Sample records for ultra-low velocity zones

  1. Composition of the Ultra-Low Velocity Zone from Shock Data

    NASA Astrophysics Data System (ADS)

    Ahrens, T. J.; Asimow, P. D.

    2009-12-01

    Composition of the Ultra-Low Velocity Zone from Shock Data Thomas J. Ahrens and Paul D. Asimow Recent models of the thermal structure of a putative magma ocean upon accretion of the Earth are derived from construction of isentropes centered at the core-mantle boundary (CMB) pressure and temperature (133 GPa and 4300 K). These models were motivated by the idea that the seismologically mapped ultra-low velocity zones (ULVZ) above the CMB are partially molten remnants of a basal magma ocean [1]. Magma ocean thermal models are derived from the observation of strongly increasing Grüneisen parameter (γ) upon compression of silicate liquids both in ab initio molecular dynamics modeling of MgSiO3 melt [2] and in new shock wave data on MgSiO3 phases reaching CMB conditions. Shock EOS (and limited Hugoniot radiative temperature) data for Mg2SiO4 (initially forsterite and wadsleyite) access perovskite (and post-perovskite) + periclase and melt regimes [3]. MgSiO3 (initially enstatite, perovskite, and glass) EOS and radiative temperature data in the perovskite, post-perovskite, and melt regimes, together with static P-V-T data, define the properties of these phases [4]. With recent Caltech Hugoniot radiative temperature measurements on pre-heated (1923 K) MgO [5], we have experimental constraints on melting temperatures of all major minerals in the MgO-SiO2 binary at lower-most mantle pressures. Recently extended (to 130 GPa) pre-heated (1673 K) Hugoniot data for molten and solid diopside - anorthite aggregate (64 mol % diopside, 36 mol % anorthite) also show the strong increase in γ, over the pressure range of the mantle, previously observed for ultramafic compositions. For long-term gravitational stability, the presumed molten silicate liquid of the ULVZ must be neutrally buoyant, or denser, than the ambient lowermost mantle. Surprisingly, unlike the situation in the upper mantle low-velocity zone, the density of even partially Fe-enriched, Di0.64An0.36 composition, ~5

  2. Investigating Ultra-low Velocity Zones beneath the Southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Carson, S. E.; Hansen, S. E.; Garnero, E.

    2017-12-01

    The core mantle boundary (CMB), where the solid silicate mantle meets the liquid iron-nickel outer core, represents the largest density contrast on our planet, and it has long been recognized that the CMB is associated with significant structural heterogeneities. One CMB structure of particular interest are ultra low-velocity zones (ULVZs), laterally-varying, 5-50 km thick isolated patches seen in some locations just above the CMB that are associated with increased density and reduced seismic wave velocities. These variable characteristics have led to many questions regarding ULVZ origins, but less than 40% of the CMB has been surveyed for the presence of ULVZs given limited seismic coverage of the lowermost mantle. Therefore, investigations that sample the CMB with new geometries are critical to further our understanding of ULVZs and their potential connection to other deep Earth processes. The Transantarctic Mountains Northern Network (TAMNNET), a 15-station seismic array that was recently deployed in Antarctica, provides a unique dataset to further study ULVZ structure with new and unique path geometry. Core-reflected ScP and PcP phases from the TAMNNET dataset particularly well sample the CMB in the vicinity of New Zealand in the southwestern Pacific, providing coverage between an area to the north where ULVZ structure has been previously identified and another region to the south, which shows no ULVZ evidence. By identifying and modeling pre- and post-cursor ScP and PcP energy, we are exploring a new portion of the CMB with a goal of better understanding potential ULVZ origins. Our study area also crosses the southern boundary of the Pacific Large Low Shear Velocity Province (LLSVP); therefore, our investigations may allow us to examine the possible relationship between LLSVPs and ULVZs.

  3. A mega Ultra Low Velocity Zone at the Base of the Iceland Plume: a Target for Tomographic Telescope Implementation

    NASA Astrophysics Data System (ADS)

    Romanowicz, Barbara; Yuan, Kaiqing; Masson, Yder; Adourian, Sevan

    2017-04-01

    We have recently constructed the first global whole mantle radially anisotropic shear wave velocity model based on time domain full waveform inversion and numerical wavefield computations using the Spectral Element Method (French et al., 2013; French and Romanowicz, 2014). This model's most salient features are broad chimney-like low velocity conduits, rooted within the large-low-shear-velocity provinces (LLSVPs) at the base of the mantle, and extending from the core-mantle boundary up through most of the lower mantle, projecting to the earth's surface in the vicinity of major hotspots. The robustness of these features is confirmed through several non-linear synthetic tests, which we present here, including several iterations of inversion using a different starting model than that which served for the published model. The roots of these not-so-classical "plumes" are regions of more pronounced low shear velocity. While the detailed structure is not yet resolvable tomographically, at least two of them contain large (>800 km diameter) ultra-low-velocity zones (ULVZs), one under Hawaii (Cottaar and Romanowicz, 2012) and the other one under Samoa (Thorne et al., 2013). Through 3D numerical forward modelling of Sdiff phases down to 10s period, using data from broadband arrays illuminating the base of the Iceland plume from different directions, we show that such a large ULVZ also exists at the root of this plume, embedded within a taller region of moderately reduced low shear velocity, such as proposed by He et al. (2015). We also show that such a wide, but localized ULVZ is unique in a broad region around the base of the Iceland Plume. Because of the intense computational effort required for forward modelling of trial structures, to first order this ULVZ is represented by a cylindrical structure of diameter 900 km, height 20 km and velocity reduction 20%. To further refine the model, we have developed a technique which we call "tomographic telescope", in which we are

  4. Ultra-low velocity zones beneath the Philippine and Tasman Seas revealed by a trans-dimensional Bayesian waveform inversion

    NASA Astrophysics Data System (ADS)

    Pachhai, Surya; Dettmer, Jan; Tkalčić, Hrvoje

    2015-11-01

    Ultra-low velocity zones (ULVZs) are small-scale structures in the Earth's lowermost mantle inferred from the analysis of seismological observations. These structures exhibit a strong decrease in compressional (P)-wave velocity, shear (S)-wave velocity, and an increase in density. Quantifying the elastic properties of ULVZs is crucial for understanding their physical origin, which has been hypothesized either as partial melting, iron enrichment, or a combination of the two. Possible disambiguation of these hypotheses can lead to a better understanding of the dynamic processes of the lowermost mantle, such as, percolation, stirring and thermochemical convection. To date, ULVZs have been predominantly studied by forward waveform modelling of seismic waves that sample the core-mantle boundary region. However, ULVZ parameters (i.e. velocity, density, and vertical and lateral extent) obtained through forward modelling are poorly constrained because inferring Earth structure from seismic observations is a non-linear inverse problem with inherent non-uniqueness. To address these issues, we developed a trans-dimensional hierarchical Bayesian inversion that enables rigorous estimation of ULVZ parameter values and their uncertainties, including the effects of model selection. The model selection includes treating the number of layers and the vertical extent of the ULVZ as unknowns. The posterior probability density (solution to the inverse problem) of the ULVZ parameters is estimated by reversible jump Markov chain Monte Carlo sampling that employs parallel tempering to improve efficiency/convergence. First, we apply our method to study the resolution of complex ULVZ structure (including gradually varying structure) by probabilistically inverting simulated noisy waveforms. Then, two data sets sampling the CMB beneath the Philippine and Tasman Seas are considered in the inversion. Our results indicate that both ULVZs are more complex than previously suggested. For the

  5. Fine Scale Structure of Low and Ultra-Low Velocity Patches in the Lowermost Mantle: Some Case Studies

    NASA Astrophysics Data System (ADS)

    Yuan, K.; Romanowicz, B. A.; French, S.

    2015-12-01

    The lowermost part of the mantle, which is roughly halfway to the center of the earth, plays a key role as a thermal and chemical boundary layer between the solid, silicate mantle and fluid, iron outer core. Constraining the seismic velocity structure in this region provides important insights on mantle dynamics, and core-mantle interactions. Recently, global shear wave velocity tomography has confirmed the presence of broad plume conduits extending vertically through the lower mantle in the vicinity of major hotspots (SEMUCB-WM1, French and Romanowicz, 2015). These conduits are rooted in D" in patches of strongly reduced shear velocity, at least some of which, such as Hawaii, appear to contain known ultra low velocity zones (e.g. Cottaar and Romanowicz, 2012). We seek to determine whether these patches generally contain ULVZs, and to contrast them with less extreme structures such as the PERM anomaly (Lekic et al., 2012). Because global tomography cannot resolve such fine scale structure, we apply forward modeling of higher frequency (10-20s) Sdiff waveforms in 3D complex structures using the Spectral Element Method. We focus on Iceland, Hawaii and the PERM anomaly, and Sdiff observations at USArray and/or dense broadband arrays in Europe. In all three cases, Sdiff waveforms are clearly distorted by these anomalies, with either a complex coda and/or evidence for amplitude focusing. As a start, we design simple cylindrical models of shear velocity reduction, and contrast the best fitting ones at each location considered in terms of diameter, height above the core-mantle boundary and strength of velocity reduction. We refine previously obtained models for Hawaii and the Perm Anomaly. For Iceland, the waveforms show a strong azimuthally dependent post-cursor, with maximum travel time delay of ~20s and focusing effects. The preliminary best fitting model shows a structure of 700km in diameter, ~15% reduction in shear wave velocity, extending ~40 km above the core

  6. Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes

    NASA Astrophysics Data System (ADS)

    Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.

    2013-12-01

    Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.

  7. Mapping Deep Low Velocity Zones in Alaskan Arctic Coastal Permafrost using Seismic Surface Waves

    NASA Astrophysics Data System (ADS)

    Dou, S.; Ajo Franklin, J. B.; Dreger, D. S.

    2012-12-01

    Surface Waves (MASW) suggests the existence of pronounced low shear wave velocity zones that span the depth range of 2 - 30 meters; this zone has shear velocity values comparable to partially thawed soils. Such features coincide with previous findings of very low electrical resistivity structure (as low as ~10 Ohm*m at some locations) from measurements obtained in the first NGEE-Arctic geophysical field campaign (conducted in the week of September 24 - October 1, 2011). These low shear velocity zones are likely representative of regions with high unfrozen water content and thus have important implications on the rate of microbial activity and the vulnerability of deep permafrost carbon pools. Analysis of this dataset required development of a novel inversion approach based on waveform inversion. The existence of multiple closely spaced Rayleigh wave modes made traditional inversion based on mode picking virtually impossible; As a result, we selected a direct misfit evaluation based on comparing dispersion images in the phase velocity/frequency domain. The misfit function was optimized using a global search algorithm, in this case Huyer and Neumaier's Multi Coordinate Search algorithm (MCS). This combination of MCS and waveform misfit allowed recovery of the low velocity region despite the existence of closely spaced modes.

  8. Evidence for an upper mantle low velocity zone beneath the southern Basin and Range-Colorado Plateau transition zone

    USGS Publications Warehouse

    Benz, H.M.; McCarthy, J.

    1994-01-01

    A 370-km-long seismic refraction/wide-angle reflection profile recorded during the Pacific to Arizona Crustal Experiment (PACE) detected an upper mantle P-wave low-velocity zone (LVZ) in the depth range 40 to 55 km beneath the Basin and Range in southern Arizona. Interpretation of seismic data places constraints on the sub-crustal lithosphere of the southern Basin and Range Province, which is important in light of the active tectonics of the region and the unknown role of the sub-crustal lithosphere in the development of the western United States. Forward travel time and synthetic seismogram techniques are used to model this shallow upper mantle LVZ. Modeling results show that the LVZ is defined by a 5% velocity decrease relative to a Pn velocity of 7.95 km s−1, suggesting either a ∼3–5% mafic partial melt or high-temperature, sub-solidus peridotite.

  9. Regional P wave velocity structure of the Northern Cascadia Subduction Zone

    USGS Publications Warehouse

    Ramachandran, K.; Hyndman, R.D.; Brocher, T.M.

    2006-01-01

    This paper presents the first regional three-dimensional, P wave velocity model for the Northern Cascadia Subduction. Zone (SW British Columbia and NW Washington State) constructed through tomographic inversion of first-arrival traveltime data from active source experiments together with earthquake traveltime data recorded at permanent stations. The velocity model images the structure of the subducting Juan de Fuca plate, megathrust, and the fore-arc crust and upper mantle. Beneath southern Vancouver Island the megathrust above the Juan de Fuca plate is characterized by a broad zone (25-35 km depth) having relatively low velocities of 6.4-6.6 km/s. This relative low velocity zone coincides with the location of most of the episodic tremors recently mapped beneath Vancouver Island, and its low velocity may also partially reflect the presence of trapped fluids and sheared lower crustal rocks. The rocks of the Olympic Subduction Complex are inferred to deform aseismically as evidenced by the lack of earthquakes withi the low-velocity rocks. The fore-arc upper mantle beneath the Strait of Georgia and Puget Sound is characterized by velocities of 7.2-7.6 km/s. Such low velocities represent regional serpentinization of the upper fore-arc mantle and provide evidence for slab dewatering and densification. Tertiary sedimentary basins in the Strait of Georgia and Puget Lowland imaged by the velocity model lie above the inferred region of slab dewatering and densification and may therefore partly result from a higher rate of slab sinking. In contrast, sedimentary basins in the Strait of Juan de Fuca lie in a synclinal depression in the Crescent Terrane. The correlation of in-slab earthquake hypocenters M>4 with P wave velocities greater than 7.8 km/s at the hypocenters suggests that they originate near the oceanic Moho of the subducting Juan de Fuca plate. Copyright 2006 by the American Geophysical Union.

  10. Identification of the Low-velocity Zone Beneath the Northern Taiwan by the P-wave Delays Analysis

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Che-Min, L.

    2017-12-01

    Taipei City, the capital of Taiwan, located in northern Taiwan is near to the Tatun volcano group and the Shanchiao fault which is an active fault. This region is a complex tectonic environment. The Tatun volcano group is seen as a dormant volcano. Recently, the location of the magma reservoir of the Tatun volcano was discussed again. However, the volume and the location of the magma reservoir are still unclear. There are several seismic networks operated by different institutions around Taipei and Tatun volcano. In this study, we combined the data of these networks to analysis the P-wave arrival times for clarifying the magma reservoir. The events with hypocenters are deeper than 100 km and the local magnitude (ML) are larger than 4.0 were collected to analysis. Our results show that the stations could be separated into three groups by the slope of the P-wave arrival time. They are distributed at the western of the Basin edge, the Jin-Shan Plain areal and the Taipei Basin, respectively. When the epicenter distance of the different stations is the same, the P-wave arrival time of the stations on the west side of the basin edge will be 0.3 0.5 seconds later than that in the Taipei Basin, and the stations on the Jin-Shan Plain will be 0.1 0.4 seconds later than in the Taipei Basin. The slope of the P-wave arrival time in 3 groups is very different, indicating that the low-velocity zone is existed in shallow crustal beneath of these areas. However, the low-velocity zone can be connected to the magma reservoir of the Tatun volcano group or submarine volcano of Keelung Island or not? It can be discussed the correlation between the magma reservoir and the low-velocity zone by more events collected.

  11. Low-cost ultra-thin broadband terahertz beam-splitter.

    PubMed

    Ung, Benjamin S-Y; Fumeaux, Christophe; Lin, Hungyen; Fischer, Bernd M; Ng, Brian W-H; Abbott, Derek

    2012-02-27

    A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer--thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.

  12. The effect of gradational velocities and anisotropy on fault-zone trapped waves

    NASA Astrophysics Data System (ADS)

    Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2017-08-01

    Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.

  13. Microseismic Velocity Imaging of the Fracturing Zone

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Chen, Y.

    2015-12-01

    Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By

  14. Seismic Observations of the Mid-Pacific Large Low Shear Velocity Province

    NASA Astrophysics Data System (ADS)

    Chan, A.; Helmberger, D. V.; Sun, D.; Li, D.; Jackson, J. M.

    2015-12-01

    Seismic data from earthquakes originating in the Fiji-Tonga region exhibits waveform complexity of a number of phases which may be attributed to various structures along ray paths to stations of USArray, including anomalous structures at the core-mantle boundary. The data shows variation in multipathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific Large Low Shear Velocity Province (LLSVP). This study examines data from earthquake events while the Transportable Array portion of USArray was situated in the midwest United States, reinforcing previous studies that indicate late arrivals occurring as long as 26 seconds after the primary arrivals (To et al., 2011). Using earth flattening transformations and finite difference methods, simulations of tapered wedge structures of low velocity material allow for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances, with such structures having characteristic properties of, for example, a height of 70 km, in-plane extent more than 1000 km, and shear wave velocity drop of 3% at the top to 15% at the bottom relative to PREM. Differential arrival times for SH and SV components suggest anisotropy and possible wave propagation through downgoing slabs beneath the source region. The arrivals of the SPdKS phase further support the presence of an ultra-low velocity zone (ULVZ) within a two-humped LLSVP. Some systematic delays in arrival times of multiple phases for distances less than 102º are accounted for and attributed to the presence of a mantle slab underneath the continental United States. Comparisons to seismic data from earthquakes originating from other locations further constrain depths of the deep mantle structures. Possible explanations include iron-enrichment of deep mantle phases.

  15. Particle velocity measurements of the reaction zone in nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, S. A.; Engelke, R. P.; Alcon, R. R.

    2002-01-01

    The detonation reaction-zone length in neat, deuterated, and chemically sensitized nitromethane (NM) has been measured by using several different laser-based velocity interferometry systems. The experiments involved measuring the particle velocity history at a NM/PMMA (polymethylmethacrylate) window interface during the time a detonation in the NM interacted with the interface. Initially, Fabry-Perot interferometry was used, but, because of low time resolution (>5 ns), several different configurations of VISAR interferometry were subsequently used. Early work was done with VISARs with a time resolution of about 3 ns. By making changes to the recording system, we were able to improve this to {approx}1more » ns. Profiles measured at the NM/PMMA interface agree with the ZND theory, in that a spike ({approx}2.45 mm/{micro}s) is measured that is consistent with an extrapolated reactant NM Hugoniot matched to the PMMA window. The spike is rather sharp, followed by a rapid drop in particle velocity over a time of 5 to 10 ns; this is evidence of early fast reactions. Over about 50 ns, a much slower particle velocity decrease occurs to the assumed CJ condition - indicating a total reaction zone length of {approx}300 {micro}m. When the NM is chemically changed, such as replacing the hydrogen atoms with deuterium or chemically sensitizing with a base, some changes are observed in the early part of the reaction zone.« less

  16. Using the Vertical Component of the Surface Velocity Field to Map the Locked Zone at Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.

    2014-12-01

    At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and

  17. Seismic velocity structure in the western part of Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2011-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. However, recent studies show the possibility of simultaneous rupture of the Nankai and Hyuga-nada segments was also pointed out [e.g., Furumura et al, 2010 JGR]. Because seismic velocity structure is one of the useful and basic information for understanding the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a series of wide-angle active source surveys and local seismic observations among the three major seismogenic zones and Hyuga-nada segment from 2008, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan". We are performing two set of three-dimensional seismic velocity tomographic inversions, one is in the Hyuga-nada region and the other is western part of the coseismic rupture area of 1946 Nankai earthquake, to discuss the relationship between the structural heterogeneities and the location of segment boundary between Hyuga-nada and Nankai segment. For the analysis of Hyuga-nada segment, we used both active and passive source data. The obtained velocity model clearly showed the subducted Kyushu-Palau ridge as thick low velocity Philippine Sea slab in the southwestern part. Our velocity image also indicates that "the thin oceanic crust zone" located between Nankai segment and Kyushu-Palau Ridge segment, founded by Nakanishi et al [2010, AGU] by analyzing of the active source survey, continuously exists from trough axis to near the coastline of Kyushu Island. The overriding plate just above the coseismic slip area of 1968 Hyuga-nada earthquake shows relatively high velocity. Although the tomographic study in

  18. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  19. Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model

    PubMed Central

    Rakwal, Randeep; Agrawal, Ganesh Kumar; Shibato, Junko; Imanaka, Tetsuji; Fukutani, Satoshi; Tamogami, Shigeru; Endo, Satoru; Sahoo, Sarata Kumar; Masuo, Yoshinori; Kimura, Shinzo

    2009-01-01

    We report molecular changes in leaves of rice plants (Oryza sativa L. - reference crop plant and grass model) exposed to ultra low-dose ionizing radiation, first using contaminated soil from the exclusion zone around Chernobyl reactor site. Results revealed induction of stress-related marker genes (Northern blot) and secondary metabolites (LC-MS/MS) in irradiated leaf segments over appropriate control. Second, employing the same in vitro model system, we replicated results of the first experiment using in-house fabricated sources of ultra low-dose gamma (γ) rays and selected marker genes by RT-PCR. Results suggest the usefulness of the rice model in studying ultra low-dose radiation response/s. PMID:19399245

  20. Near-surface location, geometry, and velocities of the Santa Monica Fault Zone, Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.; Rymer, M.J.; Bawden, G.W.

    2008-01-01

    High-resolution seismic-reflection and seismic-refraction imaging, combined with existing borehole, earthquake, and paleoseismic trenching data, suggest that the Santa Monica fault zone in Los Angeles consists of multiple strands from several kilometers depth to the near surface. We interpret our seismic data as showing two shallow-depth low-angle fault strands and multiple near-vertical (???85??) faults in the upper 100 m. One of the low-angle faults dips northward at about 28?? and approaches the surface at the base of a topographic scarp on the grounds of the Wadsworth VA Hospital (WVAH). The other principal low-angle fault dips northward at about 20?? and projects toward the surface about 200 m south of the topographic scarp, near the northernmost areas of the Los Angeles Basin that experienced strong shaking during the 1994 Northridge earthquake. The 20?? north-dipping low-angle fault is also apparent on a previously published seismic-reflection image by Pratt et al. (1998) and appears to extend northward to at least Wilshire Boulevard, where the fault may be about 450 m below the surface. Slip rates determined at the WVAH site could be significantly underestimated if it is assumed that slip occurs only on a single strand of the Santa Monica fault or if it is assumed that the near-surface faults dip at angles greater than 20-28??. At the WVAH, tomographic velocity modeling shows a significant decrease in velocity across near-surface strands of the Santa Monica fault. P-wave velocities range from about 500 m/sec at the surface to about 4500 m/sec within the upper 50 m on the north side of the fault zone at WVAH, but maximum measured velocities on the south side of the low-angle fault zone at WVAH are about 3500 m/sec. These refraction velocities compare favorably with velocities measured in nearby boreholes by Gibbs et al. (2000). This study illustrates the utility of com- bined seismic-reflection and seismic-refraction methods, which allow more accurate

  1. Investigation of the Low Velocity Zone Beneath the Southern Basin and Range

    NASA Astrophysics Data System (ADS)

    Savage, B.; Helmberger, D. V.

    2003-12-01

    Following the work by Helmberger (1973), we use waveform recordings of P arrivals at distances from 6o to 20o to investigate the structure of the low velocity zone (LVZ) or asthenosphere. In contrast to the previous study, broadband data (TriNet and BDSN) is used at a much smaller station spacing providing higher along path and depth resolution. For this study, a well recorded earthquake in the central Gulf of California (Mw 6.3) produces transitions from PnL to P410 across all of California and western Nevada. The nature of these transitions indicates the thickness and gradients of the LVZ and the lithosphere. Initial findings show large variations of lithosphere and LVZ structure from east to west below California. By varying the lithosphere compressional velocity and depth of the LVZ in 1-D models, a database of synthetics waveforms is created to guide the development of realistic 2-D (along path) and 3-D (against azimuth) description of the lithosphere and asthenosphere. The character of the P arrivals changes dramatically near 9-11o with the emergence of a higher frequencies over-printing the longer-period PnL arrivals. Coastal California stations show these arrivals at the shortest distances, 9o indicating the lithosphere velocity and gradient below the LVZ are high. This is in opposition to those arrivals on the east which do not record the high frequency arrivals until 11o. As the distances reach 13o, a large amplitude, high frequency phase is present 10-15 seconds behind the initial P arrival. The emergence of the large secondary phase occurs at different distances across California with a pattern similar to before. At this distance, a change in the apparent velocity of the first arrival also occurs. Further in distance, the width of the initial P arrival and the energy following, or lack thereof, points to the shape of the underlying LVZ. Coastal stations and those in the central portion of California show larger amplitude arrivals following the initial P

  2. S-velocity structure in Cimandiri fault zone derived from neighbourhood inversion of teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Syuhada; Anggono, T.; Febriani, F.; Ramdhan, M.

    2018-03-01

    The availability information about realistic velocity earth model in the fault zone is crucial in order to quantify seismic hazard analysis, such as ground motion modelling, determination of earthquake locations and focal mechanism. In this report, we use teleseismic receiver function to invert the S-velocity model beneath a seismic station located in the Cimandiri fault zone using neighbourhood algorithm inversion method. The result suggests the crustal thickness beneath the station is about 32-38 km. Furthermore, low velocity layers with high Vp/Vs exists in the lower crust, which may indicate the presence of hot material ascending from the subducted slab.

  3. New Orogenic Model for Taiwan Collision Zone Inferred From Three-dimensional P- and S-wave Velocity Structures and Seismicity

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Hirata, N.; Sato, H.

    2008-12-01

    The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EUP). Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. However, their details have not been known enough, especially under the Central Range. We suggest a new orogenic model for Taiwan orogeny, named 'Upper Crustal Stacking Model', inferred from our tomographic images using three temporary seismic networks with the Central Weather Bureau Seismic Network. These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense array observations across central and southern Taiwan, respectively. Tomographic images by the double-difference tomography [Zhang and Thurber, 2003] show a lateral alternate variation of high- and low-velocity, which are well correlated to surface geology and separated by east-dipping boundaries. These images have reliable high-resolution by dense arrays to be able to discuss this alternate variation. We found three high-velocity zones (> 6.0km/s). The westernmost zone corresponds to the subducting EUP. Other two zones are located beneath the Hsuehshan Range and the Eastern Central Range with trends of eastward dipping, respectively. And, we could image low-velocity zone located beneath Backbone Range between the two high-velocity zones clearly. We interpret that these east-dipping high- and low-velocity zones can be divided into two layered blocks and the subducting EUP, each of which consists of a high-velocity body under low-velocity one. Layered blocks can be interpreted as stacked thrust sheets between the subducting EUP and the Northern Luzon Arc, a part of PSP. These thrust sheets are parts of upper- and mid-crust detached from the subducting EUP. The model of continental subduction followed by buoyancy-driven exhumation can explain the

  4. The P-wave boundary of the Large-Low Shear Velocity Province beneath the Pacific

    NASA Astrophysics Data System (ADS)

    Frost, Daniel A.; Rost, Sebastian

    2014-10-01

    The Large Low Shear Velocity Provinces (LLSVPs) in the lower mantle represent volumetrically significant thermal or chemical or thermo-chemical heterogeneities. Their structure and boundaries have been widely studied, mainly using S-waves, but much less is known about their signature in the P-wavefield. We use an extensive dataset recorded at USArray to create, for the first time, a high-resolution map of the location, shape, sharpness, and extent of the boundary of the Pacific LLSVP using P (Pdiff)-waves. We find that the northern edge of the Pacific LLSVP is shallow dipping (26° relative to the horizontal) and diffuse (∼120 km wide transition zone) whereas the eastern edge is steeper dipping (70°) and apparently sharp (∼40 km wide). We trace the LLSVP boundary up to ∼500 km above the CMB in most areas, and 700 km between 120° and 90°W at the eastern extent of the boundary. Apparent P-wave velocity drops are ∼1-3% relative to PREM, indicating a strong influence of LLSVPs on P-wave velocity, at least in the high-frequency wavefield, in contrast to previous studies. A localised patch with a greater velocity drop of ∼15-25% is detected, defined by large magnitude gradients of the travel-time residuals. We identify this as a likely location of an Ultra-Low Velocity Zone (ULVZ), matching the location of a previously detected ULVZ in this area. The boundary of a separate low velocity anomaly, of a similar height to the LLSVP, is detected in the north-west Pacific, matching tomographic images. This outlier appears to be connected to the main LLSVP through a narrow channel close to the CMB and may be in the process of joining or splitting from the main LLSVP. We also see strong velocity increases in the lower mantle to the east of the LLSVP, likely detecting subducted material beneath central America. The LLSVP P-wave boundary is similar to that determined in high-resolution S-wave studies and follows the -0.4% ΔVS iso-velocity contour in the S40RTS

  5. In-situ Observations of Swash-zone Flow Velocities and Sediment Transport on a Steep Beach

    NASA Astrophysics Data System (ADS)

    Chardon-Maldonado, P.; Puleo, J. A.; Figlus, J.

    2014-12-01

    A 45 m scaffolding frame containing an array of instruments was installed at South Bethany Beach, Delaware, to obtain in-situ measurements in the swash zone. Six cross-shore stations were established to simultaneously measure near-bed velocity profiles, sediment concentration and water level fluctuations on a steep beach. Measurements of swash-zone hydrodynamics and morphological change were collected from February 12 to 25, 2014, following a large Nor'easter storm with surf zone significant wave height exceeding 5 m. Swash-zone flow velocities (u,v,w) were measured at each cross-shore location using a Nortek Vectrino profiling velocimeter that measured a 30 mm velocity profile at 1 mm vertical increments at 100 Hz. These velocity profiles were used to quantify the vertical flow structure over the foreshore and estimate hydrodynamic parameters such as bed shear stress and turbulent kinetic energy dissipation. Sediment concentrations were measured using optical backscatter sensors (OBS) to obtain spatio-temporal measurements during both uprush and backwash phases of the swash cycle. Cross-shore sediment transport rates at each station were estimated by taking the product of cross-shore velocity and sediment concentration. Foreshore elevations were sampled every low tide using a Leica GPS system with RTK capability. Cross-shore sediment transport rates and gradients derived from the velocities and bed shear stress estimates will be related to the observed morphological change.

  6. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zheng, Y.; Xie, Z.; Ritzwoller, M. H.

    2011-12-01

    The Tibetan Plateau results from the convergence between the Indian and Eurasian plates. However, the physical processes that have controlled the deformation history of Tibet, particularly the potential localization of deformation either in the vertical or horizontal directions remain subject to debate. There are a growing list and wide variety of observations that suggest that the Tibetan crust is warm and presumably ductile. Some of observations are often taken as prima facie evidence for the existence of partial melt or aqueous fluids in the middle or deep crust beneath Tibet and in some cases for the decoupling or partitioning of strain between the upper crust and uppermost mantle. However, most of this evidence is highly localized along nearly linear seismic or magneto-telluric profiles. This motivates the two questions addressed by this study. First, how pervasive across Tibet are the phenomena on which inferences of the existence of crustal partial melt rest? In particular, how pervasive are mid-crustal low velocity zones across Tibet? Second, what is the geometry or inter-connectivity of the crustal low velocity zones observed across Tibet? In this study, we address these questions by producing a new 3-D model of crustal and uppermost mantle shear wave speeds inferred from Rayleigh wave dispersion observed on cross-correlations of long time series of ambient seismic noise. Broadband seismic data from about 600 stations (Chinese Provincial networks, FDSN, several PASSCAL experiments including the INDEPTH IV experiment) yield about 50,000 inter-station paths, which are used to generate Rayleigh wave phase velocity maps from 10 sec to 50 sec period. The time series lengths in the cross-correlations range from 1 to 2 years in duration. The resulting Rayleigh wave phase velocity maps are inverted for a 3D Vsv model of crustal and upper most mantles. The major results from our model are summarized below: (1) A crustal LVZ exists across most of the high Tibetan

  7. Seismic Velocity Gradients Across the Transition Zone

    NASA Astrophysics Data System (ADS)

    Escalante, C.; Cammarano, F.; de Koker, N.; Piazzoni, A.; Wang, Y.; Marone, F.; Dalton, C.; Romanowicz, B.

    2006-12-01

    One-D elastic velocity models derived from mineral physics do a notoriously poor job at predicting the velocity gradients in the upper mantle transition zone, as well as some other features of models derived from seismological data. During the 2006 CIDER summer program, we computed Vs and Vp velocity profiles in the upper mantle based on three different mineral physics approaches: two approaches based on the minimization of Gibbs Free Energy (Stixrude and Lithgow-Bertelloni, 2005; Piazzoni et al., 2006) and one obtained by using experimentally determined phase diagrams (Weidner and Wang, 1998). The profiles were compared by assuming a vertical temperature profile and two end-member compositional models, the pyrolite model of Ringwood (1979) and the piclogite model of Anderson and Bass (1984). The predicted seismic profiles, which are significantly different from each other, primarily due to different choices of properties of single minerals and their extrapolation with temperature, are tested against a global dataset of P and S travel times and spheroidal and toroidal normal mode eigenfrequencies. All the models derived using a potential temperature of 1600K predict seismic velocities that are too slow in the upper mantle, suggesting the need to use a colder geotherm. The velocity gradient in the transition zone is somewhat better for piclogite than for pyrolite, possibly indicating the need to increase Ca content. The presence of stagnant slabs in the transition zone is a possible explanation for the need for 1) colder temperature and 2) increased Ca content. Future improvements in seismic profiles obtained from mineral physics will arise from better knowledge of elastic properties of upper mantle constituents and aggregates at high temperature and pressure, a better understanding of differences between thermodynamic models, and possibly the effect of water through and on Q. High resolution seismic constraints on velocity jumps at 400 and 660 km also need to be

  8. Geodynamic environments of ultra-slow spreading

    NASA Astrophysics Data System (ADS)

    Kokhan, Andrey; Dubinin, Evgeny

    2015-04-01

    Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central

  9. Modelling the seismic properties of fast-spreading ridge crustal Low-Velocity Zones: insights from Oman gabbro textures

    NASA Astrophysics Data System (ADS)

    Lamoureux, Gwenaëlle; Ildefonse, Benoı̂t; Mainprice, David

    1999-11-01

    Although considerable progress has been made in the study of fast-spreading, mid-ocean ridge magma chambers over the past fifteen years, the fraction of melt present in the chamber remains poorly constrained and controversial. We present new constraints obtained by modelling the seismic properties of partially molten gabbros at the ridge axis. P-wave velocities at low frequencies are calculated in the foliation/lineation reference frame using a differential effective medium technique. The model takes into account the lattice preferred orientation of the crystalline phase and the average shape of the melt phase. The structural parameters are obtained from the Oman ophiolite. The structural reference frame is given by the general trend of the gabbro foliation and the melt fraction and shape are estimated using the textures of nine upper gabbro samples. The estimated melt fraction and shape depend on the assumptions regarding which part of the observed textures represent the melt in the gabbroic mush of the magma chamber. However, we can put limits on the reasonable values for the melt fraction and shape. Our results are consistent with a melt fraction of the order of 10 to 20% in the Low-Velocity Zone (i.e. the magma chamber), which is anisotropically distributed with the melt pockets preferentially aligned parallel to the foliation and approximated by oblate ellipsoids with approximate dimensions of 4 : 4 : 1. These results are also consistent with the seismic structure of the East Pacific rise at 9°30'. The anisotropic melt distribution can, at least partially, explain the vertical velocity gradient described in the LVZ.

  10. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P., E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu

    2013-05-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s{sup -1}, median angular diameters of 10', and median velocity widths of 23 km s{sup -1}. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distributionmore » and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of {approx}1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of {approx}10{sup 5}-10{sup 6} M{sub Sun }, H I diameters of {approx}2-3 kpc, and indicative dynamical masses within the H I extent of {approx}10{sup 7}-10{sup 8} M{sub Sun }, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.« less

  11. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  12. Cohesive zone length of metagabbro at supershear rupture velocity

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Xu, Shiqing; Yamashita, Futoshi; Mizoguchi, Kazuo

    2016-10-01

    We investigated the shear strain field ahead of a supershear rupture. The strain array data along the sliding fault surfaces were obtained during the large-scale biaxial friction experiments at the National Research Institute for Earth Science and Disaster Resilience. These friction experiments were done using a pair of meter-scale metagabbro rock specimens whose simulated fault area was 1.5 m × 0.1 m. A 2.6-MPa normal stress was applied with loading velocity of 0.1 mm/s. Near-fault strain was measured by 32 two-component semiconductor strain gauges installed at an interval of 50 mm and 10 mm off the fault and recorded at an interval of 1 MHz. Many stick-slip events were observed in the experiments. We chose ten unilateral rupture events that propagated with supershear rupture velocity without preceding foreshocks. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the ruptured area. The temporal variation of strain array data is converted to the spatial variation of strain assuming a constant rupture velocity. We picked up the peak strain and zero-crossing strain locations to measure the cohesive zone length. By compiling the stick-slip event data, the cohesive zone length is about 50 mm although it scattered among the events. We could not see any systematic variation at the location but some dependence on the rupture velocity. The cohesive zone length decreases as the rupture velocity increases, especially larger than √{2} times the shear wave velocity. This feature is consistent with the theoretical prediction.

  13. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency.

    PubMed

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-12-15

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  14. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    PubMed Central

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393

  15. Does velocity-strengthening to velocity-weakening transition really determine the updip limit of the seismogenic zone in subduction megathrusts?

    NASA Astrophysics Data System (ADS)

    Shimamoto, T.

    2009-12-01

    Understanding the mechanisms of thrust-type earthquakes in subduction zones is the primary target of seismogenic-zone drilling project in Nankai Trough. Drilling into the upper part of the seismogenic zone is attempted, so that understanding the processes controlling the updip limit of the seismogenic zone is becoming a more specific target. A commonly accepted notion is that the onset of seismic behavior is due to a change in velocity strengthening to velocity weakening property of fault zone (see Saffer & Marone, 2003, EPSL ). Smectite-illite transformation had been a fashionable hypothesis for such a transition because the transformation is likely to occur near the updip limit of the seismogenic zone. However, Saffer & Marone recognized velocity-strengthening behavior of illite gouge questioning the smectite-illite transformation as the primary cause for the updip limit of seismic zone. They explored other possibilities that might cause a change in the velocity dependency of friction. I want to address the problem from a different angle. Progress in high-velocity friction in the last 15 years has demonstrated that nearly all faults exhibit dramatic weakening at high slip rates and large displacements. The weakening is indeed greater than the changes in friction at slow slip rates by more than one order of magnitude, and the slip- and velocity-weakening of faults at high velocities is likely to control the dynamic fault motion during large earthquakes. Thus by combining abundant work on rate-and-state dependent friction at slow slip rates and recent high-velocity friction studies, a possibility emerges in that the rate-and-state friction at slow slip rates controls the earthquake nucleation, whereas intermediate to high-velocity friction dictates the growth processes into a large earthquake. Taiwan Chi-Chi earthquake in 1999 is very interesting in this regard because Tanikawa & Shimamoto (2008, JGR ) recognized velocity-strengthening properties for gouge from the

  16. Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis

    NASA Astrophysics Data System (ADS)

    Suresh, Vignesh; Qunya, Ong; Kanta, Bera Lakshmi; Yuh, Lee Yeong; Chong, Karen S. L.

    2018-03-01

    This work describes the design, fabrication and characterization of a paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis. The microfluidic system comprises an entry port, a fluidic channel, a reaction zone and two electrodes (contacts). Wax printing was used to create fluidic channels on the surface of a chromatography paper. Pre-conceptualized designs of the fluidic channel are wax-printed on the paper substrate while the electrodes are screen-printed. The paper printed with wax is heated to cause the wax reflow along the thickness of the paper that selectively creates hydrophilic and hydrophobic zones inside the paper. Urease immobilized in the reaction zone catalyses urea into releasing ions and, thereby, generating a current flow between the electrodes. A measure of current with respect to time at a fixed potential enables the detection of urea. The methodology enabled urea concentration down to 1 pM to be detected. The significance of this work lies in the use of simple and inexpensive paper-based substrates to achieve detection of ultra-low concentrations of analytes such as urea. The process is non-invasive and employs a less cumbersome two-electrode assembly.

  17. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    NASA Astrophysics Data System (ADS)

    Ai, S.; Zheng, Y.

    2017-12-01

    As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity

  18. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  19. A compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel P.; Thorne, Michael S.; Miyagi, Lowell; Rost, Sebastian

    2015-02-01

    We analyzed vertical component short-period ScP waveforms for 26 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array in central Australia. These waveforms show strong precursory and postcursory seismic arrivals consistent with ultralow-velocity zone (ULVZ) layering beneath the Coral Sea. We used the Viterbi sparse spike detection method to measure differential travel times and amplitudes of the postcursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S wave velocity reduction of 24%, a P wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. This 1:1 VS:VP velocity decrease is commensurate with a ULVZ compositional origin and is most consistent with highly iron enriched ferropericlase.

  20. Amphibious Shear Velocity Structure of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2017-12-01

    The amphibious Cascadia Initiative crosses the coastline of the Cascadia subduction zone (CSZ) deploying seismometers from the Juan de Fuca ridge offshore to beyond the volcanic arc onshore. This allows unprecedented seismic imaging of the CSZ, enabling examination of both the evolution of the Juan de Fuca plate prior to and during subduction as well as the along strike variability of the subduction system. Here we present new results from an amphibious shear velocity model for the crust and upper mantle across the Cascadia subduction zone. The primary data used in this inversion are surface-wave phase velocities derived from ambient-noise Rayleigh-wave data in the 10 - 20 s period band, and teleseismic earthquake Rayleigh wave phase velocities in the 20 - 160 s period band. Phase velocity maps from these data reflect major tectonic structures including the transition from oceanic to continental lithosphere, Juan de Fuca lithosphere that is faster than observations in the Pacific for oceanic crust of its age, slow velocities associated with the accretionary prism, the front of the fast subducting slab, and the Cascades volcanic arc which is associated with slower velocities in the south than in the north. Crustal structures are constrained by receiver functions in the offshore forearc and onshore regions, and by active source constraints on the Juan de Fuca plate prior to subduction. The shear-wave velocities are interpreted in their relationships to temperature, presence of melt or hydrous alteration, and compositional variation of the CSZ.

  1. Chromatic dispersion effects in ultra-low coherence interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lychagov, V V; Ryabukho, V P

    2015-06-30

    We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that ismore » an order of magnitude greater than the pulse width. (interferometry)« less

  2. Magnetic Resonance Relaxometry at Low and Ultra low Fields.

    PubMed

    Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited.

  3. Kinematics, partitioning and the relationship between velocity and strain in shear zones

    NASA Astrophysics Data System (ADS)

    Murphy, Justin James

    Granite Point, southeast Washington State, captures older distributed deformation deflected by younger localized deformation. This history agrees with mathematical modeling completed by Watkinson and Patton (2005; 2007 in prep). This model suggests that distributed strain occurs at a lower energy threshold than localized strain and predicts deformation histories similar to Granite Point. Ductile shear zones at Granite Point define a zone of deformation where strain is partitioned and localized into at least ten sub parallel shear zones with sinistral, west side down shear sense. Can the relative movement of the boundaries of this partitioned system be reconstructed? Can partitioning be resolved from a distributed style of deformation? The state of strain and kinematics of actively deforming zones was studied by relating the velocity field to strain. The Aleutian Arc, Alaska and central Walker Lane, Nevada were chosen because they have a wealth of geologic data and are recognized examples of obliquely deforming zones. The graphical construction developed by Declan De Paor is ideally suited for this application because it provides a spatially referenced visualization of the relationship between velocity and strain. The construction of De Paor reproduces the observed orientation of strain in the Aleutian Arc, however, the spatial distribution of GPS stations suggest a component of partitioning. Partitioning does not provide a unique solution and cannot be differentiated from a combination of partitioning and distributed strain. In the central Walker Lane, strain trajectories can be reproduced at the domain scale. Furthermore, the effect of anisotropy from Paleozoic through Cenozoic crustal structure, which breaks the regional strain field into pure shear and simple shear dominated transtension can be detected. Without GPS velocities to document strictly coaxial strain, the strain orientation should not be taken as the velocity orientation. The strain recorded at

  4. Sound velocity and density of magnesiowüstites: Implications for ultralow-velocity zone topography: Sound velocities of Iron-rich Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, June; Jackson, Jennifer M.; Sturhahn, Wolfgang

    We explore the effect of Mg/Fe substitution on the sound velocities of iron-rich (Mg 1 - xFe x)O, where x = 0.84, 0.94, and 1.0. Sound velocities were determined using nuclear resonance inelastic X-ray scattering as a function of pressure, approaching those of the lowermost mantle. The systematics of cation substitution in the Fe-rich limit has the potential to play an important role in the interpretation of seismic observations of the core-mantle boundary. By determining a relationship between sound velocity, density, and composition of (Mg,Fe)O, this study explores the potential constraints on ultralow-velocity zones at the core-mantle boundary.

  5. Electrical conductivity during incipient melting in the oceanic low-velocity zone.

    PubMed

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-05-01

    The low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals or to a few volume per cent of partial melt, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases (including pargasite amphibole at moderate temperatures) and partial melting at high temperatures. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates, where seamount volcanism occurs, a higher degree of melting is expected.

  6. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  7. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  8. Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California

    NASA Astrophysics Data System (ADS)

    Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the

  9. Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion

    USGS Publications Warehouse

    Bannister, S.; Bryan, C.J.; Bibby, H.M.

    2004-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear wave velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.

  10. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Plasman, M.; Tiberi, C.; Ebinger, C.; Gautier, S.; Albaric, J.; Peyrat, S.; Déverchère, J.; Le Gall, B.; Tarits, P.; Roecker, S.; Wambura, F.; Muzuka, A.; Mulibo, G.; Mtelela, K.; Msabi, M.; Kianji, G.; Hautot, S.; Perrot, J.; Gama, R.

    2017-07-01

    Rifting in a cratonic lithosphere is strongly controlled by several interacting processes including crust/mantle rheology, magmatism, inherited structure and stress regime. In order to better understand how these physical parameters interact, a 2 yr long seismological experiment has been carried out in the North Tanzanian Divergence (NTD), at the southern tip of the eastern magmatic branch of the East African rift, where the southward-propagating continental rift is at its earliest stage. We analyse teleseismic data from 38 broad-band stations ca. 25 km spaced and present here results from their receiver function (RF) analysis. The crustal thickness and Vp/Vs ratio are retrieved over a ca. 200 × 200 km2 area encompassing the South Kenya magmatic rift, the NTD and the Ngorongoro-Kilimanjaro transverse volcanic chain. Cratonic nature of the lithosphere is clearly evinced through thick (up to ca. 40 km) homogeneous crust beneath the rift shoulders. Where rifting is present, Moho rises up to 27 km depth and the crust is strongly layered with clear velocity contrasts in the RF signal. The Vp/Vs ratio reaches its highest values (ca. 1.9) beneath volcanic edifices location and thinner crust, advocating for melting within the crust. We also clearly identify two major low-velocity zones (LVZs) within the NTD, one in the lower crust and the second in the upper part of the mantle. The first one starts at 15-18 km depth and correlates well with recent tomographic models. This LVZ does not always coexist with high Vp/Vs ratio, pleading for a supplementary source of velocity decrease, such as temperature or composition. At a greater depth of ca. 60 km, a mid-lithospheric discontinuity roughly mimics the step-like and symmetrically outward-dipping geometry of the Moho but with a more slanting direction (NE-SW) compared to the NS rift. By comparison with synthetic RF, we estimate the associated velocity reduction to be 8-9 per cent. We relate this interface to melt ponding

  11. Ultra-low dose naltrexone enhances cannabinoid-induced antinociception.

    PubMed

    Paquette, Jay; Olmstead, Mary C; Olmstead, Mary

    2005-12-01

    Both opioids and cannabinoids have inhibitory effects at micromolar doses, which are mediated by activated receptors coupling to Gi/o-proteins. Surprisingly, the analgesic effects of opioids are enhanced by ultra-low doses (nanomolar to picomolar) of the opioid antagonist, naltrexone. As opioid and cannabinoid systems interact, this study investigated whether ultra-low dose naltrexone also influences cannabinoid-induced antinociception. Separate groups of Long-Evans rats were tested for antinociception following an injection of vehicle, a sub-maximal dose of the cannabinoid agonist WIN 55 212-2, naltrexone (an ultra-low or a high dose) or a combination of WIN 55 212-2 and naltrexone doses. Tail-flick latencies were recorded for 3 h, at 10-min intervals for the first hour, and at 15-min intervals thereafter. Ultra-low dose naltrexone elevated WIN 55 212-2-induced tail flick thresholds without extending its duration of action. This enhancement was replicated in animals receiving intraperitoneal or intravenous injections. A high dose of naltrexone had no effect on WIN 55 212-2-induced tail flick latencies, but a high dose of the cannabinoid 1 receptor antagonist SR 141716 blocked the elevated tail-flick thresholds produced by WIN 55 212-2+ultra-low dose naltrexone. These data suggest a mechanism of cannabinoid-opioid interaction whereby activated opioid receptors that couple to Gs-proteins may attenuate cannabinoid-induced antinociception and/or motor functioning.

  12. Brain MR imaging at ultra-low radiofrequency power.

    PubMed

    Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B

    2011-05-01

    To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011

  13. A numerical treatment of melt/solid segregation - Size of the eucrite parent body and stability of the terrestrial low-velocity zone

    NASA Technical Reports Server (NTRS)

    Walker, D.; Stolper, E. M.; Hays, J. F.

    1978-01-01

    Crystal sinking to form cumulates and melt percolation toward segregation in magma pools can be treated with modifications of Stokes' and Darcy's laws, respectively. The velocity of crystals and melt depends, among other things, on the force of gravity (g) driving the separations and the cooling time of the environment. The increase of g promotes more efficient differentiation, whereas the increase of cooling rate limits the extent to which crystals and liquid can separate. The rate at which separation occurs is strongly dependent on the proportion of liquid that is present. The observation of cumulates and segregated melts among the eucrite meteorites is used as a basis for calculating the g (and planet size) required to perform these differentiations. The eucrite parent body was probably at least 10-100 km in radius. The earth's low velocity zone (LVZ) is shown to be unstable with respect to draining itself of excess melt if the melt forms an interconnecting network. A geologically persistent LVZ with a homogeneous distribution of melt can be maintained with melt fractions only on the order of 0.1% or less.

  14. LOW-VELOCITY COMPRESSIBLE FLOW THEORY

    EPA Science Inventory

    The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...

  15. Extremal inversion of lunar travel time data. [seismic velocity structure

    NASA Technical Reports Server (NTRS)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  16. An empirical model of human aspiration in low-velocity air using CFD investigations.

    PubMed

    Anthony, T Renée; Anderson, Kimberly R

    2015-01-01

    Computational fluid dynamics (CFD) modeling was performed to investigate the aspiration efficiency of the human head in low velocities to examine whether the current inhaled particulate mass (IPM) sampling criterion matches the aspiration efficiency of an inhaling human in airflows common to worker exposures. Data from both mouth and nose inhalation, averaged to assess omnidirectional aspiration efficiencies, were compiled and used to generate a unifying model to relate particle size to aspiration efficiency of the human head. Multiple linear regression was used to generate an empirical model to estimate human aspiration efficiency and included particle size as well as breathing and freestream velocities as dependent variables. A new set of simulated mouth and nose breathing aspiration efficiencies was generated and used to test the fit of empirical models. Further, empirical relationships between test conditions and CFD estimates of aspiration were compared to experimental data from mannequin studies, including both calm-air and ultra-low velocity experiments. While a linear relationship between particle size and aspiration is reported in calm air studies, the CFD simulations identified a more reasonable fit using the square of particle aerodynamic diameter, which better addressed the shape of the efficiency curve's decline toward zero for large particles. The ultimate goal of this work was to develop an empirical model that incorporates real-world variations in critical factors associated with particle aspiration to inform low-velocity modifications to the inhalable particle sampling criterion.

  17. Structure and Deformation in the Transpressive Zone of Southern California Inferred from Seismicity, Velocity, and Qp Models

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Shearer, P.

    2004-12-01

    deeper and shows a more complex 3D distribution in areas exhibiting compressional tectonics within the Pacific plate. The VP values are 0.2 to 0.4 km/s too high to support an abundant occurrence of schist beneath the Mojave Desert and the San Gabriel Mountains. The models reflect mapped changes, from east to west, in the lithology of the Peninsular Ranges. The interface between the shallow Moho of the Continental Borderland and the deep Moho of the continent forms a broad zone to the north beneath the western Transverse Ranges, Ventura basin and the Los Angles Basin and a narrow zone to the south, along the Peninsular Ranges. Similarly, the 3D Qp model includes several features that correspond to regional tectonic features and possibly the thermal structure of the southern California crust. A clear low Qp zone extends from the San Bernardino Basin, across the Chino Basin, San Gabriel Valley, into the Los Angeles Basin. This zone is consistent with the geology and decreases with depth from east to west. The Peninsular Ranges have a high Qp zone consistent with the high velocities in the 3D VP model. There are also zones of high Qp in the southern Mojave and southern Sierras. Several clear transition zones of rapidly varying Qp, extend across major late Quaternary faults and connect regions of high and low Qp. The strongest low Qp zone coincides with the Salton Trough where near-surface low Qp is associated with the sediments and the deeper low Qp may be associated with elevated mid-crustal temperatures.

  18. The electrical conductivity during incipient melting in the oceanic low velocity zone

    PubMed Central

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-01-01

    A low viscosity layer in the upper mantle, the Asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the Asthenosphere are attributed either to sub-solidus water-related defects in olivine minerals2-4 or to a few volume percents of partial melt5-8 but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be higher than 50 ppm due to partitioning with other mantle phases9, including pargasite amphibole at moderate temperatures10, and partial melting at high temperatures9; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the Asthenosphere and by the high melt mobility that can lead to gravitational segregation11,12. Here we determined the electrical conductivity of CO2-H2O-rich melts, typically produced at the onset of mantle melting. Electrical conductivity modestly increases with moderate amounts of H2O and CO2 but it dramatically increases as CO2 content exceeds 6 wt% in the melt. Incipient melts, long-expected to prevail in the asthenosphere10,13-15, can therefore trigger its high electrical conductivities. Considering depleted and enriched mantle abundances in H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the Asthenosphere for various plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (>5Ma), incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas for young plates4, where seamount volcanism occurs6, higher degree of melting is expected. PMID:24784219

  19. Ultra-low dose (+)-naloxone restores the thermal threshold of morphine tolerant rats.

    PubMed

    Chou, Kuang-Yi; Tsai, Ru-Yin; Tsai, Wei-Yuan; Wu, Ching-Tang; Yeh, Chun-Chang; Cherng, Chen-Hwan; Wong, Chih-Shung

    2013-12-01

    As known, long-term morphine infusion leads to tolerance. We previously demonstrated that both co-infusion and post-administration of ultra-low dose (±)-naloxone restores the antinociceptive effect of morphine in morphine-tolerant rats. However, whether the mechanism of the action of ultra-low dose (±)-naloxone is through opioid receptors or not. Therefore, in the present study, we further investigated the effect of ultra-low dose (+)-naloxone, it does not bind to opioid receptors, on the antinociceptive effect of morphine. Male Wistar rats were implanted with one or two intrathecal (i.t.) catheters; one catheter was connected to a mini-osmotic pump, used for morphine (15 μg/h), ultra-low dose (+)-naloxone (15 pg/h), morphine plus ultra-low dose (+)-naloxone (15 pg/h) or saline (1 μl/h) infusion for 5 days. On day 5, either ultra-low dose (+)-naloxone (15 pg) or saline (5 μl) was injected via the other catheter immediately after discontinued morphine or saline infusion. Three hours later, morphine (15 μg in 5 μl saline) or saline were given intrathecally. All rats received nociceptive tail-flick test every 30 minutes for 120 minutes after morphine challenge at different temperature (45-52°C, respective). Our results showed that, both co-infusion and post-treatment of ultra-low dose (+)-naloxone with morphine preserves the antinociceptive effect of morphine. Moreover, in the post administration rats, ultra-low dose (+)-naloxone further enhances the antinociceptive effect of morphine. This study provides an evidence for ultra-low dose (+)-naloxone as a therapeutic adjuvant for patients who need long-term opioid administration for pain management. Copyright © 2013. Published by Elsevier B.V.

  20. An ultra-low-power filtering technique for biomedical applications.

    PubMed

    Zhang, Tan-Tan; Mak, Pui-In; Vai, Mang-I; Mak, Peng-Un; Wan, Feng; Martins, R P

    2011-01-01

    This paper describes an ultra-low-power filtering technique for biomedical applications designated as T-wave sensing in heart-activities detection systems. The topology is based on a source-follower-based Biquad operating in the sub-threshold region. With the intrinsic advantages of simplicity and high linearity of the source-follower, ultra-low-cutoff filtering can be achieved, simultaneously with ultra low power and good linearity. An 8(th)-order 2.4-Hz lowpass filter design example optimized in a 0.35-μm CMOS process was designed achieving over 85-dB dynamic range, 74-dB stopband attenuation and consuming only 0.36 nW at a 3-V supply.

  1. 1D minimum p-velocity model of the Kamchatka subducting zone

    NASA Astrophysics Data System (ADS)

    Nizkous, I.; Sanina, I.; Gontovaya, L.

    2003-04-01

    Kamchatka peninsula is a very active seismic zone. The old Pacific plate subducts below the North American Plate and this causes high seismic and volcanic activity in this region. The extensive Kamchatka Regional Seismic Network (KRSN) has operated since 1962 and registers around 600 earthquakes per year. This provides a large number of high quality seismic data. In this work we are investigate P-velocity structure of the Kamchatka peninsula and subducting zone in Western Pacific. This region is well studied, but we would like to try a little bit different approach. We would like to present 1D minimum P-velocity model of the Kamchatka region created using VELEST program [3]. Data set based on 84 well-located earthquakes (IP, EP, IS and ES phases) recorded by KRSN in 1998 and in 1999. As the initial model Kuzin's model have been taken [1]. But in our calculations we split model into 17 layers instead of initial 5. Maximal investigated depth is 120 km. Using VELEST simultaneous mode we solve coupled hypocenter-velocity model problem for local earthquakes. In this case it is very important to utilize well locatable events for the sake of minimizing a priori added uncertainties. And this is major point of the approach. We apply this idea and the result is looks like the result obtained by A. Gorbatov et. al. [2] Using this 1D minimum model we redefine earthquakes hypocenter parameters and recalculate p-wave travel time residuals. This work is the first step in 3D modeling of the Kamchatka subducting zone. References: 1. I.P Kuzin. 'Focal zone and upper mantle structure of the East Kamchatka region', Moscow, Nauka, 1974. 2. A. Gorbatov, J. Domingues, G.Suarez, V.kostoglodov, D.Zhao, and E. Gordeev, 'Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula', Geophys. J. Int, 1999, 137, 269-279. 3. Kissling, E., W.L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer: Initial reference models in local earthquake tomography, J. Geophys. Res., 99

  2. Velocity structure of the mantle transition zone beneath the southeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Bai, Ling; Zhou, Yuanze; Wang, Xiaoran; Cui, Qinghui

    2017-11-01

    P-wave triplications related to the 410 km discontinuity (the 410) were clearly observed from the vertical component seismograms of three intermediate-depth earthquakes that occurred in the Indo-Burma Subduction Zone (IBSZ) and were recorded by the Chinese Digital Seismic Network (CDSN). By matching the observed P-wave triplications with synthetics through a grid search, we obtained the best-fit models for four azimuthal profiles (I-IV from north to south) to constrain the P-wave velocity structure near the 410 beneath the southeastern margin of the Tibetan Plateau (TP). A ubiquitous low-velocity layer (LVL) resides atop the mantle transition zone (MTZ). The LVL is 25 to 40 km thick, with a P-wave velocity decrement ranging from approximately - 5.3% to - 3.6% related to the standard Earth model IASP91. An abrupt transition in the velocity decrement of the LVL was observed between profiles II and III. We postulate that the mantle structure beneath the southeastern margin of the TP is primarily controlled by the southeastern extrusion of the TP to the north combined with the eastward subduction of the Indian plate to the south, but not affected by the Emeishan mantle plume. We attribute the LVL to the partial melting induced by water and/or other volatiles released from the subducted Indian plate and the stagnant Pacific plate, but not from the upwelling or the remnants of the Emeishan mantle plume. A high-velocity anomaly ranging from approximately 1.0% to 1.5% was also detected at a depth of 542 to 600 km, providing additional evidence for the remnants of the subducted Pacific plate within the MTZ.

  3. Morbidity after Ultra Low Anterior Resection of the Rectum.

    PubMed

    Straja, N D; Ionescu, S; Brătucu, E; Alecu, M; Simion, L

    2015-01-01

    Anterior resections of the rectum, used as an alternative to amputation of the rectum, are performed more and more frequently, being presently indicated for neoplasms located ata distance of 7 to 4 cm from the anus. Complications of low and ultra low anterior resections are not at all negligible, and local neoplastic recurrence rate is significantly higher than after amputation of the rectum. However, literature data recommends low and ultra low anterior rectal resections, even if sometimes the method indications are pushed to the limit or the interventions are performed at the patient's request, in order to avoid permanent colostomy. The authors of this article aim to outline a true picture of the changes caused by anterior resections of the rectum, low and ultra low, so that, without denying the merits of these resections, the entire postoperative pathology that occurs in these patients is depicted and understood. Ultra low rectal resections, up to 3-4 cm from the anus, bring important morphological and functional changes to the act of defecation and to anal continence. These changes in colo-anal bowel movement have a much higher incidence than postoperative genitourinary disorders. Another important aspect emerging from the present study is related to the increased incidence of anastomotic disunity, stenosis and various degrees of incontinence, complications that often can only be solved by completion of rectum amputation and permanent colostomy. In addition, the functional outcomes of these ultra low resections are not always at the level expected by the patient. Also, in terms of surgical performance, the higher share of specific complications of the procedure raises questions with regard to the technique. For all these reasons the authors consider it necessary to review the lower limit to which an anterior rectal resection can descend. Celsius.

  4. Shoreline-crossing shear-velocity structure of the Juan de Fuca plate and Cascadia subduction zone from surface waves and receiver functions

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen; Gaherty, James; Abers, Geoffrey; Gao, Haiying

    2017-04-01

    The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.

  5. Shoreline-Crossing Shear-Velocity Structure of the Juan de Fuca Plate and Cascadia Subduction Zone from Surface Waves and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2016-12-01

    The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.

  6. Ultra-low profile Ovation device: is it the definitive solution for EVAR?

    PubMed

    de Donato, G; Setacci, F; Sirignano, P; Galzerano, G; Borrelli, M P; di Marzo, L; Setacci, C

    2014-02-01

    When Juan Parodi implanted an endograft in a human body for the first time on September 7, 1990 in Buenos Aires, Argentina, the delivery system of the handmade device was primitive, extremely rigid, and had a bulky profile of 27 French (F). Since then, stent-graft technology has evolved rapidly, limitations of earlier-generation devices have been overtaken, and endovascular aneurysm repair (EVAR) eligibility has increased enormously. Nevertheless (still) challenging aortoiliac anatomy such as short and complex proximal aortic neck seal zones and narrow access vessels are responsible for EVAR ineligibility in up to 50% of cases. The Ovation Prime abdominal stent-graft system (TriVascular, Inc., Santa Rosa, CA, USA) is a trimodular device designed with the aortic body delivered via a flexible, hydrophilic-coated, ultra-low profile catheter (14-F outer diameter - OD). The aortic body is provided with a suprarenal nitinol stent with anchors that provide active fixation, while a network of rings and channels that are inflated with a low-viscosity radiopaque polymer during stent-graft deployment, provides effective sealing. The previous EVAR technology aimed to both anchor and seal using stents combined with fabric, with neither optimized for their roles and each forced to compete for the same space within their delivery catheters, which inevitably led to larger profile of the delivery system. The technical revolution of the Ovation endograft includes the idea to truly uncouple the stages of stent-graft fixation and seal during the procedure. In the Ovation endograft platform, stent and fabric are not competing the same space within the delivery system and an ultra-low profile delivery can be achieved without compromise. With such a low-profile delivery catheter, approximately 90% of men and 70% of women with abdominal aortic aneurysm have access vessel diameters considered fit for endovascular repair. The aim of this review paper was to analyze the main properties of

  7. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  8. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  9. Note: Ultra-low birefringence dodecagonal vacuum glass cell.

    PubMed

    Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-01

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10(-8). After baking the cell at 150 °C, we reach a pressure below 10(-10) mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  10. Convolutional auto-encoder for image denoising of ultra-low-dose CT.

    PubMed

    Nishio, Mizuho; Nagashima, Chihiro; Hirabayashi, Saori; Ohnishi, Akinori; Sasaki, Kaori; Sagawa, Tomoyuki; Hamada, Masayuki; Yamashita, Tatsuo

    2017-08-01

    The purpose of this study was to validate a patch-based image denoising method for ultra-low-dose CT images. Neural network with convolutional auto-encoder and pairs of standard-dose CT and ultra-low-dose CT image patches were used for image denoising. The performance of the proposed method was measured by using a chest phantom. Standard-dose and ultra-low-dose CT images of the chest phantom were acquired. The tube currents for standard-dose and ultra-low-dose CT were 300 and 10 mA, respectively. Ultra-low-dose CT images were denoised with our proposed method using neural network, large-scale nonlocal mean, and block-matching and 3D filtering. Five radiologists and three technologists assessed the denoised ultra-low-dose CT images visually and recorded their subjective impressions of streak artifacts, noise other than streak artifacts, visualization of pulmonary vessels, and overall image quality. For the streak artifacts, noise other than streak artifacts, and visualization of pulmonary vessels, the results of our proposed method were statistically better than those of block-matching and 3D filtering (p-values < 0.05). On the other hand, the difference in the overall image quality between our proposed method and block-matching and 3D filtering was not statistically significant (p-value = 0.07272). The p-values obtained between our proposed method and large-scale nonlocal mean were all less than 0.05. Neural network with convolutional auto-encoder could be trained using pairs of standard-dose and ultra-low-dose CT image patches. According to the visual assessment by radiologists and technologists, the performance of our proposed method was superior to that of large-scale nonlocal mean and block-matching and 3D filtering.

  11. Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Bauters, Jared F.

    The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.

  12. Small Effect of Hydration on Elastic Wave Velocities of Ringwoodite in Earth's Transition Zone

    NASA Astrophysics Data System (ADS)

    Schulze, K.; Marquardt, H.; Boffa Ballaran, T.; Kurnosov, A.; Kawazoe, T.; Koch-Müller, M.

    2017-12-01

    Ringwoodite can incorporate significant amounts of hydrogen as OH-defects into its crystal structure. The measurement of 1.4 wt.% H20 in a natural ringwoodite diamond inclusion (Pearson et al. 2014) showed that hydrous ringwoodite can exist in the Earth's mantle. Since ringwoodite is considered to be the major phase in the mantle between 520 and 660 km depth it likely plays an important role for Earth's deep water cycle and the mantle water budget. Previous experimental work has shown that hydration reduces seismic wave velocities in ringwoodite, motivating attempts to map the hydration state of the mantle using seismic wave speed variations as depicted by seismic tomography. However, large uncertainties on the actual effects at transition zone pressures and temperatures remain. A major difficulty is the comparability of studies with different experimental setups and pressure- and temperature conditions. Here, we present results from a comparative elasticity study designed to quantify the effects of hydration on the seismic wave velocities of ringwoodite in Earth's transition zone. Focused ion beam cut single-crystals of four samples of either Fo90 or Fo100 ringwoodite with hydration states between 0.21 - 1.71 wt.% H2O were loaded in the pressure chamber of one diamond-anvil cell to ensure identical experimental conditions. Single-crystal Brillouin Spectroscopy and X-ray diffraction measurements were performed at room temperature to a pressure of 22 GPa. Additional experiments at high pressure and temperatures up to 500 K were performed. Our data collected at low pressures show a significant reduction of elastic wave velocities with hydration, consistent with previous work. However, in contrast to previous inferences, our results indicate that pressure significantly reduces the effect of hydration. Based on the outcome of our work, the redution in aggregate velocities caused by 1 wt.% H2O becomes smaller than 1% in ringwoodite at pressures equivalent to the Earth

  13. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brakhane, Stefan, E-mail: brakhane@iap.uni-bonn.de; Alt, Wolfgang; Meschede, Dieter

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  14. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39'E): a supplementary study based on passive seismic receiver functions

    NASA Astrophysics Data System (ADS)

    Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing

    2017-06-01

    As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.

  15. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  16. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  17. Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone

    USGS Publications Warehouse

    Hough, S.E.; Ben-Zion, Y.; Leary, P.

    1994-01-01

    Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.

  18. Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault: Implications for strain localization and crustal rigidity

    USGS Publications Warehouse

    ten Brink, Uri S.; Al-Zoubi, A. S.; Flores, C.H.; Rotstein, Y.; Qabbani, I.; Harder, S.H.; Keller, Gordon R.

    2006-01-01

    New seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust. Copyright 2006 by the American Geophysical Union.

  19. Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre

    2018-05-01

    This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.

  20. Critical Velocity for Shear Localization in A Mature Mylonitic Rock Analogue

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; van den Ende, M.; Niemeijer, A. R.; Spiers, C. J.

    2016-12-01

    Highly localized slip zones, seen within ductile shear zones developed in nature, such as pseudotachylite bands occurring within mylonites, are widely recognized as evidence for earthquake nucleation and/or propagation within and overprinting the ductile regime. To understand brittle/frictional localization processes in ductile shear zones and to connect these to earthquake nucleation and propagation processes, we performed large velocity step-change tests on a brine-saturated, 80:20 (wt. %) halite and muscovite gouge mixture, after forming a mature mylonitic structure through pressure solution creep at low-velocity. The sharp increase in sliding strength that occurs in response to an instantaneous upward velocity-step (direct effect) is an important parameter in determining the potential for and nature of seismic rupture nucleation. We obtained reproducible results regarding low velocity mechanical behavior compared with previous work of Niemeijer and Spiers, [2006], but also obtained new insights into the effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a specific critical velocity Vc ( 20 μm/sec). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation at high velocity (> Vc) is consistently localized in a narrow zone characterized by fine grains of halite aligned in arrays between foliated muscovite Due to this intense localization, structures presumably developed under low velocity conditions were still preserved in large parts of the gouge body. This switch to localized deformation is controlled by the imposed velocity, and becomes most apparent at velocities over Vc. In addition, the direct effect a decreases rapidly when the velocity exceeds Vc. This implies that slip can localize and accelerate towards seismic velocities more or less instantly once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance

  1. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  2. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.

    PubMed

    Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M

    2010-04-16

    The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone

  3. H+ and O+ dynamics during ultra-low frequency waves in the Earth's magnetotail plasma sheet

    NASA Astrophysics Data System (ADS)

    De Spiegeleer, Alexandre; Hamrin, Maria; Pitkänen, Timo; Volwerk, Martin; Mouikis, Christopher; Kistler, Lynn; Nilsson, Hans; Norqvist, Patrik; Andersson, Laila

    2017-04-01

    The concentration of ionospheric oxygen (O^+) in the magnetotail plasma sheet can be relatively elevated depending on, for instance, the geomagnetic activity as well as the solar cycle. The dynamics of the tail plasma sheet can be affected by the presence of O+ via for example the generation of instabilities such as the Kelvin-Helmholtz instability. However, the O+ is not always taken into account when studying the dynamics of the tail plasma sheet. We investigate proton (H^+) and O+ during ultra-low frequency waves (period > 5 min) in the mid-tail plasma sheet (beyond 10R_E) using Cluster data. We observe that the velocity of O+ can be significantly different from that of H^+. When occuring, this velocity difference always seems to be in the direction parallel to the magnetic field. The parallel velocity of the two species can be observed to be somewhat out of phase, meaning that while one species flows in the parallel direction, the other flows in the anti-parallel direction. Possible causes for such large discrepancies between the dynamics of O+ and H+ are discussed.

  4. Two types of SDR recognised in pre-stack velocity analysis of ultra-long-offset seismic reflection data in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Collier, J.; McDermott, C.; Lonergan, L.; McDermott, K.; Bellingham, P.

    2017-12-01

    Our understanding of continental breakup at volcanic margins has lagged behind that of non-volcanic margins in recent years. This is largely due to seismic imaging problems caused by the presence of thick packages of Seaward-Dipping Reflectors (SDRs) in the continent-ocean transition zone. These packages consist of interbedded tholeiitic lava flows, volcanic tuffs and terrestrial sediment that results in scattering, peg-leg multiples and defocusing of seismic energy. Here we analyse three ultra-long-offset (10.2 km), wide-bandwidth (5-100 Hz) seismic reflection profiles acquired by ION-GXT offshore South America during 2009-12 to gain new insights into the velocity structure of the SDRs and hence pattern of magmatism during continental breakup. We observe two seismic velocity patterns within the SDRs. The most landward packages show high velocity anomaly "bulls-eyes" of up to 1 km s-1. These highs occur where the stacked section shows them to thicken at the down-dip end of individual packages that are bounded by faults. All lines show 5-6 velocity highs spaced approximately 10 km apart. We interpret the velocity bulls-eyes as depleted mafic or ultramafic bodies that fed the sub-aerial tholeiitic lava flows during continental stretching. Similar relationships have been observed in outcrop onshore but have not been previously demonstrated in seismic data. The bulls-eye packages pass laterally into SDR packages that show no velocity highs. These packages are not associated with faulting and become more extensive going north towards the impact point of the Tristan da Cunha hotspot. This second type of SDR coincides with linear magnetic anomalies. We interpret these SDRs as the products of sub-aerial oceanic spreading similar to those seen on Iceland and described in the classic "Hinz model" and marine geophysical literature. Our work demonstrates that these SDRs are preceded by ones generated during an earlier phase of mechanical thinning of the continental crust. The

  5. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis.

    PubMed

    Tatti, Fabio; Papini, Marco Petrangeli; Sappa, Giuseppe; Raboni, Massimo; Arjmand, Firoozeh; Viotti, Paolo

    2018-05-01

    Low-permeability lenses represent potential sources of long-term release when filled from contaminant solute through direct contact with dissolved plumes. The redistribution of contaminant from low to high permeability aquifer zones (Back-Diffusion) was studied. Redistribution causes a long plume tail, commonly regarded as one of the main obstacles to effective groundwater remediation. Laboratory tests were performed to reproduce the redistribution process and to investigate the effect of pumping water on the remediation time of these contaminated low-permeability lenses. The test section used is representative of clay/silt lenses (k≈1∗10 -10 m/s/k≈1∗10 -7 m/s) in a sand aquifer (k≈1∗10 -3 m/s). Hence, an image analysis procedure was used to estimate the diffusive flux of contaminant released by these low-permeability zones. The proposed technique was validated performing a mass balance of a lens saturated by a known quantity of tracer. For each test, performed using a different groundwater velocity, the diffusive fluxes of contaminant released by lenses were compared and the remediation times of the low-permeability zones calculated. For each lens, the obtained remediation timeframes were used to define an analytical relation vs groundwater velocity and the coefficients of these relations were matched to grain size of the low-permeability lenses. Results show that an increase of the velocity field is not useful to diminish the total depletion times as the process mainly diffusive. This is significant when the remediation approach relies on pumping technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Traceable low and ultra-low temperatures in The Netherlands

    NASA Astrophysics Data System (ADS)

    Peruzzi, A.; Bosch, W. A.

    2009-02-01

    The basis for worldwide uniformity of low and ultra-low temperature measurements is provided by two international temperature scales, the International Temperature Scale of 1990 (ITS-90) for temperatures above 0.65 K and the Provisional Low Temperature Scale of 2000 (PLTS-2000) for temperatures in the range 0.9 mK to 1 K. Over the past 10 years, the thermometry research in the Netherlands provided substantial contributions to the definition, realization and dissemination of these scales. We first give an overview of the Dutch contributions to the ITS-90 realization: a) 3He and 4He vapour pressure thermometer range of the ITS-90, 0.65 K to 4 K (1997), b) 4He interpolating constant volume gas thermometry for the ITS-90 range 3 K to 24.5 K (2007) and c) cryogenic fixed points for the ITS-90 range 13.8 K to 273.16 K (2005). Then we highlight our work on 3He melting pressure thermometry from 10 mK to 1 K (2003) to support the dissemination of the PLTS-2000. Finally we present the current status of the Dutch calibration facilities and dissemination devices providing for traceable low and ultra-low temperatures for use in science and industry: a) the NMi-VSL cryogenic calibration facility for the range 0.65 K to 273.16 K and b) the SRD1000 superconductive reference devices for the range 10 mK to 1 K.

  7. Slip-localization within confined gouge powder sheared at moderate to high slip-velocity

    NASA Astrophysics Data System (ADS)

    Reches, Zeev; Chen, Xiaofeng; Morgan, Chance; Madden, Andrew

    2015-04-01

    Slip along faults in the upper crust is always associated with comminution and formation of non-cohesive gouge powder that can be lithified to cataclasite. Typically, the fine-grained powders (grain-size < 1 micron) build a 1-10 cm thick inner-core of a fault-zone. The ubiquitous occurrence of gouge powder implies that gouge properties may control the dynamic weakening of faults. Testing these properties is the present objective. We built a Confined ROtary Cell, CROC, with a ring-shape, ~3 mm thick gouge chamber, with 62.5 and 81.2 mm of inner and outer diameters. The sheared powder is sealed by two sets of seals pressurized by nitrogen. In CROC, we can control the pore-pressure and to inject fluids, and to monitor CO2 and H2O concentration; in addition, we monitor the standard mechanical parameters (slip velocity, stresses, dilation, and temperature). We tested six types of granular materials (starting grain-size in microns): Talc (<250), Kasota dolomite (125-250), ooides grains (125-250), San Andreas fault zone powder (< 840), montmorillonite powder (1-2), kaolinite powder and gypsum. The experimental slip-velocity ranged 0.001-1 m/s, slip distances from a few tens of cm to tens of m, effective normal stress up to 6.1 MPa. The central ultra-microscopic (SEM) observation is that almost invariably the slip was localized along principal-slip-zone (PSZ) within the granular layer. Even though the starting material was loose, coarse granular material, the developed PSZ was cohesive, hard, smooth and shining. The PSZ is about 1 micron thick, and built of agglomerated, ultra-fine grains (20-50 nm) that were pulverized from the original granular material. We noted that PSZs of the different tested compositions display similar characteristics in terms of structure, grain size, and roughness. Further, we found striking similarities between PSZ in the granular samples and the PZS that developed along experimental faults made of solid rock that were sheared at similar

  8. RuO2 Thermometer for Ultra-Low Temperatures

    NASA Technical Reports Server (NTRS)

    Hait, Thomas; Shirron, Peter J.; DiPirro, Michael

    2009-01-01

    A small, high-resolution, low-power thermometer has been developed for use in ultra-low temperatures that uses multiple RuO2 chip resistors. The use of commercially available thick-film RuO2 chip resistors for measuring cryogenic temperatures is well known due to their low cost, long-term stability, and large resistance change.

  9. An ultra-low power output capacitor-less low-dropout regulator with slew-rate-enhanced circuit

    NASA Astrophysics Data System (ADS)

    Cheng, Xin; Zhang, Yu; Xie, Guangjun; Yang, Yizhong; Zhang, Zhang

    2018-03-01

    An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE) circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA. The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV. Moreover, the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively. Project supported by the National Natural Science Foundation of China (Nos. 61401137, 61404043, 61674049).

  10. The seismic velocity structure of a foreshock zone on an oceanic transform fault: Imaging a rupture barrier to the 2008 Mw 6.0 earthquake on the Gofar fault, EPR

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Lizarralde, D.; Collins, J. A.

    2010-12-01

    from ~100 km refraction profiles crossing the two faults, each using 8 short period ocean bottom seismometers from OBSIP and over 900 shots from the RV Marcus Langseth. These data are modeled using a 2-D tomographic code that allows joint inversion of the Pg, PmP, and Pn arrivals. We resolve a significant low velocity zone associated with the faults, which likely indicates rocks that have undergone intensive brittle deformation. Low velocities may also signify the presence of metamorphic alteration and/or elevated fluid pressures, both of which could have a significant affect on the friction laws that govern fault slip in these regions. A broad low velocity zone is apparent in the shallow crust (< 3km) at both faults, with velocities that are reduced by more than 1 km/s relative to the surrounding oceanic crust. A narrower zone of reduced seismic velocity appears to extend to mantle depths, and particularly on the Gofar fault, this corresponds with the seismogenic zone inferred from located foreshock seismicity, spanning depths of 3-9 km beneath the seafloor.

  11. P-wave velocity structure beneath the northern Antarctic Peninsula: evidence of a steeply subducting slab and a deep-rooted low-velocity anomaly beneath the central Bransfield Basin

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol; Kim, Kwang-Hee; Lee, Joohan; Yoo, Hyun Jae; Plasencia L., Milton P.

    2012-12-01

    Upper-mantle structure between 100 and 300 km depth below the northern Antarctic Peninsula is imaged by modelling P-wave traveltime residuals from teleseismic events recorded on the King Sejong Station (KSJ), the Argentinean/Italian stations (JUBA and ESPZ), an IRIS/GSN Station (PMSA) and the Seismic Experiment in Patagonia and Antarctica (SEPA) broad-band stations. For measuring traveltime residuals, we applied a multichannel cross-correlation method and inverted for upper-mantle structure using VanDecar's method. The new 3-D velocity model reveals a subducted slab with a ˜70° dip angle at 100-300 km depth and a strong low-velocity anomaly confined below the SE flank of the central Bransfield Basin. The low velocity is attributed to a thermal anomaly in the mantle that could be as large as 350-560 K and which is associated with high heat flow and volcanism in the central Bransfield Basin. The low-velocity zone imaged below the SE flank of the central Bransfield Basin does not extend under the northern Bransfield Basin, suggesting that the rifting process in that area likely involves different geodynamic processes.

  12. Fault Zone Imaging from Correlations of Aftershock Waveforms

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2018-03-01

    We image an active fault zone environment using cross correlations of 154 15 s long 1992 Landers earthquake aftershock seismograms recorded along a line array. A group velocity and phase velocity dispersion analysis of the reconstructed Rayleigh waves and Love waves yields shear wave velocity images of the top 100 m along the 800 m long array that consists of 22 three component stations. Estimates of the position, width, and seismic velocity of a low-velocity zone are in good agreement with the findings of previous fault zone trapped waves studies. Our preferred solution indicates the zone is offset from the surface break to the east, 100-200 m wide, and characterized by a 30% velocity reduction. Imaging in the 2-6 Hz range resolves further a high-velocity body of similar width to the west of the fault break. Symmetry and shape of zero-lag correlation fields or focal spots indicate a frequency and position dependent wavefield composition. At frequencies greater than 4 Hz surface wave propagation dominates, whereas at lower frequencies the correlation field also exhibits signatures of body waves that likely interact with the high-velocity zone. The polarization and late arrival times of coherent wavefronts observed above the low-velocity zone indicate reflections associated with velocity contrasts in the fault zone environment. Our study highlights the utility of the high-frequency correlation wavefield obtained from records of local and regional seismicity. The approach does not depend on knowledge of earthquake source parameters, which suggests the method can return images quickly during aftershock campaigns to guide network updates for optimal coverage of interesting geological features.

  13. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  14. Ablation from High Velocity Clouds: A Source for Low Velocity Ionized Gas

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.; Henley, D. B.; Kwak, K.

    2012-05-01

    High velocity clouds shed material as they move through the Galaxy. This material mixes with the Galactic interstellar medium, resulting in plasma whose temperature and ionization levels are intermediate between those of the cloud and those of the Galaxy. As time passes, the mixed material slows to the velocity of the ambient gas. This raises the possibility that initially warm (T 10^3 K), poorly ionized clouds moving through hot (T 10^6 K), very highly ionized ambient gas could lead to mixed gas that harbors significant numbers of high ions (O+5, N+4, and C+3) and thus helps to explain the large numbers of low-velocity high ions seen on high latitude lines of sight through the Galactic halo. We have used a series of detailed FLASH simulations in order to track the hydrodynamics of warm clouds embedded in hot Galactic halo gas. These simulations tracked the ablated material as it mixed and slowed to low velocities. By following the ionization levels of the gas in a time-dependent fashion, we determined that the mixed material is rich in O+5, N+4, and C+3 ions and continues to contain these ions for some time after slowing to low velocities. Combining our simulational results with estimates of the high velocity cloud infall rate leads to the finding that the mixed gas can account for 1/3 of the normal-velocity O+5 column density found on high latitude lines of sight. It accounts for lesser fractions of the N+4 and C+3 column densities. We will discuss our high velocity cloud results as part of a composite halo model that also includes cooling Galactic fountain gas, isolated supernova remnants, and ionizing photons.

  15. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Hu, Qingyang; Young Kim, Duck; Wu, Zhongqing; Wang, Wenzhong; Xiao, Yuming; Chow, Paul; Meng, Yue; Prakapenka, Vitali B.; Mao, Ho-Kwang; Mao, Wendy L.

    2017-11-01

    Ultralow-velocity zones (ULVZs) at Earth’s core-mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated. Hydrogen-bearing iron peroxide (FeO2Hx) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here we also report a reaction between iron and water at 86 gigapascals and 2,200 kelvin that produces FeO2Hx. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth’s ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth’s core. Unlike other candidates for the composition of ULVZs, FeO2Hx synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core-mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core-mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs.

  16. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2012-12-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (3-6.5 km) low-velocity layer (shear wave velocity less than 3 km/s), which is ~20-30% slower than normal oceanic crustal velocities, between the subducted slab and the overriding North America plate. The observed low-velocity megathrust layer (with Vp/Vs ratio exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-15 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. Subduction of this buoyant crust could explain the shallow dip of the thrust zone beneath southern Alaska. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at

  17. Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Tobin, H. J.

    2013-12-01

    In the summer of 2005, Phase 2 of the San Andreas Fault Observatory at Depth (SAFOD) borehole was completed and logged with wireline tools including a dipole sonic tool to measure P- and S-wave velocities. A zone of anomalously low velocity was detected from 3150 to 3414 m measured depth (MD), corresponding with the subsurface location of the San Andreas Fault Zone (SAFZ). This low velocity zone is 5-30% slower than the surrounding host rock. Within this broad low-velocity zone, several slip surfaces were identified as well as two actively deforming shear zones: the southwest deformation zone (SDZ) and the central deformation zone (CDZ), located at 3192 and 3302 m MD, respectively. The SAFZ had also previously been identified as a low velocity zone in seismic velocity inversion models. The anomalously low velocity was hypothesized to result from either (a) brittle deformation in the damage zone of the fault, (b) high fluid pressures with in the fault zone, or (c) lithological variation, or a combination of the above. We measured P- and S-wave velocities at ultrasonic frequencies on saturated 2.5 cm diameter core plug samples taken from SAFOD core obtained in 2007 from within the low velocity zone. The resulting values fall into two distinct groups: foliated fault gouge and non-gouge. Samples of the foliated fault gouge have P-wave velocities between 2.3-3.5 km/s while non-gouge samples lie between 4.1-5.4 km/s over a range of effective pressures from 5-70 MPa. There is a good correlation between the log measurements and laboratory values of P-and S wave velocity at in situ pressure conditions especially for the foliated fault gouge. For non-gouge samples the laboratory values are approximately 0.08-0.73 km/s faster than the log values. This difference places the non-gouge velocities within the Great Valley siltstone velocity range, as measured by logs and ultrasonic measurements performed on outcrop samples. As a high fluid pressure zone was not encountered during

  18. Ultra-low magnetic damping in metallic and half-metallic systems

    NASA Astrophysics Data System (ADS)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  19. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  20. A systematic search for dwarf counterparts to ultra compact high velocity clouds

    NASA Astrophysics Data System (ADS)

    Bennet, Paul; Sand, David J.; Crnojevic, Denija; Strader, Jay

    2015-01-01

    Observations of the Universe on scales smaller than typical, massive galaxies challenge the standard Lambda Cold Dark Matter paradigm for structure formation. It is thus imperative to discover and characterize the faintest dwarf galaxy systems, not just within the Local Group, but in relatively isolated environments as well in order to properly connect them with models of structure formation. Here we report on a systematic search of public ultraviolet and optical archives for dwarf galaxy counterparts to so-called Ultra Compact High Velocity Clouds (UCHVCs), which are compact, isolated HI sources recently found in the Galactic Arecibo L-band Feed Array-HI (GALFA-HI) and Arecibo Legacy Fast ALFA (ALFALFA-HI) surveys. Our search has uncovered at least three strong dwarf galaxy candidates, and we present their inferred star formation rate and structural properties here.

  1. Background characterization of an ultra-low background liquid scintillation counter

    DOE PAGES

    Erchinger, J. L.; Orrell, John L.; Aalseth, C. E.; ...

    2017-01-26

    The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3–3600 keV can be realized. Finally, initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.

  2. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (<1000 Hz), with an ultra-light areal mass density (<1.6 kg/m2) and an ultra-thin thickness (1000 times smaller than the operating wavelength). The underlying physical mechanism of such extraordinary sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  3. Tribological performance of ultra-low viscosity composite base fluid with bio-derived fluid

    USDA-ARS?s Scientific Manuscript database

    One obvious approach to increase efficiencies in many lubricated systems such as ICE and gearbox is the reduction in viscosity of oil lubricant. Indeed, ultra-low viscosity engine oils are now commercially available. One approach to the development of ultra-low viscosity lubricants without compromis...

  4. 3-D P- and S-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region

    USGS Publications Warehouse

    Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara

    2016-01-01

    To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time–frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.

  5. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    EPA Science Inventory

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  6. A deterministic and stochastic velocity model for the Salton Trough/Basin and Range transition zone and constraints on magmatism during rifting

    NASA Astrophysics Data System (ADS)

    Larkin, Steven P.; Levander, Alan; Okaya, David; Goff, John A.

    1996-12-01

    As a high resolution addition to the 1992 Pacific to Arizona Crustal Experiment (PACE), a 45-km-long deep crustal seismic reflection profile was acquired across the Chocolate Mountains in southeastern California to illuminate crustal structure in the transition between the Salton Trough and the Basin and Range province. The complex seismic data are analyzed for both large-scale (deterministic) and fine-scale (stochastic) crustal features. A low-fold near-offset common-midpoint (CMP) stacked section shows the northeastward lateral extent of a high-velocity lower crustal body which is centered beneath the Salton Trough. Off-end shots record a high-amplitude diffraction from the point where the high velocity lower crust pinches out at the Moho. Above the high-velocity lower crust, moderate-amplitude reflections occur at midcrustal levels. These reflections display the coherency and frequency characteristics of reflections backscattered from a heterogeneous velocity field, which we model as horizontal intrusions with a von Kármán (fractal) distribution. The effects of upper crustal scattering are included by combining the mapped surface geology and laboratory measurements of exposed rocks within the Chocolate Mountains to reproduce the upper crustal velocity heterogeneity in our crustal velocity model. Viscoelastic finite difference simulations indicate that the volume of mafic material within the reflective zone necessary to produce the observed backscatter is about 5%. The presence of wavelength-scale heterogeneity within the near-surface, upper, and middle crust also produces a 0.5-s-thick zone of discontinuous reflections from a crust-mantle interface which is actually a first-order discontinuity.

  7. Seismic Wave Velocity in the Subducted Oceanic Crust from Autocorrelation of Tectonic Tremor Signals

    NASA Astrophysics Data System (ADS)

    Ducellier, A.; Creager, K.

    2017-12-01

    Hydration and dehydration of minerals in subduction zones play a key role in the geodynamic processes that generate seismicity and that allow tectonic plates to subduct. Detecting the presence of water in the subducted plate is thus crucial to better understand the seismogenesis and the consequent seismic hazard. A landward dipping, low velocity layer has been detected in most subduction zones. In Cascadia, this low velocity zone is characterized by a low S-wave velocity and a very high Poisson's ratio, which has been interpreted as high pore-fluid pressure in the upper half part of the subducted oceanic crust. Most previous studies were based on seismic reflection imaging, receiver function analysis, or body wave tomography, with seismic sources located far from the low velocity zone. In contrast, the sources of the tectonic tremors generated during Episodic Tremor and Slip (ETS) events are located on the plate boundary. As the sources of the tremors are much closer to the low velocity zone, seismic waves recorded during ETS events should illuminate the area with greater precision. Most methods to detect and locate tectonic tremors and low-frequency earthquakes are based on the cross correlation of seismic signals; either signals at the same station for different events, or the same event at different stations. We use the autocorrelation of the seismic signal recorded by eight arrays of stations, located in the Olympic Peninsula, Washington. Each tremor, assumed to be on the plate boundary, generates a direct wave and reflected and converted waves from both the strong shear-wave velocity contrast in the mid-oceanic crust, and from the Moho of the subducted oceanic crust. The time lag between the arrivals of these different waves at a seismic station corresponds to a peak of amplitude on the autocorrelation signals. Using the time lags observed for different locations of the tremor source, we intend to invert for the seismic wave velocity of the subducted oceanic

  8. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S

  9. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    NASA Astrophysics Data System (ADS)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  10. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism

  11. Sex hormone-binding globulin and antithrombin III activity in women with oral ultra-low-dose estradiol.

    PubMed

    Matsui, Sumika; Yasui, Toshiyuki; Kasai, Kana; Keyama, Kaoru; Yoshida, Kanako; Kato, Takeshi; Uemura, Hirokazu; Kuwahara, Akira; Matsuzaki, Toshiya; Irahara, Minoru

    2017-07-01

    Oral oestrogen increases the risk of venous thromboembolism (VTE) and increases production of sex hormone-binding globulin (SHBG) in a dose-dependent manner. SHBG has been suggested to be involved in venous thromboembolism. We examined the effects of oral ultra-low-dose oestradiol on circulating levels of SHBG and coagulation parameters, and we compared the effects to those of transdermal oestradiol. Twenty women received oral oestradiol (500 μg) every day (oral ultra-low-dose group) and 20 women received a transdermal patch (50 μg) as a transdermal group. In addition, the women received dydrogesterone continuously (5 mg) except for women who underwent hysterectomy. Circulating SHBG, antithrombin III (ATIII) activity, d-dimer, thrombin-antithrombin complex and plasmin-α2 plasmin inhibitor complex were measured before and 3 months after the start of treatment. SHBG was significantly increased at 3 months in the oral ultra-low-dose group, but not in the transdermal group. However, percent changes in SHBG were not significantly different between the two groups. In both groups, ATIII was significantly decreased at 3 months. In conclusion, even ultra-low-dose oestradiol orally increases circulating SHBG level. However, the magnitude of change in SHBG caused by oral ultra-low-dose oestradiol is small and is comparable to that caused by transdermal oestradiol. Impact statement Oral oestrogen replacement therapy increases production of SHBG which may be related to increase in VTE risk. However, the effect of oral ultra-low-dose oestradiol on SHBG has not been clarified. Even ultra-low-dose oestradiol orally increases circulating SHBG levels, but the magnitude of change in SHBG caused by oral ultra-low-dose oestradiol is small and is comparable to that caused by transdermal oestradiol. VTE risk in women receiving oral ultra-low-dose oestradiol may be comparable to that in women receiving transdermal oestradiol.

  12. Ultra-Low-Power MEMS Selective Gas Sensors

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph

    2012-01-01

    This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.

  13. A Study of the Use of Contact Loading to Simulate Low Velocity Impact

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.

    1997-01-01

    Although numerous studies on the impact response of laminated composites have been conducted, there is as yet no agreement within the composites community on what parameter or parameters are adequate for quantifying the severity of an impact event. One of the more interesting approaches that has been proposed uses the maximum contact force during impact to "quantify" the severity of the impact event, provided that the impact velocity is sufficiently low. A significant advantage of this approach, should it prove to be reliable, is that quasi-static contact loading could be used to simulate low velocity impact. In principle, a single specimen, loaded quasi-statically to successively increasing contact loads could be used to map the entire spectrum of damage as a function of maximum contact force. The present study had as its objective assessing whether or not the maximum contact force during impact is a suitable parameter for characterizing an impact. The response of [+/-60/0(sub 4)/+/-60/0(sub 2)](sub s) laminates fabricated from Fiberite T300/934 graphite epoxy and subjected to quasi-static contact loading and to low velocity impact was studied. Three quasi-static contact load levels - 525 lb., 600 lb., and 675 lb. - were selected. Three impact energy levels - 1.14 ft.-lb., 2.0 ft.-lb., and 2.60 ft.-lb. - were chosen in an effort to produce impact events in which the maximum contact forces during the impact events were 525 lb., 600 lb., and 625 lb., respectively. Damage development was documented using dye-penetrant enhanced x-ray radiography. A digital image processing technique was used to obtain quantitative information about the damage zone. Although it was intended that the impact load levels produce maximum contact forces equal to those used in the quasi-static contact experiments, larger contact forces were developed during impact loading. In spite of this, the damage zones developed in impacted specimens were smaller than the damage zones developed in

  14. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  15. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones

    DOE PAGES

    Liu, Jin; Hu, Qingyang; Young Kim, Duck; ...

    2017-11-22

    Ultralow-velocity zones (ULVZs) at Earth’s core–mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated. Hydrogen-bearing iron peroxide (FeO 2H x) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here in this paper we also report a reaction between iron and watermore » at 86 gigapascals and 2,200 kelvin that produces FeO 2H x. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth’s ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth’s core. Unlike other candidates for the composition of ULVZs, FeO 2H x synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core–mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core–mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs« less

  16. Effect of Heat-Affected Zone on Spot Weldability in Automotive Ultra High Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Nagasaka, Akihiko; Naito, Junya; Chinzei, Shota; Hojo, Tomohiko; Horiguchi, Katsumi; Shimizu, Yuki; Furusawa, Takuro; Kitahara, Yu

    Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (I) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (TS) and total elongation (TEl) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.

  17. Geometry and velocity structure of the northern Costa Rica seismogenic zone from 3D local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Deshon, H. R.; Schwartz, S. Y.; Newman, A. V.; Dorman, L. M.; Protti, M.; Gonzalez, V.

    2003-12-01

    We present results of a 3D local earthquake tomography study of the Middle America Trench seismogenic zone in northern Costa Rica. Local earthquake tomography can provide constraints on the updip, downdip, and lateral variability of seismicity and P- and S-wave velocities; these constraints may in turn provide information on compositional and/or mechanical variability along the seismogenic zone. We use arrival time data recorded by the Nicoya Peninsula seismic array, part of the Costa Rica seismogenic zone experiment (CRSEIZE), a collaborative effort undertaken to better understand seismogenic behavior at the Costa Rica subduction zone using data from land and ocean bottom seismic arrays, oceanic fluid flux meters, and GPS receivers. We invert ˜10,000 P-wave and S-wave arrival times from 475 well-recorded local earthquakes (GAP < 180° , >8 P-wave arrivals) to solve for the best-fitting 1D P- and S-wave velocity models, station corrections, and hypocenters using the algorithm VELEST. These 1D velocity models are used as a starting models for 3D simultaneous inversion using the algorithm SIMULPS14. Preliminary P-wave inversions contain a positive velocity anomaly dipping beneath the Nicoya Peninsula, interpreted as the subducting Cocos Plate. Earthquakes occur in a narrow band along the slab-continent interface and are consistent with the results of Newman et al. (2002). The updip limit of seismicity occurs ˜5 km deeper and 5-10 km landward in the northern vs. the southern Nicoya Peninsula, and this shift spatially correlates to the change from Cocos-Nazca to East Pacific Rise derived oceanic plate. P-wave velocities in the upper 5-10 km of the model are consistent with the geology of the Nicoya Peninsula. We will correlate relocated microseismicity to previously noted variability in oceanic plate morphology, heat flow, fluid flow, and thermal structure and compare the resulting P- and S-wave velocity models to wide-angle refraction models and hypothesized mantle

  18. Subventricular zone predicts high velocity of tumor expansion and poor clinical outcome in patients with low grade astrocytoma.

    PubMed

    Wen, Bing; Fu, Feixian; Hu, Liangbo; Cai, Qiuyi; Xie, Junshi

    2018-05-01

    The aim of this study is to clarify the association between subventricular zone (SVZ) involvement and velocity of diametric expansion(VDE) in patients with low-grade astrocytoma and also assessed the clinical outcome of those patients. A total of 168 adult patients with newly diagnosed supratentorial low-grade astrocytoma were studied retrospectively. There were 73 patients had SVZ involvement. Patients with SVZ involvement(7.16 ± 6.53 mm/y) had a higher VDE than patients without SVZ involvement(4.38 ± 5.35 mm/y). VDE was modeled as a categorical variable(<4, ≥4 and, <8, ≥8 and, <12, ≥12 mm/y). Logistic regression showed that SVZ involvement was associated with high VDE after adjusting by confounding variables. On the univariate analysis, the results showed that tumor involved with SVZ, VDE ≥ 4 mm/y, VDE ≥ 8 mm/y, and VDE ≥ 8 mm/y were significant predictors of a shorter OS, progression-free survival (PFS) and malignant progression-free survival (MFS)(all p <0.05). The categorical variables of VDE (<4 mm/y, ≥4 mm/y and, <8 mm/y, ≥8 mm/y and, <12 mm/y, ≥12 mm/y) were adjusted by confounding variables in multivariate analysis, respectively. The results indicated that VDE ≥ 8 mm/y, VDE ≥ 12 mm/y were worse prognostic factors for OS, while VDE ≥ 4 mm/y, VDE ≥ 8 mm/y and VDE ≥ 12 mm/y were related to shorter PFS and MFS. In addition, SVZ involvement was prognostic factors in predicting OS and PFS except MFS. Our results demonstrated that SVZ involvement predicted high VDE and worse clinical outcome, and high VDE was associated with poor prognosis in patients with low-grade astrocytoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. 3D Velocity Structure in Southern Haiti from Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Ellsworth, W. L.; Kissling, E. H.; Freed, A. M.; Deschamps, A.; de Lepinay, B. M.

    2016-12-01

    We investigate 3D local earthquake tomography for high-quality travel time arrivals from aftershocks following the 2010 M7.0 Haiti earthquake on the Léogâne fault. The data were recorded by 35 stations, including 19 ocean bottom seismometers, from which we selected 595 events to simultaneously invert for hypocenter location and 3D Vp and Vs velocity structures in southern Haiti. We performed several resolution tests and concluded that clear features can be recovered to a depth of 15 km. At 5km depth we distinguish a broad low velocity zone in the Vp and Vs structure offshore near Gonave Island, which correlate with layers of marine sediments. Results show a pronounced low velocity zone in the upper 5 km across the city of Léogâne, which is consistent with the sedimentary basin location from geologic map. At 10 km depth, we detect a low velocity anomaly offshore near the Trois Baies fault and a NW-SE directed low velocity zone onshore across Petit-Goâve and Jacmel, which is consistent with a suspected fault from a previous study and that we refer to it in our study as the Petit-Goâve-Jacmel fault (PGJF). These observations suggest that low velocity structures delineate fault structures and the sedimentary basins across the southern peninsula, which is extremely useful for seismic hazard assessment in Haiti.

  20. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks

  1. Multiple mantle upwellings through the transition zone beneath the Afar Depression?

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.

    2012-12-01

    Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that

  2. Ultra-compact High Velocity Clouds as Minihalos and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Faerman, Yakov; Sternberg, Amiel; McKee, Christopher F.

    2013-11-01

    We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 104 K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ~107 M ⊙ within the central 300 pc (independent of total halo mass), consistent with the "Strigari mass scale" observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d >~ 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s-1), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M 300 = 8 (± 0.2) × 106 M ⊙ best fits the observed H I profile. We derive an upper limit of P HIM <~ 150 cm-3 K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.

  3. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    USGS Publications Warehouse

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  4. Quantification of in situ pore pressure and stress in regions of low frequency earthquakes and anomalously low seismic velocity at the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Kitajima, H.; Saffer, D. M.

    2012-12-01

    Recent seismic reflection and ocean bottom seismometer (OBS) studies reveal broad regions of low seismic velocity along the megathrust plate boundary of the Nankai subduction zone offshore SW Japan. These low velocity zones (LVZ's) extend to ~55 km from the trench, corresponding to depths of >~10 km below sea floor. Elevated pore pressure has been invoked as one potential cause of both the LVZ's and very low frequency earthquakes (VLFE) in the outer forearc. Here, we estimate the in-situ pore fluid pressure and stress state within these LVZ's by combining P-wave velocities (Vp) obtained from seismic reflection and OBS data with well-constrained empirical relations between (1) P-wave velocity and porosity; and (2) porosity and effective mean and differential stresses, defined by triaxial deformation tests on drill core samples of the incoming oceanic sediment. We used cores of Lower Shikoku Basin (LSB) hemipelagic mudstone (322-C0011B-19R-5, initial porosity of 43%), and Middle Shikoku Basin (MSB) tuffaceous sandstone (333-C0011D-51X-2, initial porosity of 46%) that have been recovered from IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Site C0011 (~20 km seaward from the deformation front). Samples were loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension. During the tests, all pressures, axial displacement, and pore volume change were continuously monitored; and ultrasonic velocity and permeability were measured at regular intervals. The relationship between Vp and porosity for LSB mudstone is independent of stress path, and is well fit by an empirical function derived by Hoffman and Tobin [2004] for LSB sediments sampled by drilling along Muroto transect, located ~150 km southwest of the NanTroSEIZE study area. The MSB sandstone exhibits slightly higher P-wave velocity than LSB mudstone at a given porosity. Based on our experimental results, and assuming that the sediments in the

  5. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2013-05-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (<6.5 km) low-velocity layer (shear wave velocity of ~3 km/s), which is ~20-30% slower than normal oceanic crustal velocities, between the subducted slab and the overriding North American plate. The observed low-velocity megathrust layer (with P-to-S velocity ratio (Vp/Vs) exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-12 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at 25-30 km depth in the central Kenai along the megathrust, aligns with the western end of the

  6. Evidence for a low permeability fluid trap in the Nový Kostel Seismic Zone, Czech Republic, using double-difference tomography

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Calo, M.; Vavrycuk, V.

    2012-12-01

    between the P and S velocity models. We find that average P velocities in the focal zone are higher than those around it. High values concentrate along the main active fault with strike of 169 degrees. The model of the P-to-S ratio shows several distinct structures. An area of high P-to-S ratio is mainly identified with the focal zone, and an area of low P-to-S ratio is above the focal zone. Past studies of the P-to-S ratio have linked high ratios with areas of high fracturing and fluid concentration, and low ratios with low permeability and low fluid content. Following this interpretation, the resolved P-to-S ratio model suggests a low permeability layer just above the focal zone. This layer probably acts as a low permeability cap, leading to a change in the stress field and subsequent fracturing. The base of this layer corresponds with the shallowest ruptures. In addition, high ratios follow the fault plane, suggesting high fluid concentration in the focal zone. References: Calò, M., C. Dorbath, F. H. Cornet and N. Cuenot, 2011. Geophys. J. Int., 186, 1295-1314. Fischer, T. and J. Horálek, 2003. J. Geodyn., 35, 125-144. Fischer, T., J. Horálek, J. Michálek and A. Boušková, 2010. J. Seismol., 14, 665-682. Zhang, H. and C. Thurber, 2003. Bull. Seism. Soc. Am. 93, 1875-1889.

  7. Noise thermometry at ultra-low temperatures.

    PubMed

    Rothfuss, D; Reiser, A; Fleischmann, A; Enss, C

    2016-03-28

    The options for primary thermometry at ultra-low temperatures are rather limited. In practice, most laboratories are using (195)Pt NMR thermometers in the microkelvin range. In recent years, current sensing direct current superconducting quantum interference devices (DC-SQUIDs) have enabled the use of noise thermometry in this temperature range. Such devices have also demonstrated the potential for primary thermometry. One major advantage of noise thermometry is the fact that no driving current is needed to operate the device and thus the heat dissipation within the thermometer can be reduced to a minimum. Ultimately, the intrinsic power dissipation is given by the negligible back action of the readout SQUID. For thermometry in low-temperature experiments, current noise thermometers and magnetic flux fluctuation thermometers have proved to be most suitable. To make use of such thermometers at ultra-low temperatures, we have developed a cross-correlation technique that reduces the amplifier noise contribution to a negligible value. For this, the magnetic flux fluctuations caused by the Brownian motion of the electrons in our noise source are measured inductively by two DC-SQUID magnetometers simultaneously and the signals from these two channels are cross-correlated. Experimentally, we have characterized a thermometer made of a cold-worked high-purity copper cylinder with a diameter of 5 mm and a length of 20 mm for temperatures between 42 μK and 0.8 K. For a given temperature, a measuring time below 1 min is sufficient to reach a precision of better than 1%. The extremely low power dissipation in the thermometer allows continuous operation without heating effects. © 2016 The Author(s).

  8. Modeling Low Velocity Impacts: Predicting Crater Depth on Pluto

    NASA Astrophysics Data System (ADS)

    Bray, V. J.; Schenk, P.

    2014-12-01

    The New Horizons mission is due to fly-by the Pluto system in Summer 2015 and provides the first opportunity to image the Pluto surface in detail, allowing both the appearance and number of its crater population to be studied for the first time. Bray and Schenk (2014) combined previous cratering studies and numerical modeling of the impact process to predict crater morphology on Pluto based on current understanding of Pluto's composition, structure and surrounding impactor population. Predictions of how the low mean impact velocity (~2km/s) of the Pluto system will influence crater formation is a complex issue. Observations of secondary cratering (low velocity, high angle) and laboratory experiments of impact at low velocity are at odds regarding how velocity controls depth-diameter ratios: Observations of secondary craters show that these low velocity craters are shallower than would be expected for a hyper-velocity primary. Conversely, gas gun work has shown that relative crater depth increases as impact velocity decreases. We have investigated the influence of impact velocity further with iSALE hydrocode modeling of comet impact into Pluto. With increasing impact velocity, a projectile will produce wider and deeper craters. The depth-diameter ratio (d/D) however has a more complex progression with increasing impact velocity: impacts faster than 2km/s lead to smaller d/D ratios as impact velocity increases, in agreement with gas-gun studies. However, decreasing impact velocity from 2km/s to 300 m/s produced smaller d/D as impact velocity was decreased. This suggests that on Pluto the deepest craters would be produced by ~ 2km/s impacts, with shallower craters produced by velocities either side of this critical point. Further simulations to investigate whether this effect is connected to the sound speed of the target material are ongoing. The complex relationship between impact velocity and crater depth for impacts occurring between 300m/s and 10 km/s suggests

  9. Ab initio elastic properties of talc from 0 to 12 GPa: Interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure

    NASA Astrophysics Data System (ADS)

    Mainprice, David; Le Page, Yvon; Rodgers, John; Jouanna, Paul

    2008-10-01

    Talc is a hydrous magnesium rich layered silicate that is widely disseminated in the Earth from the seafloor to over 100 km depth, in ultra-high pressure metamorphism of oceanic crust. In this paper we determine the single crystal elastic constants at pressures from 0 to 12 GPa of talc triclinic ( C 1¯) and monoclinic (C2/ c) polytypes using ab initio methods. We find that talc has an extraordinarily high elastic anisotropy at zero pressure that reduces with increasing pressure. The exceptional anisotropy is complemented by a negative Poisson's ratio for many directions in crystal space. Calculations show that talc is not only one of very few common minerals to exhibit auxetic behaviour, but the magnitude of this effect may be the largest reported so far for a mineral. The compression (Vp) and shear (Vs) wave velocity anisotropy is 80% and 85% for the triclinic polytype. At pressures where talc is known be stable in the Earth (up to 5 GPa) the Vp and Vs anisotropy is reduced to about 40% for both velocities, which is still a very high value. Vp is slow parallel to the c-axis and fast perpendicular to it. This remains unchanged with increasing pressure and is observed in both polytypes. The shear wave splitting (difference between fast and slow S-wave velocities) at low pressure has high values in the plane normal to the c-axis, with a maximum near the a*-axis in the triclinic and the b-axis in the monoclinic polytype. The c-axis is the direction of minimum splitting. The pattern of shear wave splitting does not change significantly with pressure. The volume fraction of talc varies between 11 and 41% for hydrated mantle rocks, but the lack of data on the crystallographic preferred orientation (CPO) precludes a detailed analysis of the impact of talc on seismic anisotropy in subduction zones. However, it is highly likely that CPO can easily develop in zones of deformation due to the platy habit of talc crystals. For random aggregates of talc, the isotropic Vp, Vs

  10. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  11. Crystal growth of intermetallic clathrates: Floating zone process and ultra rapid crystallization

    NASA Astrophysics Data System (ADS)

    Prokofiev, A.; Yan, X.; Ikeda, M.; Löffler, S.; Paschen, S.

    2014-09-01

    We studied the crystal growth process of type-I transition metal clathrates in two different regimes: a regime of moderate cooling rate, realized with the floating zone technique, and a regime of ultra rapid cooling, realized by the melt spinning technique. In the former regime, bulk Ba8AuxSi46-x and Ba8Cu4.8GaxGe41.2-x single crystals were grown. We investigated segregation effects of the constituting elements by measurements of the composition profiles along the growth direction. The compositional non-uniformity results in a spatial variation of the electrical resistivity which is discussed as well. Structural features of clathrates and their extremely low thermal conductivities imply specifics in growth behavior which manifest themselves most pronouncedly in a rapid crystallization process. Our melt spinning experiments on Ba8Au5Si41 and Ba8Ni3.5Si42.5 (and earlier on some other clathrates) have revealed surprisingly large grains of at least 1 μm. Because of the anomalously high growth rate of the clathrate phase the formation of impurity phases is considerably kinetically suppressed. We present our scanning and transmission electron microscopy investigations of melt spun samples and discuss structural, thermodynamic and kinetic aspects of the unusual clathrate nucleation and crystallization.

  12. Ultra-Low-Dropout Linear Regulator

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  13. Ultra-Low-Dose Fetal CT With Model-Based Iterative Reconstruction: A Prospective Pilot Study.

    PubMed

    Imai, Rumi; Miyazaki, Osamu; Horiuchi, Tetsuya; Asano, Keisuke; Nishimura, Gen; Sago, Haruhiko; Nosaka, Shunsuke

    2017-06-01

    Prenatal diagnosis of skeletal dysplasia by means of 3D skeletal CT examination is highly accurate. However, it carries a risk of fetal exposure to radiation. Model-based iterative reconstruction (MBIR) technology can reduce radiation exposure; however, to our knowledge, the lower limit of an optimal dose is currently unknown. The objectives of this study are to establish ultra-low-dose fetal CT as a method for prenatal diagnosis of skeletal dysplasia and to evaluate the appropriate radiation dose for ultra-low-dose fetal CT. Relationships between tube current and image noise in adaptive statistical iterative reconstruction and MBIR were examined using a 32-cm CT dose index (CTDI) phantom. On the basis of the results of this examination and the recommended methods for the MBIR option and the known relationship between noise and tube current for filtered back projection, as represented by the expression SD = (milliamperes) -0.5 , the lower limit of the optimal dose in ultra-low-dose fetal CT with MBIR was set. The diagnostic power of the CT images obtained using the aforementioned scanning conditions was evaluated, and the radiation exposure associated with ultra-low-dose fetal CT was compared with that noted in previous reports. Noise increased in nearly inverse proportion to the square root of the dose in adaptive statistical iterative reconstruction and in inverse proportion to the fourth root of the dose in MBIR. Ultra-low-dose fetal CT was found to have a volume CTDI of 0.5 mGy. Prenatal diagnosis was accurately performed on the basis of ultra-low-dose fetal CT images that were obtained using this protocol. The level of fetal exposure to radiation was 0.7 mSv. The use of ultra-low-dose fetal CT with MBIR led to a substantial reduction in radiation exposure, compared with the CT imaging method currently used at our institution, but it still enabled diagnosis of skeletal dysplasia without reducing diagnostic power.

  14. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera-Palmer, Belkis; Barton, Paul

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detectormore » with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.« less

  15. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kirby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; hide

    2010-01-01

    We present results of ultra-low dose-rate irradiations on a variety of commercial and radiation hardened bipolar circuits. We observed enhanced degradations at dose rates lower than 10 mrad(Si)/s in some devices.

  16. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin; Hu, Qingyang; Young Kim, Duck

    Ultralow-velocity zones (ULVZs) at Earth’s core–mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated1,2,3. Hydrogen-bearing iron peroxide (FeO2Hx) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle4,5,6. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here we also report a reaction between iron and water at 86 gigapascals and 2,200more » kelvin that produces FeO2Hx. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth’s ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth’s core. Unlike other candidates for the composition of ULVZs7,8,9,10,11,12, FeO2Hx synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core–mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core–mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs.« less

  17. Uppermost mantle velocity from Pn tomography in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Corbeau, Jordane; Rolandone, Frédérique; Leroy, Sylvie; Al-Lazki, Ali; Keir, Derek; Stuart, Graham; Stork, Anna

    2013-04-01

    We present an analysis of Pn traveltimes to determine lateral variations of velocity in the uppermost mantle and crustal thickness beneath the Gulf of Aden and its margins. No detailed tomographic image of the entire Gulf of Aden was available. Previous tomographic studies covered the eastern Gulf of Aden and were thus incomplete or at a large scale with a too low resolution to see the lithospheric structures. From 1990 to 2010, 49206 Pn arrivals were selected from the International Seismological Center catalogue. We also used temporary networks : YOCMAL (Young Conjugate Margins Laboratory) networks with broadband stations located in Oman, Yemen and Socotra from 2003 to 2011, and Djibouti network from 2009 to 2011. From these networks we picked Pn arrivals and selected 4110 rays. Using a least-squares tomographic code (Hearn, 1996), these data were analyzed to solve for velocity variations in the mantle lithosphere. We perform different inversions for shorter and longer ray path data sets in order to separate the shallow and deep structure within the mantle lid. In the upper lid, zones of low velocity (7.7 km/s) around Sanaa, Aden, Afar, and along the Gulf of Aden are related to active volcanism. Off-axis volcanism and a regional melting anomaly in the Gulf of Aden area may be connected to the Afar plume, and explained by the model of channeling material away from the Afar plume along ridge-axis. Our study validates the channeling model and shows that the influence of the Afar hotspot may extend much farther eastwards along the Aden and Sheba ridges into the Gulf of Aden than previously believed. Still in the upper lid, high Pn velocities (>8,2 km/s) are observed in Yemen and may be related to the presence of a magmatic underplating under the volcanic margin of Aden and under the Red Sea margins. In the lower lid, zones of low velocities are spatially located differently than in the upper lid. On the Oman margin, a low velocity zone (7.6 km/s) suggests deep partial

  18. Ultra-low-loss optical fiber nanotapers.

    PubMed

    Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David

    2004-05-17

    Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

  19. Ultra-low-cost clinical pulse oximetry.

    PubMed

    Petersen, Christian L; Gan, Heng; MacInnis, Martin J; Dumont, Guy A; Ansermino, J Mark

    2013-01-01

    An ultra-low-cost pulse oximeter is presented that interfaces a conventional clinical finger sensor with a mobile phone through the headset jack audio interface. All signal processing is performed using the audio subsystem of the phone. In a preliminary volunteer study in a hypoxia chamber, we compared the oxygen saturation obtained with the audio pulse oximeter against a commercially available (and FDA approved) reference pulse oximeter (Nonin Xpod). Good agreement was found between the outputs of the two devices.

  20. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    PubMed

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  1. Using compressive measurement to obtain images at ultra low-light-level

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Wei, Ping

    2013-08-01

    In this paper, a compressive imaging architecture is used for ultra low-light-level imaging. In such a system, features, instead of object pixels, are imaged onto a photocathode, and then magnified by an image intensifier. By doing so, system measurement SNR is increased significantly. Therefore, the new system can image objects at ultra low-ligh-level, while a conventional system has difficulty. PCA projection is used to collect feature measurements in this work. Linear Wiener operator and nonlinear method based on FoE model are used to reconstruct objects. Root mean square error (RMSE) is used to quantify system reconstruction quality.

  2. Rheology of serpentinite in high-temperature and low-slip-velocity regime

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Uehara, S.; Mizoguchi, K.; Takeda, N.; Masuda, K.

    2009-12-01

    This study was designed to clarify the rheology of serpentinite experimentally, related both the sliding velocity and the temperature. The frictional behavior of serpentinite is of particular interest in the study of earthquake generation processes along subducting plates and transform faults. Previous studies [Reinen et al., 1991-93] revealed that the serpentinites indicated two-mechanical behaviors at velocity-step test: ‘state-variable dominated behavior’ at relatively higher velocity (0.1-10 μm/sec) and ‘flow-dominated behavior’ at lower velocity (less than 0.1 μm/sec). Such complexity on the frictional behavior could make it complicated to forecast on the slip acceleration process from the plate motion velocity to the earthquake. Even under the room-temperature condition, those multiple behavior could be observed, thus, serpentinite can be a model substance to present a new constitutive law at the brittle-ductile transition regime. We, therefore, focus to discuss the transient behaviors of serpentinite at the velocity-step test. We used a gas-medium, high-pressure, and high-temperature triaxial testing machine belonging to the National Institute of Advanced Industrial Science and Technology (AIST), Japan. Sliding deformation was applied on the thin zone of the serpentinite gouge (1.0 g of almost pure antigorite powder) sandwiched between two alumina blocks with oblique surfaces at 30° to the axis. All experiments were carried out under a set of constant conditions, 100 MPa of the confining pressure (Ar-gas) and 30 MPa of the pore pressure (distilled water). The temperature conditions were varied from the room-temperature to 500° C, and three sliding velocity-regimes were adopted: low (0.0115 - 0.115 μm/sec), middle (0.115 - 1.15 μm/sec) and high (1.15 - 11.5 μm/sec) velocity regimes. In each velocity regime, the sliding velocity was increased or decreased in a stepwise fashion, and then we observed the transient behaviors until it reached the

  3. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    NASA Astrophysics Data System (ADS)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  4. Feasibility study of SiGHT: a novel ultra low background photosensor for low temperature operation

    DOE PAGES

    Wang, Y.; Fan, A.; Fiorillo, G.; ...

    2017-02-27

    Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less

  5. Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone

    NASA Astrophysics Data System (ADS)

    Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.

    2018-03-01

    The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.

  6. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  7. The cannabinoid anticonvulsant effect on pentylenetetrazole-induced seizure is potentiated by ultra-low dose naltrexone in mice.

    PubMed

    Bahremand, Arash; Shafaroodi, Hamed; Ghasemi, Mehdi; Nasrabady, Sara Ebrahimi; Gholizadeh, Shervin; Dehpour, Ahmad Reza

    2008-09-01

    Cannabinoid compounds are anticonvulsant since they have inhibitory effects at micromolar doses, which are mediated by activated receptors coupling to G(i/o) proteins. Surprisingly, both the analgesic and anticonvulsant effects of opioids are enhanced by ultra-low doses (nanomolar to picomolar) of the opioid antagonist naltrexone and as opioid and cannabinoid systems interact, it has been shown that ultra-low dose naltrexone also enhances cannabinoid-induced antinociception. Thus, concerning the seizure modulating properties of both classes of receptors this study investigated whether the ultra-low dose opioid antagonist naltrexone influences cannabinoid anticonvulsant effects. The clonic seizure threshold was tested in separate groups of male NMRI mice following injection of vehicle, the cannabinoid selective agonist arachidonyl-2-chloroethylamide (ACEA) and ultra-low doses of the opioid receptor antagonist naltrexone and a combination of ACEA and naltrexone doses in a model of clonic seizure induced by pentylenetetrazole (PTZ). Systemic injection of ultra-low doses of naltrexone (1pg/kg to 1ng/kg, i.p.) significantly potentiated the anticonvulsant effect of ACEA (1mg/kg, i.p.). Moreover, the very low dose of naltrexone (500pg/kg) unmasked a strong anticonvulsant effect for very low doses of ACEA (10 and 100microg/kg). A similar potentiation by naltrexone (500pg/kg) of anticonvulsant effects of non-effective dose of ACEA (1mg/kg) was also observed in the generalized tonic-clonic model of seizure. The present data indicate that the interaction between opioid and cannabinoid systems extends to ultra-low dose levels and ultra-low doses of opioid receptor antagonist in conjunction with very low doses of cannabinoids may provide a potent strategy to modulate seizure susceptibility.

  8. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/ Vs in the transparent frontal prism

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou

    2014-12-01

    Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.

  9. Hazardous Early Days In (and Beyond) the Habitable Zones Around Ultra-Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Kastner, Joel

    Although a majority of stars in the solar neighborhood are of mid- to late-M type, the magnetically-induced coronal (X-ray) and chromospheric (UV, H-alpha) activity of such stars remain essentially unexplored for the important age range 10-100 Myr. Such information on high-energy processes associated with young M stars would provide much-needed constraints on models of the effects of stellar irradiation on the physics and chemistry of planet-forming disks and newborn planets. In addition, X-ray and UV observations of ultra-low-mass young stars can serve to probe the (presently ill-defined) spectral type boundary that determines which very low-mass objects will eventually become M stars -- as opposed to brown dwarfs (BDs) -- following their pre-main sequence evolutionary stages. Via ADAP support, we have developed the GALEX Nearby Young Star Search (GALNYSS), a search method that combines GALEX, 2MASS, WISE and proper motion catalog information to identify nearby, young, lowmass stars. We have applied this method to identify ~2000 candidate young (10-100 Myr), low-mass (M-type) stars within 150 pc. These GALNYSS-identified young star candidates are distributed over the entire GALEX-covered sky, and their spectral types peak in the M3-4 range; followup optical spectroscopic work is ongoing (Rodriguez et al. 2013, ApJ, 774, 101). We now propose an ADA program to determine the X-ray properties of representative stars among these GALNYSS candidates, so as to confirm their youth and investigate the early evolution of coronal activity near the low-mass star/BD boundary and the effects of such activity on planet formation. Specifically, we will exploit the presence in the HEASARC archives of XMM-Newton and (to a lesser extent) Chandra X-ray Observatory data for a few dozen GALNYSS candidates that have been observed serendipitously by one or both of these space observatories. The proposed ADA program will yield the full reduction and analysis of these as-yet unexplored data

  10. A Comparison of Quasi-Static Indentation to Low-Velocity Impact

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Douglas, M. J.

    2000-01-01

    A static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low-velocity impact tests were carried out and compared. Square specimens of many sizes and thicknesses were utilized to cover the array of types of low velocity impact events. Laminates with a pi/4 stacking sequence were employed since this is by far the most common type of engineering laminate. Three distinct flexural rigidities -under two different boundary conditions were tested in order to obtain damage ranging from that due to large deflection to contact stresses and levels in-between to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low-velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area, and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low-velocity impact tests, indicating that static indentation can be used to represent a low-velocity impact event.

  11. The detection of ultra-relativistic electrons in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Katsiyannis, Athanassios C.; Dominique, Marie; Pierrard, Viviane; Rosson, Graciela Lopez; Keyser, Johan De; Berghmans, David; Kruglanski, Michel; Dammasch, Ingolf E.; Donder, Erwin De

    2018-01-01

    Aims: To better understand the radiation environment in low Earth orbit (LEO), the analysis of in-situ observations of a variety of particles, at different atmospheric heights, and in a wide range of energies, is needed. Methods: We present an analysis of energetic particles, indirectly detected by the large yield radiometer (LYRA) instrument on board ESA's project for on-board autonomy 2 (PROBA2) satellite as background signal. Combining energetic particle telescope (EPT) observations with LYRA data for an overlapping period of time, we identified these particles as electrons with an energy range of 2 to 8 MeV. Results: The observed events are strongly correlated to geo-magnetic activity and appear even during modest disturbances. They are also well confined geographically within the L = 4-6 McIlwain zone, which makes it possible to identify their source. Conclusions: Although highly energetic particles are commonly perturbing data acquisition of space instruments, we show in this work that ultra-relativistic electrons with energies in the range of 2-8 MeV are detected only at high latitudes, while not present in the South Atlantic Anomaly region.

  12. Investigation on low velocity impact resistance of SMA composite material

    NASA Astrophysics Data System (ADS)

    Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong

    2016-04-01

    A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.

  13. A programmable ultra-low noise X-band exciter.

    PubMed

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry.

  14. Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis.

    PubMed

    Gonzalez, Aroa Garcia; Taraba, Lukáš; Hraníček, Jakub; Kozlík, Petr; Coufal, Pavel

    2017-01-01

    Dasatinib is a novel oral prescription drug proposed for treating adult patients with chronic myeloid leukemia. Three analytical methods, namely ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis, were developed, validated, and compared for determination of the drug in the tablet dosage form. The total analysis time of optimized ultra high performance liquid chromatography and capillary zone electrophoresis methods was 2.0 and 2.2 min, respectively. Direct ultraviolet detection with detection wavelength of 322 nm was employed in both cases. The optimized sequential injection analysis method was based on spectrophotometric detection of dasatinib after a simple colorimetric reaction with folin ciocalteau reagent forming a blue-colored complex with an absorbance maximum at 745 nm. The total analysis time was 2.5 min. The ultra high performance liquid chromatography method provided the lowest detection and quantitation limits and the most precise and accurate results. All three newly developed methods were demonstrated to be specific, linear, sensitive, precise, and accurate, providing results satisfactorily meeting the requirements of the pharmaceutical industry, and can be employed for the routine determination of the active pharmaceutical ingredient in the tablet dosage form. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of a Low cost Ultra tiny Line Laser Range Sensor

    DTIC Science & Technology

    2016-12-01

    Development of a Low-cost Ultra-tiny Line Laser Range Sensor Xiangyu Chen∗, Moju Zhao∗, Lingzhu Xiang†, Fumihito Sugai∗, Hiroaki Yaguchi∗, Kei Okada...and Masayuki Inaba∗ Abstract— To enable robotic sensing for tasks with require- ments on weight, size, and cost, we develop an ultra-tiny line laser ...view customizable using different laser lenses. The optimal measurement range of the sensor is 0.05[m] ∼ 2[m]. Higher sampling rates can be achieved

  16. Seismic evidence for water transport out of the mantle transition zone beneath the European Alps

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro

    2018-01-01

    The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.

  17. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  18. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    NASA Astrophysics Data System (ADS)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  19. CMOS Ultra Low Power Radiation Tolerant (CULPRiT) Microelectronics

    NASA Technical Reports Server (NTRS)

    Yeh, Penshu; Maki, Gary

    2007-01-01

    Space Electronics needs Radiation Tolerance or hardness to withstand the harsh space environment: high-energy particles can change the state of the electronics or puncture transistors making them disfunctional. This viewgraph document reviews the use of CMOS Ultra Low Power Radiation Tolerant circuits for NASA's electronic requirements.

  20. Oxytrex: an oxycodone and ultra-low-dose naltrexone formulation.

    PubMed

    Webster, Lynn R

    2007-08-01

    Oxytrex (Pain Therapeutics, Inc.) is an oral opioid that combines a therapeutic amount of oxycodone with an ultra-low dose of the antagonist naltrexone. Animal data indicate that this combination minimizes the development of physical dependence and analgesic tolerance while prolonging analgesia. Oxytrex is in late-stage clinical development by Pain Therapeutics for the treatment of moderate-to-severe chronic pain. To evaluate the safety and efficacy of the oxycodone/naltrexone combination, three clinical studies have been conducted, one in healthy volunteers and the other two in patients with chronic pain. The putative mechanism of ultra-low-dose naltrexone is to prevent an alteration in G-protein coupling by opioid receptors that is associated with opioid tolerance and dependence. Opioid agonists are initially inhibitory but become excitatory through constant opioid receptor activity. The agonist/antagonist combination of Oxytrex may reduce the conversion from an inhibitory to an excitatory receptor, thereby decreasing the development of tolerance and physical dependence.

  1. Anomalously low amplitude of S waves produced by the 3D structures in the lower mantle

    NASA Astrophysics Data System (ADS)

    To, Akiko; Capdeville, Yann; Romanowicz, Barbara

    2016-07-01

    Direct S and Sdiff phases with anomalously low amplitudes are recorded for the earthquakes in Papua New Guinea by seismographs in northern America. According to the prediction by a standard 1D model, the amplitudes are the lowest at stations in southern California, at a distance and azimuth of around 95° and 55°, respectively, from the earthquake. The amplitude anomaly is more prominent at frequencies higher than 0.03 Hz. We checked and ruled out the possibility of the anomalies appearing because of the errors in the focal mechanism used in the reference synthetic waveform calculations. The observed anomaly distribution changes drastically with a relatively small shift in the location of the earthquake. The observations indicate that the amplitude reduction is likely due to the 3D shear velocity (Vs) structure, which deflects the wave energy away from the original ray paths. Moreover, some previous studies suggested that some of the S and Sdiff phases in our dataset are followed by a prominent postcursor and show a large travel time delay, which was explained by placing a large ultra-low velocity zone (ULVZ) located on the core-mantle boundary southwest of Hawaii. In this study, we evaluated the extent of amplitude anomalies that can be explained by the lower mantle structures in the existing models, including the previously proposed ULVZ. In addition, we modified and tested some models and searched for the possible causes of low amplitudes. Full 3D synthetic waveforms were calculated and compared with the observations. Our results show that while the existing models explain the trends of the observed amplitude anomalies, the size of such anomalies remain under-predicted especially at large distances. Adding a low velocity zone, which is spatially larger and has less Vs reduction than ULVZ, on the southwest side of ULVZ, contributes to explain the low amplitudes observed at distances larger than 100° from the earthquake. The newly proposed low velocity zone

  2. Human abuse liability assessment of oxycodone combined with ultra-low-dose naltrexone.

    PubMed

    Tompkins, David Andrew; Lanier, Ryan K; Harrison, Joseph A; Strain, Eric C; Bigelow, George E

    2010-07-01

    Prescription opioid abuse has risen dramatically in the United States as clinicians have increased opioid prescribing for alleviation of both acute and chronic pain. Opioid analgesics with decreased risk for abuse are needed. Preclinical and clinical studies have shown that opioids combined with ultra-low-dose naltrexone (NTX) may have increased analgesic potency and have suggested reduced abuse or dependence liability. This study addressed whether addition of ultra-low-dose naltrexone might decrease the abuse liability of oxycodone (OXY) in humans. This double-blind, placebo-controlled study systematically examined the subjective and physiological effects of combining oral OXY and ultra-low NTX doses in 14 experienced opioid abusers. Seven acute drug conditions given at least 5 days apart were compared in a within-subject crossover design: placebo, OXY 20 mg, OXY 40 mg, plus each of the active OXY doses combined with 0.0001 and 0.001 mg NTX. The methods were sensitive to detecting opioid effects on abuse liability indices, with significant differences between all OXY conditions and placebo as well as between 20 and 40 mg OXY doses on positive subjective ratings (e.g., "I feel a good drug effect" or "I like the drug"), on observer- and participant-rated opioid agonist effects, and on a drug-versus-money value rating. There were no significant differences or evident trends associated with the addition of either NTX dose on any abuse liability indices. The addition of ultra-low-dose NTX to OXY did not decrease abuse liability of acutely administered OXY in experienced opioid abusers.

  3. Effect of Sediments on Rupture Dynamics of Shallow Subduction Zone Earthquakes and Tsunami Generation

    NASA Astrophysics Data System (ADS)

    Ma, S.

    2011-12-01

    Low-velocity fault zones have long been recognized for crustal earthquakes by using fault-zone trapped waves and geodetic observations on land. However, the most pronounced low-velocity fault zones are probably in the subduction zones where sediments on the seafloor are being continuously subducted. In this study I focus on shallow subduction zone earthquakes; these earthquakes pose a serious threat to human society in their ability in generating large tsunamis. Numerous observations indicate that these earthquakes have unusually long rupture durations, low rupture velocities, and/or small stress drops near the trench. However, the underlying physics is unclear. I will use dynamic rupture simulations with a finite-element method to investigate the dynamic stress evolution on faults induced by both sediments and free surface, and its relations with rupture velocity and slip. I will also explore the effect of off-fault yielding of sediments on the rupture characteristics and seafloor deformation. As shown in Ma and Beroza (2008), the more compliant hanging wall combined with free surface greatly increases the strength drop and slip near the trench. Sediments in the subduction zone likely have a significant role in the rupture dynamics of shallow subduction zone earthquakes and tsunami generation.

  4. Controlling Low-Rate Signal Path Microdischarge for an Ultra-Low-Background Proportional Counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco

    2013-05-01

    ABSTRACT Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) made of high purity copper. These detectors are part of an ultra-low-background counting system (ULBCS) in the newly constructed shallow underground laboratory at PNNL (at a depth of ~30 meters water-equivalent). To control backgrounds, the current preamplifier electronics are located outside the ULBCS shielding. Thus the signal from the detector travels through ~1 meter of cable and is potentially susceptible to high voltage microdischarge and other sources of electronic noise. Based on initial successful tests, commercial cables and connectors were used for this critical signal path. Subsequentmore » testing across different batches of commercial cables and connectors, however, showed unwanted (but still low) rates of microdischarge noise. To control this noise source, two approaches were pursued: first, to carefully validate cables, connectors, and other commercial components in this critical signal path, making modifications where necessary; second, to develop a custom low-noise, low-background preamplifier that can be integrated with the ULBPC and thus remove most commercial components from the critical signal path. This integrated preamplifier approach is based on the Amptek A250 low-noise charge-integrating preamplifier module. The initial microdischarge signals observed are presented and characterized according to the suspected source. Each of the approaches for mitigation is described, and the results from both are compared with each other and with the original performance seen with commercial cables and connectors.« less

  5. Experimental observations of low-velocity collisional systems

    NASA Astrophysics Data System (ADS)

    Jorges, Jeffery; Dove, Adrienne; Colwell, Joshua

    Low-velocity collisions in systems of centimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. Numerical simulations of these systems are limited by a need to understand the collisional parameters governing the outcomes of these collisions over a range of conditions. Here, we present the results from laboratory experiments designed to explore low-velocity collisions by conducting experiments in a vacuum chamber in our 0.8-sec drop tower apparatus. These experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are ``mantled'' - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. These videos are then processed and we track the particles to determine impactor speeds before and after collision and the collisional outcome. We determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. For impact velocities in the range from about 20-100 cm/s we observe that mantling of particles has the most significant effect, reducing the coefficients of restitution.

  6. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less

  7. Ultra-Low Density Organic-Inorganic Composite Materials Possessing Thermally Insulating and Acoustic Damping Properties

    DTIC Science & Technology

    1992-05-07

    Officer. Dr. Kenneth Wynne d. Brief Description of Project- We are investigating the design and synthesis of strong, ultra-low density xerogel and aerogel ...materials of this type would have applications in a broad range of areas including lightweight engine components, high temperature coatings, aircraft wings...we plan to investigate the formation of ultra-low density composites using supercritical universal drying (SCUD) techniques. SiO2 aerogel materials

  8. Origins of ultra-diffuse galaxies in the Coma cluster - I. Constraints from velocity phase-space

    NASA Astrophysics Data System (ADS)

    Alabi, Adebusola; Ferré-Mateu, Anna; Romanowsky, Aaron J.; Brodie, Jean; Forbes, Duncan A.; Wasserman, Asher; Bellstedt, Sabine; Martín-Navarro, Ignacio; Pandya, Viraj; Stone, Maria B.; Okabe, Nobuhiro

    2018-06-01

    We use Keck/DEIMOS spectroscopy to confirm the cluster membership of 16 ultra-diffuse galaxies (UDGs) in the Coma cluster, bringing the total number of spectroscopically confirmed UDGs from the Yagi et al. (Y16) catalog to 25. We also identify a new cluster background UDG, confirming that most (˜95 per cent) of the UDGs in the Y16 catalog belong to the Coma cluster. In this pilot study of Coma UDGs in velocity phase-space, we find evidence of a diverse origin for Coma cluster UDGs, similar to normal dwarf galaxies. Some UDGs in our sample are consistent with being late infalls into the cluster environment while some may have been in the cluster for ≥8 Gyr. The late infallen UDGs have higher absolute relative line-of-sight velocities, bluer optical colors, and within the projected cluster core, are smaller in size, compared to the early infalls. The early infall UDGs, which may also have formed in-situ, have been in the cluster environment for as long as the most luminous galaxies in the Coma cluster and they may be failed galaxies which experienced star formation quenching at earlier epochs.

  9. Origins of ultralow velocity zones through slab-derived metallic melt

    PubMed Central

    Liu, Jiachao; Li, Jie; Smith, Jesse S.

    2016-01-01

    Understanding the ultralow velocity zones (ULVZs) places constraints on the chemical composition and thermal structure of deep Earth and provides critical information on the dynamics of large-scale mantle convection, but their origin has remained enigmatic for decades. Recent studies suggest that metallic iron and carbon are produced in subducted slabs when they sink beyond a depth of 250 km. Here we show that the eutectic melting curve of the iron−carbon system crosses the current geotherm near Earth’s core−mantle boundary, suggesting that dense metallic melt may form in the lowermost mantle. If concentrated into isolated patches, such melt could produce the seismically observed density and velocity features of ULVZs. Depending on the wetting behavior of the metallic melt, the resultant ULVZs may be short-lived domains that are replenished or regenerated through subduction, or long-lasting regions containing both metallic and silicate melts. Slab-derived metallic melt may produce another type of ULVZ that escapes core sequestration by reacting with the mantle to form iron-rich postbridgmanite or ferropericlase. The hypotheses connect peculiar features near Earth's core−mantle boundary to subduction of the oceanic lithosphere through the deep carbon cycle. PMID:27143719

  10. The Aneutronic Rodless Ultra Low Aspect Ratio Tokamak

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2016-10-01

    The replacement of the metal centre-post in spherical tokamaks (STs) by a plasma centre-post (PCP, the TF current carrier) is the ideal scenario for a ST reactor. A simple rodless ultra low aspect-ratio tokamak (RULART) using a screw-pinch PCP ECR-assisted with an external solenoid has been proposed in the most compact RULART [Ribeiro C, SOFE-15]. There the solenoid provided the stabilizing field for the PCP and the toroidal electrical field for the tokamak start-up, which will stabilize further the PCP, acting as stabilizing closed conducting surface. Relative low TF will be required. The compactness (high ratio of plasma-spherical vessel volume) may provide passive stabilization and easier access to L-H mode transition. It is presented here: 1) stability analysis of the PCP (initially MHD stable due to the hollow J profile); 2) tokamak equilibrium simulations, and 3) potential use for aneutronic reactions studies via pairs of proton p and boron 11B ion beams in He plasmas. The beams' line-of-sights sufficiently miss the sources of each other, thus allowing a near maximum relative velocities and reactivity. The reactions should occur close to the PCP mid-plane. Some born alphas should cross the PCP and be dragged by the ion flow (higher momentum exchange) towards the anode but escape directly to a direct electricity converter. Others will reach evenly the vessel directly or via thermal diffusion (favourable heating by the large excursion 2a), leading to the lowest power wall load possible. This might be a potential hybrid direct-steam cycle conversion reactor scheme, nearly aneutronic, and with no ash or particle retention problems, as opposed to the D-T thermal reaction proposals.

  11. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A

    2012-01-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in contextmore » to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.« less

  12. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Wu, Xianqian; Huang, Chenguang; Wei, Yangpeng; Wang, Xi

    2012-07-01

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  13. Measurement of fast-changing low velocities by photonic Doppler velocimetry.

    PubMed

    Song, Hongwei; Wu, Xianqian; Huang, Chenguang; Wei, Yangpeng; Wang, Xi

    2012-07-01

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  14. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song Hongwei; Wu Xianqian; Huang Chenguang

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stressmore » waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.« less

  15. Evolution of the 1963 Vajont landslide (Northern Italy) from low and high velocity friction experiments

    NASA Astrophysics Data System (ADS)

    Ferri, F.; di Toro, G.; Hirose, T.; Han, R.; Noda, H.; Shimamoto, T.; Pennacchioni, G.

    2009-04-01

    The final slip at about 30 m/s of the Vajont landslide (Northern Italy) on 9th October 1963 was preceded by a long creeping phase which was monitored over about three years. Creep was localized in cm-thick clay-rich (50% Ca-montmorillonite + smectite + illite + vermiculite, 40% calcite and 10% quartz) gouge layers. The velocity results in thermoviscoplastic model of the landslide (Veveakis et al., 2007) suggested that during creep, compaction and frictional heating released water from the clay-rich layer and, by increasing the pore-pressure in the slipping zone, determined the final collapse of the landslide. Here we investigated the frictional evolution of the clay-rich layers and the transition towards the final collapse. Experiments were carried out on the clayey gouge from the slipping zone at atmospheric humidity conditions ("dry") and in the presence of excess water ("saturated"). High velocity friction experiments were performed in a rotary shear apparatus at 1 MPa normal stress (about the normal stress at the sliding surface of the Vajont landslide), velocity v from 0.006 m/s to 1.31 m/s and displacements up to 34 m. The 1 mm-thick clayey gouges were sandwiched between marble cylindrical specimens (24.95 mm in diameter) and confined by Teflon rings to avoid gouge expulsion during the experiments. The fluid release during the experiments was monitored with a humidity sensor. Low velocity friction experiments were performed in a biaxial apparatus at 5 MPa normal stress, v from 1.0 10E-7 m/s to 1.0 10E-4 m/s (within the range at which the slide became critical, 2.0 10E-7 m/s, Veveakis et al., 2007) and displacements up to 0.02 m. In dry experiments, friction is 0.43-0.47 at v < 1.0 10E-4 m/s and decreases to 0.21 at 1.31 m/s. Velocity-step runs evidenced a velocity-weakening behaviour with a (direct effect) - b (evolution effect) = -0.005 to -0.008. In saturated experiments, friction is 0.18 at v < 1.0 10E-4 m/s (in agreement with the experiments by Tika

  16. The electrical conductivity during incipient melting in the oceanic low velocity zone

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Sifre, David; Gardes, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier Majumder, Saswata

    2014-05-01

    A low viscosity layer at the Lithosphere-Asthenosphere Boundary (LAB) is certainly a requirement for plate tectonics but the nature of the rocks presents in this boundary remains controversial. The seismic low velocities and the high electrical conductivities of the LAB are attributed either to sub-solidus water-related defects in olivine minerals or to a few volume percents of partial melt but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be high enough due to several mineralogical processes that have been sometimes ignored; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the LAB and by the high melt mobility that can lead to gravitational segregation. All this has in fact been partly settled 30 years ago, when a petrological LAB has been defined as a region of the upper mantle impregnated by incipient melts; that is small amounts of melt caused by small amount of CO2 and H2O. We show here that incipient melting is a melting regime that is allowed in the entire P-T-fO2 region of the LVZ. The top of the oceanic LVZ (LAB) is then best explained by a melt freezing layer due to a decarbonation reaction, whereas the bottom of the LVZ matches the depth at which redox melting defines the lower boundary of stability of incipient melts. Based on new laboratory measurements, we show here that incipient melts must be the cause of the high electrical conductivities in the oceanic LVZ. Considering relevant mantle abundances of H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the LAB for various ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. We conclude that incipient melts prevail in the LAB, what else?

  17. Study on Structural and Dielectric Properties of Ultra-Low-Fire Integratable Dielectric Film for High-Frequency and Microwave Application

    NASA Astrophysics Data System (ADS)

    Qu, Sheng; Zhang, Jihua; Wu, Kaituo; Wang, Lei; Chen, Hongwei

    2018-03-01

    In this study, ultra-low-fire ceramic composites of Zn2Te3O8-30 wt.%TiTe3O8 (ZTT) were prepared by a solid-state reaction method. Densified at 600°C, the best microwave dielectric properties at 8.5 GHz were measured with the ɛ r , tan δ, Q × f, and τ f as 25.6, 1.5 × 10-4, 56191 GHz and 1.66 ppm/°C, respectively. Thin films of ultra-low-fire ZTT were prepared by a radio-frequency magnetron sputtering method. ZTT films which deposited on Au/NiCr/SiO2/Si (100) substrates at 200°C showed good adhesion. From ultra-low-fire ceramic to ultra-low-fire ZTT thin films, the latter maintained all the good high-frequency dielectric properties of the former: high dielectric constant ( ɛ r ˜ 25) and low dissipation factor (tan δ < 5×10-3), low leakage current density (˜ 10-9 A/cm2) and ultra low processing temperature. These excellent properties of the ultra-low-fire ZTT thin film make it possible to be integrated in MMIC and be applied in the research of GaN and GaAs MOSFET devices.

  18. Residual strength assessment of low velocity impact damage of graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.

    1983-01-01

    This report contains the study of Low Velocity Transverse Impact Damage of graphite-epoxy T300/5208 composite laminates. The specimen, 100 mm diameter clamped plates, were impact damaged by a cantilever-type instrumented 1-inch diameter steel ball. Study was limited to impact velocity 6 m/sec. Rectangular strips, 50 mm x 125 mm, were cut from the impact-damage specimens so that the impact damage zone was in the center of the strips. These strips were tested in tension to obtain their residual strength. An energy dissipation model was developed to predict the residual strength from fracture mechanics concepts. Net energy absorbed I(a) was evaluated from coefficient of restitution concepts based on shear dominated theory of fiber-reinforced materials, with the modification that during loading and unloading the shear deformation are respectively elastic-plastic and elastic. Delamination energy I(d) was predicted by assuming that the stiffness of the laminate dropped due to debonding. Fiber-breakage energy, assumed to be equal to the difference of I(a) and I(d), was used to determine the residual strength. Predictions were compared with test results.

  19. Detailed Velocity and Density models of the Cascadia Subduction Zone from Prestack Full-Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Fortin, W.; Holbrook, W. S.; Mallick, S.; Everson, E. D.; Tobin, H. J.; Keranen, K. M.

    2014-12-01

    Understanding the geologic composition of the Cascadia Subduction Zone (CSZ) is critically important in assessing seismic hazards in the Pacific Northwest. Despite being a potential earthquake and tsunami threat to millions of people, key details of the structure and fault mechanisms remain poorly understood in the CSZ. In particular, the position and character of the subduction interface remains elusive due to its relative aseismicity and low seismic reflectivity, making imaging difficult for both passive and active source methods. Modern active-source reflection seismic data acquired as part of the COAST project in 2012 provide an opportunity to study the transition from the Cascadia basin, across the deformation front, and into the accretionary prism. Coupled with advances in seismic inversion methods, this new data allow us to produce detailed velocity models of the CSZ and accurate pre-stack depth migrations for studying geologic structure. While still computationally expensive, current computing clusters can perform seismic inversions at resolutions that match that of the seismic image itself. Here we present pre-stack full waveform inversions of the central seismic line of the COAST survey offshore Washington state. The resultant velocity model is produced by inversion at every CMP location, 6.25 m laterally, with vertical resolution of 0.2 times the dominant seismic frequency. We report a good average correlation value above 0.8 across the entire seismic line, determined by comparing synthetic gathers to the real pre-stack gathers. These detailed velocity models, both Vp and Vs, along with the density model, are a necessary step toward a detailed porosity cross section to be used to determine the role of fluids in the CSZ. Additionally, the P-velocity model is used to produce a pre-stack depth migration image of the CSZ.

  20. Fault zone property near Xinfengjiang Reservoir using dense, across-fault seismic array

    NASA Astrophysics Data System (ADS)

    Lee, M. H. B.; Yang, H.; Sun, X.

    2017-12-01

    Properties of fault zones are important to the understanding of earthquake process. Around the fault zone is a damaged zone which is characterised by a lower seismic velocity. This is detectable as a low velocity zone and measure some physical property of the fault zone, which is otherwise difficult sample directly. A dense, across-fault array of short period seismometer is deployed on an inactive fault near Xinfengjiang Reservoir. Local events were manually picked. By computing the synthetic arrival time, we were able to constrain the parameters of the fault zone Preliminary result shows that the fault zone is around 350 m wide with a P and S velocity increase of around 10%. The fault is geologically inferred, and this result suggested that it may be a geological layer. The other possibility is that the higher velocity is caused by a combination of fault zone healing and fluid intrusion. Whilst the result was not able to tell us the nature of the fault, it demonstrated that this method is able to derive properties from a fault zone.

  1. EVALUATING AND DESIGNING ULTRA-LOW-COST SOLAR WATER HEATING SYSTEMS

    EPA Science Inventory

    This project will have three key outputs:

    1. an evaluation of the thermal performance of ultra-low-cost solar components, with components being characterized by their absorbed solar energy per cost;
    2. a built demonstration prototype of...

    3. Ultra Low Temperature Instrumentation for Measurements in Astrophysics : ULTIMA

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Bunkov, Yu. M.; Elbs, J.; Godfrin, H.

      2006-09-07

      This paper reviews recent advances in particle detection using superfluid 3He at ultra-low temperature about 100 {mu}K, for application in large detector project ULTIMA for the search of non-baryonic Dark Matter. The unique advantages of 3He, and in particular of its superfluid state, for Dark Matter search are highlighted.

    4. Comparative performance analysis for computer aided lung nodule detection and segmentation on ultra-low-dose vs. standard-dose CT

      NASA Astrophysics Data System (ADS)

      Wiemker, Rafael; Rogalla, Patrik; Opfer, Roland; Ekin, Ahmet; Romano, Valentina; Bülow, Thomas

      2006-03-01

      The performance of computer aided lung nodule detection (CAD) and computer aided nodule volumetry is compared between standard-dose (70-100 mAs) and ultra-low-dose CT images (5-10 mAs). A direct quantitative performance comparison was possible, since for each patient both an ultra-low-dose and a standard-dose CT scan were acquired within the same examination session. The data sets were recorded with a multi-slice CT scanner at the Charite university hospital Berlin with 1 mm slice thickness. Our computer aided nodule detection and segmentation algorithms were deployed on both ultra-low-dose and standard-dose CT data without any dose-specific fine-tuning or preprocessing. As a reference standard 292 nodules from 20 patients were visually identified, each nodule both in ultra-low-dose and standard-dose data sets. The CAD performance was analyzed by virtue of multiple FROC curves for different lower thresholds of the nodule diameter. For nodules with a volume-equivalent diameter equal or larger than 4 mm (149 nodules pairs), we observed a detection rate of 88% at a median false positive rate of 2 per patient in standard-dose images, and 86% detection rate in ultra-low-dose images, also at 2 FPs per patient. Including even smaller nodules equal or larger than 2 mm (272 nodules pairs), we observed a detection rate of 86% in standard-dose images, and 84% detection rate in ultra-low-dose images, both at a rate of 5 FPs per patient. Moreover, we observed a correlation of 94% between the volume-equivalent nodule diameter as automatically measured on ultra-low-dose versus on standard-dose images, indicating that ultra-low-dose CT is also feasible for growth-rate assessment in follow-up examinations. The comparable performance of lung nodule CAD in ultra-low-dose and standard-dose images is of particular interest with respect to lung cancer screening of asymptomatic patients.

    5. The ZH ratio method for long-period seismic data: inversion for S-wave velocity structure

      NASA Astrophysics Data System (ADS)

      Yano, Tomoko; Tanimoto, T.; Rivera, L.

      2009-10-01

      The particle motion of surface waves, in addition to phase and group velocities, can provide useful information for S-wave velocity structure in the crust and upper mantle. In this study, we applied a new method to retrieve velocity structure using the ZH ratio, the ratio between vertical and horizontal surface amplitudes of Rayleigh waves. Analysing data from the GEOSCOPE network, we measured the ZH ratios for frequencies between 0.004 and 0.05 Hz (period between 20 and 250s) and inverted them for S-wave velocity structure beneath each station. Our analysis showed that the resolving power of the ZH ratio is limited and final solutions display dependence on starting models; in particular, the depth of the Moho in the starting model is important in order to get reliable results. Thus, initial models for the inversion need to be carefully constructed. We chose PREM and CRUST2.0 in this study as a starting model for all but one station (ECH). The eigenvalue analysis of the least-squares problem that arises for each step of the iterative process shows a few dominant eigenvalues which explains the cause of the inversion's initial-model dependence. However, the ZH ratio is unique in having high sensitivity to near-surface structure and thus provides complementary information to phase and group velocities. Application of this method to GEOSCOPE data suggest that low velocity zones may exist beneath some stations near hotspots. Our tests with different starting models show that the models with low-velocity anomalies fit better to the ZH ratio data. Such low velocity zones are seen near Hawaii (station KIP), Crozet Island (CRZF) and Djibuti (ATD) but not near Reunion Island (RER). It is also found near Echery (ECH) which is in a geothermal area. However, this method has a tendency to produce spurious low velocity zones and resolution of the low velocity zones requires further careful study. We also performed simultaneous inversions for volumetric perturbation and

    6. Detailed seismic velocity of the incoming subducting sediments in the 2004 great Sumatra earthquake rupture zone from full waveform inversion of long offset seismic data

      NASA Astrophysics Data System (ADS)

      Qin, Yanfang; Singh, Satish C.

      2017-04-01

      The nature of incoming sediments defines the locking mechanism on the megathrust, and the development and evolution of the accretionary wedge. Here we present results from seismic full waveform inversion of 12 km long offset seismic reflection data within the trench in the 2004 Sumatra earthquake rupture zone area that provide detailed quantitative information on the incoming oceanic sediments and the trench-fill sediments. The thickness of sediments in this area is 3-4 km, and P wave velocity is as much as 4.5 km/s just above the oceanic crust, suggesting the presence of silica-rich highly compacted and lithified sediments leading to a strong coupling up to the subduction front. We also find an 70-80 m thick low-velocity layer, capped by a high-velocity layer, at 0.8 km above the subducting plate. This low-velocity layer, previously identified as high-amplitude negative polarity reflection, could have porosity of up to 30% containing overpressured fluids, which could act as a protodécollement seaward from the accretionary prism and décollement beneath the forearc. This weak protodécollement combined with the high-velocity indurated sediments above the basement possibly facilitated the rupture propagating up to the front during the 2004 earthquake and enhancing the tsunami. We also find another low-velocity layer within the sediments that may act as a secondary décollement observed offshore central Sumatra, forming bivergent pop-up structures and acting as a conveyer belt in preserving these pop-up structures in the forearc region.

    7. PKP Waveform Complexity and Its Implications to Fine Structure Near the Edge of African Large Low Shear Velocity Province

      NASA Astrophysics Data System (ADS)

      Song, Teh-Ru Alex; Tanaka, Satoru; Takeuchi, Nozomu

      2010-05-01

      and receiver-side structure do not play a predominant role in generating these anomalous PKPab waveforms. We then look into structural anomaly near the core-mantle-boundary (CMB) since PKPab grazes the CMB at a very shallow angle and it can effectively interact with it and possibly produce anomalous PKPab waveforms. We first explore 1-D model space by introducing velocity anomaly directly above the CMB, with a velocity perturbation up to a few tens of percents in S wave velocity and P wave velocity. We calculate synthetics up to 2 Hz by Direct Solution Method (DSM) and Reflectivity Method to examine waveform anomaly at long period band (0.01-0.2 Hz) as well as short-period band (0.5-2 Hz). Our preliminary result indicates that the model with a thin (~ 15 km) ultra-low velocity zone (ULVZ, 30% reduction in P wave and S wave velocity) is capable of reproducing characteristics of these anomalous PKPab waveforms at both frequency bands. The pierce points of PKPab in the source side at CMB are near the southeast Indian Ocean where S wave velocity is only slightly faster than PREM. On the other hand, the pierce points in the receiver side are at the eastern edge of the African Large Low Shear Velocity Province (LLSVP). One interesting feature of our ULVZ model is that dlnVs/dlnVp is about 1, which is different from most ULVZ models where dlnVs/dlnVp is about 3.

    8. Comparisons of Low-Strain Amplification at Soft-Sediment, Hard-Rock, Topographic, and Fault-Zone Sites in the Hayward Fault Zone, California

      NASA Astrophysics Data System (ADS)

      Catchings, R.; Strayer, L. M.; Goldman, M.

      2014-12-01

      We used a temporary network of approximately 600 seismographs to record a seismic source generated by the collapse of a 13-story building near the active trace of the Hayward Fault. These data allow us to evaluate variations in ground shaking across a series of 30 2-km-long radial arrays centered on the seismic source. Individual seismographs were spaced at 200-m intervals, forming a series of 360°concentric arrays around the seismic source. The data show variations in amplification caused by (1) soft sediments within the East Bay alluvial plain (EBAP), (2) hard rocks within the East Bay hills (EBH), (3) low-velocity rocks within the Hayward Fault zone (HFZ), and (4) topography. Given that ground shaking varies strongly with distance from the source, the concentric arrays allowed us to measure variations in ground shaking as a function of azimuth at fixed distances from the source. On individual linear profiles within the concentric arrays, we observed decreases in peak ground velocity (PGV) across the HFZ and other faults within the EBH. However, for a given distance from the source, we observe four to five fold amplification from the EBAP sites compared to most sites in the EBH. Topographic and fault-zone amplification effects within the EBH, however, are greater than the EBAP sediment amplification. Thus, for future earthquakes, shaking at many sites within the EBH may be significantly stronger than many sites within the EBAP. These observations suggest amplification can be expected in unconsolidated sediments, but topographic and fault-zone amplification can be larger. This confirms the importance of site effects for hazard mitigation and in interpreting MMI for future and historical earthquakes.

    9. Shear velocity profiles in the crust and lithospheric mantle across Tibet

      NASA Astrophysics Data System (ADS)

      Agius, M. R.; Lebedev, S.

      2010-12-01

      We constrain variations in the crustal and lithospheric structure across Tibet, using phase velocities of seismic surface waves. The data are seismograms recorded by broadband instruments of permanent and temporary networks within and around the plateau. Phase-velocity measurements are performed in broad period ranges using an elaborate recent implementation of the 2-station method. A combination of the cross-correlation and multimode-waveform-inversion measurements using tens to hundreds of seismograms per station pair produces robust, accurate phase-velocity curves for Rayleigh and Love waves. We use our new measurements to infer phase-velocity variations and to constrain S-velocity profiles in different parts of the plateau, including radial anisotropy and depths of lithospheric discontinuities. We observe a mid-crustal low-velocity zone (LVZ) in the 20-45 km depth range across the plateau, with S-velocities within a 3.2-3.5 km/s range. This LVZ coincides with a low-resistivity layer inferred from magnetotelluric studies, interpreted as evidence for partial melting in the middle crust. Surface-wave data are also consistent with radial anisotropy in this layer, indicative of horizontal flow. At the north-eastern boundary of the plateau, past the Kunlun Fault, the mid-crustal LVZ, in the sense of an S-velocity decrease with depth in the 15-25 km depth range, is not required by the surface-wave data although the velocity is still relatively low. The mantle-lithosphere structure shows a pronounced contrast between the south-western and central-northern parts of the plateau. The south-west is underlain by a thick, high-velocity, craton-like lithospheric mantle. Below central Lhasa the uppermost mantle appears to be close to global average with an increase in velocity between 150 - 250 km depth. Beneath central and northern Tibet, the average S velocity between the Moho and 200 km depth is close to the global continental average (4.5 km/s). In order to investigate the

    10. Kinematics of Ultra-high-velocity Gas in the Expanding Molecular Shell Adjacent to the W44 Supernova Remnant

      NASA Astrophysics Data System (ADS)

      Yamada, Masaya; Oka, Tomoharu; Takekawa, Shunya; Iwata, Yuhei; Tsujimoto, Shiho; Tokuyama, Sekito; Furusawa, Maiko; Tanabe, Keisuke; Nomura, Mariko

      2017-01-01

      We mapped the ultra-high-velocity feature (the “Bullet”) detected in the expanding molecular shell associated with the W44 supernova remnant using the Nobeyama Radio Observatory 45 m telescope and the Atacama Submillimeter Telescope Experiment 10 m telescope. The Bullet clearly appears in the CO J = 1-0, CO J = 3-2, CO J = 4-3, and HCO+ J = 1-0 maps with a compact appearance (0.5 × 0.8 pc2) and an extremely broad-velocity width (ΔV ≃ 100 km s-1). The line intensities indicate that the Bullet has a higher density and temperature than those in the expanding molecular shell. The kinetic energy of the Bullet amounts to 1048.0 erg, which is approximately 1.5 orders of magnitude greater than the kinetic energy shared to the small solid angle of it. Two possible formation scenarios with an inactive isolated black hole are presented.

    11. KINEMATICS OF ULTRA-HIGH-VELOCITY GAS IN THE EXPANDING MOLECULAR SHELL ADJACENT TO THE W44 SUPERNOVA REMNANT

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Yamada, Masaya; Oka, Tomoharu; Takekawa, Shunya

      We mapped the ultra-high-velocity feature (the “Bullet”) detected in the expanding molecular shell associated with the W44 supernova remnant using the Nobeyama Radio Observatory 45 m telescope and the Atacama Submillimeter Telescope Experiment 10 m telescope. The Bullet clearly appears in the CO J = 1–0, CO J = 3–2, CO J = 4–3, and HCO{sup +} J = 1–0 maps with a compact appearance (0.5 × 0.8 pc{sup 2}) and an extremely broad-velocity width (Δ V ≃ 100 km s{sup −1}). The line intensities indicate that the Bullet has a higher density and temperature than those in the expandingmore » molecular shell. The kinetic energy of the Bullet amounts to 10{sup 48.0} erg, which is approximately 1.5 orders of magnitude greater than the kinetic energy shared to the small solid angle of it. Two possible formation scenarios with an inactive isolated black hole are presented.« less

    12. Origins of ultralow velocity zones through slab-derived metallic melt

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Liu, Jiachao; Li, Jie; Hrubiak, Rostislav

      2016-05-03

      Understanding the ultralow velocity zones (ULVZs) places constraints on the chemical composition and thermal structure of deep Earth and provides critical information on the dynamics of large-scale mantle convection, but their origin has remained enigmatic for decades. Recent studies suggest that metallic iron and carbon are produced in subducted slabs when they sink beyond a depth of 250 km. Here we show that the eutectic melting curve of the iron-carbon system crosses the current geotherm near Earth’s core-mantle boundary, suggesting that dense metallic melt may form in the lowermost mantle. If concentrated into isolated patches, such melt could produce themore » seismically observed density and velocity features of ULVZs. Depending on the wetting behavior of the metallic melt, the resultant ULVZs may be short-lived domains that are replenished or regenerated through subduction, or long-lasting regions containing both metallic and silicate melts. Slab-derived metallic melt may produce another type of ULVZ that escapes core sequestration by reacting with the mantle to form iron-rich post-bridgmanite or ferropericlase. The hypotheses connect peculiar features near Earth’s core-mantle boundary to subduction of the oceanic lithosphere through the deep carbon cycle.« less

    13. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

      NASA Astrophysics Data System (ADS)

      Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

      2018-01-01

      Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have

    14. Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn

      2014-06-28

      By adopting an ultra-thin non-doped orange emission layer sandwiched between two blue emission layers, high efficiency white organic light-emitting diodes (WOLEDs) with reduced efficiency roll-off were fabricated. The optimized devices show a balanced white emission with Internationale de L'Eclairage of (0.41, 0.44) at the luminance of 1000 cd/m{sup 2}, and the maximum power efficiency, current efficiency (CE), and external quantum efficiency reach 63.2 lm/W, 59.3 cd/A, and 23.1%, which slightly shift to 53.4 lm/W, 57.1 cd/A, and 22.2% at 1000 cd/m{sup 2}, respectively, showing low efficiency roll-off. Detailed investigations on the recombination zone and the transient electroluminescence (EL) clearly reveal the EL processes of the ultra-thinmore » non-doped orange emission layer in WOLEDs.« less

    15. The Eastern Tennessee Seismic Zone: Reactivation of an Ancient Continent-Continent Suture Zone

      NASA Astrophysics Data System (ADS)

      Powell, C. A.

      2014-12-01

      The eastern Tennessee seismic zone (ETSZ) may represent reactivation of an ancient shear zone that accommodated left-lateral, transpressive motion of the Amazon craton during the Grenville orogeny. Several different lines of evidence support this concept including velocity models for the crust, earthquake hypocenter alignments, focal mechanism solutions, potential field anomalies, paleomagnetic pole positions, and isotopic geochemical studies. The ETSZ trends NE-SW for about 300 km and displays remarkable correlation with the prominent New York - Alabama (NY-AL) aeromagnetic lineament. Vp and Vs models for the crust derived from a local ETSZ earthquake tomography study reveal the presence of a narrow, NE-SW trending, steeply dipping zone of low velocities that extends to a depth of at least 24 km and is associated with the vertical projection of the NY-AL aeromagnetic lineament. The low velocity zone is interpreted as a major basement fault. The recent Mw 4.2 Perry County eastern Kentucky earthquake occurred north of the ETSZ but has a focal depth and mechanism that are similar to those for ETSZ earthquakes. We investigate the possibility that the proposed ancient shear zone extends into eastern Kentucky using Bouguer and aeromagnetic maps. The southern end of the ETSZ is characterized by hypocenters that align along planes dipping at roughly 45 degrees and focal mechanisms that contain large normal faulting components. The NY-AL aeromagnetic lineament also changes trend in the southern end of the ETSZ and the exact location of the lineament is ambiguous. We suggest that the southern portion of the ETSZ involves reactivation of reverse faults (now as normal faults) that mark the ancient transition between a collisional to a more transpressive boundary between Amazonia and Laurentia during the formation of the super continent Rodinia.

    16. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H I-bearing Ultra-diffuse Galaxies

      NASA Astrophysics Data System (ADS)

      Leisman, Lukas; Haynes, Martha P.; Janowiecki, Steven; Hallenbeck, Gregory; Józsa, Gyula; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Bernal Neira, David; Cannon, John M.; Janesh, William F.; Rhode, Katherine L.; Salzer, John J.

      2017-06-01

      We present a sample of 115 very low optical surface brightness, highly extended, H I-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H I. We find that while these sources have normal star formation rates for H I-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H I-synthesis follow-up imaging of three of these H I-bearing ultra-diffuse sources. We measure H I diameters extending to ˜40 kpc, but note that while all three sources have large H I diameters for their stellar mass, they are consistent with the H I mass-H I radius relation. We further analyze the H I velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H I-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.

    17. An ultra low power ECG signal processor design for cardiovascular disease detection.

      PubMed

      Jain, Sanjeev Kumar; Bhaumik, Basabi

      2015-08-01

      This paper presents an ultra low power ASIC design based on a new cardiovascular disease diagnostic algorithm. This new algorithm based on forward search is designed for real time ECG signal processing. The algorithm is evaluated for Physionet PTB database from the point of view of cardiovascular disease diagnosis. The failed detection rate of QRS complex peak detection of our algorithm ranges from 0.07% to 0.26% for multi lead ECG signal. The ASIC is designed using 130-nm CMOS low leakage process technology. The area of ASIC is 1.21 mm(2). This ASIC consumes only 96 nW at an operating frequency of 1 kHz with a supply voltage of 0.9 V. Due to ultra low power consumption, our proposed ASIC design is most suitable for energy efficient wearable ECG monitoring devices.

    18. The Soft X-ray View of Ultra Fast Outflows

      NASA Astrophysics Data System (ADS)

      Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.

      2017-10-01

      The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.

    19. Subduction zone guided waves in Northern Chile

      NASA Astrophysics Data System (ADS)

      Garth, Thomas; Rietbrock, Andreas

      2016-04-01

      Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (< 2 Hz) P-wave arrivals. Full waveform finite difference modelling is used to test the low velocity slab structure that cause this P-wave dispersion. The synthetic waveforms produced by these models are compared to the recorded waveforms. Spectrograms are used to compare the relative arrival times of different frequencies, while the velocity spectra is used to constrain the relative amplitude of the arrivals. Constraining the waveform in these two ways means that the full waveform is also matched, and the low pass filtered observed and synthetic waveforms can be compared. A combined misfit between synthetic and observed waveforms is then calculated following Garth & Rietbrock (2014). Based on this misfit criterion we constrain the velocity model by using a grid search approach. Modelling the guided wave arrivals suggest that the observed dispersion cannot be solely accounted for by a single low velocity layer as suggested by previous guided wave studies. Including dipping low velocity normal fault structures in the synthetic model not only accounts for the observed strong P-wave coda, but also produces a clear first motion dispersion. We therefore propose that the lithospheric mantle of the subducting Nazca plate is highly hydrated at intermediate

    20. ULTRA-LOW POWER CO2 SENSOR FOR INTELLIGENT BUILDING CONTROL - PHASE I

      EPA Science Inventory

      The proposed EPA SBIR Phase I program will create a novel ultra-low power and low-cost microfabricated CO2 sensor. The initial developments of sensor technology will serve the very large Demand Controlled Ventilation market that has been identified by KWJ and its...

    21. Economic method for measuring ultra-low flow rates of fluids

      NASA Technical Reports Server (NTRS)

      Bogdanovic, J. A.; Keller, W. F.

      1970-01-01

      Capillary tube flowmeter measures ultra-low flows of very corrosive fluids /such as chlorine trifluoride and liquid fluorine/ and other liquids with reasonable accuracy. Flowmeter utilizes differential pressure transducer and operates on the principle that for laminar flow in the tube, pressure drop is proportional to flow rate.

  1. Seismic velocity structure of the sediment seaward of Cascadia Subduction Zone deformation front

    NASA Astrophysics Data System (ADS)

    Han, S.; Gibson, J. C.; Carbotte, S. M.; Canales, J. P.; Nedimovic, M. R.; Carton, H. D.

    2015-12-01

    We present seismic velocity structure of the sediment section seaward of the Cascadia Subduction Zone deformation front (DF), derived from multichannel seismic data acquired during the 2012 Juan de Fuca Ridge to Trench experiment. Detailed velocity analyses are conducted on every 100th prestack-time-migrated common reflection point gather (625 m spacing) within 45 km seaward of the DF along two ridge-to-trench transects offshore Oregon at 44.6˚N and Washington at 47.4˚N respectively, and on every 200th common mid-point gather (1250 m spacing) along a ~400 km-long trench-parallel transect ~15 km from the DF. We observe a landward increase of sediment velocity starting from ~15-20 km from the DF on both Oregon and Washington transects, which may result from increased horizontal compressive tectonic stress within the accretionary wedge and thermally induced dehydration processes in the sediment column. Although the velocity of near-basement sediments at 30 km from the DF is similar (~3.1 km/s) on both transects, the velocity increases are larger on the Washington transect, to ~4.0 km/s beneath the DF (sediment thickness ~3.2 km), than on the Oregon transect, to ~3.6 km/s beneath the DF (sediment thickness ~3.5 km). The long-wavelength sediment velocity structure on the trench-parallel transect confirms this regional difference in deep sediment velocity and also highlights variations related to a group of WNW-trending strike-slip faults along the margin. Offshore Washington, where higher sediment velocity seaward of the DF is observed, the accretionary wedge is wide with a decollement located close to the basement and landward-verging thrust faults. By contrast, offshore Oregon, the lower sediment velocity seaward of the DF is associated with a narrow accretionary wedge, a shallow decollement ~1 km above the basement, and seaward-verging thrust faults. The regional differences in deep sediment velocity may be related to the along-strike variation in sediment

  2. Low velocity impact of 6082-T6 aluminum plates

    NASA Astrophysics Data System (ADS)

    Mocian, Oana Alexandra; Constantinescu, Dan Mihai; Sandu, Marin; Sorohan, Ştefan

    2018-02-01

    The low velocity domain covers vehicle impacts, ship collisions and even accidentally tool drops. Even though more and more research is needed into these fields, most of the papers concerning impact problems focus on impact at medium and high velocities. Understanding the behavior of structures subjected to low velocity impact is of major importance when referring to impact resistance and damage tolerance. The paper presents an experimental and numerical investigation on the low velocity behavior of 6082-T6 aluminum plates. Impact tests were performed using an Instron Ceast 9340 drop-weight testing machine. In the experimental procedure, square plates were mounted on a circular support, fixed with a pneumatic clamping system and impacted with a hemispherical steel projectile. Specimens were impacted at constant weight and different impact velocities. The effect of different impact energies was investigated. The impact event was then simulated using the nonlinear finite element code LS_DYNA in order to determine the effect of strain rate upon the mechanical behavior of the aluminum plates. Moreover, in order to capture the exact behavior of the material, a special attention has been given to the selection of the correct material model and its parameters, which, in large extent, depend on the observed behavior of the aluminum plate during the test and the actual response of the plate under simulation. The numerical predictions are compared with the experimental observations and the applicability of the numerical model for further researches is analyzed.

  3. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, W.G.

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  4. Study of 3D P-wave Velocity Structure in Lushan Area of Yunnan Province

    NASA Astrophysics Data System (ADS)

    Wang, X.

    2017-12-01

    The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10km depth, which makes the contrast between high and low velocity anomalies more sharp. Above all, the P wave velocity structure of Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15km depth, while the Cenozoic rocks are correlated with low-velocity anomalies. Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The main seismogenic layer dips to northwest. Meanwhile, a recoil seismic belt dips to southeast above the main seismogenic layer exists at the lower boundary of Baoxing high-velocity

  5. Oxycodone Plus Ultra-Low-Dose Naltrexone Attenuates Neuropathic Pain and Associated μ-Opioid Receptor–Gs Coupling

    PubMed Central

    Largent-Milnes, Tally M.; Guo, Wenhong; Wang, Hoau-Yan; Burns, Lindsay H.; Vanderah, Todd W.

    2017-01-01

    Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in μ-opioid receptor (MOR)–G protein coupling from Gi/o to Gs that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L5/L6 spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to Gs in the damaged (ipsilateral) spinal dorsal horn. This MOR-Gs coupling occurred without changing Gi/o coupling levels and without changing the expression of MOR or Gα proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-Gs coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-Gs coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this Gs coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-Gs coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. PMID:18468954

  6. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and

  7. Low-velocity zone and topography as a source of site amplification effect on Tarzana hill, California

    USGS Publications Warehouse

    Graizer, V.

    2009-01-01

    Tarzana station is located in the foothills of the Santa Monica Mountains in California near the crest of a low (<20 m) natural hill with gentle slopes. The hill is about 500 m in length by 130 m in width and is formed of extremely weathered shale at the surface to fresh at depth. Average S-wave is about 250 m/s in the top 17-18 m, and S- and P-wave velocities significantly increase below this depth. According to the NEHRP classification based on VS30???300 m/s it is a site class D. Strong-motion instrumentation at Tarzana consisted of an accelerograph at the top of the hill, a downhole instrument at 60 m depth, and an accelerograph at the base of the hill. More than 20 earthquakes were recorded by at least three instruments at Tarzana from 1998 till 2003. Comparisons of recordings and Fourier spectra indicate strong directional resonance in a direction perpendicular to the strike of the hill. The dominant peaks in ground motion amplification on the top of the hill relative to the base are at frequencies ???3.6 and 8-9 Hz for the horizontal components. Our hypothesis is that the hill acts like a wave trap. This results in an amplification at predominant frequencies f=V/4 h (h is layer's thickness) at f???3.6 Hz for S-waves (using average VS17=246 m/s and h=17 m) and f???7.9 Hz for P-waves (using average VP17=535 m/s and h=17 m). As was shown by Bouchon and Barker [Seismic response of a hill: the example of Tarzana, California. Bull Seism Soc Am 1996;86(1A):66-72], topography of this hill amplifies and polarizes ground motion in the frequency range of 3-5 Hz. Hill acts as a magnifying polarizing glass: It polarizes ground motion in the direction perpendicular to the strike of the hill and also amplifies ground motions that had been also amplified by a low-velocity layer.

  8. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    NASA Astrophysics Data System (ADS)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  9. Oxycodone plus ultra-low-dose naltrexone attenuates neuropathic pain and associated mu-opioid receptor-Gs coupling.

    PubMed

    Largent-Milnes, Tally M; Guo, Wenhong; Wang, Hoau-Yan; Burns, Lindsay H; Vanderah, Todd W

    2008-08-01

    Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in mu-opioid receptor (MOR)-G protein coupling from G(i/o) to G(s) that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L(5)/L(6) spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to G(s) in the damaged (ipsilateral) spinal dorsal horn. This MOR-G(s) coupling occurred without changing G(i/o) coupling levels and without changing the expression of MOR or Galpha proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-G(s) coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-G(s) coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this G(s) coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-G(s) coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. The current study investigates whether Oxytrex (oxycodone with an ultra-low dose of naltrexone) alleviates mechanical and thermal hypersensitivities in an animal model of neuropathic pain over a period of 7 days, given locally or systemically. In this report, we first describe an injury-induced shift in mu-opioid receptor coupling from G(i/o) to G(s), suggesting

  10. A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Douglas, Michael J.

    2001-01-01

    The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.

  11. Comparison of fragments created by low- and hyper-velocity impacts

    NASA Astrophysics Data System (ADS)

    Hanada, T.; Liou, J.-C.

    This paper summarizes two new satellite impact experiments. The objective of the experiments was to investigate the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low-velocity of 1.5 km/s using a 40-g aluminum alloy sphere. The second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-g aluminum alloy sphere. The target satellites were 15 cm × 15 cm × 15 cm in size and 800 g in mass. The ratios of impact energy to target mass for the two experiments were approximately the same. The target satellites were completely fragmented in both experiments, although there were some differences in the characteristics of the fragments. The projectile of the low-velocity impact experiment was partially fragmented while the projectile of the hyper-velocity impact experiment was completely fragmented beyond recognition. To date, approximately 1500 fragments from each impact experiment have been collected for detailed analysis. Each piece has been weighed, measured, and analyzed based on the analytic method used in the NASA Standard Breakup Model (2000 revision). These fragments account for about 95% of the target mass for both impact experiments. Preliminary analysis results will be presented in this paper.

  12. Low-velocity impacts into cryogenic icy regolith

    NASA Astrophysics Data System (ADS)

    Brisset, Julie; Colwell, Josh E.; Dove, Adrienne; Rascon, Allison; Mohammed, Nadia; Cox, Christopher

    2016-10-01

    The first stages of planet formation take place in the protoplanetary disk (PPD), where µm-sized dust grains accrete into km-sized planetesimals. In the current discussion on the processes involved in accretion beyond the cm scale, the size distribution of the particles colliding at low speeds (a few m/s) inside the PPD is thought to play an important role. A few larger bodies that survived bouncing and fragmentation collisions accumulate the fine dust residue of the erosion and fragmentation of other particles that were destroyed in more energetic collisions. A significant component of this dust on bodies farther out in the PPD will be composed of ices.We have carried out a series of experiments to study the ejecta mass-velocity distribution from impacts of cm-scale particles into granular media at speeds below 3 m/s in both microgravity and 1-g conditions in vacuo and room temperature. Aggregate-aggregate collision experiments have shown bouncing and fragmentation at speeds above ~ 1 m/s. However, most planetesimal formation occurred beyond the frost line and at much lower temperatures than our earlier experiments. We have performed impact experiments at 1-g into JSC-1 lunar regolith simulant at low temperatures (<150 K) with water ice particles mixed into the JSC-1 sample. We varied the impact energy and the water ice content of the sample and measured the ejecta mass-velocity distribution as well as the final crater size. Our goal is to determine if the cryogenic temperature and the presence of water ice in the regolith affects the dynamic response to low-velocity impacts and the production of regolith. We will present the results of the cryogenic impacts and compare them to the study performed at room temperature without water ice. The inclusion of water ice into the target sample is a first step towards better understanding the influence of the presence of water ice in the production of ejecta in response to low-velocity impacts. We will discuss the

  13. Maximum sinking velocities of suspended particulate matter in a coastal transition zone

    NASA Astrophysics Data System (ADS)

    Maerz, Joeran; Hofmeister, Richard; van der Lee, Eefke M.; Gräwe, Ulf; Riethmüller, Rolf; Wirtz, Kai W.

    2016-09-01

    Marine coastal ecosystem functioning is crucially linked to the transport and fate of suspended particulate matter (SPM). Transport of SPM is controlled by, amongst other factors, sinking velocity ws. Since the ws of cohesive SPM aggregates varies significantly with size and composition of the mineral and organic origin, ws exhibits large spatial variability along gradients of turbulence, SPM concentration (SPMC) and SPM composition. In this study, we retrieved ws for the German Bight, North Sea, by combining measured vertical turbidity profiles with simulation results for turbulent eddy diffusivity. We analyzed ws with respect to modeled prevailing dissipation rates ɛ and found that mean ws were significantly enhanced around log10(ɛ (m2 s-3)) ≈ -5.5. This ɛ region is typically found at water depths of approximately 15 to 20 m along cross-shore transects. Across this zone, SPMC declines towards the offshore waters and a change in particle composition occurs. This characterizes a transition zone with potentially enhanced vertical fluxes. Our findings contribute to the conceptual understanding of nutrient cycling in the coastal region which is as follows. Previous studies identified an estuarine circulation. Its residual landward-oriented bottom currents are loaded with SPM, particularly within the transition zone. This retains and traps fine sediments and particulate-bound nutrients in coastal waters where organic components of SPM become remineralized. Residual surface currents transport dissolved nutrients offshore, where they are again consumed by phytoplankton. Algae excrete extracellular polymeric substances which are known to mediate mineral aggregation and thus sedimentation. This probably takes place particularly in the transition zone and completes the coastal nutrient cycle. The efficiency of the transition zone for retention is thus suggested as an important mechanism that underlies the often observed nutrient gradients towards the coast.

  14. Three-dimensional P-wave velocity structure of Mt. Etna, Italy

    USGS Publications Warehouse

    Villasenor, A.; Benz, H.M.; Filippi, L.; De Luca, G.; Scarpa, R.; Patane, G.; Vinciguerra, S.

    1998-01-01

    The three-dimensional P-wave velocity structure of Mt. Etna is determined to depths of 15 km by tomographic inversion of first arrival times from local earthquakes recorded by a network of 29 permanent and temporary seismographs. Results show a near-vertical low-velocity zone that extends from beneath the central craters to a depth of 10 km. This low-velocity region is coincident with a band of steeply-dipping seismicity, suggesting a magmatic conduit that feeds the summit eruptions. The most prominent structure is an approximately 8-km-diameter high-velocity body located between 2 and 12 km depth below the southeast flank of the volcano. This high-velocity body is interpreted as a remnant mafic intrusion that is an important structural feature influencing both volcanism and east flank slope stability and faulting.

  15. Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol

    Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For

  16. A low power cryocooled autonomous ultra-stable oscillator

    NASA Astrophysics Data System (ADS)

    Fluhr, C.; Dubois, B.; Grop, S.; Paris, J.; Le Tetû, G.; Giordano, V.

    2016-12-01

    We present the design and the preliminary evaluation of a cryostat equipped with a low power pulse-tube cryocooler intended to maintain near 5 K a high-Q factor sapphire microwave resonator. This cooled resonator constitutes the frequency reference of an ultra-stable oscillator presenting a short term fractional frequency stability of better than 1 ×10-15 . The proposed design enables to reach a state-of-the-art frequency stability with a cryogenic oscillator consuming only 3 kW of electrical power.

  17. Ultra-low-power conversion and management techniques for thermoelectric energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Fleming, Jerry W.

    2010-04-01

    Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.

  18. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  19. Variability of High Resolution Vp/Vs and Seismic Velocity Structure Along the Nicaragua/Costa Rica Segment of the Middle America Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moore-Driskell, M. M.; DeShon, H. R.

    2012-12-01

    Previous studies of subduction zone earthquakes have shown that fault conditions control earthquake rupture and behavior. There are many potential properties that may vary along the subduction margin that could cause fault zone variability, including plate age, temperature, and/or geometry, convergence rate, state of hydration, overriding geology, subducting sediment packages, or subducting seamounts/ridges. The Nicaragua/Costa Rica segment of the Middle America subduction zone is highly variable along strike and down dip. We use this margin to examine how these variable conditions affect earthquake behavior by determining local ratios of compressional to shear wave velocities (Vp/Vs) and detailed seismic velocity structure. Vp/Vs is one of the best tools available to reliably define fault conditions because it is directly related to the Poisson's ratio of the fault material, and it is sensitive to the presence of fluids and changing permeability. Thus with well-resolved near source Vp/Vs measurements we can infer composition and/or high fluid pressures. Here, we use a technique developed by Lin and Shearer (2007) to determine local Vp/Vs in small areas (~2 x 2 x 2 km) with high seismicity. Within the seismogenic zone, we find the margin to be highly variable along strike in Vp/Vs and seismic velocity. These changes correlate to documented variability in incoming plate properties. Increased Vp/Vs is associated with intraplate earthquakes along Nicaragua and northern Costa Rica. We compare our results with other geophysical studies including new high-resolution images of seismic velocity structure, an extensive catalog of high quality relocated events, apparent stress calculations, coupling, and SSE/NVT occurrence. A better understanding of the connection between fault properties and earthquake behavior gives insight into the role of fluids in seismogenesis, the spectrum of earthquake rupture, and possible hazard at subduction zones.

  20. Effect of Diluent on Ultra-low Temperature Curable Conductive Silver Adhesive

    NASA Astrophysics Data System (ADS)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Du, Haibo; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive needed urgently for the surface conductive treatment of piezoelectric composite material. The effect of diluent acetone on ultra-low temperature curable conductive silver adhesive were investigated for surface conductive treatment of piezoelectric composite material. In order to improve the operability and extend the life of the conductive adhesive, the diluent was added to dissolve and disperse conductive adhesive. With the increase of the content of diluent, the volume resistivity of conductive adhesive decreased at first and then increased, and the shear strength increased at first and then decreased. When the acetone content is 10%, the silver flaky bonded together, arranged the neatest, the smallest gap, the most closely connected, the surface can form a complete conductive network, and the volume resistivity is 2.37 × 10-4Ω · cm, the shear strength is 5.13MPa.

  1. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; hide

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  2. Global Velocities from VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, David; MacMillan, Daniel

    1999-01-01

    Precise geodetic Very Long Baseline Interferometry (VLBI) measurements have been made since 1979 at about 130 points on all major tectonic plates, including stable interiors and deformation zones. From the data set of about 2900 observing sessions and about 2.3 million observations, useful three-dimensional velocities can be derived for about 80 sites using an incremental least-squares adjustment of terrestrial, celestial, Earth rotation and site/session-specific parameters. The long history and high precision of the data yield formal errors for horizontal velocity as low as 0.1 mm/yr, but the limitation on the interpretation of individual site velocities is the tie to the terrestrial reference frame. Our studies indicate that the effect of converting precise relative VLBI velocities to individual site velocities is an error floor of about 0.4 mm/yr. Most VLBI horizontal velocities in stable plate interiors agree with the NUVEL-1A model, but there are significant departures in Africa and the Pacific. Vertical precision is worse by a factor of 2-3, and there are significant non-zero values that can be interpreted as post-glacial rebound, regional effects, and local disturbances.

  3. Cryogenic ultra-low-noise SiGe transistor amplifier.

    PubMed

    Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G

    2011-10-01

    An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.

  4. Analysis and Design of Rotors at Ultra-Low Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Kunz, Peter J.; Strawn, Roger C.

    2003-01-01

    Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.

  5. III-V Ultra-Thin-Body InGaAs/InAs MOSFETs for Low Standby Power Logic Applications

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Ying

    As device scaling continues to sub-10-nm regime, III-V InGaAs/InAs metal- oxide-semiconductor ?eld-e?ect transistors (MOSFETs) are promising candidates for replacing Si-based MOSFETs for future very-large-scale integration (VLSI) logic applications. III-V InGaAs materials have low electron effective mass and high electron velocity, allowing higher on-state current at lower VDD and reducing the switching power consumption. However, III-V InGaAs materials have a narrower band gap and higher permittivity, leading to large band-to-band tunneling (BTBT) leakage or gate-induced drain leakage (GIDL) at the drain end of the channel, and large subthreshold leakage due to worse electrostatic integrity. To utilize III-V MOSFETs in future logic circuits, III-V MOSFETs must have high on-state performance over Si MOSFETs as well as very low leakage current and low standby power consumption. In this dissertation, we will report InGaAs/InAs ultra-thin-body MOSFETs. Three techniques for reducing the leakage currents in InGaAs/InAs MOSFETs are reported as described below. 1) Wide band-gap barriers: We developed AlAs0.44Sb0.56 barriers lattice-match to InP by molecular beam epitaxy (MBE), and studied the electron transport in In0.53Ga0.47As/AlAs 0.44Sb0.56 heterostructures. The InGaAs channel MOSFETs using AlAs0.44Sb0.56 bottom barriers or p-doped In0.52 Al0.48As barriers were demonstrated, showing significant suppression on the back barrier leakage. 2) Ultra-thin channels: We investigated the electron transport in InGaAs and InAs ultra-thin quantum wells and ultra-thin body MOSFETs (t ch ~ 2-4 nm). For high performance logic, InAs channels enable higher on-state current, while for low power logic, InGaAs channels allow lower BTBT leakage current. 3) Source/Drain engineering: We developed raised InGaAs and recessed InP source/drain spacers. The raised InGaAs source/drain spacers improve electrostatics, reducing subthreshold leakage, and smooth the electric field near drain, reducing

  6. Shear velocity structure of central Eurasia from inversion of surface wave velocities

    NASA Astrophysics Data System (ADS)

    Villaseñor, A.; Ritzwoller, M. H.; Levshin, A. L.; Barmin, M. P.; Engdahl, E. R.; Spakman, W.; Trampert, J.

    2001-04-01

    We present a shear velocity model of the crust and upper mantle beneath central Eurasia by simultaneous inversion of broadband group and phase velocity maps of fundamental-mode Love and Rayleigh waves. The model is parameterized in terms of velocity depth profiles on a discrete 2°×2° grid. The model is isotropic for the crust and for the upper mantle below 220 km but, to fit simultaneously long period Love and Rayleigh waves, the model is transversely isotropic in the uppermost mantle, from the Moho discontinuity to 220 km depth. We have used newly available a priori models for the crust and sedimentary cover as starting models for the inversion. Therefore, the crustal part of the estimated model shows good correlation with known surface features such as sedimentary basins and mountain ranges. The velocity anomalies in the upper mantle are related to differences between tectonic and stable regions. Old, stable regions such as the East European, Siberian, and Indian cratons are characterized by high upper-mantle shear velocities. Other large high velocity anomalies occur beneath the Persian Gulf and the Tarim block. Slow shear velocity anomalies are related to regions of current extension (Red Sea and Andaman ridges) and are also found beneath the Tibetan and Turkish-Iranian Plateaus, structures originated by continent-continent collision. A large low velocity anomaly beneath western Mongolia corresponds to the location of a hypothesized mantle plume. A clear low velocity zone in vSH between Moho and 220 km exists across most of Eurasia, but is absent for vSV. The character and magnitude of anisotropy in the model is on average similar to PREM, with the most prominent anisotropic region occurring beneath the Tibetan Plateau.

  7. Study of ultra-low emittance design for SPEAR3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-17

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  8. In situ studies of velocity in fractured crystalline rocks.

    USGS Publications Warehouse

    Moos, D.; Zoback, M.D.

    1983-01-01

    A study of the effects of macroscopic fractures on P and S wave velocities has been conducted in four wells drilled in granitic rock to depths between 0.6 and 1.2km. The effect of macroscopic fractures is to decrease both Vp and Vs and increase Vp/Vs. In wells with a relatively low density of macroscopic fractures, the in situ velocity is similar to that of saturated core samples under confining pressure in the laboratory, and there is a clear correlation between zones with macroscopic fractures and anomalously low velocities. In wells with numerous macroscopic fractures, the in situ velocity is lower than that of intact samples under pressure, and there is a correlation between the rate at which in situ velocity increases with depth and the rate at which the velocity of laboratory samples increases with pressure. Differences in in situ P wave velocity between wells cannot be explained solely by differences in the degree of macroscopic fracturing, thus emphasizing the importance of composition and microcracks on velocity.-from Authors

  9. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  10. Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data

    NASA Astrophysics Data System (ADS)

    Graeber, Frank M.; Asch, Günter

    1999-09-01

    The PISCO'94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) seismological network of 31 digital broad band and short-period three-component seismometers was deployed in northern Chile between the Coastal Cordillera and the Western Cordillera. More than 5300 local seismic events were observed in a 100 day period. A subset of high-quality P and S arrival time data was used to invert simultaneously for hypocenters and velocity structure. Additional data from two other networks in the region could be included. The velocity models show a number of prominent anomalies, outlining an extremely thickened crust (about 70 km) beneath the forearc region, an anomalous crustal structure beneath the recent magmatic arc (Western Cordillera) characterized by very low velocities, and a high-velocity slab. A region of an increased Vp/Vs ratio has been found directly above the Wadati-Benioff zone, which might be caused by hydration processes. A zone of lower than average velocities and a high Vp/Vs ratio might correspond to the asthenospheric wedge. The upper edge of the Wadati-Benioff zone is sharply defined by intermediate depth hypocenters, while evidence for a double seismic zone can hardly be seen. Crustal events between the Precordillera and the Western Cordillera have been observed for the first time and are mainly located in the vicinity of the Salar de Atacama down to depths of about 40 km.

  11. Design of nodes for embedded and ultra low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin

    2008-10-01

    Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.

  12. Two dwarf galaxies in Orion with low radial velocities.

    NASA Astrophysics Data System (ADS)

    Karachentsev, I.; Musella, I.

    1996-11-01

    Two relatively faint (B=15.7 and B=18.4mag, respectively), low velocity (+276 and +322km/s) galaxies were imaged with a CCD in the B, V, I bands. By means of the brightest stars we estimated their distances to be 6.4 and 5.5(+/-2)Mpc, assuming a galactic extinction of 2.7 and 2.9mag, respectively. We note that these isolated irregular dwarfs are located to a high Supergalactic latitude, -63deg, and their low radial velocities may be the result of a retarded expansion along the polar axis of the Local cloud of galaxies.

  13. Low shear velocity in a normal fault system imaged by ambient noise cross correlation: The case of the Irpinia fault zone, Southern Italy

    NASA Astrophysics Data System (ADS)

    Vassallo, Maurizio; Festa, Gaetano; Bobbio, Antonella; Serra, Marcello

    2016-06-01

    We extracted the Green's functions from cross correlation of ambient noise recorded at broadband stations located across the Apennine belt, Southern Italy. Continuous records at 26 seismic stations acquired for 3 years were analyzed. We found the emergence of surface waves in the whole range of the investigated distances (10-140 km) with energy confined in the frequency band 0.04-0.09 Hz. This phase reproduces Rayleigh waves generated by earthquakes in the same frequency range. Arrival time of Rayleigh waves was picked at all the couples of stations to obtain the average group velocity along the path connecting the two stations. The picks were inverted in separated frequency bands to get group velocity maps then used to obtain an S wave velocity model. Penetration depth of the model ranges between 12 and 25 km, depending on the velocity values and on the depth of the interfaces, here associated to strong velocity gradients. We found a low-velocity anomaly in the region bounded by the two main faults that generated the 1980, M 6.9 Irpinia earthquake. A second anomaly was retrieved in the southeast part of the region and can be ascribed to a reminiscence of the Adria slab under the Apennine Chain.

  14. Ultra-low current biosensor output detection using portable electronic reader

    NASA Astrophysics Data System (ADS)

    Yahaya, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. Afnan; Hashim, U.

    2017-09-01

    Generally, the electrical biosensor usually shows extremely low current signal output around pico ampere to microampere range. In this research, electronic reader with amplifier has been demonstrated to detect ultra low current via the biosensor. The operational amplifier Burr-Brown OPA 128 and Arduino Uno board were used to construct the portable electronic reader. There are two cascaded inverting amplifier were used to detect ultra low current through the biosensor from pico amperes (pA) to nano amperes ranges (nA). A small known input current was form by applying variable voltage between 0.1V to 5.0V across a 5GΩ high resistor to check the amplifier circuit. The amplifier operation was measured with the high impedance current source and has been compared with the theoretical measurement. The Arduino Uno was used to convert the analog signal to digital signal and process the data to display on reader screen. In this project, Proteus software was used to design and test the circuit. Then it was implemented together with Arduino Uno board. Arduino board was programmed using C programming language to make whole circuit communicate each order. The current was measured then it shows a small difference values compared to theoretical values, which is approximately 14pA.

  15. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} hbox {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 \\upmu hbox {m}) and narrower ({<}1 \\upmu hbox {m}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu hbox {m}), narrow (0.5-0.7 \\upmu hbox {m}), and long (340-460 \\upmu hbox {m}) SiN legs and show Tc of {˜ }93 hbox {mK} and Rn of {˜ }158 hbox {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} hbox {W}/√{{ {Hz}}} with a reasonable response speed ({<}1 hbox {ms}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher hbox {NEP}_{el} ({˜ }5 × 10^{-19} hbox {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  16. Experimental study on the ejecta-velocity distributions caused by low-velocity impacts on quartz sand

    NASA Astrophysics Data System (ADS)

    Tsujido, S.; Arakawa, M.; Suzuki, A. I.; Yasui, M.

    2014-07-01

    Introduction: Regolith formation on asteroids is caused by successive impacts of small bodies. The ejecta velocity distribution during the crater formation process is one of the most important physical properties related to the surface-evolution process, and the distribution is also necessary to reconstruct the planetary-accretion process among planetesimals. The surface of small bodies, such as asteroids and planetesimals in the solar system, could have varying porosity, strength, and density, and the impact velocity could vary across a wide range from a few tens of m/s to several km/s. Therefore, it is necessary to conduct impact experiments by changing the physical properties of the target and the projectile in a wide velocity range in order to constrain the crater-formation process applicable to the small bodies in the solar system. Housen and Holsapple (2011) compiled the data of ejecta velocity distribution with various impact velocities, porosities, grain sizes, grain shapes, and strengths of the targets, and they improved their ejecta scaling law. But the ejecta velocity data is not enough for varying projectile densities and for impact velocities less than 1 km/s. In this study, to investigate the projectile density dependence of the ejecta velocity distribution at a low velocity region, we conducted impact experiments with projectile densities from 1.1 to 11.3 g/cm^3. Then, we try to determine the effect of projectile density on the ejecta velocity distribution by means of the observation of each individual ejecta grain. Experimental methods: We made impact cratering experiments by using a vertical-type one-stage light-gas gun (V-LGG) set at Kobe University. Targets were quartz sand (irregular shape) and glass beads (spherical shape) with the grain size of 500 μ m (porosity 44.7 %). The target container with the size of 30 cm was set in a large vacuum chamber with air pressure less than 10^3 Pa. The projectile materials that we used were lead, copper

  17. Kinematics of the Ultra-High-Velocity Gas in the Expanding Molecular Shell Adjacent to the W44 Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Yamada, Masaya; Oka, Tomoharu; Tanaka, Kunihiko; Nomura, Mariko; Takekawa, Shunya; Iwata, Yuhei; Tokuyama, Sekito; Tanabe, Keisuke; Tsujimoto, Shiho; Furusawa, Maiko

    2017-01-01

    High-velocity compact cloud (HVCC) is a peculiar category of molecular clouds detected in the central molecular zone of our Galaxy (Oka et al. 1998, 2007, and 2012). They are characterized by compact appearances (d < 5 pc) and very large velocity widths (Δ V > 50 km s-1). Some of them show high CO J=3-2/J=1-0 intensity ratios (>= 1.5), indicating that they consist of dense and warm molecular gas. Dispite a number of efforts, we have not reached a comprehensive interpretation of HVCCs. Recently, we detected an extraordinaly broad velocity width feature, the `Bullet', in the molecular cloud interacting with the W44 supernova remnant. The Bullet shares essential properties with HVCCs. Because of its proximity, a close inspection of the Bullet must contribute to the understanding of HVCCs.

  18. Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration

    NASA Astrophysics Data System (ADS)

    Montazeri, Shirin; Wong, Wei-Ting; Coskun, Ahmet H.; Bardin, Joseph C.

    2016-01-01

    Low-power cryogenic low-noise amplifiers (LNAs) are desired to ease the cooling requirements of ultra-sensitive cryogenically cooled instrumentation. In this paper, the tradeoff between power and noise performance in silicon-germanium LNAs is explored to study the possibility of operating these devices from low supply voltages. A new small-signal heterojunction bipolar transistor noise model applicable to both the forward-active and saturation regimes is developed from first principles. Experimental measurements of a device across a wide range of temperatures are then presented and the dependence of the noise parameters on collector-emitter voltage is described. This paper concludes with the demonstration of a high-gain 1.8-3.6-GHz cryogenic LNA achieving a noise temperature of 3.4-5 K while consuming just 290 μW when operating at 15-K physical temperature.

  19. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H i-bearing Ultra-diffuse Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leisman, Lukas; Haynes, Martha P.; Giovanelli, Riccardo

    2017-06-20

    We present a sample of 115 very low optical surface brightness, highly extended, H i-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H i. We find that while these sources have normal star formation rates for H i-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H i-synthesis follow-up imaging of three of thesemore » H i-bearing ultra-diffuse sources. We measure H i diameters extending to ∼40 kpc, but note that while all three sources have large H i diameters for their stellar mass, they are consistent with the H i mass–H i radius relation. We further analyze the H i velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H i-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.« less

  20. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Shishevan, Farzin Azimpour; Akbulut, Hamid; Mohtadi-Bonab, M. A.

    2017-06-01

    In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

  1. Microgravity flame spread over thick solids in low velocity opposed flow

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  2. Carbon transfer from magnesia-graphite ladle refractories to ultra-low carbon steel

    NASA Astrophysics Data System (ADS)

    Russo, Andrew Arthur

    Ultra-low carbon steels are utilized in processes which require maximum ductility. Increases in interstitial carbon lower the ductility of steel; therefore, it is important to examine possible sources of carbon. The refractory ladle lining is one such source. Ladle refractories often contain graphite for its desirable thermal shock and slag corrosion resistance. This graphite is a possible source of carbon increase in ultra-low carbon steels. The goal of this research is to understand and evaluate the mechanisms by which carbon transfers to ultra-low carbon steel from magnesia-graphite ladle refractory. Laboratory dip tests were performed in a vacuum induction furnace under an argon atmosphere to investigate these mechanisms. Commercial ladle refractories with carbon contents between 4-12 wt% were used to investigate the effect of refractory carbon content. Slag-free dip tests and slag-containing dip tests with varying MgO concentrations were performed to investigate the influence of slag. Carbon transfer to the steel was controlled by steel penetrating into the refractory and dissolving carbon in dip tests where no slag was present. The rate limiting step for this mechanism is convective mass transport of carbon into the bulk steel. No detectable carbon transfer occurred in dip tests with 4 and 6 wt%C refractories without slag because no significant steel penetration occurred. Carbon transfer was controlled by the corrosion of refractory by slag in dip tests where slag was present.

  3. Probing superlubricity stability of hydrogenated diamond-like carbon film by varying sliding velocity

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Bingjun; Cao, Zhongyue; Shi, Pengfei; Zhou, Ningning; Zhang, Bin; Zhang, Junyan; Qian, Linmao

    2018-05-01

    In this study, the superlubricity stability of hydrogenated diamond-like carbon (H-DLC) film in vacuum was investigated by varying the sliding velocity (30-700 mm/s). The relatively stable superlubricity state can be maintained for a long distance at low sliding velocity, whereas the superlubricity state quickly disappears and never recovers at high sliding velocity. Under superlubricity state, the transfer layer of H-DLC film was observed on the Al2O3 ball, which played a key role in obtaining ultra-low friction coefficient. Although the transfer layer can be generated at the beginning of the test, high-velocity sliding tends to accelerate the superlubricity failure and leads to the severe wear of H-DLC film. Analysis indicated that the main reason for superlubricity failure at high sliding velocity is not attributed to friction heat or the break of hydrogen passivation but to the absence of transfer layer on Al2O3 ball. The present study can enrich the understanding of superlubricity mechanism of H-DLC film.

  4. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    NASA Astrophysics Data System (ADS)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  5. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    NASA Astrophysics Data System (ADS)

    Han, Guiquan; Liu, Yuhong; Lu, Xinchun; Luo, Jianbin

    2012-10-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can `actively' carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process.

  6. [Electric traction magnetic fields of ultra-low frequency as an occupational risk factor of ischemic heart disease].

    PubMed

    Ptitsyna, N G; Kudrin, V A; Villorezi, D; Kopytenko, Iu A; Tiasto, M I; Kopytenko, E A; Bochko, V A; Iuchchi, N

    1996-01-01

    The study was inspired by earlier results that displayed influence of variable natural geomagnetic field (0.005-10 Hz range-ultra-low frequencies) on circulatory system, indicated possible correlation between industrial ultra-low frequency fields and prevalence of myocardial infarction. The authors conducted unique measurements of ultra-low frequency fields produced by electric engines. The results were compared with data on morbidity among railway transport workers. The findings are that level of magnetic variations in electric locomotive cabin can exceed 280 micro Tesla, whereas that in car sections reaches 50 micro Tesla. Occurrence of coronary heart disease among the locomotive operators appeared to be 2.0 + 0.2 times higher than that among the car section operators. Higher risk of coronary heart disease in the locomotive operators is associated with their increased occupational magnetic load.

  7. Evaluation method of TiO2-SiO2 ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system.

    PubMed

    Kushibiki, Jun-ichi; Arakawa, Mototaka; Ohashi, Yuji; Suzuki, Kouji

    2006-09-01

    Experimental procedures and standard specimens for characterizing and evaluating TiO2-SiO2 ultra-low expansion glasses with periodic striae using the line-focus-beam (LFB) ultrasonic material characterization system are discussed. Two types of specimens were prepared, with specimen surfaces parallel and perpendicular to the striae plane using two different grades of glass ingots. The inhomogeneities of each of the specimens were evaluated at 225 MHz. It was clarified that parallel specimens are useful for accurately measuring velocity variations of leaky surface acoustic waves (LSAWs) excited on a water-loaded specimen surface associated with the striae. Perpendicular specimens are useful for obtaining periodicities in the striae for LSAW propagation perpendicular to the striae plane on a surface and for precisely measuring averaged velocities for LSAW propagation parallel to the striae plane. The standard velocity of Rayleigh-type LSAWs traveling parallel to the striae plane for the perpendicular specimens was numerically calculated using the measured velocities of longitudinal and shear waves and density. Consequently, a reliable standard specimen with an LSAW velocity of 3308.18 +/- 0.35 m/s at 23 degrees C and its temperature coefficient of 0.39 (m/s)/degrees C was obtained for a TiO2-SiO2 glass with a TiO2 concentration of 7.09 wt%. A basis for the striae analysis using this ultrasonic method was established.

  8. Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.

    2016-12-01

    Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.

  9. Inversion of Surface-wave Dispersion Curves due to Low-velocity-layer Models

    NASA Astrophysics Data System (ADS)

    Shen, C.; Xia, J.; Mi, B.

    2016-12-01

    A successful inversion relies on exact forward modeling methods. It is a key step to accurately calculate multi-mode dispersion curves of a given model in high-frequency surface-wave (Rayleigh wave and Love wave) methods. For normal models (shear (S)-wave velocity increasing with depth), their theoretical dispersion curves completely match the dispersion spectrum that is generated based on wave equation. For models containing a low-velocity-layer, however, phase velocities calculated by existing forward-modeling algorithms (e.g. Thomson-Haskell algorithm, Knopoff algorithm, fast vector-transfer algorithm and so on) fail to be consistent with the dispersion spectrum at a high frequency range. They will approach a value that close to the surface-wave velocity of the low-velocity-layer under the surface layer, rather than that of the surface layer when their corresponding wavelengths are short enough. This phenomenon conflicts with the characteristics of surface waves, which results in an erroneous inverted model. By comparing the theoretical dispersion curves with simulated dispersion energy, we proposed a direct and essential solution to accurately compute surface-wave phase velocities due to low-velocity-layer models. Based on the proposed forward modeling technique, we can achieve correct inversion for these types of models. Several synthetic data proved the effectiveness of our method.

  10. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: Implications for the 2001 M s8.1 Kunlun earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.

    2009-01-01

    The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  11. Hubble Space Telescope observations of the optical counterpart to a ultra-compact high-velocity cloud

    NASA Astrophysics Data System (ADS)

    Sand, David J.

    2017-01-01

    As part of a comprehensive archival search for optical counterparts to ultra-compact high-velocity clouds (UCHVCs), our team has uncovered five Local Volume dwarf galaxies, two of which were not previously known. Among these was AGC 226067, also known as ALFALFA-Dw1, which appeared to be made up of several HI and blue optical clumps based on ground-based data, with at least one HII region. Here we present Hubble Space Telescope Advanced Camera for Surveys data of AGC 226067. The data show that AGC 226067 is made up of a ~7-30 Myr old stellar population with a [Fe/H]~-0.6. Further, there is no evidence for an old stellar population associated with the system, down to a limit of MV>-8. Based on this and the position of AGC 226067 in the outskirts of the M86 subgroup of the Virgo cluster we present various arguments for the origin of this strange stellar system.

  12. An Ultra Low Cost Wireless Communications Laboratory for Education and Research

    ERIC Educational Resources Information Center

    Linn, Y.

    2012-01-01

    This paper presents an ultra-low-cost wireless communications laboratory that is based on a commercial off-the-shelf field programmable gate array (FPGA) development board that is both inexpensive and available worldwide. The total cost of the laboratory is under USD $200, but it includes complete transmission, channel emulation, reception…

  13. Potential Habitable Zone Exomoon Candidates and Radial Velocity Estimates for Giant Kepler HZ Candidates.

    NASA Astrophysics Data System (ADS)

    Hill, M.; Kane, S.; Kopparapu, R.; Seperuelo Duarte, E.; Gelino, D.; Whittenmyer, R.

    2017-12-01

    The NASA Kepler mission has discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrence rate of terrestrial-size planets within the Habitable Zone (HZ) of their host stars. A major product of the Habitable Zone Working Group (HZWG) is a list of HZ exoplanet candidates from the Kepler Data Release 24 Q1- Q17 data vetting process [1]. We used a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ. We cross-matched our HZ candidates with the Data Release 25 stellar properties and confirmed planet properties to provide robust stellar parameters and candidate dispositions. We also performed dynamical analysis simulations for multi-planet systems that contain candidates with radii less than two Earth radii as a step toward validation of those systems. From this list we found 39 planet candidates greater than 3 earth radii residing in the Optimistic Habitable Zone of their host star. While giant planets are not favored in the search for eta Earth, they do indicate a potential for large, potentially rocky moons residing in the habitable zone. These giant planets can also provide a potential for a wider range of "habitable" incident flux due to additional energy sources from tidal energy, etc. Thus we analyzed each giant planet, estimating their mass and then calculating the estimated Radial Velocity Semi Amplitudes of each planet for use in follow up observations. We then calculated the planets Hill radius and determined the maximum angular separation of potential moons. This presentation will describe the highlights of the HZ catalog giant planets and the plans for further validation of HZ candidates and follow-up studies. Fig. 1 - Plots both the unconfirmed and confirmed Giant (>3⊕R) Kepler candidates expected Radial Velocity signatures

  14. Style of Plate Spreading Derived from the 2008-2014 Velocity Field Across the Northern Volcanic Zone of Iceland

    NASA Astrophysics Data System (ADS)

    Drouin, V.; Sigmundsson, F.; Hreinsdottir, S.; Ofeigsson, B.; Sturkell, E.; Einarsson, P.

    2015-12-01

    The Northern Volcanic Zone (NVZ) of Iceland is a subaerial part of the divergent boundary between the North-American and Eurasian Plates. At this latitude, the full spreading between the plates is accommodated by the NVZ. We derived the plate boundary velocity field from GPS campaign and continuous measurements between 2008 and 2014, a time period free of any magma intrusion. Average velocities were estimated in the ITRF08 reference frame. The overall extension is consistent with 18 mm/yr in the 104°N direction spreading, in accordance with the MORVEL2010 plate motion model. We find that a 40km-wide band along the plate boundary accommodates about 75% of the full plate velocities. Within this zone, the average strain rate is approximately 0.35 μstrain/yr. The deformation field and the strain rate are, however, much affected by other sources of deformations in the NVZ. These include magmatic sources at the most active volcanic centers, glacial rebound near the ice-caps and geothermal power-plant water extraction. Magmatic sources include a shallow magma chamber deflation under Askja caldera, as well as under Þeistareykir and eventual deep magma inflation north of Krafla volcano. Vatnajökull ice cap melting causes large uplift and outward displacements in the southern part of the NVZ. The two geothermal power-plants near Krafla are inducing local deflations. Our GPS velocities show a 35° change in the direction of the plate boundary axis north of Askja volcano that we infer to be linked to the geometric arrangement of volcanic systems within the NVZ.We use a simple arctangent model to describe the plate spreading to provide constraints on the location and the locking depth of the spreading axis. For that purpose we divided the area in short overlapping segments having the same amount of GPS points along the plate spreading direction and inverted for the location of the center of the spreading axis and locking depth. With this simple model we can account for most

  15. Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Rayl, G.

    1978-01-01

    A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.

  16. Seismic Velocity and Elastic Properties of Plate Boundary Faults

    NASA Astrophysics Data System (ADS)

    Jeppson, Tamara N.

    The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal

  17. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  18. Virtual Colonoscopy Screening With Ultra Low-Dose CT and Less-Stressful Bowel Preparation: A Computer Simulation Study

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Su; Li, Lihong; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2008-10-01

    Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient compliance. However, current CTC delivers excessive X-ray radiation to the patient during data acquisition. The radiation is a major concern for screening application of CTC. In this work, we performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient CTC images acquired with normal dose scans at 100 mA s levels. The simulated noisy sinogram or projection data were first processed by a Karhunen-Loeve domain penalized weighted least-squares (KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp can be detected in an ultra low-dose level below 50 mA s. Polyp detection can be found more easily by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.

  19. Slab and Plume Morphology in the Transition Zone and Below: a Comparison of Images From Recent P and S Velocity Models

    NASA Astrophysics Data System (ADS)

    Salmi, L. M.; French, S. W.; Romanowicz, B. A.

    2014-12-01

    Resolving subduction zones in the shallow upper mantle using global shear velocity tomography has long been a challenge, likely due to the rather narrow signature of the slabs down to ~400 km depth compared to the wavelength of fundamental mode and overtone surface waves, on which resolution of Vs at these depths often relies. On the other hand, models based on P wave travel times exhibit higher resolution in subduction zone regions, owing to both the higher frequencies of the P waves as well as an optimal illumination geometry. Conversely, the global Vs models typically have better resolution near the CMB, because of constraints provided by Sdiff and multiple ScS phases. Here we compare the morphology of subducted slabs throughout the mantle, as imaged by both a recent Vp model (GAP_P4, Fukao and Obayashi, 2013) and a new Vs model (SEMUCB-WM1, French and Romanowicz, GJI, in revision). The latter model was developed by inverting body (to 32s) and fundamental and overtone surface (to 60s) waveforms, with the forward seismic wavefield computed using the spectral element method. While the S velocity model is still "fuzzier" than the Vp model, it tracks the behavior of slabs trapped in the transition zone, and those ponding around 1000 km depth. We quantify the high correlation of the region of fast Vp and Vs anomalies, and thus derive a robust estimate of the R=dlnVs/dlnVp ratio as a function of depth in regions of faster than average velocity. We compare these results with estimates obtained with other combinations of available P and S models, as well as theoretical values from mineral physical calculations. Estimating R in slow velocity regions is more difficult, as resolution varies more among models. Here we compare slow velocity images in SEMUCB-WM1 with those of other recent Vs and Vp models and attempt to estimate R in those regions as well. Interestingly, we note that, in the SEMUCB-WM1 model, some of the columnar, lower than average velocity regions "rising

  20. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    PubMed Central

    2012-01-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can ‘actively’ carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process. PMID:23110959

  1. Ultra-low-power wearable biopotential sensor nodes.

    PubMed

    Yazicioglu, R F; Torfs, T; Penders, J; Romero, I; Kim, H; Merken, P; Gyselinckx, B; Yoo, H J; Van Hoof, C

    2009-01-01

    This paper discusses ultra-low-power wireless sensor nodes intended for wearable biopotential monitoring. Specific attention is given to mixed-signal design approaches and their impact on the overall system power dissipation. Examples of trade-offs in power dissipation between analog front-ends and digital signal processing are also given. It is shown how signal filtering can further reduce the internal power consumption of a node. Such power saving approaches are indispensable as real-life tests of custom wireless ECG patches reveal the need for artifact detection and correction. The power consumption of such additional features has to come from power savings elsewhere in the system as the overall power budget cannot increase.

  2. Ultra low-cost, portable smartphone optosensors for mobile point-of-care diagnostics

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

    2018-02-01

    Smartphone optosensors with integrated optical components make mobile point-of-care (MPoC) diagnostics be done near patients' side. It'll especially have a significant impact on healthcare delivery in rural or remote areas. Current FDA-approved PoC devices achieving clinical level are still at high cost and not affordable in rural hospitals. We present a series of ultra low-cost smartphone optical sensing devices for mobile point-of-care diagnosis. Aiming different targeting analytes and sensing mechanisms, we developed custom required optical components for each smartphone optosensros. These optical devices include spectrum readers, colorimetric readers for microplate, lateral flow device readers, and chemiluminescence readers. By integrating our unique designed optical components into smartphone optosening platform, the anlaytes can be precisely detected. Clinical testing results show the clinical usability of our smartphone optosensors. Ultra low-cost portable smartphone optosensors are affordable for rural/remote doctors.

  3. Gas transfer velocities measured at low wind speed over a lake

    USGS Publications Warehouse

    Crusius, John; Wanninkhof, R.

    2003-01-01

    The relationship between gas transfer velocity and wind speed was evaluated at low wind speeds by quantifying the rate of evasion of the deliberate tracer, SF6, from a small oligotrophic lake. Several possible relationships between gas transfer velocity and low wind speed were evaluated by using 1-min-averaged wind speeds as a measure of the instantaneous wind speed values. Gas transfer velocities in this data set can be estimated virtually equally well by assuming any of three widely used relationships between k600 and winds referenced to 10-m height, U10: (1) a bilinear dependence with a break in the slope at ???3.7 m s-1, which resulted in the best fit; (2) a power dependence; and (3) a constant transfer velocity for U10 3.7 m s-1 which, coupled with the typical variability in instantaneous wind speeds observed in the field, leads to average transfer velocity estimates that are higher than those predicted for steady wind trends. The transfer velocities predicted by the bilinear steady wind relationship for U10 < ???3.7 m s-1 are virtually identical to the theoretical predictions for transfer across a smooth surface.

  4. Tolerance to the anticonvulsant effect of morphine in mice: blockage by ultra-low dose naltrexone.

    PubMed

    Roshanpour, Maryam; Ghasemi, Mehdi; Riazi, Kiarash; Rafiei-Tabatabaei, Neda; Ghahremani, Mohammad Hossein; Dehpour, Ahmad Reza

    2009-02-01

    The present study evaluated the development of tolerance to the anticonvulsant effect of morphine in a mouse model of clonic seizures induced by pentylenetetrazole, and whether ultra-low doses of the opioid receptor antagonist naltrexone which selectively block G(s) opioid receptors were capable of preventing the observed tolerance. The results showed that the morphine anticonvulsant effect could be subject to tolerance after repeated administration. Both the development and expression of tolerance were inhibited by ultra-low doses of naltrexone, suggesting the possible involvement of G(s)-coupled opioid receptors in the development of tolerance to the anticonvulsant effect of morphine.

  5. Seismic measurements of the internal properties of fault zones

    USGS Publications Warehouse

    Mooney, W.D.; Ginzburg, A.

    1986-01-01

    The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites. ?? 1986 Birkha??user Verlag, Basel.

  6. Three-dimensional P-wave velocity structure in the greater Mount Rainier area from local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Moran, Seth Charles

    1997-08-01

    One of the most striking features of seismicity in western Washington is the clustering of crustal earthquakes into one of several zones of concentrated seismicity. In this dissertation I explore the hypothesis that geologic structures, in conjunction with regional tectonic forces, are primarily responsible for controlling the location of seismicity in parts of western Washington. The primary tool for testing this hypothesis is a 3-dimensional image of the P-wave velocity structure of the greater Mount Rainier area that I derive using local earthquake tomography. I use P-wave arrival times from local earthquakes occurring between 1980 and 1996 recorded at short-period vertical component stations operated by the Pacific Northwest Seismograph Network (PNSN) and 18 temporary sites operated during a field experiment in 1995 and 1996. The tomographic methodology I use is similar to that described by Lees and Crosson (1989, 1990). In addition, I use the parameter separation method to decouple the hypocenter and velocity problems, don't use station corrections, and use ray-bending for 3-D raytracing, allowing for a full non-linear inversion. In the upper 4 km several low velocity features show good correlation with the Carbon River, Skate Creek, and Morton anticlines, as well as the Chehalis, Tacoma, and Seattle basins. There is also good correlation between high velocity features and surface exposures of several plutons. One seismic zone, the St. Helens Seismic Zone, correlates well with a planar low velocity feature. This correlation supports the idea that this seismic zone reflects a continuous structure roughly 50 km in length. A second zone, the Western Rainier Seismic Zone (WRSZ), does not correlate in any simple way with anomaly patterns, suggesting that the WRSZ does not represent a distinct fault. A 10 km-wide low velocity anomaly occurs 8 to 18 km beneath Mount Rainier, which I interpret to be due to a thermal aureole associated with the magmatic system beneath

  7. Precise seismic velocity structure beneath the Hokkaido corner, northern Japan: Arc-arc collision and the 1970 M 6.7 Hidaka region earthquake and the 1982 M 7.1 Urakawa-oki earthquake

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, A.; Nakajima, J.; Okada, T.; Matsuzawa, T.; Katsumata, K.

    2011-12-01

    Using arrival-time data both from the nationwide Kiban seismic network and from a dense temporary seismic network covering the area of the Hokkaido corner [Katsumata et al., 2002a; 2003, JGR], we precisely determined three-dimensional seismic velocity structure beneath this area to understand the collision process between the Kuril and northeasetern Japan forearcs. Tomographic inversions were performed with smaller grid spacing [5 x 10 x 5 km] than our previous study [Kita et al., 2010b, EPSL] by using the double-difference tomography method [Zhang and Thurber, 2003; 2006]. Inhomogeneous seismic velocity structure was more precisely imaged in the Hokkaido corner at depths of 0-120 km. A broad low-velocity zone of P- and S- waves having velocities of crust materials with a total volume of 80 km x 100 km x 50 km is distributed to the west of the Hidaka metamorphic belt (the Hidaka main thrust) at depths of 30-90km. On the other hand, several small-scale high-velocity zones having velocities of mantle materials were detected at depths of 0-35 km), inclined east-northeastward at a high angle of 40-60 degrees. All of these anomaly high velocity zones are respectively located in the deeper extension of the Neogene thrust faults, striking almost N-S direction and dipping 40-50 degrees at depths of 0-10km [e.g. Ito 2000]. The largest high-velocity zone is located in the deeper extension of the Hidaka main thrust, being in contact with the eastern edge of the low-V zone. This high-V zone reaches near the surface at the Hidaka metamorphic belt and its southern edge is located just beneath the Horoman-peridotite, which is one of the most famous peridotite outcrops. Moreover, the boundary of the high-V zone with the broad low-V zone corresponds to the fault plane of the 1970 Mj 6.7 Hidaka region earthquake [Moriya 1972]. Another high-V zone is located within the broad low-V zone at depths of 20-30km and in the deeper extension of thrust, which belongs to the Ishikari Low land

  8. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  9. Ultra-Low Background Measurements Of Decayed Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Miley, H.

    2009-04-01

    To experimentally evaluate the opportunity to apply ultra-low background measurement methods to samples collected, for instance, by the Comprehensive Test Ban Treaty International Monitoring System (IMS), aerosol samples collected on filter media were measured using HPGe spectrometers of varying low-background technology approaches. In this way, realistic estimates of the impact of low-background methodology can be assessed on the Minimum Detectable Activities obtained in systems such as the IMS. The current measurement requirement of stations in the IMS is 30 microBq per cubic meter of air for 140Ba, or about 106 fissions per daily sample. Importantly, this is for a fresh aerosol filter. Decay varying form 3 days to one week reduce the intrinsic background from radon daughters in the sample. Computational estimates of the improvement factor for these decayed filters for underground-based HPGe in clean shielding materials are orders of magnitude less, even when the decay of the isotopes of interest is included.

  10. The 2011 Tohoku-oki Earthquake related to a large velocity gradient within the Pacific plate

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    We conduct seismic tomography using arrival time data picked by the high sensitivity seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED). We used earthquakes off the coast outside the seismic network around the source region of the 2011 Tohoku-oki Earthquake with the centroid depth estimated from moment tensor inversion by NIED F-net (broadband seismograph network) as well as earthquakes within the seismic network determined by Hi-net. The target region, 20-48N and 120-148E, covers the Japanese Islands from Hokkaido to Okinawa. A total of manually picked 4,622,346 P-wave and 3,062,846 S-wave arrival times for 100,733 earthquakes recorded at 1,212 stations from October 2000 to August 2009 is available for use in the tomographic method. In the final iteration, we estimate the P-wave slowness at 458,234 nodes and the S-wave slowness at 347,037 nodes. The inversion reduces the root mean square of the P-wave traveltime residual from 0.455 s to 0.187 s and that of the S-wave data from 0.692 s to 0.228 s after eight iterations (Matsubara and Obara, 2011). Centroid depths are determined using a Green's function approach (Okada et al., 2004) such as in NIED F-net. For the events distant from the seismic network, the centroid depth is more reliable than that determined by NIED Hi-net, since there are no stations above the hypocenter. We determine the upper boundary of the Pacific plate based on the velocity structure and earthquake hypocentral distribution. The upper boundary of the low-velocity (low-V) oceanic crust corresponds to the plate boundary where thrust earthquakes are expected to occur. Where we do not observe low-V oceanic crust, we determine the upper boundary of the upper layer of the double seismic zone within high-V Pacific plate. We assume the depth at the Japan Trench as 7 km. We can investigate the velocity structure within the Pacific plate such as 10 km beneath the plate boundary since the

  11. Imaging Critical Zone Using High Frequency Rayleigh Wave Group Velocity Measurements Extracted from Ambient Seismic Fields Gathered With 2400 Seismic Nodes in Southeastern Wyoming.

    NASA Astrophysics Data System (ADS)

    Keifer, I. S.; Dueker, K. G.

    2016-12-01

    In an effort to characterize critical zone development in varying regions, seismologist conduct seismic surveys to assist in the realization of critical zone properties e.g. porosity and regolith thickness. A limitation of traditional critical zone seismology is that data is normally collected along lines, to generate two dimensional transects of the subsurface seismic velocity, even though the critical zone structure is 3D. Hence, we deployed six seismic 2D arrays in southeastern Wyoming to gather ambient seismic fields so that 3D shear velocity models could be produced. The arrays were made up of nominally 400 seismic stations arranged in a 200-meter square grid layout. Each array produced a half Terabyte data volume, so a premium was placed on computational efficiency throughout this study, to handle the roughly 65 billion samples recorded by each array. The ambient fields were cross-correlated on the Yellowstone Super-Computer using the pSIN code (Chen et al., 2016), which decreased correlation run times by a factor of 300 with respect to workstation computers. Group delay times extracted from cross-correlations using 8 Hz frequency bands from 10 Hz to 100 Hz show frequency dispersion at sites with shallow regolith underlain by granite bedrock. Dimensionally, the group velocity map inversion is overdetermined, even after extensive culling of spurious group delay times. Model Resolution matrices for our six arrays show values > 0.7 for most of the modal domain, approaching unity at the center of the model domain; we are then confident that we have an adequate number of rays covering our array space, and should experience minimal smearing of our resultant model due to application of inverse solution on the data. After inverting for the group velocity maps, a second inversion is performed of the group velocity maps for the 3D shear velocity model. This inversion is underdetermined and a second order Tikhonov regularization is used to obtain stable inverse images

  12. Revealing the Formation Mechanism of Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2017-09-01

    Recently a population of large, very low optical surface brightness galaxies, so called ultra-diffuse galaxies (UDGs), were discovered in the outskirts of Coma clusters. Stellar line-of-sight velocity dispersions suggest large dark matter halo masses of 10^12 M_sun with very low baryon fractions ( 1%). The outstanding question waiting to be answered is: How do UDGs form and evolve? One theory is that UDGs are related to bright galaxies, however they are prevented from building a normal stellar population through various violent processes, such as gas stripping. We propose to observe Dragonfly 44, the most massive UDG known, for 100 ks with ACIS-I to test some of the formation theories.

  13. Ultra-low-dose computed tomographic angiography with model-based iterative reconstruction compared with standard-dose imaging after endovascular aneurysm repair: a prospective pilot study.

    PubMed

    Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K

    2014-12-01

    An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides

  14. Underplating along the northern portion of the Zagros suture zone, Iran

    NASA Astrophysics Data System (ADS)

    Motaghi, K.; Shabanian, E.; Kalvandi, F.

    2017-07-01

    A 2-D absolute shear wave velocity model has been resolved beneath a seismic profile across the northeastern margin of the Arabian Plate-Central Iran by simultaneously inverting data from P receiver functions and fundamental mode Rayleigh wave phase velocity. The data were gathered by a linear seismic array crossing the Zagros fold and thrust belt, Urmia-Dokhtar magmatic arc and Central Iran block assemblage as three major structural components of the Arabia-Eurasia collision. Our model shows a low-velocity tongue protruding from upper to lower crust which, north of the Zagros suture, indicates the signature of an intracontinent low-strength shear zone between the underthrusting and overriding continents. The velocity model confirms the presence of a significant crustal root as well as a thick high-velocity lithosphere in footwall of the suture, continuing northwards beneath the overriding continent for at least 200 km. These features are interpreted as underthrusting of Arabia beneath Central Iran. Time to depth migration of P receiver functions reveals an intracrustal flat interface at ∼17 km depth south of the suture; we interpret it as a significant decoupling within the upper crust. All these crustal scale structural features coherently explain different styles and kinematics of deformation in northern Zagros (Lorestan zone) with respect to its southern part (Fars zone).

  15. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  16. Development of an underground HPGe array facility for ultra low radioactivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, E.; Kang, W. G.; Kim, Y. D.

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGemore » with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.« less

  17. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A; Fox, Ethan E; Morrissey, Timothy G

    2011-10-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted inmore » context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.« less

  18. Resolution of low-velocity control in golf putting differentiates professionals from amateurs.

    PubMed

    Hasegawa, Yumiko; Fujii, Keisuke; Miura, Akito; Yamamoto, Yuji

    2017-07-01

    It is difficult for humans to apply small amounts of force precisely during motor control. However, experts who have undergone extended training are thought to be able to control low-velocity movement with precision. We investigated the resolution of motor control in golf putting. A total of 10 professional and 10 high-level amateur golfers participated. Putting distances were 0.6-3.3 m, in increments of 0.3 m. We measured the impact velocity and the club-face angle at impact, and the acceleration profile of the downswing. The professionals showed significantly smaller coefficients of variation with respect to impact velocity and smaller root mean square errors in relation to acceleration profiles than did the amateurs. To examine the resolution of motor control for impact velocity, we investigated intra-participant differences in the impact velocity of the club head at two adjacent distances. We found that professionals had higher velocity precision when putting small distance intervals than did amateurs. That is, professionals had higher resolution of low-velocity control than did high-level amateurs. Our results suggest that outstanding performance at a task involves the ability to recognise small distinctions and to produce appropriate movements.

  19. Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate

    NASA Astrophysics Data System (ADS)

    Nishizawa, Azusa; Kaneda, Kentaro; Oikawa, Mitsuhiro; Horiuchi, Daishi; Fujioka, Yukari; Okada, Chiaki

    2017-06-01

    The Ryukyu (Nansei-Shoto) island arc-trench system, southwest of Japan, is formed by the subduction of the Philippine Sea (PHS) plate. Among the subduction zones surrounding the Japan Islands, the Ryukyu arc-trench system is unique in that its backarc basin, the Okinawa Trough, is the area with current extensively active rifting. The length of the trench is around 1400 km, and the geological and geophysical characteristics vary significantly along the trench axis. We conducted multichannel seismic (MCS) reflection and wide-angle seismic surveys to elucidate the along-arc variation in seismic structures from the island arc to the trench regions, shooting seven seismic lines across the arc-trench system and two along-arc lines in the island arc and the forearc areas. The obtained P-wave velocity models of the Ryukyu arc crust were found to be heterogeneous (depending on the seismic lines), but they basically consist of upper, middle, and lower crusts, indicating a typical island arc structure. Beneath the bathymetric depressions cutting the island arc—for example, the Kerama Gap and the Miyako Saddle—the MCS record shows many across-arc normal faults, which indicates the presence of an extensional regime along the island arc. In the areas from the forearc to the trench, the subduction of the characteristic seafloor features on the PHS plate affects seismic structures; the subducted bathymetric high of the Amami Plateau is detected in the northern trench: the Luzon-Okinawa fracture zone beneath the middle and southern trenches. There are low-velocity (< 4.5 km/s) wedges along the forearc areas, except for off Miyako-jima Island. The characteristic high gravity anomaly at the forearc off Miyako-jima Island is caused not by a bathymetric high of a large-scale accretionary wedge but by shallower materials with a high P-wave velocity of 4.5 km/s.[Figure not available: see fulltext.

  20. GaN on Diamond with Ultra-Low Thermal Barrier Resistance

    DTIC Science & Technology

    2016-03-31

    GaN-on-Diamond with Ultra-Low Thermal Barrier Resistance Xing Gu1, Cathy Lee1, Jinqiao Xie1, Edward Beam1, Michael Becker2, Timothy A. Grotjohn2...Bristol BS8 1TL, UK Abstract: We investigated the effective thermal boundary resistance (TBReff) of GaN-on-Diamond interfaces for diamond growth... thermal boundary resistance; TBReff , interfacial layers; high density dielectric Introduction While GaN-based RF transistors, typically on SiC

  1. Three-dimensional Upper Crustal Velocity and Attenuation Structures of the Central Tibetan Plateau from Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Liang, X.; Lin, G.; Tian, X.; Zhu, G.; Mechie, J.; Teng, J.

    2017-12-01

    A series of V-shaped conjugate strike-slip faults are the most spectacular geologic features in the central Tibetan plateau. A previous study suggested that this conjugate strike-slip fault system accommodates the east-west extension and coeval north-south contraction. Another previous study suggested that the continuous convergence between the Indian and Eurasian continents and the eastward asthenospheric flow generated lithospheric paired general-shear (PGS) deformation, which then caused the development of conjugate strike-slip faults in central Tibet. Local seismic tomography can image three dimensional upper-crustal velocity and attenuation structures in central Tibet, which will provide us with more information about the spatial distribution of physical properties and compositional variations around the conjugate strike-slip fault zone. Ultimately, this information could improve our understanding of the development mechanism of the conjugate strike-slip fault system. In this study, we collected 6,809 Pg and 2,929 Sg arrival times from 414 earthquakes recorded by the temporary SANDWICH and permanent CNSN networks from November 2013 to November 2015. We also included 300 P and 17 S arrival times from 12 shots recorded by the INDEPTH III project during the summer of 1998 in the velocity tomography. We inverted for preliminary Vp and Vp/Vs models using the SIMUL2000 tomography algorithm, and then relocated the earthquakes with these preliminary velocity models. After that, we inverted for the final velocity models with these improved source locations and origin times. After the velocity inversion, we performed local attenuation tomography using t* measurements from the same dataset with an already existing approach. There are correlated features in the velocity and attenuation structures. From the surface to 10 km depth, the study area is dominated by high Vp and Qp anomalies. However, from 10 km to 20 km depth, there is a low Vp and Qp zone distributed along the

  2. Mobile zoned/exponential LAF screen: a new concept in ultra-clean air technology for additional operating room ventilation.

    PubMed

    Friberg, B; Lindgren, M; Karlsson, C; Bergström, A; Friberg, S

    2002-04-01

    A mobile screen (0.5 x 0.4 m) producing ultra-clean exponential LAF (air-flow central zone 0.6 m/s and peripheral zone 0.4 m/s) was investigated as an addition to conventional turbulent/mixing operating room ventilation. The evaluation was performed during strictly standardized sham operations reflecting conditions during major surgery. The study consisted of a pilot experiment designed to give high counts of sedimenting aerobic colony forming units (cfu). In a second main study, recording dust particles, air-borne and sedimenting aerobic cfu, the screen was associated with optimal operating room clothing. In the pilot experiment the use of the screen resulted in a substantial reduction of sedimenting bacteria from 3835-4940 to 0-390 cfu/m(2)/h. In the main study, the use of the additional LAF reduced the surface contamination from 416-329 to 7-78 cfu/m(2)/h up to 1.6 m from the screen (P=0.001-0.0001). Measured in the wound area the screen reduced the air counts of bacteria from 9-14 to 0.2-0.4 cfu/m(3) (P=0.008-0.0001) and a marked reduction of air-borne dust particles was recorded (P=0.007-0.009). In conclusion, the additional mobile LAF screen reduced the counts of aerobic air-borne and sedimenting bacteria-carrying particles as well as dust particles to the levels gained with complete ultra-clean LAF room ventilation. Thus, the screen might prove a valuable addition to operating room ventilation as well as in other areas where asepsis is essential. Copyright 2002 The Hospital Infection Society.

  3. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  4. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestari, Titik, E-mail: t2klestari@gmail.com; Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vsmore » and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.« less

  5. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    NASA Astrophysics Data System (ADS)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  6. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Rui-Rui

    2015-02-14

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials.more » This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator

  7. Calibration of an Ultra-Low-Background Proportional Counter for Measuring 37Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifert, Allen; Aalseth, Craig E.; Bonicalzi, Ricco

    Abstract. An ultra-low-background proportional counter (ULBPC) design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electrochemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) constructed at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14C/3H, age-dating of groundwater with 39Ar, and soil-gas assay for 37Ar to support On-Site Inspection (OSI). On-Site Inspection is a key componentmore » of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37Ar samples over a broad range of pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37Ar soil gas background studies.« less

  8. Stress anisotropy and velocity anisotropy in low porosity shale

    NASA Astrophysics Data System (ADS)

    Kuila, U.; Dewhurst, D. N.; Siggins, A. F.; Raven, M. D.

    2011-04-01

    Shales are known for often marked intrinsic anisotropy of many of their properties, including strength, permeability and velocity for example. In addition, it is well known that anisotropic stress fields can also have a significant impact on anisotropy of velocity, even in an isotropic medium. This paper sets out to investigate the ultrasonic velocity response of well-characterised low porosity shales from the Officer Basin in Western Australia to both isotropic and anisotropic stress fields and to evaluate the velocity response to the changing stress field. During consolidated undrained multi-stage triaxial tests on core plugs cut normal to bedding, V pv increases monotonically with increasing effective stress and V s1 behaves similarly although with some scatter. V ph and V sh remain constant initially but then decrease within each stage of the multi-stage test, although velocity from stage to stage at any given differential stress increases. This has the impact of decreasing both P-wave (ɛ) and S-wave anisotropy (γ) through application of differential stress within each loading stage. However, increasing the magnitude of an isotropic stress field has little effect on the velocity anisotropies. The intrinsic anisotropy of the shale remains reasonably high at the highest confining pressures. The results indicate the magnitude and orientation of the stress anisotropy with respect to the shale microfabric has a significant impact on the velocity response to changing stress fields.

  9. Oceanic Volcanism from the Low-Velocity Zone - Without Mantle Plumes (Invited)

    NASA Astrophysics Data System (ADS)

    Presnall, D. C.; Gudfinnsson, G. H.

    2010-12-01

    The existence of hot mantle plumes is addressed by using a combination of regional and global shear-wave data, major-element compositions of Hawaiian and MORB glasses (including Iceland), and phase relations for natural lherzolite and the systems CaO-MgO-Al2O3-SiO2-CO2 and CaO-MgO-Al2O3-SiO2-Na2O-FeO. At the East Pacific Rise, the depth of minimum shear wave velocity (Vsv), which we interpret to be the depth of maximum melting, occurs at ~65 km (Webb & Forsyth, 1998, Science, 280, 1229; Conder et al., 2002, JGR, 107, 2344)). This depth increases with lithospheric age and stabilizes at ~150 km (~5 GPa) for ages > ~75 my (Maggi et al., 2006, GJI, 166, 1384). Variations in shear wave anisotropy follow the same pattern (Ekström, 2000, Geophys. Mon. 121, 239) but with a slightly shallower depth of ~130 km for the maximum shear wave anisotropy of the mature Pacific. For a given volcano, the classical Hawaiian sequence of volcanism is early alkalic lavas extracted at ~3 GPa, 1350°C (Sisson et al., 2009, CMP, 158, 803), then voluminous tholeiitic lavas at ~ 4-5 GPa, 1450-1560°C (~150 km), and final alkalic lavas that contain, on Oahu, nanodiamond-bearing xenoliths (Wirth & Rocholl, 2003, EPSL, 211, 357; Frezotti & Peccerillo, 2007, EPSL, 262, 273) and require melt extraction at a pressure slightly > 6 GPa. This progressive increase in P-T conditions of the Hawaiian source matches the equilibrium magma-stratigraphy vs depth indicated by phase relations along a mature-ocean geotherm. This consistency indicates that Hawaiian volcanism occurs by progressively deeper extraction of magmas from a mature LVZ by fracturing of the overlying LID. No decompression melting or enhanced temperature is indicated. At spreading ridges, including Iceland, the absence of glass compositions that define olivine-controlled crystallization trends and the phase equilibrium constraint that all MORBs are extracted at ~1250-1280°C, 1.2-1.5 GPa (Presnall & Gudfinnsson, 2008, JPet., 49, 615) are in

  10. Field-scale forward and back diffusion through low-permeability zones

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2017-07-01

    Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.

  11. 100 nm AlSb/InAs HEMT for ultra-low-power consumption, low-noise applications.

    PubMed

    Gardès, Cyrille; Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier; Roelens, Yannick

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/f max of 100/125 GHz together with minimum noise figure NF(min) = 0.5 dB and associated gain G(ass) = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.

  12. Seismic imaging along a 600 km transect of the Alaska Subduction zone (Invited)

    NASA Astrophysics Data System (ADS)

    Calkins, J. A.; Abers, G. A.; Freymueller, J. T.; Rondenay, S.; Christensen, D. H.

    2010-12-01

    We present earthquake locations, scattered wavefield migration images, and phase velocity maps from preliminary analysis of combined seismic data from the Broadband Experiment Across the Alaska Range (BEAAR) and Multidisciplinary Observations of Onshore Subduction (MOOS) projects. Together, these PASSCAL broadband arrays sampled a 500+ km transect across a portion of the subduction zone characterized by the Yakutat terrane/Pacific plate boundary in the downgoing plate, and the Denali volcanic gap in the overriding plate. These are the first results from the MOOS experiment, a 34-station array that was deployed from 2006-2008 to fill in the gap between the TACT offshore refraction profile (south and east of the coastline of the Kenai Peninsula), and the BEAAR array (spanning the Alaska Range between Talkeetna and Fairbanks). 2-D images of the upper 150 km of the subduction zone were produced by migrating forward- and back-scattered arrivals in the coda of P waves from large teleseismic earthquakes, highlighting S-velocity perturbations from a smoothly-varying background model. The migration images reveal a shallowly north-dipping low velocity zone that is contiguous near 20 km depth on its updip end with previously obtained images of the subducting plate offshore. The low velocity zone steepens further to the north, and terminates near 120 km beneath the Alaska Range. We interpret this low velocity zone to be the crust of the downgoing plate, and the reduced seismic velocities to be indicative of hydrated gabbroic compositions. Earthquakes located using the temporary arrays and nearby stations of the Alaska Regional Seismic Network correlate spatially with the inferred subducting crust. Cross-sections taken along nearly orthogonal strike lines through the MOOS array reveal that both the dip angle and the thickness of the subducting low velocity zone change abruptly across a roughly NNW-SSE striking line drawn through the eastern Kenai Peninsula, coincident with a

  13. Capillary zone electrophoresis-tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies

    PubMed Central

    Zhu, Guijie; Sun, Liangliang; Heidbrink-Thompson, Jennifer; Kuntumalla, Srilatha; Lin, Hung-yu; Larkin, Christopher J.; McGivney, James B.; Dovichi, Norman J.

    2016-01-01

    We have evaluated capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a five-point calibration curve by spiking twelve standard proteins into a solution of a human monoclonal antibody. A custom CZE-MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ~70 min separation window (~90 min total analysis duration) and ~300 peak capacity. We also analyzed the sample using ultra-performance liquid chromatography (UPLC)-MS/MS. CZE-MS/MS generated ~five times higher base peak intensity and more peptide identifications for low-level spiked proteins. Both methods detected all proteins spiked at the ~100 ppm level with respect to the antibody. PMID:26530276

  14. Velocity profiles and plug zones in a free surface viscoplastic flow : experimental study and comparison to shallow flow models

    NASA Astrophysics Data System (ADS)

    Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed

    2016-04-01

    Rheological studies concerning natural muddy debris flows have shown that these materials can be modelled as non-Newtonian viscoplastic fluids. These complex flows are generally represented using models based on a depth-integrated approach (Shallow Water) that take into account closure terms depending on the shape of the velocity profile. But to date, there is poor knowledge about the shape of velocity profiles and the position of the interface between sheared and unsheared regions (plug) in these flows, especially in the vicinity of the front. In this research, the internal dynamics of a free-surface viscoplastic flow down an inclined channel is investigated and compared to the predictions of a Shallow Water model based on the lubrication approximation. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity, which allows generating and observing gravity-driven stationary surges in the laboratory frame. Carbopol microgel has been used as a homogeneous and transparent viscoplastic fluid. High-resolution measurements of velocity field is performed through optical velocimetry techniques both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Specific analyses have been developed to determine the position of the plug within the surge. Flow height is accessible through image processing and ultrasonic sensors. Sufficiently far from the front, experimental results are shown to be in good agreement with theoretical predictions regarding the velocity profiles and the flow height evolution. In the vicinity of the front, however, analysis of measured velocity profiles shows an evolution of the plug different from that predicted by lubrication approximation. Accordingly, the free surface shape also deviates from the predictions of the classical Shallow Water model. These results highlight the necessity to take into account higher

  15. Shear-wave Velocity Structure and Inter-Seismic Strain Accumulation in the Up-Dip Region of the Cascadia Subduction Zone: Similarities to Tohoku?

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Wei, M.

    2013-12-01

    The up-dip region of subduction zone thrusts is difficult to study using land-based seismic and geodetic networks, yet documenting its ability to store and release elastic strain is critical for understanding the mechanics of great subduction earthquakes and tsunami generation. The 2011 Tohoku earthquake produced extremely large slip in the shallowest portion of the subduction zone beneath a region of the fore-arc that is comprised of extremely low-velocity, unconsolidated sediments [Tsuru et al. JGR 2012]. The influence of the sediment material properties on the co-seismic slip distribution and tsunami generation can be considerable through both the effects on the dynamic wavefield during the rupture [Kozdon and Dunham, BSSA 2012] and potentially the build up of strain during the inter-seismic period. As part of the 2010-2011 SeaJade experiment [Scherwath et al, EOS 2011], we deployed 10 ocean bottom seismographs (OBS) on the continental slope offshore of Vancouver Island in the region of the NEPTUNE Canada observatory. One goal of the experiment is to measure the shear modulus of the sediments lying above the subducting plate using the seafloor compliance technique. Using seafloor acceleration measured by broadband seismometer and seafloor pressure measured by Differential Pressure Gauge (DPG), we estimate the compliance spectrum in the infra-gravity wave band (~0.002-0.04 Hz) at 9 sites following the methodology of Crawford et al. [JGR, 1991]. We calibrated DPG sensitivities using laboratory measurements and by comparing teleseismic Rayleigh arrivals recorded on the seismometer and DPG channels [Webb, pers. comm]. We correct the vertical-component seismometer data for tilt using the procedure of Crawford and Webb [BSSA, 2000], Corrections for the gravitational attraction of the surface gravity waves [Crawford et al., JGR, 1998] are important at frequencies of 0.003-0.006 Hz only. Typically, the coherences are high (>0.7) in the 0.006 to 0.03 Hz range. We invert

  16. Development of UItra-Low Temperature Motor Controllers: Ultra Low Temperatures Evaluation and Characterization of Semiconductor Technologies For The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.

    2003-01-01

    Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).

  17. Structural Integrity Of Low-Velocity Impacted C/SIC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Knoche, R.; Drose, A.

    2012-07-01

    Carbon fibre reinforced silicon carbide (C/SiC) ceramic matrix composites (CMC) are most favourable for thermal protection systems & hot structures in re-entry vehicles since they offer superior heat resistance, high specific strength as well as a low coefficient of temperature expansion (CTE). To ensure the structural integrity of these C/SiC structures and thus mission safety all potential degradation effects during manufacturing and lifetime have to be considered. One of the most probable defects which may harm the structural integrity significantly can be caused by low-velocity impacts (LVI) which may occur during transportation and integration by e.g. dropping of tools. Thus the present study focuses on the residual mechanical and thermo-mechanical performance of C/SiC composites after being exposed to a low-velocity impact in terms of initial and residual mechanical performance, changes in microstructure, as well as thermo-mechanical performance through exposing specimens to multiple experimentally simulated re-entries. The results reveal the impact characteristics and damage mechanisms of C/SiC CMC exposed to a low-velocity impact and evidence the functional reliability as well as the damage tolerance of the C/SiC material investigated.

  18. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; von Huene, Roland E.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  19. Frictional properties of Alpine Fault gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Morgan, C.; Reches, Z.

    2015-12-01

    The Alpine Fault, New Zealand, is a plate boundary with slip rate of ~ 37 mm/yr, with major historic seismic events. The Deep Fault Drilling Program (DFDP) into the Alpine Fault had two phases in 2011 and 2014, with main objectives of fault-zone sampling and borehole instrumentations. As complementary work to the drilling, we analyze the frictional properties of the Alpine Fault gauge on samples collected at three field exposures (Waikukupa, Cataclasite, and Gaunt) at distances up to 70 km away from DFDP-2. The bulk samples (1-3 kg) were first manually disintegrated without shear, and then sieved to the 250-350 micron fraction. The gouge was sheared in a Confined Rotary Cell (CROC) in the natural, moisture conditions, at slip-velocity range of 0.01 m/s to 0.5 m/s (constant and stepped) with a constant normal stress of 2-3 MPa. Runs included monitoring the CO2 and H2O emission, in addition to the standard mechanical parameters. The preliminary results show an initial friction coefficient ~0.6. Initial slip at low velocities (0.01 m/s) display gentle velocity strengthening, that changed to a drastic weakening (~50%) at velocity of 0.5 m/s. This weakening was associated with intense slip localization along a hard, dark slip surface within the gouge zone. After the establishment of this slip surface, the low friction remains for the following low slip-velocity steps. Future work will include: (1) systematic investigation of the dynamic friction dependence on the slip-velocity and slip-distance; (2) analysis of the relations between friction, mineralogy and the release of CO2/H2O; and (3) application of the experimental results to characterize natural fault behavior.

  20. Ultra-thin, light-trapping silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.

  1. Circuit design advances for ultra-low power sensing platforms

    NASA Astrophysics Data System (ADS)

    Wieckowski, Michael; Dreslinski, Ronald G.; Mudge, Trevor; Blaauw, David; Sylvester, Dennis

    2010-04-01

    This paper explores the recent advances in circuit structures and design methodologies that have enabled ultra-low power sensing platforms and opened up a host of new applications. Central to this theme is the development of Near Threshold Computing (NTC) as a viable design space for low power sensing platforms. In this paradigm, the system's supply voltage is approximately equal to the threshold voltage of its transistors. Operating in this "near-threshold" region provides much of the energy savings previously demonstrated for subthreshold operation while offering more favorable performance and variability characteristics. This makes NTC applicable to a broad range of power-constrained computing segments including energy constrained sensing platforms. This paper explores the barriers to the adoption of NTC and describes current work aimed at overcoming these obstacles in the circuit design space.

  2. Field-scale forward and back diffusion through low-permeability zones.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2017-07-01

    Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Performance study of personal inhalable aerosol samplers at ultra-low wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2012-03-01

    The assessment of personal inhalable aerosol samplers in a controlled laboratory setting has not previously been carried out at the ultra-low wind speed conditions that represent most modern workplaces. There is currently some concern about whether the existing inhalable aerosol convention is appropriate at these low wind speeds and an alternative has been suggested. It was therefore important to assess the performance of the most common personal samplers used to collect the inhalable aerosol fraction, especially those that were designed to match the original curve. The experimental set-up involved use of a hybrid ultra-low speed wind tunnel/calm air chamber and a rotating, heating breathing mannequin to measure the inhalable fraction of aerosol exposure. The samplers that were tested included the Institute of Occupational Medicine (IOM), Button, and GSP inhalable samplers as well as the closed-face cassette sampler that has been (and still is) widely used by occupational hygienists in many countries. The results showed that, down to ∼0.2 m s(-1), the samplers matched the current inhalability criterion relatively well but were significantly greater than this at the lowest wind speed tested. Overall, there was a significant effect of wind speed on sampling efficiency, with lower wind speeds clearly associated with an increase in sampling efficiency.

  4. Character of High Temperature Mylonitic Shear Zones Associated with Oceanic Detachment Faults at the Ultra-Slow Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.

    2014-12-01

    Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm

  5. Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone

    USGS Publications Warehouse

    Hamilton, R.M.; Mooney, W.D.

    1990-01-01

    The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.

  6. Investigation of low-velocity impact damage in fibre-metal-laminates

    NASA Astrophysics Data System (ADS)

    Laliberte, Jeremy F.

    2002-04-01

    Fibre-metal-laminates (FMLs) represent a significant evolution in airframe material technology. This new family of materials combines low density, high strength and excellent damage tolerance through the use of metal layers strengthened with fibre-reinforced polymer layers. When subjected to low-velocity impact these laminates like traditional composites, develop internal delamination damage, matrix cracks and limited fibre fractures. Also, as in traditional composites, this damage is hidden within the laminate. A method for predicting the amount of internal damage would reduce the experimental testing requirements for the certification of new laminates. This thesis describes the development of a modelling methodology that makes use of a new material subroutine based on continuum damage mechanics in the explicit finite-element code LS-DYNA. This subroutine was verified using the experimental data from low-velocity impact tests of various types of GLARE (GLAss REinforced) aluminum laminates, a common type of commercially available fibre-metal-laminate. Static characterization tests were also conducted on GLARE coupons to provide basic property data for the development of the model. These included static tensile tests and double cantilever beam delamination tests. The modelling methodology was used to improve simulations of low-velocity impact on GLARE laminates. The simulations demonstrated that intralaminar damage has a greater effect on the impact response of the panels than interlaminar damage. Parts of this thesis were components of a multi-year collaborative FML Durability Project between Carleton University, Bombardier Aerospace and the National Research Council Canada.

  7. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by Floating Zone method

    NASA Astrophysics Data System (ADS)

    He, Nuotian; Tang, Huili; Liu, Bo; Zhu, Zhichao; Li, Qiu; Guo, Chao; Gu, Mu; Xu, Jun; Liu, Jinliang; Xu, Mengxuan; Chen, Liang; Ouyang, Xiaoping

    2018-04-01

    In this investigation, β-Ga2O3 single crystals were grown by the Floating Zone method. At room temperature, the X-ray excited emission spectrum includes ultraviolet and blue emission bands. The scintillation light output is comparable to the commercial BGO scintillator. The scintillation decay times are composed of the dominant ultra-fast component of 0.368 ns and a small amount of slightly slow components of 8.2 and 182 ns. Such fast component is superior to most commercial inorganic scintillators. In contrast to most semiconductor crystals prepared by solution method such as ZnO, β-Ga2O3 single crystals can be grown by traditional melt-growth method. Thus we can easily obtain large bulk crystals and mass production.

  8. 100 nm AlSb/InAs HEMT for Ultra-Low-Power Consumption, Low-Noise Applications

    PubMed Central

    Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies f T/f max of 100/125 GHz together with minimum noise figure NFmin = 0.5 dB and associated gain G ass = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime. PMID:24707193

  9. Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

    NASA Astrophysics Data System (ADS)

    Jung, Il-Chan; Kang, Deok-Gu; De Cooman, Bruno C.

    2014-04-01

    The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek-Kê-Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

  10. Low Velocity Impact Testing and Nondestructive Evaluation of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Brennan, R. E.; Green, W. H.

    2011-06-01

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  11. Using MOF-74 for Hg{sup 2+} removal from ultra-low concentration aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yang Yang; Li, Jian Qiang; Gong, Le Le

    Mercury (Hg{sup 2+}) ions have very high toxicity and widely spread as environmental pollutants. At present, many efforts have been taken to remove the hazardous materials of mercury(II) by adsorption, and it is highly desirable to develop a novel adsorbent with high adsorptive capacities. However it is still a big challenge to remove the ultra-low-concentration mercury ions from water. In this paper, MOF-74-Zn is explored for such function, showing high removal rate of Hg(II) from water without any pretreatment, especially for the ultra-trace Hg(II) ions in the ppb magnitude with the removal rate reaching to 54.48%, 69.71%, 72.26% when themore » initial concentration of Hg(II) is 20ppb, 40ppb, 50ppb, respectively. - Graphical abstract: The absorption of mercury ions on MOF-74-Zn is due to somewhat weak interactions between MOF skeleton that is composed of carboxylate and hydroxy group and Hg2+ ions. - Highlights: • MOF-74-Zn shows high removal rate of Hg(II) from water without any pretreatment. • The MOF-74-Zn has a notable performance at ultra-low concentration of Hg(II). • MOF-74-Zn shows the potential for Hg(II) removal from industrial waste water.« less

  12. Ultra-low-loss and broadband mode converters in Si3N4 technology

    NASA Astrophysics Data System (ADS)

    Mu, Jinfeng; Dijkstra, Meindert; de Goede, Michiel; Yong, Yean-Sheng; García-Blanco, Sonia M.

    2017-02-01

    Si3N4 grown by low pressure chemical vapor deposition (LPCVD) on thermally oxidized silicon wafers is largely utilized for creating integrated photonic devices due to its ultra-low propagation loss and large transparency window (400 nm to 2350 nm). In this paper, an ultra-low-loss and broadband mode converter for monolithic integration of different materials onto the passive Si3N4 photonic technology platform is presented. The mode size converter is constructed with a vertically tapered Si3N4 waveguide that is then buried by a polymer or an Al2O3 waveguide. The influence of the various design parameters on the converter characteristics are investigated. Optimal designs are proposed, in which the thickness of the Si3N4 waveguide is tapered from 200 nm to 40 nm. The calculated losses of the mode converters at 976 nm and 1550 nm wavelengths are well below 0.1 dB for the Si3N4-polymer coupler and below 0.3 dB for the Si3N4-Al2O3 coupler. The preliminary experimental results show good agreement with the design values, indicating that the mode converters can be utilized for the low-loss integration of different materials.

  13. Ultra-low-head hydroelectric technology: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Daqing; Deng, Zhiqun

    In recent years, distributed renewable energy-generation technologies, such as wind and solar, have developed rapidly. Nevertheless, the utilization of ultra-low-head (ULH) water energy (i.e., situations where the hydraulic head is less than 3 m or the water flow is more than 0.5 m/s with zero head) has received little attention. We believe that, through technological innovations and cost reductions, ULH hydropower has the potential to become an attractive, renewable, and sustainable resource. This paper investigates potential sites for ULH energy resources, the selection of relevant turbines and generators, simplification of civil works, and project costs. This review introduces the currentmore » achievements on ULH hydroelectric technology to stimulate discussions and participation of stakeholders to develop related technologies for further expanding its utilization as an important form of renewable energy.« less

  14. Calibration method helps in seismic velocity interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, C.E.; Davenport, H.A.; Wilhelm, R.

    1997-11-03

    Acoustic velocities derived from seismic reflection data, when properly calibrated to subsurface measurements, help interpreters make pure velocity predictions. A method of calibrating seismic to measured velocities has improved interpretation of subsurface features in the Gulf of Mexico. In this method, the interpreter in essence creates a kind of gauge. Properly calibrated, the gauge enables the interpreter to match predicted velocities to velocities measured at wells. Slow-velocity zones are of special interest because they sometimes appear near hydrocarbon accumulations. Changes in velocity vary in strength with location; the structural picture is hidden unless the variations are accounted for by mappingmore » in depth instead of time. Preliminary observations suggest that the presence of hydrocarbons alters the lithology in the neighborhood of the trap; this hydrocarbon effect may be reflected in the rock velocity. The effect indicates a direct use of seismic velocity in exploration. This article uses the terms seismic velocity and seismic stacking velocity interchangeably. It uses ground velocity, checkshot average velocity, and well velocity interchangeably. Interval velocities are derived from seismic stacking velocities or well average velocities; they refer to velocities of subsurface intervals or zones. Interval travel time (ITT) is the reciprocal of interval velocity in microseconds per foot.« less

  15. Viterbi sparse spike detection and a compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel Paul

    Accurate interpretation of seismic travel times and amplitudes in both the exploration and global scales is complicated by the band-limited nature of seismic data. We present a stochastic method, Viterbi sparse spike detection (VSSD), to reduce a seismic waveform into a most probable constituent spike train. Model waveforms are constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) is constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. The Viterbi algorithm is employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data, and to assign a score to each candidate spike train. The most probable travel times and amplitudes are inferred from the alignments of the highest scoring models. Our analyses show that the method can resolve closely spaced arrivals below traditional resolution limits and that travel time estimates are robust in the presence of random noise and source wavelet errors. We applied the VSSD method to constrain the elastic properties of a ultralow- velocity zone (ULVZ) at the core-mantle boundary beneath the Coral Sea. We analyzed vertical component short period ScP waveforms for 16 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array (ASAR) in central Australia. These waveforms show strong pre and postcursory seismic arrivals consistent with ULVZ layering. We used the VSSD method to measure differential travel-times and amplitudes of the post-cursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of approximately 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S-wave velocity reduction of 24%, a P-wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. We simultaneously

  16. Chandra Observations of Low Velocity Dispersion Groups

    NASA Astrophysics Data System (ADS)

    Helsdon, Stephen F.; Ponman, Trevor J.; Mulchaey, J. S.

    2005-01-01

    Deviations of galaxy groups from cluster scaling relations can be understood in terms of an excess of entropy in groups. The main effect of this excess is to reduce the density and thus the luminosity of the intragroup gas. Given this, groups should also show a steep relationship between X-ray luminosity and velocity dispersion. However, previous work suggests that this is not the case, with many measuring slopes flatter than the cluster relation. Examining the group LX-σ relation shows that much of the flattening is caused by a small subset of groups that show very high X-ray luminosities for their velocity dispersions (or vice versa). Detailed Chandra study of two such groups shows that earlier ROSAT results were subject to significant (~30%-40%) point-source contamination but confirm that a significant hot intergalactic medium is present in these groups, although these are two of the coolest systems in which intergalactic X-ray emission has been detected. Their X-ray properties are shown to be broadly consistent with those of other galaxy groups, although the gas entropy in NGC 1587 is unusually low, and its X-ray luminosity is correspondingly high for its temperature when compared with most groups. This leads us to suggest that the velocity dispersion in these systems has been reduced in some way, and we consider how this might have come about.

  17. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo

    Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less

  18. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE

    DOE PAGES

    Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo; ...

    2018-03-05

    Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less

  19. Mixing water ice into regolith in low-velocity impact experiments

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Colwell, J. E.; Dove, A.; Rascon, A. N.; Mohammed, N.; Cox, C.

    2016-12-01

    Collisions between dust and ice grains of different sizes lead to particle growth both in Saturn's rings and in the protoplanetary disk (PPD). Low-velocity collisions (a few m/s or less) among ring or PPD particles produce ejecta and play an important role in this growth process as ejected particles accrete on larger grains. We report on the results of a series of experiments to study the ejecta mass-velocity distribution from impacts of cm-scale particles into granular media at speeds below 3 m/s. These experiments were performed using the lunar regolith simulant JSC-1 in both microgravity and 1-g conditions, under vacuum and at room temperature. As most planetesimal formation occurred beyond the frost line and as Satrun's rings particles are mostly composed of water ice, we proceeded to perform impact experiments at 1-g into JSC-1 lunar regolith simulant mixed with water ice particles at low temperatures (<150 K). We will present the results of the cryogenic impacts and compare them to the study performed at room temperature without water ice. The inclusion of water ice into the target sample is a first step towards better understanding the influence of the presence of water ice in the production of ejecta in response to low-velocity impacts. We will discuss the implications of our results for planetary ring particle collisions as well as planetesimal formation.

  20. Austrian Mirrors: Development of Ultra-Low-Loss Cryogenic Crystalline Coatings (DARPA)

    DTIC Science & Technology

    2016-07-13

    AFRL-AFOSR-UK-TR-2016-0013 Austrian Mirrors: Development of ultra-low- loss cryogenic crystalline coatings (DARPA) Garrett Cole Crystalline Mirror...REPORT DOCUMENTATION PAGE Form ApprovedOMB No . 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour...that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information   if

  1. Direct push injection logging for high resolution characterization of low permeability zones

    NASA Astrophysics Data System (ADS)

    Liu, G.; Knobbe, S.; Butler, J. J., Jr.; Reboulet, E. C.; Borden, R. C.; Bohling, G.

    2017-12-01

    One of the grand challenges for groundwater protection and contaminated site remediation efforts is dealing with the slow, yet persistent, release of contaminants from low permeability zones. In zones of higher permeability, groundwater flow is relatively fast and contaminant transport can be more effectively affected by treatment activities. In the low permeability zones, however, groundwater flow and contaminant transport are slow and thus become largely insensitive to many in-situ treatment efforts. Clearly, for sites with low permeability zones, accurate depiction of the mass exchange between the low and higher permeability zones is critical for designing successful groundwater protection and remediation systems, which requires certain information such as the hydraulic conductivity (K) and porosity of the subsurface. The current generation of field methods is primarily developed for relatively permeable zones, and little work has been undertaken for characterizing zones of low permeability. For example, the direct push injection logging (DPIL) approach (e.g., Hydraulic Profiling Tool by Geoprobe) is commonly used for high resolution estimation of K over a range of 0.03 to 23 m/d. When K is below 0.03 m/d, the pressure responses from the current DPIL are generally too high for both the formation (potential formation alteration at high pressure) and measuring device (pressure exceeding the upper sensor limit). In this work, we modified the current DPIL tool by adding a low-flow pump and flowmeter so that injection logging can be performed with much reduced flow rates when K is low. Numerical simulations showed that the reduction in injection rates (reduced from 250 to 1 mL/min) allowed pressures to be measurable even when K was as low as 0.001 m/d. They also indicated that as the K decreased, the pore water pressure increase induced by probe advancement had a more significant impact on DPIL results. A new field DPIL profiling procedure was developed for reducing

  2. P wave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography

    USGS Publications Warehouse

    Moran, S.C.; Lees, J.M.; Malone, S.D.

    1999-01-01

    We present results from a local earthquake tomographic imaging experiment in the greater Mount Rainier area. We inverted P wave arrival times from local earthquakes recorded at permanent and temporary Pacific Northwest Seismograph Network seismographs between 1980 and 1996. We used a method similar to that described by Lees and Crosson [1989], modified to incorporate the parameter separation method for decoupling the hypocenter and velocity problems. In the upper 7 km of the resulting model there is good correlation between velocity anomalies and surface geology. Many focal mechanisms within the St. Helens seismic zone have nodal planes parallel to the epicentral trend as well as to a north-south trending low-velocity trough, leading us to speculate that the trough represents a zone of structural weakness in which a moderate (M 6.5-7.0) earthquake could occur. In contrast, the western Rainier seismic zone does not correlate in any simple way with anomaly patterns or focal mechanism fault planes, leading us to infer that it is less likely to experience a moderate earthquake. A ???10 km-wide low-velocity anomaly occurs 5 to 18 km beneath the summit of Mount Rainier, which we interpret to be a signal of a region composed of hot, fractured rock with possible small amounts of melt or fluid. No systematic velocity pattern is observed in association with the southern Washington Cascades conductor. A midcrustal anomaly parallels the Olympic-Wallowa lineament as well as several other geophysical trends, indicating that it may play an important role in regional tectonics. Copyright 1999 by the American Geophysical Union.

  3. Spatiotemporal Velocity Changes Around Miyake and Kozu Islands, Central Japan in June,2000 - May,2001

    NASA Astrophysics Data System (ADS)

    Hagiwara, H.; Sakai, S.; Yamada, T.; Kanazawa, T.

    2004-12-01

    Spatiotemporal velocity changes have been found around Miyake and Kozu Islands, central Japan in June,2000 - May,2001 from seismic tomography method applied to 694,345 arrival times at 122 sites in and around Miyake and Kozu Islands including ocean bottom observations. Due to the high irregularity in the uppermost crust and the difficulties of handling both of the data of seabed and the land simultaneously, station correction is adopted. The arrival time data is divided eleven periods so as to examine the temporal velocity change, taking into account the hypocenter distribution map. We determine Vp,Vs models in each period applying the seismic tomography method. The result indicates that there are mainly two low velocity zones which locate in the west of Miyake Island and the east of Kozu Island and they change temporally their intensity corresponding hypocenter distribution. In the early period ( ~ July 5 ), low velocity zone (LVZ) is limited at Miyake site and that suggests magma is supplied form Miyake Volcano. Next period (July 6 - July 20), LVZ of Miyake site decreases and in reverse that of Kozu site appears with seismic swarm. In the period (July 21 - Aug 14), LVZ of Kozu site is very powerful and expands up to 5km depth with great swarm. This suggests that the new magma intrusion occurs from deeper between Miyake and Kozu Islands. Next, in the period (Aug 15 - Aug 31), LVZ of Miyake site increases with swarm and that indicates the magma flow form Miyake volcano coming again. After that, in the period (Sept.1,2000 - May 6,2001), both LVZs decrease their rates gradually and the seismic activity decrease either. We surmise that those low velocity zones correspond magma intrusion and spatiotemporal changes of magma intrusions cause repeating seismic immigrations between Miyake and Kozu Islands.

  4. Evaluation of multiple tracer methods to estimate low groundwater flow velocities

    DOE PAGES

    Reimus, Paul W.; Arnold, Bill W.

    2017-02-20

    Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less

  5. Evaluation of multiple tracer methods to estimate low groundwater flow velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul W.; Arnold, Bill W.

    Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less

  6. Evaluation of multiple tracer methods to estimate low groundwater flow velocities.

    PubMed

    Reimus, Paul W; Arnold, Bill W

    2017-04-01

    Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.

  7. Statistical Study of High-Velocity Compact Clouds Based on the Complete CO Imagings of the Central Molecular Zone

    NASA Astrophysics Data System (ADS)

    Tokuyama, Sekito; Oka, Tomoharu; Takekawa, Shunya; Yamada, Masaya; Iwata, Yuhei; Tsujimoto, Shiho

    2017-01-01

    High-velocity compact clouds (HVCCs) is one of the populations of peculiar clouds detected in the Central Molecular Zone (CMZ) of our Galaxy. They have compact appearances (< 5 pc) and large velocity widths (> 50 km s-1). Several explanations for the origin of HVCC were proposed; e.g., a series of supernovae (SN) explosions (Oka et al. 1999) or a gravitational kick by a point-like gravitational source (Oka et al. 2016). To investigate the statistical property of HVCCs, a complete list of them is acutely necessary. However, the previous list is not complete since the identification procedure included automated processes and manual selection (Nagai 2008). Here we developed an automated procedure to identify HVCCs in a spectral line data.

  8. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California

    USGS Publications Warehouse

    Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.

    1997-01-01

    Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.

  9. Low Velocity Sphere Impact of a Borosilicate Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrissey, Timothy G; Ferber, Mattison K; Wereszczak, Andrew A

    2012-05-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Borofloat borosilicate glass, and is a follow-up to a similar study completed by the authors on Starphire soda-lime silicate glass last year. The response of the borosilicate glass to impact testing at different angles was also studied. The Borofloat glass was supplied by the US Army Research Laboratory and its tin-side was impacted or indented. The intent was to better understand low velocity impact response in the Borofloat. Seven sphere materials weremore » used whose densities bracket that of rock: borosilicate glass, soda-lime silicate glass, silicon nitride, aluminum oxide, zirconium oxide, carbon steel, and a chrome steel. A gas gun or a ball-drop test setup was used to produce controlled velocity delivery of the spheres against the glass tile targets. Minimum impact velocities to initiate fracture in the Borofloat were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the seven sphere-Borofloat-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) BS glass responded similarly to soda-lime silicate glass when spherically indented but quite differently under sphere impact conditions; (2) Frictional effects contributed to fracture initiation in BS glass when it spherically indented. This effect was also observed with soda-lime silicate glass; (3) The force necessary to initiate fracture in BS glass under spherical impact decreases with increasing elastic modulus of the sphere material. This trend is opposite to what was observed with soda-lime silicate glass. Friction cannot explain this trend and the authors do not have a legitimate explanation for it yet; (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than under quasi-static conditions

  10. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  11. Thin Fresnel zone plate lenses for focusing underwater sound

    NASA Astrophysics Data System (ADS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-07-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  12. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting.

    PubMed

    Mace, Emily; Aalseth, Craig; Alexander, Tom; Back, Henning; Day, Anthony; Hoppe, Eric; Keillor, Martin; Moran, Jim; Overman, Cory; Panisko, Mark; Seifert, Allen

    2017-08-01

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120mg of H 2 O and present sensitivity results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting

    DOE PAGES

    Mace, Emily; Aalseth, Craig; Alexander, Tom; ...

    2016-12-21

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. In this paper, we present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120 mg of H 2O and present sensitivity results.

  14. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  15. Three Dimensional P-Wave Velocity Structure Beneath Eastern Turkey by Local Earthquake Tomography (LET) Method

    NASA Astrophysics Data System (ADS)

    Teoman, U. M.; Turkelli, N.; Gok, R.

    2005-12-01

    Recently, crustal structure and the tectonic evolution of Eastern Turkey region was extensively studied in the context of Eastern Turkey Seismic Experiment (ETSE) from late 1999 to August 2001. Collision of the Arabian and Eurasian plates has been occurring along East Anatolian Fault Zone (EAFZ) and the Bitlis Suture, which made Eastern Turkey an ideal platform for scientific research. High quality local earthquake data from the ETSE seismic network were used in order to determine the 3-D P-wave velocity structure of upper crust for Eastern Turkey. Within the 32-station network, 524 well locatable earthquakes with azimuthal gaps < 200° and number of P-wave observations > 8 (corresponding to 6842 P-phase readings) were selected from the initial data set and simultaneously inverted. 1-D reference velocity model was derived by an iterative 1-D velocity inversion including the updated hypocenters and the station delays. The following 3-D tomographic inversion was iteratively performed by SIMULPS14 algorithm in a ``damped least-squares'' sense using the appropriate ray tracing technique, model parametrization and control parameters. As far as resolution is concerned, S waves were not included in this study due to strong attenuation, insufficient number of S phase readings and higher picking errors with respect to P phases. Several tests with the synthetic data were conducted to assess the solution quality, suggesting that the velocity structure is well resolved down to ~17km. Overall,resulting 3-D P-wave velocity model led to a more reliable hypocenter determination indicated by reduced event scattering and a significant reduction of %50 both in variance and residual (rms) values.With the influence of improved velocity model, average location errors did not exceed ~1.5km in horizontal and ~4km in vertical directions. Tomographic images revealed the presence of lateral velocity variations in Eastern Turkey. Existence of relatively low velocity zones (5.6 < Vp < 6.0 km

  16. Application of acoustic velocity meters for gaging discharge of three low-velocity tidal streams in the St. Johns River basin, northeast Florida

    USGS Publications Warehouse

    Sloat, J.V.; Gain, W.S.

    1995-01-01

    Index-velocity data collected with acoustic velocity meters, stage data, and cross-sectional area data were used to calculate discharge at three low-velocity, tidal streamflow stations in north-east Florida. Discharge at three streamflow stations was computed as the product of the channel cross-sectional area and the mean velocity as determined from an index velocity measured in the stream using an acoustic velocity meter. The tidal streamlflow stations used in the study were: Six Mile Creek near Picolata, Fla.; Dunns Creek near Satsuma, Fla.; and the St. Johns River at Buffalo Bluff. Cross-sectional areas at the measurement sections ranged from about 3,000 square feet at Six Mile Creek to about 18,500 square feet at St. Johns River at Buffalo Bluff. Physical characteristics for all three streams were similar except for drainage area. The topography primarily is low-relief, swampy terrain; stream velocities ranged from about -2 to 2 feet per second; and the average change in stage was about 1 foot. Instantaneous discharge was measured using a portable acoustic current meter at each of the three streams to develop a relation between the mean velocity in the stream and the index velocity measured by the acoustic velocity meter. Using least-squares linear regression, a simple linear relation between mean velocity and index velocity was determined. Index velocity was the only significant linear predictor of mean velocity for Six Mile Creek and St. Johns River at Buffalo Bluff. For Dunns Creek, both index velocity and stage were used to develop a multiple-linear predictor of mean velocity. Stage-area curves for each stream were developed from bathymetric data. Instantaneous discharge was computed by multiplying results of relations developed for cross-sectional area and mean velocity. Principal sources of error in the estimated discharge are identified as: (1) instrument errors associated with measurement of stage and index velocity, (2) errors in the representation of

  17. Potentiation of buprenorphine antinociception with ultra-low dose naltrexone in healthy subjects.

    PubMed

    Hay, J L; La Vincente, S F; Somogyi, A A; Chapleo, C B; White, J M

    2011-03-01

    Previous reports have demonstrated greater antinociception following administration of a buprenorphine/naloxone combination compared to buprenorphine alone among healthy volunteers. The aim of the current investigation was to determine whether buprenorphine antinociception could be enhanced with the addition of ultra-low dose naltrexone, using a range of dose ratios. A repeated-measures, double-blind, cross-over trial was undertaken with 10 healthy participants. The effects of each buprenorphine:naltrexone ratio (100:1, 133:1, 166:1, and 200:1) on cold pressor tolerance time and respiration were compared to the effects of buprenorphine only. The 166:1 ratio was associated with significantly greater tolerance time to cold pressor pain than buprenorphine alone. Minimal respiratory depression and few adverse events were observed in all conditions. These findings suggest that, as previously described with naloxone, the addition of ultra-low dose naltrexone can enhance the antinociceptive effect of buprenorphine in humans. This potentiation is dose-ratio dependent and occurs without a concomitant increase in adverse effects. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  18. Ultra Low Outgassing silicone performance in a simulated space ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Velderrain, M.; Malave, V.; Taylor, E. W.

    2010-09-01

    The improvement of silicone-based materials used in space and aerospace environments has garnered much attention for several decades. Most recently, an Ultra Low Outgassing™ silicone incorporating innovative reinforcing and functional fillers has shown that silicone elastomers with unique and specific properties can be developed to meet applications requiring stringent outgassing requirements. This paper will report on the next crucial step in qualifying these materials for spacecraft applications requiring chemical and physical stability in the presence of ionizing radiation. As a first step in this process, selected materials were irradiated with Co-60 gamma-rays to simulate the total dose received in near- Earth orbits. The paper will present pre-and post-irradiation response data of Ultra Low Outgassing silicone samples exposed under ambient air environment coupled with measurements of collected volatile condensable material (CVCM) and total mass loss (TML) per the standard conditions in ASTM E 595. The data will show an insignificant effect on the CVCMs and TMLs after exposure to various dosages of gamma radiation. This data may favorably impact new applications for these silicone materials for use as an improved sealant for space solar cell systems, space structures, satellite systems and aerospace systems.

  19. A photon recycling approach to the denoising of ultra-low dose X-ray sequences.

    PubMed

    Hariharan, Sai Gokul; Strobel, Norbert; Kaethner, Christian; Kowarschik, Markus; Demirci, Stefanie; Albarqouni, Shadi; Fahrig, Rebecca; Navab, Nassir

    2018-06-01

    Clinical procedures that make use of fluoroscopy may expose patients as well as the clinical staff (throughout their career) to non-negligible doses of radiation. The potential consequences of such exposures fall under two categories, namely stochastic (mostly cancer) and deterministic risks (skin injury). According to the "as low as reasonably achievable" principle, the radiation dose can be lowered only if the necessary image quality can be maintained. Our work improves upon the existing patch-based denoising algorithms by utilizing a more sophisticated noise model to exploit non-local self-similarity better and this in turn improves the performance of low-rank approximation. The novelty of the proposed approach lies in its properly designed and parameterized noise model and the elimination of initial estimates. This reduces the computational cost significantly. The algorithm has been evaluated on 500 clinical images (7 patients, 20 sequences, 3 clinical sites), taken at ultra-low dose levels, i.e. 50% of the standard low dose level, during electrophysiology procedures. An average improvement in the contrast-to-noise ratio (CNR) by a factor of around 3.5 has been found. This is associated with an image quality achieved at around 12 (square of 3.5) times the ultra-low dose level. Qualitative evaluation by X-ray image quality experts suggests that the method produces denoised images that comply with the required image quality criteria. The results are consistent with the number of patches used, and they demonstrate that it is possible to use motion estimation techniques and "recycle" photons from previous frames to improve the image quality of the current frame. Our results are comparable in terms of CNR to Video Block Matching 3D-a state-of-the-art denoising method. But qualitative analysis by experts confirms that the denoised ultra-low dose X-ray images obtained using our method are more realistic with respect to appearance.

  20. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  1. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current.

    PubMed

    DeRose, Christopher T; Trotter, Douglas C; Zortman, William A; Starbuck, Andrew L; Fisher, Moz; Watts, Michael R; Davids, Paul S

    2011-12-05

    We present a compact 1.3 × 4 μm2 Germanium waveguide photodiode, integrated in a CMOS compatible silicon photonics process flow. This photodiode has a best-in-class 3 dB cutoff frequency of 45 GHz, responsivity of 0.8 A/W and dark current of 3 nA. The low intrinsic capacitance of this device may enable the elimination of transimpedance amplifiers in future optical data communication receivers, creating ultra low power consumption optical communications.

  2. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness.

    PubMed

    Kong, Eva Yi; Cheng, Shuk Han; Yu, Kwan Ngok

    2016-07-01

    The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.

    PubMed

    Tien, Ming-Chun; Bauters, Jared F; Heck, Martijn J R; Blumenthal, Daniel J; Bowers, John E

    2010-11-08

    We investigate the nonlinearity of ultra-low loss Si3N4-core and SiO2-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell's wave equation with a small amount of refractive index perturbation. Effective n2 is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n2 measured using continuous-wave self-phase modulation shows agreement with the theoretical calculation. The waveguide with 2.8-μm wide and 80-nm thick Si3N4 core has low loss and high power handling capability, with an effective n2 of about 9×10(-16) cm2/W.

  4. Ultra-low-loss tapered optical fibers with minimal lengths

    NASA Astrophysics Data System (ADS)

    Nagai, Ryutaro; Aoki, Takao

    2014-11-01

    We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.

  5. Ultra low-level measurements of actinides by sector field ICP-MS.

    PubMed

    Pointurier, F; Baglan, N; Hémet, P

    2004-01-01

    In the present work, a double-focusing sector field inductively coupled plasma-mass spectrometer was optimised for ultra trace and isotopic analyses of actinide long-lived isotopes in low concentration solutions of the fgml(-1) to the ngml(-1) range. Sensitivities of about 3GHz/(microgml(-1)), with as low a background as 0.1cps, were obtained for U using a conventional concentric pneumatic nebuliser. Detection limits are below the fg range for 239Pu and 240Pu. With natural U, a precision lower than 0.5% RSD is currently obtained for 235U/238U isotopic ratio at the 200pgml(-1) level.

  6. Trench-parallel variations in Pacific and Indo-Australian crustal velocity structure due to Louisville Ridge seamount subduction

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Knight, T. P.; Peirce, C.; Watts, A. B.; Grevemeyer, I.; Paulatto, M.; Bassett, D.; Hunter, J.; Kalnins, L. M.

    2012-12-01

    Variations in trench and forearc morphology, and lithospheric velocity structure are observed where the Louisville Ridge seamount chain subducts at the Tonga-Kermadec Trench. Subduction of these seamounts has affected arc and back-arc processes along the trench for the last 5 Myr. High subduction rates (80 mm/yr in the north, 55 mm/yr in the south), a fast southwards migrating collision zone (~180 km/myr), and the obliquity of the subducting plate and the seamount chain to the trench, make this an ideal location to study the effects of seamount subduction on lithospheric structure. The "before and after" subduction regions have been targeted by several large-scale geophysical projects in recent years; the most recent being the R/V Sonne cruise SO215 in 2011. The crust and upper mantle velocity structure observed in profiles along strike of the seamount chain and perpendicular to the trench from this study, are compared to a similar profile from SO195, recorded ~100 km to the north. The affects of the passage of the seamounts through the subduction system are indicated by velocity anomalies in the crust and mantle of the overriding plate. Preliminary results indicate that in the present collision zone, mantle velocities (Pn) are reduced by ~5%. Around 100 km to the north, where seamounts are inferred to have subducted ~1 Myr ago, a reduction of 7% in mantle P-wave velocity is observed. The width of the trench slope and elevation of the forearc also vary along strike. At the collision zone a >100 km wide collapse region of kilometre-scale block faults comprise the trench slope, while the forearc is elevated. The elevated forearc has a 5 km think upper crust with a Vp of 2.5-5.5 km/s and the collapse zone also has upper crustal velocities as low as 2.5 km/s. To the east in the Pacific Plate, lower P-wave velocities are also observed and attributed to serpentinization due to deep fracturing in the outer trench high. Large bending faults permeate the crust and the

  7. Dynamics of low velocity collisions of ice particle, coated with frost

    NASA Technical Reports Server (NTRS)

    Bridges, F.; Lin, D.; Boone, L.; Darknell, D.

    1991-01-01

    We continued our investigations of low velocity collisions of ice particles for velocities in range 10(exp -3) - 2 cm/s. The work focused on two effects: (1) the sticking forces for ice particles coated with CO2 frost, and (2) the completion of a 2-D pendulum system for glancing collisions. A new computer software was also developed to control and monitor the position of the 2-D pendulum.

  8. An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone

    USGS Publications Warehouse

    Wei, B.-Z.; Pezeshk, S.; Chang, T.-S.; Hall, K.H.; Liu, Huaibao P.

    1996-01-01

    In this study, a set of charts are developed to estimate shear wave velocity of soils in the New Madrid seismic zone (NMSZ), using the standard penetration test (SPT) N values and soil depths. Laboratory dynamic test results of soil samples collected from the NMSZ showed that the shear wave velocity of soils is related to the void ratio and the effective confining pressure applied to the soils. The void ratio of soils can be estimated from the SPT N values and the effective confining pressure depends on the depth of soils. Therefore, the shear wave velocity of soils can be estimated from the SPT N value and the soil depth. To make the methodology practical, two corrections should be made. One is that field SPT N values of soils must be adjusted to an unified SPT N??? value to account the effects of overburden pressure and equipment. The second is that the effect of water table to effective overburden pressure of soils must be considered. To verify the methodology, shear wave velocities of five sites in the NMSZ are estimated and compared with those obtained from field measurements. The comparison shows that our approach and the field tests are consistent with an error of less than of 15%. Thus, the method developed in this study is useful for dynamic study and practical designs in the NMSZ region. Copyright ?? 1996 Elsevier Science Limited.

  9. Low velocity gunshot wounds result in significant contamination regardless of ballistic characteristics.

    PubMed

    Weinstein, Joseph; Putney, Emily; Egol, Kenneth

    2014-01-01

    Controversy exists among the orthopedic community regarding the treatment of gunshot injuries. No consistent treatment algorithm exists for treatment of low energy gunshot wound (GSW) trauma. The purpose of this study was to critically examine the wound contamination following low velocity GSW based upon bullet caliber and clothing fiber type found within the injury track. Four types of handguns were fired at ballistic gel from a 10-foot distance. Various clothing materials were applied (denim, cotton, polyester, and wool) circumferentially around the tissue agar in a loose manor. A total of 32 specimens were examined. Each caliber handgun was fired a minimum of 5 times into a gel. Regardless of bullet caliber there was gross contamination of the entire bullet track in 100% of specimens in all scenarios and for all fiber types. Furthermore, as would be expected, the degree of contamination appeared to increase as the size of the bullet increased. Low velocity GSWs result in significant contamination regardless of bullet caliber and jacket type. Based upon our results further investigation of low velocity GSW tracks is warranted. Further clinical investigation should focus on the degree to which debridement should be undertaken.

  10. Early study on the application of Nexcera ultra low thermal expansion ceramic to space telescopes

    NASA Astrophysics Data System (ADS)

    Kamiya, Tomohiro; Sugawara, Jun; Mizutani, Tadahito; Yasuda, Susumu; Kitamoto, Kazuya

    2017-09-01

    Optical mirrors for space telescopes, which require high precision and high thermal stability, have commonly been made of glass materials such as ultra low expansion glass (e.g. ULE®) or extremely low expansion glassceramic (e.g. ZERODUR® or CLEARCERAM®). These materials have been well-known for their reliability due to their long history of achievements in many space applications.

  11. Monitoring of ULF (ultra-low-frequency) Geomagnetic Variations Associated with Earthquakes

    PubMed Central

    Hayakawa, Masashi; Hattori, Katsumi; Ohta, Kenji

    2007-01-01

    ULF (ultra-low-frequency) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before a few large earthquakes. Then, we present our network of ULF monitoring in the Tokyo area by describing our ULF magnetic sensors and we finally present a few, latest results on seismogenic electromagnetic emissions for recent large earthquakes with the use of sophisticated signal processings.

  12. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    NASA Technical Reports Server (NTRS)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  13. Phase stability and thermal equation of state of δ-AlOOH: Implication for water transportation to the Deep Lower Mantle

    NASA Astrophysics Data System (ADS)

    Duan, Yunfei; Sun, Ningyu; Wang, Siheng; Li, Xinyang; Guo, Xuan; Ni, Huaiwei; Prakapenka, Vitali B.; Mao, Zhu

    2018-07-01

    In this study, we present new experimental constraints on the phase stability and thermal equation of state of an important hydrous phase, δ-AlOOH, using synchrotron X-ray diffraction up to 142 GPa and 2500 K. Our experimental results have shown that δ-AlOOH remains stable at the whole mantle pressure-temperature conditions above the D″ layer yet will decompose at the core-mantle boundary because of a dramatic increase in temperature from the silicate mantle to the metallic outer core. At the bottom transition zone and top lower mantle, the formation of δ-AlOOH by the decomposition of phase Egg is associated with a ∼2.1-2.5% increase in density (ρ) and a ∼19.7-20.4% increase in bulk sound velocity (VΦ). The increase in ρ across the phase Egg to δ-AlOOH phase transition can facilitate the subduction of δ-AlOOH to the lower mantle. Compared to major lower-mantle phases, δ-AlOOH has the lowest ρ but greatest VΦ, leading to an anomalous low ρ /VΦ ratio which can help to identify the potential presence of δ-AlOOH in the region. More importantly, water released from the breakdown of δ-AlOOH at the core-mantle boundary could lower the solidus of the pyrolitic mantle to cause partial melting and/or react with Fe in the region to form the low-velocity FeO2Hx phase. The presence of partial melting and/or the accumulation of FeO2Hx phase at the CMB could be the cause for the ultra-low velocity zone. δ-AlOOH is thus an important phase to transport water to the lowermost mantle and helps to understand the origin of the ultra-low velocity zone.

  14. Fluid-Structure Interaction in a Fluid-Filled Composite Structure Subjected to Low Velocity Impact

    DTIC Science & Technology

    2016-06-01

    for creating an E-glass composite cubic structure and a pendulum was designed and built to provide a repeatable low velocity impact. The behavior of...structure and a pendulum was designed and built to provide a repeatable low velocity impact. The behavior of the composite structure was studied at various...SET-UP .......................................................31  1.  Impact Pendulum

  15. An ultra low-power CMOS automatic action potential detector.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad

    2009-08-01

    We present a low-power complementary metal-oxide semiconductor (CMOS) analog integrated biopotential detector intended for neural recording in wireless multichannel implants. The proposed detector can achieve accurate automatic discrimination of action potential (APs) from the background activity by means of an energy-based preprocessor and a linear delay element. This strategy improves detected waveforms integrity and prompts for better performance in neural prostheses. The delay element is implemented with a low-power continuous-time filter using a ninth-order equiripple allpass transfer function. All circuit building blocks use subthreshold OTAs employing dedicated circuit techniques for achieving ultra low-power and high dynamic range. The proposed circuit function in the submicrowatt range as the implemented CMOS 0.18- microm chip dissipates 780 nW, and it features a size of 0.07 mm(2). So it is suitable for massive integration in a multichannel device with modest overhead. The fabricated detector succeeds to automatically detect APs from underlying background activity. Testbench validation results obtained with synthetic neural waveforms are presented.

  16. Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Kwon, Young S.; Sankar, Bhavani V.

    1992-01-01

    Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.

  17. Modelling guided waves in the Alaskan-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  18. Wide-Angle Refraction Tomographic Inversion of Mid Cayman Spreading Center and its Oceanic Core Complex, CaySEIS Experiment

    NASA Astrophysics Data System (ADS)

    Harding, J.; Van Avendonk, H. J.; Hayman, N. W.; Grevemeyer, I.; Peirce, C.; Dannowski, A.; Papenberg, C. A.

    2015-12-01

    The CaySEIS experiment, conducted in April 2015, is a multi-national collaborative seismic study of the Mid Cayman Spreading Center (MCSC), an ultra-slow spreading center [15 mm/yr fr] in the Caribbean Sea. Ultra-slow spreading centers are thought to have very thin crust and a paucity of magmatism due to cooler mantle conditions. However, the suggestion that gabbro-cored oceanic core complexes (OCCs), volcanic deposits, and multiple layers of hydrothermal vents are widespread in the MCSC and other ultra-slow spreading centers has led to questions about the relationship between seafloor spreading rates and magmatism. To investigate this further, we conducted the CaySEIS experiment, with five wide-angle seismic refraction lines parallel and perpendicular to the neovolcanic zone. This analysis is based on two east-west oriented 100-km-long seismic refraction lines, which were each occupied by 18 ocean bottom seismometers. Line 2 lies across the central MCSC and an OCC called Mt. Dent. Line 3 crosses the northern end of the MCSC near the Oriente Transform Zone. With the wide-angle OBS data we can image the seismic velocity structure of Mt. Dent and distinguish between two models of OCCs - either Mt. Dent is composed of mostly gabbro with peridotite lenses identified by a low velocity gradient, or it is composed of mostly peridotite with gabbroic bodies identified by a constant velocity gradient. The crustal structure of both lines gives more insight into the asymmetry of the MCSC and the style of seafloor spreading to the east vs. the west. The 2-D velocity models reveal Mt. Dent has thick crust of 8 km with a low velocity gradient, supporting the magmatic gabbroic origin of OCCs. The surrounding crust to the west of the MCSC is highly variable, with areas of very thin crust. The crust to the east of the MCSC has an approximately constant thickness of 4 km. The development of OCCs may contribute to the crustal heterogeneity of ultra-slow spreading centers.

  19. Velocity structure around the 410 km discontinuity beneath the East China Sea based on the waveform modeling method

    NASA Astrophysics Data System (ADS)

    Li, W.; Cui, Q.; Gao, Y.; Wei, R.; Zhou, Y.; Yu, J.

    2017-12-01

    The 410 km discontinuity is the upper boundary of the mantle transition zone. Seismic detections on the structure and morphology of the 410 km discontinuity are helpful to understand the compositions of the Earth's interior and the relevant geodynamics. In this paper, we select the broadband P waveforms of an intermediate earthquake that occurred in the Ryukyu subduction zone and retrieved from the China Digital Seismograph Network, and study the fine velocity structure around the 410 km discontinuity by matching the observed triplicated waveforms with the theoretical ones. Our results reveal that (1) the 410 km discontinuity beneath the East China Sea is mostly a sharp boundary with a small-scale uplift of 8-15 km and a gradient boundary up to 20 km in the most southern part, and (2) there exist a low velocity layer atop the 410 km discontinuity with the thickness of 50-62 km and P-wave velocity decrease of 0.5%-1.5%, and (3) a high velocity anomaly with P-wave decrease of 1.0%-3.0% below 440 km. Combining with the previous topographic results in this area, we speculate that the high velocity anomaly is relevant to the stagnancy of the western Pacific slab in the mantle transition zone, the decomposition of phase E in the slab results in the increase of water content, which would cause the uplift of the 410 km discontinuity, and the low velocity layer atop the discontinuity should be related to the partial melting of the mantle peridotite induced by the dehydration of the hydrous minerals.

  20. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  1. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  2. Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...

  3. 3D seismic reflection imaging of nearly amagmatic oceanic lithosphere at the ultra-slow spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Momoh, E. I.; Cannat, M.; Singh, S. C.; Watremez, L.; Leroy, S. D.

    2016-12-01

    Ultra-slow spreading ridges (< 10 mm/yr half-spreading rate), are characterized by a variety of mode accretion, from purely magmatic to nearly amagmatic. With the prevalence of mantle-derived peridotites and sparse volcanism on the seafloor, the easternmost portion of the ultra-slow spreading Southwest Indian Ridge (SWIR) at 64°E represents a melt-poor end-member in the global ridge system. Mantle-derived peridotites there are proposed to have been exhumed along the footwall of detachment faults (Cannat et al, 2006; Sauter et al, 2013). However, the geometry and structural styles of detachments at depth are conjectural. We show the first 3D seismic reflection images of nearly amagmatic axial oceanic lithosphere in this region. The results are from 3D processing of 2D seismic data acquired during the SISMOSMOOTH 2014 cruise along 100 m-spaced profiles in a 1.8 km wide by 24 km long box spanning the axial valley and a part of its elevated northern wall. Wide-angle tomography results from Ocean bottom Seismometer (OBS) line are used to provide a velocity structure of the crust and correlate the MCS reflection images. We image 4 classes of reflectors. The first class occurs in 2 parts as south-dipping events and can be followed in the cross-line of the survey area. The upper part terminates on the northern slope of the massif. The lower part occurs as an isolated event until half of the width of the survey area after which it appears as a continuation of the upper part. This class of reflectors may be due to the damage zone of the active axial detachment fault. The second class of reflectors occurs as north-dipping events. They extend 1 km in the cross-line. They can be interpreted as fractured zones, zones of localized serpentinization or as dikes. The third class of reflectors occurs as sub-horizontal events at depth and seems to serve as the termination of the proposed dikes/fractured zones. On the OBS result, this reflector mimics the 7.5 km/s velocity contour in

  4. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  5. Evaluation of an Ultra-Low Power Reed Solomon Encoder for NASA's Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Li, K. E.; Xapsos, M. A.; Poivey, C.; LaBel, K. A.; Stone, R. F.; Yeh, P-S.; Gambles, J.; Hass, J.; Maki, G.; Marguia, J.

    2003-01-01

    This viewgraph presentation provides information on radiation tests on encoders intended for a constellation of microsatellites. The encoders use CMOS Ultra-Low Power Radiation Tolerant (CULPRiT) technology. The presentation addresses power consumption, radiation dosage, and Single Event Upset (SEU).

  6. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  7. Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages

    NASA Astrophysics Data System (ADS)

    Pastore, I.; Poplausks, R.; Apsite, I.; Pastare, I.; Lombardi, F.; Erts, D.

    2011-06-01

    Formation of ultrathin anodised aluminium oxide (AAO) membranes with high aspect ratio by Al anodization in sulphuric and oxalic acids at low potentials was investigated. Low anodization potentials ensure slow electrochemical reaction speeds and formation of AAO membranes with pore diameter and thickness below 20 nm and 70 nm respectively. Minimum time necessary for formation of continuous AAO membranes was determined. AAO membrane pore surface was covered with polymer Paraloid B72TM to transport it to the selected substrate. The fabricated ultra thin AAO membranes could be used to fabricate nanodot arrays on different surfaces.

  8. Ultra-low power operation of self-heated, suspended carbon nanotube gas sensors

    NASA Astrophysics Data System (ADS)

    Chikkadi, Kiran; Muoth, Matthias; Maiwald, Verena; Roman, Cosmin; Hierold, Christofer

    2013-11-01

    We present a suspended carbon nanotube gas sensor that senses NO2 at ambient temperature and recovers from gas exposure at an extremely low power of 2.9 μW by exploiting the self-heating effect for accelerated gas desorption. The recovery time of 10 min is two orders of magnitude faster than non-heated recovery at ambient temperature. This overcomes an important bottleneck for the practical application of carbon nanotube gas sensors. Furthermore, the method is easy to implement in sensor systems and requires no additional components, paving the way for ultra-low power, compact, and highly sensitive gas sensors.

  9. Dedicated power supply subsystem for ultra-low noise preamplifiers and biophotonic sensors

    NASA Astrophysics Data System (ADS)

    SuraŻyński, Łukasz; Wierzba, Paweł; Zienkiewicz, Aleksandra

    2013-11-01

    It is very common for noise to have an influence on analog circuits. In order to preserve the quality of measurements taken by specific sensors and any noise dependent amplifiers which are correlated to them, all of these devices must be powered by low-noise power supplies. Therefore a necessity exists to develop new ultra-low noise power supplies which can cooperate with specified amplifiers and preamplifiers. Many well-known power supplies are particularly expensive and yet still have their disadvantages. This paper proposes a simple and inexpensive solution, which fulfills a specific criteria and can be treated as a base for improvement.

  10. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications

    USGS Publications Warehouse

    Wang, Chun-Yong; Chan, W.W.; Mooney, W.D.

    2003-01-01

    Using P and S arrival times from 4625 local and regional earthquakes recorded at 174 seismic stations and associated geophysical investigations, this paper presents a three-dimensional crustal and upper mantle velocity structure of southwestern China (21??-34??N, 97??-105??E). Southwestern China lies in the transition zone between the uplifted Tibetan plateau to the west and the Yangtze continental platform to the east. In the upper crust a positive velocity anomaly exists in the Sichuan Basin, whereas a large-scale negative velocity anomaly exists in the western Sichuan Plateau, consistent with the upper crustal structure under the southern Tibetan plateau. The boundary between these two anomaly zones is the Longmen Shan Fault. The negative velocity anomalies at 50-km depth in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with temperature and composition variations in the upper mantle. The Red River Fault is the boundary between the positive and negative velocity anomalies at 50-km depth. The overall features of the crustal and the upper mantle structures in southwestern China are a low average velocity, large crustal thickness variations, the existence of a high-conductivity layer in the crust or/and upper mantle, and a high heat flow value. All these features are closely related to the collision between the Indian and the Asian plates.

  11. A joint local and teleseismic tomography study of the Mississippi Embayment and New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Nyamwandha, Cecilia A.; Powell, Christine A.; Langston, Charles A.

    2016-05-01

    Detailed, upper mantle P and S wave velocity (Vp and Vs) models are developed for the northern Mississippi Embayment (ME), a major physiographic feature in the Central United States (U.S.) and the location of the active New Madrid Seismic Zone (NMSZ). This study incorporates local earthquake and teleseismic data from the New Madrid Seismic Network, the Earthscope Transportable Array, and the FlexArray Northern Embayment Lithospheric Experiment stations. The Vp and Vs solutions contain anomalies with similar magnitudes and spatial distributions. High velocities are present in the lower crust beneath the NMSZ. A pronounced low-velocity anomaly of ~ -3%--5% is imaged at depths of 100-250 km. High-velocity anomalies of ~ +3%-+4% are observed at depths of 80-160 km and are located along the sides and top of the low-velocity anomaly. The low-velocity anomaly is attributed to the presence of hot fluids upwelling from a flat slab segment stalled in the transition zone below the Central U.S.; the thinned and weakened ME lithosphere, still at slightly higher temperatures from the passage of the Bermuda hotspot in mid-Cretaceous, provides an optimal pathway for the ascent of the fluids. The observed high-velocity anomalies are attributed to the presence of mafic rocks emplaced beneath the ME during initial rifting in the early Paleozoic and to remnants of the depleted, lower portion of the lithosphere.

  12. Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model

    USGS Publications Warehouse

    Ramachandran, K.; Dosso, S.E.; Spence, G.D.; Hyndman, R.D.; Brocher, T.M.

    2005-01-01

    This paper presents a three-dimensional compressional wave velocity model of the forearc crust and upper mantle and the subducting Juan de Fuca plate beneath southwestern British Columbia and the adjoining straits of Georgia and Juan de Fuca. The velocity model was constructed through joint tomographic inversion of 50,000 first-arrival times from earthquakes and active seismic sources. Wrangellia rocks of the accreted Paleozoic and Mesozoic island arc assemblage underlying southern Vancouver Island in the Cascadia forearc are imaged at some locations with higher than average lower crustal velocities of 6.5-7.2 km/s, similar to observations at other island arc terranes. The mafic Eocene Crescent terrane, thrust landward beneath southern Vancouver Island, exhibits crustal velocities in the range of 6.0-6.7 km/s and is inferred to extend to a depth of more than 20 km. The Cenozoic Olympic Subduction Complex, an accretionary prism thrust beneath the Crescent terrane in the Olympic Peninsula, is imaged as a low-velocity wedge to depths of at least 20 km. Three zones with velocities of 7.0-7.5 km/s, inferred to be mafic and/or ultramafic units, lie above the subducting Juan de Fuca plate at depths of 25-35 km. The forearc upper mantle wedge beneath southeastern Vancouver Island and the Strait of Georgia exhibits low velocities of 7.2-7.5 km/s, inferred to correspond to ???20% serpentinization of mantle peridotites, and consistent with similar observations in other warm subduction zones. Estimated dip of the Juan de Fuca plate beneath southern Vancouver Island is ???11??, 16??, and 27?? at depths of 30, 40, and 50 km, respectively. Copyright 2005 by the American Geophysical Union.

  13. Applications for the environment : real-time information synthesis low emissions zones : operational concept.

    DOT National Transportation Integrated Search

    2013-10-01

    This document serves as an Operational Concept for the Applications for the Environment: Real-Time Information Synthesis (AERIS) Low Emissions Zones Transformative Concept. The Low Emissions Zone Transformative Concept includes the ability for an ent...

  14. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen; Li, Yonghua; Ding, Zhifeng; Zhu, Lupei; Wang, Chunyong; Bao, Xuewei; Wu, Yan

    2017-08-01

    We present a new 3-D lithospheric Vs model for the NE Tibetan Plateau (NETP) and the western North China Craton (NCC). First, high-frequency receiver functions (RFs) were inverted using the neighborhood algorithm to estimate the sedimentary structure beneath each station. Then a 3D Vs model with unprecedented resolution was constructed by jointly inverting RFs and Rayleigh wave dispersions. A low-velocity sedimentary layer with thicknesses varying from 2 to 10 km is present in the Yinchuan-Hetao graben, Ordos block, and western Alxa block. Velocities from the middle-lower crust to the uppermost mantle are generally high in the Ordos block and low in the Alxa block, indicating that the Alxa block is not part of the NCC. The thickened crust in southwestern Ordos block and western Alxa block suggests that they have been modified. Two crustal low-velocity zones (LVZs) were detected beneath the Kunlun Fault (KF) zone and western Qilian Terrane (QLT). The origin of the LVZ beneath the KF zone may be the combined effect of shear heating, localized asthenosphere upwelling, and crustal radioactivity. The LVZ in the western QLT, representing an early stage of the LVZ that has developed in the KF zone, acts as a decollement to decouple the deformation between the upper and lower crust and plays a key role in seismogenesis. We propose that the crustal deformation beneath the NETP is accommodated by a combination of shear motion, thickening of the upper-middle crust, and removal of lower crust.

  15. How Many Ultra-Low Delta-v Near Earth Objects Remain Undiscovered? Implications for missions.

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Ranjan, Sukrit; Galache, Jose Luis; Murphy, Max

    2015-08-01

    The past decade has witnessed considerable growth of interest in missions to Near-Earth Objects (NEOs). NEOs are considered prime targets for manned and robotic missions, for both scientific objectives as well as in-situ resource utilization including harvesting of water for propellant and life support and mining of high-value elements for sale on Earth. Appropriate targets are crucial to such missions. Hence, ultra-low delta-v mission targets are strongly favored. Some mission architectures rely on the discovery of more ultra-low delta-v NEOs. In fact the approved and executed NEO missions have all targeted asteroids with ultra-low LEO to asteroid rendezvous delta-v <5.5 km/s.In this paper, we estimate the total NEO population as a function of delta-v, and how many remain to be discovered in various size ranges down to ~100m. We couple the NEOSSat-1 model (Greenstreet et al., 2012) to the NEO size distribution derived from the NEOWISE survey (Mainzer et al., 2011b) to compute an absolute NEO population model. We compare the Minor Planet Center (MPC) catalog of known NEOs to this NEO population model. We compute the delta-v from LEO to asteroid rendezvous orbits using a modified Shoemaker-Helin (S-H) formalism that empirically removes biases found comparing S-H with the results from NHATS. The median delta-v of the known NEOs is 7.3 km/s, the median delta-v predicted by our NEO model is 9.8 km/s, suggesting that undiscovered objects are biased to higher delta-v. The survey of delta-v <10.3 km/s NEOs is essentially complete for objects with diameter D >300 m. However, there are tens of thousands of objects with delta-v <10.3 km/s to be discovered in the D = 50 - 300 m size class (H = 20.4 - 24.3). Our work suggests that there are 100 yet-undiscovered NEOs with delta-v < 5:8 km/s, and 1000 undiscovered NEOs with v < 6.3 km/s. We conclude that, even with complete NEO surveys, the selection of good (i.e. ultra-low delta-v) mission targets is limited given current

  16. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  17. Rotational velocities of newly discovered, low-mass members of the Alpha Persei cluster

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Hartmann, Lee W.; Jones, Burton F.

    1989-01-01

    About 30 new, low-mass members of the young open cluster Alpha Persei are identified via a proper-motion study and subsequent photometric and spectroscopic observations. Membership in the cluster is confirmed for a number of the fainter proper-motion candidates from Heckman, Dieckvoss, and Kox (1956). Coordinates, finding charts, BVRI photometry, and rotational velocities are provided for most of the stars. At least two of the stars show peculiar H-alpha emission profiles, with weak but very broad emission wings, and relatively narrow absorption reversals. The rotational velocity distribution for low-mass stars in the Alpha Per cluster are compared with recently derived rotational velocity distributions for T Tauri stars, placing strong constraints on the mechanisms for angular momentum loss during pre-main-sequence evolution.

  18. The effect of ultra-violet light curing on the molecular structure and fracture properties of an ultra low-k material

    NASA Astrophysics Data System (ADS)

    Smith, Ryan Scott

    As the gate density increases in microelectronic devices, the interconnect delay or RC response also increases and has become the limiting delay to faster devices. In order to decrease the RC time delay, a new metallization scheme has been chosen by the semiconductor industry. Copper has replaced aluminum as the metal lines and new low-k dielectric materials are being developed to replace silicon dioxide. A promising low-k material is porous organosilicate glass or p-OSG. The p-OSG film is a hybrid material where the silicon dioxide backbone is terminated with methyl or hydrogen, reducing the dielectric constant and creating mechanically weak films that are prone to fracture. A few methods of improving the mechanical properties of p-OSG films have been attempted-- exposing the film to hydrogen plasma, electron beam curing, and ultra-violet light curing. Hydrogen plasma and electron-beam curing suffer from a lack of specificity and can cause charging damage to the gates. Therefore, ultra-violet light curing (UV curing) is preferable. The effect of UV curing on an ultra-low-k, k~2.5, p-OSG film is studied in this dissertation. Changes in the molecular structure were measured with Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The evolution of the molecular structure with UV curing was correlated with material and fracture properties. The material properties were film shrinkage, densification, and an increase in dielectric constant. From the changes in molecular structure and material properties, a set of condensation reactions with UV light are predicted. The connectivity of the film increases with the condensation reactions and, therefore, the fracture toughness should also increase. The effect of UV curing on the critical and sub-critical fracture toughness was also studied. The critical fracture toughness was measured at four different mode-mixes-- zero, 15°, 32°, and 42°. It was found that the critical fracture toughness

  19. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths.

    PubMed

    Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan

    2015-10-28

    The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p(+)-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I-V) curves combined with the temperature dependence of the I-V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole-Frenkel (P-F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM.

  20. Field-based perspective on fault rock evolution and microstructures in low-angle fault zones (W-Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard

    2010-05-01

    The mechanics of sub-horizontal faults, typically active at the brittle/ductile transition zone, are still controversial because they do not conform to current fault-mechanical theory. In the Western Cyclades (Greece) conjugate high-angle brittle faults mechanically interact with sub-horizontal faults and therefore models based on fault and/or stress rotation can be rejected. A range of different deformation mechanisms and/or rock properties must have resulted in an reduction of the fault strength in both the ductily and cataclastically deformed fault rocks. Typically the low-angle faults have following characteristics: The footwall below the subhorizontal faults consists of coarse-grained impure marbles and greenschists, which record an increase in shear strain localizing in several meters to tens of meters thick ultra fine-grained marble mylonites. These ultamylonites are delimited along a knife-sharp slickenside plane juxtaposing tens of decimeter thick zones of polyphase ultracataclasites. The marbles accommodated high shear strain by ductile deformation mechanisms such as dislocation creep and/or grain size sensitive flow by recrystallization, which might have result in fault zone weakening. Typically the marbles are impure and record spatial arrangement of mica and quartz grains, which might have lead to structural softening by decoupling of the calcite matrix from the clasts. During brittle deformation the massif marble ultramylonites act as a strong plate and ultracataclastic deformation is localizing exactly along the border of this plate. Although some of the cataclastic deformation mechanisms lead to chaotic fabrics with evidence for frictional sliding and comminution, others favor the formation of foliated cataclasites and fault gouges with various intensities of phyllosilicate fabrics. Frequently, a repeated switch between grain fracturing processes and processes, which created a sc or scc'-type foliation can be observed. On Serifos the low-angle fault

  1. Probing the critical zone using passive- and active-source estimates of subsurface shear-wave velocities

    NASA Astrophysics Data System (ADS)

    Callahan, R. P.; Taylor, N. J.; Pasquet, S.; Dueker, K. G.; Riebe, C. S.; Holbrook, W. S.

    2016-12-01

    Geophysical imaging is rapidly becoming popular for quantifying subsurface critical zone (CZ) architecture. However, a diverse array of measurements and measurement techniques are available, raising the question of which are appropriate for specific study goals. Here we compare two techniques for measuring S-wave velocities (Vs) in the near surface. The first approach quantifies Vs in three dimensions using a passive source and an iterative residual least-squares tomographic inversion. The second approach uses a more traditional active-source seismic survey to quantify Vs in two dimensions via a Monte Carlo surface-wave dispersion inversion. Our analysis focuses on three 0.01 km2 study plots on weathered granitic bedrock in the Southern Sierra Critical Zone Observatory. Preliminary results indicate that depth-averaged velocities from the two methods agree over the scales of resolution of the techniques. While the passive- and active-source techniques both quantify Vs, each method has distinct advantages and disadvantages during data acquisition and analysis. The passive-source method has the advantage of generating a three dimensional distribution of subsurface Vs structure across a broad area. Because this method relies on the ambient seismic field as a source, which varies unpredictably across space and time, data quality and depth of investigation are outside the control of the user. Meanwhile, traditional active-source surveys can be designed around a desired depth of investigation. However, they only generate a two dimensional image of Vs structure. Whereas traditional active-source surveys can be inverted quickly on a personal computer in the field, passive source surveys require significantly more computations, and are best conducted in a high-performance computing environment. We use data from our study sites to compare these methods across different scales and to explore how these methods can be used to better understand subsurface CZ architecture.

  2. Remote Sensing Extraction of Stopes and Tailings Ponds in AN Ultra-Low Iron Mining Area

    NASA Astrophysics Data System (ADS)

    Ma, B.; Chen, Y.; Li, X.; Wu, L.

    2018-04-01

    With the development of economy, global demand for steel has accelerated since 2000, and thus mining activities of iron ore have become intensive accordingly. An ultra-low-grade iron has been extracted by open-pit mining and processed massively since 2001 in Kuancheng County, Hebei Province. There are large-scale stopes and tailings ponds in this area. It is important to extract their spatial distribution information for environmental protection and disaster prevention. A remote sensing method of extracting stopes and tailings ponds is studied based on spectral characteristics by use of Landsat 8 OLI imagery and ground spectral data. The overall accuracy of extraction is 95.06 %. In addition, tailings ponds are distinguished from stopes based on thermal characteristics by use of temperature image. The results could provide decision support for environmental protection, disaster prevention, and ecological restoration in the ultra-low-grade iron ore mining area.

  3. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    PubMed

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  4. Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing

    USGS Publications Warehouse

    Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.

    2002-01-01

    At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements

  5. Evidence for mafic lower crust in Tanzania, East Africa, from joint inversion of receiver functions and Rayleigh wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Ammon, Charles J.; Nyblade, Andrew A.

    2005-08-01

    The S-wave velocity structure of Precambrian terranes in Tanzania, East Africa is modelled by jointly inverting receiver functions and surface wave dispersion velocities from the 1994-1995 Tanzania broad-band seismic experiment. The study region, which consists of an Archean craton surrounded by Proterozoic mobile belts, forms a unique setting for evaluating Precambrian crustal evolution. Our results show a uniform crustal structure across the region, with a 10-15 km thick upper crust with VS= 3.4-3.5 km s-1, overlying a gradational lower crust with S-wave velocities up to 4.1 km s-1 at 38-42 km depth. The upper-mantle lid displays uniform S-wave velocities of 4.5-4.7 km s-1 to depths of 100-150 km and overlays a prominent low-velocity zone. This low-velocity zone is required by the dispersion and receiver function data, but its depth interval is uncertain. The high crustal velocities within the lowermost crust characterize the entire region and suggest that mafic lithologies are present in both Archean and Proterozoic terranes. The ubiquitous mafic lower crust can be attributed to underplating associated with mafic dyke emplacement. This finding suggests that in East Africa there has been little secular variation in Precambrian crustal development.

  6. Lateral variations in the crustal structure of the Indo-Eurasian collision zone

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Priestley, Keith

    2018-05-01

    The processes involved in continental collisions remain contested, yet knowledge of these processes is crucial to improving our understanding of how some of the most dramatic features on Earth have formed. As the largest and highest orogenic plateau on Earth today, Tibet is an excellent natural laboratory for investigating collisional processes. To understand the development of the Tibetan Plateau we need to understand the crustal structure beneath both Tibet and the Indian Plate. Building on previous work, we measure new group velocity dispersion curves using data from regional earthquakes (4424 paths) and ambient noise data (5696 paths), and use these to obtain new fundamental mode Rayleigh Wave group velocity maps for periods from 5-70 s for a region including Tibet, Pakistan and India. The dense path coverage at the shortest periods, due to the inclusion of ambient noise measurements, allows features of up to 100 km scale to be resolved in some areas of the collision zone, providing one of the highest resolution models of the crust and uppermost mantle across this region. We invert the Rayleigh wave group velocity maps for shear wave velocity structure to 120 km depth and construct a 3D velocity model for the crust and uppermost mantle of the Indo-Eurasian collision zone. We use this 3D model to map the lateral variations in the crust and in the nature of the crust-mantle transition (Moho) across the Indo-Eurasian collision zone. The Moho occurs at lower shear velocities below north eastern Tibet than it does beneath western and southern Tibet and below India. The east-west difference across Tibet is particularly apparent in the elevated velocities observed west of 84° E at depths exceeding 90 km. This suggests that Indian lithosphere underlies the whole of the Plateau in the west, but possibly not in the east. At depths of 20-40 km our crustal model shows the existence of a pervasive mid-crustal low velocity layer (˜10% decrease in velocity, Vs <3.4 km

  7. Performance evaluation of multi-material electronic cleansing for ultra-low-dose dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Kohlhase, Naja; Näppi, Janne J.; Hironaka, Toru; Ota, Junko; Ishida, Takayuki; Regge, Daniele; Yoshida, Hiroyuki

    2016-03-01

    Accurate electronic cleansing (EC) for CT colonography (CTC) enables the visualization of the entire colonic surface without residual materials. In this study, we evaluated the accuracy of a novel multi-material electronic cleansing (MUMA-EC) scheme for non-cathartic ultra-low-dose dual-energy CTC (DE-CTC). The MUMA-EC performs a wateriodine material decomposition of the DE-CTC images and calculates virtual monochromatic images at multiple energies, after which a random forest classifier is used to label the images into the regions of lumen air, soft tissue, fecal tagging, and two types of partial-volume boundaries based on image-based features. After the labeling, materials other than soft tissue are subtracted from the CTC images. For pilot evaluation, 384 volumes of interest (VOIs), which represented sources of subtraction artifacts observed in current EC schemes, were sampled from 32 ultra-low-dose DE-CTC scans. The voxels in the VOIs were labeled manually to serve as a reference standard. The metric for EC accuracy was the mean overlap ratio between the labels of the reference standard and the labels generated by the MUMA-EC, a dualenergy EC (DE-EC), and a single-energy EC (SE-EC) scheme. Statistically significant differences were observed between the performance of the MUMA/DE-EC and the SE-EC methods (p<0.001). Visual assessment confirmed that the MUMA-EC generated less subtraction artifacts than did DE-EC and SE-EC. Our MUMA-EC scheme yielded superior performance over conventional SE-EC scheme in identifying and minimizing subtraction artifacts on noncathartic ultra-low-dose DE-CTC images.

  8. Low velocity opposed-flow frame spread in a transport-controlled environment DARTFire

    NASA Technical Reports Server (NTRS)

    West, Jeff; Thomas, Pete; Chao, Ruian; Bhattacharjee, Subrata; Tang, TI; Altenkirch, Robert A.; Olson, Sandra L.

    1995-01-01

    The overall objectives of the DARTFire project are to uncover the underlying physics and increase understanding of the mechanisms that cause flames to propagate over solid fuels against a low velocity of oxidizer flow in a low-gravity environment. Specific objectives are (1) to analyze experimentally observed flame shapes, measured gas-phase field variables, spread rates, radiative characteristics, and solid-phase regression rates for comparison with previously developed model prediction capability that will be continually extended, and (2) to investigate the transition from ignition to either flame propagation or extinction in order to determine the characteristics of those environments that lead to flame evolution. To meet the objectives, a series of sounding rocket experiments has been designed to exercise several of the dimensional, controllable variables that affect the flame spread process over PMMA in microgravity, i.e., the opposing flow velocity (1-20 cm/s), the external radiant flux directed to the fuel surface (0-2 W/cm(exp 2)), and the oxygen concentration of the environment (35-70%). Because radiative heat transfer is critical to these microgravity flame spread experiments, radiant heating is imposed, and radiant heat loss will be measured. These are the first attempts at such an experimental control and measurement in microgravity. Other firsts associated with the experiment are (1) the control of the low velocity, opposed flow, which is of the same order as diffusive velocities and Stefan flows; (2) state-of-the-art quantitative flame imaging for species-specific emissions (both infrared and ultraviolet) in addition to novel intensified array imaging to obtain a color image of the very dim, low-gravity flames.

  9. High Velocity Absorption during Eta Car B's Periastron Passage

    NASA Technical Reports Server (NTRS)

    Nielsen, Krister E.; Groh, J. H.; Hillier, J.; Gull, Theodore R.; Owocki, S. P.; Okazaki, A. T.; Damineli, A.; Teodoro, M.; Weigelt, G.; Hartman, H.

    2010-01-01

    Eta Car is one of the most luminous massive stars in the Galaxy, with repeated eruptions with a 5.5 year periodicity. These events are caused by the periastron passage of a massive companion in an eccentric orbit. We report the VLT/CRIRES detection of a strong high-velocity, (<1900 km/s) , broad absorption wing in He I at 10833 A during the 2009.0 periastron passage. Previous observations during the 2003.5 event have shown evidence of such high-velocity absorption in the He I 10833 transition, allowing us to conclude that the high-velocity gas is crossing the line-of-sight toward Eta Car over a time period of approximately 2 months. Our analysis of HST/STlS archival data with observations of high velocity absorption in the ultraviolet Si IV and C IV resonance lines, confirm the presence of a high-velocity material during the spectroscopic low state. The observations provide direct detection of high-velocity material flowing from the wind-wind collision zone around the binary system, and we discuss the implications of the presence of high-velocity gas in Eta Car during periastron

  10. Regional three-dimensional seismic velocity model of the crust and uppermost mantle of northern California

    USGS Publications Warehouse

    Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.

    2009-01-01

    We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.

  11. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, Ronald F.; Brown, John D.

    1996-01-01

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  12. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1996-03-19

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  13. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Kennett, B. L. N.; Tkalčić, H.; Gessner, K.; Spaggiari, C. V.

    2017-09-01

    Group and phase velocity maps in the period range 2-20 s for the Proterozoic east Albany-Fraser Orogen, Western Australia, are extracted from ambient seismic noise recorded with the 70-station ALFREX array. This 2 yr temporary installation provided detailed coverage across the orogen and the edge of the Neoarchean Yilgarn Craton, a region where no passive seismic studies of this scale have occurred to date. The surface wave velocities are rather high overall (>3 km s-1 nearly everywhere), as expected for exposed Proterozoic basement rocks. No clear signature of the transition between Yilgarn Craton and Albany-Fraser Orogen is observed, but several strong anomalies corresponding to more local geological features were obtained. A prominent, NE-elongated high-velocity anomaly in the northern part of the array is coincident with a Bouguer gravity high caused by the upper crustal metamorphic rocks of the Fraser Zone. This feature disappears towards longer periods, which hints at an exclusively upper crustal origin for this anomaly. Further east, the limestones of the Cenozoic Eucla Basin are clearly imaged as a pronounced low-velocity zone at short periods, but the prevalence of low velocities to periods of ≥5 s implies that the uppermost basement in this area is likewise slow. At longer periods, slightly above-average surface wave velocities are imaged below the Eucla Basin.

  14. Repeating Deep Very Low Frequency Earthquakes: An Evidence of Transition Zone between Brittle and Ductile Zone along Plate Boundary

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Yamamoto, Y.; Arai, R.

    2017-12-01

    Recently slow or low frequency seismic and geodetic events are focused under recognition of important role in tectonic process. The most western region of Ryukyu trench, Yaeyama Islands, is very active area of these type events. It has semiannual-like slow slip (Heki et.al., 2008; Nishimura et.al.,2014) and very frequent shallow very low frequency earthquakes near trench zone (Ando et.al.,2012; Nakamura et.al.,2014). Arai et.al.(2016) identified clear reverse phase discontinuity along plate boundary by air-gun survey, suggesting existence of low velocity layer including fluid. The subducting fluid layer is considered to control slip characteristics. On the other hand, deep low frequency earthquake and tremor observed at south-western Honshu and Shikoku of Japan are not identified well due to lack of high-quality seismic network. A broadband seismic station(ISG/PS) of Pacific21 network is operating in last 20 years that locates on occurrence potential area of low frequency earthquake. We tried to review continuous broadband record, searching low frequency earthquakes. In pilot survey, we found three very low frequency seismic events which are dominant in less than 0.1Hz component and are not listed in earthquake catalogue. Source locates about 50km depth and at transition area between slow slip event and active area of general earthquake along plate boundary. To detect small and/or hidden very low frequency earthquake, we applied matched filter analysis to continuous three components waveform data using pre-reviewed seismogram as template signal. 12 events with high correlation are picked up in last 10 years. Most events have very similar waveform, which means characteristics of repeating deep very low frequency earthquake. The event history of very low frequency earthquake is not related with one of slow slip event in this region. In Yaeyama region, low frequency earthquake, general earthquake and slow slip event occur dividing in space and have apparent

  15. Mapping seismic azimuthal anisotropy of the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Liu, X.

    2016-12-01

    We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi

  16. Seismic velocity structure of the slab and continental plate in the region of the 1960 Valdivia (Chile) slip maximum — Insights into fluid release and plate coupling

    NASA Astrophysics Data System (ADS)

    Dzierma, Yvonne; Rabbel, Wolfgang; Thorwart, Martin; Koulakov, Ivan; Wehrmann, Heidi; Hoernle, Kaj; Comte, Diana

    2012-05-01

    The south-central Chilean subduction zone has witnessed some of the largest earthquakes in history, making this region particularly important for understanding plate coupling. Here we present the results of a local earthquake tomography study from a temporary local seismic network in the Villarrica region between 39 and 40°S, where the largest coseismic displacement of the 1960 Valdivia earthquake occurred. A low-velocity anomaly and high Vp/Vs values occur under the coastal region, indicating mantle serpentinisation and/or underthrusting of forearc material. Further east, a high-velocity anomaly is observed, interpreted as "normal" high-velocity mantle. Under the active volcanic arc a low-velocity anomaly together with high Vp/Vs ratios (1.8 and higher) likely images fluid ascent beneath the volcanoes. Close to the subducting Valdivia Fracture Zone, the coastal low-velocity anomaly extends further inland, where it interrupts and shifts the high-velocity anomalies associated with "normal" fast mantle velocities. This may indicate enhanced fluid presence along this part of the margin, probably caused by a stronger hydration of the incoming plate along the Valdivia Fracture Zone. This is consistent with geochemical fluid proxies (U/Th, Pb/Ce, Ba/Nb) in young volcanic rocks displaying peak values along the volcanic front at Llaima and Villarrica Volcanoes, and with recent GPS measurements, which suggested a local reduction in plate coupling in this region. The shift in the high-velocity anomaly underlying the central part may be caused by a north to south decrease in plate age and hydration across the Valdivia Fracture Zone, and may explain why a Central Valley is absent in this segment of the margin. The low La/Yb ratios in the volcanic rocks from Villarrica and Llaima suggest that the high slab-derived fluid flux causes elevated degrees of melting beneath these volcanoes, providing an explanation as to why these are amongst the most active volcanoes in South

  17. Thin Fresnel zone plate lenses for focusing underwater sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ringmore » cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.« less

  18. Ultra-low-noise transition edge sensors for the SAFARI L-band on SPICA

    NASA Astrophysics Data System (ADS)

    Goldie, D. J.; Gao, J. R.; Glowacka, D. M.; Griffin, D. K.; Hijmering, R.; Khosropanah, P.; Jackson, B. D.; Mauskopf, P. D.; Morozov, D.; Murphy, J. A.; Ridder, M.; Trappe, N.; O'Sullivan, C.; Withington, S.

    2012-09-01

    The Far-Infrared Fourier transform spectrometer instrument SAFARI-SPICA which will operate with cooled optics in a low-background space environment requires ultra-sensitive detector arrays with high optical coupling efficiencies over extremely wide bandwidths. In earlier papers we described the design, fabrication and performance of ultra-low-noise Transition Edge Sensors (TESs) operated close to 100mk having dark Noise Equivalent Powers (NEPs) of order 4 × 10-19W/√Hz close to the phonon noise limit and an improvement of two orders of magnitude over TESs for ground-based applications. Here we describe the design, fabrication and testing of 388-element arrays of MoAu TESs integrated with far-infrared absorbers and optical coupling structures in a geometry appropriate for the SAFARI L-band (110 - 210 μm). The measured performance shows intrinsic response time τ ~ 11ms and saturation powers of order 10 fW, and a dark noise equivalent powers of order 7 × 10-19W/√Hz. The 100 × 100μm2 MoAu TESs have transition temperatures of order 110mK and are coupled to 320×320μm2 thin-film β-phase Ta absorbers to provide impedance matching to the incoming fields. We describe results of dark tests (i.e without optical power) to determine intrinsic pixel characteristics and their uniformity, and measurements of the optical performance of representative pixels operated with flat back-shorts coupled to pyramidal horn arrays. The measured and modeled optical efficiency is dominated by the 95Ω sheet resistance of the Ta absorbers, indicating a clear route to achieve the required performance in these ultra-sensitive detectors.

  19. An ultra-low-power RF transceiver for WBANs in medical applications

    NASA Astrophysics Data System (ADS)

    Qi, Zhang; Xiaofei, Kuang; Nanjian, Wu

    2011-06-01

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm2. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%.

  20. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  1. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  2. Quantitative validation of carbon-fiber laminate low velocity impact simulations

    DOE PAGES

    English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.

    2015-09-26

    Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less

  3. Low temperature processing of ultra-pure cellulose fibers into nylon 6 and other thermoplastics

    Treesearch

    Rod Jacobson; Dan Caulfield; Karl Sears; John Underwood

    2002-01-01

    The objective of this research was to develop a stable process for compound ultra-pure cellulose fibers into polyamides. This has been a difficult procedure and has taken years of trial and error to understand the viscosity shear heating effects associated with compounding cellulose into high-melting point engineering thermoplastics. The evolution of the low...

  4. Detection of a ULVZ at the base of the mantle beneath the northwest Pacific

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Koper, Keith D.

    2009-09-01

    We used the Yellowknife seismic array (YKA) to measure the slowness of 1,371 P and P diff waves from earthquakes occurring in the circum-Pacific region. The corresponding anomalies in P-velocity show a sharp reduction of up to 6% across a patch of the lowermost mantle beneath the Northwest Pacific with lateral dimensions of several hundred kilometers. The location of this ultra low velocity zone (ULVZ) correlates with a long-wavelength compositional boundary revealed by probabilistic mantle tomography. We interpret the ULVZ as partial melt created by paleo-slab material that is being swept laterally from northwestern Pacific subduction zones towards the large, chemically distinct province beneath the south-central Pacific.

  5. Management challenges in a short-range low-velocity gunshot injury.

    PubMed

    Arunkumar, K V; Kumar, Sanjeev; Aggarwal, Rajat; Dubey, Prajesh

    2012-07-01

    The use of firearms is becoming more prevalent in the society and hence the number of homicidal and suicidal cases. The severity of gunshot wounds varies depending on the weapons caliber and the distance of firing. Close-range, high-velocity gunshot wounds in the head and neck region can result in devastating esthetic and functional impairment. The complexity in facial skeletal anatomy cause multiple medical and surgical challenges to an operating surgeon, demanding elaborate soft and hard tissue reconstructions. Here we present the successful management of a patient shot by a low-velocity short-range pistol with basic life support measures, wound management, reconstruction, and rehabilitation.

  6. Beta-Zone parapapillary atrophy and the velocity of glaucoma progression.

    PubMed

    Teng, Christopher C; De Moraes, Carlos Gustavo V; Prata, Tiago S; Tello, Celso; Ritch, Robert; Liebmann, Jeffrey M

    2010-05-01

    Beta-Zone parapapillary atrophy (PPA) occurs more commonly in eyes with glaucoma. Rates of glaucomatous visual field (VF) progression in eyes with and without beta-zone PPA at the time of baseline assessment were compared. Retrospective, comparative study. Two hundred forty-five patients from the New York Glaucoma Progression Study. Subjects with glaucomatous optic neuropathy and repeatable VF loss were assessed for eligibility. Eyes with a Heidelberg Retina Tomograph II (HRT) examination, at least 5 visual field tests after the HRT in either eye, optic disc photographs, and <6 diopters of myopia were enrolled. beta-Zone PPA was defined as a region of chorioretinal atrophy with visible sclera and choroidal vessels adjacent to the optic disc. Global rates of VF progression were determined by automated pointwise linear regression analysis. Univariate analysis included age, gender, ethnicity, central corneal thickness (CCT), refractive error, baseline mean deviation, baseline intraocular pressure (IOP), mean IOP, IOP fluctuation, disc area, rim area, rim area-to-disc area ratio, beta-zone PPA area, beta-zone PPA area-to-disc area ratio, and presence or absence of beta-zone PPA. The relationship between beta-zone PPA and the rate and risk of glaucoma progression. Two hundred forty-five eyes of 245 patients (mean age, 69.6+/-12.3 years) were enrolled. The mean follow-up was 4.9+/-1.4 years and the mean number of VFs after HRT was 9.3+/-2.7. beta-Zone PPA was present in 146 eyes (65%). Eyes with beta-zone PPA progressed more rapidly (-0.84+/-0.8 dB/year) than eyes without it (-0.51+/-0.6 dB/year; P<0.01). Multivariate regression showed significant influence of mean IOP (hazard ratio [HR], 1.11; P<0.01), IOP fluctuation (HR, 1.17; P = 0.02), and presence of beta-zone PPA (HR, 2.59; P<0.01) on VF progression. Moderate (0.5-1.5 dB/year; P = 0.01) and fast (>1.5 dB/year; P = 0.08) global rates of progression occurred more commonly in eyes with beta-zone PPA than in eyes

  7. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Rawal, Takat B.; Neal, Craig J.; Das, Soumen; Rahman, Talat S.; Seal, Sudipta

    2017-06-01

    Two-dimensional (2D) molybdenum disulfide (MoS2) offers attractive properties due to its band gap modulation and has led to significant research-oriented applications (i.e. DNA and protein detection, cell imaging (fluorescent label) etc.). In biology, detection of free radicals (i.e. reactive oxygen species and reactive nitrogen (NO*) species are very important for early discovery and treatment of diseases. Herein, for the first time, we demonstrate the ultra-low (pico-molar) detection of pharmaceutically relevant free radicals using MoS2 for electrochemical sensing. We present pico- to nano- molar level sensitivity in smaller MoS2 with S-deficiency as revealed by x-ray photoelectron spectroscopy. Furthermore, the detection mechanism and size-dependent sensitivity have been investigated by density functional theory (DFT) showing the change in electronic density of states of Mo atoms at edges which lead to the preferred adsorption of H2O2 on Mo edges. The DFT analysis signifies the role of size and S-deficiency in the higher catalytic activity of smaller MoS2 particles and, thus, ultra-low detection.

  8. Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Sova, A.; Kosarev, V. F.; Papyrin, A.; Smurov, I.

    2011-01-01

    In this paper, metal-ceramic coatings are cold sprayed taking into account the spray parameters of both metal and ceramic particles. The effect of the ceramic particle velocity on the process of metal-ceramic coating formation and the coating properties is analyzed. Copper and aluminum powders are used as metal components. Two fractions of aluminum oxide and silicon carbide are sprayed in the tests. The ceramic particle velocity is varied by the particle injection into different zones of the gas flow: the subsonic and supersonic parts of the nozzle and the free jet after the nozzle exit. The experiments demonstrated the importance of the ceramic particle velocity for the stability of the process: Ceramic particles accelerated to a high enough velocity penetrate into the coating, while low-velocity ceramic particles rebound from its surface.

  9. Ultra-low field MRI: bringing MRI to new arenas

    DOE PAGES

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett; ...

    2016-11-01

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  10. Ultra-low field MRI: bringing MRI to new arenas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  11. Long Indian Slab in the Mantle Transition Zone Under Eastern Tibet: Evidence from Teleseismic Tomography

    NASA Astrophysics Data System (ADS)

    Lei, J.; Zhao, D.; Zha, X.

    2014-12-01

    We present a new 3-D P-wave velocity model of the upper mantle under eastern Tibet determined from 113,831 high-quality teleseismic arrival-time data. Our data are hand-picked from seismograms of 784 teleseismic events (30o-90o) with magnitudes of 5.2 or greater. These events were recorded by 21 portable seismic stations deployed in Yunnan during April 2010 to July 2011 and 259 permanent stations of Chinese provincial seismic networks during September 2008 to December 2011 in the study region. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under stable cratonic regions, such as Sichuan basin, Ordos and Alashan blocks. Prominent low-velocity (low-V) anomalies are revealed in the upper mantle under the Kunlun-Qinling fold zone, Songpan-Ganzi, Qiangtang, Lahsa, and Chuan-Dian diamond blocks, suggesting that the eastward moving low-V materials are obstructed by Sichuan basin, Ordos and Alashan blocks, and they could be extruded through the Qinling fold zone and the Chuan-Dian block to eastern China. In addition, the extent and thickness of these low-V anomalies are well correlated with the surface topography, suggesting that uplift of eastern Tibet is closely related to the low-V anomalies which may reflect hot materials and have strong buoyancy. In the mantle transition zone, broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, which extend for a total of approximately 700 km. The high-V anomalies are connected upward to the Wadati-Benioff seismic zone beneath the Burma arc. These results suggest that the Indian slab has subducted horizontally for a long distance in the mantle transition zone after it descended into the mantle, and its deep dehydration has contributed to forming the low-V anomalies in the big mantle wedge above the slab. Our present results shed new light on the formation and

  12. Velocity Memory Effect for polarized gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  13. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    NASA Astrophysics Data System (ADS)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-05-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  14. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    PubMed

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  15. Lithospheric Shear Velocity Structure of South Island, New Zealand from Rayleigh Wave Tomography of Amphibious Array Data

    NASA Astrophysics Data System (ADS)

    Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F. C.; Collins, J. A.

    2015-12-01

    We present the first 3D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath Campbell and Challenger plateaus. Our model is constructed via linearized inversion of both teleseismic (18 -70 s period) and ambient noise-based (8 - 25 s period) Rayleigh wave dispersion measurements. We augment an array of 29 ocean-bottom instruments deployed off the South Island's east and west coasts in 2009-2010 with 28 New Zealand land-based seismometers. The ocean-bottom seismometers and 4 of the land seismometers were part of the Marine Observations of Anisotropy Near Aotearoa (MOANA) experiment, and the remaining land seismometers are from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs<4.3km/s) body extending to at least 75km depth beneath the Banks and Otago peninsulas, a high-velocity (Vs~4.7km/s) upper mantle anomaly underlying the Southern Alps to a depth of 100km, and discontinuous lithospheric velocity structure between eastern and western Challenger Plateau. Using the 4.5km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau is substantially greater than that of Campbell Plateau. The high-velocity anomaly we resolve beneath the central South Island exhibits strong spatial correlation with subcrustal earthquake hypocenters along the Alpine Fault (Boese et al., 2013). The ~400km-long low velocity zone we image beneath eastern South Island underlies Cenozoic volcanics and mantle-derived helium observations (Hoke et al., 2000) on the surface. The NE-trending low-velocity zone dividing Challenger Plateau in our model underlies a prominent magnetic discontinuity (Sutherland et al., 1999). The latter feature has been interpreted to represent a pre-Cretaceous crustal boundary, which our results suggest may involve the entire mantle lithosphere.

  16. P-wave velocity structure of the uppermost mantle beneath Hawaii from traveltime tomography

    USGS Publications Warehouse

    Tilmann, F.J.; Benz, H.M.; Priestley, K.F.; Okubo, P.G.

    2001-01-01

    We examine the P-wave velocity structure beneath the island of Hawaii using P-wave residuals from teleseismic earthquakes recorded by the Hawaiian Volcano Observatory seismic network. The station geometry and distribution of events makes it possible to image the velocity structure between ~ 40 and 100 km depth with a lateral resolution of ~ 15 km and a vertical resolution of ~ 30 km. For depths between 40 and 80 km, P-wave velocities are up to 5 per cent slower in a broad elongated region trending SE-NW that underlies the island between the two lines defined by the volcanic loci. No direct correlation between the magnitude of the lithospheric anomaly and the current level of volcanic activity is apparent, but the slow region is broadened at ~ 19.8??N and narrow beneath Kilauea. In the case of the occanic lithosphere beneath Hawaii, slow seismic velocities are likely to be related to magma transport from the top of the melting zone at the base of the lithosphere to the surface. Thermal modelling shows that the broad elongated low-velocity zone cannot be explained in terms of conductive heating by one primary conduit per volcano but that more complicated melt pathways must exist.

  17. Rift Zone Abandonment and Reconfiguration in Hawaii: Evidence from Mauna Loa’s Ninole Rift Zone

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.; Park, J.; Zelt, C. A.

    2009-12-01

    Large oceanic volcanoes commonly develop elongate rift zones that disperse viscous magmas to the distal reaches of the edifice. Intrusion and dike propagation occur under tension perpendicular to the rift zone, controlled by topography, magmatic pressures, and deformation of the edifice. However, as volcanoes grow and interact, the controlling stress fields can change, potentially altering the orientations and activities of rift zones. This phenomenon is probably common, and can produce complex internal structures that influence the evolution of a volcano and its neighbors. However, little direct evidence for such rift zone reconfiguration exists, primarily due to poor preservation or recognition of earlier volcanic configurations. A new onshore-offshore 3-D seismic velocity model for the Island of Hawaii, derived from a joint tomographic inversion of an offshore airgun shot - onshore receiver geometry and earthquake sources beneath the island, demonstrates a complicated history of rift zone reconfiguration on Mauna Loa volcano, Hawaii, including wholesale rift zone abandonment. Mauna Loa’s southeast flank contains a massive high velocity intrusive complex, now buried beneath flows derived from Mauna Loa’s active southwest rift zone (SWRZ). Introduced here as the Ninole Rift Zone, this feature extends more than 60 km south of Mauna Loa’s summit, spans a depth range of ~2-14 km below sea level, and is the probable source of the 100-200 ka Ninole volcanics in several prominent erosional hills. A lack of high velocities beneath the upper SWRZ and its separate zone of high velocities on the submarine flank, indicate that the younger rift zone was built upon a pre-existing edifice that emanated from the Ninole rift zone. The ancient Ninole rift zone may stabilize Mauna Loa’s southeast flank, focusing recent volcanic activity and deformation onto the unbuttressed west flank. The upper portion of the Ninole rift zone appears to have migrated westward over time

  18. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths

    PubMed Central

    Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan

    2015-01-01

    The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p+-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I–V ) curves combined with the temperature dependence of the I–V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole–Frenkel (P–F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM. PMID:26508086

  19. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2016-08-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  20. Fracture Behavior of Ultra-Low-Carbon Steel Plate and Heat-Affected-Zone.

    DTIC Science & Technology

    1990-12-01

    ferrite . This effect on the transformation kinetics of steel is shown in Fig. 2. This alloying addition, however, has experienced...V-notch ITT of -76’F (-600C). The design philo.ophy used for this alloy required that the steel be low carbon with a nearly 100% acicular ferrite ...line pipe fitting steel by International Nickel Company and was called IN 787. It is a low carbon-manganese steel strengthened with a fine precipitate

  1. Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2016-03-01

    Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.

  2. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  3. Ion velocities in the presheath of electronegative, radio-frequency plasmas measured by low-energy cutoff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolewski, Mark A.; Wang, Yicheng; Goyette, Amanda

    2016-07-11

    Simple kinematic considerations indicate that, under certain conditions in radio-frequency (rf) plasmas, the amplitude of the low-energy peak in ion energy distributions (IEDs) measured at an electrode depends sensitively on ion velocities upstream, at the presheath/sheath boundary. By measuring this amplitude, the velocities at which ions exit the presheath can be determined and long-standing controversies regarding presheath transport can be resolved. Here, IEDs measured in rf-biased, inductively coupled plasmas in CF{sub 4} gas determined the presheath exit velocities of all significant positive ions: CF{sub 3}{sup +}, CF{sub 2}{sup +}, CF{sup +}, and F{sup +}. At higher bias voltages, we detectedmore » essentially the same velocity for all four ions. For all ions, measured velocities were significantly lower than the Bohm velocity and the electropositive ion sound speed. Neither is an accurate boundary condition for rf sheaths in electronegative gases: under certain low-frequency, high-voltage criteria defined here, either yields large errors in predicted IEDs. These results indicate that many widely used sheath models will need to be revised.« less

  4. Early detection of lung cancer using ultra-low-dose computed tomography in coronary CT angiography scans among patients with suspected coronary heart disease.

    PubMed

    Zanon, Matheus; Pacini, Gabriel Sartori; de Souza, Vinicius Valério Silveiro; Marchiori, Edson; Meirelles, Gustavo Souza Portes; Szarf, Gilberto; Torres, Felipe Soares; Hochhegger, Bruno

    2017-12-01

    To assess whether an additional chest ultra-low-dose CT scan to the coronary CT angiography protocol can be used for lung cancer screening among patients with suspected coronary artery disease. 175 patients underwent coronary CT angiography for assessment of coronary artery disease, additionally undergoing ultra-low-dose CT screening to early diagnosis of lung cancer in the same scanner (80kVp and 15mAs). Patients presenting pulmonary nodules were followed-up for two years, repeating low-dose CTs in intervals of 3, 6, or 12 months based on nodule size and growth rate in accordance with National Comprehensive Cancer Network guidelines. Ultra-low-dose CT identified 71 patients with solitary pulmonary nodules (41%), with a mean diameter of 5.50±4.00mm. Twenty-eight were >6mm, and in 79% (n=22) of these cases they were false positive findings, further confirmed by follow-up (n=20), resection (n=1), or biopsy (n=1). Lung cancer was detected in six patients due to CT screening (diagnostic yield: 3%). Among these, four cases could not be detected in the cardiac field of view. Most patients were in early stages of the disease. Two patients diagnosed at advanced stages died due to cancer complications. The addition of the ultra-low-dose CT scan represented a radiation dose increment of 1.22±0.53% (effective dose, 0.11±0.03mSv). Lung cancer might be detected using additional ultra-low-dose protocols in coronary CT angiography scans among patients with suspected coronary artery disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  6. Collisional disruption of porous weak sintered targets at low impact velocity

    NASA Astrophysics Data System (ADS)

    Setoh, M.; Nakamura, A. M.; Hirata, N.; Hiraoka, K.; Arakawa, M.

    Porous structure is common in asteroids and satellites of outer planets In order to study the relation between structure of the small bodies and their thermal and collisional evolution we prepared porous sintered targets measured the compressive strength and determined their impact strength Previous studies showed using sintered glass beads Love et al 1993 the targets with higher compressive strength have higher impact strength and the targets with higher porosity have higher impact strength However in these experiments the porosity of the targets were changed according to the compressive strength Therefore we fixed the porosity while the compressive strength was varied Our experiments were performed with low impact velocity condition because low impact velocities are common among icy bodies far from the Earth We sintered soda lime glass beads of 50 micron diameter and 2 5g cm -3 nominal density at various temperatures and durations to produce targets with similar porosity sim 40 and different compressive strength 0 2 sim 7 8MPa We performed impact disruption experiments using a low velocity light-gas gun at Kobe University sim 100m s We used cylindrical polycarbonate projectiles 1 5 cm in height and 1 0 cm in diameter We determined the specific energy J kg of projectile kinetic energy per kilo gram initial target mass for the condition that the largest fragment mass being the half of the initial target mass is the threshold energy for collisional disruption Q Fujiwara et al 1989 Holsapple et al

  7. Mass Transfer via Low-Velocity Rebound in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Jarmak, S. G.; Colwell, J. E.; Brisset, J.; Dove, A.; Brown, A. Q.

    2017-12-01

    Observations of low-velocity collisions (< 1 m/s) between μm to cm-size particles in a microgravity environment are crucial to an understanding of the surface properties of small, airless bodies as well as the processes that lead to their formation. The COLLIDE (Collisions Into Dust Experiment) and PRIME (Physics of Regolith Impacts in Microgravity Experiment) programs created impacts into simulated planetary regolith with cm-scale impactors to observe ejecta production and coefficients of restitution in microgravity. These experiments were carried out on orbit (COLLIDE, COLLIDE-2), in suborbital space (COLLIDE-3), and on parabolic airplane flights (PRIME) under vacuum. Some impacts at speeds less than 40 cm/s resulted in mass transfer from the target regolith onto the impactor. To study these mass-transfer collisions in more detail without the cost or time requirements of spaceflight or parabolic flights, we developed an experimental apparatus in a laboratory drop tower (free-fall time 0.75 s) and performed experiments at standard pressure. The impactor is suspended from a spring and remains in contact with the bed of regolith until free-fall allows the spring to retract and pull the impactor upwards. This method allowed us to simulate the rebound portion of a low-velocity collision in a laboratory microgravity environment. We achieved rebound velocities of 10 - 60 cm/s, and we observed mass transfer events with rebound speeds below 40 cm/s. The amount of mass transfer produced was more significant than a monolayer of granular material, but less than the amount observed in the COLLIDE and PRIME experiments. These mass-transfer collisions may play a role in the growth of planetesimals. We will present the results of our laboratory-based studies where we vary impact velocity and target material, and discuss implications for collisional evolution in the protoplanetary disk and planetary rings.

  8. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    PubMed

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  9. Study of ultra-low emittance design for Spear3 using longitudinal gradient dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-24

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  10. Can low-temperature thermoluminescence cast light on the nature of ultra-high dilutions?

    PubMed

    Rey, Louis

    2007-07-01

    Low-temperature thermoluminescence has been used in attempt to understand the particular structure of ultra high dilutions. Samples are activated by irradiation after freezing at the temperature of liquid nitrogen (77 degrees K). Experimental results show that, in the course of rewarming, the thermoluminescent glow is susbtantially different between dilutions of different substances. It is suggested that the dispersed gas phase might play a role in this process.

  11. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    NASA Astrophysics Data System (ADS)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  12. Low and high velocity impact response of thick hybrid composites

    NASA Technical Reports Server (NTRS)

    Hiel, Clement; Ishai, Ori

    1993-01-01

    The effects of low and high velocity impact on thick hybrid composites (THC's) were experimentally compared. Test Beams consisted of CFRP skins which were bonded onto an interleaved syntactic foam core and cured at 177 C (350 F). The impactor tip for both cases was a 16 mm (0.625 inch) steel hemisphere. In spite of the order of magnitude difference in velocity ranges and impactor weights, similar relationships between impact energy, damage size, and residual strength were found. The dependence of the skin compressive strength on damage size agree well with analytical open hole models for composite laminates and may enable the prediction of ultimate performance for the damaged composite, based on visual inspection.

  13. Simulation study on AlGaN/GaN diode with Γ-shaped anode for ultra-low turn-on voltage

    NASA Astrophysics Data System (ADS)

    Wang, Zeheng; Chen, Wanjun; Wang, Fangzhou; Cao, Jun; Sun, Ruize; Ren, Kailin; Luo, Yi; Guo, Songnan; Wang, Zirui; Jin, Xiaosheng; Yang, Lei; Zhang, Bo

    2018-05-01

    An ultra-low turn-on voltage (VT) Γ-shaped anode AlGaN/GaN Schottky barrier diode (GA-SBD) is proposed via modeling and simulation for the first time, in which a Γ-shaped anode consists of a metal-2DEG junction together with a metal-AlGaN junction beside a shallowly recessed MIS field plate (MFP). An analytic forward current-voltage model matching the simulation results well is presented where an ultra-low VT of 0.08 V is obtained. The turn-on and blocking mechanisms are investigated to reveal the GA-SBD's great potential for applications of highly efficient power ICs.

  14. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Combination of Continuous Dexmedetomidine Infusion with Titrated Ultra-Low-Dose Propofol-Fentanyl for an Awake Craniotomy

    PubMed Central

    Das, Samaresh; Al-Mashani, Ali; Suri, Neelam; Salhotra, Neeraj; Chatterjee, Nilay

    2016-01-01

    An awake craniotomy is a continuously evolving technique used for the resection of brain tumours from the eloquent cortex. We report a 29-year-old male patient who presented to the Khoula Hospital, Muscat, Oman, in 2016 with a two month history of headaches and convulsions due to a space-occupying brain lesion in close proximity with the left motor cortex. An awake craniotomy was conducted using a scalp block, continuous dexmedetomidine infusion and a titrated ultra-low-dose of propofolfentanyl. The patient remained comfortable throughout the procedure and the intraoperative neuropsychological tests, brain mapping and tumour resection were successful. This case report suggests that dexmedetomidine in combination with titrated ultra-low-dose propofolfentanyl are effective options during an awake craniotomy, ensuring optimum sedation, minimal disinhibition and a rapid recovery. To the best of the authors’ knowledge, this is the first awake craniotomy conducted successfully in Oman. PMID:27606116

  16. Reliability testing of ultra-low noise InGaAs quad photoreceivers

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay M.; Datta, Shubhashish; Prasad, Narasimha; Sivertz, Michael

    2018-02-01

    We have developed ultra-low noise quadrant InGaAs photoreceivers for multiple applications ranging from Laser Interferometric Gravitional Wave Detection, to 3D Wind Profiling. Devices with diameters of 0.5 mm, 1mm, and 2 mm were processed, with the nominal capacitance of a single quadrant of a 1 mm quad photodiode being 2.5 pF. The 1 mm diameter InGaAs quad photoreceivers, using a low-noise, bipolar-input OpAmp circuitry exhibit an equivalent input noise per quadrant of <1.7 pA/√Hz in 2 to 20 MHz frequency range. The InGaAs Quad Photoreceivers have undergone the following reliability tests: 30 MeV Proton Radiation up to a Total Ionizing Dose (TID) of 50 krad, Mechanical Shock, and Sinusoidal Vibration.

  17. Ultra-compact high velocity clouds in the ALFALFA HI survey: Candidate Local Group galaxies?

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth Ann Kovenz

    The increased sensitivity and spatial resolution of the ALFALFA HI survey has resulted in the detection of ultra-compact high velocity clouds (UCHVCs). These objects are good candidates to represent low mass gas-rich galaxies in the Local Group and Local Volume with stellar populations that are too faint to be detected in extant optical surveys. This idea is referred to as the "minihalo hypothesis". We identify the UCHVCs within the ALFALFA dataset via the use of a 3D matched filtering signal identification algorithm. UCHVCs are selected based on a compact size (< 30'), separation from Galactic HI (|upsilon LSR| > 120 km s-1) and isolation. Within the 40% complete ALFALFA survey (alpha.40), 59 UCHVCs are identified; 19 are in a most-isolated subset and are the best galaxy candidates. Due to the presence of large HVC complexes in the fall sky, most notably the Magellanic Stream, the association of UCHVCs with existing structure cannot be ruled out. In the spring sky, the spatial and kinematic distribution of the UCHVCs is consistent with simulations of dark matter halos within the Local Group. In addition, the HI properties of the UCHVCs (if placed at 1 Mpc) are consistent with both theoretical and observational predictions for low mass gas-rich galaxies. Importantly, the HI properties of the UCHVCs are consistent with those of two recently discovered low mass gas-rich galaxies in the Local Group and Local Volume, Leo T and Leo P. Detailed follow-up observations are key for addressing the minihalo hypothesis. High resolution HI observations can constrain the environment of a UCHVC and offer evidence for a hosting dark matter halo through evidence of rotation support and comparison to theoretical models. Observations of one UCHVC at high resolution (15'') reveal the presence of a clumpy HI distribution, similar to both low mass galaxies and circumgalactic compact HVCs. An extended envelope containing ˜50% of the HI flux is resolved out by the array configuration

  18. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  19. Seismic Velocity Structure of the San Jacinto Fault Zone from Double-Difference Tomography and Expected Distribution of Head Waves

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Ben-Zion, Y.

    2010-12-01

    We present initial results of double-difference tomographic images for the velocity structure of the San Jacinto Fault Zone (SJFZ), and related 3D forward calculations of waves in the immediate vicinity of the SJFZ. We begin by discretizing the SJFZ region with a uniform grid spacing of 500 m, extending 140 km by 80 km and down to 25 km depth. We adopt the layered 1D model of Dreger & Helmberger (1993) as a starting model for this region, and invert for 3D distributions of VP and VS with the double-difference tomography of Zhang & Thurber (2003), which makes use of absolute event-station travel times as well as relative travel times for phases from nearby event pairs. Absolute arrival times of over 78,000 P- and S-wave phase picks generated by 1127 earthquakes and recorded at 70 stations near the SJFZ are used. Only data from events with Mw greater than 2.2 are used. Though ray coverage is limited at shallow depths, we obtain relatively high-resolution images from 4 to 13 km which show a clear contrast in velocity across the NW section of the SJFZ. To the SE, in the so-called trifurcation area, the structure is more complicated, though station coverage is poorest in this region. Using the obtained image, the current event locations, and the 3D finite-difference code of Olsen (1994), we estimate the likely distributions of fault zone head waves as a tool for future deployment of instrument. We plan to conduct further studies by including more travel time picks, including those from newly-deployed stations in the SJFZ area, in order to gain a more accurate image of the velocity structure.

  20. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan, China, source area

    NASA Astrophysics Data System (ADS)

    Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo

    2016-04-01

    Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity

  1. Failure mechanics in low-velocity impacts on thin composite plates

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1983-01-01

    Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.

  2. Finite Element Modeling of Multilayer Orthogonal Auxetic Composites under Low-Velocity Impact

    PubMed Central

    Jiang, Lili; Hu, Hong

    2017-01-01

    The multilayer orthogonal auxetic composites have been previously developed and tested to prove that they own excellent energy absorption and impact protection characteristics in a specific strain range under low-velocity impact. In this study, a three dimensional finite element (FE) model in ANSYS LS-DYNA was established to simulate the mechanical behavior of auxetic composites under low-velocity drop-weight impact. The simulation results including the Poisson’s ratio versus compressive strain curves and the contact stress versus compressive strain curves were compared with those in the experiments. The clear deformation pictures of the FE models have provided a simple and effective way for investigating the damage mechanism and optimizing the material, as well as structure design. PMID:28783054

  3. Velocity-porosity relationships for slope apron and accreted sediments in the Nankai Trough Seismogenic Zone Experiment, Integrated Ocean Drilling Program Expedition 315 Site C0001

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Tobin, H. J.; Knuth, M.

    2010-12-01

    In this study, we focused on the porosity and compressional wave velocity of marine sediments to examine the physical properties of the slope apron and the accreted sediments. This approach allows us to identify characteristic variations between sediments being deposited onto the active prism and those deposited on the oceanic plate and then carried into the prism during subduction. For this purpose we conducted ultrasonic compressional wave velocity measurements on the obtained core samples with pore pressure control. Site C0001 in the Nankai Trough Seismogenic Zone Experiment transect of the Integrated Ocean Drilling Program is located in the hanging wall of the midslope megasplay thrust fault in the Nankai subduction zone offshore of the Kii peninsula (SW Japan), penetrating an unconformity at ˜200 m depth between slope apron sediments and the underlying accreted sediments. We used samples from Site C0001. Compressional wave velocity from laboratory measurements ranges from ˜1.6 to ˜2.0 km/s at hydrostatic pore pressure conditions estimated from sample depth. The compressional wave velocity-porosity relationship for the slope apron sediments shows a slope almost parallel to the slope for global empirical relationships. In contrast, the velocity-porosity relationship for the accreted sediments shows a slightly steeper slope than that of the slope apron sediments at 0.55 of porosity. This higher slope in the velocity-porosity relationship is found to be characteristic of the accreted sediments. Textural analysis was also conducted to examine the relationship between microstructural texture and acoustic properties. Images from micro-X-ray CT indicated a homogeneous and well-sorted distribution of small pores both in shallow and in deeper sections. Other mechanisms such as lithology, clay fraction, and abnormal fluid pressure were found to be insufficient to explain the higher velocity for accreted sediments. The higher slope in velocity-porosity relationship for

  4. Upper mantle velocity structure beneath southern Africa from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Langston, Charles A.; Nyblade, Andrew A.; Owens, Thomas J.

    1999-03-01

    The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data which come from a large mine tremor in South Africa (mb 5.6) recorded by the Tanzania broadband seismic experiment and by several stations in southern Africa. The waveform data show upper mantle triplications for both the 410- and 670-km discontinuities between distances of 2100 and 3000 km. Auxiliary travel time data along similar profiles obtained from other moderate events are also used. P wave travel times are inverted for velocity structure down to ˜800-km depth using the Wiechert-Herglotz technique, and the resulting model is evaluated by perturbing it at three depth intervals and then testing the perturbed model against the travel time and waveform data. The results indicate a typical upper mantle P wave velocity structure for a shield. P wave velocities from the top of the mantle down to 300-km depth are as much as 3% higher than the global average and are slightly slower than the global average between 300- and 420-km depth. Little evidence is found for a pronounced low-velocity zone in the upper mantle. A high-velocity gradient zone is required above the 410-km discontinuity, but both sharp and smooth 410-km discontinuities are permitted by the data. The 670-km discontinuity is characterized by high-velocity gradients over a depth range of ˜80 km around 660-km depth. Limited S wave travel time data suggest fast S wave velocities above ˜150-km depth. These results suggest that the bouyant support for the African superswell does not reside at shallow depths in the upper mantle.

  5. Low velocity collisions of porous planetesimals in the early solar system

    NASA Astrophysics Data System (ADS)

    de Niem, D.; Kührt, E.; Hviid, S.; Davidsson, B.

    2018-02-01

    The ESA Rosetta mission has shown that Comet 67P/Churuymov-Gerasimenko is bi-lobed, has a high average porosity of around 70%, does not have internal cavities on size scales larger than 10 m, the lobes could have individual sets of onion shell-like layering, and the nucleus surface contains 100 m-scale cylindrical pits. It is currently debated whether these properties are consistent with high-velocity collisional evolution or if they necessarily are surviving signatures of low-velocity primordial accretion. We use an Eulerian hydrocode to study collisions between highly porous bodies of different sizes, material parameters and relative velocities with emphasis on 5-100 m/s to characterize the effects of collisions in terms of deformation, compaction, and heating. We find that accretion of 1 km cometesimals by 3 km nuclei at 13.5 m/s flattens and partially buries the cometesimal with ∼ 1% reduction of the bulk porosity. This structure locally becomes more dense but the global effect of compaction is minor, suggesting that low-velocity accretion does not lead to a 'bunch of grapes' structure with large internal cavities but a more homogeneous interior, consistent with Rosetta findings. The mild local compaction associated with accretion is potentially the origin of the observed nucleus layering. In 2D axially symmetric impacts hit-and-stick collisions of similarly-sized nuclei are possible at velocities up to 30 m/s where deformation becomes severe. The bulk porosity is reduced significantly, even at 30-50 m/s relative velocity. To avoid hit-and-run collisions the impact angle must be less than 35°-45° from the surface normal at 10 m/s, and even smaller at higher velocities. Impact heating is insignificant. We find that the small cross section of the 67P neck may require a ≤ 5 m/s impact, unless the cohesion exceeds 10 kPa. We conclude that bi-lobe nucleus formation is possible at velocities typically discussed in hierarchical growth scenarios. Impacts of a 7 m

  6. Extraction of process zones and low-dimensional attractive subspaces in stochastic fracture mechanics

    PubMed Central

    Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.

    2013-01-01

    We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423

  7. Assembly techniques for ultra-low mass drift chambers

    NASA Astrophysics Data System (ADS)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-03-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100-200 KeV/c) for particles momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams.

  8. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOEpatents

    Cardinale, Gregory F.

    2002-01-01

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  9. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pendina, G., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; Zianbetov, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; CNRS, SPINTEC, F-38000 Grenoble

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remainingmore » in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.« less

  10. MBus: An Ultra-Low Power Interconnect Bus for Next Generation Nanopower Systems.

    PubMed

    Pannuto, Pat; Lee, Yoonmyung; Kuo, Ye-Sheng; Foo, ZhiYoong; Kempke, Benjamin; Kim, Gyouho; Dreslinski, Ronald G; Blaauw, David; Dutta, Prabal

    2015-06-01

    As we show in this paper, I/O has become the limiting factor in scaling down size and power toward the goal of invisible computing. Achieving this goal will require composing optimized and specialized-yet reusable-components with an interconnect that permits tiny, ultra-low power systems. In contrast to today's interconnects which are limited by power-hungry pull-ups or high-overhead chip-select lines, our approach provides a superset of common bus features but at lower power, with fixed area and pin count, using fully synthesizable logic, and with surprisingly low protocol overhead. We present MBus , a new 4-pin, 22.6 pJ/bit/chip chip-to-chip interconnect made of two "shoot-through" rings. MBus facilitates ultra-low power system operation by implementing automatic power-gating of each chip in the system, easing the integration of active, inactive, and activating circuits on a single die. In addition, we introduce a new bus primitive: power oblivious communication, which guarantees message reception regardless of the recipient's power state when a message is sent. This disentangles power management from communication, greatly simplifying the creation of viable, modular, and heterogeneous systems that operate on the order of nanowatts. To evaluate the viability, power, performance, overhead, and scalability of our design, we build both hardware and software implementations of MBus and show its seamless operation across two FPGAs and twelve custom chips from three different semiconductor processes. A three-chip, 2.2 mm 3 MBus system draws 8 nW of total system standby power and uses only 22.6 pJ/bit/chip for communication. This is the lowest power for any system bus with MBus's feature set.

  11. Methods for passivating silicon devices at low temperature to achieve low interface state density and low recombination velocity while preserving carrier lifetime

    DOEpatents

    Chen, Zhizhang; Rohatgi, Ajeet

    1995-01-01

    A new process has been developed to achieve a very low SiO.sub.x /Si interface state density D.sub.it, low recombination velocity S (<2 cm/s), and high effective carrier lifetime T.sub.eff (>5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at 250.degree. C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at 350.degree. C., resulting in an interface state density D.sub.it in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density D.sub.it for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density D.sub.it. Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.

  12. Sensitivity of new detection method for ultra-low frequency gravitational waves with pulsar spin-down rate statistics

    NASA Astrophysics Data System (ADS)

    Yonemaru, Naoyuki; Kumamoto, Hiroki; Takahashi, Keitaro; Kuroyanagi, Sachiko

    2018-04-01

    A new detection method for ultra-low frequency gravitational waves (GWs) with a frequency much lower than the observational range of pulsar timing arrays (PTAs) was suggested in Yonemaru et al. (2016). In the PTA analysis, ultra-low frequency GWs (≲ 10-10 Hz) which evolve just linearly during the observation time span are absorbed by the pulsar spin-down rates since both have the same effect on the pulse arrival time. Therefore, such GWs cannot be detected by the conventional method of PTAs. However, the bias on the observed spin-down rates depends on relative direction of a pulsar and GW source and shows a quadrupole pattern in the sky. Thus, if we divide the pulsars according to the position in the sky and see the difference in the statistics of the spin-down rates, ultra-low frequency GWs from a single source can be detected. In this paper, we evaluate the potential of this method by Monte-Carlo simulations and estimate the sensitivity, considering only the "Earth term" while the "pulsar term" acts like random noise for GW frequencies 10-13 - 10-10 Hz. We find that with 3,000 milli-second pulsars, which are expected to be discovered by a future survey with the Square Kilometre Array, GWs with the derivative of amplitude of about 3 × 10^{-19} {s}^{-1} can in principle be detected. Implications for possible supermassive binary black holes in Sgr* and M87 are also given.

  13. The MESSIER surveyor: unveiling the ultra-low surface brightness universe

    NASA Astrophysics Data System (ADS)

    Valls-Gabaud, David; MESSIER Collaboration

    2017-03-01

    The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.

  14. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  15. A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases

    NASA Astrophysics Data System (ADS)

    Garnero, Edward J.; Helmberger, Donald V.

    A multi-phase analysis using long-period World Wide Standardized Seismograph Network and Canadian Network data has been conducted using core-phases for deep focus events from the southwest Pacific. These include SKS, S2KS, SV diff, and SP dKS. The last phase emerges from SKS near 106° and is associated with a P-wave diffracting along the bottom of the mantle. Patterns in S2KS - SKS differential travel times ( TS2KS - SKS) correlate with those in SP dKS - SKS ( TSP dKS - SKS ). TS2KS - SKS values strongly depend on variations in VS structure in the lower third of the mantle, whereas TSP dKS - SKS values mainly depend on VP structure and variations in a thin zone (100 km or less) at the very base of the mantle. Anomalously large TS2KS - SKS and TSP dKS - SKS values (relative to the Preliminary Reference Earth Model (PREM)) are present for Fiji-Tonga and Kermadec events (recorded in North and South America), along with anomalously large SV diff amplitudes well into the core's shadow. More northerly paths beneath the Pacific to North America for Indonesian and Solomon events display both PREM-like and anomalous times. A model compatible with the observations is presented, and contains a thin very-low-velocity layer at the base of the mantle that underlies the large volumetric lower-mantle low-velocity regions in the southwest Pacific. A low-velocity layer of 20-100 km thickness with reductions of up to 5-10% (relative to PREM) can reproduce TSP dKS - SKS as well as SV diff amplitudes. Large-scale (more than 1000 km) lower-mantle VS heterogeneity (2-4%) can explain long-wavelength trends in TS2KS - SKS. The exact thickness and velocity reduction in the basal layer is uncertain, owing to difficulties in resolving whether anomalous structure occurs on the source- and/or receiver-side of wavepaths (at the CMB).

  16. A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation

    NASA Astrophysics Data System (ADS)

    Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan

    2018-01-01

    Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.

  17. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  18. The CARMENES Search for Exoplanets around M Dwarfs: A Low-mass Planet in the Temperate Zone of the Nearby K2-18

    NASA Astrophysics Data System (ADS)

    Sarkis, Paula; Henning, Thomas; Kürster, Martin; Trifonov, Trifon; Zechmeister, Mathias; Tal-Or, Lev; Anglada-Escudé, Guillem; Hatzes, Artie P.; Lafarga, Marina; Dreizler, Stefan; Ribas, Ignasi; Caballero, José A.; Reiners, Ansgar; Mallonn, Matthias; Morales, Juan C.; Kaminski, Adrian; Aceituno, Jesús; Amado, Pedro J.; Béjar, Victor J. S.; Hagen, Hans-Jürgen; Jeffers, Sandra; Quirrenbach, Andreas; Launhardt, Ralf; Marvin, Christopher; Montes, David

    2018-06-01

    K2-18 is a nearby M2.5 dwarf, located at 34 pc and hosting a transiting planet that was first discovered by the K2 mission and later confirmed with Spitzer Space Telescope observations. With a radius of ∼2 R ⊕ and an orbital period of ∼33 days, the planet lies in the temperate zone of its host star and receives stellar irradiation similar to that of Earth. Here we perform radial velocity follow-up observations with the visual channel of CARMENES with the goal of determining the mass and density of the planet. We measure a planetary semi-amplitude of K b ∼ 3.5 {{m}} {{{s}}}-1 and a mass of M b ∼ 9 M ⊕, yielding a bulk density around {ρ }b∼ 4 {{g}} {cm}}-3. This indicates a low-mass planet with a composition consistent with a solid core and a volatile-rich envelope. A signal at 9 days was recently reported using radial velocity measurements taken with the HARPS spectrograph. This was interpreted as being due to a second planet. We see a weaker, time- and wavelength-dependent signal in the CARMENES data set and thus favor stellar activity for its origin. K2-18 b joins the growing group of low-mass planets detected in the temperate zone of M dwarfs. The brightness of the host star in the near-infrared makes the system a good target for detailed atmospheric studies with the James Webb Space Telescope.

  19. Longevity of ultra-low-volume sprays of fipronil and malathion on cotton in Mexico

    Treesearch

    Joseph E. Mulrooney; K.A. Holmes; R.A. Shaw; D. Goli

    2003-01-01

    In 1996, fipronil and malathion residues were evaluated after four ultra-low-volume (ULV) spray applications in northeastern Tarnaulipas, Mexico. Sprays were applied at 0.88 L/ha. Fipronil was applied at 28 and 56 g A.I./ha and malathion at 840 g A.I./ha. Four applications were made beginning 23 May at four, five and six day intervals. Leaf surface residues of...

  20. Rayleigh-Wave Group-Velocity Tomography of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tang, Zheng; Mai, P. Martin; Chang, Sung-Joon; Zahran, Hani

    2017-04-01

    We use surface-wave tomography to investigate the lithospheric structure of the Arabian plate, which is traditionally divided into the Arabian shield in the west and the Arabian platform in the east. The Arabian shield is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks. The Arabian platform is primarily covered by very thick Paleozoic, Mesozoic and Cenozoic sediments. We develop high-resolution tomographic images from fundamental-mode Rayleigh-wave group-velocities across Saudi Arabia, utilizing the teleseismic data recorded by the permanent Saudi National Seismic Network (SNSN). Our study extends previous efforts on surface wave work by increasing ray path density and improving spatial resolution. Good quality dispersion measurements for roughly 3000 Rayleigh-wave paths have been obtained and utilized for the group-velocity tomography. We have applied the Fast Marching Surface Tomography (FMST) scheme of Rawlinson (2005) to obtain Rayleigh-wave group-velocity images for periods from 8 s to 40 s on a 0.8° 0.8° grid and at resolutions approaching 2.5° based on the checkerboard tests. Our results indicate that short-period group-velocity maps (8-15 s) correlate well with surface geology, with slow velocities delineating the main sedimentary features including the Arabian platform, the Persian Gulf and Mesopotamia. For longer periods (20-40 s), the velocity contrast is due to the differences in crustal thickness and subduction/collision zones. The lower velocities are sensitive to the thicker continental crust beneath the eastern Arabia and the subduction/collision zones between the Arabian and Eurasian plate, while the higher velocities in the west infer mantle velocity.

  1. Imaging inhomogeneous seismic velocity structure in and around the fault plane of the 2008 Iwate-Miyagi, Japan, Nairiku Earthquake (M7.2) - spatial variation in depth of seismic-aseismic transition and possible high-T/overpressurized fluid distribution

    NASA Astrophysics Data System (ADS)

    Okada, T.; Umino, N.; Hasegawa, A.; 2008 Iwate-Miyagi Nairiku Earthquake, G. O.

    2008-12-01

    A large shallow earthquake (named the 2008 Iwate-Miyagi Nairiku Earthquake) with a JMA magnitude of 7.2 occurred in the central part of NE Japan on June 14, 2008. Focal area of the present earthquake is located in the Tohoku backbone range strain concentration zone (Miura et al., 2004) along the volcanic front. Just after the occurrence of this earthquake, Japanese universities (Hokkaido, Hirosaki, Tohoku, Tokyo, Nagoya, Kyoto, Kochi, Kyusyu, Kagoshima) and NIED deployed a dense aftershock observation network in and around the focal area. Total number of temporal stations is 128. Using data from this dense aftershock observation and other temporary and routinely operated stations, we estimate hypocenter distribution and seismic velocity structure of the crust in and around the focal area of the present earthquake. We determined three-dimensional seismic velocity structure and relocated hypocenters simultaneously using the double- difference tomography method (Zhang and Thurber, 2003). Spatial extent of the aftershock area is about 45 km (NNE-SSW) by 15 km (WNW-ESE). Most of aftershocks are aligned in westward dipping. Shallower extensions of aftershock alignments seem to be located nearly at the coseismic surface deformations, which are along a geological fault, and the surface trace of the active fault (Detana fault). Note that some aftershocks seem to occur off the fault plane of the mainshock. The focal area of the present earthquake is located at a high Vs area. In the lower crust, we found some distinct low-Vs areas. These low velocity zones are located just beneath the strain concentration zones / seismic belts along the backbone range and in the northern Miyagi region. Focal area of the present earthquake is also located just above the low velocity zone in the lower crust. Beneath active volcanoes, these low velocity zones become more distinct and shallower, and aftershocks tend to occur shallower and not occur within such low-velocity zones. These low-velocity

  2. Cenozoic volcanism in the Bohemian Massif in the context of P- and S-velocity high-resolution teleseismic tomography of the upper mantle

    NASA Astrophysics Data System (ADS)

    Plomerová, Jaroslava; Munzarová, Helena; Vecsey, Luděk.; Kissling, Eduard; Achauer, Ulrich; Babuška, Vladislav

    2016-08-01

    New high-resolution tomographic models of P- and S-wave isotropic-velocity perturbations for the Bohemian upper mantle are estimated from carefully preprocessed travel-time residuals of teleseismic P, PKP and S waves recorded during the BOHEMA passive seismic experiment. The new data resolve anomalies with scale lengths 30-50 km. The models address whether a small mantle plume in the western Bohemian Massif is responsible for this geodynamically active region in central Europe, as expressed in recurrent earthquake swarms. Velocity-perturbations of the P- and S-wave models show similar features, though their resolutions are different. No model resolves a narrow subvertical low-velocity anomaly, which would validate the "baby-plume" concept. The new tomographic inferences complement previous studies of the upper mantle beneath the Bohemian Massif, in a broader context of the European Cenozoic Rift System (ECRIS) and of other Variscan Massifs in Europe. The low-velocity perturbations beneath the Eger Rift, observed in about 200km-broad zone, agree with shear-velocity models from full-waveform inversion, which also did not identify a mantle plume beneath the ECRIS. Boundaries between mantle domains of three tectonic units that comprise the region, determined from studies of seismic anisotropy, represent weak zones in the otherwise rigid continental mantle lithosphere. In the past, such zones could have channeled upwelling of hot mantle material, which on its way could have modified the mantle domain boundaries and locally thinned the lithosphere.

  3. Consumers' conceptualization of ultra-processed foods.

    PubMed

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy

    2012-12-28

    A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed). Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Nanofabrication of ultra-low reflectivity black silicon surfaces and devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    White, Victor E.; Yee, Karl Y.; Balasubramanian, Kunjithapatham; Echternach, Pierre M.; Muller, Richard E.; Dickie, Matthew R.; Cady, Eric; Ryan, Daniel J.; Eastwood, Michael; van Gorp, Byron; Riggs, A. J. Eldorado; Zimmerman, Niel; Kasdin, N. Jeremy

    2015-08-01

    Optical devices with features exhibiting ultra low reflectivity on the order of 10-7 specular reflectance in the visible spectrum are required for coronagraph instruments and some spectrometers employed in space research. Nanofabrication technologies have been developed to produce such devices with various shapes and feature dimensions to meet these requirements. Infrared reflection is also suppressed significantly with chosen wafers and processes. Particularly, devices with very high (>0.9) and very low reflectivity (<10-7) on adjacent areas have been fabricated and characterized. Significantly increased surface area due to the long needle like nano structures also provides some unique applications in other technology areas. We present some of the approaches, challenges and achieved results in producing and characterizing such devices currently employed in laboratory testbeds and instruments.

  6. Collision of Dual Aggregates (CODA): Experimental observations of low-velocity collisions

    NASA Astrophysics Data System (ADS)

    Jorges, Jeffery; Dove, Adrienne; Colwell, Josh E.

    2016-10-01

    Low-velocity collisions are one of the driving factors that determine the particle size distribution and particle size evolution in planetary ring systems and in the early stages of planet formation. Collisions of sub-micron to decimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. Numerical simulations of these systems are limited by a need to understand these collisional parameters over a range of conditions. We present the results of a sequence of laboratory experiments designed to explore collisions over a range of parameter space . We are able to observe low-velocity collisions by conducting experiments in vacuum chambers in our 0.8-sec drop tower apparatus. Initial experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are "mantled" - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. We track the particles to determine impactor speeds before and after collision, the impact parameter, and the collisional outcome. In the case of the mantled impactors, we can assess how much rotation is generated by the collision and estimate how much powder is released (i.e. how much mass is lost) due to the collision. We also determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. With impact velocities ranging from about 20-100 cm/s we observe that mantling of particles significantly reduces their coefficients of restitution, but we see basically no dependence of the coefficient of restitution on the impact velocity, impact parameter, or system mass. The results of this study will contribute to a better empirical model of collisional outcomes that will be refined with numerical simulation of the

  7. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7more » Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.« less

  8. Towards a Detailed Seismic Structure of the Valley of Mexico's Xochimilco Lake Zone.

    NASA Astrophysics Data System (ADS)

    Rabade, S.; Sanchez-Sanchez, J.; Ayala Hernandez, M.; Macias, M. A.; Aguilar Calderon, L. A.; Alcántara, L.; Almora Mata, D.; Castro Parra, G.; Delgado, R.; Leonardo Suárez, M.; Molina Avila, I.; Mora, A.; Perez-Yanez, C.; Ruiz, A. L.; Sandoval, H.; Torres Noguez, M.; Vazquez Larquet, R.; Velasco Miranda, J. M.; Aguirre, J.; Ramirez-Guzmán, L.

    2017-12-01

    Six centuries of gradual, intentional sediment filling in the Xochimilco Lake Zone have drastically reduced the size of the lake. The basin structure and the lake's clay limits and thickness are poorly constrained, and yet, essential to explain the city's anomalous ground motion. Therefore, we conducted an experiment to define the 3D velocity model of Mexico's capital; the CDMX-E3D. The initial phase involved the deployment of a moving set of 18-broadband stations with an interstation distance of 500m over a period of 19 weeks. We collected the data and analyzed the results for the Xochimilco Lake Zone using H/V Spectral Ratios (Nakamura, 1989), which provided an improved fundamental period map of the region. Results show that periods in the former lake zone have larger variability than values previously estimated. In order to obtain group velocity maps at different periods, we estimated Green's functions from ambient noise cross-correlations following standard methodologies to invert Rayleigh wave travel times (Bensen et al., 2007). Preliminary result show very low-velocity zones (100 m/s) and thick sediment layers in most of the former Xochimilco Lake area. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  9. Coseismic microstructures of experimental fault zones in Carrara marble

    NASA Astrophysics Data System (ADS)

    Ree, Jin-Han; Ando, Jun-ichi; Han, Raehee; Shimamoto, Toshihiko

    2014-09-01

    Experimental fault zones developed in Carrara marble that were deformed at seismic slip rates (1.18-1.30 m s-1) using a high-velocity-rotary-shear apparatus exhibit very low friction (friction coefficient as low as 0.06) at steady state due to nanoparticle lubrication of the decomposition product (lime). The fault zones show a layered structure; a central slip-localization layer (5-60 μm thick) of lime nanograins mantled by gouge layers (5-150 μm thick) and a plastically deformed layer (45-500 μm thick) between the wall rock and gouge layer in the marginal portion of cylindrical specimens. Calcite grains of the wall rock adjacent to the slip zone deform by dislocation glide when subjected to frictional heating and a lower strain rate than that of the principal slip zone. The very fine (2-5 μm) calcite grains in the gouge layer show a foam structure with relatively straight grain boundaries and 120° triple junctions. This foam structure is presumed to develop by welding at high temperature and low strain once slip is localized along the central layer. We suggest that a seismic event can be inferred from deformed marbles, given: (i) the presence of welded gouge with foam structure in a fault zone where wall rocks show no evidence of thermal metamorphism and (ii) a thin plastically deformed layer immediately adjacent to the principal slip zone of a cataclastic fault zone.

  10. Velocity Measurement Systems for a Low-speed Wind Tunnel

    DTIC Science & Technology

    2015-04-29

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 wind tunnel PIV hot wire particle image velocimetry REPORT DOCUMENTATION PAGE 11. SPONSOR...Velocity Measurement Systems for a Low-speed Wind Tunnel Report Title Funds were provided by the ARO for the purchase of TSI hot- wire anemometer equipment...implemented. In the summer of 2011, the focus of the summer camp was on wind turbines , and for the last two summers, the STEM outreach camp has studied

  11. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    USGS Publications Warehouse

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  12. Radiative transfer theory for a random distribution of low velocity spheres as resonant isotropic scatterers

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Hayakawa, Toshihiko

    2014-10-01

    Short-period seismograms of earthquakes are complex especially beneath volcanoes, where the S wave mean free path is short and low velocity bodies composed of melt or fluid are expected in addition to random velocity inhomogeneities as scattering sources. Resonant scattering inherent in a low velocity body shows trap and release of waves with a delay time. Focusing of the delay time phenomenon, we have to consider seriously multiple resonant scattering processes. Since wave phases are complex in such a scattering medium, the radiative transfer theory has been often used to synthesize the variation of mean square (MS) amplitude of waves; however, resonant scattering has not been well adopted in the conventional radiative transfer theory. Here, as a simple mathematical model, we study the sequence of isotropic resonant scattering of a scalar wavelet by low velocity spheres at low frequencies, where the inside velocity is supposed to be low enough. We first derive the total scattering cross-section per time for each order of scattering as the convolution kernel representing the decaying scattering response. Then, for a random and uniform distribution of such identical resonant isotropic scatterers, we build the propagator of the MS amplitude by using causality, a geometrical spreading factor and the scattering loss. Using those propagators and convolution kernels, we formulate the radiative transfer equation for a spherically impulsive radiation from a point source. The synthesized MS amplitude time trace shows a dip just after the direct arrival and a delayed swelling, and then a decaying tail at large lapse times. The delayed swelling is a prominent effect of resonant scattering. The space distribution of synthesized MS amplitude shows a swelling near the source region in space, and it becomes a bell shape like a diffusion solution at large lapse times.

  13. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less

  14. Detailed p- and s-wave velocity models along the LARSE II transect, Southern California

    USGS Publications Warehouse

    Murphy, J.M.; Fuis, G.S.; Ryberg, T.; Lutter, W.J.; Catchings, R.D.; Goldman, M.R.

    2010-01-01

    Structural details of the crust determined from P-wave velocity models can be improved with S-wave velocity models, and S-wave velocities are needed for model-based predictions of strong ground motion in southern California. We picked P- and S-wave travel times for refracted phases from explosive-source shots of the Los Angeles Region Seismic Experiment, Phase II (LARSE II); we developed refraction velocity models from these picks using two different inversion algorithms. For each inversion technique, we calculated ratios of P- to S-wave velocities (VP/VS) where there is coincident P- and S-wave ray coverage.We compare the two VP inverse velocity models to each other and to results from forward modeling, and we compare the VS inverse models. The VS and VP/VS models differ in structural details from the VP models. In particular, dipping, tabular zones of low VS, or high VP/VS, appear to define two fault zones in the central Transverse Ranges that could be parts of a positive flower structure to the San Andreas fault. These two zones are marginally resolved, but their presence in two independent models lends them some credibility. A plot of VS versus VP differs from recently published plots that are based on direct laboratory or down-hole sonic measurements. The difference in plots is most prominent in the range of VP = 3 to 5 km=s (or VS ~ 1:25 to 2:9 km/s), where our refraction VS is lower by a few tenths of a kilometer per second from VS based on direct measurements. Our new VS - VP curve may be useful for modeling the lower limit of VS from a VP model in calculating strong motions from scenario earthquakes.

  15. Low cost and thin metasurface for ultra wide band and wide angle polarization insensitive radar cross section reduction

    NASA Astrophysics Data System (ADS)

    Ameri, Edris; Esmaeli, Seyed Hassan; Sedighy, Seyed Hassan

    2018-05-01

    A planar low cost and thin metasurface is proposed to achieve ultra-wideband radar cross section (RCS) reduction with stable performance with respect to polarization and incident angles. This metasurface is composed of two different artificial magnetic conductor unit cells arranged in a chessboard like configuration. These unit cells have a Jerusalem cross pattern with different thicknesses, which results in wideband out-phase reflection and RCS reduction, consequently. The designed metasurface reduces RCS more than 10-dB from 13.6 GHz to 45.5 GHz (108% bandwidth) and more than 20-dB RCS from 15.2 GHz to 43.6 GHz (96.6%). Moreover, the 10-dB RCS reduction bandwidth is very stable (more than 107%) for both TE and TM polarizations. The good agreement between simulations and measurement results proves the design, properly. The ultra-wide bandwidth, low cost, low profile, and stable performance of this metasurface prove its high capability compared with the state-of-the-art references.

  16. Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions

    NASA Astrophysics Data System (ADS)

    Wu, Zhenbo; Xu, Tao; Liang, Chuntao; Wu, Chenglong; Liu, Zhiqiang

    2018-03-01

    The northeastern (NE) Tibet records and represents the far-field deformation response of the collision between the Indian and Eurasian plates in the Cenozoic time. Over the past two decades, studies have revealed the existence of thickened crust in the NE Tibet, but the thickening mechanism is still in debate. We deployed a passive-source seismic profile with 22 temporary broad-band seismic stations in the NE Tibet to investigate the crustal shear wave velocity structure in this region. We selected 288 teleseismic events located in the west Pacific subduction zone near Japan with similar ray path to calculate P-wave receiver functions. Neighbourhood algorithm method is applied to invert the shear wave velocity beneath stations. The inversion result shows a low-velocity zone (LVZ) is roughly confined to the Songpan-Ganzi block and Kunlun mountains and extends to the southern margin of Gonghe basin. Considering the low P-wave velocity revealed by the wide-angle reflection-refraction seismic experiment and high ratio of Vp/Vs based on H-κ grid searching of the receiver functions in this profile, LVZ may be attributed to partial melting induced by temperature change. This observation appears to be consistent with the crustal ductile deformation in this region derived from other geophysical investigations.

  17. Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.

    2016-11-01

    We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

  18. Quasi-Tangency Points on the Orbits of a Small Body and a Planet at the Low-Velocity Encounter

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2018-03-01

    We propose a method for selecting a low-velocity encounter of a small body with a planet from the evolution of the orbital elements. Polar orbital coordinates of the quasi-tangency point on the orbit of a small body are determined. Rectangular heliocentric coordinates of the quasi-tangency point on the orbit of a planet are determined. An algorithm to search for low-velocity encounters in the evolution of the orbital elements of small bodies is described. The low-velocity encounter of comet 39P/Oterma with Jupiter is considered as an example.

  19. Role of H2O in Generating Subduction Zone Earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.

    2017-03-01

    A dense nationwide seismic network and high seismic activity in Japan have provided a large volume of high-quality data, enabling high-resolution imaging of the seismic structures defining the Japanese subduction zones. Here, the role of H2O in generating earthquakes in subduction zones is discussed based mainly on recent seismic studies in Japan using these high-quality data. Locations of intermediate-depth intraslab earthquakes and seismic velocity and attenuation structures within the subducted slab provide evidence that strongly supports intermediate-depth intraslab earthquakes, although the details leading to the earthquake rupture are still poorly understood. Coseismic rotations of the principal stress axes observed after great megathrust earthquakes demonstrate that the plate interface is very weak, which is probably caused by overpressured fluids. Detailed tomographic imaging of the seismic velocity structure in and around plate boundary zones suggests that interplate coupling is affected by local fluid overpressure. Seismic tomography studies also show the presence of inclined sheet-like seismic low-velocity, high-attenuation zones in the mantle wedge. These may correspond to the upwelling flow portion of subduction-induced secondary convection in the mantle wedge. The upwelling flows reach the arc Moho directly beneath the volcanic areas, suggesting a direct relationship. H2O originally liberated from the subducted slab is transported by this upwelling flow to the arc crust. The H2O that reaches the crust is overpressured above hydrostatic values, weakening the surrounding crustal rocks and decreasing the shear strength of faults, thereby inducing shallow inland earthquakes. These observations suggest that H2O expelled from the subducting slab plays an important role in generating subduction zone earthquakes both within the subduction zone itself and within the magmatic arc occupying its hanging wall.

  20. Calibration of ultra-low infrared power at NIST

    NASA Astrophysics Data System (ADS)

    Woods, Solomon I.; Carr, Stephen M.; Carter, Adriaan C.; Jung, Timothy M.; Datla, Raju U.

    2010-07-01

    The Low Background Infrared (LBIR) facility has developed and tested the components of a new detector for calibration of infrared greater than 1 pW, with 0.1 % uncertainty. Calibration of such low powers could be valuable for the quantitative study of weak astronomical sources in the infrared. The pW-ACR is an absolute cryogenic radiometer (ACR) employing a high resolution transition edge sensor (TES) thermometer, ultra-weak thermal link and miniaturized receiver to achieve a noise level of around 1 fW at a temperature of 2 K. The novel thermometer employs the superconducting transition of a tin (Sn) core and has demonstrated a temperature noise floor less than 3 nK/Hz1/2. Using an applied magnetic field from an integrated solenoid to suppress the Sn transition temperature, the operating temperature of the thermometer can be tuned to any temperature below 3.6 K. The conical receiver is coated on the inside with infrared-absorbing paint and has a demonstrated absorptivity of 99.94 % at 10.6 μm. The thermal link is made from a thin-walled polyimide tube and has exhibited very low thermal conductance near 2x10-7 W/K. In tests with a heater mounted on the receiver, the receiver/thermal-link assembly demonstrated a thermal time constant of about 15 s. Based on these experimental results, it is estimated that an ACR containing these components can achieve noise levels below 1 fW, and the design of a radiometer merging the new thermometer, receiver and thermal link will be discussed.

  1. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.

    PubMed

    Crain, Stanley M; Shen, Ke-Fei

    2008-09-22

    Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related

  2. Ignition of steel alloys by impact of low-velocity iron/inert particles in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Benz, Frank J.; Mcilroy, Kenneth; Williams, Ralph E.

    1988-01-01

    The ignition of carbon steel and 316 and 304 stainless steels caused by the impact of low-velocity particles (a standard mixture consisting of 2 g of iron and 3 g of inert materials) in gaseous oxygen was investigated using NASA/White Sands Test Facility for the ignition test, and a subsonic particle impact chamber to accelerate the particles that were injected into flowing oxygen upstream of the target specimen. It was found that the oxygen velocities required to ignite the three alloys were the same as that required to ignite the particle mixture. Ignition occurred at oxygen velocities greater than 45 m/sec at 20 to 24 MPa and was found to be independent of pressure between 2 and 30 MPa. Comparison of the present results and the past results from Wegener (1964) with the Compressed Gas Association (CGA) oxygen velocity limits for safe operations indicates that the CGA limits may be excessively conservative at high pressures and too liberal at low pressures.

  3. Ultra-low noise optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Ayotte, Simon; Babin, André; Costin, François

    2014-03-01

    The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.

  4. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery.

    PubMed

    Senft, Christian; Seifert, Volker; Hermann, Elvis; Franz, Kea; Gasser, Thomas

    2008-10-01

    The aim of this study was to demonstrate the usefulness of a mobile, intraoperative 0.15-T magnetic resonance imaging (MRI) scanner in glioma surgery. We analyzed our prospectively collected database of patients with glial tumors who underwent tumor resection with the use of an intraoperative ultra low-field MRI scanner (PoleStar N-20; Odin Medical Technologies, Yokneam, Israel/Medtronic, Louisville, CO). Sixty-three patients with World Health Organization Grade II to IV tumors were included in the study. All patients were subjected to postoperative 1.5-T imaging to confirm the extent of resection. Intraoperative image quality was sufficient for navigation and resection control in both high- and low-grade tumors. Primarily enhancing tumors were best detected on T1-weighted imaging, whereas fluid-attenuated inversion recovery sequences proved best for nonenhancing tumors. Intraoperative resection control led to further tumor resection in 12 (28.6%) of 42 patients with contrast-enhancing tumors and in 10 (47.6%) of 21 patients with noncontrast-enhancing tumors. In contrast-enhancing tumors, further resection led to an increased rate of complete tumor resection (71.2 versus 52.4%), and the surgical goal of gross total removal or subtotal resection was achieved in all cases (100.0%). In patients with noncontrast-enhancing tumors, the surgical goal was achieved in 19 (90.5%) of 21 cases, as intraoperative MRI findings were inconsistent with postoperative high-field imaging in 2 cases. The use of the PoleStar N-20 intraoperative ultra low-field MRI scanner helps to evaluate the extent of resection in glioma surgery. Further tumor resection after intraoperative scanning leads to an increased rate of complete tumor resection, especially in patients with contrast-enhancing tumors. However, in noncontrast- enhancing tumors, the intraoperative visualization of a complete resection seems less specific, when compared with postoperative 1.5-T MRI.

  5. MBus: An Ultra-Low Power Interconnect Bus for Next Generation Nanopower Systems

    PubMed Central

    Pannuto, Pat; Lee, Yoonmyung; Kuo, Ye-Sheng; Foo, ZhiYoong; Kempke, Benjamin; Kim, Gyouho; Dreslinski, Ronald G.; Blaauw, David; Dutta, Prabal

    2015-01-01

    As we show in this paper, I/O has become the limiting factor in scaling down size and power toward the goal of invisible computing. Achieving this goal will require composing optimized and specialized—yet reusable—components with an interconnect that permits tiny, ultra-low power systems. In contrast to today’s interconnects which are limited by power-hungry pull-ups or high-overhead chip-select lines, our approach provides a superset of common bus features but at lower power, with fixed area and pin count, using fully synthesizable logic, and with surprisingly low protocol overhead. We present MBus, a new 4-pin, 22.6 pJ/bit/chip chip-to-chip interconnect made of two “shoot-through” rings. MBus facilitates ultra-low power system operation by implementing automatic power-gating of each chip in the system, easing the integration of active, inactive, and activating circuits on a single die. In addition, we introduce a new bus primitive: power oblivious communication, which guarantees message reception regardless of the recipient’s power state when a message is sent. This disentangles power management from communication, greatly simplifying the creation of viable, modular, and heterogeneous systems that operate on the order of nanowatts. To evaluate the viability, power, performance, overhead, and scalability of our design, we build both hardware and software implementations of MBus and show its seamless operation across two FPGAs and twelve custom chips from three different semiconductor processes. A three-chip, 2.2 mm3 MBus system draws 8 nW of total system standby power and uses only 22.6 pJ/bit/chip for communication. This is the lowest power for any system bus with MBus’s feature set. PMID:26855555

  6. Observations of velocity shear driven plasma turbulence

    NASA Technical Reports Server (NTRS)

    Kintner, P. M., Jr.

    1976-01-01

    Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.

  7. Mantle transition zone structure and upper mantle S velocity variations beneath Ethiopia: Evidence for a broad, deep-seated thermal anomaly

    NASA Astrophysics Data System (ADS)

    Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham

    2006-11-01

    Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the mantle, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper mantle beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper mantle (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper mantle temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower mantle. Such a broad thermal upwelling could be part of the African Superplume found in the lower mantle beneath southern Africa.

  8. [An ultra-low power, wearable, long-term ECG monitoring system with mass storage].

    PubMed

    Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai

    2012-01-01

    In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.

  9. Three-dimensional distribution of random velocity inhomogeneities at the Nankai trough seismogenic zone

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kaiho, Y.; Kodaira, S.; Kaneda, Y.

    2012-12-01

    The Nankai trough in southwestern Japan is a convergent margin where the Philippine sea plate is subducted beneath the Eurasian plate. There are major faults segments of huge earthquakes that are called Tokai, Tonankai and Nankai earthquakes. According to the earthquake occurrence history over the past hundreds years, we must expect various rupture patters such as simultaneous or nearly continuous ruptures of plural fault segments. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted seismic surveys at Nankai trough in order to clarify mutual relations between seismic structures and fault segments, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. This study evaluated the spatial distribution of random velocity inhomogeneities from Hyuga-nada to Kii-channel by using velocity seismograms of small and moderate sized earthquakes. Random velocity inhomogeneities are estimated by the peak delay time analysis of S-wave envelopes (e.g., Takahashi et al. 2009). Peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This quantity mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities, and is quite insensitive to the inelastic attenuation. Peak delay times are measured from the rms envelopes of horizontal components at 4-8Hz, 8-16Hz and 16-32Hz. This study used the velocity seismograms that are recorded by 495 ocean bottom seismographs and 378 onshore seismic stations. Onshore stations are composed of the F-net and Hi-net stations that are maintained by National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. It is assumed that the random inhomogeneities are represented by the von Karman type PSDF. Preliminary result of inversion analysis shows that spectral gradient of PSDF (i.e., scale dependence of

  10. From pebbles to dust: experiments to observe low-velocity collisional outcomes

    NASA Astrophysics Data System (ADS)

    Dove, A.; Jorges, J.; Colwell, J. E.

    2015-12-01

    Particle size evolution in planetary ring systems can be driven by collisions at relatively low velocities (<1 m/s) occurring between objects with a range of sizes from very fine dust to decimeter-sized objects. In these complex systems, collisions between centimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. The outcomes of these collisions are dependent on factors such as collisional energy, particle size, and particle morphology. Numerical simulations are limited by a need to understand these collisional parameters over a range of conditions. We present the results of a sequence of laboratory experiments designed to explore collisions over a range of these parameters. We are able to observe low-velocity collisions by conducting experiments in vacuum chambers in our 0.8-sec drop tower apparatus. Initial experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are "mantled" - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. These videos are then processed and we track the particles to determine impactor speeds before and after collision and the collisional outcome; in the case of the mantled impactors, we can assess how much of the powder was released in the collision. We also determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. Impact velocities range from about 20-60 cm/s, and we observe that mantling of particles significantly reduces their coefficients of restitution. These results will contribute to an empirical model of collisional outcomes that can help refine our understanding of dusty ring system collisional evolution.

  11. Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Khosropanah, P.; Suzuki, T.; Ridder, M. L.; Hijmering, R. A.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Gao, J. R.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.

  12. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  13. Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty.

    PubMed

    Salemyr, Mats; Muren, Olle; Ahl, Torbjörn; Bodén, Henrik; Eisler, Thomas; Stark, André; Sköldenberg, Olof

    2015-01-01

    We hypothesized that an ultra-short stem would load the proximal femur in a more physiological way and could therefore reduce the adaptive periprosthetic bone loss known as stress shielding. 51 patients with primary hip osteoarthritis were randomized to total hip arthroplasty (THA) with either an ultra-short stem or a conventional tapered stem. The primary endpoint was change in periprosthetic bone mineral density (BMD), measured with dual-energy x-ray absorptiometry (DXA), in Gruen zones 1 and 7, two years after surgery. Secondary endpoints were change in periprosthetic BMD in the entire periprosthetic region, i.e. Gruen zones 1 through 7, stem migration measured with radiostereometric analysis (RSA), and function measured with self-administered functional scores. The periprosthetic decrease in BMD was statistically significantly lower with the ultra-short stem. In Gruen zone 1, the mean difference was 18% (95% CI: -27% to -10%). In zone 7, the difference was 5% (CI: -12% to -3%) and for Gruen zones 1-7 the difference was also 5% (CI: -9% to -2%). During the first 6 weeks postoperatively, the ultra-short stems migrated 0.77 mm more on average than the conventional stems. 3 months after surgery, no further migration was seen. The functional scores improved during the study and were similar in the 2 groups. Up to 2 years after total hip arthroplasty, compared to the conventional tapered stem the ultra-short uncemented anatomical stem induced lower periprosthetic bone loss and had equally excellent stem fixation and clinical outcome.

  14. Ultra-stripped supernovae: progenitors and fate

    NASA Astrophysics Data System (ADS)

    Tauris, Thomas M.; Langer, Norbert; Podsiadlowski, Philipp

    2015-08-01

    LIGO/VIRGO since most (possibly all) merging double NS systems have evolved through this phase. Finally, we discuss the low-velocity kicks which might be imparted on these resulting NSs at birth.

  15. Perineal pseudocontinent colostomy for ultra-low rectal adenocarcinoma: the muscular graft as a pseudosphincter.

    PubMed

    Souadka, Amine; Majbar, Mohammed Anass; Amrani, Laila; Souadka, Abdelilah

    2016-10-01

    The aim of this study was to analyze objectively the role of the muscular graft in the continence using manometric study in the patients who underwent pseudocontinent perineal colostomy after abdominoperineal resection for rectal adenocarcinoma. This was a retrospective study including all the patients from January 2002 to December 2009 who underwent an abdominoperineal resection followed by perineal pseudocontinent colostomy for ultra-low rectal adenocarcinoma and agreed to perform the manometric evaluation of the muscular graft. Fifteen patients were included, six males and nine females, with a mean age of 50 years. According to Kirwan's classification, 2 (13.3%) patients had normal continence (Stage A) had 10 (66.6%) no soiling (stage B) and 3 (20%) patients had minimal soiling (Stage C). The manometric evaluation was performed after a median period of 12 months post-surgery. The mean maximal resting and squeeze pressures were respectively 41 cmH2O and 59 cmH2O and the mean colonic sensory volume was 12 ml. This study showed that the musculae graft of Pseudocontinent Perineal colostomy acted as a hypotonic sphincter that pressure can increase during the voluntary squeeze. These data may help to clarify the functional outcomes of this technique after APR for ultra-low rectal adenocarcinoma.

  16. Ultra-low-power and robust digital-signal-processing hardware for implantable neural interface microsystems.

    PubMed

    Narasimhan, S; Chiel, H J; Bhunia, S

    2011-04-01

    Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.

  17. Effect of ultra-low doses, ASIR and MBIR on density and noise levels of MDCT images of dental implant sites.

    PubMed

    Widmann, Gerlig; Al-Shawaf, Reema; Schullian, Peter; Al-Sadhan, Ra'ed; Hörmann, Romed; Al-Ekrish, Asma'a A

    2017-05-01

    Differences in noise and density values in MDCT images obtained using ultra-low doses with FBP, ASIR, and MBIR may possibly affect implant site density analysis. The aim of this study was to compare density and noise measurements recorded from dental implant sites using ultra-low doses combined with FBP, ASIR, and MBIR. Cadavers were scanned using a standard protocol and four low-dose protocols. Scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Density (mean Hounsfield units [HUs]) of alveolar bone and noise levels (mean standard deviation of HUs) was recorded from all datasets and measurements were compared by paired t tests and two-way ANOVA with repeated measures. Significant differences in density and noise were found between the reference dose/FBP protocol and almost all test combinations. Maximum mean differences in HU were 178.35 (bone kernel) and 273.74 (standard kernel), and in noise, were 243.73 (bone kernel) and 153.88 (standard kernel). Decreasing radiation dose increased density and noise regardless of reconstruction technique and kernel. The effect of reconstruction technique on density and noise depends on the reconstruction kernel used. • Ultra-low-dose MDCT protocols allowed more than 90 % reductions in dose. • Decreasing the dose generally increased density and noise. • Effect of IRT on density and noise varies with reconstruction kernel. • Accuracy of low-dose protocols for interpretation of bony anatomy not known. • Effect of low doses on accuracy of computer-aided design models unknown.

  18. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    NASA Astrophysics Data System (ADS)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (<2 Hz) arrivals. This dispersion has been attributed to low velocity structure within the subducting Nazca plate which acts as a waveguide, retaining and delaying high frequency energy. Full waveform modelling shows that the single LVL proposed by previous studies does not produce the first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic

  19. Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng

    2016-05-01

    Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).

  20. Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels

    USGS Publications Warehouse

    Laenen, Antonius; Curtis, R. E.

    1989-01-01

    Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)