development of physical dependence and analgesic tolerance while prolonging analgesia. Oxytrex is in late-stage clinical development by Pain Therapeutics for the treatment of moderate-to-severe chronic pain. To evaluate the safety and efficacy of the oxycodone/naltrexone combination, three clinical studies have been conducted, one in healthy volunteers and the other two in patients with chronic pain. The putative mechanism of ultra-low-dose naltrexone is to prevent an alteration in G-protein coupling by opioid receptors that is associated with opioid tolerance and dependence. Opioid agonists are initially inhibitory but become excitatory through constant opioid receptor activity. The agonist/antagonist combination of Oxytrex may reduce the conversion from an inhibitory to an excitatory receptor, thereby decreasing the development of tolerance and physical dependence.

  9. Analysis and Design of Rotors at Ultra-Low Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Kunz, Peter J.; Strawn, Roger C.

    2003-01-01

    Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.

  10. Can low-temperature thermoluminescence cast light on the nature of ultra-high dilutions?

    PubMed

    Rey, Louis

    2007-07-01

    Low-temperature thermoluminescence has been used in attempt to understand the particular structure of ultra high dilutions. Samples are activated by irradiation after freezing at the temperature of liquid nitrogen (77 degrees K). Experimental results show that, in the course of rewarming, the thermoluminescent glow is susbtantially different between dilutions of different substances. It is suggested that the dispersed gas phase might play a role in this process.

  11. Mutations Related to Antiretroviral Resistance Identified by Ultra-Deep Sequencing in HIV-1 Infected Children under Structured Interruptions of HAART

    PubMed Central

    Vazquez-Guillen, Jose Manuel; Palacios-Saucedo, Gerardo C.; Rivera-Morales, Lydia G.; Garcia-Campos, Jorge; Ortiz-Lopez, Rocio; Noguera-Julian, Marc; Paredes, Roger; Vielma-Ramirez, Herlinda J.; Ramirez, Teresa J.; Chavez-Garcia, Marcelino; Lopez-Guillen, Paulo; Briones-Lara, Evangelina; Sanchez-Sanchez, Luz M.; Vazquez-Martinez, Carlos A.; Rodriguez-Padilla, Cristina

    2016-01-01

    Although Structured Treatment Interruptions (STI) are currently not considered an alternative strategy for antiretroviral treatment, their true benefits and limitations have not been fully established. Some studies suggest the possibility of improving the quality of life of patients with this strategy; however, the information that has been obtained corresponds mostly to studies conducted in adults, with a lack of knowledge about its impact on children. Furthermore, mutations associated with antiretroviral resistance could be selected due to sub-therapeutic levels of HAART at each interruption period. Genotyping methods to determine the resistance profiles of the infecting viruses have become increasingly important for the management of patients under STI, thus low-abundance antiretroviral drug-resistant mutations (DRM’s) at levels under limit of detection of conventional genotyping (<20% of quasispecies) could increase the risk of virologic failure. In this work, we analyzed the protease and reverse transcriptase regions of the pol gene by ultra-deep sequencing in pediatric patients under STI with the aim of determining the presence of high- and low-abundance DRM’s in the viral rebounds generated by the STI. High-abundance mutations in protease and high- and low-abundance mutations in reverse transcriptase were detected but no one of these are directly associated with resistance to antiretroviral drugs. The results could suggest that the evaluated STI program is virologically safe, but strict and carefully planned studies, with greater numbers of patients and interruption/restart cycles, are still needed to evaluate the selection of DRM’s during STI. PMID:26807922

  12. Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration

    NASA Astrophysics Data System (ADS)

    Montazeri, Shirin; Wong, Wei-Ting; Coskun, Ahmet H.; Bardin, Joseph C.

    2016-01-01

    Low-power cryogenic low-noise amplifiers (LNAs) are desired to ease the cooling requirements of ultra-sensitive cryogenically cooled instrumentation. In this paper, the tradeoff between power and noise performance in silicon-germanium LNAs is explored to study the possibility of operating these devices from low supply voltages. A new small-signal heterojunction bipolar transistor noise model applicable to both the forward-active and saturation regimes is developed from first principles. Experimental measurements of a device across a wide range of temperatures are then presented and the dependence of the noise parameters on collector-emitter voltage is described. This paper concludes with the demonstration of a high-gain 1.8-3.6-GHz cryogenic LNA achieving a noise temperature of 3.4-5 K while consuming just 290 μW when operating at 15-K physical temperature.

  13. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and

  14. Consumers' conceptualization of ultra-processed foods.

    PubMed

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ultra-Low Density Organic-Inorganic Composite Materials Possessing Thermally Insulating and Acoustic Damping Properties

    DTIC Science & Technology

    1992-05-07

    Officer. Dr. Kenneth Wynne d. Brief Description of Project- We are investigating the design and synthesis of strong, ultra-low density xerogel and aerogel ...materials of this type would have applications in a broad range of areas including lightweight engine components, high temperature coatings, aircraft wings...we plan to investigate the formation of ultra-low density composites using supercritical universal drying (SCUD) techniques. SiO2 aerogel materials

  16. Ultra-low current biosensor output detection using portable electronic reader

    NASA Astrophysics Data System (ADS)

    Yahaya, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. Afnan; Hashim, U.

    2017-09-01

    Generally, the electrical biosensor usually shows extremely low current signal output around pico ampere to microampere range. In this research, electronic reader with amplifier has been demonstrated to detect ultra low current via the biosensor. The operational amplifier Burr-Brown OPA 128 and Arduino Uno board were used to construct the portable electronic reader. There are two cascaded inverting amplifier were used to detect ultra low current through the biosensor from pico amperes (pA) to nano amperes ranges (nA). A small known input current was form by applying variable voltage between 0.1V to 5.0V across a 5GΩ high resistor to check the amplifier circuit. The amplifier operation was measured with the high impedance current source and has been compared with the theoretical measurement. The Arduino Uno was used to convert the analog signal to digital signal and process the data to display on reader screen. In this project, Proteus software was used to design and test the circuit. Then it was implemented together with Arduino Uno board. Arduino board was programmed using C programming language to make whole circuit communicate each order. The current was measured then it shows a small difference values compared to theoretical values, which is approximately 14pA.

  17. Local Resistance Profiling of Ultra-Shallow Junction with Spike Lamp and Laser Annealing Using Scanning Spreading Resistance Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abo, Satoshi; Tanaka, Yuji; Nishikawa, Kazuhisa

    2008-11-03

    Local resistance profiles of ultra-shallow arsenic implanted into silicon with an energy of 3.5 keV and a dose of 1.2x10{sup 15} ions/cm{sup 2} activated by conventional spike lamp and laser annealing were measured by SSRM in a nitrogen atmosphere with a depth resolution of less than 10 nm for investigating the combination of the conventional spike lamp and laser annealing. Spike lamp annealing at 1050 deg. C followed by laser annealing at a power density of 0.42 kW/mm{sup 2} was found to give the lowest sheet resistance. The resistance profiles obtained by SSRM also indicated the lowest resistance for themore » sample after spike lamp annealing at 1050 deg. C followed by laser annealing with a power density of 0.42 kW/mm{sup 2}. Laser annealing alone with a power density of 0.42 kW/mm{sup 2} resulted in the higher sheet resistance, though the shallower resistance profile could be obtained. Spike lamp annealing followed by laser annealing procedures are effective in activating shallow arsenic profiles.« less

  18. Ultra-Low Background Measurements Of Decayed Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Miley, H.

    2009-04-01

    To experimentally evaluate the opportunity to apply ultra-low background measurement methods to samples collected, for instance, by the Comprehensive Test Ban Treaty International Monitoring System (IMS), aerosol samples collected on filter media were measured using HPGe spectrometers of varying low-background technology approaches. In this way, realistic estimates of the impact of low-background methodology can be assessed on the Minimum Detectable Activities obtained in systems such as the IMS. The current measurement requirement of stations in the IMS is 30 microBq per cubic meter of air for 140Ba, or about 106 fissions per daily sample. Importantly, this is for a fresh aerosol filter. Decay varying form 3 days to one week reduce the intrinsic background from radon daughters in the sample. Computational estimates of the improvement factor for these decayed filters for underground-based HPGe in clean shielding materials are orders of magnitude less, even when the decay of the isotopes of interest is included.

  19. GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap

    NASA Astrophysics Data System (ADS)

    Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid

    2018-03-01

    We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.

  20. Studies of electrical properties of low-resistivity sandstones based on digital rock technology

    NASA Astrophysics Data System (ADS)

    Yan, Weichao; Sun, Jianmeng; Zhang, Jinyan; Yuan, Weiguo; Zhang, Li; Cui, Likai; Dong, Huaimin

    2018-02-01

    Electrical properties are important parameters to quantitatively calculate water saturation in oil and gas reservoirs by well logging interpretation. It is usual that oil layers show high resistivity responses, while water layers show low-resistivity responses. However, there are low-resistivity oil zones that exist in many oilfields around the world, leading to difficulties for reservoir evaluation. In our research, we used digital rock technology to study different internal and external factors to account for low rock resistivity responses in oil layers. We first constructed three-dimensional digital rock models with five components based on micro-computed tomography technology and x-ray diffraction experimental results, and then oil and water distributions in pores were determined by the pore morphology method. When the resistivity of each component was assigned, rock resistivities were calculated by using the finite element method. We collected 20 sandstone samples to prove the effectiveness of our numerical simulation methods. Based on the control variate method, we studied the effects of different factors on the resistivity indexes and rock resistivities. After sensitivity analyses, we found the main factors which caused low rock resistivities in oil layers. For unfractured rocks, influential factors arranged in descending order of importance were porosity, clay content, temperature, water salinity, heavy mineral, clay type and wettability. In addition, we found that the resistivity index could not provide enough information to identify a low-resistivity oil zone by using laboratory rock-electric experimental results. These results can not only expand our understandings of the electrical properties of low-resistivity rocks from oil layers, but also help identify low-resistivity oil zones better.

  1. A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology

    NASA Astrophysics Data System (ADS)

    Yan-Hui, Zhang; Jie, Wei; Chao, Yin; Qiao, Tan; Jian-Ping, Liu; Peng-Cheng, Li; Xiao-Rong, Luo

    2016-02-01

    A uniform doping ultra-thin silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor (LDMOS) with low specific on-resistance (Ron,sp) and high breakdown voltage (BV) is proposed and its mechanism is investigated. The proposed LDMOS features an accumulation-mode extended gate (AG) and back-side etching (BE). The extended gate consists of a P- region and two diodes in series. In the on-state with VGD > 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The Ron,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the Ron,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping (VLD) and the “hot-spot” caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the Ron,sp by 70.2% and increases the BV from 776 V to 818 V. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 61376079).

  2. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Son; Lu, Xingxu; Tang, Wenxiang

    High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less

  3. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

    DOE PAGES

    Hoang, Son; Lu, Xingxu; Tang, Wenxiang; ...

    2017-11-15

    High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less

  4. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  5. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery.

    PubMed

    Senft, Christian; Seifert, Volker; Hermann, Elvis; Franz, Kea; Gasser, Thomas

    2008-10-01

    The aim of this study was to demonstrate the usefulness of a mobile, intraoperative 0.15-T magnetic resonance imaging (MRI) scanner in glioma surgery. We analyzed our prospectively collected database of patients with glial tumors who underwent tumor resection with the use of an intraoperative ultra low-field MRI scanner (PoleStar N-20; Odin Medical Technologies, Yokneam, Israel/Medtronic, Louisville, CO). Sixty-three patients with World Health Organization Grade II to IV tumors were included in the study. All patients were subjected to postoperative 1.5-T imaging to confirm the extent of resection. Intraoperative image quality was sufficient for navigation and resection control in both high- and low-grade tumors. Primarily enhancing tumors were best detected on T1-weighted imaging, whereas fluid-attenuated inversion recovery sequences proved best for nonenhancing tumors. Intraoperative resection control led to further tumor resection in 12 (28.6%) of 42 patients with contrast-enhancing tumors and in 10 (47.6%) of 21 patients with noncontrast-enhancing tumors. In contrast-enhancing tumors, further resection led to an increased rate of complete tumor resection (71.2 versus 52.4%), and the surgical goal of gross total removal or subtotal resection was achieved in all cases (100.0%). In patients with noncontrast-enhancing tumors, the surgical goal was achieved in 19 (90.5%) of 21 cases, as intraoperative MRI findings were inconsistent with postoperative high-field imaging in 2 cases. The use of the PoleStar N-20 intraoperative ultra low-field MRI scanner helps to evaluate the extent of resection in glioma surgery. Further tumor resection after intraoperative scanning leads to an increased rate of complete tumor resection, especially in patients with contrast-enhancing tumors. However, in noncontrast- enhancing tumors, the intraoperative visualization of a complete resection seems less specific, when compared with postoperative 1.5-T MRI.

  6. Ultra-Shallow Junctions Fabrication by Plasma Immersion Implantation on PULSION registered Followed by Laser Thermal Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Sempere, Guillaume

    In order to achieve the requirements for P+/N junctions for <45 nm ITRS nodes, ultra low energy and high dose implantations are needed. Classical beamline implantation is now limited in low energies, compared to Plasma Immersion Ion Implantation (PIII) which efficiency is no more to prove for the realization of Ultra-Shallow Junctions (USJ) in semiconductor applications : this technique allows to get ultimate shallow profiles (as implanted) due to no lower limitation of energy and high dose rate. Electrical activation is also a big issue since it has to afford high electrical activation rate with very low diffusion. Laser annealingmore » is one of the candidates for the 45 nm node. This paper presents electrical and physico-chemical characterizations of junctions realized with BF3 PIII followed by laser thermal processing with aim to obtain ultra-shallow junctions. Different implantation conditions (acceleration voltage/dose) and laser conditions (laser types, fluence/number of shots) are used for this study. Pre-amorphization is also used to confine the junction depth, and is shown to have a positive effect on junction depth but leads in higher junction leakage due to the remaining of EOR defects. The characterization is done using Optical characterization tool (SEMILAB) for sheet resistance and junction leakage measurements. SIMS is used for Boron profile and junction depth.« less

  7. Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays.

    PubMed

    Johannessen, Erik A; Weaver, John M R; Bourova, Lenka; Svoboda, Petr; Cobbold, Peter H; Cooper, Jonathan M

    2002-05-01

    Current strategies for cell-based screening generally focus on the development of highly specific assays, which require an understanding of the nature of the signaling molecules and cellular pathways involved. In contrast, changes in temperature of cells provides a measure of altered cellular metabolism that is not stimulus specific and hence could have widespread applications in cell-based screening of receptor agonists and antagonists, as well as in the assessment of toxicity of new lead compounds. Consequently, we have developed a micromachined nanocalorimetric biological sensor using a small number of isolated living cells integrated within a subnanoliter format, which is capable of detecting 13 nW of generated power from the cells, upon exposure to a chemical or pharmaceutical stimulus. The sensor comprises a 10-junction gold and nickel thermopile, integrated on a silicon chip which was back-etched to span a 800-nm-thick membrane of silicon nitride. The thin-film membrane, which supported the sensing junctions of the thermoelectric transducer, gave the system a temperature resolution of 0.125 mK, a low heat capacity of 1.2 nJ mK(-1), and a rapid (unfiltered) response time of 12 ms. The application of the system in ultra-low-volume cell-based assays could provide a rapid endogenous screen. It offers important additional advantages over existing methods in that it is generic in nature, it does not require the use of recombinant cell lines or of detailed assay development, and finally, it can enable the use of primary cell lines or tissue biopsies.

  8. EVALUATING AND DESIGNING ULTRA-LOW-COST SOLAR WATER HEATING SYSTEMS

    EPA Science Inventory

    This project will have three key outputs:

    1. an evaluation of the thermal performance of ultra-low-cost solar components, with components being characterized by their absorbed solar energy per cost;
    2. a built demonstration prototype of...

    3. Ultra Low Temperature Instrumentation for Measurements in Astrophysics : ULTIMA

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Bunkov, Yu. M.; Elbs, J.; Godfrin, H.

      2006-09-07

      This paper reviews recent advances in particle detection using superfluid 3He at ultra-low temperature about 100 {mu}K, for application in large detector project ULTIMA for the search of non-baryonic Dark Matter. The unique advantages of 3He, and in particular of its superfluid state, for Dark Matter search are highlighted.

    4. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Panin, S. V., E-mail: svp@ispms.tsc.ru; Kornienko, L. A.; Poltaranin, M. A.

      2014-11-14

      In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

    5. Development of UItra-Low Temperature Motor Controllers: Ultra Low Temperatures Evaluation and Characterization of Semiconductor Technologies For The Next Generation Space Telescope

      NASA Technical Reports Server (NTRS)

      Elbuluk, Malik E.

      2003-01-01

      Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).

    6. Ultra low-cost, portable smartphone optosensors for mobile point-of-care diagnostics

      NASA Astrophysics Data System (ADS)

      Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

      2018-02-01

      Smartphone optosensors with integrated optical components make mobile point-of-care (MPoC) diagnostics be done near patients' side. It'll especially have a significant impact on healthcare delivery in rural or remote areas. Current FDA-approved PoC devices achieving clinical level are still at high cost and not affordable in rural hospitals. We present a series of ultra low-cost smartphone optical sensing devices for mobile point-of-care diagnosis. Aiming different targeting analytes and sensing mechanisms, we developed custom required optical components for each smartphone optosensros. These optical devices include spectrum readers, colorimetric readers for microplate, lateral flow device readers, and chemiluminescence readers. By integrating our unique designed optical components into smartphone optosening platform, the anlaytes can be precisely detected. Clinical testing results show the clinical usability of our smartphone optosensors. Ultra low-cost portable smartphone optosensors are affordable for rural/remote doctors.

    7. Longevity of ultra-low-volume sprays of fipronil and malathion on cotton in Mexico

      Treesearch

      Joseph E. Mulrooney; K.A. Holmes; R.A. Shaw; D. Goli

      2003-01-01

      In 1996, fipronil and malathion residues were evaluated after four ultra-low-volume (ULV) spray applications in northeastern Tarnaulipas, Mexico. Sprays were applied at 0.88 L/ha. Fipronil was applied at 28 and 56 g A.I./ha and malathion at 840 g A.I./ha. Four applications were made beginning 23 May at four, five and six day intervals. Leaf surface residues of...

    8. Physiology and Pathophysiology in Ultra-Marathon Running

      PubMed Central

      Knechtle, Beat; Nikolaidis, Pantelis T.

      2018-01-01

      In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

    9. Physiology and Pathophysiology in Ultra-Marathon Running.

      PubMed

      Knechtle, Beat; Nikolaidis, Pantelis T

      2018-01-01

      In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10-20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35-45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

    10. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

      PubMed

      Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

      2015-03-06

      An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

    11. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

      PubMed Central

      Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U.

      2015-01-01

      An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle. PMID:25756863

    12. Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films.

      PubMed

      Yu, Yang; Luo, Shu; Sun, Li; Wu, Yang; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

      2015-06-14

      Ultra-stretchable conductors are fabricated by coating super-aligned carbon nanotube (SACNT) films on pre-strained polydimethylsiloxane (PDMS) substrates and forming buckled SACNT structures on PDMS after release of the pre-strain. The parallel SACNT/PDMS conductors demonstrate excellent stability with normalized resistance changes of only 4.1% under an applied strain as high as 200%. The SACNT/PDMS conductors prepared with cross-stacked SACNT films show even lower resistance variation. The parallel SACNT/PDMS conductors exhibit high durability with a resistance increase of less than 5% after 10,000 cycles at 150% strain. In situ microscopic observations demonstrate that the buckled SACNT structures are straightened during the stretching process with reversible morphology evolution and thus the continuous SACNT conductive network can be protected from fracture. Due to the excellent electrical and mechanical properties of SACNT films and the formation of the buckled structure, SACNT/PDMS films exhibit high stretchability and durability, possessing great potential for use as ultra-stretchable conductors for wearable electronics, sensors, and energy storage devices.

    13. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Dong, Futao, E-mail: dongft@sina.com; Du, Linxiu; Liu, Xianghua

      2013-10-15

      The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boronmore » combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.« less

    14. Investigation on low velocity impact resistance of SMA composite material

      NASA Astrophysics Data System (ADS)

      Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong

      2016-04-01

      A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.

  1. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animalsmore » subjected to ELF together with the transfer factor.« less

  2. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  3. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  4. ULTRA-LOW POWER CO2 SENSOR FOR INTELLIGENT BUILDING CONTROL - PHASE I

    EPA Science Inventory

    The proposed EPA SBIR Phase I program will create a novel ultra-low power and low-cost microfabricated CO2 sensor. The initial developments of sensor technology will serve the very large Demand Controlled Ventilation market that has been identified by KWJ and its...

  5. Temperature dependent characteristics of the random telegraph noise on contact resistive random access memory

    NASA Astrophysics Data System (ADS)

    Chang, Liang-Shun; Lin, Chrong Jung; King, Ya-Chin

    2014-01-01

    The temperature dependent characteristics of the random telegraphic noise (RTN) on contact resistive random access memory (CRRAM) are studied in this work. In addition to the bi-level switching, the occurrences of the middle states in the RTN signal are investigated. Based on the unique its temperature dependent characteristics, a new temperature sensing scheme is proposed for applications in ultra-low power sensor modules.

  6. 100 nm AlSb/InAs HEMT for ultra-low-power consumption, low-noise applications.

    PubMed

    Gardès, Cyrille; Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier; Roelens, Yannick

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/f max of 100/125 GHz together with minimum noise figure NF(min) = 0.5 dB and associated gain G(ass) = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.

  7. Detection of ultra-low oxygen concentration based on the fluorescence blinking dynamics of single molecules

    NASA Astrophysics Data System (ADS)

    Wu, Ruixiang; Chen, Ruiyun; Zhou, Haitao; Qin, Yaqiang; Zhang, Guofeng; Qin, Chengbing; Gao, Yan; Gao, Yajun; Xiao, Liantuan; Jia, Suotang

    2018-01-01

    We present a sensitive method for detection of ultra-low oxygen concentrations based on the fluorescence blinking dynamics of single molecules. The relationship between the oxygen concentration and the fraction of time spent in the off-state, stemming from the population and depopulation of triplet states and radical cationic states, can be fitted with a two-site quenching model in the Stern-Volmer plot. The oxygen sensitivity is up to 43.42 kPa-1 in the oxygen partial pressure region as low as 0.01-0.25 kPa, which is seven times higher than that of the fluorescence intensity indicator. This method avoids the limitation of the sharp and non-ignorable fluctuations that occur during the measurement of fluorescence intensity, providing potential applications in the field of low oxygen-concentration monitoring in life science and industry.

  8. The achievement of low contact resistance to indium phosphide: The roles of Ni, Au, Ge, and combinations thereof

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1992-01-01

    We have investigated the electrical and metallurgical behavior of Ni, Au-Ni, and Au-Ge-Ni contacts on n-InP. We have found that very low values of contact resistivity rho(sub c) in the E-7 omega-sq cm range are obtained with Ni-only contacts. We show that the addition of Au to Ni contact metallization effects an additional order of magnitude reduction in rho(sub c). Ultra-low contact resistivities in the E-8 omega-sq cm range are obtained with both the Au-Ni and the Au-Ge-Ni systems, effectively eliminating the need for the presence of Ge in the Au-Ge-Ni system. The formation of various nickel phosphides at the metal-InP interface is shown to be responsible for the observed rho(sub c) values in the Ni and Au-Ni systems. We show, finally, that the order in which the constituents of Au-Ni and Au-Ge-Ni contacts are deposited has a significant bearing on the composition of the reaction products formed at the metal-InP interface and therefore on the contact resistivity at that interface.

  9. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a

  10. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    NASA Astrophysics Data System (ADS)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  11. Welding of HSLA-100 steel using ultra low carbon bainitic weld metal to eliminate preheating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devletian, J.H.; Singh, D.; Wood, W.E.

    1996-12-31

    Advanced high strength steels such as the Navy`s HSLA-100 and HSLA-80 contain sufficiently low carbon levels to be weldable without preheating. Unfortunately, commercial filler metals specifically designed to weld these steels without costly preheating have not yet been developed. The objective of this paper is to show that the Navy`s advanced steels can be welded by gas metal-arc (GMAW) and gas tungsten-arc welding (GTAW) without preheating by using filler metal compositions that produce weld metal with an ultra-low carbon bainitic (ULCB) microstructure. Filler metals were fabricated from vacuum induction melted (VIM) ingots containing ultra-low levels of C, O and N.more » HSLA-100 plate and plate from the VIM ingots were welded by both GMAW and GTAW with Ar-5% CO{sub 2} shielding gas using welding conditions to achieve cooling times from 800 to 500 C (t{sub 8-5}) from 35 to 14 sec. Weld metal tensile, hardness and CVN impact toughness testing as well as microstructural studies using transmission electron microscopy were conducted. The ULCB weld metal was relatively insensitive to cooling rate, resulting in good strength and toughness values over a wide range of t{sub 8-5} cooling times. Filler metal compositions which met the mechanical property requirements for HSLA-100, HSLA-80 and HSLA-65 weld metal were developed.« less

  12. Effects of asymmetric rolling process on ridging resistance of ultra-purified 17%Cr ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-zhuang; Li, Jing-yuan; Fang, Zhi

    2018-02-01

    In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homogeneity of the recrystallization orientation and reduce the texture gradient in ultra-purified 17%Cr ferritic stainless steel, in this work, we performed conventional and asymmetric rolling processes and conducted macro and micro-texture analyses to investigate texture evolution under different cold-rolling conditions. In the conventional rolling specimens, we observed that the deformation was not uniform in the thickness direction, whereas there was homogeneous shear deformation in the asymmetric rolling specimens as well as the formation of uniform recrystallized grains and random orientation grains in the final annealing sheets. As such, the ridging resistance of the final sheets was significantly improved by employing the asymmetric rolling process. This result indicates with certainty that the texture gradient and orientation inhomogeneity can be attributed to non-uniform deformation, whereas the uniform orientation gradient in the thickness direction is explained by the increased number of shear bands obtained in the asymmetric rolling process.

  13. Specificity of a Rust Resistance Suppressor on 7DL in the Spring Wheat Cultivar Canthatch.

    PubMed

    Talajoor, Mina; Jin, Yue; Wan, Anmin; Chen, Xianming; Bhavani, Sridhar; Tabe, Linda; Lagudah, Evans; Huang, Li

    2015-04-01

    The spring wheat 'Canthatch' has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.

  14. A low power cryocooled autonomous ultra-stable oscillator

    NASA Astrophysics Data System (ADS)

    Fluhr, C.; Dubois, B.; Grop, S.; Paris, J.; Le Tetû, G.; Giordano, V.

    2016-12-01

    We present the design and the preliminary evaluation of a cryostat equipped with a low power pulse-tube cryocooler intended to maintain near 5 K a high-Q factor sapphire microwave resonator. This cooled resonator constitutes the frequency reference of an ultra-stable oscillator presenting a short term fractional frequency stability of better than 1 ×10-15 . The proposed design enables to reach a state-of-the-art frequency stability with a cryogenic oscillator consuming only 3 kW of electrical power.

  15. Ultra-low-power conversion and management techniques for thermoelectric energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Fleming, Jerry W.

    2010-04-01

    Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.

  16. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; hide

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  17. Monitoring of ULF (ultra-low-frequency) Geomagnetic Variations Associated with Earthquakes

    PubMed Central

    Hayakawa, Masashi; Hattori, Katsumi; Ohta, Kenji

    2007-01-01

    ULF (ultra-low-frequency) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before a few large earthquakes. Then, we present our network of ULF monitoring in the Tokyo area by describing our ULF magnetic sensors and we finally present a few, latest results on seismogenic electromagnetic emissions for recent large earthquakes with the use of sophisticated signal processings.

  18. Ultra-low-loss and broadband mode converters in Si3N4 technology

    NASA Astrophysics Data System (ADS)

    Mu, Jinfeng; Dijkstra, Meindert; de Goede, Michiel; Yong, Yean-Sheng; García-Blanco, Sonia M.

    2017-02-01

    Si3N4 grown by low pressure chemical vapor deposition (LPCVD) on thermally oxidized silicon wafers is largely utilized for creating integrated photonic devices due to its ultra-low propagation loss and large transparency window (400 nm to 2350 nm). In this paper, an ultra-low-loss and broadband mode converter for monolithic integration of different materials onto the passive Si3N4 photonic technology platform is presented. The mode size converter is constructed with a vertically tapered Si3N4 waveguide that is then buried by a polymer or an Al2O3 waveguide. The influence of the various design parameters on the converter characteristics are investigated. Optimal designs are proposed, in which the thickness of the Si3N4 waveguide is tapered from 200 nm to 40 nm. The calculated losses of the mode converters at 976 nm and 1550 nm wavelengths are well below 0.1 dB for the Si3N4-polymer coupler and below 0.3 dB for the Si3N4-Al2O3 coupler. The preliminary experimental results show good agreement with the design values, indicating that the mode converters can be utilized for the low-loss integration of different materials.

  19. The effects of high resistance-few repetitions and low resistance-high repetitions resistance training on climbing performance.

    PubMed

    Hermans, Espen; Andersen, Vidar; Saeterbakken, Atle Hole

    2017-05-01

    The aim of the study was to compare the effects of different strength training intensities on climbing performance, climbing-specific tests and a general strength test. Thirty lower grade and intermediate-level climbers participated in a 10-week training programme. The participants were randomized into three groups: high resistance-few repetitions training groups (HR-FR), low resistance-high repetitions training groups (LR-HR) and a control group (CON) which continued climbing/training as usual. Post-testing results demonstrated statistical tendencies for climbing performance improvements in the HR-FR and LR-HR (p = 0.088-0.090, effect size = 0.55-0.73), but no differences were observed between the groups (p = 0.950). For the climbing-specific tests, no differences were observed between the groups (p = 0.507-1.000), but the HR-FR and LR-HR improved their time in both Dead-hang (p = 0.004-0.026) and Bent-arm hang (p < 0.001-0.002). The HR-FR and LR-HR improved their 12RM strength in pull-down (p ≤ 0.001), but not the CON group (p = 0.250). No differences were observed in the CON group in any of the tests (p = 0.190-0.596) with the exception of improvement in Bent-arm Hang (p = 0.018). The training groups reduced their climbing sessions during the intervention compared to the CON group (p = 0.057-0.074). In conclusion, HR-FR and LR-HR training programmes demonstrated an 11% and 12% non-significant improvement in climbing performance despite a 50% reduction in climbing sessions, but improved the results in strength and climbing-specific tests. None of the training intensities was superior compared to the others.

  20. Chromatic dispersion effects in ultra-low coherence interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lychagov, V V; Ryabukho, V P

    2015-06-30

    We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that ismore » an order of magnitude greater than the pulse width. (interferometry)« less

  1. Ultra-low profile Ovation device: is it the definitive solution for EVAR?

    PubMed

    de Donato, G; Setacci, F; Sirignano, P; Galzerano, G; Borrelli, M P; di Marzo, L; Setacci, C

    2014-02-01

    When Juan Parodi implanted an endograft in a human body for the first time on September 7, 1990 in Buenos Aires, Argentina, the delivery system of the handmade device was primitive, extremely rigid, and had a bulky profile of 27 French (F). Since then, stent-graft technology has evolved rapidly, limitations of earlier-generation devices have been overtaken, and endovascular aneurysm repair (EVAR) eligibility has increased enormously. Nevertheless (still) challenging aortoiliac anatomy such as short and complex proximal aortic neck seal zones and narrow access vessels are responsible for EVAR ineligibility in up to 50% of cases. The Ovation Prime abdominal stent-graft system (TriVascular, Inc., Santa Rosa, CA, USA) is a trimodular device designed with the aortic body delivered via a flexible, hydrophilic-coated, ultra-low profile catheter (14-F outer diameter - OD). The aortic body is provided with a suprarenal nitinol stent with anchors that provide active fixation, while a network of rings and channels that are inflated with a low-viscosity radiopaque polymer during stent-graft deployment, provides effective sealing. The previous EVAR technology aimed to both anchor and seal using stents combined with fabric, with neither optimized for their roles and each forced to compete for the same space within their delivery catheters, which inevitably led to larger profile of the delivery system. The technical revolution of the Ovation endograft includes the idea to truly uncouple the stages of stent-graft fixation and seal during the procedure. In the Ovation endograft platform, stent and fabric are not competing the same space within the delivery system and an ultra-low profile delivery can be achieved without compromise. With such a low-profile delivery catheter, approximately 90% of men and 70% of women with abdominal aortic aneurysm have access vessel diameters considered fit for endovascular repair. The aim of this review paper was to analyze the main properties of

  2. Novel MRF fluid for ultra-low roughness optical surfaces

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; McFee, Charles

    2014-08-01

    Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.

  3. Evaluation of an Ultra-Low Power Reed Solomon Encoder for NASA's Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Li, K. E.; Xapsos, M. A.; Poivey, C.; LaBel, K. A.; Stone, R. F.; Yeh, P-S.; Gambles, J.; Hass, J.; Maki, G.; Marguia, J.

    2003-01-01

    This viewgraph presentation provides information on radiation tests on encoders intended for a constellation of microsatellites. The encoders use CMOS Ultra-Low Power Radiation Tolerant (CULPRiT) technology. The presentation addresses power consumption, radiation dosage, and Single Event Upset (SEU).

  4. Carbon fiber on polyimide ultra-microelectrodes

    NASA Astrophysics Data System (ADS)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  5. Carbon fiber on polyimide ultra-microelectrodes.

    PubMed

    Gillis, Winthrop F; Lissandrello, Charles A; Shen, Jun; Pearre, Ben W; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J; Chew, Daniel J; White, Alice E; Otchy, Timothy M; Gardner, Timothy J

    2018-02-01

    Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.

  6. Study of ultra-low emittance design for SPEAR3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-17

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  7. 100 nm AlSb/InAs HEMT for Ultra-Low-Power Consumption, Low-Noise Applications

    PubMed Central

    Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies f T/f max of 100/125 GHz together with minimum noise figure NFmin = 0.5 dB and associated gain G ass = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime. PMID:24707193

  8. Reconfigurable ultra-wideband waveform generation with simple photonic devices

    NASA Astrophysics Data System (ADS)

    Dastmalchi, Mansour; Abtahi, Mohammad; Lemus, David; Rusch, Leslie A.; LaRochelle, Sophie

    2012-08-01

    We propose and experimentally demonstrate a low cost, low power consumption technique for ultra-wideband pulse shaping. Our approach is based on thermal apodization of two identical linearly chirped fiber Bragg gratings (LCFBG) placed in both arms of a balanced photodetector. Resistive heating elements with low electrical power consumption are used to tune the LCFBG spectral responses. Using a standard gain switched distributed feedback laser as a pulsed optical source and a simple energy detector receiver, we measured a bit error rate of 1.5×10-4 at a data rate of 1 Gb/s after RF transmission over a 1-m link.

  9. Design of nodes for embedded and ultra low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin

    2008-10-01

    Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.

  10. Three-dimensional brain MRI for DBS patients within ultra-low radiofrequency power limits.

    PubMed

    Sarkar, Subhendra N; Papavassiliou, Efstathios; Hackney, David B; Alsop, David C; Shih, Ludy C; Madhuranthakam, Ananth J; Busse, Reed F; La Ruche, Susan; Bhadelia, Rafeeque A

    2014-04-01

    For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, high-quality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power. Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2 , fast fluid-attenuated inversion recovery (FLAIR) and T1 -weighted image contrast. Tissue signal and tissue contrast from the low-SAR images were subjectively and objectively compared with routine clinical images of six age-matched controls. Low-SAR images of DBS patients demonstrated tissue contrast comparable to high-SAR images and were of diagnostic quality except for slightly reduced signal. Although preliminary, we demonstrated diagnostic quality brain MRI with optimized, volumetric sequences in DBS patients within very conservative RF safety guidelines offering a greater safety margin. © 2014 International Parkinson and Movement Disorder Society.

  11. Process for ultra smooth diamond coating on metals and uses thereof

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); Catledge, Shane A. (Inventor)

    2001-01-01

    The present invention provides a new process to deposit well adhered ultra smooth diamond films on metals by adding nitrogen gas to the methane/hydrogen plasma created by a microwave discharge. Such diamond coating process is useful in tribological/wear resistant applications in bio-implants, machine tools, and magnetic recording industry.

  12. FECAL SOURCE TRACKING BY ANTIBIOTIC RESISTANCE ANALYSIS ON A WATERSHED EXHIBITING LOW RESISTANCE

    EPA Science Inventory

    The ongoing development of microbial source tracking has made it possible to identify contamination sources with varying accuracy, depending on the method used. The purpose of this study was done to test the efficiency of the antibiotic resistance analysis (ARA) method under low ...

  13. Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media.

    PubMed

    Chou, Ying-Nien; Sun, Fang; Hung, Hsiang-Chieh; Jain, Priyesh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Chang, Yung; Wen, Ten-Chin; Yu, Qiuming; Jiang, Shaoyi

    2016-08-01

    For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20nm exhibited ultra-low fouling (<5ng/cm(2)). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. In this work, we developed an approach to realize ultra-low fouling and high ligand loading with a highly-crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5ng/cm(2) measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693ng/cm(2). This strategy provides a facile method to modify SPR biosensor chips with an advanced

  14. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    PubMed

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.

  15. Ultra-low-head hydroelectric technology: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Daqing; Deng, Zhiqun

    In recent years, distributed renewable energy-generation technologies, such as wind and solar, have developed rapidly. Nevertheless, the utilization of ultra-low-head (ULH) water energy (i.e., situations where the hydraulic head is less than 3 m or the water flow is more than 0.5 m/s with zero head) has received little attention. We believe that, through technological innovations and cost reductions, ULH hydropower has the potential to become an attractive, renewable, and sustainable resource. This paper investigates potential sites for ULH energy resources, the selection of relevant turbines and generators, simplification of civil works, and project costs. This review introduces the currentmore » achievements on ULH hydroelectric technology to stimulate discussions and participation of stakeholders to develop related technologies for further expanding its utilization as an important form of renewable energy.« less

  16. All-nanotube stretchable supercapacitor with low equivalent series resistance.

    PubMed

    Gilshteyn, Evgenia P; Amanbayev, Daler; Anisimov, Anton S; Kallio, Tanja; Nasibulin, Albert G

    2017-12-12

    We report high-performance, stable, low equivalent series resistance all-nanotube stretchable supercapacitor based on single-walled carbon nanotube film electrodes and a boron nitride nanotube separator. A layer of boron nitride nanotubes, fabricated by airbrushing from isopropanol dispersion, allows avoiding problem of high internal resistance and short-circuiting of supercapacitors. The device, fabricated in a two-electrode test cell configuration, demonstrates electrochemical double layer capacitance mechanism and retains 96% of its initial capacitance after 20 000 electrochemical charging/discharging cycles with the specific capacitance value of 82 F g -1 and low equivalent series resistance of 4.6 Ω. The stretchable supercapacitor prototype withstands at least 1000 cycles of 50% strain with a slight increase in the volumetric capacitance from 0.4 to 0.5 mF cm -3 and volumetric power density from 32 mW cm -3 to 40 mW cm -3 after stretching, which is higher than reported before. Moreover, a low resistance of 250 Ω for the as-fabricated stretchable prototype was obtained, which slightly decreased with the strain applied up to 200 Ω. Simple fabrication process of such devices can be easily extended making the all-nanotube stretchable supercapacitors, presented here, promising elements in future wearable devices.

  17. A translational study of resistance emergence using sequential direct-acting antiviral agents for hepatitis C using ultra-deep sequencing.

    PubMed

    Abe, Hiromi; Hayes, C Nelson; Hiraga, Nobuhiko; Imamura, Michio; Tsuge, Masataka; Miki, Daiki; Takahashi, Shoichi; Ochi, Hidenori; Chayama, Kazuaki

    2013-09-01

    Direct-acting antiviral agents (DAAs) against hepatitis C virus (HCV) have recently been developed and are ultimately hoped to replace interferon-based therapy. However, DAA monotherapy results in rapid emergence of resistant strains and DAAs must be used in combinations that present a high genetic barrier to resistance, although viral kinetics of multidrug-resistant strains remain poorly characterized. The aim of this study is to track the emergence and fitness of resistance using combinations of telaprevir and NS5A or NS5B inhibitors with genotype 1b clones. HCV-infected chimeric mice were treated with DAAs, and resistance was monitored using direct and ultra-deep sequencing. Combination therapy with telaprevir and BMS-788329 (NS5A inhibitor) reduced serum HCV RNA to undetectable levels. The presence of an NS3-V36A telaprevir resistance mutation resulted in poor response to telaprevir monotherapy but showed significant HCV reduction when telaprevir was combined with BMS-788329. However, a BMS-788329-resistant strain emerged at low frequency. Infection with a BMS-788329-resistant NS5A-L31V mutation rapidly resulted in gain of an additional NS5A-Y93A mutation that conferred telaprevir resistance during combination therapy. Infection with dual NS5AL31V/NS5AY93H mutations resulted in poor response to combination therapy and development of telaprevir resistance. Although HCV RNA became undetectable soon after the beginning of combination therapy with BMS-788329 and BMS-821095 (NS5B inhibitor), rebound with emergence of resistance against all three drugs occurred. Triple resistance also occurred following infection with the NS3V36A/NS5AL31V/NS5AY93H triple mutation. Resistant strains easily develop from cloned virus strains. Sequential use of DAAs should be avoided to prevent emergence of multidrug-resistant strains.

  18. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.

    PubMed

    Crain, Stanley M; Shen, Ke-Fei

    2008-09-22

    Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related

  19. Limited impacts of truck-based ultra-low-volume applications of mosquito adulticides on mortality in honey bees (Apis mellifera).

    PubMed

    Rinkevich, F D; Margotta, J W; Pokhrel, V; Walker, T W; Vaeth, R H; Hoffman, W C; Fritz, B K; Danka, R G; Rinderer, T E; Aldridge, R L; Linthicum, K J; Ottea, J A; Healy, K B

    2017-12-01

    Adulticides applied against mosquitoes can reduce vector populations during times of high arbovirus transmission. However, impacts of these insecticides on pollinators and other non-target organisms are of concern to mosquito control professionals, beekeepers and others. We evaluated mortality of Culex quinquefasciatus and Apis mellifera when caged insects were exposed to low and high label rates of four common adulticides (Aqua-Pursuit™ [permethrin], Duet® [prallethrin + sumithrin], Fyfanon® [malathion] and Scourge® [resmethrin]) at six distances up to 91.4 m from a truck-mounted ultra-low-volume sprayer. Honey bee mortality was both absolutely low (61 m had limited impacts on honey bee mortality while providing effective mosquito control.

  20. Epitaxial nickel disilicide with low resistivity and excellent reliability.

    PubMed

    Hsin, Cheng-Lun; Deng, Shiu-Sheng

    2016-02-12

    Ultra-thin epitaxial NiSi2 was formed, and its structure was examined by electron microscopy and x-ray diffraction. Compared with previous reports, the measured resistivity of the epitaxial NiSi2 was unprecedentedly low, reaching 7 μΩ cm in the experimental results and up to 14.93 μΩ cm after modification. The reliability, which was investigated under different temperatures and current densities to understand its electronic characteristics, was 1.5 times better than that of the conventional polycrystalline counterpart. Black's equation and the measured mean-time-to-failure (MTTF) were used to obtain the reliability characteristics of epitaxial and poly-NiSi2. Confidence intervals at 95% for each MTTF confirmed the single failure mode. The electromigration phenomenon was observed to be the failure mechanism. Our results provide evidence that epitaxial NiSi2 is a promising contact material for future electronics.

  1. Epitaxial nickel disilicide with low resistivity and excellent reliability

    NASA Astrophysics Data System (ADS)

    Hsin, Cheng-Lun; Deng, Shiu-Sheng

    2016-02-01

    Ultra-thin epitaxial NiSi2 was formed, and its structure was examined by electron microscopy and x-ray diffraction. Compared with previous reports, the measured resistivity of the epitaxial NiSi2 was unprecedentedly low, reaching 7 μΩ cm in the experimental results and up to 14.93 μΩ cm after modification. The reliability, which was investigated under different temperatures and current densities to understand its electronic characteristics, was 1.5 times better than that of the conventional polycrystalline counterpart. Black’s equation and the measured mean-time-to-failure (MTTF) were used to obtain the reliability characteristics of epitaxial and poly-NiSi2. Confidence intervals at 95% for each MTTF confirmed the single failure mode. The electromigration phenomenon was observed to be the failure mechanism. Our results provide evidence that epitaxial NiSi2 is a promising contact material for future electronics.

  2. Production of low-affinity penicillin-binding protein by low- and high-resistance groups of methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Murakami, K; Nomura, K; Doi, M; Yoshida, T

    1987-01-01

    Methicillin- and cephem-resistant Staphylococcus aureus (137 strains) for which the cefazolin MICs are at least 25 micrograms/ml could be classified into low-resistance (83% of strains) and high-resistance (the remaining 17%) groups by the MIC of flomoxef (6315-S), a 1-oxacephalosporin. The MICs were less than 6.3 micrograms/ml and more than 12.5 micrograms/ml in the low- and high-resistance groups, respectively. All strains produced penicillin-binding protein 2' (PBP 2'), which has been associated with methicillin resistance and which has very low affinity for beta-lactam antibiotics. Production of PBP 2' was regulated differently in low- and high-resistance strains. With penicillinase-producing strains of the low-resistance group, cefazolin, cefamandole, and cefmetazole induced PBP 2' production about 5-fold, while flomoxef induced production 2.4-fold or less. In contrast, penicillinase-negative variants of low-resistance strains produced PBP 2' constitutively in large amounts and induction did not occur. With high-resistance strains, flomoxef induced PBP 2' to an extent similar to that of cefazolin in both penicillinase-producing and -negative strains, except for one strain in which the induction did not occur. The amount of PBP 2' induced by beta-lactam antibiotics in penicillinase-producing strains of the low-resistance group correlated well with resistance to each antibiotic. Large amounts of PBP 2' in penicillinase-negative variants of the low-resistance group did not raise the MICs of beta-lactam compounds, although these strains were more resistant when challenged with flomoxef for 2 h. Different regulation of PBP 2' production was demonstrated in the high- and low-resistance groups, and factor(s) other than PBP 2' were suggested to be involved in the methicillin resistance of high-resistance strains. Images PMID:3499861

  3. Performance study of personal inhalable aerosol samplers at ultra-low wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2012-03-01

    The assessment of personal inhalable aerosol samplers in a controlled laboratory setting has not previously been carried out at the ultra-low wind speed conditions that represent most modern workplaces. There is currently some concern about whether the existing inhalable aerosol convention is appropriate at these low wind speeds and an alternative has been suggested. It was therefore important to assess the performance of the most common personal samplers used to collect the inhalable aerosol fraction, especially those that were designed to match the original curve. The experimental set-up involved use of a hybrid ultra-low speed wind tunnel/calm air chamber and a rotating, heating breathing mannequin to measure the inhalable fraction of aerosol exposure. The samplers that were tested included the Institute of Occupational Medicine (IOM), Button, and GSP inhalable samplers as well as the closed-face cassette sampler that has been (and still is) widely used by occupational hygienists in many countries. The results showed that, down to ∼0.2 m s(-1), the samplers matched the current inhalability criterion relatively well but were significantly greater than this at the lowest wind speed tested. Overall, there was a significant effect of wind speed on sampling efficiency, with lower wind speeds clearly associated with an increase in sampling efficiency.

  4. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  5. Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing.

    PubMed

    Bergfors, Assar; Leenheer, Daniël; Bergqvist, Anders; Ameur, Adam; Lennerstrand, Johan

    2016-02-01

    Development of Hepatitis C virus (HCV) resistance against direct-acting antivirals (DAAs), including NS5A inhibitors, is an obstacle to successful treatment of HCV when DAAs are used in sub-optimal combinations. Furthermore, it has been shown that baseline (pre-existing) resistance against DAAs is present in treatment naïve-patients and this will potentially complicate future treatment strategies in different HCV genotypes (GTs). Thus the aim was to detect low levels of NS5A resistant associated variants (RAVs) in a limited sample set of treatment-naïve patients of HCV GT1a and 3a, since such polymorphisms can display in vitro resistance as high as 60000 fold. Ultra-deep single molecule real time (SMRT) sequencing with the Pacific Biosciences (PacBio) RSII instrument was used to detect these RAVs. The SMRT sequencing was conducted on ten samples; three of them positive with Sanger sequencing (GT1a Q30H and Y93N, and GT3a Y93H), five GT1a samples, and two GT3a non-positive samples. The same methods were applied to the HCV GT1a H77-plasmid in a dilution series, in order to determine the error rates of replication, which in turn was used to determine the limit of detection (LOD), as defined by mean + 3SD, of minority variants down to 0.24%. We found important baseline NS5A RAVs at levels between 0.24 and 0.5%, which could potentially have clinical relevance. This new method with low level detection of baseline RAVs could be useful in predicting the most cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    NASA Astrophysics Data System (ADS)

    Han, Guiquan; Liu, Yuhong; Lu, Xinchun; Luo, Jianbin

    2012-10-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can `actively' carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process.

  7. Ultra-thin Low-Frequency Broadband Microwave Absorber Based on Magnetic Medium and Metamaterial

    NASA Astrophysics Data System (ADS)

    Cheng, Yongzhi; He, Bo; Zhao, Jingcheng; Gong, Rongzhou

    2017-02-01

    An ultra-thin low-frequency broadband microwave absorber (MWA) based on a magnetic rubber plate (MRP) and cross-shaped structure (CSS) metamaterial (MM) was presented numerically and experimentally. The designed composite MWA is consisted of the MRP, CSS resonator, dielectric substrate and metallic background plane. The low-frequency absorption can be easily adjusted by tuning the geometric parameter of the CSS MM and the thickness of MPR. A bandwidth (i.e. the reflectance is below -10 dB) from 2.5 GHz to 5 GHz can be achieved with the total thickness of about 2 mm in experiments. The broadband absorption is attributed to the overlap of two resonant absorption peaks originated from MRP and CSS MM, respectively. More importantly, the thickness of the composite WMA is much thinner ( λ/40; λ is the operation center frequency), which could operate well at wide incidence angles for both transverse electric and transverse magnetic waves. Thus, it can be expected that our design will be applicable in the area of eliminating microwave energy and electromagnetic stealth.

  8. Using MOF-74 for Hg{sup 2+} removal from ultra-low concentration aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yang Yang; Li, Jian Qiang; Gong, Le Le

    Mercury (Hg{sup 2+}) ions have very high toxicity and widely spread as environmental pollutants. At present, many efforts have been taken to remove the hazardous materials of mercury(II) by adsorption, and it is highly desirable to develop a novel adsorbent with high adsorptive capacities. However it is still a big challenge to remove the ultra-low-concentration mercury ions from water. In this paper, MOF-74-Zn is explored for such function, showing high removal rate of Hg(II) from water without any pretreatment, especially for the ultra-trace Hg(II) ions in the ppb magnitude with the removal rate reaching to 54.48%, 69.71%, 72.26% when themore » initial concentration of Hg(II) is 20ppb, 40ppb, 50ppb, respectively. - Graphical abstract: The absorption of mercury ions on MOF-74-Zn is due to somewhat weak interactions between MOF skeleton that is composed of carboxylate and hydroxy group and Hg2+ ions. - Highlights: • MOF-74-Zn shows high removal rate of Hg(II) from water without any pretreatment. • The MOF-74-Zn has a notable performance at ultra-low concentration of Hg(II). • MOF-74-Zn shows the potential for Hg(II) removal from industrial waste water.« less

  9. A Theoretical Approach to Selection of a Biologically Active Substance in Ultra-Low Doses for Effective Action on a Biological System.

    PubMed

    Boldyreva, Liudmila Borisovna

    2018-05-01

     An approach is offered to selecting a biologically active substance (BAS) in ultra-low dose for effective action on a biological system (BS). The technique is based on the assumption that BAS in ultra-low doses exerts action on BS by means of spin supercurrent emerging between the spin structure created by BAS, on the one hand, and the spin structure created by BS, on the other hand. According to modern quantum-mechanical concepts, these spin structures may be virtual particles pairs having precessing spin (that is, be essentially spin vortices in the physical vacuum) and created by the quantum entities that BAS and BS consist of. The action is effective provided there is equality of precession frequencies of spins in these spin structures.  In this work, some methods are considered for determining the precession frequencies of spins in virtual particles pairs: (1) determination of energy levels of quantum entities that BS and BAS consist of; (2) the use of spin-flip effect of the virtual particles pair spin, the effect being initiated by action of magnetic vector potential (the spin-flip effect takes place when the varied frequency of the magnetic vector potential equals the precession frequency of the spin); (3) determining the frequencies of photons effectively acting on BS.  It is shown that the effect of BAS in ultra-low doses on BS can be replaced by the effect of a beam of low-intensity photons, if the frequency of photons equals the precession frequency of spin in spin structures created by BS. Consequently, the color of bodies placed near a biological system is able to exert an effective action on the biological system: that is "color therapy" is possible. It is also supposed that the spin-flip effect may be used not only for determining the precession frequency of spin in spin structures created by BS but also for therapeutic action on biological systems. The Faculty of Homeopathy.

  10. A novel method for isolation and recovery of ceramic nanoparticles and metal wear debris from serum lubricants at ultra-low wear rates.

    PubMed

    Lal, S; Hall, R M; Tipper, J L

    2016-09-15

    Ceramics have been used to deliver significant improvements in the wear properties of orthopaedic bearing materials, which has made it challenging to isolate wear debris from simulator lubricants. Ceramics such as silicon nitride, as well as ceramic-like surface coatings on metal substrates have been explored as potential alternatives to conventional implant materials. Current isolation methods were designed for isolating conventional metal, UHMWPE and ceramic wear debris. In this paper, we describe a methodology for isolation and recovery of ceramic or ceramic-like coating particles and metal wear particles from serum lubricants under ultra-low and low wear performance. Enzymatic digestion was used to digest the serum proteins and sodium polytungstate was used as a novel density gradient medium to isolate particles from proteins and other contaminants by ultracentrifugation. This method demonstrated over 80% recovery of particles and did not alter the size or morphology of ceramic and metal particles during the isolation process. Improvements in resistance to wear and mechanical damage of the articulating surfaces have a large influence on longevity and reliability of joint replacement devices. Modern ceramics have demonstrated ultra-low wear rates for hard-on-hard total hip replacements. Generation of very low concentrations of wear debris in simulator lubricants has made it challenging to isolate the particles for characterisation and further analysis. We have introduced a novel method to isolate ceramic and metal particles from serum-based lubricants using enzymatic digestion and novel sodium polytungstate gradients. This is the first study to demonstrate the recovery of ceramic and metal particles from serum lubricants at lowest detectable in vitro wear rates reported in literature. Copyright © 2016. Published by Elsevier Ltd.

  11. Remote Sensing Extraction of Stopes and Tailings Ponds in AN Ultra-Low Iron Mining Area

    NASA Astrophysics Data System (ADS)

    Ma, B.; Chen, Y.; Li, X.; Wu, L.

    2018-04-01

    With the development of economy, global demand for steel has accelerated since 2000, and thus mining activities of iron ore have become intensive accordingly. An ultra-low-grade iron has been extracted by open-pit mining and processed massively since 2001 in Kuancheng County, Hebei Province. There are large-scale stopes and tailings ponds in this area. It is important to extract their spatial distribution information for environmental protection and disaster prevention. A remote sensing method of extracting stopes and tailings ponds is studied based on spectral characteristics by use of Landsat 8 OLI imagery and ground spectral data. The overall accuracy of extraction is 95.06 %. In addition, tailings ponds are distinguished from stopes based on thermal characteristics by use of temperature image. The results could provide decision support for environmental protection, disaster prevention, and ecological restoration in the ultra-low-grade iron ore mining area.

  12. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    PubMed Central

    2012-01-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can ‘actively’ carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process. PMID:23110959

  13. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  14. Low Openness on the Revised NEO Personality Inventory as a Risk Factor for Treatment-Resistant Depression

    PubMed Central

    Takahashi, Michio; Shirayama, Yukihiko; Muneoka, Katsumasa; Suzuki, Masatoshi; Sato, Koichi; Hashimoto, Kenji

    2013-01-01

    Background Recently, we reported that low reward dependence, and to a lesser extent, low cooperativeness in the Temperature and Character Inventory (TCI) may be risk factors for treatment-resistant depression. Here, we analyzed additional psychological traits in these patients. Methods We administered Costa and McCrae's five-factor model personality inventory, NEO Personality Inventory-Revised (NEO-PI-R), to antidepressant-treatment resistant depressed patients (n = 35), remitted depressed patients (n = 27), and healthy controls (n = 66). We also evaluated the relationships between scores on NEO and TCI, using the same cohort of patients with treatment-resistant depression, as our previous study. Results Patients with treatment-resistant depression showed high scores for neuroticism, low scores for extraversion, openness and conscientiousness, without changes in agreeableness, on the NEO. However, patients in remitted depression showed no significant scores on NEO. Patients with treatment-resistant depression and low openness on NEO showed positive relationships with reward dependence and cooperativeness on the TCI. Conclusions Many studies have reported that depressed patients show high neuroticism, low extraversion and low conscientiousness on the NEO. Our study highlights low openness on the NEO, as a risk mediator in treatment-resistant depression. This newly identified trait should be included as a risk factor in treatment-resistant depression. PMID:24019864

  15. Low openness on the revised NEO personality inventory as a risk factor for treatment-resistant depression.

    PubMed

    Takahashi, Michio; Shirayama, Yukihiko; Muneoka, Katsumasa; Suzuki, Masatoshi; Sato, Koichi; Hashimoto, Kenji

    2013-01-01

    Recently, we reported that low reward dependence, and to a lesser extent, low cooperativeness in the Temperature and Character Inventory (TCI) may be risk factors for treatment-resistant depression. Here, we analyzed additional psychological traits in these patients. We administered Costa and McCrae's five-factor model personality inventory, NEO Personality Inventory-Revised (NEO-PI-R), to antidepressant-treatment resistant depressed patients (n=35), remitted depressed patients (n=27), and healthy controls (n=66). We also evaluated the relationships between scores on NEO and TCI, using the same cohort of patients with treatment-resistant depression, as our previous study. Patients with treatment-resistant depression showed high scores for neuroticism, low scores for extraversion, openness and conscientiousness, without changes in agreeableness, on the NEO. However, patients in remitted depression showed no significant scores on NEO. Patients with treatment-resistant depression and low openness on NEO showed positive relationships with reward dependence and cooperativeness on the TCI. Many studies have reported that depressed patients show high neuroticism, low extraversion and low conscientiousness on the NEO. Our study highlights low openness on the NEO, as a risk mediator in treatment-resistant depression. This newly identified trait should be included as a risk factor in treatment-resistant depression.

  16. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-06-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  17. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-03-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  18. Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide

    NASA Astrophysics Data System (ADS)

    Kovacevic, Goran; Phare, Christopher; Set, Sze Y.; Lipson, Michal; Yamashita, Shinji

    2018-06-01

    We present a design of an ultra-fast in-line graphene optical modulator on a silicon waveguide with a bandwidth exceeding 100 GHz, very small power consumption below 15 fJ/bit, and insertion loss of 1.5 dB. This is achieved by utilizing the transverse-electric-mode silicon slot to tailor the overlap of graphene electrodes, thus significantly reducing the capacitance of the device while maintaining a low insertion loss and using conservative estimates of the graphene resistance. Our design is substantiated by comprehensive finite-element-method simulations and RC circuit characterization, as well as fabrication feasibility discussion.

  19. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less

  20. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    DOE PAGES

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...

    2016-09-19

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less

  1. Tolerance to the anticonvulsant effect of morphine in mice: blockage by ultra-low dose naltrexone.

    PubMed

    Roshanpour, Maryam; Ghasemi, Mehdi; Riazi, Kiarash; Rafiei-Tabatabaei, Neda; Ghahremani, Mohammad Hossein; Dehpour, Ahmad Reza

    2009-02-01

    The present study evaluated the development of tolerance to the anticonvulsant effect of morphine in a mouse model of clonic seizures induced by pentylenetetrazole, and whether ultra-low doses of the opioid receptor antagonist naltrexone which selectively block G(s) opioid receptors were capable of preventing the observed tolerance. The results showed that the morphine anticonvulsant effect could be subject to tolerance after repeated administration. Both the development and expression of tolerance were inhibited by ultra-low doses of naltrexone, suggesting the possible involvement of G(s)-coupled opioid receptors in the development of tolerance to the anticonvulsant effect of morphine.

  2. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    PubMed

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (<3 μVrms 700 Hz-7 kHz), thereby requiring a baseline noise of less than 1 μVrms for a useful signal-to-noise ratio (SNR). Flat interface nerve electrode (FINE) contacts alone generate thermal noise of at least 0.5 μVrms therefore the amplifier should add as little noise as possible. Since mainstream neural amplifiers have a baseline noise of 2 μVrms or higher, novel designs are required. Here we apply the concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating <1.5 μVrms total recording baseline noise when connected to a FINE placed on the sciatic nerve of an awake animal. An algorithm was introduced to find the value of N that can minimize both the power consumption and the noise in order to design a miniaturized ultralow-noise neural amplifier. These results demonstrate the efficacy of hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are

  3. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  4. Potentiation of buprenorphine antinociception with ultra-low dose naltrexone in healthy subjects.

    PubMed

    Hay, J L; La Vincente, S F; Somogyi, A A; Chapleo, C B; White, J M

    2011-03-01

    Previous reports have demonstrated greater antinociception following administration of a buprenorphine/naloxone combination compared to buprenorphine alone among healthy volunteers. The aim of the current investigation was to determine whether buprenorphine antinociception could be enhanced with the addition of ultra-low dose naltrexone, using a range of dose ratios. A repeated-measures, double-blind, cross-over trial was undertaken with 10 healthy participants. The effects of each buprenorphine:naltrexone ratio (100:1, 133:1, 166:1, and 200:1) on cold pressor tolerance time and respiration were compared to the effects of buprenorphine only. The 166:1 ratio was associated with significantly greater tolerance time to cold pressor pain than buprenorphine alone. Minimal respiratory depression and few adverse events were observed in all conditions. These findings suggest that, as previously described with naloxone, the addition of ultra-low dose naltrexone can enhance the antinociceptive effect of buprenorphine in humans. This potentiation is dose-ratio dependent and occurs without a concomitant increase in adverse effects. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  5. Race-Specific Adult-Plant Resistance in Winter Wheat to Stripe Rust and Characterization of Pathogen Virulence Patterns.

    PubMed

    Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten

    2015-08-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.

  6. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.

    PubMed

    Wang, G; Wu, K; Hu, H; Li, G; Wang, L J

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  7. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  8. Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages

    NASA Astrophysics Data System (ADS)

    Pastore, I.; Poplausks, R.; Apsite, I.; Pastare, I.; Lombardi, F.; Erts, D.

    2011-06-01

    Formation of ultrathin anodised aluminium oxide (AAO) membranes with high aspect ratio by Al anodization in sulphuric and oxalic acids at low potentials was investigated. Low anodization potentials ensure slow electrochemical reaction speeds and formation of AAO membranes with pore diameter and thickness below 20 nm and 70 nm respectively. Minimum time necessary for formation of continuous AAO membranes was determined. AAO membrane pore surface was covered with polymer Paraloid B72TM to transport it to the selected substrate. The fabricated ultra thin AAO membranes could be used to fabricate nanodot arrays on different surfaces.

  9. Development of Ultra Low Temperature, Impact Resistant Lithium Battery for the Mars Microprobe

    NASA Technical Reports Server (NTRS)

    Frank, H.; Deligiannis, F.; Davies, E.; Ratnakumar, Bugga V.; Surampudi, S.; Russel, P. G.; Reddy, T. B.

    1998-01-01

    The requirements of the power source for the Mars Microprobe, to be backpacked on the Mars 98 Spacecraft, are fairly demanding, with survivability to a shock of the order of 80,000 g combined with an operational requirement at -80 C. Development of a suitable power system, based on primary lithium-thionyl chloride is underway for the last eighteen months, together with Yardney Technical Products Inc., Pawcatuck, CT. The battery consists of 4 cells of 2 Ah capacity at 25 C, of which at least 25 % would be available at -80 C, at a moderate rate of C/20. Each probe contains two batteries and two such probes will be deployed. The selected cell is designed around an approximate 1/2 "D" cells, with flat plate electrodes. Significant improvements to the conventional Li-SOCl2 cell include: (a) use of tetrachlorogallate salt instead of aluminate for improved low temperature performance and reduced voltage delay, (b) optimization of the salt concentration, and (c) modification of the cell design to develop shock resistance to 80,000 g. We report here results from our several electrical performance tests, mission simulation tests, microcalorimetry and AC impedance studies, and Air gun tests. The cells have successfully gone through mission-enabling survivability and performance tests for the Mars Microprobe penetrator.

  10. Natural time analysis on the ultra-low frequency magnetic field variations prior to the 2016 Kumamoto (Japan) earthquakes

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Schekotov, Alexander; Asano, Tomokazu; Hayakawa, Masashi

    2018-04-01

    On 15 April 2016 a very strong and shallow earthquake (EQ) (MW = 7.0 , depth ∼ 10 km) occurred in Southwest Japan under the city of Kumamoto, while two very strong foreshocks (MW = 6.2 and MW = 6.0) preceded by about one day. The Kumamoto EQs being very catastrophic, have already attracted much attention among the scientific community in a quest for understanding the generation mechanism, as well as for reporting any preseismic anomalies in various observables and assessing the effectivity of the current early warning systems. In the present article we report precursory behavior of the ground-based observed ultra-low frequency (ULF) magnetic field variations before the Kumamoto EQs. By analyzing specific ULF magnetic field characteristics in terms of the recently introduced natural time (NT) analysis method, we identified that ULF magnetic field variations presented critical features from 2 weeks up to 1 month before the Kumamoto EQs. Specifically, the ULF magnetic field characteristics Fh , Fz , Dh and δDep were analyzed. The first two represent variations of the horizontal and vertical components of the geomagnetic field. The third and fourth characteristics correspond to the depression (decrease) and a relative depression of the horizontal magnetic field variations, respectively. The latter depends on the degree of ionospheric disturbance. All of them were found to reach criticality before the Kumamoto EQs; however, in different time periods for each characteristic.

  11. Ultra-low-dose computed tomographic angiography with model-based iterative reconstruction compared with standard-dose imaging after endovascular aneurysm repair: a prospective pilot study.

    PubMed

    Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K

    2014-12-01

    An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides

  12. Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics

    PubMed Central

    Mates, Joseph E.; Bayer, Ilker S.; Palumbo, John M.; Carroll, Patrick J.; Megaridis, Constantine M.

    2015-01-01

    Rapid advances in modern electronics place ever-accelerating demands on innovation towards more robust and versatile functional components. In the flexible electronics domain, novel material solutions often involve creative uses of common materials to reduce cost, while maintaining uncompromised performance. Here we combine a commercially available paraffin wax–polyolefin thermoplastic blend (elastomer matrix binder) with bulk-produced carbon nanofibres (charge percolation network for electron transport, and for imparting nanoscale roughness) to fabricate adherent thin-film composite electrodes. The simple wet-based process produces composite films capable of sustained ultra-high strain (500%) with resilient electrical performance (resistances of the order of 101–102 Ω sq−1). The composites are also designed to be superhydrophobic for long-term corrosion protection, even maintaining extreme liquid repellency at severe strain. Comprised of inexpensive common materials applied in a single step, the present scalable approach eliminates manufacturing obstacles for commercially viable wearable electronics, flexible power storage devices and corrosion-resistant circuits. PMID:26593742

  13. Ultra-Low Power Dynamic Knob in Adaptive Compressed Sensing Towards Biosignal Dynamics.

    PubMed

    Wang, Aosen; Lin, Feng; Jin, Zhanpeng; Xu, Wenyao

    2016-06-01

    Compressed sensing (CS) is an emerging sampling paradigm in data acquisition. Its integrated analog-to-information structure can perform simultaneous data sensing and compression with low-complexity hardware. To date, most of the existing CS implementations have a fixed architectural setup, which lacks flexibility and adaptivity for efficient dynamic data sensing. In this paper, we propose a dynamic knob (DK) design to effectively reconfigure the CS architecture by recognizing the biosignals. Specifically, the dynamic knob design is a template-based structure that comprises a supervised learning module and a look-up table module. We model the DK performance in a closed analytic form and optimize the design via a dynamic programming formulation. We present the design on a 130 nm process, with a 0.058 mm (2) fingerprint and a 187.88 nJ/event energy-consumption. Furthermore, we benchmark the design performance using a publicly available dataset. Given the energy constraint in wireless sensing, the adaptive CS architecture can consistently improve the signal reconstruction quality by more than 70%, compared with the traditional CS. The experimental results indicate that the ultra-low power dynamic knob can provide an effective adaptivity and improve the signal quality in compressed sensing towards biosignal dynamics.

  14. Performance evaluation of multi-material electronic cleansing for ultra-low-dose dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Kohlhase, Naja; Näppi, Janne J.; Hironaka, Toru; Ota, Junko; Ishida, Takayuki; Regge, Daniele; Yoshida, Hiroyuki

    2016-03-01

    Accurate electronic cleansing (EC) for CT colonography (CTC) enables the visualization of the entire colonic surface without residual materials. In this study, we evaluated the accuracy of a novel multi-material electronic cleansing (MUMA-EC) scheme for non-cathartic ultra-low-dose dual-energy CTC (DE-CTC). The MUMA-EC performs a wateriodine material decomposition of the DE-CTC images and calculates virtual monochromatic images at multiple energies, after which a random forest classifier is used to label the images into the regions of lumen air, soft tissue, fecal tagging, and two types of partial-volume boundaries based on image-based features. After the labeling, materials other than soft tissue are subtracted from the CTC images. For pilot evaluation, 384 volumes of interest (VOIs), which represented sources of subtraction artifacts observed in current EC schemes, were sampled from 32 ultra-low-dose DE-CTC scans. The voxels in the VOIs were labeled manually to serve as a reference standard. The metric for EC accuracy was the mean overlap ratio between the labels of the reference standard and the labels generated by the MUMA-EC, a dualenergy EC (DE-EC), and a single-energy EC (SE-EC) scheme. Statistically significant differences were observed between the performance of the MUMA/DE-EC and the SE-EC methods (p<0.001). Visual assessment confirmed that the MUMA-EC generated less subtraction artifacts than did DE-EC and SE-EC. Our MUMA-EC scheme yielded superior performance over conventional SE-EC scheme in identifying and minimizing subtraction artifacts on noncathartic ultra-low-dose DE-CTC images.

  15. Development of an underground HPGe array facility for ultra low radioactivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, E.; Kang, W. G.; Kim, Y. D.

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGemore » with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.« less

  16. A photon recycling approach to the denoising of ultra-low dose X-ray sequences.

    PubMed

    Hariharan, Sai Gokul; Strobel, Norbert; Kaethner, Christian; Kowarschik, Markus; Demirci, Stefanie; Albarqouni, Shadi; Fahrig, Rebecca; Navab, Nassir

    2018-06-01

    Clinical procedures that make use of fluoroscopy may expose patients as well as the clinical staff (throughout their career) to non-negligible doses of radiation. The potential consequences of such exposures fall under two categories, namely stochastic (mostly cancer) and deterministic risks (skin injury). According to the "as low as reasonably achievable" principle, the radiation dose can be lowered only if the necessary image quality can be maintained. Our work improves upon the existing patch-based denoising algorithms by utilizing a more sophisticated noise model to exploit non-local self-similarity better and this in turn improves the performance of low-rank approximation. The novelty of the proposed approach lies in its properly designed and parameterized noise model and the elimination of initial estimates. This reduces the computational cost significantly. The algorithm has been evaluated on 500 clinical images (7 patients, 20 sequences, 3 clinical sites), taken at ultra-low dose levels, i.e. 50% of the standard low dose level, during electrophysiology procedures. An average improvement in the contrast-to-noise ratio (CNR) by a factor of around 3.5 has been found. This is associated with an image quality achieved at around 12 (square of 3.5) times the ultra-low dose level. Qualitative evaluation by X-ray image quality experts suggests that the method produces denoised images that comply with the required image quality criteria. The results are consistent with the number of patches used, and they demonstrate that it is possible to use motion estimation techniques and "recycle" photons from previous frames to improve the image quality of the current frame. Our results are comparable in terms of CNR to Video Block Matching 3D-a state-of-the-art denoising method. But qualitative analysis by experts confirms that the denoised ultra-low dose X-ray images obtained using our method are more realistic with respect to appearance.

  17. A Follow-Up of the Multicenter Collaborative Study on HIV-1 Drug Resistance and Tropism Testing Using 454 Ultra Deep Pyrosequencing

    PubMed Central

    St. John, Elizabeth P.; Simen, Birgitte B.; Turenchalk, Gregory S.; Braverman, Michael S.; Abbate, Isabella; Aerssens, Jeroen; Bouchez, Olivier; Gabriel, Christian; Izopet, Jacques; Meixenberger, Karolin; Di Giallonardo, Francesca; Schlapbach, Ralph; Paredes, Roger; Sakwa, James; Schmitz-Agheguian, Gudrun G.; Thielen, Alexander; Victor, Martin

    2016-01-01

    Background Ultra deep sequencing is of increasing use not only in research but also in diagnostics. For implementation of ultra deep sequencing assays in clinical laboratories for routine diagnostics, intra- and inter-laboratory testing are of the utmost importance. Methods A multicenter study was conducted to validate an updated assay design for 454 Life Sciences’ GS FLX Titanium system targeting protease/reverse transcriptase (RTP) and env (V3) regions to identify HIV-1 drug-resistance mutations and determine co-receptor use with high sensitivity. The study included 30 HIV-1 subtype B and 6 subtype non-B samples with viral titers (VT) of 3,940–447,400 copies/mL, two dilution series (52,129–1,340 and 25,130–734 copies/mL), and triplicate samples. Amplicons spanning PR codons 10–99, RT codons 1–251 and the entire V3 region were generated using barcoded primers. Analysis was performed using the GS Amplicon Variant Analyzer and geno2pheno for tropism. For comparison, population sequencing was performed using the ViroSeq HIV-1 genotyping system. Results The median sequencing depth across the 11 sites was 1,829 reads per position for RTP (IQR 592–3,488) and 2,410 for V3 (IQR 786–3,695). 10 preselected drug resistant variants were measured across sites and showed high inter-laboratory correlation across all sites with data (P<0.001). The triplicate samples of a plasmid mixture confirmed the high inter-laboratory consistency (mean% ± stdev: 4.6 ±0.5, 4.8 ±0.4, 4.9 ±0.3) and revealed good intra-laboratory consistency (mean% range ± stdev range: 4.2–5.2 ± 0.04–0.65). In the two dilutions series, no variants >20% were missed, variants 2–10% were detected at most sites (even at low VT), and variants 1–2% were detected by some sites. All mutations detected by population sequencing were also detected by UDS. Conclusions This assay design results in an accurate and reproducible approach to analyze HIV-1 mutant spectra, even at variant frequencies

  18. Effect of movement velocity during resistance training on muscle-specific hypertrophy: A systematic review.

    PubMed

    Hackett, Daniel A; Davies, Timothy B; Orr, Rhonda; Kuang, Kenny; Halaki, Mark

    2018-05-01

    Currently, it is unclear whether manipulation of movement velocity during resistance exercise has an effect on hypertrophy of specific muscles. The purpose of this systematic review of literature was to investigate the effect of movement velocity during resistance training on muscle hypertrophy. Five electronic databases were searched using terms related to movement velocity and resistance training. Inclusion criteria were randomised and non-randomised comparative studies; published in English; included healthy adults; used dynamic resistance exercise interventions directly comparing fast training to slower movement velocity training; matched in prescribed intensity and volume; duration ≥4 weeks; and measured muscle hypertrophy. A total of six studies were included involving 119 untrained participants. Hypertrophy of the quadriceps was examined in five studies and of the biceps brachii in two studies. Three studies found significantly greater increases in hypertrophy of the quadriceps for moderate-slow compared to fast training. For the remaining studies examining the quadriceps, significant within-group increase in hypertrophy was found for only moderate-slow training in one study and for only fast training in the other study. The two studies that examined hypertrophy of the biceps brachii found greater increases for fast compared to moderate-slow training. Caution is required when interpreting the findings from this review due to the low number of studies, hence insufficient data. Future longitudinal randomised controlled studies in cohorts of healthy adults are required to confirm and extend our findings.

  19. How Many Ultra-Low Delta-v Near Earth Objects Remain Undiscovered? Implications for missions.

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Ranjan, Sukrit; Galache, Jose Luis; Murphy, Max

    2015-08-01

    The past decade has witnessed considerable growth of interest in missions to Near-Earth Objects (NEOs). NEOs are considered prime targets for manned and robotic missions, for both scientific objectives as well as in-situ resource utilization including harvesting of water for propellant and life support and mining of high-value elements for sale on Earth. Appropriate targets are crucial to such missions. Hence, ultra-low delta-v mission targets are strongly favored. Some mission architectures rely on the discovery of more ultra-low delta-v NEOs. In fact the approved and executed NEO missions have all targeted asteroids with ultra-low LEO to asteroid rendezvous delta-v <5.5 km/s.In this paper, we estimate the total NEO population as a function of delta-v, and how many remain to be discovered in various size ranges down to ~100m. We couple the NEOSSat-1 model (Greenstreet et al., 2012) to the NEO size distribution derived from the NEOWISE survey (Mainzer et al., 2011b) to compute an absolute NEO population model. We compare the Minor Planet Center (MPC) catalog of known NEOs to this NEO population model. We compute the delta-v from LEO to asteroid rendezvous orbits using a modified Shoemaker-Helin (S-H) formalism that empirically removes biases found comparing S-H with the results from NHATS. The median delta-v of the known NEOs is 7.3 km/s, the median delta-v predicted by our NEO model is 9.8 km/s, suggesting that undiscovered objects are biased to higher delta-v. The survey of delta-v <10.3 km/s NEOs is essentially complete for objects with diameter D >300 m. However, there are tens of thousands of objects with delta-v <10.3 km/s to be discovered in the D = 50 - 300 m size class (H = 20.4 - 24.3). Our work suggests that there are 100 yet-undiscovered NEOs with delta-v < 5:8 km/s, and 1000 undiscovered NEOs with v < 6.3 km/s. We conclude that, even with complete NEO surveys, the selection of good (i.e. ultra-low delta-v) mission targets is limited given current

  20. Influences of internal resistance and specific surface area of electrode materials on characteristics of electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Mizutani, Akitaka; Harigai, Toru; Takikawa, Hirofumi; Ue, Hitoshi; Umeda, Yoshito

    2017-01-01

    We fabricated electric double layer capacitors (EDLCs) using particulate and fibrous types of carbon nanomaterials with a wide range of specific surface areas and resistivity as an active material. The carbon nanomaterials used in this study are carbon nanoballoons (CNBs), onion-like carbon (OLC), and carbon nanocoils (CNCs). A commercially used activated carbon (AC) combined with a conductive agent was used as a comparison. We compared the EDLC performance using cyclic voltammetry (CV), galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS). OLC showed a poor EDLC performance, although it has the lowest resistivity among the carbon nanomaterials. CNB, which has a 1/16 lower specific surface area than AC but higher specific surface area than CNC and OLC, had a higher specific capacitance than CNC and OLC. Moreover, at current densities of 1.5 Ag-1 and larger, the specific capacitance of the EDLC using CNB was almost the same as that using AC. Electrochemical impedance spectroscopy of the EDLCs revealed that the CNB and CNC electrodes had a much lower internal resistance than the AC electrode, which correlated with a low capacitance maintenance factor as the current density increased.

  1. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  2. Dose-and gender-specific effects of resistance training on circulating levels of brain derived neurotrophic factor (BDNF) in community-dwelling older adults.

    PubMed

    Forti, Louis Nuvagah; Van Roie, Evelien; Njemini, Rose; Coudyzer, Walter; Beyer, Ingo; Delecluse, Christophe; Bautmans, Ivan

    2015-10-01

    BDNF is known to induce neuroplasticity and low circulating levels have been related to neuronal loss in older persons. Physical exercise is thought to trigger BDNF-induced neuroplasticity, but conflicting observations have been reported regarding the effects of resistance training on circulating BDNF in the elderly. These conflicting observations might reflect dose-and gender-specific differences. Fifty-six apparently healthy elderly (68 ± 5 years) participants were randomized to 12 weeks of resistance training (3×/week) at either high-resistance (HIGH, 8 Males, 10 Females, 2 × 10-15 repetitions at 80% 1 RM), low-resistance (LOW, 9 Males, 10 Females, 1 × 80-100 repetitions at 20% 1 RM), or mixed low-resistance (LOW+, 9 Males, 10 Females, 1 × 60 repetitions at 20% 1 RM followed by 1 × 10-20 repetitions at 40% 1 RM). Serum was collected for BDNF assay at baseline and after 12 weeks (24 h-48 h after the last training). 12 weeks of LOW+ exercise significantly increased BDNF levels in male (from 34.9 ± 10.7 ng/mL to 42.9 ± 11.9 ng/mL, time × group interaction p=0.013), but not in female participants. No significant change was observed in HIGH or LOW, neither in male nor female subjects. Our results show that only the mixed-low-resistance training program with a very high number of repetitions at a sufficiently high external resistance was able to increase circulating BDNF in older male participants. Training to volitional fatigue might be necessary to obtain optimal results. Additional studies are needed to unravel the underlying mechanisms, as well as to confirm the observed gender difference. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  4. Ultra Low-Voltage Energy Harvesting

    DTIC Science & Technology

    2013-09-01

    Power PV Photovoltaic R Resistance RF Radio Frequencies S Switch SPICE Simulation Program with Integrated Circuit Emphasis T Switching Cycle xiv...control experiment, a supercapacitor was connected to a photovoltaic (PV) source with a diode in between. The advantages of this circuit were a...Circuits to harvest thermal differences typically produce only 0.02 to 0.15 V, while low-power photovoltaic cells can generate 0.2 to 0.7 V and

  5. Sensitivity of new detection method for ultra-low frequency gravitational waves with pulsar spin-down rate statistics

    NASA Astrophysics Data System (ADS)

    Yonemaru, Naoyuki; Kumamoto, Hiroki; Takahashi, Keitaro; Kuroyanagi, Sachiko

    2018-04-01

    A new detection method for ultra-low frequency gravitational waves (GWs) with a frequency much lower than the observational range of pulsar timing arrays (PTAs) was suggested in Yonemaru et al. (2016). In the PTA analysis, ultra-low frequency GWs (≲ 10-10 Hz) which evolve just linearly during the observation time span are absorbed by the pulsar spin-down rates since both have the same effect on the pulse arrival time. Therefore, such GWs cannot be detected by the conventional method of PTAs. However, the bias on the observed spin-down rates depends on relative direction of a pulsar and GW source and shows a quadrupole pattern in the sky. Thus, if we divide the pulsars according to the position in the sky and see the difference in the statistics of the spin-down rates, ultra-low frequency GWs from a single source can be detected. In this paper, we evaluate the potential of this method by Monte-Carlo simulations and estimate the sensitivity, considering only the "Earth term" while the "pulsar term" acts like random noise for GW frequencies 10-13 - 10-10 Hz. We find that with 3,000 milli-second pulsars, which are expected to be discovered by a future survey with the Square Kilometre Array, GWs with the derivative of amplitude of about 3 × 10^{-19} {s}^{-1} can in principle be detected. Implications for possible supermassive binary black holes in Sgr* and M87 are also given.

  6. Plasma glycosylphosphatidylinositol-specific phospholipase D predicts the change in insulin sensitivity in response to a low fat but not a low carbohydrate diet in obese women

    PubMed Central

    Gray, Dona L.; O’Brien, Kevin D.; D’Alessio, David A.; Brehm, Bonnie J.; Deeg, Mark A.

    2013-01-01

    Context Although circulating glycosylphosphatidylinositol-specific phospholipase D, a minor high density lipoprotein-associated protein, is elevated in patients with insulin resistance or high triglycerides, no information is available on the effect of weight loss or changes in insulin sensitivity on circulating glycosylphosphatidylinositol-specific phospholipase D levels. Objective Determine the effect of weight loss and changes in insulin sensitivity on plasma glycosylphosphatidylinositol-specific phospholipase D levels. Participants Forty two non-diabetic obese women. Intervention Three month dietary intervention randomizing patients to a low fat or a low carbohydrate diet. Main outcome measures Plasma glycosylphosphatidylinositol-specific phospholipase D levels and insulin sensitivity as estimated by the homeostasis model assessment. Results The very low carbohydrate diet group lost more weight after 3 months (−7.6 ± 3.2 vs. −4.2 ± 3.5 kg, P < 0.01) although the decrease in insulin resistance was similar between groups. Weight loss with either diet did not alter plasma glycosylphosphatidylinositol-specific phospholipase D levels. However, baseline glycosylphosphatidylinositol-specific phospholipase D levels correlated with the change in insulin sensitivity in response to the low fat diet while baseline insulin sensitivity correlated the change in insulin sensitivity in response to the low carbohydrate diet. Conclusions Plasma GPI-PLD may serve as a clinical tool to determine the effect of a low fat diet on insulin sensitivity. PMID:18328347

  7. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Rawal, Takat B.; Neal, Craig J.; Das, Soumen; Rahman, Talat S.; Seal, Sudipta

    2017-06-01

    Two-dimensional (2D) molybdenum disulfide (MoS2) offers attractive properties due to its band gap modulation and has led to significant research-oriented applications (i.e. DNA and protein detection, cell imaging (fluorescent label) etc.). In biology, detection of free radicals (i.e. reactive oxygen species and reactive nitrogen (NO*) species are very important for early discovery and treatment of diseases. Herein, for the first time, we demonstrate the ultra-low (pico-molar) detection of pharmaceutically relevant free radicals using MoS2 for electrochemical sensing. We present pico- to nano- molar level sensitivity in smaller MoS2 with S-deficiency as revealed by x-ray photoelectron spectroscopy. Furthermore, the detection mechanism and size-dependent sensitivity have been investigated by density functional theory (DFT) showing the change in electronic density of states of Mo atoms at edges which lead to the preferred adsorption of H2O2 on Mo edges. The DFT analysis signifies the role of size and S-deficiency in the higher catalytic activity of smaller MoS2 particles and, thus, ultra-low detection.

  8. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    NASA Astrophysics Data System (ADS)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  9. Nanofabrication of ultra-low reflectivity black silicon surfaces and devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    White, Victor E.; Yee, Karl Y.; Balasubramanian, Kunjithapatham; Echternach, Pierre M.; Muller, Richard E.; Dickie, Matthew R.; Cady, Eric; Ryan, Daniel J.; Eastwood, Michael; van Gorp, Byron; Riggs, A. J. Eldorado; Zimmerman, Niel; Kasdin, N. Jeremy

    2015-08-01

    Optical devices with features exhibiting ultra low reflectivity on the order of 10-7 specular reflectance in the visible spectrum are required for coronagraph instruments and some spectrometers employed in space research. Nanofabrication technologies have been developed to produce such devices with various shapes and feature dimensions to meet these requirements. Infrared reflection is also suppressed significantly with chosen wafers and processes. Particularly, devices with very high (>0.9) and very low reflectivity (<10-7) on adjacent areas have been fabricated and characterized. Significantly increased surface area due to the long needle like nano structures also provides some unique applications in other technology areas. We present some of the approaches, challenges and achieved results in producing and characterizing such devices currently employed in laboratory testbeds and instruments.

  10. An ultra-low-power RF transceiver for WBANs in medical applications

    NASA Astrophysics Data System (ADS)

    Qi, Zhang; Xiaofei, Kuang; Nanjian, Wu

    2011-06-01

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm2. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%.

  11. Circuit design advances for ultra-low power sensing platforms

    NASA Astrophysics Data System (ADS)

    Wieckowski, Michael; Dreslinski, Ronald G.; Mudge, Trevor; Blaauw, David; Sylvester, Dennis

    2010-04-01

    This paper explores the recent advances in circuit structures and design methodologies that have enabled ultra-low power sensing platforms and opened up a host of new applications. Central to this theme is the development of Near Threshold Computing (NTC) as a viable design space for low power sensing platforms. In this paradigm, the system's supply voltage is approximately equal to the threshold voltage of its transistors. Operating in this "near-threshold" region provides much of the energy savings previously demonstrated for subthreshold operation while offering more favorable performance and variability characteristics. This makes NTC applicable to a broad range of power-constrained computing segments including energy constrained sensing platforms. This paper explores the barriers to the adoption of NTC and describes current work aimed at overcoming these obstacles in the circuit design space.

  12. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    NASA Astrophysics Data System (ADS)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-05-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  13. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    PubMed

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  14. Spatially uniform resistance switching of low current, high endurance titanium–niobium-oxide memristors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Suhas; Davila, Noraica; Wang, Ziwen

    2016-11-24

    Here we analyzed micrometer-scale titanium-niobium-oxide prototype memristors, which exhibited low write-power (< 3 μW) and energy (< 200 fJ per bit per μm 2), low read-power (~nW), and high endurance ( > millions of cycles). To understand their physico-chemical operating mechanisms, we performed in operando synchrotron X-ray transmission nanoscale spectromicroscopy using an ultra-sensitive time-multiplexed technique. We observed only spatially uniform material changes during cell operation, in sharp contrast to the frequently detected formation of a localized conduction channel in transition-metal-oxide memristors. We also associated the response of assigned spectral features distinctly to non-volatile storage (resistance change) and writing of informationmore » (application of voltage and Joule heating). Lastly, these results provide critical insights into high-performance memristors that will aid in device design, scaling and predictive circuit-modeling, all of which are essential for the widespread deployment of successful memristor applications.« less

  15. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage.

    PubMed

    Li, G; Hu, H; Wu, K; Wang, G; Wang, L J

    2014-10-01

    For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.

  16. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage

    NASA Astrophysics Data System (ADS)

    Li, G.; Hu, H.; Wu, K.; Wang, G.; Wang, L. J.

    2014-10-01

    For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.

  17. Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking

    NASA Astrophysics Data System (ADS)

    Manouras, Theodoros; Kazazis, Dimitrios; Koufakis, Eleftherios; Ekinci, Yasin; Vamvakaki, Maria; Argitis, Panagiotis

    2018-03-01

    The main target of the current work was to develop new sensitive polymeric materials for lithographic applications, focusing in particular to EUV lithography, the main chain of which is cleaved under the influence of photogenerated acid. Resist materials based on the cleavage of polymer main chain are in principle capable to create very small structures, to the dimensions of the monomers that they consist of. Nevertheless, in the case of the commonly used nonchemically amplified materials of this type issues like sensitivity and poor etch resistance limit their areas of application, whereas inadequate etch resistance and non- satisfactory process reliability are the usual problems encountered in acid catalysed materials based on main chain scission. In our material design the acid catalyzed chain cleavable polymers contain very sensitive moieties in their backbone while they remain intact in alkaline ambient. These newly synthesized polymers bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behavior, adhesion to the substrate). Our approach for achieving acceptable etch resistance, a main drawback in other main chain cleavable resists, is based on the introduction of polyaromatic hydrocarbons in the polymeric backbone, whereas the incorporation of an inorganic component further enhances the etch resistance. Single component systems can also be designed following the proposed approach by the incorporation of suitable PAGs and base quencher molecules in the main chain. Resist formulations based on a random copolymer designed according to the described rules evaluated in EUV exhibit ultrahigh sensitivity, capability for high resolution patterning and overall processing characteristics that make them strong candidates for industrial use upon further optimization.

  18. Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

    NASA Astrophysics Data System (ADS)

    Jung, Il-Chan; Kang, Deok-Gu; De Cooman, Bruno C.

    2014-04-01

    The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek-Kê-Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

  19. MBus: An Ultra-Low Power Interconnect Bus for Next Generation Nanopower Systems.

    PubMed

    Pannuto, Pat; Lee, Yoonmyung; Kuo, Ye-Sheng; Foo, ZhiYoong; Kempke, Benjamin; Kim, Gyouho; Dreslinski, Ronald G; Blaauw, David; Dutta, Prabal

    2015-06-01

    As we show in this paper, I/O has become the limiting factor in scaling down size and power toward the goal of invisible computing. Achieving this goal will require composing optimized and specialized-yet reusable-components with an interconnect that permits tiny, ultra-low power systems. In contrast to today's interconnects which are limited by power-hungry pull-ups or high-overhead chip-select lines, our approach provides a superset of common bus features but at lower power, with fixed area and pin count, using fully synthesizable logic, and with surprisingly low protocol overhead. We present MBus , a new 4-pin, 22.6 pJ/bit/chip chip-to-chip interconnect made of two "shoot-through" rings. MBus facilitates ultra-low power system operation by implementing automatic power-gating of each chip in the system, easing the integration of active, inactive, and activating circuits on a single die. In addition, we introduce a new bus primitive: power oblivious communication, which guarantees message reception regardless of the recipient's power state when a message is sent. This disentangles power management from communication, greatly simplifying the creation of viable, modular, and heterogeneous systems that operate on the order of nanowatts. To evaluate the viability, power, performance, overhead, and scalability of our design, we build both hardware and software implementations of MBus and show its seamless operation across two FPGAs and twelve custom chips from three different semiconductor processes. A three-chip, 2.2 mm 3 MBus system draws 8 nW of total system standby power and uses only 22.6 pJ/bit/chip for communication. This is the lowest power for any system bus with MBus's feature set.

  20. Calibration of ultra-low infrared power at NIST

    NASA Astrophysics Data System (ADS)

    Woods, Solomon I.; Carr, Stephen M.; Carter, Adriaan C.; Jung, Timothy M.; Datla, Raju U.

    2010-07-01

    The Low Background Infrared (LBIR) facility has developed and tested the components of a new detector for calibration of infrared greater than 1 pW, with 0.1 % uncertainty. Calibration of such low powers could be valuable for the quantitative study of weak astronomical sources in the infrared. The pW-ACR is an absolute cryogenic radiometer (ACR) employing a high resolution transition edge sensor (TES) thermometer, ultra-weak thermal link and miniaturized receiver to achieve a noise level of around 1 fW at a temperature of 2 K. The novel thermometer employs the superconducting transition of a tin (Sn) core and has demonstrated a temperature noise floor less than 3 nK/Hz1/2. Using an applied magnetic field from an integrated solenoid to suppress the Sn transition temperature, the operating temperature of the thermometer can be tuned to any temperature below 3.6 K. The conical receiver is coated on the inside with infrared-absorbing paint and has a demonstrated absorptivity of 99.94 % at 10.6 μm. The thermal link is made from a thin-walled polyimide tube and has exhibited very low thermal conductance near 2x10-7 W/K. In tests with a heater mounted on the receiver, the receiver/thermal-link assembly demonstrated a thermal time constant of about 15 s. Based on these experimental results, it is estimated that an ACR containing these components can achieve noise levels below 1 fW, and the design of a radiometer merging the new thermometer, receiver and thermal link will be discussed.

  1. Impact of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in children in a low resistance prevalence setting

    PubMed Central

    Brandtzaeg, Petter; Høiby, E. Arne; Bohlin, Jon; Samuelsen, Ørjan; Steinbakk, Martin; Abrahamsen, Tore G.; Müller, Fredrik; Gammelsrud, Karianne Wiger

    2017-01-01

    We prospectively studied the consequences of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in a cohort of children with cystic fibrosis (CF) and a cohort of children with cancer compared to healthy children with no or low antibiotic exposure. The study was conducted in Norway in a low resistance prevalence setting. Sixty longitudinally collected faecal samples from children with CF (n = 32), 88 samples from children with cancer (n = 45) and 127 samples from healthy children (n = 70) were examined. A direct MIC-gradient strip method was used to detect resistant Enterobacteriaceae by applying Etest strips directly onto agar-plates swabbed with faecal samples. Whole genome sequencing (WGS) data were analysed to identify resistance mechanisms in 28 multidrug-resistant Escherichia coli isolates. The prevalence of resistance to third-generation cephalosporins, gentamicin and ciprofloxacin was low in all the study groups. At inclusion the prevalence of ampicillin-resistant E. coli and trimethoprim-sulfamethoxazole-resistant E. coli in the CF group compared to healthy controls was 58.6% vs. 28.4% (p = 0.005) and 48.3% vs. 14.9% (p = 0.001), respectively, with a similar prevalence at the end of the study. The prevalence of resistant enterobacteria was not significantly different in the children with cancer compared to the healthy children, not even at the end of the study when the children with cancer had been treated with repeated courses of broad-spectrum antibiotics. Children with cancer were mainly treated with intravenous antibiotics, while the CF group mainly received peroral treatment. Our observations indicate that the mode of administration of antibiotics and the general level of antimicrobial resistance in the community may have an impact on emergence of resistance in intestinal enterobacteria during antibiotic treatment. The WGS analyses detected acquired resistance genes and/or chromosomal mutations that explained the

  2. Damage coefficients in low resistivity silicon. [solar cells

    NASA Technical Reports Server (NTRS)

    Srour, J. R.; Othmer, S.; Chiu, K. Y.; Curtis, O. L., Jr.

    1975-01-01

    Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed.

  3. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOEpatents

    Cardinale, Gregory F.

    2002-01-01

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  4. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  5. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  6. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  7. Early detection of lung cancer using ultra-low-dose computed tomography in coronary CT angiography scans among patients with suspected coronary heart disease.

    PubMed

    Zanon, Matheus; Pacini, Gabriel Sartori; de Souza, Vinicius Valério Silveiro; Marchiori, Edson; Meirelles, Gustavo Souza Portes; Szarf, Gilberto; Torres, Felipe Soares; Hochhegger, Bruno

    2017-12-01

    To assess whether an additional chest ultra-low-dose CT scan to the coronary CT angiography protocol can be used for lung cancer screening among patients with suspected coronary artery disease. 175 patients underwent coronary CT angiography for assessment of coronary artery disease, additionally undergoing ultra-low-dose CT screening to early diagnosis of lung cancer in the same scanner (80kVp and 15mAs). Patients presenting pulmonary nodules were followed-up for two years, repeating low-dose CTs in intervals of 3, 6, or 12 months based on nodule size and growth rate in accordance with National Comprehensive Cancer Network guidelines. Ultra-low-dose CT identified 71 patients with solitary pulmonary nodules (41%), with a mean diameter of 5.50±4.00mm. Twenty-eight were >6mm, and in 79% (n=22) of these cases they were false positive findings, further confirmed by follow-up (n=20), resection (n=1), or biopsy (n=1). Lung cancer was detected in six patients due to CT screening (diagnostic yield: 3%). Among these, four cases could not be detected in the cardiac field of view. Most patients were in early stages of the disease. Two patients diagnosed at advanced stages died due to cancer complications. The addition of the ultra-low-dose CT scan represented a radiation dose increment of 1.22±0.53% (effective dose, 0.11±0.03mSv). Lung cancer might be detected using additional ultra-low-dose protocols in coronary CT angiography scans among patients with suspected coronary artery disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane.

    PubMed

    Tang, C Y; Xie, X L; Wu, X C; Li, R K Y; Mai, Y W

    2002-11-01

    Ultra high molecular weight polyethylene (UHMWPE) crosslinked by organosilane was thermal compression molded. The organosilane used was the tri-ethyloxyl vinyl silane. Its gelation, melting behavior, crystallinity, mechanical and wear-resisting properties were systematically investigated. The results showed that the gel ratio of UHMWPE increases with the incorporation of organosilane. At a low content of organosilane, the melting point and crystallinity of the crosslinked UHMWPE increase, and hence the mechanical and wear-resisting properties are improved. However, at a high content of organosilane, these performances of the crosslinked UHMWPE become worse. At 0.4 phr silane, the wear resistance of crosslinked UHMWPE reaches its optimum value.

  9. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    PubMed Central

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the

  10. Austrian Mirrors: Development of Ultra-Low-Loss Cryogenic Crystalline Coatings (DARPA)

    DTIC Science & Technology

    2016-07-13

    AFRL-AFOSR-UK-TR-2016-0013 Austrian Mirrors: Development of ultra-low- loss cryogenic crystalline coatings (DARPA) Garrett Cole Crystalline Mirror...REPORT DOCUMENTATION PAGE Form ApprovedOMB No . 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour...that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information   if

  11. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  12. Fine figure correction and other applications using novel MRF fluid designed for ultra-low roughness

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Oswald, Eric S.; Dumas, Paul

    2015-10-01

    An increasing number of technologies require ultra-low roughness (ULR) surfaces. Magnetorheological Finishing (MRF) is one of the options for meeting the roughness specifications for high-energy laser, EUV and X-ray applications. A novel MRF fluid, called C30, has been developed to finish surfaces to ULR. This novel MRF fluid is able to achieve <1.5Å RMS roughness on fused silica and other materials, but has a lower material removal rate with respect to other MRF fluids. As a result of these properties, C30 can also be used for applications in addition to finishing ULR surfaces. These applications include fine figure correction, figure correcting extremely soft materials and removing cosmetic defects. The effectiveness of these new applications is explored through experimental data. The low removal rate of C30 gives MRF the capability to fine figure correct low amplitude errors that are usually difficult to correct with higher removal rate fluids. The ability to figure correct extremely soft materials opens up MRF to a new realm of materials that are difficult to polish. C30 also offers the ability to remove cosmetic defects that often lead to failure during visual quality inspections. These new applications for C30 expand the niche in which MRF is typically used for.

  13. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting.

    PubMed

    Mace, Emily; Aalseth, Craig; Alexander, Tom; Back, Henning; Day, Anthony; Hoppe, Eric; Keillor, Martin; Moran, Jim; Overman, Cory; Panisko, Mark; Seifert, Allen

    2017-08-01

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120mg of H 2 O and present sensitivity results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting

    DOE PAGES

    Mace, Emily; Aalseth, Craig; Alexander, Tom; ...

    2016-12-21

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. In this paper, we present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120 mg of H 2O and present sensitivity results.

  15. Low resistance ohmic contacts to n-GaN and n-AlGaN using NiAl

    NASA Astrophysics Data System (ADS)

    Ingerly, D. B.; Chen, Y.; William, R. S.; Takeuchi, T.; Chang, Y. A.

    2000-07-01

    The intermetallic compound NiAl (50:50 at. %) has been shown to be a low-resistance ohmic contact to n-GaN and n-AlGaN. NiAl contacts on n-GaN (n=2.5×1017cm-3) had a specific contact resistance of 9.4×10-6 Ω cm2 upon annealing at 850 °C for 5 min. NiAl contacts annealed at 900 °C for 5 min in n-Al0.12Ga0.88N (n=2.4×1018cm-3) and n-Al0.18Ga0.82N (n=2.7×1018cm-3) had specific contact resistances of 2.1×10-5 Ω cm2 and 4.7×10-5 Ω cm2, respectively. Additionally, these contacts were subjected to long-term annealing at 600 °C for 100 h. On n-GaN, the contact specific contact resistance degraded from 9.4×10-6 Ω cm2 to 5.3×10-5 Ω cm2 after the long-term anneal. Contacts to n-Al0.18Ga0.82N showed only slight degradation with a change in contact resistance, from 4.7×10-5 Ω cm2 to 9.2×10-5 Ω cm2. These results demonstrate the NiAl has great promise as a stable, low-resistance contact, particularly to n-AlGaN used in high-temperature applications.

  16. Mesenchymal stem cell interaction with ultra smooth nanostructured diamond for wear resistant orthopaedic implants

    PubMed Central

    Clem, William C.; Chowdhury, Shafiul; Catledge, Shane A.; Weimer, Jeffrey J.; Shaikh, Faheem M.; Hennessy, Kristin M.; Konovalov, Valery V.; Hill, Michael R.; Waterfeld, Alfred; Bellis, Susan L.; Vohra, Yogesh K.

    2008-01-01

    Ultra smooth nanostructured diamond (USND) can be applied to greatly increase the wear resistance of orthopaedic implants over conventional designs. Herein we describe surface modification techniques and cytocompatibility studies performed on this new material. We report that hydrogen (H) -terminated USND surfaces supported robust mesenchymal stem cell (MSC) adhesion and survival, while oxygen (O) and fluorine (F) -terminated surfaces resisted cell adhesion, indicating that USND can be modified to either promote or prevent cell/biomaterial interactions. Given the favorable cell response to H-terminated USND, this material was further compared with two commonly-used biocompatible metals, titanium alloy (Ti-6Al-4V) and cobalt chrome (CoCrMo). MSC adhesion and proliferation were significantly improved on USND compared with CoCrMo, although cell adhesion was greatest on Ti-6Al-4V. Comparable amounts of the proadhesive protein, fibronectin, were deposited from serum on the three substrates. Finally, MSCs were induced to undergo osteoblastic differentiation on the three materials, and deposition of a mineralized matrix was quantified. Similar amounts of mineral were deposited onto USND and CoCrMo, whereas mineral deposition was slightly higher on Ti-6Al-4V. When coupled with recently published wear studies, these in vitro results suggest that USND has the potential to reduce debris particle release from orthopaedic implants without compromising osseointegration. PMID:18490051

  17. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current.

    PubMed

    DeRose, Christopher T; Trotter, Douglas C; Zortman, William A; Starbuck, Andrew L; Fisher, Moz; Watts, Michael R; Davids, Paul S

    2011-12-05

    We present a compact 1.3 × 4 μm2 Germanium waveguide photodiode, integrated in a CMOS compatible silicon photonics process flow. This photodiode has a best-in-class 3 dB cutoff frequency of 45 GHz, responsivity of 0.8 A/W and dark current of 3 nA. The low intrinsic capacitance of this device may enable the elimination of transimpedance amplifiers in future optical data communication receivers, creating ultra low power consumption optical communications.

  18. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.

    PubMed

    Gencur, Sara J; Rimnac, Clare M; Kurtz, Steven M

    2006-03-01

    To prolong the life of total joint replacements, highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) have been introduced to improve the wear resistance of the articulating surfaces. However, there are concerns regarding the loss of ductility and potential loss in fatigue crack propagation (FCP) resistance. The objective of this study was to evaluate the effects of gamma radiation-induced crosslinking with two different post-irradiation thermal treatments on the FCP resistance of UHMWPE. Two highly crosslinked and one virgin UHMWPE treatment groups (ram-extruded, orthopedic grade, GUR 1050) were examined. For the two highly crosslinked treatment groups, UHMWPE rods were exposed to 100 kGy and then underwent post-irradiation thermal processing either above the melt temperature or below the melt temperature (2 h-150 degrees C, 110 degrees C). Compact tension specimens were cyclically loaded to failure and the fatigue crack growth rate, da/dN, vs. cyclic stress intensity factor, DeltaK, behavior was determined and compared between groups. Scanning electron microscopy was used to examine fracture surface characteristics. Crosslinking was found to decrease the ability of UHMWPE to resist crack inception and propagation under cyclic loading. The findings also suggested that annealing as a post-irradiation treatment may be somewhat less detrimental to FCP resistance of UHMWPE than remelting. Scanning electron microscopy examination of the fracture surfaces demonstrated that the virgin treatment group failed in a more ductile manner than the two highly crosslinked treatment groups.

  19. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.

    PubMed

    Tien, Ming-Chun; Bauters, Jared F; Heck, Martijn J R; Blumenthal, Daniel J; Bowers, John E

    2010-11-08

    We investigate the nonlinearity of ultra-low loss Si3N4-core and SiO2-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell's wave equation with a small amount of refractive index perturbation. Effective n2 is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n2 measured using continuous-wave self-phase modulation shows agreement with the theoretical calculation. The waveguide with 2.8-μm wide and 80-nm thick Si3N4 core has low loss and high power handling capability, with an effective n2 of about 9×10(-16) cm2/W.

  20. Low resistance, low-inductance power connectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony

    An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less

  1. Ultra-low noise optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Ayotte, Simon; Babin, André; Costin, François

    2014-03-01

    The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.

  2. Ultra-low-loss tapered optical fibers with minimal lengths

    NASA Astrophysics Data System (ADS)

    Nagai, Ryutaro; Aoki, Takao

    2014-11-01

    We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.

  3. Ultra low-level measurements of actinides by sector field ICP-MS.

    PubMed

    Pointurier, F; Baglan, N; Hémet, P

    2004-01-01

    In the present work, a double-focusing sector field inductively coupled plasma-mass spectrometer was optimised for ultra trace and isotopic analyses of actinide long-lived isotopes in low concentration solutions of the fgml(-1) to the ngml(-1) range. Sensitivities of about 3GHz/(microgml(-1)), with as low a background as 0.1cps, were obtained for U using a conventional concentric pneumatic nebuliser. Detection limits are below the fg range for 239Pu and 240Pu. With natural U, a precision lower than 0.5% RSD is currently obtained for 235U/238U isotopic ratio at the 200pgml(-1) level.

  4. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pendina, G., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; Zianbetov, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; CNRS, SPINTEC, F-38000 Grenoble

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remainingmore » in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.« less

  5. Polystyrene negative resist for high-resolution electron beam lithography

    PubMed Central

    2011-01-01

    We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL) resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern. PMID:21749679

  6. Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis

    NASA Astrophysics Data System (ADS)

    Suresh, Vignesh; Qunya, Ong; Kanta, Bera Lakshmi; Yuh, Lee Yeong; Chong, Karen S. L.

    2018-03-01

    This work describes the design, fabrication and characterization of a paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis. The microfluidic system comprises an entry port, a fluidic channel, a reaction zone and two electrodes (contacts). Wax printing was used to create fluidic channels on the surface of a chromatography paper. Pre-conceptualized designs of the fluidic channel are wax-printed on the paper substrate while the electrodes are screen-printed. The paper printed with wax is heated to cause the wax reflow along the thickness of the paper that selectively creates hydrophilic and hydrophobic zones inside the paper. Urease immobilized in the reaction zone catalyses urea into releasing ions and, thereby, generating a current flow between the electrodes. A measure of current with respect to time at a fixed potential enables the detection of urea. The methodology enabled urea concentration down to 1 pM to be detected. The significance of this work lies in the use of simple and inexpensive paper-based substrates to achieve detection of ultra-low concentrations of analytes such as urea. The process is non-invasive and employs a less cumbersome two-electrode assembly.

  7. MBus: An Ultra-Low Power Interconnect Bus for Next Generation Nanopower Systems

    PubMed Central

    Pannuto, Pat; Lee, Yoonmyung; Kuo, Ye-Sheng; Foo, ZhiYoong; Kempke, Benjamin; Kim, Gyouho; Dreslinski, Ronald G.; Blaauw, David; Dutta, Prabal

    2015-01-01

    As we show in this paper, I/O has become the limiting factor in scaling down size and power toward the goal of invisible computing. Achieving this goal will require composing optimized and specialized—yet reusable—components with an interconnect that permits tiny, ultra-low power systems. In contrast to today’s interconnects which are limited by power-hungry pull-ups or high-overhead chip-select lines, our approach provides a superset of common bus features but at lower power, with fixed area and pin count, using fully synthesizable logic, and with surprisingly low protocol overhead. We present MBus, a new 4-pin, 22.6 pJ/bit/chip chip-to-chip interconnect made of two “shoot-through” rings. MBus facilitates ultra-low power system operation by implementing automatic power-gating of each chip in the system, easing the integration of active, inactive, and activating circuits on a single die. In addition, we introduce a new bus primitive: power oblivious communication, which guarantees message reception regardless of the recipient’s power state when a message is sent. This disentangles power management from communication, greatly simplifying the creation of viable, modular, and heterogeneous systems that operate on the order of nanowatts. To evaluate the viability, power, performance, overhead, and scalability of our design, we build both hardware and software implementations of MBus and show its seamless operation across two FPGAs and twelve custom chips from three different semiconductor processes. A three-chip, 2.2 mm3 MBus system draws 8 nW of total system standby power and uses only 22.6 pJ/bit/chip for communication. This is the lowest power for any system bus with MBus’s feature set. PMID:26855555

  8. Carotid baroreceptor influence on forearm vascular resistance during low level lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Thompson, Cynthia A.; Ludwig, David A.; Convertino, Victor A.

    1991-01-01

    The degree of forearm vasoconstriction induced by low levels of lower body negative pressure (LBNP) provides a measure of the responsiveness of the cardiopulmonary baroreflex. The validity of this measurement is based on the assumption that this vasoconstriction response is not influenced by unloading of carotid baroreceptors. To test the hypothesis that arterial baroreceptor unloading does not alter the degree of forearm vascular resistance during low levels of LBNP, 12 subjects were exposed to -15 and -20 mm Hg LBNP with and without additional artificial (+ 10 mm Hg neck pressure) unloading of the carotid baroreceptors. There was no measurable influence of carotid unloading on forearm vascular resistance at either level of LBNP. It is concluded that forearm vascular resistance measured during cardiopulmonary baroreceptor unloading is unaffected by carotid baroreceptor unloading within the magnitude encountered during low levels of LBNP.

  9. Method and apparatus for low-loss signal transmission

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Fred (Inventor); Yeh, Cavour (Inventor); Fraser, Scott (Inventor); Siegel, Peter (Inventor)

    2008-01-01

    The present invention relates to the field of radio-frequency (RF) waveguides. More specifically, the present invention pertains to a method and apparatus that provides ultra-low-loss RF waveguide structures targeted between approximately 300 GHz and approximately 30 THz. The RF waveguide includes a hollow core and a flexible honeycomb, periodic-bandgap structure surrounding the hollow core. The flexible honeycomb, periodic-bandgap structure is formed of a plurality of tubes formed of a dielectric material such as of low-loss quartz, polyethylene, or high-resistivity silicon. Using the RF waveguide, a user may attach a terahertz signal source to the waveguide and pass signals through the waveguide, while a terahertz signal receiver receives the signals.

  10. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less

  11. Simulated gastrointestinal digestion of Pru ar 3 apricot allergen: assessment of allergen resistance and characterization of the peptides by ultra-performance liquid chromatography/electrospray ionisation mass spectrometry.

    PubMed

    Prandi, Barbara; Farioli, Laura; Tedeschi, Tullia; Pastorello, Elide Anna; Sforza, Stefano

    2012-12-30

    Non-specific lipid transfer proteins (ns-LTPs) are major food allergens of the Rosaceae family. The severity of allergic reactions often relates to resistance of the allergen to digestion. Thus, it is important to evaluate the digestibility of these proteins and characterise the peptides generated in the gastrointestinal tract. Simulated gastrointestinal digestion of purified allergen Pru ar 3 was performed using pepsin for the gastric phase in aqueous HCl at pH = 2 and chymotrypsin and trypsin for the intestinal phase in aqueous NH(4)HCO(3) at pH = 7.8. The peptide mixture obtained was analysed by ultra-performance liquid chromatography/electrospray ionisation mass spectrometry (UPLC/ESI-MS). Peptide sequences were identified by comparing their molecular mass to that obtained by in silico digestion, and were confirmed by the ions obtained by in-source fragmentation. Semi-quantification was performed for the intact protein by comparison with internal standards. The resistance to gastrointestinal digestion of Pru ar 3 allergen was evaluated to be 9%. This value is consistent with that found for grape LTP, but much lower than the resistance found for peach LTP (35%). All the peptides generated were identified by ESI-MS on the basis of their molecular mass and from the ions generated from in-source fragmentation. Apart from low molecular mass peptides, five high molecular mass peptides (4500-7000 Da) containing disulphide bridges were identified. ESI-MS of the intact protein indicated a less compact folded structure when compared to that of the homologous peach LTP. An extensive characterisation of the peptides generated from the gastrointestinal digestion of Pru ar 3 allergen was performed here for the first time via UPLC/ESI-MS analysis. The digestibility of the allergen was evaluated and compared with that of other LTPs, demonstrating that only a small amount of undigested protein remains, and that specific proteolytic action involves immunodominant epitopes. These

  12. An L-shaped low on-resistance current path SOI LDMOS with dielectric field enhancement

    NASA Astrophysics Data System (ADS)

    Ye, Fan; Xiaorong, Luo; Kun, Zhou; Yuanhang, Fan; Yongheng, Jiang; Qi, Wang; Pei, Wang; Yinchun, Luo; Bo, Zhang

    2014-03-01

    A low specific on-resistance (Ron,sp) SOI NBL TLDMOS (silicon-on-insulator trench LDMOS with an N buried layer) is proposed. It has three features: a thin N buried layer (NBL) on the interface of the SOI layer/buried oxide (BOX) layer, an oxide trench in the drift region, and a trench gate extended to the BOX layer. First, on the on-state, the electron accumulation layer forms beside the extended trench gate; the accumulation layer and the highly doping NBL constitute an L-shaped low-resistance conduction path, which sharply decreases the Ron,sp. Second, in the y-direction, the BOX's electric field (E-field) strength is increased to 154 V/μm from 48 V/μm of the SOI Trench Gate LDMOS (SOI TG LDMOS) owing to the high doping NBL. Third, the oxide trench increases the lateral E-field strength due to the lower permittivity of oxide than that of Si and strengthens the multiple-directional depletion effect. Fourth, the oxide trench folds the drift region along the y-direction and thus reduces the cell pitch. Therefore, the SOI NBL TLDMOS structure not only increases the breakdown voltage (BV), but also reduces the cell pitch and Ron,sp. Compared with the TG LDMOS, the NBL TLDMOS improves the BV by 105% at the same cell pitch of 6 μm, and decreases the Ron,sp by 80% at the same BV.

  13. [An ultra-low power, wearable, long-term ECG monitoring system with mass storage].

    PubMed

    Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai

    2012-01-01

    In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.

  14. An ultra low-power CMOS automatic action potential detector.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad

    2009-08-01

    We present a low-power complementary metal-oxide semiconductor (CMOS) analog integrated biopotential detector intended for neural recording in wireless multichannel implants. The proposed detector can achieve accurate automatic discrimination of action potential (APs) from the background activity by means of an energy-based preprocessor and a linear delay element. This strategy improves detected waveforms integrity and prompts for better performance in neural prostheses. The delay element is implemented with a low-power continuous-time filter using a ninth-order equiripple allpass transfer function. All circuit building blocks use subthreshold OTAs employing dedicated circuit techniques for achieving ultra low-power and high dynamic range. The proposed circuit function in the submicrowatt range as the implemented CMOS 0.18- microm chip dissipates 780 nW, and it features a size of 0.07 mm(2). So it is suitable for massive integration in a multichannel device with modest overhead. The fabricated detector succeeds to automatically detect APs from underlying background activity. Testbench validation results obtained with synthetic neural waveforms are presented.

  15. Effects of circuit low-intensity resistance exercise with slow movement on oxygen consumption during and after exercise.

    PubMed

    Mukaimoto, Takahiro; Ohno, Makoto

    2012-01-01

    The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.

  16. Tunable Q-factor silicon microring resonators for ultra-low power parametric processes.

    PubMed

    Strain, Michael J; Lacava, Cosimo; Meriggi, Laura; Cristiani, Ilaria; Sorel, Marc

    2015-04-01

    A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring resonator across the critical coupling point is demonstrated, exhibiting a Q-factor tunable between 9000 and 96,000. Consequently, resonantly enhanced four-wave mixing shows tunable efficiency between -40 and -16.3  dB at an ultra-low on-chip pump power of 0.7 mW.

  17. Low nonalloyed Ohmic contact resistance to nitride high electron mobility transistors using N-face growth

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Pei, Yi; Palacios, Tomás; Shen, Likun; Chakraborty, Arpan; McCarthy, Lee S.; Keller, Stacia; DenBaars, Steven P.; Speck, James S.; Mishra, Umesh K.

    2007-12-01

    Nonalloyed Ohmic contacts on Ga-face n+-GaN/AlGaN/GaN high electron mobility transistor (HEMT) structures typically have significant contact resistance to the two-dimensional electron gas (2DEG) due to the AlGaN barrier. By growing the HEMT structure inverted on the N-face, electrons from the contacts were able to access the 2DEG without going through an AlGaN layer. A low contact resistance of 0.16Ωmm and specific contact resistivity of 5.5×10-7Ωcm2 were achieved without contact annealing on the inverted HEMT structure.

  18. Carrier Transport and Effective Barrier Height of Low Resistance Metal Contact to Highly Mg-Doped p-GaN

    NASA Astrophysics Data System (ADS)

    Park, Youngjun; Kim, Hyunsoo

    2011-08-01

    The effective barrier height and carrier transport mechanism of low resistance Ag-based contact to highly Mg-doped p-GaN were investigated. The specific contact resistance obtained was as low as 7.0×10-4 Ω cm2. The electrical resistivity of p-GaN was found to increase depending on ˜T-1/4, indicating variable-range hopping (VRH) conduction through Mg-related deep-level defects. Based on the VRH conduction model, the effective barrier height for carrier transport could be measured as 0.12 eV, which is low enough to explain the formation of excellent ohmic contact. The deep-level defects were also found to induce surface Fermi pinning.

  19. A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation

    NASA Astrophysics Data System (ADS)

    Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan

    2018-01-01

    Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.

  20. Early diagnosis of blast fungus, Magnaporthe oryzae, in rice plant by using an ultra-sensitive electrically magnetic-controllable electrochemical biosensor.

    PubMed

    Yang, Weijuan; Zhang, Hongyan; Li, Mengxue; Wang, Zonghua; Zhou, Jie; Wang, Shihua; Lu, Guodong; Fu, FengFu

    2014-11-19

    As one of the most destructive and widespread disease of rice, Magnaporthe oryzae (also called Magnaporthe grisea) has a significant negative impact on rice production. Therefore, it is still in high demand to develop extremely sensitive and accurate methods for the early diagnosis of Magnaporthe oryzae (M. oryzae). In this study, we developed a novel magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of M. oryzae in rice plant by using M. oryzae's chitinases (Mgchi) as biochemical marker and a rice (Oryza sativa) cDNA encoding mannose-binding jacalin-related lectin (Osmbl) as recognition probe. The proposed biosensor combined with the merits of chronoamperometry, electrically magnetic-controllable gold electrode and magnetic beads (MBs)-based palladium nano-particles (PdNPs) catalysis amplification, has an ultra-high sensitivity and specificity for the detection of trace M. oryzae in rice plant. It could be used to detect M. oryzae in rice plant in the initial infection stage (before any symptomatic lesions were observed) to help farmers timely manage the disease. In comparison with previous methods, the proposed method has notable advantages such as higher sensitivity, excellent specificity, short analysis time, robust resistibility to complex matrix and low cost etc. The success in this study provides a reliable approach for the early diagnosis and fast screening of M. oryzae in rice plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  2. Ultra-low power operation of self-heated, suspended carbon nanotube gas sensors

    NASA Astrophysics Data System (ADS)

    Chikkadi, Kiran; Muoth, Matthias; Maiwald, Verena; Roman, Cosmin; Hierold, Christofer

    2013-11-01

    We present a suspended carbon nanotube gas sensor that senses NO2 at ambient temperature and recovers from gas exposure at an extremely low power of 2.9 μW by exploiting the self-heating effect for accelerated gas desorption. The recovery time of 10 min is two orders of magnitude faster than non-heated recovery at ambient temperature. This overcomes an important bottleneck for the practical application of carbon nanotube gas sensors. Furthermore, the method is easy to implement in sensor systems and requires no additional components, paving the way for ultra-low power, compact, and highly sensitive gas sensors.

  3. Sex-specific effect of juvenile diet on adult disease resistance in a field cricket.

    PubMed

    Kelly, Clint D; Tawes, Brittany R

    2013-01-01

    Food limitation is expected to reduce an individual's body condition (body mass scaled to body size) and cause a trade-off between growth and other fitness-related traits, such as immunity. We tested the condition-dependence of growth and disease resistance in male and female Gryllus texensis field crickets by manipulating diet quality via nutrient content for their entire life and then subjecting individuals to a host resistance test using the live bacterium Serratia marcescens. As predicted, crickets on a high-quality diet eclosed more quickly, and at a larger body size and mass. Crickets on a high-quality diet were not in better condition at the time of eclosion, but they were in better condition 7-11 days after eclosion, with females also being in better condition than males. Despite being in better condition, however, females provided with a high-quality diet had significantly poorer disease resistance than females on a low-quality diet and in poor condition. Similarly, males on low- and high-quality diets did not differ in their disease resistance, despite differing in their body condition. A sex difference in disease resistance under diet-restriction suggests that females might allocate resources toward immunity during development if they expect harsh environmental conditions as an adult or it might suggest that females allocate resources toward other life history activities (i.e. reproduction) when food availability increases. We do not know what immune effectors were altered under diet-restriction to increase disease resistance, but our findings suggest that increased immune function might provide an explanation for the sexually-dimorphic increase in longevity generally observed in diet-restricted animals.

  4. III-V Ultra-Thin-Body InGaAs/InAs MOSFETs for Low Standby Power Logic Applications

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Ying

    As device scaling continues to sub-10-nm regime, III-V InGaAs/InAs metal- oxide-semiconductor ?eld-e?ect transistors (MOSFETs) are promising candidates for replacing Si-based MOSFETs for future very-large-scale integration (VLSI) logic applications. III-V InGaAs materials have low electron effective mass and high electron velocity, allowing higher on-state current at lower VDD and reducing the switching power consumption. However, III-V InGaAs materials have a narrower band gap and higher permittivity, leading to large band-to-band tunneling (BTBT) leakage or gate-induced drain leakage (GIDL) at the drain end of the channel, and large subthreshold leakage due to worse electrostatic integrity. To utilize III-V MOSFETs in future logic circuits, III-V MOSFETs must have high on-state performance over Si MOSFETs as well as very low leakage current and low standby power consumption. In this dissertation, we will report InGaAs/InAs ultra-thin-body MOSFETs. Three techniques for reducing the leakage currents in InGaAs/InAs MOSFETs are reported as described below. 1) Wide band-gap barriers: We developed AlAs0.44Sb0.56 barriers lattice-match to InP by molecular beam epitaxy (MBE), and studied the electron transport in In0.53Ga0.47As/AlAs 0.44Sb0.56 heterostructures. The InGaAs channel MOSFETs using AlAs0.44Sb0.56 bottom barriers or p-doped In0.52 Al0.48As barriers were demonstrated, showing significant suppression on the back barrier leakage. 2) Ultra-thin channels: We investigated the electron transport in InGaAs and InAs ultra-thin quantum wells and ultra-thin body MOSFETs (t ch ~ 2-4 nm). For high performance logic, InAs channels enable higher on-state current, while for low power logic, InGaAs channels allow lower BTBT leakage current. 3) Source/Drain engineering: We developed raised InGaAs and recessed InP source/drain spacers. The raised InGaAs source/drain spacers improve electrostatics, reducing subthreshold leakage, and smooth the electric field near drain, reducing

  5. Field evaluation of indoor thermal fog and ultra-low volume applications for control of Aedes aegypti, in Thailand

    USDA-ARS?s Scientific Manuscript database

    Efficacies of a hand-held thermal fogger (PatriotTM) and hand-held Ultra-low volume (ULV) sprayer (TwisterTM) with combinations of two different adulticides and an insect growth regulator (pyriproxyfen) were field assessed and compared for their impact on reducing dengue vector populations in Thaila...

  6. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    NASA Astrophysics Data System (ADS)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  7. Silicon on ferroelectic insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    NASA Astrophysics Data System (ADS)

    Es-Sakhi, Azzedin D.

    Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in sub-nanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor's Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the

  8. A Modified HR3C Austenitic Heat-Resistant Steel for Ultra-supercritical Power Plants Applications Beyond 650 °C

    NASA Astrophysics Data System (ADS)

    Zhu, C. Z.; Yuan, Y.; Zhang, P.; Yang, Z.; Zhou, Y. L.; Huang, J. Y.; Yin, H. F.; Dang, Y. Y.; Zhao, X. B.; Lu, J. T.; Yan, J. B.; You, C. Y.

    2018-02-01

    A modified HR3C austenitic steel has been designed by optimizing the chemical composition. Compared with a commercial HR3C alloy, the modified steel has comparable oxidation resistance, yield strength, and plasticity, but higher creep rupture strength and impact toughness after long-term thermal exposure. The results suggest that the modified alloy is a promising candidate for the applications of ultra-supercritical power plants operating beyond 650 °C.

  9. Ultra-low-power and robust digital-signal-processing hardware for implantable neural interface microsystems.

    PubMed

    Narasimhan, S; Chiel, H J; Bhunia, S

    2011-04-01

    Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.

  10. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    PubMed

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  11. Ultra-high resistive and anisotropic CoPd-CaF2 nanogranular soft magnetic films prepared by tandem-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Naoe, Masayuki; Kobayashi, Nobukiyo; Ohnuma, Shigehiro; Iwasa, Tadayoshi; Arai, Ken-Ichi; Masumoto, Hiroshi

    2015-10-01

    Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF2 matrix, and a specimen having a composition of (Co0.69Pd0.31)52-(Ca0.31F0.69)48 exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau-Lifshitz-Gilbert equation. Furthermore, it was clarified that the CaF2-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF2 matrix.

  12. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO2/Si interfaces with low defect densities

    NASA Astrophysics Data System (ADS)

    Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike

    2017-02-01

    Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.

  13. CORK Study in Cystic Fibrosis: Sustained Improvements in Ultra-Low-Dose Chest CT Scores After CFTR Modulation With Ivacaftor.

    PubMed

    Ronan, Nicola J; Einarsson, Gisli G; Twomey, Maria; Mooney, Denver; Mullane, David; NiChroinin, Muireann; O'Callaghan, Grace; Shanahan, Fergus; Murphy, Desmond M; O'Connor, Owen J; Shortt, Cathy A; Tunney, Michael M; Eustace, Joseph A; Maher, Michael M; Elborn, J Stuart; Plant, Barry J

    2018-02-01

    Ivacaftor produces significant clinical benefit in patients with cystic fibrosis (CF) with the G551D mutation. Prevalence of this mutation at the Cork CF Centre is 23%. This study assessed the impact of cystic fibrosis transmembrane conductance regulator modulation on multiple modalities of patient assessment. Thirty-three patients with the G551D mutation were assessed at baseline and prospectively every 3 months for 1 year after initiation of ivacaftor. Change in ultra-low-dose chest CT scans, blood inflammatory mediators, and the sputum microbiome were assessed. Significant improvements in FEV 1 , BMI, and sweat chloride levels were observed post-ivacaftor treatment. Improvement in ultra-low-dose CT imaging scores were observed after treatment, with significant mean reductions in total Bhalla score (P < .01), peribronchial thickening (P = .035), and extent of mucous plugging (P < .001). Reductions in circulating inflammatory markers, including interleukin (IL)-1β, IL-6, and IL-8 were demonstrated. There was a 30% reduction in the relative abundance of Pseudomonas species and an increase in the relative abundance of bacteria associated with more stable community structures. Posttreatment community richness increased significantly (P = .03). Early and sustained improvements on ultra-low-dose CT scores suggest it may be a useful method of evaluating treatment response. It paralleled improvement in symptoms, circulating inflammatory markers, and changes in the lung microbiota. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  14. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, Ronald F.; Brown, John D.

    1996-01-01

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  15. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1996-03-19

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  16. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    NASA Astrophysics Data System (ADS)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  17. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    NASA Astrophysics Data System (ADS)

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-11-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.

  18. Ultra-low power wireless sensing for long-term structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bilbao, Argenis; Hoover, Davis; Rice, Jennifer; Chapman, Jamie

    2011-04-01

    Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

  19. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    NASA Astrophysics Data System (ADS)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  20. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  1. Low temperature processing of ultra-pure cellulose fibers into nylon 6 and other thermoplastics

    Treesearch

    Rod Jacobson; Dan Caulfield; Karl Sears; John Underwood

    2002-01-01

    The objective of this research was to develop a stable process for compound ultra-pure cellulose fibers into polyamides. This has been a difficult procedure and has taken years of trial and error to understand the viscosity shear heating effects associated with compounding cellulose into high-melting point engineering thermoplastics. The evolution of the low...

  2. An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks

    PubMed Central

    Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José

    2012-01-01

    This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network. PMID:22969324

  3. An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks.

    PubMed

    Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José

    2012-01-01

    This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network.

  4. Ultra-low field MRI: bringing MRI to new arenas

    DOE PAGES

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett; ...

    2016-11-01

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  5. Ultra-low field MRI: bringing MRI to new arenas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  6. Identification of parental line specific effects of MLF2 on resistance to coccidiosis in chickens

    PubMed Central

    2011-01-01

    Background MLF2 was the candidate gene associated with coccidiosis resistance in chickens. Although single marker analysis supported the association between MLF2 and coccidiosis resistance, causative mutation relevant to coccidiosis was not identified yet. Thus, this study suggested segregation analysis of MLF2 haplotype and the association test of the other candidate genes using improved data transformation. Results A haplotype probably originated from one parental line was found out of 4 major haplotypes of MLF2. Frequency of this haplotype was 0.2 in parental chickens and its offspring in 12 families. Allele substitution effect of the MLF2 haplotype originated from a specific line was associated with increased body weight and fecal egg count explaining coccidiosis resistance. Nevertheless Box-Cox transformation was able to improve normality; association test did not produce obvious different results compared with analysis with log transformed phenotype. Conclusion Allele substitution effect analysis and classification of MLF2 haplotype identified the segregation of haplotype associated with coccidiosis resistance. The haplotype originated from a specific parental line was associated with improving disease resistance. Estimating effect of MLF2 haplotype on coccidiosis resistance will provide useful information for selecting animals or lines for future study. PMID:21645301

  7. Cross-validation of independent ultra-low-frequency magnetic recording systems for active fault studies

    NASA Astrophysics Data System (ADS)

    Wang, Can; Bin, Chen; Christman, Lilianna E.; Glen, Jonathan M. G.; Klemperer, Simon L.; McPhee, Darcy K.; Kappler, Karl N.; Bleier, Tom E.; Dunson, J. Clark

    2018-04-01

    When working with ultra-low-frequency (ULF) magnetic datasets, as with most geophysical time-series data, it is important to be able to distinguish between cultural signals, internal instrument noise, and natural external signals with their induced telluric fields. This distinction is commonly attempted using simultaneously recorded data from a spatially remote reference site. Here, instead, we compared data recorded by two systems with different instrumental characteristics at the same location over the same time period. We collocated two independent ULF magnetic systems, one from the QuakeFinder network and the other from the United States Geological Survey (USGS)-Stanford network, in order to cross-compare their data, characterize data reproducibility, and characterize signal origin. In addition, we used simultaneous measurements at a remote geomagnetic observatory to distinguish global atmospheric signals from local cultural signals. We demonstrated that the QuakeFinder and USGS-Stanford systems have excellent coherence, despite their different sensors and digitizers. Rare instances of isolated signals recorded by only one system or only one sensor indicate that caution is needed when attributing specific recorded signal features to specific origins.[Figure not available: see fulltext.

  8. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    PubMed

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  9. Ultra-broadband and low-loss 3  dB optical power splitter based on adiabatic tapered silicon waveguides.

    PubMed

    Wang, Yang; Gao, Shitao; Wang, Ke; Skafidas, Efstratios

    2016-05-01

    A broadband, low-loss and polarization-insensitive 3 dB optical power splitter based on adiabatic tapered silicon waveguides is proposed and investigated. 3D-FDTD simulation results show that the splitter achieves an output transmission efficiency of nearly 50% over an ultra-broad wavelength range from 1200 to 1700 nm. The device is fabricated, and experimental results show that the splitter exhibits a low excess loss of <0.19  dB for the TE polarization and <0.14  dB for the TM polarization over the entire measured wavelength range from 1530 to 1600 nm, while having an adiabatic taper length of only 5 μm. In addition, the measured power uniformity of the cascaded 1×8 splitter is only 0.47 dB, and 0.17 dB for the TE and TM polarizations, respectively. With the advantages of low loss, broad bandwidth, and compact size, the proposed splitter is a promising element for large-scale silicon integrated photonic circuits.

  10. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    PubMed Central

    Casson, Alexander J.

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via gmC circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans. PMID:26694414

  11. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes.

    PubMed

    Casson, Alexander J

    2015-12-17

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans.

  12. Dynamic-load-enabled ultra-low power multiple-state RRAM devices.

    PubMed

    Yang, Xiang; Chen, I-Wei

    2012-01-01

    Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.

  13. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling?

    PubMed

    Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas

    2017-12-01

    Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.

  14. Low friction wear resistant graphene films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  15. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    PubMed

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  16. Study of ultra-low emittance design for Spear3 using longitudinal gradient dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-24

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  17. Development and fabrication of low ON resistance high current vertical VMOS power FETs

    NASA Technical Reports Server (NTRS)

    Kay, S.

    1979-01-01

    The design of a VMOS Power FET exhibiting low ON resistance, high current as well as high breakdown voltage and fast switching speeds is described. The design which is based on a 1st-order device model, features a novel polysilicon-gate structure and fieldplated groove termination to achieve high packing density and high breakdown voltage, respectively. One test chip, named VNTKI, can block 180 V at an ON resistence of 2.5 ohm. A 150 mil x 200 mil (.19 sq cm) experimental chip has demonstrated a breakdown voltage of 200v, an ON resistance of 0.12 ohm, a switching time of less than 100 ns, and a pulse drain - current of 50 A with 10 V gate drive.

  18. Composition of the Ultra-Low Velocity Zone from Shock Data

    NASA Astrophysics Data System (ADS)

    Ahrens, T. J.; Asimow, P. D.

    2009-12-01

    Composition of the Ultra-Low Velocity Zone from Shock Data Thomas J. Ahrens and Paul D. Asimow Recent models of the thermal structure of a putative magma ocean upon accretion of the Earth are derived from construction of isentropes centered at the core-mantle boundary (CMB) pressure and temperature (133 GPa and 4300 K). These models were motivated by the idea that the seismologically mapped ultra-low velocity zones (ULVZ) above the CMB are partially molten remnants of a basal magma ocean [1]. Magma ocean thermal models are derived from the observation of strongly increasing Grüneisen parameter (γ) upon compression of silicate liquids both in ab initio molecular dynamics modeling of MgSiO3 melt [2] and in new shock wave data on MgSiO3 phases reaching CMB conditions. Shock EOS (and limited Hugoniot radiative temperature) data for Mg2SiO4 (initially forsterite and wadsleyite) access perovskite (and post-perovskite) + periclase and melt regimes [3]. MgSiO3 (initially enstatite, perovskite, and glass) EOS and radiative temperature data in the perovskite, post-perovskite, and melt regimes, together with static P-V-T data, define the properties of these phases [4]. With recent Caltech Hugoniot radiative temperature measurements on pre-heated (1923 K) MgO [5], we have experimental constraints on melting temperatures of all major minerals in the MgO-SiO2 binary at lower-most mantle pressures. Recently extended (to 130 GPa) pre-heated (1673 K) Hugoniot data for molten and solid diopside - anorthite aggregate (64 mol % diopside, 36 mol % anorthite) also show the strong increase in γ, over the pressure range of the mantle, previously observed for ultramafic compositions. For long-term gravitational stability, the presumed molten silicate liquid of the ULVZ must be neutrally buoyant, or denser, than the ambient lowermost mantle. Surprisingly, unlike the situation in the upper mantle low-velocity zone, the density of even partially Fe-enriched, Di0.64An0.36 composition, ~5

  19. Evaluation of an Ultra-Low Power Reed Solomon Encoder for NASA's Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Lei, K. E.; Xapsos, M. A.; Poivey, C.; LaBel, K. A.; Stone, R. F.; Yeh, P-S.; Gambles, J.; Hass, J.; Maki, G.; Murguia, J.

    2003-01-01

    Radiation test results and analyses are presented for ultra-low power Reed Solomon encoder circuits that are being considered for use on the Space Technology 5 (ST5) mission. The total ionizing dose tolerance is in excess of 100 krad(Si) and is due to the low supply voltage and the use of back-bias, which suppresses radiation-induced leakage currents in the n-channel devices. The circuits do not latch-up for ion LET values of at least 90 MeV-sq cm/mg. A hardened-by-design approach to SEU has achieved an upset threshold of about 20 MeV-sq cm/mg. The SEU rate expected for these circuits in the geosynchronous transfer orbit of ST5 is low.

  20. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC

    NASA Astrophysics Data System (ADS)

    Arel, Hasan Şahan

    The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC) are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg) and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm). The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio.

  1. Insights about minority HIV-1 strains in transmitted drug resistance mutation dynamics and disease progression.

    PubMed

    Leda, Ana Rachel; Hunter, James; Oliveira, Ursula Castro; Azevedo, Inacio Junqueira; Sucupira, Maria Cecilia Araripe; Diaz, Ricardo Sobhie

    2018-04-19

    The presence of minority transmitted drug resistance mutations was assessed using ultra-deep sequencing and correlated with disease progression among recently HIV-1-infected individuals from Brazil. Samples at baseline during recent infection and 1 year after the establishment of the infection were analysed. Viral RNA and proviral DNA from 25 individuals were subjected to ultra-deep sequencing of the reverse transcriptase and protease regions of HIV-1. Viral strains carrying transmitted drug resistance mutations were detected in 9 out of the 25 patients, for all major antiretroviral classes, ranging from one to five mutations per patient. Ultra-deep sequencing detected strains with frequencies as low as 1.6% and only strains with frequencies >20% were detected by population plasma sequencing (three patients). Transmitted drug resistance strains with frequencies <14.8% did not persist upon established infection. The presence of transmitted drug resistance mutations was negatively correlated with the viral load and with CD4+ T cell count decay. Transmitted drug resistance mutations representing small percentages of the viral population do not persist during infection because they are negatively selected in the first year after HIV-1 seroconversion.

  2. Combination of Continuous Dexmedetomidine Infusion with Titrated Ultra-Low-Dose Propofol-Fentanyl for an Awake Craniotomy

    PubMed Central

    Das, Samaresh; Al-Mashani, Ali; Suri, Neelam; Salhotra, Neeraj; Chatterjee, Nilay

    2016-01-01

    An awake craniotomy is a continuously evolving technique used for the resection of brain tumours from the eloquent cortex. We report a 29-year-old male patient who presented to the Khoula Hospital, Muscat, Oman, in 2016 with a two month history of headaches and convulsions due to a space-occupying brain lesion in close proximity with the left motor cortex. An awake craniotomy was conducted using a scalp block, continuous dexmedetomidine infusion and a titrated ultra-low-dose of propofolfentanyl. The patient remained comfortable throughout the procedure and the intraoperative neuropsychological tests, brain mapping and tumour resection were successful. This case report suggests that dexmedetomidine in combination with titrated ultra-low-dose propofolfentanyl are effective options during an awake craniotomy, ensuring optimum sedation, minimal disinhibition and a rapid recovery. To the best of the authors’ knowledge, this is the first awake craniotomy conducted successfully in Oman. PMID:27606116

  3. Development of Ultra-Fast Silicon Detectors for 4D tracking

    NASA Astrophysics Data System (ADS)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  4. Reliability testing of ultra-low noise InGaAs quad photoreceivers

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay M.; Datta, Shubhashish; Prasad, Narasimha; Sivertz, Michael

    2018-02-01

    We have developed ultra-low noise quadrant InGaAs photoreceivers for multiple applications ranging from Laser Interferometric Gravitional Wave Detection, to 3D Wind Profiling. Devices with diameters of 0.5 mm, 1mm, and 2 mm were processed, with the nominal capacitance of a single quadrant of a 1 mm quad photodiode being 2.5 pF. The 1 mm diameter InGaAs quad photoreceivers, using a low-noise, bipolar-input OpAmp circuitry exhibit an equivalent input noise per quadrant of <1.7 pA/√Hz in 2 to 20 MHz frequency range. The InGaAs Quad Photoreceivers have undergone the following reliability tests: 30 MeV Proton Radiation up to a Total Ionizing Dose (TID) of 50 krad, Mechanical Shock, and Sinusoidal Vibration.

  5. Ultra-low output impedance RF power amplifier for parallel excitation.

    PubMed

    Chu, Xu; Yang, Xing; Liu, Yunfeng; Sabate, Juan; Zhu, Yudong

    2009-04-01

    Inductive coupling between coil elements of a transmit array is one of the key challenges faced by parallel RF transmission. An ultra-low output impedance RF power amplifier (PA) concept was introduced to address this challenge. In an example implementation, an output-matching network was designed to transform the drain-source impedance of the metallic oxide semiconductor field effect transistor (MOSFET) into a very low value for suppressing interelement coupling effect, and meanwhile, to match the input impedance of the coil to the optimum load of the MOSFET for maximizing the available output power. Two prototype amplifiers with 500-W output rating were developed accordingly, and were further evaluated with a transmit array in phantom experiments. Compared to the conventional 50-Omega sources, the new approach exhibited considerable effectiveness suppressing the effects of interelement coupling. The experiments further indicated that the isolation performance was comparable to that achieved by optimized overlap decoupling. The new approach, benefiting from a distinctive current-source characteristic, also exhibited a superior robustness against load variation. Feasibility of the new approach in high-field MR was demonstrated on a 3T clinical scanner.

  6. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus.

    PubMed

    Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric

    2016-10-01

    Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Towards sparse characterisation of on-body ultra-wideband wireless channels.

    PubMed

    Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-06-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices.

  8. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devicesmore » is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.« less

  9. Monitoring therapy responses at the leukemic subclone level by ultra-deep amplicon resequencing in acute myeloid leukemia.

    PubMed

    Ojamies, P N; Kontro, M; Edgren, H; Ellonen, P; Lagström, S; Almusa, H; Miettinen, T; Eldfors, S; Tamborero, D; Wennerberg, K; Heckman, C; Porkka, K; Wolf, M; Kallioniemi, O

    2017-05-01

    In our individualized systems medicine program, personalized treatment options are identified and administered to chemorefractory acute myeloid leukemia (AML) patients based on exome sequencing and ex vivo drug sensitivity and resistance testing data. Here, we analyzed how clonal heterogeneity affects the responses of 13 AML patients to chemotherapy or targeted treatments using ultra-deep (average 68 000 × coverage) amplicon resequencing. Using amplicon resequencing, we identified 16 variants from 4 patients (frequency 0.54-2%) that were not detected previously by exome sequencing. A correlation-based method was developed to detect mutation-specific responses in serial samples across multiple time points. Significant subclone-specific responses were observed for both chemotherapy and targeted therapy. We detected subclonal responses in patients where clinical European LeukemiaNet (ELN) criteria showed no response. Subclonal responses also helped to identify putative mechanisms underlying drug sensitivities, such as sensitivity to azacitidine in DNMT3A mutated cell clones and resistance to cytarabine in a subclone with loss of NF1 gene. In summary, ultra-deep amplicon resequencing method enables sensitive quantification of subclonal variants and their responses to therapies. This approach provides new opportunities for designing combinatorial therapies blocking multiple subclones as well as for real-time assessment of such treatments.

  10. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-09-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose

  11. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    PubMed Central

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  12. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    USGS Publications Warehouse

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  13. Simultaneous quantification of antimicrobial agents for multidrug-resistant bacterial infections in human plasma by ultra-high-pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Tsai, I-Lin; Sun, Hsin-Yun; Chen, Guan-Yuan; Lin, Shu-Wen; Kuo, Ching-Hua

    2013-11-15

    Antibiotic-resistant bacterial infection is one of the most serious clinical problems worldwide. Vancomycin, teicoplanin, daptomycin, and colistin are glycopeptide and lipopeptide antibiotics that are frequently used to treat multidrug-resistant bacterial infections. Therapeutic drug monitoring is recommended to ensure both safety and efficacy and to improve clinical outcomes. This study developed a fast, simple, and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of the concentrations of these four drugs in human plasma. The sample preparation process includes a simple protein denaturation step using acetonitrile, followed by an 11-fold dilution with 0.1% formic acid. Eight target peaks for the four drugs can be analyzed within 3 min using a Kinetex™ 2.6 μm C18 column. The mass spectrometry parameters were optimized, and two transitions for each target peak were used for multiple reaction monitoring, which provided high sensitivity and specificity. The UHPLC-MS/MS method was validated over clinical concentration ranges. The intra-day and inter-day precisions for the ratio of the peak area of each analyte to the peak area of the internal standard were all below 12.7 and 14.7% relative standard deviations, respectively. The accuracy at low, medium, and high concentrations of the eight target peaks was between 89.3 and 110.7%. The standard curves for the analytes were linear and had coefficients of determination higher than 0.997. The limits of detection were all below 70 ng mL(-1). The use of this method to analyze patient plasma samples confirmed that it is effective for the therapeutic drug monitoring of these four drugs and can be used to improve the therapeutic efficacy and safety of treatment with antibiotics. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Theory and experiment research for ultra-low frequency maglev vibration sensor.

    PubMed

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  15. Theory and experiment research for ultra-low frequency maglev vibration sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  16. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  17. Evaluation methods and evaporation conditions for low-resistivity contacts on high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Liu, Y. P.; Warner, K.; Chan, C.; Chen, K.; Markiewicz, R.

    1989-12-01

    Low-resistivity contacts to bulk high-Tc superconductors have been prepared by resistive evaporation with values of rho-s (ohm sq cm) as low as 10 to the -10th (77 K) for Ag/YBaCuO, 10 to the -9th (77 K) for Ag/TlPbBaCaCuO, and 10 to the 7th (60 K) for Ag/BiCaSrCuO. It was found that rho-s is improved by increasing the length of a preevaporation step. This effect has been further investigated by secondary ion-mass spectrometry analysis on several Ag/Si samples. Both three-terminal and four-terminal methods have been used to determine rho-s; the three-terminal method shows less dependency on the sample/contact geometry for measurements taken above Tc.

  18. Ultra-low voltage electrowetting using graphite surfaces.

    PubMed

    Lomax, Deborah J; Kant, Pallav; Williams, Aled T; Patten, Hollie V; Zou, Yuqin; Juel, Anne; Dryfe, Robert A W

    2016-10-26

    The control of wetting behaviour underpins a variety of important applications from lubrication to microdroplet manipulation. Electrowetting is a powerful method to achieve external wetting control, by exploiting the potential-dependence of the liquid contact angle with respect to a solid substrate. Addition of a dielectric film to the surface of the substrate, which insulates the electrode from the liquid thereby suppressing electrolysis, has led to technological advances such as variable focal-length liquid lenses, electronic paper and the actuation of droplets in lab-on-a-chip devices. The presence of the dielectric, however, necessitates the use of large bias voltages (frequently in the 10-100 V range). Here we describe a simple, dielectric-free approach to electrowetting using the basal plane of graphite as the conducting substrate: unprecedented changes in contact angle for ultra-low voltages are seen below the electrolysis threshold (50° with 1 V for a droplet in air, and 100° with 1.5 V for a droplet immersed in hexadecane), which are shown to be reproducible, stable over 100 s of cycles and free of hysteresis. Our results dispel conventional wisdom that reversible, hysteresis-free electrowetting can only be achieved on solid substrates with the use of a dielectric. This work paves the way for the development of a new generation of efficient electrowetting devices using advanced materials such as graphene and monolayer MoS 2 .

  19. Assembly techniques for ultra-low mass drift chambers

    NASA Astrophysics Data System (ADS)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-03-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100-200 KeV/c) for particles momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams.

  20. The MESSIER surveyor: unveiling the ultra-low surface brightness universe

    NASA Astrophysics Data System (ADS)

    Valls-Gabaud, David; MESSIER Collaboration

    2017-03-01

    The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.

  1. An assessment of ultra fine grained 316L stainless steel for implant applications.

    PubMed

    Muley, Sachin Vijay; Vidvans, Amey N; Chaudhari, Gajanan P; Udainiya, Sumit

    2016-01-01

    Ultra fine-grained metals obtained by severe plastic deformation exhibit higher specific strength that is useful for many applications and show promise for use as body implants. This work studied the microstructural evolution, mechanical and sliding wear behavior and corrosion behavior of 316L stainless steel warm multi axially forged at 600°C. Microstructural evolution studied using electron backscatter diffraction technique and transmission electron microscopy confirmed the formation of ultra fine-grained structure. Average grain size reduced from 30μm to 0.86μm after nine strain steps. A combination of Hall-Petch strengthening and strain hardening increased the hardness. Improved sliding wear resistance is attributed to a transition from micro cutting to wedge-forming mode of abrasive wear. Load-bearing orthopedic implants often fail from pitting initiated corrosion fatigue. Potentiodynamic tests, cyclic polarization, and FeCl3 immersion tests revealed enhanced pitting resistance of forged steel that is confirmed by Mott-Schottky analysis. This is ascribed to an increase in the grain boundary volume, and homogenization of pit inducing impurities and non-metallic phases due to severe deformation, which influenced the passive film properties. These model studies on 316L steel demonstrate that severely deformed ultra fine-grained metals have potential to deliver improved implant performance. This model study on 316L steel demonstrates that severely deformed ultra fine-grained (UFG) metals have potential to deliver improved load-bearing implant performance. It is as interesting as is unclear as to how such severely deformed UFG material behaves electrochemically in the corrosive body fluids. This work is on studying the inter-relationship between structure, and mechanical, wear, and corrosion behavior of warm multiaxially forged (MAFed) UFG 316L stainless steel. Warm MAF is a bulk processing method capable of yielding large volume of UFG material and is an easily

  2. Contact Resistance and Channel Conductance of Graphene Field-Effect Transistors under Low-Energy Electron Irradiation

    PubMed Central

    Giubileo, Filippo; Di Bartolomeo, Antonio; Martucciello, Nadia; Romeo, Francesco; Iemmo, Laura; Romano, Paola; Passacantando, Maurizio

    2016-01-01

    We studied the effects of low-energy electron beam irradiation up to 10 keV on graphene-based field effect transistors. We fabricated metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO2, obtaining specific contact resistivity ρc≈19 kΩ·µm2 and carrier mobility as high as 4000 cm2·V−1·s−1. By using a highly doped p-Si/SiO2 substrate as the back gate, we analyzed the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate herein that low energy irradiation is detrimental to the transistor current capability, resulting in an increase in contact resistance and a reduction in carrier mobility, even at electron doses as low as 30 e−/nm2. We also show that irradiated devices recover their pristine state after few repeated electrical measurements. PMID:28335335

  3. Ultra-thin, light-trapping silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.

  4. Low-fat versus low-carbohydrate weight reduction diets: effects on weight loss, insulin resistance, and cardiovascular risk: a randomized control trial.

    PubMed

    Bradley, Una; Spence, Michelle; Courtney, C Hamish; McKinley, Michelle C; Ennis, Cieran N; McCance, David R; McEneny, Jane; Bell, Patrick M; Young, Ian S; Hunter, Steven J

    2009-12-01

    Low-fat hypocaloric diets reduce insulin resistance and prevent type 2 diabetes in those at risk. Low-carbohydrate, high-fat diets are advocated as an alternative, but reciprocal increases in dietary fat may have detrimental effects on insulin resistance and offset the benefits of weight reduction. We investigated a low-fat (20% fat, 60% carbohydrate) versus a low-carbohydrate (60% fat, 20% carbohydrate) weight reduction diet in 24 overweight/obese subjects ([mean +/- SD] BMI 33.6 +/- 3.7 kg/m(2), aged 39 +/- 10 years) in an 8-week randomized controlled trial. All food was weighed and distributed, and intake was calculated to produce a 500 kcal/day energy deficit. Insulin action was assessed by the euglycemic clamp and insulin secretion by meal tolerance test. Body composition, adipokine levels, and vascular compliance by pulse-wave analysis were also measured. Significant weight loss occurred in both groups (P < 0.01), with no difference between groups (P = 0.40). Peripheral glucose uptake increased, but there was no difference between groups (P = 0.28), and suppression of endogenous glucose production was also similar between groups. Meal tolerance-related insulin secretion decreased with weight loss with no difference between groups (P = 0.71). The change in overall systemic arterial stiffness was, however, significantly different between diets (P = 0.04); this reflected a significant decrease in augmentation index following the low-fat diet, compared with a nonsignificant increase within the low-carbohydrate group. This study demonstrates comparable effects on insulin resistance of low-fat and low-carbohydrate diets independent of macronutrient content. The difference in augmentation index may imply a negative effect of low-carbohydrate diets on vascular risk.

  5. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  6. Towards sparse characterisation of on-body ultra-wideband wireless channels

    PubMed Central

    Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-01-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409

  7. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.

    PubMed

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-07-04

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns.

  8. Selection for longevity confers resistance to low-temperature stress in Drosophila melanogaster.

    PubMed

    Luckinbill, L S

    1998-03-01

    One theory of the evolution of longevity says that improvement in life span is dependent on an increased ability to resist environmental stresses of all kind. Selective breeding of Drosophila melanogaster populations for longevity has demonstrably increased life span and also altered a number of other traits, such as resistance to starvation, desiccation, and ethanol fumes, and the ability to sustain longer flight. While the exact physiologic basis of some of these traits is not yet fully understood, at least some are known to derive from the properties of metabolic substrates of glycolysis. Improvement in those characters can depend partially, therefore, on altered stores of metabolites created from glycogen. Based on the known general relationship of some traits and the suspected basis in metabolism of others, we examine the possibility here that increased life span is accompanied by other traits that also confer physiologic resistance to stress. Specifically, we test the prediction that long-lived populations of fruit flies should be more resistant to low (prefreezing) and freezing temperature extremes. Both selected and control populations were found to be susceptible to prefreezing (1.5 degrees C) and freezing temperatures (0 degree C) here, but adults and pupae of the long-lived populations generally survived better in both situations, and at all durations of exposure. The resistance of individuals improved with acclimatization, but was superior in the long-lived populations whether thermal decline was rapid or stepwise. Cold resistant, long-lived populations also had significantly higher in vitro levels of glycerol, a cryoprotectant metabolite produced from glycogen. However, while adults and pupae of long-lived stocks were more resistant to cold, larvae of those stocks were more sensitive and survived relatively poorly at every length of exposure and acclimation. This surprising result implies that larvae maintain lower levels of cryoprotectant substances

  9. Ultra-low-noise preamplifier for condenser microphones.

    PubMed

    Starecki, Tomasz

    2010-12-01

    The paper presents the design of a low-noise preamplifier dedicated for condenser measurement microphones used in high sensitivity applications, in which amplifier noise is the main factor limiting sensitivity of the measurements. In measurement microphone preamplifiers, the dominant source of noise at lower frequencies is the bias resistance of the input stage. In the presented solution, resistors were connected to the input stage by means of switches. The switches are opened during measurements, which disconnects the resistors from the input stage and results in noise reduction. Closing the switches allows for fast charging of the microphone capacitance. At low frequencies the noise of the designed preamplifier is a few times lower in comparison to similar, commercially available instruments.

  10. An ultra-low-cost smartphone octochannel spectrometer for mobile health diagnostics.

    PubMed

    Wang, Li-Ju; Naudé, Nicole; Chang, Yu-Chung; Crivaro, Anne; Kamoun, Malek; Wang, Ping; Li, Lei

    2018-03-30

    With the rapid development and proliferation of mobile devices with powerful computing power and the ability of integrating sensors into mobile devices, the potential impact of mobile health (mHealth) diagnostics on the public health is drawing researchers' attention. We developed a Smartphone Octo-channel Spectrometer (SOS) as a mHealth diagnostic tool. The SOS has nanoscale wavelength resolution, is self-illuminated from the smartphone itself, and is ultra-low cost (less than $20). A user interface controls the optical sensing parameters and precise alignment. After calibrating and testing the SOS by quantifying protein concentrations, we clinically validated the SOS by comparing the diagnostic performance of our device with that of a clinical spectrophotometer. About 180 serum samples from de-identified patients with 4 types of autoantibodies were blindly read the ELISA results. The accuracy of the SOS achieved 100% across the clinical reportable range compared with the FDA-approved instrument. Furthermore, the self-illuminated SOS only requires about half of the light intensity of the FDA-approved instrument to achieve clinical-level sensitivity. The low-energy-consumption and low-cost SOS enables point-of-care spectrophotometric sensing in low-resource areas, and can be integrated into point-of-care diagnostic systems for rapid multiplex readout and analysis at patient bedside or at home. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Ultra-Low Power Turning Angle Based Biomedical Signal Compression Engine with Adaptive Threshold Tuning.

    PubMed

    Zhou, Jun; Wang, Chao

    2017-08-06

    Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics.

  12. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7more » Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.« less

  13. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    PubMed

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  14. The Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  15. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    NASA Astrophysics Data System (ADS)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  16. Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe by solid-liquid-coexisting annealing of a-GeSn/c-Si structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadoh, Taizoh, E-mail: sadoh@ed.kyushu-u.ac.jp; Chikita, Hironori; Miyao, Masanobu

    2015-09-07

    Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%–26%) and annealing conditions (300–1000 °C, 1 s–48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (∼80%) SiGe layers with Sn concentrations of ∼2% are realized by ultra-low temperature annealingmore » (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.« less

  17. The Impact of Resistance Training on Swimming Performance: A Systematic Review.

    PubMed

    Crowley, Emmet; Harrison, Andrew J; Lyons, Mark

    2017-11-01

    The majority of propulsive forces in swimming are produced from the upper body, with strong correlations between upper body strength and sprint performance. There are significant gaps in the literature relating to the impact of resistance training on swimming performance, specifically the transfer to swimming performance. The aims of this systematic literature review are to (1) explore the transfer of resistance-training modalities to swimming performance, and (2) examine the effects of resistance training on technical aspects of swimming. Four online databases were searched with the following inclusion criteria: (1) journal articles with outcome measures related to swimming performance, and (2) competitive swimmers participating in a structured resistance-training programme. Exclusion criteria were (1) participants with a mean age <16 years; (2) untrained, novice, masters and paraplegic swimmers; (3) triathletes and waterpolo players; (4) swimmers with injuries or illness; and (5) studies of starts and turns specifically. Data were extracted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Physiotherapy Evidence Database (PEDro) scale was applied. For optimal transfer, specific, low-volume, high-velocity/force resistance-training programmes are optimal. Stroke length is best achieved through resistance training with low repetitions at a high velocity/force. Resisted swims are the most appropriate training modality for improving stroke rate. Future research is needed with respect to the effects of long-term resistance-training interventions on both technical parameters of swimming and overall swimming performance. The results of such work will be highly informative for the scientific community, coaches and athletes.

  18. Low cost and thin metasurface for ultra wide band and wide angle polarization insensitive radar cross section reduction

    NASA Astrophysics Data System (ADS)

    Ameri, Edris; Esmaeli, Seyed Hassan; Sedighy, Seyed Hassan

    2018-05-01

    A planar low cost and thin metasurface is proposed to achieve ultra-wideband radar cross section (RCS) reduction with stable performance with respect to polarization and incident angles. This metasurface is composed of two different artificial magnetic conductor unit cells arranged in a chessboard like configuration. These unit cells have a Jerusalem cross pattern with different thicknesses, which results in wideband out-phase reflection and RCS reduction, consequently. The designed metasurface reduces RCS more than 10-dB from 13.6 GHz to 45.5 GHz (108% bandwidth) and more than 20-dB RCS from 15.2 GHz to 43.6 GHz (96.6%). Moreover, the 10-dB RCS reduction bandwidth is very stable (more than 107%) for both TE and TM polarizations. The good agreement between simulations and measurement results proves the design, properly. The ultra-wide bandwidth, low cost, low profile, and stable performance of this metasurface prove its high capability compared with the state-of-the-art references.

  19. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins

    NASA Astrophysics Data System (ADS)

    Bershtein, Vladimir; Fainleib, Alexander; Egorova, Larisa; Gusakova, Kristina; Grigoryeva, Olga; Kirilenko, Demid; Konnikov, Semen; Ryzhov, Valery; Yakushev, Pavel; Lavrenyuk, Natalia

    2015-04-01

    Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into CER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the `constrained dynamics' effect in the case of densely cross-linked polymer networks.

  20. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    PubMed

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  1. UV light induced insulator-metal transition in ultra-thin ZnO/TiOx stacked layer grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Saha, D.; Misra, P.; Joshi, M. P.; Kukreja, L. M.

    2016-08-01

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1-7) of ZnO/TiOx layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O2 and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ˜ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent

  2. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOEpatents

    Limaye, S.Y.

    1996-01-30

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  3. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOEpatents

    Limaye, Santosh Y.

    1996-01-01

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  4. Coexistence of enhanced mobile broadband communications and ultra-reliable low-latency communications in mobile front-haul

    NASA Astrophysics Data System (ADS)

    Ying, Kai; Kowalski, John M.; Nogami, Toshizo; Yin, Zhanping; Sheng, Jia

    2018-01-01

    5G systems are supposed to support coexistence of multiple services such as ultra reliable low latency communications (URLLC) and enhanced mobile broadband (eMBB) communications. The target of eMBB communications is to meet the high-throughput requirement while URLLC are used for some high priority services. Due to the sporadic nature and low latency requirement, URLLC transmission may pre-empt the resource of eMBB transmission. Our work is to analyze the URLLC impact on eMBB transmission in mobile front-haul. Then, some solutions are proposed to guarantee the reliability/latency requirements for URLLC services and minimize the impact to eMBB services at the same time.

  5. A BMI-adjusted ultra-low-dose CT angiography protocol for the peripheral arteries-Image quality, diagnostic accuracy and radiation exposure.

    PubMed

    Schreiner, Markus M; Platzgummer, Hannes; Unterhumer, Sylvia; Weber, Michael; Mistelbauer, Gabriel; Loewe, Christian; Schernthaner, Ruediger E

    2017-08-01

    To investigate radiation exposure, objective image quality, and the diagnostic accuracy of a BMI-adjusted ultra-low-dose CT angiography (CTA) protocol for the assessment of peripheral arterial disease (PAD), with digital subtraction angiography (DSA) as the standard of reference. In this prospective, IRB-approved study, 40 PAD patients (30 male, mean age 72 years) underwent CTA on a dual-source CT scanner at 80kV tube voltage. The reference amplitude for tube current modulation was personalized based on the body mass index (BMI) with 120 mAs for [BMI≤25] or 150 mAs for [2570%) was assessed by two readers independently and compared to subsequent DSA. Radiation exposure was assessed with the computed tomography dose index (CTDIvol) and the dosis-length product (DLP). Objective image quality was assessed via contrast- and signal-to-noise ratio (CNR and SNR) measurements. Radiation exposure and image quality were compared between the BMI groups and between the BMI-adjusted ultra-low-dose protocol and the low-dose institutional standard protocol (ISP). The BMI-adjusted ultra-low-dose protocol reached high diagnostic accuracy values of 94% for Reader 1 and 93% for Reader 2. Moreover, in comparison to the ISP, it showed significantly (p<0.001) lower CTDIvol (1.97±0.55mGy vs. 4.18±0.62 mGy) and DLP (256±81mGy x cm vs. 544±83mGy x cm) but similar image quality (p=0.37 for CNR). Furthermore, image quality was similar between BMI groups (p=0.86 for CNR). A CT protocol that incorporates low kV settings with a personalized (BMI-adjusted) reference amplitude for tube current modulation and iterative reconstruction enables very low radiation exposure CTA, while maintaining good image quality and high diagnostic accuracy in the assessment of PAD. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source.

    PubMed

    Lee, Inyoung; Sode, Takashi; Loew, Noya; Tsugawa, Wakako; Lowe, Christopher Robin; Sode, Koji

    2017-07-15

    An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated. In this study, we aimed to develop a microcontroller using the BioCapacitor principle. A direct electron transfer type glucose dehydrogenase was immobilized onto mesoporous carbon, and then deposited on the surface of a miniaturized Au electrode (7mm 2 ) to prepare a miniaturized enzyme anode. The enzyme fuel cell was connected with a 100 μF capacitor and a power boost converter as a charge pump. The voltage of the enzyme fuel cell was increased in a stepwise manner by the charge pump from 330mV to 3.1V, and the generated electricity was charged into a 100μF capacitor. The charge pump circuit was connected to an ultra-low-power microcontroller. Thus prepared BioCapacitor based circuit was able to operate an ultra-low-power microcontroller continuously, by running a program for 17h that turned on an LED every 60s. Our success in operating a microcontroller using glucose as the sole energy source indicated the probability of realizing implantable self-powered autonomously operated artificial organs, such as artificial pancreas. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  8. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa.

    PubMed

    Lin, F; Chen, X M

    2007-05-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control of the disease. The spring wheat cultivar 'Alpowa' has both race-specific, all-stage resistance and non-race-specific, high-temperature adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with 'Avocet Susceptible' (AVS). Seedlings of the parents, and F(1), F(2) and F(3) progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F(3) lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance, the parents and 136 F(3) lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions. A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1% of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R (2) values

  9. Low Temperature Resistive Switching Behavior in a Manganite

    NASA Astrophysics Data System (ADS)

    Salvo, Christopher; Lopez, Melinda; Tsui, Stephen

    2012-02-01

    The development of new nonvolatile memory devices remains an important field of consumer electronics. A possible candidate is bipolar resistive switching, a method by which the resistance of a material changes when a voltage is applied. Although there is a great deal of research on this topic, not much has been done at low temperatures. In this work, we compare the room temperature and low temperature behaviors of switching in a manganite thin film. The data indicates that the switching is suppressed upon cooling to cryogenic temperatures, and the presence of crystalline charge traps is tied to the physical mechanism.

  10. Racing with friends: Resistance to peer influence, gist and specific risk beliefs.

    PubMed

    Mirman, Jessica H; Curry, Allison E

    2016-11-01

    Studies assessing young drivers' risk appraisals with their driving behavior have shown both positive and inverse associations, possibly due to differences in survey items that cue gist appraisals about risk (i.e., beliefs that are focused on meaning) or specific appraisals (i.e., beliefs that are focused on discrete instances). Prior research has indicated that gist-based reasoning is protective against engaging in risk behavior and that use of gist appraisals increases with development. Additionally, although much of adolescents' risk-taking occurs in groups, almost no research examines how adolescents' resistance to peer influence may relate to their specific and gist beliefs about socially-bound risk behavior, as well as their future engagement in such behavior. One hundred and thirty-two adolescent drivers participated in a prospective self-report study on racing behavior. Surveys measured specific and gist risk appraisals, resistance to peer influence, and racing behavior at two time points three months apart. We hypothesized that stronger specific appraisals would be associated with greater likelihood of racing, and stronger gist appraisals would be protective. Further, we hypothesized that resistance to peer influence would be positively associated with gist appraisals and negatively associated with specific risk appraisals; and would also be inversely associate with racing. Specific risk appraisals and gist appraisals were predictive of racing behavior as hypothesized. Resistance to peer influence did not predict racing, but was associated with each type of risk appraisal as predicted at Time 1, although the association between specific risk and resistance to peer influence was non-significant at the second time point. Gist beliefs and the ability to resist influence from friends might be indicative of an underlying strength of one's own beliefs about the self as a non-risk taking person who stands up for his or her beliefs, which is protective against

  11. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  12. Perineal pseudocontinent colostomy for ultra-low rectal adenocarcinoma: the muscular graft as a pseudosphincter.

    PubMed

    Souadka, Amine; Majbar, Mohammed Anass; Amrani, Laila; Souadka, Abdelilah

    2016-10-01

    The aim of this study was to analyze objectively the role of the muscular graft in the continence using manometric study in the patients who underwent pseudocontinent perineal colostomy after abdominoperineal resection for rectal adenocarcinoma. This was a retrospective study including all the patients from January 2002 to December 2009 who underwent an abdominoperineal resection followed by perineal pseudocontinent colostomy for ultra-low rectal adenocarcinoma and agreed to perform the manometric evaluation of the muscular graft. Fifteen patients were included, six males and nine females, with a mean age of 50 years. According to Kirwan's classification, 2 (13.3%) patients had normal continence (Stage A) had 10 (66.6%) no soiling (stage B) and 3 (20%) patients had minimal soiling (Stage C). The manometric evaluation was performed after a median period of 12 months post-surgery. The mean maximal resting and squeeze pressures were respectively 41 cmH2O and 59 cmH2O and the mean colonic sensory volume was 12 ml. This study showed that the musculae graft of Pseudocontinent Perineal colostomy acted as a hypotonic sphincter that pressure can increase during the voluntary squeeze. These data may help to clarify the functional outcomes of this technique after APR for ultra-low rectal adenocarcinoma.

  13. Fabrication and stability investigation of ultra-thin transparent and flexible Cu-Ag-Au tri-layer film on PET

    NASA Astrophysics Data System (ADS)

    Prakasarao, Ch Surya; D'souza, Slavia Deeksha; Hazarika, Pratim; Karthiselva N., S.; Ramesh Babu, R.; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    The need for transparent conducting electrodes with high transmittance, low sheet resistance and flexibility to replace Indium Tin Oxide is ever growing. We have deposited and studied the performance of ultra-thin Cu-Ag-Au tri-layer films over a flexible poly-ethylene terephthalate substrate. Scotch tape test showed good adhesion of the metallic film. Transmittance of the tri-layer was around 40 % in visible region. Optical profiler measurements were done to study the surface features. The XRD pattern revealed that film was amorphous. Sheet resistance measured by four probe technique was around 7.7 Ohm/Δ and was stable up to 423 K. The transport parameters by Hall effect showed high conductivity and carrier concentration with a mobility of 5.58 cm2/Vs. Tests performed in an indigenously designed bending unit indicated the films to be stable both mechanically and electrically even after 50,000 bending cycles.

  14. Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration

    NASA Astrophysics Data System (ADS)

    Wang, Huaimin; Ren, Chunhua; Song, Zhijian; Wang, Ling; Chen, Xuemei; Yang, Zhimou

    2010-06-01

    We report on the use of a phosphatase to assist the formation of leaf-like structures and a supramolecular hydrogel with an ultra-low minimum gelation concentration. The compound can gel water at a minimum gelation concentration of 0.01 wt%, which is the lowest gelation concentration reported up to now. The images obtained by transmission electron microscopy (TEM) reveal the existence of leaf-like structures serving as the matrix of the hydrogels. The stability of the hydrogels was studied and emission spectra were used to get information about the molecular packing in the leaf-like structures. Since lowering the concentration of the gelator decreases the toxicity of the resulting hydrogels, ultra-low concentration gels have potential uses as biocompatible biomaterials for, e.g., cell cultures, tissue engineering, and drug delivery.

  15. Development of high-performance low-reflection rugged resistive touch screens for military displays

    NASA Astrophysics Data System (ADS)

    Wang, Raymond; Wang, Minshine; Thomas, John; Wang, Lawrence; Chang, Victor

    2010-04-01

    Just as iPhones with sophisticated touch interfaces have revolutionised the human interface for the ubiquitous cell phone, the Military is rapidly adopting touch-screens as a primary interface to their computers and vehicle systems. This paper describes the development of a true military touch interface solution from an existing industrial design. We will report on successful development of 10.4" and 15.4" high performance rugged resistive touch panels using IAD sputter coating. Low reflectance (specular < 1% and diffuse < 0.07%) was achieved with high impact, dust, and chemical resistant surface finishes. These touch panels were qualified over a wide operational temperature range, -51°C to +80°C specifically for military and rugged industrial applications.

  16. Ultra-low-energy analog straintronics using multiferroic composites

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2014-03-01

    Multiferroic devices, i.e., a magnetostrictive nanomagnet strain-coupled with a piezoelectric layer, are promising as binary switches for ultra-low-energy digital computing in beyond Moore's law era [Roy, K. Appl. Phys. Lett. 103, 173110 (2013), Roy, K. et al. Appl. Phys. Lett. 99, 063108 (2011), Phys. Rev. B 83, 224412 (2011), Scientific Reports (Nature Publishing Group) 3, 3038 (2013), J. Appl. Phys. 112, 023914 (2012)]. We show here that such multiferroic devices, apart from performing digital computation, can be also utilized for analog computing purposes, e.g., voltage amplification, filter etc. The analog computing capability is conceived by considering that magnetization's mean orientation shifts gradually although nanomagnet's potential minima changes abruptly. Using tunneling magnetoresistance (TMR) measurement, a continuous output voltage while varying the input voltage can be produced. Stochastic Landau-Lifshitz-Gilbert (LLG) equation in the presence of room-temperature (300 K) thermal fluctuations is solved to demonstrate the analog computing capability of such multiferroic devices. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  17. An Ultra-Low Power Turning Angle Based Biomedical Signal Compression Engine with Adaptive Threshold Tuning

    PubMed Central

    Zhou, Jun; Wang, Chao

    2017-01-01

    Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics. PMID:28783079

  18. Precision analysis of the photomultiplier response to ultra low signals

    NASA Astrophysics Data System (ADS)

    Degtiarenko, Pavel

    2017-11-01

    A new computational model for the description of the photon detector response functions measured in conditions of low light is presented, together with examples of the observed photomultiplier signal amplitude distributions, successfully described using the parameterized model equation. In extension to the previously known approximations, the new model describes the underlying discrete statistical behavior of the photoelectron cascade multiplication processes in photon detectors with complex non-uniform gain structure of the first dynode. Important features of the model include the ability to represent the true single-photoelectron spectra from different photomultipliers with a variety of parameterized shapes, reflecting the variability in the design and in the individual parameters of the detectors. The new software tool is available for evaluation of the detectors' performance, response, and efficiency parameters that may be used in various applications including the ultra low background experiments such as the searches for Dark Matter and rare decays, underground neutrino studies, optimizing operations of the Cherenkov light detectors, help in the detector selection procedures, and in the experiment simulations.

  19. Precision analysis of the photomultiplier response to ultra low signals

    DOE PAGES

    Degtiarenko, Pavel

    2017-08-05

    Here, a new computational model for the description of the photon detector response functions measured in conditions of low light is presented, together with examples of the observed photomultiplier signal amplitude distributions, successfully described using the parameterized model equation. In extension to the previously known approximations, the new model describes the underlying discrete statistical behavior of the photoelectron cascade multiplication processes in photon detectors with complex non-uniform gain structure of the first dynode. Important features of the model include the ability to represent the true single-photoelectron spectra from different photomultipliers with a variety of parameterized shapes, reflecting the variability inmore » the design and in the individual parameters of the detectors. The new software tool is available for evaluation of the detectors’ performance, response, and efficiency parameters that may be used in various applications including the ultra low background experiments such as the searches for Dark Matter and rare decays, underground neutrino studies, optimizing operations of the Cherenkov light detectors, help in the detector selection procedures, and in the experiment simulations.« less

  20. Specific interactions between host and parasite genotypes do not act as a constraint on the evolution of antiviral resistance in Drosophila.

    PubMed

    Carpenter, Jennifer A; Hadfield, Jarrod D; Bangham, Jenny; Jiggins, Francis M

    2012-04-01

    Genetic correlations between parasite resistance and other traits can act as an evolutionary constraint and prevent a population from evolving increased resistance. For example, previous studies have found negative genetic correlations between host resistance and life-history traits. In invertebrates, the level of resistance often depends on the combination of the host and parasite genotypes, and in this study, we have investigated whether such specific resistance also acts as an evolutionary constraint. We measured the resistance of different genotypes of the fruit fly Drosophila melanogaster to different genotypes of a naturally occurring pathogen, the sigma virus. Using a multitrait analysis, we examine whether genetic covariances alter the potential to select for general resistance against all of the different viral genotypes. We found large amounts of heritable variation in resistance, and evidence for specific interactions between host and parasite, but these interactions resulted in little constraint on Drosophila evolving greater resistance. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  1. Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep.

    PubMed

    Tolone, Marco; Larrondo, Cristian; Yáñez, José M; Newman, Scott; Sardina, Maria Teresa; Portolano, Baldassare

    2016-07-28

    Mastitis resistance is a complex and multifactorial trait, and its expression depends on both genetic and environmental factors, including infection pressure. The objective of this research was to determine the genetic basis of mastitis resistance to specific pathogens using a repeatability threshold probit animal model. The most prevalent isolated pathogens were coagulase-negative staphylococci (CNS); 39 % of records and 77 % of the animals infected at least one time in the whole period of study. There was significant genetic variation only for Streptococci (STR). In addition, there was a positive genetic correlation between STR and all pathogens together (ALL) (0.36 ± 0.22), and CNS and ALL (0.92 ± 0.04). The results of our study support the presence of significant genetic variation for mastitis caused by Streptococci and suggest the importance of discriminating between different pathogens causing mastitis due to the fact that they most likely influence different genetic traits. Low heritabilities for pathogen specific-mastitis resistance may be considered when including bacteriological status as a measure of mastitis presence to implement breeding strategies for improving udder health in dairy ewes.

  2. Applying a Low-FODMAP Dietary Intervention to a Female Ultra-Endurance Runner With Irritable Bowel Syndrome During a Multi-Stage Ultra-Marathon.

    PubMed

    Gaskell, Stephanie K; Costa, Ricardo J S

    2018-05-14

    Malabsorption of Fermentable Oligo- Di- and Mono-saccharides and Polyols (FODMAPs) in response to prolonged exercise may increase incidence of upper- and lower-gastrointestinal symptoms (GIS), which are known to impair exercise performance. The case-study aimed to explore the impact of a low-FODMAP diet on exercise-associated GIS in a female ultra-endurance runner diagnosed with irritable bowel syndrome (IBS), competing in a six-day 186.7 km mountainous multi-stage ultra-marathon (MSUM). IBS symptom severity score at diagnosis was 410 and following a low-FODMAP diet (3.9 g FODMAPs·day -1 ) reduced to 70. The diet was applied six-days before (i.e., lead-in diet), and maintained during (5.1 g FODMAPs·day -1 ) the MSUM. Nutrition intake was analysed through dietary analysis software. A validated 100 mm visual analogue scale quantified GIS incidence and severity. GIS were modest during the MSUM (overall mean ± SD: bloating 27 ± 5 mm and flatulence 23 ± 8 mm), except severe nausea (67 ± 14 mm) experienced throughout. Total daily energy (11.7 ± 1.6 MJ·day -1 ) intake did not meet estimated energy requirements (range: 13.9-17.9 MJ·day -1 ). Total daily protein (1.4 ± 0.3 g·kgbody weight (BW) -1 ·day -1 ), carbohydrate (9.1 ± 1.3 g·kgBW -1 ·day -1 ), fat (1.1 ± 0.2 g·kgBW -1 ·day -1 ), and water (78.7 ± 6.4 ml·kgBW -1 ·day -1 ) intakes satisfied current consensus guidelines, except for carbohydrates. Carbohydrate intake during running failed to meet recommendations (43 ± 9 g·h -1 ). The runner successfully implemented a low-FODMAP diet completing the MSUM with minimal GIS. However, suboptimal energy and carbohydrate intake occurred, potentially exacerbated by nausea associated with running at altitude.

  3. Experimental Tests of UltraFlex Array Designs in Low Earth Orbital and Geosynchronous Charging Environments

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.; Hillard, Grover B.

    2011-01-01

    The present ground based investigations give the first definitive look describing the expected on-orbit charging behavior of Orion UltraFlex array coupons in the Low Earth Orbital and Geosynchronous Environments. Furthermore, it is important to note that the LEO charging environment also applies to the International Space Station as well as to the lunar mission charging environments. The GEO charging environment includes the bounding case for all lunar orbital and lunar surface mission environments. The UltraFlex thin film photovoltaic array technology has been targeted to become the sole power system for life support and on-orbit power for the manned Aires Crew Exploration Vehicle. It is therefore, crucial to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues in an attempt to ascertain that a single UltraFlex array design will be able to cope with the projected worst case LEO and GEO charging environments. Testing was limited to four array coupons, two coupons each from two different array manufactures, Emcore and Spectrolab. The layout of each array design is identical and varies only in the actual cell technology used. The individual array cells from each manufacturer have an antireflection layered coating and come in two different varieties either uncoated (only AR coating) or coated with a thin conducting ITO layer. The LEO Plasma tests revealed that all four coupons passed the arc threshold -120 V bias tests. GEO electron gun charging tests revealed that only front side area of ITO coated coupons passed tests. Only the Emcore AR array passed backside Stage 2 GEO Tests.

  4. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    DOE PAGES

    Cartiglia, N.; Staiano, A.; Sola, V.; ...

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low- Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm 2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup includedmore » three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.« less

  5. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Cartiglia, N.; Staiano, A.; Sola, V.; Arcidiacono, R.; Cirio, R.; Cenna, F.; Ferrero, M.; Monaco, V.; Mulargia, R.; Obertino, M.; Ravera, F.; Sacchi, R.; Bellora, A.; Durando, S.; Mandurrino, M.; Minafra, N.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gkougkousis, E.; Grabas, H.; Gruey, B.; Labitan, C. A.; Losakul, R.; Luce, Z.; McKinney-Martinez, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Woods, N.; Zatserklyaniy, A.; Pellegrini, G.; Hidalgo, S.; Carulla, M.; Flores, D.; Merlos, A.; Quirion, D.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Zavrtanik, M.

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.

  6. Low-frequency dielectric spectra of low-resistivity GaSe crystals (in Ukrainian)

    NASA Astrophysics Data System (ADS)

    Stakhira, J.; Fl'Unt, O.; Fiyala, Ya.

    The low-frequency dielectric response of low-resistivity GaSe layered crystal along the c-axis has been investigated at liquid nitrogen temperatures. The normalized spectra (activation energies from frequency shift is 0.19 eV) have been treated analytically employing equivalent circuits. It is shown that experimental data cannot be obtained with the circuit containing only ideal capacitors and resistors. At the same time, the equivalent circuit containing dispersive capacitors characterized by the power law dependence on frequency C^*=B(jω)^{n-1}, where ω is radian frequency, 0< n< 1, gives a good agreement with experimental data. This means that measured response of low-resistivity GaSe crystals follows the ``universal" power law of dielectric response χ^*˜(jω)^{n-1}, but not the Debye one. The nature of the ``universal" power law is explained by many-body interactions between localized charge carriers.

  7. Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing.

    PubMed

    Tian, He; Zhao, Lianfeng; Wang, Xuefeng; Yeh, Yao-Wen; Yao, Nan; Rand, Barry P; Ren, Tian-Ling

    2017-12-26

    Extremely low energy consumption neuromorphic computing is required to achieve massively parallel information processing on par with the human brain. To achieve this goal, resistive memories based on materials with ionic transport and extremely low operating current are required. Extremely low operating current allows for low power operation by minimizing the program, erase, and read currents. However, materials currently used in resistive memories, such as defective HfO x , AlO x , TaO x , etc., cannot suppress electronic transport (i.e., leakage current) while allowing good ionic transport. Here, we show that 2D Ruddlesden-Popper phase hybrid lead bromide perovskite single crystals are promising materials for low operating current nanodevice applications because of their mixed electronic and ionic transport and ease of fabrication. Ionic transport in the exfoliated 2D perovskite layer is evident via the migration of bromide ions. Filaments with a diameter of approximately 20 nm are visualized, and resistive memories with extremely low program current down to 10 pA are achieved, a value at least 1 order of magnitude lower than conventional materials. The ionic migration and diffusion as an artificial synapse is realized in the 2D layered perovskites at the pA level, which can enable extremely low energy neuromorphic computing.

  8. Controlling the phase locking of stochastic magnetic bits for ultra-low power computation

    NASA Astrophysics Data System (ADS)

    Mizrahi, Alice; Locatelli, Nicolas; Lebrun, Romain; Cros, Vincent; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Querlioz, Damien; Grollier, Julie

    2016-07-01

    When fabricating magnetic memories, one of the main challenges is to maintain the bit stability while downscaling. Indeed, for magnetic volumes of a few thousand nm3, the energy barrier between magnetic configurations becomes comparable to the thermal energy at room temperature. Then, switches of the magnetization spontaneously occur. These volatile, superparamagnetic nanomagnets are generally considered useless. But what if we could use them as low power computational building blocks? Remarkably, they can oscillate without the need of any external dc drive, and despite their stochastic nature, they can beat in unison with an external periodic signal. Here we show that the phase locking of superparamagnetic tunnel junctions can be induced and suppressed by electrical noise injection. We develop a comprehensive model giving the conditions for synchronization, and predict that it can be achieved with a total energy cost lower than 10-13 J. Our results open the path to ultra-low power computation based on the controlled synchronization of oscillators.

  9. Controlling the phase locking of stochastic magnetic bits for ultra-low power computation.

    PubMed

    Mizrahi, Alice; Locatelli, Nicolas; Lebrun, Romain; Cros, Vincent; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Querlioz, Damien; Grollier, Julie

    2016-07-26

    When fabricating magnetic memories, one of the main challenges is to maintain the bit stability while downscaling. Indeed, for magnetic volumes of a few thousand nm(3), the energy barrier between magnetic configurations becomes comparable to the thermal energy at room temperature. Then, switches of the magnetization spontaneously occur. These volatile, superparamagnetic nanomagnets are generally considered useless. But what if we could use them as low power computational building blocks? Remarkably, they can oscillate without the need of any external dc drive, and despite their stochastic nature, they can beat in unison with an external periodic signal. Here we show that the phase locking of superparamagnetic tunnel junctions can be induced and suppressed by electrical noise injection. We develop a comprehensive model giving the conditions for synchronization, and predict that it can be achieved with a total energy cost lower than 10(-13) J. Our results open the path to ultra-low power computation based on the controlled synchronization of oscillators.

  10. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therkelsen, Peter; Cheng, Robert; Sholes, Darren

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draftmore » combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.« less

  11. Development of Ultra-Low Noise, High Performance III-V Quantum Well Infrared Photodetectors (QWIPs) for Focal Plane Array Staring Image Sensor Systems

    DTIC Science & Technology

    1994-02-06

    Ultra-Low Noise , High Performance lll-V Quantum Well Infrared Photodetectors ( QWIPs ) for Focal Plane Array Staring Image Sensor Systems i Submitted to i... QWIP , the noise is increased by the square root of the gain ,(g and the detectivity D" is reduced by this same factor. As shown in Fig. 3.18, the optimum...PI .4totekotP044l .t.,me. O IM A. AGENCY use ONLY (Leave blank) 1. y.p0AT J *fY E AND OATES CO r S - 0 1 DWveop cTteOf Ultra-Low Noise , High

  12. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  13. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  14. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  15. Conformal chemically resistant coatings for microflow devices

    DOEpatents

    Folta, James A.; Zdeblick, Mark

    2003-05-13

    A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 .mu.m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65.degree. C.

  16. Altered Substrate Specificity of Drug-Resistant Human Immunodeficiency Virus Type 1 Protease

    PubMed Central

    Dauber, Deborah S.; Ziermann, Rainer; Parkin, Neil; Maly, Dustin J.; Mahrus, Sami; Harris, Jennifer L.; Ellman, Jon A.; Petropoulos, Christos; Craik, Charles S.

    2002-01-01

    Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV. PMID:11773410

  17. The effects of low-level ionizing radiation and copper exposure on the incidence of antibiotic resistance in lentic biofilm bacteria.

    PubMed

    McArthur, J Vaun; Dicks, Christian A; Bryan, A Lawrence; Tuckfield, R Cary

    2017-09-01

    Environmental reservoirs of antibiotic resistant bacteria are poorly understood. Understanding how the environment selects for resistance traits in the absence of antibiotics is critical in developing strategies to mitigate this growing menace. Indirect or co-selection of resistance by environmental pollution has been shown to increase antibiotic resistance. However no attention has been given to the effects of low-level ionizing radiation or the interactions between radiation and heavy metals on the maintenance or selection for antibiotic resistance (AR) traits. Here we explore the effect of radiation and copper on antibiotic resistance. Bacteria were collected from biofilms in two ponds - one impacted by low-level radiocesium and the other an abandoned farm pond. Through laboratory controlled experiments we examined the effects of increasing concentrations of copper on the incidence of antibiotic resistance. Differences were detected in the resistance profiles of the controls from each pond. Low levels (0.01 mM) of copper sulfate increased resistance but 0.5 mM concentrations of copper sulfate depressed the AR response in both ponds. A similar pattern was observed for levels of multiple antibiotic resistance per isolate. The first principal component response of isolate exposure to multiple antibiotics showed significant differences among the six isolate treatment combinations. These differences were clearly visualized through a discriminant function analysis, which showed distinct antibiotic resistance response patterns based on the six treatment groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ultra-low background mass spectrometry for rare-event searches

    NASA Astrophysics Data System (ADS)

    Dobson, J.; Ghag, C.; Manenti, L.

    2018-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) allows for rapid, high-sensitivity determination of trace impurities, notably the primordial radioisotopes 238U and 232Th, in candidate materials for low-background rare-event search experiments. We describe the setup and characterisation of a dedicated low-background screening facility at University College London where we operate an Agilent 7900 ICP-MS. The impact of reagent and carrier gas purity is evaluated and we show that twice-distilled ROMIL-SpATM-grade nitric acid and zero-grade Ar gas delivers similar sensitivity to ROMIL-UpATM-grade acid and research-grade gas. A straightforward procedure for sample digestion and analysis of materials with U/Th concentrations down to 10 ppt g/g is presented. This includes the use of 233U and 230Th spikes to correct for signal loss from a range of sources and verification of 238U and 232Th recovery through digestion and analysis of a certified reference material with a complex sample matrix. Finally, we demonstrate assays and present results from two sample preparation and assay methods: a high-sensitivity measurement of ultra-pure Ti using open digestion techniques, and a closed vessel microwave digestion of a nickel-chromium-alloy using a multi-acid mixture.

  19. Low-Thermal-Resistance Baseplate Mounting

    NASA Technical Reports Server (NTRS)

    Perreault, W. T.

    1984-01-01

    Low-thermal-resistance mounting achieved by preloading baseplate to slight convexity with screws threaded through beam. As mounting bolts around edge of base-place tightened, baseplate and cold plate contact first in center, with region of intimate contact spreading outward as bolts tightened.

  20. Capacitors with low equivalent series resistance

    NASA Technical Reports Server (NTRS)

    Lakeman, Charles D. E. (Inventor); Fuge, Mark (Inventor); Fleig, Patrick Franz (Inventor)

    2011-01-01

    An electric double layer capacitor (EDLC) in a coin or button cell configuration having low equivalent series resistance (ESR). The capacitor comprises mesh or other porous metal that is attached via conducting adhesive to one or both the current collectors. The mesh is embedded into the surface of the adjacent electrode, thereby reducing the interfacial resistance between the electrode and the current collector, thus reducing the ESR of the capacitor.

  1. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion.

    PubMed

    Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; Grinblat, Gustavo; Oulton, Rupert F; Bragas, Andrea V; Maier, Stefan A

    2015-08-04

    Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field 'hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments.

  2. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.

    PubMed

    Oida, Takenori; Kobayashi, Tetsuo

    2013-01-01

    Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.

  3. On the mechanism of charge transport in low density polyethylene

    NASA Astrophysics Data System (ADS)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  4. Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor.

    PubMed

    Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S

    2011-11-07

    We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.

  5. The detection of ultra-relativistic electrons in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Katsiyannis, Athanassios C.; Dominique, Marie; Pierrard, Viviane; Rosson, Graciela Lopez; Keyser, Johan De; Berghmans, David; Kruglanski, Michel; Dammasch, Ingolf E.; Donder, Erwin De

    2018-01-01

    Aims: To better understand the radiation environment in low Earth orbit (LEO), the analysis of in-situ observations of a variety of particles, at different atmospheric heights, and in a wide range of energies, is needed. Methods: We present an analysis of energetic particles, indirectly detected by the large yield radiometer (LYRA) instrument on board ESA's project for on-board autonomy 2 (PROBA2) satellite as background signal. Combining energetic particle telescope (EPT) observations with LYRA data for an overlapping period of time, we identified these particles as electrons with an energy range of 2 to 8 MeV. Results: The observed events are strongly correlated to geo-magnetic activity and appear even during modest disturbances. They are also well confined geographically within the L = 4-6 McIlwain zone, which makes it possible to identify their source. Conclusions: Although highly energetic particles are commonly perturbing data acquisition of space instruments, we show in this work that ultra-relativistic electrons with energies in the range of 2-8 MeV are detected only at high latitudes, while not present in the South Atlantic Anomaly region.

  6. An adiabatic quantum flux parametron as an ultra-low-power logic device

    NASA Astrophysics Data System (ADS)

    Takeuchi, Naoki; Ozawa, Dan; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2013-03-01

    Ultra-low-power adiabatic quantum flux parametron (QFP) logic is investigated since it has the potential to reduce the bit energy per operation to the order of the thermal energy. In this approach, nonhysteretic QFPs are operated slowly to prevent nonadiabatic energy dissipation occurring during switching events. The designed adiabatic QFP gate is estimated to have a dynamic energy dissipation of 12% of IcΦ0 for a rise/fall time of 1000 ps. It can be further reduced by reducing circuit inductances. Three stages of adiabatic QFP NOT gates were fabricated using a Nb Josephson integrated circuit process and their correct operation was confirmed.

  7. Low-temperature technique for thick film resist stabilization and curing

    NASA Astrophysics Data System (ADS)

    Minter, Jason P.; Wong, Selmer S.; Marlowe, Trey; Ross, Matthew F.; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    For a range of thick film photoresist applications, including MeV ion implant processing, thin film head manufacturing, and microelectromechanical systems processing, there is a need for a low-temperature method for resist stabilization and curing. Traditional methods of stabilizing or curing resist films have relied on thermal cycling, which may not be desirable due to device temperature limitations or thermally-induced distortion of the resist features.

  8. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  9. Factors Influencing the Microstructure and Mechanical Properties of Ultra Low Carbon Bainitic 100 Tungsten Inert Gas Multipass Weldments

    DTIC Science & Technology

    1992-09-01

    Optical macrograph of flat-etched sample 75B3-8 ........................ 30 Figure 4.15 Constitutional supercooling in alloy solidification ... alloying elements such as Mn, Mo, Ni and Cr are added to increase the strength and hardenability of the steel. However, substantial limitations on...0.9 Carbon Equivalent CE = C + Mn + Si + Ni + Cu + Cr + Mo + V 6 15 5 Figure 2.1 Graville Diagram (Blicharski et al, 1989, p.318) 3 B. ULTRA LOW

  10. Palisade Russet: A late blight resistant potato cultivar having a low incidence of sugar ends and high specific gravity

    USDA-ARS?s Scientific Manuscript database

    Palisade Russet is a medium-late maturing, lightly russeted potato breeding clone notable for its resistance to late blight (Phytophthora infestans) infection of foliage and tuber. Palisade Russet is suitable for processing with low tuber glucose concentrations observed following long-term storage ...

  11. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance.

    PubMed

    Geffroy, V; Sévignac, M; De Oliveira, J C; Fouilloux, G; Skroch, P; Thoquet, P; Gepts, P; Langin, T; Dron, M

    2000-03-01

    Anthracnose, one of the most important diseases of common bean (Phaseolus vulgaris), is caused by the fungus Colletotrichum lindemuthianum. A "candidate gene" approach was used to map anthracnose resistance quantitative trait loci (QTL). Candidate genes included genes for both pathogen recognition (resistance genes and resistance gene analogs [RGAs]) and general plant defense (defense response genes). Two strains of C. lindemuthianum, identified in a world collection of 177 strains, displayed a reproducible and differential aggressiveness toward BAT93 and JaloEEP558, two parental lines of P. vulgaris representing the two major gene pools of this crop. A reliable test was developed to score partial resistance in aerial organs of the plant (stem, leaf, petiole) under controlled growth chamber conditions. BAT93 was more resistant than JaloEEP558 regardless of the organ or strain tested. With a recombinant inbred line (RIL) population derived from a cross between these two parental lines, 10 QTL were located on a genetic map harboring 143 markers, including known defense response genes, anthracnose-specific resistance genes, and RGAs. Eight of the QTL displayed isolate specificity. Two were co-localized with known defense genes (phenylalanine ammonia-lyase and hydroxyproline-rich glycoprotein) and three with anthracnose-specific resistance genes and/or RGAs. Interestingly, two QTL, with different allelic contribution, mapped on linkage group B4 in a 5.0 cM interval containing Andean and Mesoamerican specific resistance genes against C. lindemuthianum and 11 polymorphic fragments revealed with a RGA probe. The possible relationship between genes underlying specific and partial resistance is discussed.

  12. Numerical and Experimental Studies of Ultra Low Profile Three-dimensional Heat Sinks (3DHS) Made using a Novel Manufacturing Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna Kota; Diana Sobers; Paul Kolodner

    2012-04-01

    The continued increase in electronic device packaging densities is placing ever more challenging performance requirements on air-cooled heat sinks. In cases where the state-of-the-art heat sink technology is unable of to meet these requirements, this often results in either a relaxation of design specifications, or the exploration of other thermal management technologies better able to handle high heat density applications, such as liquid cooling. Both of these approaches provide challenges to equipment designers, as relaxing requirements does not allow for a scale-able path to increased device densities and their associated functionality, while incorporating new thermal management technologies often requires majormore » hardware redesigns, which has significant cost implications. In this work, we explore the use of air-cooled heat sinks incorporating three-dimensional features, so-called three-dimensional heat sinks (3DHS), that enhance heat transfer through a number of different physical mechanisms, as an approach to further extending the limits of air cooling. An ultra low profile (5.7 mm) heat sink application is targeted due to the significant thermal challenges associated with restrictions on heat sink height. We also present details on a novel manufacturing method that has significant cost advantages over other fabrication methods such as investment casting and direct metal printing. Experiments on 3DHS and conventional heat sink are conducted in a wind tunnel test apparatus as a function of inlet air mass flow rate and flow bypass above the heat sinks. The experimental results show a strong correlation between heat sink permeability and thermal performance, as measured by heat sink thermal resistance versus ideal pumping power. The results also illustrate the important effects of flow bypass on heat sink performance. The best performing 3DHS design is observed to have up to a 19% improvement in thermal performance relative to a conventional parallel fin

  13. Ultra-low field MRI food inspection system prototype

    NASA Astrophysics Data System (ADS)

    Kawagoe, Satoshi; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo

    2016-11-01

    We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.

  14. Research on precision grinding technology of large scale and ultra thin optics

    NASA Astrophysics Data System (ADS)

    Zhou, Lian; Wei, Qiancai; Li, Jie; Chen, Xianhua; Zhang, Qinghua

    2018-03-01

    The flatness and parallelism error of large scale and ultra thin optics have an important influence on the subsequent polishing efficiency and accuracy. In order to realize the high precision grinding of those ductile elements, the low deformation vacuum chuck was designed first, which was used for clamping the optics with high supporting rigidity in the full aperture. Then the optics was planar grinded under vacuum adsorption. After machining, the vacuum system was turned off. The form error of optics was on-machine measured using displacement sensor after elastic restitution. The flatness would be convergenced with high accuracy by compensation machining, whose trajectories were integrated with the measurement result. For purpose of getting high parallelism, the optics was turned over and compensation grinded using the form error of vacuum chuck. Finally, the grinding experiment of large scale and ultra thin fused silica optics with aperture of 430mm×430mm×10mm was performed. The best P-V flatness of optics was below 3 μm, and parallelism was below 3 ″. This machining technique has applied in batch grinding of large scale and ultra thin optics.

  15. Input comparison of radiogenic neutron estimates for ultra-low background experiments

    NASA Astrophysics Data System (ADS)

    Cooley, J.; Palladino, K. J.; Qiu, H.; Selvi, M.; Scorza, S.; Zhang, C.

    2018-04-01

    Ultra-low-background experiments address some of the most important open questions in particle physics, cosmology and astrophysics: the nature of dark matter, whether the neutrino is its own antiparticle, and does the proton decay. These rare event searches require well-understood and minimized backgrounds. Simulations are used to understand backgrounds caused by naturally occurring radioactivity in the rock and in every piece of shielding and detector material used in these experiments. Most important are processes like spontaneous fission and (α,n) reactions in material close to the detectors that can produce neutrons. A comparison study of the (α,n) reactions between two dedicated software packages is detailed. The cross section libraries, neutron yields, and spectra from the Mei-Zhang-Hime and the SOURCES-4A codes are presented. The resultant yields and spectra are used as inputs to direct dark matter detector toy models in GEANT4, to study the impact of their differences on background estimates and fits. Although differences in neutron yield calculations up to 50% were seen, there was no systematic difference between the Mei-Hime-Zhang and SOURCES-4A results. Neutron propagation simulations smooth differences in spectral shape and yield, and both tools were found to meet the broad requirements of the low-background community.

  16. High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

    NASA Technical Reports Server (NTRS)

    Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric

    2014-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and

  17. First results of outgas resist family test and correlation between outgas specifications and EUV resist development

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Jen; Maruyama, Ken; Ayothi, Ramakrishnan; Naruoka, Takehiko; Chakraborty, Tonmoy; Ashworth, Dominic; Chun, Jun Sung; Montgomery, Cecilia; Jen, Shih-Hui; Neisser, Mark; Cummings, Kevin

    2015-03-01

    In this paper, we present the first results of witness sample based outgas resist family test to improve the efficiency of outgas testing using EUV resists that have shown proven imaging performance. The concept of resist family testing is to characterize the boundary conditions of outgassing scale from three major components for each resist family. This achievement can significantly reduce the cost and improve the resist outgas learning cycle. We also report the imaging performance and outgas test results of state of the art resists and discuss the consequence of the resist development with recent change of resist outgassing specifications. Three chemically amplified resists selected from higher outgassing materials are investigated, but no significant improvement in resist performance is observed.

  18. Hazardous Early Days In (and Beyond) the Habitable Zones Around Ultra-Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Kastner, Joel

    Although a majority of stars in the solar neighborhood are of mid- to late-M type, the magnetically-induced coronal (X-ray) and chromospheric (UV, H-alpha) activity of such stars remain essentially unexplored for the important age range 10-100 Myr. Such information on high-energy processes associated with young M stars would provide much-needed constraints on models of the effects of stellar irradiation on the physics and chemistry of planet-forming disks and newborn planets. In addition, X-ray and UV observations of ultra-low-mass young stars can serve to probe the (presently ill-defined) spectral type boundary that determines which very low-mass objects will eventually become M stars -- as opposed to brown dwarfs (BDs) -- following their pre-main sequence evolutionary stages. Via ADAP support, we have developed the GALEX Nearby Young Star Search (GALNYSS), a search method that combines GALEX, 2MASS, WISE and proper motion catalog information to identify nearby, young, lowmass stars. We have applied this method to identify ~2000 candidate young (10-100 Myr), low-mass (M-type) stars within 150 pc. These GALNYSS-identified young star candidates are distributed over the entire GALEX-covered sky, and their spectral types peak in the M3-4 range; followup optical spectroscopic work is ongoing (Rodriguez et al. 2013, ApJ, 774, 101). We now propose an ADA program to determine the X-ray properties of representative stars among these GALNYSS candidates, so as to confirm their youth and investigate the early evolution of coronal activity near the low-mass star/BD boundary and the effects of such activity on planet formation. Specifically, we will exploit the presence in the HEASARC archives of XMM-Newton and (to a lesser extent) Chandra X-ray Observatory data for a few dozen GALNYSS candidates that have been observed serendipitously by one or both of these space observatories. The proposed ADA program will yield the full reduction and analysis of these as-yet unexplored data

  19. Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status.

    PubMed

    McClain, A D; Otten, J J; Hekler, E B; Gardner, C D

    2013-01-01

    Previous research shows diminished weight loss success in insulin-resistant (IR) women assigned to a low-fat (LF) diet compared to those assigned to a low-carbohydrate (LC) diet. These secondary analyses examined the relationship between insulin-resistance status and dietary adherence to either a LF-diet or LC-diet among 81 free-living, overweight/obese women [age = 41.9 ± 5.7 years; body mass index (BMI) = 32.6 ± 3.6 kg/m(2)]. This study found differential adherence by insulin-resistance status only to a LF-diet, not a LC-diet. IR participants were less likely to adhere and lose weight on a LF-diet compared to insulin-sensitive (IS) participants assigned to the same diet. There were no significant differences between IR and IS participants assigned to LC-diet in relative adherence or weight loss. These results suggest that insulin resistance status may affect dietary adherence to weight loss diets, resulting in higher recidivism and diminished weight loss success of IR participants advised to follow LF-diets for weight loss. © 2012 Blackwell Publishing Ltd.

  20. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion

    PubMed Central

    Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; Grinblat, Gustavo; Oulton, Rupert F.; Bragas, Andrea V.; Maier, Stefan A.

    2015-01-01

    Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ‘hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments. PMID:26238815

  1. The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system.

    PubMed

    Bruno, Giacomo; Canavese, Giancarlo; Liu, Xuewu; Filgueira, Carly S; Sacco, Adriano; Demarchi, Danilo; Ferrari, Mauro; Grattoni, Alessandro

    2016-11-10

    We report an electro-nanofluidic membrane for tunable, ultra-low power drug delivery employing an ionic field effect transistor. Therapeutic release from a drug reservoir was successfully modulated, with high energy efficiency, by actively adjusting the surface charge of slit-nanochannels 50, 110, and 160 nm in size, by the polarization of a buried gate electrode and the consequent variation of the electrical double layer in the nanochannel. We demonstrated control over the transport of ionic species, including two relevant hypertension drugs, atenolol and perindopril, that could benefit from such modulation. By leveraging concentration-driven diffusion, we achieve a 2 to 3 order of magnitude reduction in power consumption as compared to other electrokinetic phenomena. The application of a small gate potential (±5 V) in close proximity (150 nm) of 50 nm nanochannels generated a sufficiently strong electric field, which doubled or blocked the ionic flux depending on the polarity of the voltage applied. These compelling findings can lead to next generation, more reliable, smaller, and longer lasting drug delivery implants with ultra-low power consumption.

  2. Growth and characterization of ultra thin vanadium oxide films

    NASA Astrophysics Data System (ADS)

    Song, Fangfang

    This dissertation focuses on the growth and characterization of ultra thin VO2 films on technologically relevant Si/SiO2 substrate. The samples were prepared by magnetron sputtering with varying deposition and post annealing conditions. VO2(M1) films prepared under optimal condition with thickness around 42nm shows a continuous micro-structure and a metal insulator transition with resistivity change of two orders of magnitude. The transition temperature is determined to be 345K with a hysteresis width of approximately 8°C. The activation energy of the low temperature semiconducting VO2 monoclinic phase is determined to be 0.16+/-0.03ev. These properties are found to be fairly stable over time under ambient atmosphere. Temperature dependent hall measurements suggest that the decrease of the resistivity with increasing temperature is mainly caused by the increase of the number density of charge carriers, the energy gap of VO2 film in the semiconducting phase is 0.4ev and phonon scattering is the dominant scattering mechanism in the temperature range from 195K to 340K. Analysis based on composite model suggested that the sample has some untransitional phases with a length that is 1/4 of the grain size. Stress measurements using X-ray diffraction indicate that the ultra thin VO2 film has a large tensile stress of 2.0+/-0.2GPa. This value agrees well with that calculated thermal stress assuming the stress is due to differential thermal expansion between VO2 film and substrate. The stress is expected to lead to a shift of the transition temperature in the film, as observed. Using magnetron sputtering, VO2(B) film was able to obtained on Si substrate. The temperature dependent current voltage measurement on VO2(B) film did not show any abrupt change in the electrical resistivity. W - VO2(B) thin film - W metal semiconductor-metal I-V properties were found to be determined by reverse biased Schottky barrier at the W/VO 2(b) interface. And the Schottky height between VO2(B

  3. Ultra High Bypass Integrated System Test

    NASA Image and Video Library

    2015-09-14

    NASA’s Environmentally Responsible Aviation Project, in collaboration with the Federal Aviation Administration (FAA) and Pratt & Whitney, completed testing of an Ultra High Bypass Ratio Turbofan Model in the 9’ x 15’ Low Speed Wind Tunnel at NASA Glenn Research Center. The fan model is representative of the next generation of efficient and quiet Ultra High Bypass Ratio Turbofan Engine designs.

  4. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training.

    PubMed

    Kim, Daeyeol; Loenneke, Jeremy P; Ye, Xin; Bemben, Debra A; Beck, Travis W; Larson, Rebecca D; Bemben, Michael G

    2017-12-01

    This study compares the acute and chronic response of high-load resistance training (HL) to low-load resistance training with low blood flow restriction (LL-BFR) pressure. Participants completed elbow flexion with either HL or LL-BFR or nonexercise. In the chronic study, participants in the HL and LL-BFR groups were trained for 8 weeks to determine differences in muscle size and strength. The acute study examined the changes in pretesting/posttesting (Pre/Post) torque, muscle swelling, and blood lactate. In the chronic study, similar changes in muscle size and strength were observed for both HL and LL-BFR. In the acute study, Pre/Post changes in the torque, muscle swelling, and blood lactate were similar between HL and LL-BFR. Our findings indicate that pressure as low as 50% arterial occlusion can produce similar changes in muscle mass and strength compared with traditional HL. Muscle Nerve 56: E126-E133, 2017. © 2017 Wiley Periodicals, Inc.

  5. Reduced autobiographical memory specificity relates to weak resistance to proactive interference.

    PubMed

    Smets, Jorien; Wessel, Ineke; Raes, Filip

    2014-06-01

    Reduced autobiographical memory specificity (rAMS), experiencing intrusive memories, and rumination appear to be risk factors for depression and depressive relapse. The aim of the current study was to investigate whether a weak resistance to proactive interference (PI) might underlie this trio of cognitive risk factors. Resistance to PI refers to being able to ignore cognitive distracters that were previously relevant but became irrelevant for current task goals. Students (N = 65) and depressed patients (N = 37) completed tasks measuring resistance to PI and AMS, and completed questionnaires on intrusive memories and rumination. In both samples, weaker resistance to PI was associated with rAMS. There was no evidence for a relationship between resistance to PI and intrusive memories or rumination. As we did not assess other measures of executive functioning, we cannot conclude whether the observed relationship between rumination and PI is due to unique qualities of PI. Difficulties to deliberately recall specific, rather than general or categoric autobiographical memories appear to be related to more general problems with the inhibition of interference of mental distracters. The results are in line with the executive control account of rAMS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America

  7. Development of an ultra low noise, miniature signal conditioning device for vestibular evoked response recordings

    PubMed Central

    2014-01-01

    Background Inner ear evoked potentials are small amplitude (<1 μVpk) signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially. Method A high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier. Results In comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (<1 nV/Hz) radio frequency interference filter was realized to minimize noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier. Conclusion This paper presents the design and evaluation of an ultra-low noise and miniaturized bio

  8. A novel conductance glucose biosensor in ultra-low ionic strength solution triggered by the oxidation of Ag nanoparticles.

    PubMed

    Song, Yonghai; Chen, Jingyi; Liu, Hongyu; Li, Ping; Li, Hongbo; Wang, Li

    2015-09-03

    A simple, sensitive and effective method to detect glucose in ultra-low ionic strength solution containing citrate-capped silver nanoparticles (CCAgNPs) was developed by monitoring the change of solution conductance. Glucose was catalyzed into gluconic acid firstly by glucose oxidase in an O2-saturated solution accompanied by the reduction of O2 into hydrogen peroxide (H2O2). Then, CCAgNPs was oxidized by H2O2 into Ag(+) and the capping regent of citrate was released at the same time. All these resulted Ag(+), gluconic acid and the released citrate would contribute to the increase of solution ionic strength together, leading to a detectable increase of solution conductance. And a novel conductance glucose biosensor was developed with a routine linear range of 0.06-4.0 mM and a suitable detection limit of 18.0 μM. The novel glucose biosensor was further applied in energy drink sample and proven to be suitable for practical system with low ionic strength. The proposed conductance biosensor achieved a significant breakthrough of glucose detection in ultra-low ionic strength media. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, F.; Bohler, D.; Ding, Y.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less

  10. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate 'bond and peel' method.

    PubMed

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-15

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate 'bond and peel' method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  11. Ultra low-loss hybrid core porous fiber for broadband applications.

    PubMed

    Islam, Md Saiful; Sultana, Jakeya; Atai, Javid; Abbott, Derek; Rana, Sohel; Islam, Mohammad Rakibul

    2017-02-01

    In this paper, we present the design and analysis of a novel hybrid porous core octagonal lattice photonic crystal fiber for terahertz (THz) wave guidance. The numerical analysis is performed using a full-vector finite element method (FEM) that shows that 80% of bulk absorption material loss of cyclic olefin copolymer (COC), commercially known as TOPAS can be reduced at a core diameter of 350 μm. The obtained effective material loss (EML) is as low as 0.04  cm-1 at an operating frequency of 1 THz with a core porosity of 81%. Moreover, the proposed photonic crystal fiber also exhibits comparatively higher core power fraction, lower confinement loss, higher effective mode area, and an ultra-flattened dispersion profile with single mode propagation. This fiber can be readily fabricated using capillary stacking and sol-gel techniques, and it can be used for broadband terahertz applications.

  12. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations

    PubMed Central

    Guess, Petra C.; Schultheis, Stefan; Wolkewitz, Martin; Zhang; Strub, Joerg R.

    2015-01-01

    Statement of problem Preparation designs and ceramic thicknesses are key factors for the long-term success of minimally invasive premolar partial coverage restorations. However, only limited information is presently available on this topic. Purpose The aim of this in vitro study was to evaluate the fracture resistance and failure modes of ceramic premolar partial coverage restorations with different preparation designs and ceramic thicknesses. Material and methods Caries-free human premolars (n= 144) were divided into 9 groups. Palatal onlay preparation comprised reduction of the palatal cusp by 2 mm (Palatal-Onlay-Standard), 1 mm (Palatal-Onlay-Thin), or 0.5 mm (Palatal-Onlay-Ultra-Thin). Complete-coverage onlay preparation additionally included the buccal cusp (Occlusal-Onlay-Standard; Occlusal-Onlay-Thin; Occlusal-Onlay-Ultra-Thin). Labial surface preparations with chamfer reductions of 0.8 mm (Complete-Veneer-Standard), 0.6 mm (Complete-Veneer-Thin) and 0.4 mm (Complete-Veneer-Ultra-Thin) were implemented for complete veneer restorations. Restorations were fabricated from a pressable lithium-disilicate ceramic (IPS-e.max-Press) and cemented adhesively (Syntac-Classic/Variolink-II). All specimens were subjected to cyclic mechanical loading (F= 49 N, 1.2 million cycles) and simultaneous thermocycling (5°C to 55°C) in a mouth-motion simulator. After fatigue, restorations were exposed to single-load-to-failure. Two-way ANOVA was used to identify statistical differences. Pair-wise differences were calculated and P-values were adjusted by the Tukey–Kramer method (α= .05). Results All specimens survived fatigue. Mean (SD) load to failure values (N) were as follows: 837 (320/Palatal-Onlay-Standard), 1055 (369/Palatal-Onlay-Thin), 1192 (342/Palatal-Onlay-Ultra-Thin), 963 (405/Occlusal-Onlay-Standard), 1108 (340/Occlusal-Onlay-Thin), 997 (331/Occlusal-Onlay-Ultra-Thin), 1361 (333/Complete-Veneer-Standard), 1087 (251/Complete-Veneer-Thin), 883 (311/Complete-Veneer-Ultra

  13. Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Murphy, K. R.; Watt, Clare E. J.; Mann, Ian R.; Yao, Zhonghua; Kalmoni, Nadine M. E.; Forsyth, Colin; Milling, David K.

    2017-12-01

    Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of "auroral beads". At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the "Tamao travel time" from near-earth neutral line reconnection and formation of the SCW.

  14. Low-resistive penetration in granular media

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Fransisco

    The quasi-static immersion of an intruder into a granular assembly requires a force that is several orders of magnitude larger than necessary in fluids under similar conditions. This occurs as a result of the progressive formation of a network composed of force chains, which simultaneously increase in size with intruder penetration. The present work shows that the resisting force for the immersion of an intruder into a granular material can be reduced by an order of magnitude with mechanical vibrations of small amplitude (A = 10 μm) and low frequency (f = 50-200 Hz). The effect of the vibrations characteristics and the intruder geometry on the drop of the resistive force were inspected experimentally. Thanks to flow visualizations, it has been shown that vibrations induce a local convection into the granular media leading to the modification of the network of force chains. Moreover, scaling arguments are developed in order to rationalize our observations and to predict under which circumstances the resistive force is reduced. Finally, the use of such a phenomenon in the animal kingdom and the technological world will be discussed.

  15. Evaluation of an iterative model-based CT reconstruction algorithm by intra-patient comparison of standard and ultra-low-dose examinations.

    PubMed

    Noël, Peter B; Engels, Stephan; Köhler, Thomas; Muenzel, Daniela; Franz, Daniela; Rasper, Michael; Rummeny, Ernst J; Dobritz, Martin; Fingerle, Alexander A

    2018-01-01

    Background The explosive growth of computer tomography (CT) has led to a growing public health concern about patient and population radiation dose. A recently introduced technique for dose reduction, which can be combined with tube-current modulation, over-beam reduction, and organ-specific dose reduction, is iterative reconstruction (IR). Purpose To evaluate the quality, at different radiation dose levels, of three reconstruction algorithms for diagnostics of patients with proven liver metastases under tumor follow-up. Material and Methods A total of 40 thorax-abdomen-pelvis CT examinations acquired from 20 patients in a tumor follow-up were included. All patients were imaged using the standard-dose and a specific low-dose CT protocol. Reconstructed slices were generated by using three different reconstruction algorithms: a classical filtered back projection (FBP); a first-generation iterative noise-reduction algorithm (iDose4); and a next generation model-based IR algorithm (IMR). Results The overall detection of liver lesions tended to be higher with the IMR algorithm than with FBP or iDose4. The IMR dataset at standard dose yielded the highest overall detectability, while the low-dose FBP dataset showed the lowest detectability. For the low-dose protocols, a significantly improved detectability of the liver lesion can be reported compared to FBP or iDose 4 ( P = 0.01). The radiation dose decreased by an approximate factor of 5 between the standard-dose and the low-dose protocol. Conclusion The latest generation of IR algorithms significantly improved the diagnostic image quality and provided virtually noise-free images for ultra-low-dose CT imaging.

  16. A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement

    NASA Astrophysics Data System (ADS)

    Ge, Xulei; Yuan, Xiaohui; Yang, Su; Deng, Yanqing; Wei, Wenqing; Fang, Yuan; Gao, Jian; Liu, Feng; Chen, Min; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie

    2018-04-01

    We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications.

  17. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Low- and High-Resistance Exercise: Long-Term Adherence and Motivation among Older Adults.

    PubMed

    Van Roie, Evelien; Bautmans, Ivan; Coudyzer, Walter; Boen, Filip; Delecluse, Christophe

    2015-01-01

    In terms of motivation and long-term adherence, low-resistance exercise might be more suitable for older adults than high-resistance exercise. However, more data are needed to support this claim. The objective was to investigate the effect of low- and high-resistance exercise protocols on long-term adherence and motivation. This study was designed as an exploratory 24-week follow-up of a randomized 12-week resistance training intervention in older adults. Participants were free to decide whether or not they continued resistance training at their own expense following the intervention. Fifty-six older adults were randomly assigned to HIGH [2 × 10-15 repetitions at 80% of one repetition maximum (1RM)], LOW (1 × 80-100 repetitions at 20% of 1RM), or LOW+ (1 × 60 repetitions at 20% of 1RM + 1 × 10-20 repetitions at 40% 1RM). Motivation, self-efficacy and the perceived barriers for continuing resistance exercise were measured after cessation of each supervised intervention and at follow-up, while long-term adherence was probed retrospectively at follow-up. Participants reported high levels of self-determined motivation before, during, and after the supervised intervention, with no differences between groups (p > 0.05). Nevertheless, only few participants continued strength training after the intervention: 17% in HIGH, 21% in LOW+, and 11% in LOW (p > 0.05). The most commonly reported barriers for continuing resistance exercise were perceived lack of time (46%), being more interested in other physical activities (40%), seasonal reasons (40%), and financial cost (28%). The results suggest no difference in long-term adherence after the end of a supervised exercise intervention at high or low external resistances. Long-term adherence was limited despite high levels of self-determined motivation during the interventions. These findings highlight the importance of further research on developing strategies to overcome barriers of older adults to adhere to resistance

  19. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less

  20. Synthesis and properties of ultra-long InP nanowires on glass.

    PubMed

    Dhaka, Veer; Pale, Ville; Khayrudinov, Vladislav; Kakko, Joona-Pekko; Haggren, Tuomas; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri

    2016-12-16

    We report on the synthesis of Au-catalyzed InP nanowires (NWs) on low-cost glass substrates. Ultra-dense and ultra-long (up to ∼250 μm) InP NWs, with an exceptionally high growth rate of ∼25 μm min -1 , were grown directly on glass using metal organic vapor phase epitaxy (MOVPE). Structural properties of InP NWs grown on glass were similar to the ones grown typically on Si substrates showing many structural twin faults but the NWs on glass always exhibited a stronger photoluminescence (PL) intensity at room temperature. The PL measurements of NWs grown on glass reveal two additional prominent impurity related emission peaks at low temperature (10 K). In particular, the strongest unusual emission peak with an activation energy of 23.8 ± 2 meV was observed at 928 nm. Different possibilities including the role of native defects (phosphorus and/or indium vacancies) are discussed but most likely the origin of this PL peak is related to the impurity incorporation from the glass substrate. Furthermore, despite the presence of suspected impurities, the NWs on glass show outstanding light absorption in a wide spectral range (60%-95% for λ = 300-1600 nm). The optical properties and the NW growth mechanism on glass is discussed qualitatively. We attribute the exceptionally high growth rate mostly to the atmospheric pressure growth conditions of our MOVPE reactor and stronger PL intensity on glass due to the impurity doping. Overall, the III-V NWs grown on glass are similar to the ones grown on semiconductor substrates but offer additional advantages such as low-cost and light transparency.

  1. An ultra-low cost NMR device with arbitrary pulse programming

    NASA Astrophysics Data System (ADS)

    Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian

    2015-06-01

    Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.

  2. The UltraLightweight Technology for Research in Astronomy (ULTRA) Project

    NASA Astrophysics Data System (ADS)

    Twarog, B. A.; Anthony-Twarog, B. J.; Shawl, S. J.; Hale, R.; Taghavi, R.; Fesen, R.; Etzel, P. B.; Martin, R.; Romeo, R.

    2004-12-01

    The collaborative focus of four academic departments (Univ. of Kansas Aerospace Engineering, Univ. of Kansas Physics & Astronomy, San Diego State University Astronomy and Dartmouth College Astronomy) and a private industry partner (Composite Mirror Applications, Inc.-CMA, Inc.) is a three-year plan to develop and test UltraLightweight Technology for Research in Astronomy (ULTRA). The ULTRA technology, using graphite fiber composites to fabricate mirrors and telescope structures, offers a versatile and cost-effective tool for optical astronomy, including the economical fabrication and operation of telescopes ranging from small (1m or smaller) aperture for education and research to extremely large (30m+) segmented telescopes (ELTs). The specific goal of this NSF-funded three-year Major Research Instrumentation project is to design, build, and test a 1m-class optical tube assembly (OTA) and mirrors constructed entirely from composites. In the first year of the project, the team has built and is field-testing two 0.4m prototypes to validate the optical surfaces and figures of the mirrors and to test and refine the structural dynamics of the OTA. Preparation for design and construction of the 1m telescope is underway. When completed in late 2005, the ULTRA telescope will be operated remotely from Mt. Laguna Observatory east of San Diego, where it will undergo a period of intensive optical and imaging tests. A 0.4m prototype OTA with mirrors (12 kg total weight) will be on display at the meeting. Support of this work by NSF through grants AST-0320784 and AST-0321247, NASA grant NCC5-600, the University of Kansas, and San Diego State University is gratefully acknowledged.

  3. Power- and Low-Resistance-State-Dependent, Bipolar Reset-Switching Transitions in SiN-Based Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sungjun; Park, Byung-Gook

    2016-08-01

    A study on the bipolar-resistive switching of an Ni/SiN/Si-based resistive random-access memory (RRAM) device shows that the influences of the reset power and the resistance value of the low-resistance state (LRS) on the reset-switching transitions are strong. For a low LRS with a large conducting path, the sharp reset switching, which requires a high reset power (>7 mW), was observed, whereas for a high LRS with small multiple-conducting paths, the step-by-step reset switching with a low reset power (<7 mW) was observed. The attainment of higher nonlinear current-voltage ( I-V) characteristics in terms of the step-by-step reset switching is due to the steep current-increased region of the trap-controlled space charge-limited current (SCLC) model. A multilevel cell (MLC) operation, for which the reset stop voltage ( V STOP) is used in the DC sweep mode and an incremental amplitude is used in the pulse mode for the step-by-step reset switching, is demonstrated here. The results of the present study suggest that well-controlled conducting paths in a SiN-based RRAM device, which are not too strong and not too weak, offer considerable potential for the realization of low-power and high-density crossbar-array applications.

  4. Method for forming low-resistance ohmic contacts on semiconducting oxides

    DOEpatents

    Narayan, J.

    1979-10-01

    The invention provides a new method for the formation of high-quality ohmic contacts on wide-band-gap semiconducting oxides. As exemplified by the formation of an ohmic contact on n-type BaTiO/sub 3/ containing a p-n junction, the invention entails depositing a film of a metallic electroding material on the BaTiO/sub 3/ surface and irradiating the film with a Q-switched laser pulse effecting complete melting of the film and localized melting of the surface layer of oxide immediately underlying the film. The resulting solidified metallic contact is ohmic, has unusually low contact resistance, and is thermally stable, even at elevated temmperatures. The contact does not require cleaning before attachment of any suitable electrical lead. This method is safe, rapid, reproducible, and relatively inexpensive.

  5. Crystal growth of intermetallic clathrates: Floating zone process and ultra rapid crystallization

    NASA Astrophysics Data System (ADS)

    Prokofiev, A.; Yan, X.; Ikeda, M.; Löffler, S.; Paschen, S.

    2014-09-01

    We studied the crystal growth process of type-I transition metal clathrates in two different regimes: a regime of moderate cooling rate, realized with the floating zone technique, and a regime of ultra rapid cooling, realized by the melt spinning technique. In the former regime, bulk Ba8AuxSi46-x and Ba8Cu4.8GaxGe41.2-x single crystals were grown. We investigated segregation effects of the constituting elements by measurements of the composition profiles along the growth direction. The compositional non-uniformity results in a spatial variation of the electrical resistivity which is discussed as well. Structural features of clathrates and their extremely low thermal conductivities imply specifics in growth behavior which manifest themselves most pronouncedly in a rapid crystallization process. Our melt spinning experiments on Ba8Au5Si41 and Ba8Ni3.5Si42.5 (and earlier on some other clathrates) have revealed surprisingly large grains of at least 1 μm. Because of the anomalously high growth rate of the clathrate phase the formation of impurity phases is considerably kinetically suppressed. We present our scanning and transmission electron microscopy investigations of melt spun samples and discuss structural, thermodynamic and kinetic aspects of the unusual clathrate nucleation and crystallization.

  6. Ultra-slow dynamics in low density amorphous ice revealed by deuteron NMR: indication of a glass transition.

    PubMed

    Löw, Florian; Amann-Winkel, Katrin; Loerting, Thomas; Fujara, Franz; Geil, Burkhard

    2013-06-21

    The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.

  7. Convective radiation fluid-dynamics: formation and early evolution of ultra low-mass objects

    NASA Astrophysics Data System (ADS)

    Wuchterl, G.

    2005-12-01

    The formation process of ultra low-mass objects is some kind of extension of the star formation process. The physical changes towards lower mass are discussed by investigating the collapse of cloud cores that are modelled as Bonnor-Ebert spheres. Their collapse is followed by solving the equations of fluid dynamics with radiation and a model of time-dependent convection that has been calibrated to the Sun. For a sequence of cloud-cores with 1 to 0.01 solar masses, evolutionary tracks and isochrones are shown in the mass-radius diagram, the Hertzsprung-Russel diagram and the effective temperature-surface gravity or Kiel diagram. The collapse and the early hydrostatic evolution to ages of few Ma are briefly discussed and compared to observations of objects in Upper Scorpius and the low-mass components of GG Tau.

  8. Influence of Fracture Width on Sealability in High-Strength and Ultra-Low-Permeability Concrete in Seawater.

    PubMed

    Fukuda, Daisuke; Nara, Yoshitaka; Hayashi, Daisuke; Ogawa, Hideo; Kaneko, Katsuhiko

    2013-06-25

    For cementitious composites and materials, the sealing of fractures can occur in water by the precipitation of calcium compounds. In this study, the sealing behavior in a macro-fractured high-strength and ultra-low-permeability concrete (HSULPC) specimen was investigated in simulated seawater using micro-focus X-ray computed tomography (CT). In particular, the influence of fracture width (0.10 and 0.25 mm) on fracture sealing was investigated. Precipitation occurred mainly at the outermost parts of the fractured surface of the specimen for both fracture widths. While significant sealing was observed for the fracture width of 0.10 mm, sealing was not attained for the fracture width of 0.25 mm within the observation period (49 days). Examination of the sealed regions on the macro-fracture was performed using a three-dimensional image registration technique and applying image subtraction between the CT images of the HSULPC specimen before and after maintaining the specimen in simulated seawater. The temporal change of the sealing deposits for the fracture width of 0.10 mm was much larger than that for the fracture width of 0.25 mm. Therefore, it is concluded that the sealability of the fracture in the HSULPC is affected by the fracture width.

  9. Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels

    NASA Astrophysics Data System (ADS)

    Kozvonin, V. A.; Shatsov, A. A.; Ryaposov, I. V.; Zakirova, M. G.; Generalova, K. N.

    2016-08-01

    Temper-resistant low-carbon Cr-Mn-Ni-Mo-V-Nb steels with concentrations of carbon of 0.15 and 0.27 wt % have been studied. It has been shown that, upon quenching, various morphological types of the α phase can be formed. The structure of the steels is stable in the course of heating below critical temperatures and remains a lath-type structure in the intercritical temperature range. Specific features of structural and phase transformations, as well as the dependence of the mechanical characteristics of the steels, on the tempering temperature have been determined.

  10. Ultra Low-Cost Radar

    NASA Astrophysics Data System (ADS)

    Davies, P.; da Silva Curiel, A.; Eves, S.; Sweeting, M.; Thompson, A.; Hall, D.

    From early 2003, Surrey Satellite Technology Limited (SSTL), together with its partners from Algeria, Nigeria and Turkey, has operated the Disaster Monitoring Constellation (DMC). During this period we have demonstrated the utility of a low-cost satellite system that uses optical sensors and is capable of providing daily imaging globally. For example, DMC data has been used operationally in the relief work in Darfur and following the Asian Tsunami. In addition to the use of the DMC to support disasters, the DMC has also been extensively used by the consortium members in support of national imaging needs and some residual system capacity has been provided to commercial customers. In the same timeframe, EADS Astrium Ltd has developed the technologies needed to implement the low-cost radar satellites of the MicroSAR range of synthetic aperture radar (SAR) satellites. EADS Astrium Ltd and SSTL are now looking to combine their expertises in low cost space technology and extend the capability of the DMC constellation by including a complementary small satellite radar sensor. The product of this activity is a satellite design that strikes an appropriate balance between revisit frequency and resolution. Hence, by comparison with other small satellite SAR concepts, the satellite described in this paper will provide broader area coverage at spatial resolutions in the region of 10 - 15m. Most significantly, perhaps, as a result of the specific cost targets imposed at the beginning of the design process, the satellite can provide this level of performance at a lower cost than other comparable space-based radar systems and significantly lower than larger, more performant, space-based radar systems.

  11. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    NASA Astrophysics Data System (ADS)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  12. 2 kV slanted tri-gate GaN-on-Si Schottky barrier diodes with ultra-low leakage current

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Matioli, Elison

    2018-01-01

    This letter reports lateral GaN-on-Si power Schottky barrier diodes (SBDs) with unprecedented voltage-blocking performance by integrating 3-dimensionally a hybrid of tri-anode and slanted tri-gate architectures in their anode. The hybrid tri-anode pins the voltage drop at the Schottky junction (VSCH), despite a large applied reverse bias, fixing the reverse leakage current (IR) of the SBD. Such architecture led to an ultra-low IR of 51 ± 5.9 nA/mm at -1000 V, in addition to a small turn-on voltage (VON) of 0.61 ± 0.03 V. The slanted tri-gate effectively distributes the electric field in OFF state, leading to a remarkably high breakdown voltage (VBR) of -2000 V at 1 μA/mm, constituting a significant breakthrough from existing technologies. The approach pursued in this work reduces the IR and increases the VBR without sacrificing the VON, which provides a technology for high-voltage SBDs, and unveils the unique advantage of tri-gates for advanced power applications.

  13. Development of a programmable standard of ultra-low capacitance values.

    PubMed

    Khan, M S; Séron, O; Thuillier, G; Thévenot, O; Gournay, P; Piquemal, F

    2017-05-01

    A set of ultra-low value capacitance standards together with a programmable coaxial multiplexer (mux) have been developed. The mux allows the connection of these capacitances in parallel configuration and they together form the programmable capacitance standard. It is capable of producing decadic standard capacitances from 10 aF to at least 0.1 pF, which are later used to calibrate commercial precision capacitance bridges. This paper describes the realization and the characterization of this standard together with results obtained during the calibration of Andeen-Hagerling AH2700A bridges with a maximum uncertainty of 0.8 aF for all the capacitances generated ranging from 10 aF to 0.1 pF, at 1 kHz. These latter could be then integrated to functionalized AFMs or probe stations for quantitative capacitance measurements. Sources of uncertainties of the programmable capacitance standard, such as parasitic effects due to stray impedances, are evaluated and a method to overcome these hindrances is also discussed.

  14. Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta

    2018-04-14

    Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).

  15. Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.

    PubMed

    Goodarzy, Farhad; Skafidas, Stan E

    2014-01-01

    An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.

  16. Ultra Low Sulfur Home Heating Oil Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directlymore » related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.« less

  17. Resistance exercise countermeasures for space flight: implications of training specificity

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Caruso, J. F.

    2000-01-01

    While resistance exercise should be a logical choice for prevention of strength loss during unloading, the principle of training specificity cannot be overlooked. Our purpose was to explore training specificity in describing the effect of our constant load exercise countermeasure on isokinetic strength performance. Twelve healthy men (mean +/- SD: 28.0 +/- 5.2 years, 179.4 +/- 3.9 cm, 77.5 +/- 13.6 kg) were randomly assigned to no exercise or resistance exercise (REX) during 14 days of bed rest. REX performed five sets of leg press exercise to volitional fatigue (6-10 repetitions) every other day. Unilateral isokinetic concentric-eccentric knee extension testing performed before and on day 15 prior to reambulation included torque-velocity and power-velocity relationships at four velocities (0.52, 1.75, 2.97, and 4.19 rad s-1), torque-position relationship, and contractile work capacity (10 repetitions at 1.05 rad s-1). Two (group) x 2 (time) ANOVA revealed no group x time interactions; thus, groups were combined. Across velocities, angle-specific torque fell 18% and average power fell 20% (p < 0.05). No velocity x time or mode (concentric/eccentric) x time interactions were noted. Torque x position decreased on average 24% (p < 0.05). Total contractile work dropped 27% (p < 0.05). Results indicate bed rest induces rapid and marked reductions in strength and our constant load resistance training protocol did not prevent isokinetic strength losses. Differences between closed-chain training and open-chain testing may explain the lack of protection.

  18. Biofilms inducing ultra-low friction on titanium.

    PubMed

    Souza, J C M; Henriques, M; Oliveira, R; Teughels, W; Celis, J-P; Rocha, L A

    2010-12-01

    Biofilm formation is widely reported in the literature as a problem in the healthcare, environmental, and industrial sectors. However, the role of biofilms in sliding contacts remains unclear. Friction during sliding was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans. The morphology of biofilms on titanium surfaces was evaluated before, during, and after sliding tests. Very low friction was recorded on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. The complex structure of biofilms, which consist of microbial cells and their hydrated exopolymeric matrix, acts like a lubricant. A low friction in sliding contacts may have major significance in the medical field. The composition and structure of biofilms are shown to be key factors for an understanding of friction behavior of dental implant connections and prosthetic joints. For instance, a loss of mechanical integrity of dental implant internal connections may occur as a consequence of the decrease in friction caused by biofilm formation. Consequently, the study of the exopolymeric matrix can be important for the development of high-performance novel joint-based systems for medical and other engineering applications.

  19. Low-resistance strip sensors for beam-loss event protection

    NASA Astrophysics Data System (ADS)

    Ullán, M.; Benítez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; García, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A. A.; Sadrozinski, H. F.-W.

    2014-11-01

    AC-coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the "far" end of the strip from the punch-through structure leading to large voltages. We present here our developments to fabricate low-resistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.

  20. Dextromethorphan plus ultra low-dose quinidine reduces pseudobulbar affect.

    PubMed

    Pioro, Erik P; Brooks, Benjamin Rix; Cummings, Jeffrey; Schiffer, Randolph; Thisted, Ronald A; Wynn, Daniel; Hepner, Adrian; Kaye, Randall

    2010-11-01

    To evaluate dextromethorphan combined with ultra low-dose quinidine (DMq) for treating pseudobulbar affect (PBA) in patients with amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS). In a 12-week randomized, double-blind trial, ALS and MS patients with clinically significant PBA (a baseline score ≥13 on the Center for Neurologic Studies-Lability Scale [CNS-LS]) were maintained, twice daily, on placebo, DMq at 30/10mg (DMq-30), or DMq at 20/10mg (DMq-20). In 326 randomized patients (of whom 283, or 86.8%, completed the study), the PBA-episode daily rate was 46.9% (p < 0.0001) lower for DMq-30 than for placebo and 49.0% (p < 0.0001) lower for DMq-20 than for placebo by longitudinal negative binomial regression, the prespecified primary analysis. Mean CNS-LS scores decreased by 8.2 points for DMq-30 and 8.2 for DMq-20, vs 5.7 for placebo (p= 0.0002 and p= 0.0113, respectively). Other endpoints showing statistically significant DMq benefit included, for both dosage levels, the likelihood of PBA remission during the final 14 days and, for the higher dosage, improvement on measures of social functioning and mental health. Both dosages were safe and well tolerated. DMq markedly reduced PBA frequency and severity, decreasing the condition's detrimental impact on a patient's life, with satisfactory safety and high tolerability. The findings expand the clinical evidence that DMq may be an important treatment for patients suffering from the socially debilitating symptoms of PBA.