Sample records for ultra-primitive interplanetary dust

  1. Clay minerals in primitive meteorites and interplanetary dust 1

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  2. Cometary dust: the diversity of primitive refractory grains

    PubMed Central

    Ishii, H. A.

    2017-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium–aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554979

  3. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.

    PubMed

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank

    2008-01-25

    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  4. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  5. Analytical electron microscopy of fine-grained phases in primitive interplanetary dust particles and carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Mackinnon, Ian D. R.; Rietmeijer, Frans J. M.; Mckay, David S.

    1987-01-01

    In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a variety of AEM techniques. Identification of over 250 individual grains within one chondritic porous (CP) IDP shows that most phases could be formed by low temperature processes and that heating of the IDP during atmospheric entry is minimal and less than 600 C. In a review of the mineralogy of IDPs, it was suggested that the occurrence of other silicates such as enstatite whiskers is consistent with the formation in an early turbulent period of the solar nebula. Experimental confirmation of fundamental chemical and physical processes in a stellar environment, such as vapor phase condensation, nucleation, and growth by annealing, is an important aspect of astrophysical models for the evolution of the Solar System. A detailed comparison of chondritic IDP and carbonaceous chondrite mineralogies shows significant differences between the types of silicate minerals as well as the predominant oxides.

  6. On the origin of extraterrestrial stratospheric particles: Interplanetary dust or meteor ablation debris?. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.

    1977-01-01

    Meteor ablation debris was distinguished from unablated interplanetary dust in a collection of extraterrestrial particles collected in the stratosphere using NASA U-2 aircraft. A 62 g sample of the Murchison (C2) meteorite was artificially ablated to characterize ablation debris for comparison with the stratospheric particles. By using proper experimental conditions, artificial ablation debris can be produced that is similar to natural ablation debris. Analyses of natural fusion crusts, artificial fusion crust, and artificial ablation debris of the Murchison meteorite produced criteria for recognizing debris ablated by a primitive meteoroid. Ninety-five percent of the stratospheric particles can be described as either ablation debris from a primitive meteoroid, or as very primitive interplanetary dust.

  7. Comet Dust: The Diversity of "Primitive" Particles and Implications

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  8. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  9. Interplanetary dust - Trace element analysis of individual particles by neutron activation

    NASA Technical Reports Server (NTRS)

    Ganapathy, R.; Brownlee, D. E.

    1979-01-01

    Although micrometeorites of cometary origin are thought to be the dominant component of interplanetary dust, it has never been possible to positively identify such micrometer-sized particles. Two such particles have been identified as definitely micrometeorites since their abundances of volatile and nonvolatile trace elements closely match those of primitive solar system material.

  10. Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter

    NASA Astrophysics Data System (ADS)

    Flynn, George

    Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results

  11. The Nature and Origin of Interplanetary Dust: High Temperature Components

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2004-01-01

    The specific parent bodies of individual interplanetary dust particles (IDPs) are un-known, but the anhydrous chondritic-porous (CP) sub-set has been linked directly to cometary sources [1]. The CP IDPs escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. Their origin in the outer regions of the solar system suggests they should retain primitive chemical and physical characteristics from the earliest stages of solar system formation (including abundant presolar materials). Indeed, CP IDPs are the most primitive extraterrestrial materials available for laboratory studies based on their unequilibrated mineralogy [2], high concentrations of carbon, nitrogen and volatile trace elements relative to CI chondrites [3, 4, 5], presolar hydrogen and nitrogen isotopic signatures [6, 7] and abundant presolar silicates [8].

  12. Interstellar chemistry recorded in organic matter from primitive meteorites.

    PubMed

    Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R

    2006-05-05

    Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.

  13. Synchrotron FTIR Examination of Interplanetary Dust Particles: An Effort to Determine the Compounds and Minerals in Interstellar and Circumstellar Dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2002-01-01

    Some interplanetary dust particles (IDPs), collected by NASA from the Earth's stratosphere, are the most primitive extraterrestrial material available for laboratory analysis. Many exhibit isotopic anomalies in H, N, and O, suggesting they contain preserved interstellar matter. We report the preliminary results of a comparison of the infrared absorption spectra of subunits of the IDPs with astronomical spectra of interstellar grains.

  14. Organic matter on the early surface of Mars: An assessment of the contribution by interplanetary dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.

    1993-01-01

    Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.

  15. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  16. Nitrogen Isotopic Anomalies in a Hydrous Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Smith, J. B.; Dai, Z. R.; Weber, P. K.; Graham, G. A.; Hutcheon, I. D.; Bajt, S.; Ishii, H.; Bradley, J. P.

    2005-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere are the fine-grained end member (5 - 50 microns in size) of the meteoritic material available for investigation in the laboratory. IDPs are derived from either cometary or asteroidal sources. Some IDPs contain cosmically primitive materials with isotopic signatures reflecting presolar origins. Recent detailed studies using the NanoSIMS have shown there is a wide variation of isotopic signatures within individual IDPs; grains with a presolar signature have been observed surrounded by material with a solar isotopic composition. The majority of IDPs studied have been anhydrous. We report here results from integrated NanoSIMS/FIB/TEM/Synchrotron IR studies of a hydrous IDP, focused on understanding the correlations between the isotopic, mineralogical and chemical compositions of IDPs.

  17. Interplanetary dust. [survey of last four years' research

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1979-01-01

    Progress in the study of interplanetary dust during the past four years is reviewed. Attention is given to determinations of the relative contributions of interstellar dust grains, collisional debris from the asteroid belt and short-period comets to the interplanetary dust cloud. Effects of radiation pressure and collisions on particle dynamics are discussed, noting the discovery of the variation of the orbital parameters of dust particles at 1 AU with size and in situ measurements of dust density between 0.3 and 5 AU by the Helios and Pioneer spacecraft. The interpretation of the zodiacal light as produced by porous absorbing particles 10 to 100 microns in size is noted, and measurements of the Doppler shift, light-producing-particle density, UV spectrum, photometric axis and angular scattering function of the zodiacal light are reported. Results of analyses of lunar rock microcraters as to micrometeoroid density, flux rate, size distribution and composition are indicated and interplanetary dust particles collected from the stratosphere are discussed. Findings concerning the composition of fragile meteoroid types found as cosmic spherules in deep sea sediments are also presented.

  18. Zodiacal light as an indicator of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.; Sparrow, J. G.

    1978-01-01

    The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.

  19. Infrared Spectroscopy of Anhydrous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Flynn, G. J.

    2003-01-01

    Infrared (IR) spectroscopy is the primary means of mineralogical analysis of materials outside our solar system. The identity and properties of circumstellar grains are inferred from spectral comparisons between astronomical observations and laboratory data from natural and synthetic materials. These comparisons have been facilitated by the Infrared Space Observatory (ISO), which obtained IR spectra from numerous astrophysical objects over a wide spectral range (out to 50/cm) where crystalline silicates and other phases have distinct features. The anhydrous interplanetary dust particles (IDPs) are particularly important comparison materials because some IDPs contain carbonaceous material with non-solar D/H and N-15/N-14 ratios and amorphous and crystalline silicates with non-solar 0- isotopic ratios, demonstrating that these IDPs contain preserved interstellar material. Here, we report on micro- Fourier transform (FT) IR spectrometry of IDPs, focusing on the inorganic components of primitive IDPs (FTIR spectra from the organic/carbonacecous materials in IDPs are described elsewhere).

  20. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  1. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.

    1992-01-01

    Hypervelocity impact features from very small particles (less than 3 microns in diameter) on several of the electro-active dust sensors used in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microscope. The same analytical techniques were applied to impact and containment features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on tray B12. Very little unambiguously identifiable impactor debris was found in the central craters or shatter zones of small impacts in this crystalline surface. The surface contamination, ubiquitous on the surface of the Long Duration Exposure Facility, has greatly complicated data collection and interpretation from microparticle impacts on all surfaces.

  2. Comet Dust: The Diversity of Primitive Particles and Implications

    NASA Technical Reports Server (NTRS)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  3. Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.

    2001-11-01

    Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.

  4. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  5. Tin in a chondritic interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.

  6. Infrared spectroscopy of interplanetary dust in the laboratory

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Freeman, J. J.

    1981-01-01

    A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.

  7. Optical spectroscopy of interplanetary dust collected in the earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.

    1980-01-01

    Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.

  8. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched

  9. Direct Measurements of Interplanetary Dust Particles in the Vicinity of Earth

    NASA Technical Reports Server (NTRS)

    McCracken, C. W.; Alexander, W. M.; Dubin, M.

    1961-01-01

    The direct measurements made by the Explorer VIII satellite provide the first sound basis for analyzing all available direct measurements of the distribution of interplanetary dust particles. The model average distribution curve established by such an analysis departs significantly from that predicted by the (uncertain) extrapolation of results from meteor observations. A consequence of this difference is that the daily accretion of interplanetary particulate matter by the earth is now considered to be mainly dust particles of the direct measurements range of particle size. Almost all the available direct measurements obtained with microphone systems on rockets, satellites, and spacecraft fit directly on the distribution curve defined by Explorer VIII data. The lack of reliable datum points departing significantly from the model average distribution curve means that available direct measurements show no discernible evidence of an appreciable geocentric concentration of interplanetary dust particles.

  10. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    NASA Astrophysics Data System (ADS)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  11. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    NASA Technical Reports Server (NTRS)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  12. Helium in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Helium and neon were extracted from fragments of individual stratosphere-collected interplanetary dust particles (IDP's) by subjecting them to increasing temperature by applying short-duration pulses of power in increasing amounts to the ovens containing the fragments. The experiment was designed to see whether differences in release temperatures could be observed which might provide clues as to the asteroidal or cometary origin of the particles. Variations were observed which show promise for elucidating the problem.

  13. Cometary Dust: The Diversity of Primitive Matter

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Ishiiii, H. A.; Zolensky, M. E.

    2017-01-01

    The connections between comet dust and primitive chondrites from asteroids has strengthened considerably over the past decade. Understanding the importance of the connections between Stardust samples and chondrites requires geochemistry lingo as well as a perspective of other cometary dust samples besides Stardust. We present the principal findings of an extensive review prepared for by us for the June 2016 "Cometary Science After Rosetta" meeting at The Royal Society, London.

  14. Assemblage of Presolar Materials and Early Solar System Condensates in Chondritic Porous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2015-01-01

    Anhydrous chondritic porous inter-planetary dust particles (CP IDPs) contain an assortment of highly primitive solar system components, molecular cloud matter, and presolar grains. These IDPs have largely escaped parent body processing that has affected meteorites, advocating cometary origins. Though the stardust abundance in CP IDPs is generally greater than in primitive meteorites, it can vary widely among individual CP IDPs. The average abundance of silicate stardust among isotopically primitive IDPs is approx. 375 ppm while some have extreme abundances up to approx. 1.5%. H and N isotopic anomalies are common in CP IDPs and the carrier of these anomalies has been traced to organic matter that has experienced chemical reactions in cold molecular clouds or the outer protosolar disk. Significant variations in these anomalies may reflect different degrees of nebular processing. Refractory inclusions are commonly observed in carbonaceous chondrites. These inclusions are among the first solar system condensates and display 16O-rich isotopic compositions. Refractory grains have also been observed in the comet 81P/Wild-2 samples re-turned from the Stardust Mission and in CP IDPs, but they occur with much less frequency. Here we conduct coordinated mineralogical and isotopic analyses of CP IDPs that were characterized for their bulk chemistry by to study the distribution of primitive components and the degree of nebular alteration incurred.

  15. Dust formation in a galaxy with primitive abundances.

    PubMed

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  16. Workshop on the Analysis of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.

  17. Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Klock, W.; Mckay, D. S.; Thomas, K. L.; Palme, H.

    1989-01-01

    The presence, in both a number of interplanetary dust particles (IDPs) and in meteorite matrices, of olivine and orthopyroxene grains, low in FeO but containing up to 5 wt pct MnO, is reported. The majority of olivines and pyroxenes in meteorites contain less than 0.5 wt pct MnO. The presence of these low-iron, manganese-enriched (LIME) olivines and pyroxenes in IDPs and meteorites may indicate a link between the origin and history of IDPs and the matrix material of primitive meteorites. The origin of the LIME silicates could be explained by condensation from a gas of solar composition. Forsterite is the first major silicate phase to condense from a solar nebula gas, and Mn, which is not stable as a metal under solar nebula conditions, would condense at about 1100 K as Mn2SiO4 in solid solution with forsterite.

  18. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  19. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  20. The search for refractory interplanetary dust particles from preindustrial aged Antarctic ice

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Webb, Susan J.; Thomas, Kathie

    1988-01-01

    In a study of refractory interplanetary dust particles, preindustrial-aged Antarctic ice samples have been collected, melted, and filtered to separate the particle load. Particles containing a significant amount of aluminum, titanium, and/or calcium were singled out for detailed SEM and STEM characterization. The majority of these particles are shown to be volcanic tephra from nearby volcanic centers. Six spherical aggregates were encountered that consist of submicron-sized grains of rutile within polycrystalline cristobalite. These particles are probably of terrestrial volcanic origin, but have not been previously reported from any environment. One aggregate particle containing fassaite and hibonite is described as a probable interplanetary dust particle. The constituent grain sizes of this particle vary from 0.1 to 0.3 microns, making it significantly more fine-grained than meteoritic calcium-aluminum-rich inclusions. This particle is mineralogically and morphologically similar to recently reported refractory interplanetary dust particles collected from the stratosphere, and dissimilar to the products of modern spacecraft debris.

  1. Characterization of biogenic elements in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.

    1986-01-01

    Those particles that were designated cometary are aggregates of amorphous materials including carbon, iron-magnesium silicates, sulfides, metal and trace amounts of unusual phases. Most aggregates are carbon-rich with major and minor element abundances similar to a fine grained matrix of carbonaceous chondrites. Several particles were analyzed by a laser microprobe. The negative ionic species identified to date include carbon clusters, protonated carbon clusters, CN-, HCN-, CNO-, PO2-, PO3-, S-, S2- asnd OH-. These species are similar to those observed in cometary spectra and they support the assumption that organic materials are present. The occurance of phosphate ions suggests the presence of apatite or whitlockite. Cometary particle characteristics may indicate that the component grains represent primitive unaltered dust whose overall properties are extremely similar to altered primitive dust in carbonaceous chondrites.

  2. Search for Primitive Matter in the Solar System

    NASA Technical Reports Server (NTRS)

    Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.

    2017-01-01

    Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.

  3. Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2014-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance.

  4. Physical properties of interplanetary dust: laboratory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, Edith; Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Renard, Jean-Baptiste; Buch, Arnaud; Carrasco, Nathalie; Cottin, Hervé; Fray, Nicolas; Guan, Yuan Yong; Szopa, Cyril

    interplanetary dust organics approaching the Sun. Albedo and polarization variations will be discussed. The polarization evolution will be compared to those obtained through observations [11]. Studies of the properties of our interplanetary dust cloud should provide information to better interpret observations of dust around exoplanets. Some of these planets are very close to their star. The thermal evolution of organics driven by chemical reactions will represent a fundamental knowledge to interpret the relevant polarimetric observations. We acknowledge CNES for funding the PROGRA2 experiment, CNES and ESA for the micro-gravity flights. [1] Renard J.-B. et al., Appl. Opt. 41, 609 (2002) [2] Hadamcik E. et al., In: Light scattering rev. 4, 31 (Kokhanovszky ed.), Springer -Praxis, Berlin (2009) [3] Mann I. et al., Space Sci. Rev. 110, 269 (2004) [4] Hoertz F. et al., Science 314, 716 (2006) [5] Lasue J. et al., Astron. Astrophys. 473, 641 (2007) [6] Levasseur-Regourd A.C et al., Planet Space Sci. 55, 1010 (2007) [7] Hadamcik E. et al., Icarus 190, 660 (2007) [8] Cottin H. et al., Adv. Space Res. 42, 2019 (2008) [9] Fray N. et al., Planet. Space Sci. 53, 1243 (2005) [10] Sciamma-O'Brien E. et al., Icarus, accepted [11] Levasseur-Regourd A.C., et al., In: Interplanetary dust, Gruen, Gustafson B., Dermott S., Fechtig H. (Eds), Springer, Berlin, 57 (2001)

  5. What if chondritic porous interplanetary dust particles are not the real McCoy

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.

    To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for

  6. What if chondritic porous interplanetary dust particles are not the real McCoy

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for

  7. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

    2003-01-01

    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  8. Interplanetary Dust Observations by the Juno MAG Investigation

    NASA Astrophysics Data System (ADS)

    Jørgensen, John; Benn, Mathias; Denver, Troelz; Connerney, Jack; Jørgensen, Peter; Bolton, Scott; Brauer, Peter; Levin, Steven; Oliversen, Ronald

    2017-04-01

    The spin-stabilized and solar powered Juno spacecraft recently concluded a 5-year voyage through the solar system en route to Jupiter, arriving on July 4th, 2016. During the cruise phase from Earth to the Jovian system, the Magnetometer investigation (MAG) operated two magnetic field sensors and four co-located imaging systems designed to provide accurate attitude knowledge for the MAG sensors. One of these four imaging sensors - camera "D" of the Advanced Stellar Compass (ASC) - was operated in a mode designed to detect all luminous objects in its field of view, recording and characterizing those not found in the on-board star catalog. The capability to detect and track such objects ("non-stellar objects", or NSOs) provides a unique opportunity to sense and characterize interplanetary dust particles. The camera's detection threshold was set to MV9 to minimize false detections and discourage tracking of known objects. On-board filtering algorithms selected only those objects tracked through more than 5 consecutive images and moving with an apparent angular rate between 15"/s and 10,000"/s. The coordinates (RA, DEC), intensity, and apparent velocity of such objects were stored for eventual downlink. Direct detection of proximate dust particles is precluded by their large (10-30 km/s) relative velocity and extreme angular rates, but their presence may be inferred using the collecting area of Juno's large ( 55m2) solar arrays. Dust particles impact the spacecraft at high velocity, creating an expanding plasma cloud and ejecta with modest (few m/s) velocities. These excavated particles are revealed in reflected sunlight and tracked moving away from the spacecraft from the point of impact. Application of this novel detection method during Juno's traversal of the solar system provides new information on the distribution of interplanetary (µm-sized) dust.

  9. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin

    2016-04-01

    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  10. Discovery of nuclear tracks in interplanetary dust

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Brownlee, D. E.; Fraundorf, P.

    1984-01-01

    Nuclear tracks have been identified in interplanetary dust particles (IDP's) collected from the stratosphere. The presence of tracks unambiguously confirms the extraterrestrial nature of IDP's, and the high track densities (10 to the 10th to 10 to the 11th per square centimeter) suggest an exposure age of approximately 10,000 years within the inner solar system. Tracks also provide an upper temperature limit for the heating of IDP's during atmospheric entry, thereby making it possible to distinguish between pristine and thermally modified micrometeorites.

  11. The Distribution of Interplanetary Dust Near 1-AU: An MMS Perspective

    NASA Astrophysics Data System (ADS)

    Adrian, M. L.; St Cyr, O. C.; Wilson, L. B., III; Schiff, C.; Sacks, L. W.; Chai, D. J.; Queen, S. Z.; Sedlak, J. E.

    2017-12-01

    The distribution of dust in the ecliptic plane in the vicinity of 1-AU has been inferred from impacts on the four Magnetospheric Multiscale (MMS) mission spacecraft as detected by the Acceleration Measurement System (AMS) during periods when no other spacecraft activities are in progress. Consisting of four identically instrumented spacecraft, with an inter-spacecraft separation ranging from 10-km to 400-km, the MMS constellation forms a dust "detector" with approximately four-times the collection area of any previous dust monitoring framework. Here we introduce the MMS-AMS and the inferred dust impact observations, provide a preliminary comparison of the MMS distribution of dust impacts to previously reported interplanetary dust distributions — namely those of the STEREO mission — and report on our initial comparison of the MMS distribution of dust impacts with known meteor showers.

  12. Origins and Dynamics of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2005-01-01

    This is a final report for research supported by the National Aeronautics and Space Administration issued through the Office of Space Science Planetary Geology and Geophysics Program, covering all relevant activities during its 3-year period of funding from 02/01/2002 through to 01/31/2005. The ongoing aim of the research supported through this grant, and now through a successor award, is to investigate the origin of interplanetary dust particles (IDPs) and their dynamical and collisional evolution, in order to: (1) understand the provenance of zodiacal cloud particles and their transport from their source regions to the inner solar system; (2) produce detailed models of the zodiacal cloud and its constituent components; (3) determine the origin of the dust particles accreted by the Earth; (4) ascertain the level of temporal variations in the dust environment of the inner solar system and the accretion rate of IDPs by the Earth, and evaluate potential effects on global climate; and to (5) exploit this research as a basis for interpreting the structure observed in exozodiacal clouds that may result from the collisional evolution of planetesimals and the presence of unseen planets.

  13. Inferring Sources in the Interplanetary Dust Cloud, from Observations and Simulations of Zodiacal Light and Thermal Emission

    NASA Technical Reports Server (NTRS)

    Levasseur-Regourd, A. C.; Lasue, J.

    2011-01-01

    Interplanetary dust particles physical properties may be approached through observations of the solar light they scatter, specially its polarization, and of their thermal emission. Results, at least near the ecliptic plane, on polarization phase curves and on the heliocentric dependence of the local spatial density, albedo, polarization and temperature are summarized. As far as interpretations through simulations are concerned, a very good fit of the polarization phase curve near 1.5 AU is obtained for a mixture of silicates and more absorbing organics material, with a significant amount of fluffy aggregates. In the 1.5-0.5 AU solar distance range, the temperature variation suggests the presence of a large amount of absorbing organic compounds, while the decrease of the polarization with decreasing solar distance is indeed compatible with a decrease of the organics towards the Sun. Such results are in favor of the predominance of dust of cometary origin in the interplanetary dust cloud, at least below 1.5 AU. The implication of these results on the delivery of complex organic molecules on Earth during the LHB epoch, when the spatial density of the interplanetary dust cloud was orders of magnitude greater than today, is discussed.

  14. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  15. CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase ormore » decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.« less

  16. Migration of Interplanetary Dust and Comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4. For silicates, such values correspond to particle diameters between >1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles

  17. Physics of spacecraft-based interplanetary dust collection by impact into low-density media

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, T. J.

    1994-01-01

    A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.

  18. Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    2003-12-01

    One of the fundamental goals of the study of meteorites is to understand how the solar system and planetary systems around other stars formed. It is known that the solar system formed from pre-existing (presolar) interstellar dust grains and gas. The grains originally formed in the circumstellar outflows of other stars. They were modified to various degrees, ranging from negligible modification to complete destruction and reformation during their ˜108 yr lifetimes in the interstellar medium (ISM) (Seab, 1987; Mathis, 1993). Finally, they were incorporated into the solar system. Submicrometer-sized silicates and carbonaceous material are believed to be the most common grains in the ISM ( Mathis, 1993; Sandford, 1996), but it is not known how much of this presolar particulate matter was incorporated into the solar system, to what extent it has survived, and how it might be distinguished from solar system grains. In order to better understand the process of solar system formation, it is important to identify and analyze these solid grains. Since all of the alteration processes that modified solids in the solar nebula presumably had strong radial gradients, the logical place to find presolar grains is in small primitive bodies like comets and asteroids that have undergone little, if any, parent-body alteration.Trace quantities of refractory presolar grains (e.g., SiC and Al2O3) survive in the matrices of the most primitive carbon-rich chondritic meteorites (Anders and Zinner, 1993; Bernatowicz and Zinner, 1996; Bernatowicz and Walker, 1997; Hoppe and Zinner, 2000; see Chapter 1.02). Chondritic meteorites are believed to be from the asteroid belt, a narrow region between 2.5 and 3.5 astronomical units (AU) that marks the transition from the terrestrial planets to the giant gas-rich planets. The spectral properties of the asteroids suggest a gradation in properties with some inner and main belt C and S asteroids (the source region of most meteorites and polar

  19. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Brearley, A. J.; Scott, E. R. D.

    2004-01-01

    Comets, fine-grained matrices of chondrites, and chondritic interplanetary dust particles (IDPs) are each composed of both crystalline and amorphous silicates. The primitive solar nebula, in which comets and asteroids accreted, was formed from the collapsed core of a Giant Molecular Cloud, that, in turn, condensed from materials present in the interstellar medium (ISM). Despite observations that reveal the presence of crystalline magnesium silicate minerals in the shells of very high mass-loss-rate stars [1,2], typical silicate grains in the ISM are most likely to be amorphous, given their relatively long residence time in such a high radiation environment. An upper limit of 3% crystalline grains can be derived from their non-detection in spectra of ISM solids [3]. If the vast majority of grains that enter the primitive solar nebula are amorphous, then the observation of crystalline dust in comets and primitive chondrite matrices indicates the action of specific processes required to transform the amorphous starting materials into the crystals that are observed.

  20. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Wilson, Lynn B., III

    2016-01-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  1. On the Contribution of Asteroid Disruptions to the Interplanetary Dust Flux

    NASA Astrophysics Data System (ADS)

    Kehoe, T. J. J.; Kehoe, A. E.

    2017-12-01

    Recent modeling has shown the significant contribution of micron- to millimeter-sized particles released by the disruption of main-belt asteroids (MBAs) to the interplanetary dust particle (IDP) flux (e.g., Dermott et al., 2002; Nesvorný et al., 2003; Espy Kehoe et al., 2015). In this paper, we present the results of a study that indicates that the dust injected into the zodiacal cloud due to the catastrophic disruption of an asteroid is dominated by the release of its surface regolith particles. Our research suggests that disrupting a single asteroid with diameter O(100 km) will be enough to regenerate the entire zodiacal cloud. The breakup of smaller asteroids with diameters O(10 km) will likely produce more moderate, but still significant, changes in the dust environment of the inner solar system. As collisional disruptions of asteroids in this size range occur more frequently, it is important that we develop a better understanding of the injection of asteroidal material into the zodiacal cloud as a result of these type of events in order to determine the temporal evolution of the interplanetary dust flux. The results presented in this paper will lead to a better understanding of the threat to exploration activities due to the enhanced IDP flux resulting from the disruption of asteroidal regoliths. These findings can be employed to improve engineering models, for example, the NASA Meteoroid Engineering Model (MEM) that is widely utilized to assess the impact hazard to space hardware and activities in the inner solar system due to the natural meteoroid environment (McNamara et al., 2004). This is an important area of concern for current and future mission development purposes.

  2. STEREO SECCHI and S/WAVES Observations of Spacecraft Debris Caused by Micron-Size Interplanetary Dust Impacts

    NASA Astrophysics Data System (ADS)

    St. Cyr, O. C.; Kaiser, M. L.; Meyer-Vernet, N.; Howard, R. A.; Harrison, R. A.; Bale, S. D.; Thompson, W. T.; Goetz, K.; Maksimovic, M.; Bougeret, J.-L.; Wang, D.; Crothers, S.

    2009-05-01

    Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous ( i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.

  3. Effects of interplanetary coronal mass ejections on the transport of nano-dust generated in the inner solar system

    NASA Astrophysics Data System (ADS)

    O'Brien, Leela; Juhász, Antal; Sternovsky, Zoltan; Horányi, Mihály

    2018-07-01

    This article reports on an investigation of the effect of interplanetary coronal mass ejections (ICMEs) on the transport and delivery of nano-dust to 1 AU. Charged nanometer-sized dust particles are expected to be generated close to the Sun and interact strongly with the solar wind as well as solar transient events. Nano-dust generated outside of ∼0.2 AU are picked up and transported away from the Sun due to the electromagnetic forces exerted by the solar wind. A numerical model has been developed to calculate the trajectories of nano-dust through their interaction with the solar wind and explore the potential for their detection near Earth's orbit (Juhasz and Horanyi, 2013). Here, we extend the model to include the interaction with interplanetary coronal mass ejections. We report that ICMEs can greatly alter nano-dust trajectories, their transport to 1 AU, and their distribution near Earth's orbit. The smallest nano-dust (<10 nm) can be delivered to 1 AU in high concentration. Thus, the nature of the interaction between nano-dust and ICMEs could potentially be revealed by simultaneous measurements of nano-dust fluxes and solar wind particles/magnetic fields.

  4. Observations of interplanetary dust by the Juno magnetometer investigation

    NASA Astrophysics Data System (ADS)

    Benn, M.; Jorgensen, J. L.; Denver, T.; Brauer, P.; Jorgensen, P. S.; Andersen, A. C.; Connerney, J. E. P.; Oliversen, R.; Bolton, S. J.; Levin, S.

    2017-05-01

    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving with an apparent angular rate of between 2 and 18,000 arcsec/s were recorded. Among the objects detected were a small group of objects tracked briefly in close proximity to the spacecraft. The trajectory of these objects demonstrates that they originated on the Juno spacecraft, evidently excavated by micrometeoroid impacts on the solar arrays. The majority of detections occurred just prior to and shortly after Juno's transit of the asteroid belt. This rather novel detection technique utilizes the Juno spacecraft's prodigious 60 m2 of solar array as a dust detector and provides valuable information on the distribution and motion of interplanetary (>μm sized) dust.

  5. New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Palma, R. L.; Pepin, R. O.; Kloeck, W.; Zolensky, M. E.; Messenger, S.

    2008-01-01

    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5].

  6. The spectral properties of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1988-01-01

    The observed spectral and mineralogical properties of interplanetary dust particles (IDP) allows the conclusion that: (1) the majority of IDP infrared spectra are dominated by olivine, pyroxene, or layer lattice silicate minerals, (2) to the first order the emission spectra of comets Halley and Kohoutek can be matched by mixtures of these IDP infrared types, implying that comets contain mixtures of these different crystalline silicates and may vary from comet to comet and perhaps even within a single comet, (3) do not expect to observe a single 20 micron feature in cometary spectra, (4) carbonaceous materials dominate the visible spectra properties of the IDPs even though the mass in these particles consists primarily of silicates, and (5) the particle characteristics summarized need to be properly accounted for in future cometary emission models.

  7. Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates

    NASA Technical Reports Server (NTRS)

    Griffis, D. P.; Wortman, J. J.

    1992-01-01

    The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.

  8. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1991-01-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  9. Temporal Variability in the Accretion Rate of Interplanetary Dust Using (3)He as a Tracer

    NASA Technical Reports Server (NTRS)

    Farley, K. A.

    2005-01-01

    The research supported by this grant falls under three topics: 1) Weekly Interplanetary Dust Sampling via (3)He; 2) Extraterrestrial (3)He at Major Impact Boundaries; 3) Completing a Moderately-High Resolution Record of Extraterrestrial (3)He Flux: A Major Asteroidal Break up Event at 8.2 Ma.

  10. Accretion of Interplanetary Dust Particles by the Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Dermott, Stanley F.

    1998-10-01

    Analyses of hypervelocity micrometeoroid impact craters preserved in lunar material and on the panels of the Long Duration Exposure Facility (LDEF) indicate that each year Earth accretes about 3 × 107kg of interplanetary dust particles (IDPs) from the zodiacal cloud (E. Grünet al.1985,Astron. Astrophys.286, 915-924; S. G. Love and D. E. Brownlee, 1993,Science262, 550-553). The size distributions of these lunar and LDEF craters indicate that the mass distribution of IDPs encountering Earth peaks at about 200 μm diameter. This particle-size cutoff may be indicative of collisionally evolved asteroidal dust, where the collisional lifetime of dust particles larger than ∼100 μm is shorter than the time required for their orbits to decay under Poynting-Robertson light drag from the asteroid belt to Earth (B. Å. S. Gustafson, 1994,Annu. Rev. Earth Planet. Sci.22, 553-595). Additionally, analyses of IDPs collected from the stratosphere by high-flying aircraft reveal a diversity in chemical composition which is even narrower than that of the meteorites (G. J. Flynn, 1995,Nature376, 114). Together these findings suggest that IDPs present in the atmosphere and our collections may originate from very limited sources in the asteroid belt. The most abundant sources of dust to be unambiguously linked to the zodiacal cloud are the three asteroid families Eos, Themis, and Koronis-the progenitors of the ten-degree and low-latitude dust bands discovered by the Infrared Astronomical Satellite in 1984. We use direct numerical integration of the full equations of motion to model the orbital evolution of dust particles from these three families as well as from other nonfamily asteroids and from the population of known short period comets. Our simulations include gravitational perturbations from the planets, radiation pressure, and solar wind drag. We find that a large, and perhaps the dominant, fraction of the IDPs accreted by Earth comes from the asteroid families Eos, Themis, and

  11. The measurement of trace elements in interplanetary dust and cometary particles by ultra-high sensitivity INAA

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.

    1989-01-01

    Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).

  12. Multielement analysis of interplanetary dust particles using TOF-SIMS

    NASA Technical Reports Server (NTRS)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  13. Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Zolensky, M. E.

    1991-01-01

    The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.

  14. Volatiles in interplanetary dust particles: A comparison with CI and CM chondrites

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1992-01-01

    In an effort to classify and determine the origin of interplanetary dust particles (IDPs), 14 of these particles were studied using a laser microprobe/mass spectrometer. The mass spectra for these particles varied dramatically. Some particles released hydroxide or water which probably originated in hydroxide-bearing minerals or hydrates. Others produced spectra which included a number of hydrocarbons and resembled meteorite spectra. However, none of the individual IDPs gave spectra which could be matched identically with a particular meteorite type such as a CI or CM carbonaceous chondrite. We believe this was due to the fact that 10-20 micron size IDPs are too small to be representative of the parent body. To verify that the diversity was due primarily to the small particle sizes, small grains of approximately the same size range as the IDPs were obtained from two primitive meteorites, Murchison and Orgueil, and these small meteorite particles were treated exactly like the IDPs. Considerable diversity was observed among individual grains, but a composite spectrum of all the grains from one meteorite closely resembled the spectrum obtained from a much larger sample of that meteorite. A composite spectrum of the 14 IDPs also resembled the spectra of the CM and CI meteorites, pointing to a possible link between IDPs and carbonaceous chondrites. This also illustrates that despite the inherent diversity in particles as small as 10-20 micron, conclusions can be drawn about the possible origin and overall composition of such particles by looking not only at results from individual particles but also by including many particles in a study and basing conclusions on some kind of composite data.

  15. Combined infrared and analytical electron microscope studies of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Humecki, H. J.; Germani, M. S.

    1992-01-01

    Ultramicrotomed thin sections (less than 100 nm thick) of eight chondritic interplanetary dust particles (IDPs) were studied by analytical electron microscopy and IR microspectroscopy with the objective of identifying IDPs or their specific components with IR spectral transmission characteristics at 10 microns similar to those of comets. Two IDPs are identified whose silicate emission characteristics between 8 and 12 microns are similar to those of comets Halley and Bradfield. Implanted solar flare tracks and sputtered rims resulting from solar wind damage suggest that the minerology and petrography of these IDPs have not been significantly perturbed since ejection from their parent bodies.

  16. Carbon abundances, major element chemistry, and mineralogy of hydrated interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Thomas, K. L.; Mckay, D. S.

    1993-01-01

    Hydrated interplanetary dust particles (IDP's) comprise a major fraction of the interplanetary dust particles collected in the stratosphere. While much is known about the mineralogy and chemistry of hydrated IDP's, little is known about the C abundance in this class of IDP's, the nature of the C-bearing phases, and how the C abundance is related to other physical properties of hydrated IDP's. Bulk compositional data (including C and O) for 11 hydrated IDP's that were subsequently examined by the transition electron microscopy (TEM) to determine their mineralogy and mineral chemistry are reported. Our analysis indicates that these hydrated IDP's are strongly enriched in C relative to the most C-rich meteorites. The average abundance of C in these hydrated IDP's is 4X CI chondrite values. The bulk compositions (including C and O) of 11 hydrated IDP's were determined by thin-window, energy-dispersive x ray (EDX) spectroscopy of the uncoated IDP's on Be substrates in the scanning electron microscopy (SEM). As a check on our C measurements, one of the IDP's (L2006H5) was embedded in glassy S, and microtome thin sections were prepared and placed onto Be substrates. Thin-film EDX analyses of multiple thin sections of L2006H5 show good agreement with the bulk value determined in the SEM. Following EDX analysis, the mineralogy and mineral chemistry of each IDP was determined by analyzing ultramicrotome thin sections in a TEM equipped with an EDX spectrometer.

  17. Accretion of Interplanetary Dust: A New Record from He-3 In Polar Ice Cores

    NASA Technical Reports Server (NTRS)

    Brook, Edward

    2002-01-01

    This grant funded measurements of extraterrestrial He-3 in particles extracted from polar ice samples. The overall objective was to develop measurements of He-3 as tracers of the flux of interplanetary dust particles (IDP's) to the earth. To our knowledge these are the first such measurements, apart from our earlier work. The project also funded an EPO activity - a climate and global change workshop for high school science teachers.

  18. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  19. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  20. Long Duration Exposure Facility (LDEF) attitude measurements of the Interplanetary Dust Experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Motley, William R., III; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.

    1993-01-01

    Analysis of the data from the Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) sun sensors has allowed a confirmation of the attitude of LDEF during its first year in orbit. Eight observations of the yaw angle at specific times were made and are tabulated in this paper. These values range from 4.3 to 12.4 deg with maximum uncertainty of plus or minus 2.0 deg and an average of 7.9 deg. No specific measurements of pitch or roll were made but the data indicates that LDEF had an average pitch down attitude of less than 0.7 deg.

  1. Acid dissolution experiments - Carbonates and the 6.8-micrometer bands in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    1986-01-01

    A chemical dissolution experiment on an interplanetary dust particle (IDP) showed that carbonates, not acid-insoluble organic compounds, were responsible for virtually all the absorption at 6.8 micrometers seen in the infrared spectra of this particle. The IDP examined had an infrared spectrum characteristic of layer-lattice silicates and belongs to a class of IDP's whose spectra resemble those of protostellar objects like W33 A, which also exhibit a band at 6.8 micrometers.

  2. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  3. Delivery of Exogenous Complex Organic Compounds by Solar System Small Bodies and Space Dusts and Its Relevance to Origins of Life

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Fushimi, Hidehiko; Motoyama, Takuya; Kaneko, Takeo; Obayashi, Yumiko; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Okudaira, Kyoko; Hashimoto, Hirofumi; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    A wide variety of organic compounds including amino acid precursors have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. It was suggested that these organics were formed in quite cold environments. We irradiated frozen mixtures of possible constituents of ice mantles of interstellar dust particles including water, methanol and ammonia with high-energy heavy ions from HIMAC, National Institute of Radiological Science, Japan. Amino acid precursors with complex structures were detected whose molecular weights are up to a few thousands. Such complex amino acid precursors are much stronger than free amino acids against radiation. Such organics could have been incorporated in solar system small bodies after the formation of the solar system and delivered to the primitive Earth. Possible carriers of such organics are meteorites, comets and interplanetary dust particles (IDPs) that were formed from comets and meteorites. It is suggested that IDPs brought much more organics than meteorites and comets. However, nature of organics in IDPs is little known, since they have been collected only in terrestrial biosphere. We are planning a space experiments named Tanpopo, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes in the interplanetary space. We will report some preliminary results for the preparation of the mission including the capture of amino acid-containing particles at high velocity with ultra-low density aerogel.

  4. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust -- interstellar grains?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.

    1994-01-01

    Ultrafine-grained matrix is a unique and fundamental building block of chondritic porous (CP) interplanetary dust particles. Most IDPs so far determined to be of cometary origin belong to the CP class. The matrix in CP IDPs is not homogeneous but rather a loose mixture of discrete single crystals (e.g., olivine, pyroxene, Fe sulfides) and polyphase grains. The petrographic diversity observed among the polyphase grains suggest that they were formed under variable physiochemical conditions. One particular class of polyphase grains are a dominant component in cometary IDPs. Although their occurrence is well documented, the terminology used to describe them is confused. They have been called many names. Here they are simply called GEMS (Glass with Embedded Metal and Sulfides). The bulk compositions of GEMS are within a factor of 3 chondritic (solar) for all major elements except C. Quantitative thin-film X-ray (EDS) analyses have shown that GEMS are systematically depleted in Mg and Si, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Electron energy-loss spectroscopy (EELS) suggests that the excess O is present as hydroxyl (-OH) groups. These same chemical 'anomalies' were observed in solar-wind-irradiated amorphous rims on the surfaces of IDPs, suggesting that the compositions of GEMS reflect prior exposure to ionizing radiation. In order to test this hypothesis, a sample of Allende (CV3) matrix was exposed to proton flux. Radiation-damaged amorphous rims on olivine and pyroxene crystals in the Allende sample were found to be depleted in Mg and Ca, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Thus, the compositions of GEMS are indeed consistent with exposure to ionizing radiation. This study suggests that chemical as well as isotopic anomalies may be used to identify presolar interstellar grains in primitive meteoritic materials.

  5. Cellular Precipitates Of Iron Oxide in Olivine in a Stratospheric Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    The petrology of a massive olivine-sulphide interplanetary dust particle shows melting of Fe,Ni-sulphide plus complete loss of sulphur and subsequent quenching to a mixture of iron-oxides and Fe,Ni-metal. Oxidation of the fayalite component in olivine produced maghemite discs and cellular intergrowths with olivine and rare andradite-rich garnet. Cellular reactions require no long-range solid-state diffusion and are kinetically favourable during pyrometamorphic oxidation. Local melting of the cellular intergrowths resulted in three dimensional symplectic textures. Dynamic pyrometamorphism of this asteroidal particle occurred at approx. 1100 C during atmospheric entry flash (5-15 s) heating.

  6. Principal components - Petrology and chemistry of polyphase units in chondritic porous interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.

    1997-03-01

    Chondritic porous (CP) interplanetary dust particles (IDPs) can be described as 'cosmic sediments'. It should be possible to recognize in these IDPs the 4500 Myrs old solar nebula dusts. The studies of unaltered chondritic IDPs show that their matrices are a mixture of three different principal components (PCs) that also describe variable C/Si ratios of chondritic IDPs. Among others, PCs include polyphase units (PUs) that are amorphous to holocrystalline, both ultrafine- and coarse-grained, ferromagnesiosilica(te) materials with minor Al and Ca. The properties of PCs and their alteration products define the physical and chemical processes that produced and altered these components. PCs are also cornerstones of IDP classification. For example, the bulk composition of ultrafine-grained PCs can be reconstructed using the 'butterfly method' and also allows an evaluation of the metamorphic signatures, (e.g., dynamic pyrometamorphism), in chondritic IDPs.

  7. Microparticle impact calibration of the Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) onboard the solar power sail demonstrator IKAROS

    NASA Astrophysics Data System (ADS)

    Hirai, Takayuki; Cole, Michael J.; Fujii, Masayuki; Hasegawa, Sunao; Iwai, Takeo; Kobayashi, Masanori; Srama, Ralf; Yano, Hajime

    2014-10-01

    The Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) is an array of polyvinylidene fluoride (PVDF) based dust detectors aboard the solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The total sensor area of ALADDIN (0.54 m2) is the world's largest among the past PVDF-based dust detectors. IKAROS was launched in May 2010 and then ALADDIN measured cosmic dust impacts for 16 months while orbiting around between 0.7 and 1.1 AU. The main scientific objective of ALADDIN is to reveal number density of ≥10-μm-sized dust in the zodiacal cloud with much higher time-space resolution than that achieved by any past in-situ measurements. The distribution of ≥10-μm-sized dust can be also observed mainly with the light scattering by optical instruments. This paper gives the scientific objectives, the instrumental description, and the results of microparticle impact calibration of ALADDIN conducted in ground laboratories. For the calibration tests we used Van de Graaf accelerators (VdG), two-stage light gas guns (LGG), and a nano-second pulsed Nd:YAG laser (nsPL). Through these experiments, we obtained depolarization charge signal caused by hypervelocity impacts or laser irradiation using the flight spare of 20-μm-thick PVDF sensor and the electronics box of ALADDIN. In the VdG experiment we accelerated iron, carbon, and silver microparticles at 1-30 km/s, while in the LGG experiment we performed to shoot 100's-μm-sized particles of soda-lime glass and stainless steel at 3-7 km/s as single projectile. For interpolation to ≥10-μm size, we irradiated infrared laser at the energy of 15-20 mJ directly onto the PVDF sensor. From the signal analysis, we developed a calibration law for estimation of masses of impacted dust particles. The dynamic range of ALADDIN corresponds from 9×10-14 kg to 2×10-10 kg (4-56 μm in diameter at density of 2.0 g/cm3) at the expected impact velocity of 10 km/s at 1 AU

  8. Dusty Plasma Effects in the Interplanetary Medium?

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya

    Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.

  9. Coordinated Stem and NanoSIMS Analysis of Enstatite Whiskers in Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott; Keller, L. P.

    2009-01-01

    Enstatite whiskers (less than 10 micrometer length, less than 200 nanometer width) occur in chondritic-porous interplanetary dust particles (CP IDPs), an Antarctic micrometeorite and a comet 81P/Wild-2 sample. The whiskers are typically elongated along the [100] axis and contain axial screw dislocations, while those in terrestrial rocks and meteorites are elongated along [001]. The unique crystal morphologies and microstructures are consistent with the enstatite whiskers condensing above approximately 1300 K in a low-pressure nebular or circumstellar gas. To constrain the site of enstatite whisker formation, we carried out coordinated mineralogical, chemical and oxygen isotope measurements on enstatite whiskers in a CP IDP.

  10. How to Spot a Primitive Black Hole

    NASA Image and Video Library

    2010-03-17

    These two data plots from NASA Spitzer Space Telescope show a primitive supermassive black hole top compared to a typical one; usually, dust tori are missing and only gas disks are observed in primitive black holes.

  11. LDEF Interplanetary Dust Experiment (IDE) results

    NASA Technical Reports Server (NTRS)

    Oliver, John P.; Singer, S. F.; Weinberg, J. L.; Simon, C. G.; Cooke, W. J.; Kassel, P. C.; Kinard, W. H.; Mulholland, J. D.; Wortman, J. J.

    1995-01-01

    The Interplanetary Dust Experiment (IDE) provided high time resolution detection of microparticle impacts on the Long Duration Exposure Facility satellite. Particles, in the diameter range from 0.2 microns to several hundred microns, were detected impacting on six orthogonal surfaces of the gravity-gradient stabilized LDEF spacecraft. The total sensitive surface area was about one square meter, distributed between LDEF rows 3 (Wake or West), 6 (South), 9 (Ram or East), 12 (North), as well as the Space and Earth ends of LDEF. The time of each impact is known to an accuracy that corresponds to better than one degree in orbital longitude. Because LDEF was gravity-gradient stabilized and magnetically damped, the direction of the normal to each detector panel is precisely known for each impact. The 11 1/2 month tape-recorded data set represents the most extensive record gathered of the number, orbital location, and incidence direction for microparticle impacts in low Earth orbit. Perhaps the most striking result from IDE was the discovery that microparticle impacts, especially on the Ram, South, and North surfaces, were highly episodic. Most such impacts occurred in localized regions of the orbit for dozens or even hundreds of orbits in what we have termed Multiple Orbit Event Sequences (MOES). In addition, more than a dozen intense and short-lived 'spikes' were seen in which impact fluxes exceeded the background by several orders of magnitude. These events were distributed in a highly non-uniform fashion in time and terrestrial longitude and latitude.

  12. Precision Oxygen Isotope Measurements of Two C-Rich Hydrated Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Snead, C. J.; Keller, L. P.; McKeegan, K. D.; Messenger, S.

    2016-01-01

    Introduction: Chondritic-smooth IDPs (Interplanetary Dust Particles) are low porosity objects whose mineralogy is dominated by aqueous alteration products such as Mg-rich phyllosilicates (smectite and serpentine group) and Mg-Fe carbonate minerals. Their hydrated mineralogy combined with low atmospheric entry velocities have been used to infer an origin largely from asteroidal sources. Spectroscopic studies show that the types and abundance of organic matter in CS IDPs is similar to that in CP IDPs. Although CS IDPs show broad similarities to primitive carbonaceous chondrites, only a few particles have been directly linked to specific meteorite groups such as CM and CI chondrites based on the presence of diagnostic minerals. Many CS IDPs however, have carbon contents that greatly exceed that of known meteorite groups suggesting that they either may derive from comets or represent samples of more primitive parent bodies than do meteorites. It is now recognized that many large, dark primitive asteroids in the outer main belt, as well as some trans-Neptunian objects, show spectroscopic evidence for aqueous alteration products on their surfaces. Some CS IDPs exhibit large bulk D enrichments similar to those observed in the cometary CP IDPs. While hydrated minerals in comets have not been unambiguously identified to date, the presence of the smectite group mineral nontronite has been inferred from infrared spectra obtained from the ejecta from comet 9P/Tempel 1 during the Deep Impact mission. Recent observations of low temperature sulfide minerals in Stardust mission samples suggest that limited aqueous activity occurred on comet Wild-2. All of these observations, taken together, suggest that the high-carbon hydrated IDPs are abundant and important samples of primitive solar system objects not represented in meteorite collections. Oxygen isotopic compositions of chondrites reflect mixing between a 16O-rich reservoir and a 17O,18O-rich reservoir produced via mass

  13. Mineralogy of interplanetary dust particles from the 'olivine' infrared class

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Buseck, P. R.

    1986-01-01

    Analytical electron microscopy observations establish that olivine is abundant and the predominant silicate phase in three interplanetary dust particles (IDPs) from the 'olivine' infrared spectra category. Two of the particles have microstructures resembling those of most nonhydrous chondritic IDPs, consisting of micron to submicron grains together with a matrix composed of amorphous carbonaceous material and sub-500 A grains. In addition to olivine these particles respectively contain enstatite and magnetite, and pentlandite plus Ca-rich clinopyroxene. The third IDP consists mostly of olivine and pyrrhotite with little or no matrix material. Olivine grains in this particle contain prominent solar-flare ion tracks with densities corresponding to a space-exposure age between 1000 to 100,000 years. Although the three particles have olivine-rich mineralogies in common, other aspects of their mineralogies and microstructures suggest that they experienced different formation histories. The differences between the particles indicate that the olivine infrared spectral category is a diverse collection of IDPs that probably incorporates several genetic groups.

  14. Comparing the VIRTIS Spectrum of 67P/Churyumov-Gerasimenko to Wild 2 and in Primitive Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Flynn, George

    2016-04-01

    The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, a point spectrometer with high spectral resolution covering the range from 2 to 5 microns, on the ESA Rosetta spacecraft obtained spectra of the surface of Comet 67P/Churyumov-Gerasimenko. The spectral region covered by VIRTIS has been well studied in meteorites, interplanetary dust particles (IDPs) collected by NASA from the Earth's stratosphere, and the samples of Comet 81P/Wild 2 that were delivered to Earth by the NASA Stardust spacecraft. Infrared spectra of the nucleus of Comet 67P/Churyumov-Gerasimenko acquired by VIRTIS show a broad absorption band observed at ~3.3 μm, a region of the spectrum where C-H, O-H, and N-H stretching features occur (Capaccioni et al., 2015). This broad feature is similar to the O-H feature exhibited by hydrous minerals, but shifted to a significantly longer wavelength. Capaccioni et al. (2015) compared the VIRTIS spectra to laboratory spectra of carbonaceous chondrite meteorites of the CI, CM, and CR types and concluded that none of the typical features of these meteorite spectra are compatible with the spectra of the surface of 67P/Churyumov-Gerasimenko. Comparison of VIRTIS spectra of 67P/ Churyumov-Gerasimenko to the laboratory spectra of well-characterized extraterrestrial materials including the Wild 2 dust and the IDPs, a significant fraction of which are believed to be cometary, could aid in the interpretation of the 67P/Churyumov-Gerasimenko spectra. None of the Wild 2 particles examined by infrared spectroscopy exhibit an O-H feature, but this may be due to the high temperature reached during their capture in the aerogel collection medium. The O-H feature is also absent in all anhydrous IDPs. The hydrous IDPs exhibit varying strengths of both aliphatic C-H absorption features and the O-H absorption feature, but, as with the meteorites, the O-H feature occurs at a significantly shorter wavelength than the broad feature detected in 67P

  15. Stardust@home: A Massively Distributed Public Search for Interstellar Dust in the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.

    2005-01-01

    In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.

  16. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microscope

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Germani, M. S.; Brownlee, D. E.

    1989-01-01

    An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.

  17. Radiation induced rotation of interplanetary dust particles - A feasibility study for a space experiment

    NASA Technical Reports Server (NTRS)

    Ratcliff, K. F.; Misconi, N. Y.; Paddack, S. J.

    1980-01-01

    Irregular interplanetary dust particles may acquire a considerable spin rate due to two non-statistical dynamical mechanisms induced by solar radiation. These arise from variations in surface albedo discussed by Radzievskii (1954) and from irregularities in surface geometry discussed by Paddack (1969). An experiment is reported which will lead to an evaluation in space of the effectiveness of these two spin mechanisms. The technique of optical levitation in an argon laser beam provides a stable trap for particles 10-60 microns in diameter. The objective is to design an optical trap for dielectric particles in vacuum to study these rotation mechanisms in the gravity-free environment of a Spacelab experiment.

  18. Ground truth of (sub-)micrometre cometary dust - Results of MIDAS onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Mannel, Thurid; Bentley, Mark; Schmied, Roland; Torkar, Klaus; Jeszenszky, Harald; Romsted, Jens; Levasseur-Regourd, A.; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Köberl, Christian; Havnes, Ove

    2016-10-01

    The investigation of comet 67P by Rosetta has allowed the comprehensive characterisation of pristine cometary dust particles ejected from the nucleus. Flying alongside the comet at distances as small as a few kilometres, and with a relative velocity of only centimetres per second, the Rosetta payload sampled almost unaltered dust. A key instrument to study this dust was MIDAS (the Micro-Imaging Dust Analysis System), a dedicated atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre sized particles in 3D with resolutions down to nanometres. This offers the unique opportunity to explore the morphology of smallest cometary dust and expand our current knowledge about cometary material.Here we give an overview of dust collected and analysed by MIDAS and highlight its most important features. These include the ubiquitous agglomerate nature of the dust, which is found at all size scales from the largest (>10 µm) through to the smallest (<1 µm) dust particles. The sub-units show characteristic sizes and shapes that are compared with model predictions for interstellar dust.Our findings constrain key parameters of the evolution of the early Solar System. We will discuss which dust growth model is favoured by the observed morphology and how the results restrict cometary formation. Finally, dust particles detected by MIDAS resemble primitive interplanetary dust which is a strong argument for a common cometary origin.

  19. Measurement of polycyclic aromatic hydrocarbon (PAHs) in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M.

    1993-01-01

    We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.

  20. Water and organics in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  1. Interplanetary dust particles collected in the stratosphere: observations of atmospheric heating and constraints on their interrelationships and sources.

    PubMed

    Sandford, S A; Bradley, J P

    1989-01-01

    The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a

  2. Dust analysis on board the Destiny+ mission to 3200 Phaethon

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Kobayashi, M.; Arai, T.; Srama, R.; Sarli, B. V.; Kimura, H.; Moragas-Klostermeyer, G.; Soja, R.; Altobelli, N.; Grün, E.

    2017-09-01

    The Japanese Destiny+ spacecraft will be launched to the active asteroid 3200 Phaethon in 2022. Among the proposed core payload is an in-situ dust instrument based on the Cassini Cosmic Dust Analyzer. We use the ESA Interplanetary Meteoroid Engineering Model (IMEM), to study detection conditions and fluences of interplanetary and interstellar dust with a dust analyzer on board Destiny+.

  3. Dynamics and Distribution of Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2005-08-01

    We integrated the orbital evolution of 12,000 asteroidal, cometary, and trans-Neptunian dust particles, under the gravitational influence of planets, Poynting-Robertson drag, radiation pressure, and solar wind drag (Annals of the New York Academy of Sciences, v. 1017, 66-80, 2004; Advances in Space Research, in press, 2005). The orbital evolution of 30,000 Jupiter-family comets (JFCs) was also integrated (Annals of the New York Academy of Sciences, v. 1017, 46-65, 2004). For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4 (for silicates, such values correspond to particle diameters between >1000 and 1 microns). The considered cometary particles started from comets 2P, 10P, and 39P. The probability of a collision of an asteroidal or cometary dust particle with the Earth during a lifetime of the particle was maximum at diameter about 100 microns; this is in accordance with cratering records. Our different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Some JFCs can reach orbits entirely located inside Jupiter's orbit and remain in such orbits for millions of years. Such former comets could disintegrate during millions of years and produce a lot of mini-comets and dust. (2) The spatial density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can migrate outside Jupiter's orbit. Therefore cometary dust particles are needed to explain the observed constant spatial density of dust particles at 3-18 AU from the Sun. (3) Comparison of the velocities of zodiacal dust particles obtained in our runs with the observations of velocities of these particles made by Reynolds et al. (Ap.J., 2004, v. 612

  4. Exposure to dust-bound PAHs and associated carcinogenic risk in primitive and traditional cooking practices in Pakistan.

    PubMed

    Kamal, Atif; Malik, Riffat Naseem; Martellini, Tania; Cincinelli, Alessandra

    2015-08-01

    The aim of this study was to determine the abundance and distribution of polycyclic aromatic hydrocarbons (PAHs) in dust samples collected from the selected professional cooking workplaces (WCs) and residential household cooking areas (WRs), where traditional and primitive cooking practices are still prevelent. Another aim of this study was to investigate the carcinogenic risk for Pakistani human exposure to dust-bound PAHs via the routes of inhalation, ingestion, and dermal contact. Generally, the concentration of individual congeners of PAHs in surface dust samples of WC sites was higher than those measured in WR sites (p < 0.05). The benzo(a)pyrene (B(a)P), a very high carcinogenic compound, was present in the dust samples from WC sites in the highest mean concentration (630 ng g(-1) dry weight (d.w.)). The BaP mean concentration in WC workplaces was almost eight times higher than the mean value found in WR exposure sites. Moreover, the average concentration of ∑PAHs, combustion origin PAHs (∑COMB) and sum total of 7-carcinogenic PAHs (∑7-carcinogens) were also significantly higher in WC dusts samples than that in WR workplaces. Principal component analysis (PCA) and diagnostic ratios suggested coal/wood combustion as major PAH emission sources in both exposure sites. The average incremental lifetime cancer risk (ILCR) suggested a moderate to potential high cancer risk for adults and children exposed to dust-bound PAHs in both exposure sites, in particular via both dermal and ingestion contact pathways.

  5. Laser microprobe characterization of C species in Interplanetary Dust Particles (IDP)

    NASA Technical Reports Server (NTRS)

    Dibrozolo, F. R.; Bunch, T. E.; Chang, S.; Brownlee, D. E.

    1986-01-01

    Preliminary results of a study whose aim is the characterization of carbon (C) species in microvolumes of materials by means of laser ionization mass spectrometry (LIMS) are presented. The LIMS instrument employs a pulsed UV laser to produce nearly instantaneous vaporization and ionization of materials, followed by acceleration and time-of-flight analysis of the ions produced. LIMS provides a survey technique with nearly simultaneous acquisition of mass spectra covering the entire elemental range. The main limitation of the LIMS technique at present is its limited ability to perform quantitative analysis, due in part to insufficient knowledge of the mechanism of laser-solid interaction. However, considerable effort is now being directed at making LIMS a more quantitative technique. A variety of different C samples, both natural and man made were analyzed to establish the ability of LIMS to differentiate among the various C phases. The results of preliminary analyses performed on meteoritical and interplanetary dust samples are also presented. The C standards selected for the LIMS characterization range from essentially amorphous soot to diamond, which exhibits the highest degree of ordering.

  6. The Cassini Cosmic Dust Analyser CDA - A 10 year exploration of Saturn's dust environment

    NASA Astrophysics Data System (ADS)

    Srama, Ralf

    2014-05-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Since then, the German-lead Cosmic Dust Analyser (CDA) was operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as previously known) allowed the definition of a dynamical dust model of Saturns E ring describing the observed properties. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn.

  7. CM-like Interplanetary Dust Particles in Lower Stratosphere During 1989 October and 1991 June/July

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    The stratospheric interplanetary dust particles L2005T12 and L2011O3 are linked to CM chondrite matrix. Particle L2005T12 is dominated by tabular grains of partially dehydrated greenalite-rich serpentine. Its amorphous matrix contains abundant smectite nanocrystals and annular Fe,Ni,S units. A uniquely stratified (partial) maghemite rim occurs only on S-rich parts of the matrix. Formation of this rim and Mg depletions in the matrix occurred during atmospheric entry heating of this particle. Particle L2011O3 has large iron sulfide and magnesiowustite grains in an amorphous low-Al, ferromagnesiosilica matrix. Hydrous crystallisation of this matrix produced ultrafine-grained smectites and disseminated iron sulfides. Atmospheric entry heating of both particles is indicated by the partial iron oxide rim, vesicular sulfides, and the scatter of matrix compositions due to loss of Mg. While many uncertainties remain, the high incidence of chondritic rough particles, which include an unknown amount of CM-like particles, in the lower stratosphere during 1984, 1989, and 1991 suggests annual variations in their abundances. The timing of lower stratospheric dust samplings is critical to collect these particles.

  8. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope

    NASA Technical Reports Server (NTRS)

    Germani, M. S.; Bradley, J. P.; Brownlee, D. E.

    1990-01-01

    A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.

  9. The thermal history of interplanetary dust particles collected in the Earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.

  10. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    PubMed

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  11. Elemental analyses of hypervelocity micro-particle impact sites on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A

  12. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1989-01-01

    interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) MPs, sample numbers W7010A2 and W7029Cl, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

  13. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Reitmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1997-01-01

    chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

  14. Cosmic dust in the atmosphere and in the interplanetary space at 1 AU today and in the early solar system

    NASA Technical Reports Server (NTRS)

    Fechtig, H.

    1973-01-01

    A description of techniques used in recent experiments to detect and analyze cosmic dust and micrometeorites is given and the results both from the study of lunar crater statistics and from in situ measurements are reviewed. The results from lunar crater statistics show an agreement with the results obtained from in situ measurements in interplanetary space and derived from zodiacal light measurements. The near earth results show an enhancement in the flux numbers. This can be caused either by secondary lunar debris or by disintegration of low density fireballs in the outer atmosphere.

  15. Water and organics in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Bradley, John P.

    2015-08-01

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at ~90 km altitude and settle to the Earth’s surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earth’s surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend ~104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.Affiliations:a University of Hawaii at Manoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, HI 96822, USA.b National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.d Department of Materials Science & Engineering, University of California

  16. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.

    2011-01-01

    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (< or =10micronsm) at 1-2% precision using IMS-1280 at WiscSIMS laboratory. Here we report new results of high precision oxygen isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  17. Curation of Microscopic Astromaterials by NASA: "Gathering Dust Since 1981"

    NASA Technical Reports Server (NTRS)

    Frank, D. R.; Bastien, R. K.; Rodriguez, M.; Gonzalez, C.; Zolensky, M. E.

    2013-01-01

    Employing the philosophy that "Small is Beautiful", NASA has been collecting and curating microscopic astromaterials since 1981. These active collections now include interplanetary dust collected in Earth's stratosphere by U-2, ER-2 and WB-57F aircraft (the Cosmic Dust Program - our motto is "Gathering dust since 1981"), comet Wild-2 coma dust (the Stardust Mission), modern interstellar dust (also the Stardust Mission), asteroid Itokawa regolith dust (the Hayabusa Mission - joint curation with JAXA-ISAS), and interplanetary dust impact features on recovered portions of the following spacecraft: Skylab, the Solar Maximum Satellite, the Palapa Satellite, the Long Duration Exposure Facility (LDEF), the MIR Space Station, the International Space Station, and the Hubble Space Telescope (all in the Space Exposed Hardware Laboratory).

  18. Element Mapping in Anhydrous IDPs: Identification of the Host Phases of Major/Minor Elements as a Test of Nebula Condensation Models

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Wirick, S.; Jacobsen, C.

    2004-01-01

    Many anhydrous interplanetary dust particles (IDPs) are the most pristine samples of primitive solar system dust currently available for laboratory analysis. Their primitive nature is demonstrated by: 1) the high content of moderately volatile elements, indicating they have not been heated significantly since formation, 2) the absence of hydrated material, indicating they never experienced aqueous processing, 3) the presence of unequilibrated mineral assemblages, 4) the presence of large isotopic anomalies (e.g., D and 15N enrichment), in these IDPs.

  19. Isotopic Anomalies in Primitive Solar System Matter: Spin-State-Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milam, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula, Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest N=15 enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system N-15 and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  20. Dust Measurements by the Student Dust Counter (SDC) onboard the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    James, David; Horanyi, Mihaly; Poppe, Andrew

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (7/2008), VSDC will have operated for about 500 days, covering an approximate distance of 1.2 to 10.5 AU. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses, Galileo and Cassini.

  1. Chemical evolution of primitive solar system bodies

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.

    1989-01-01

    Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.

  2. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    /carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.

  3. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  4. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  5. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  6. Interplanetary dust in the transmission electron microscope - Diverse materials from the early solar system

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.

    1981-01-01

    An analytical electron microscope study of dispersed interplanetary dust aggregates collected in the earth's stratosphere shows that, in spite of their similarities, the aggregates exhibit significant differences in composition, internal morphology, and mineralogy. Of 11 chondritic particles examined, two consist mostly of a noncrystalline chondritic material with an atomic S/Fe ratio equal to or greater than 2 in places, one consists of submicron metal and reduced silicate 'microchondrules' and sulfide grains embedded in a carbonaceous matrix, and another consists of submicron magnetic-decorated unequilibrated silicate and sulfide grains with thick low-Z coatings. Although the particles are unmetamorphosed by criteria commonly applied for chondritic meteorites, the presence of reduced chemistries and the ubiquity of mafic, instead of hydrated, silicates confirm that they are not simply C1 or C2 chondrite matrix material. The observations indicate that portions of some particles have not been significantly altered by thermal or radiation processes since their assembly, and that the particles probably contain fine debris from diverse processes in the early solar system.

  7. Isotopic Anomalies in Primitive Solar System Matter: Spin-State Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milan, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15, This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar core. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotop c enrichments measured in carbonaceous meteorites, However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores, We also show that while the nitriles, HCN and HNC, contain the greatest N-15 enrichment, this is not expected to correlate with extreme D emichment. These calculations therefore support the view that Solar System N-15 and D isotopic anomalies have an interstellar heritage, We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  8. Physics of interplanetary dust capture via impact into organic polymer foams

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, Thomas J.

    1994-01-01

    The physics of hypervelocity impacts into foams is of interest because of the possible application to interplanetary dust particle (IDP) capture by spacecraft. We present a model for the phenomena occurring in such impacts into low-density organic polymer foams. Particles smaller than foam cells behave as if the foam is a series of solid slabs and are fragmented and, at higher velocities, thermally altered. Particles much larger than the foam cells behave as if the foam were a continuum, allowing the use of a continuum mechanics model to describe the effects of drag and ablation. Fragmentation is expected to be a major process, especially for aggregates of small grains. Calculations based on these arguments accurately predict experimental data and, for hypothetical IDPs, indicate that recovery of organic materials will be low for encounter velocities greater than 5 km/s. For an organic particle 100 micrometers in diameter, approx. 35% of the original mass would be collected in an impact at 5 km/s, dropping to approx. 10% at 10 km/s and approx. 0% at 15 km/s. For the same velocities the recovery ratios for troilite (FeS) are approx. 95%, 65%, and 50%, and for olivine (Mg2SiO4) they are approx. 98%, 80%, and 65%, demonstrating that inorganic materials are much more easily collected. The density of the collector material has only a second-order effect, changing the recovered mass by less than 10% of the original mass.

  9. Estimation of micrometeorites and satellite dust flux surrounding Mars in the light of MAVEN results

    NASA Astrophysics Data System (ADS)

    Pabari, J. P.; Bhalodi, P. J.

    2017-05-01

    Recently, MAVEN observed dust around Mars from ∼150 km to ∼1000 km and it is a puzzling question to the space scientists about the presence of dust at orbital altitudes and about its source. A continuous supply of dust from various sources could cause existence of dust around Mars and it is expected that the dust could mainly be from either the interplanetary source or the Phobos/Deimos. We have studied incident projectiles or micrometeorites at Mars using the existing model, in this article. Comparison of results with the MAVEN results gives a new value of the population index S, which is reported here. The index S has been referred in a power law model used to describe the number of impacting particles on Mars. In addition, the secondary ejecta from natural satellites of Mars can cause a dust ring or torus around Mars and remain present for its lifetime. The dust particles whose paths are altered by the solar wind over its lifetime, could present a second plausible source of dust around Mars. We have investigated escaping particles from natural satellites of Mars and compared with the interplanetary dust flux estimation. It has been found that flux rate at Mars is dominated (∼2 orders of magnitude higher) by interplanetary particles in comparison with the satellite originated dust. It is inferred that the dust at high altitudes of Mars could be interplanetary in nature and our expectation is in agreement with the MAVEN observation. As a corollary, the mass loss from Martian natural satellites is computed based on the surface erosion by incident projectiles.

  10. The Ultrafine Mineralogy of a Molten Interplanetary Dust Particle as an Example of the Quench Regime of Atmospheric Entry Heating

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    Melting and degassing of interplanetary dust particle L2005B22 at approx. 1200 C was due to flash heating during atmospheric entry. Preservation of the porous particle texture supports rapid quenching from the peak heating temperature whereby olivine and pyroxene nanocrystals (3 nm-26 nm) show partial devitrification of the quenched melt at T approx. = 450 C - 740 C. The implied ultrahigh cooling rates are calculated at approx. 105 C/h-106 C/h, which is consistent with quench rates inferred from the temperature-time profiles based on atmospheric entry heating models. A vesicular rim on a nonstoichiometric relic forsterite grain in this particle represents either evaporative magnesium loss during flash heating or thermally annealed ion implantation texture.

  11. Update on Automated Classification of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Maroger, I.; Lasue, J.; Zolensky, M.

    2018-01-01

    Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria.

  12. Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets

    NASA Astrophysics Data System (ADS)

    Aléon, J.; Engrand, C.; Leshin, L. A.; McKeegan, K. D.

    2009-08-01

    Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects.

  13. The effects of interplanetary dust impacts on the accumulation of volatiles in the lunar permanently shadowed regions

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Szalay, Jamey

    2017-10-01

    The lunar regolith has been formed, and remains continually reworked, by the intermitten impacts of comets, asteroids, meteoroids, and the continual bombardment by interplanetary dust particles (IDP). Thick atmospheres protect Venus, Earth, and Mars, ablating the incoming IDPs into “shooting stars” that rarely reach the surface. However, the surfaces of airless bodies near 1 AU are directly exposed to the high-speed (>> 1 km/s) IDP impacts. The Moon is expected to be bombarded by 5x103 kg/day of IDPs arriving with a characteristic speed of ~ 20 km/s. The IDP sources impacting the Moon at high latitudes remain largely uncharacterized due to the lack of optical and radar observations in the polar regions on Earth. These high latitude sources have very large impact speeds in the range of 30 < v < 50 km/ hence they are expected to have a significant effect on the lunar surface, including the removal and burial of volatile deposits in the lunar polar regions.Water is thought to be continually delivered to the Moon through geological timescales by water-bearing comets and asteroids, and produced continuously in situ by the impacts of solar wind protons of oxygen rich minerals exposed on the surface. IDPs are an unlikely source of water due to their long UV exposure in the inner solar system, but their high-speed impacts can mobilize secondary ejecta dust particles, atoms and molecules, some with high-enough speed to escape the Moon. Other surface processes that can lead to mobilization, transport and loss of water molecules and other volatiles include solar heating, photochemical processes, and solar wind sputtering. Since none of these are at work in permanently shadowed regions (PSR), dust impacts remain the dominant process to dictate the evolution of volatiles in PSRs. The competing effects of dust impacts are: a) ejecta production leading to loss out of a PSR; b) gardening and overturning the regolith; and c) the possible accumulation of impact ejecta, leading

  14. Porosity of an Anhydrous Chondritic Interplanetary Dust Particle

    NASA Astrophysics Data System (ADS)

    Strait, M. M.; Thomas, K. L.; McKay, D. S.

    1995-09-01

    Determination of the density and porosity of Interplanetary Dust Particles (IDPs) is important in the dynamics of collisional and orbital evolution of small-sized particles. These measurements are also useful to suggest possible sources for IDPs based on comparisons with known extraterrestrial materials (e.g., chondrites). Previous work on IDPs shows a wide range of densities from very low (0.08 g/cm3 [1]) through low (0.3 g/cm3 [2]) to high (6.2 g/cm3 [3]), with an average density at 2.0 g/cm3 for 150 particles [2]. In another study, IDPs fall into two distinct density groups with mean values of 0.6 g/cm3 and 1.9g/cm3 [3]. In general, chondritic IDPs with lower density values most likely have appreciable porosity, suggesting they are primitive, uncompacted particles. It is believed that porosities greater than 70% are rare [2]. Sample In this study, porosity measurements were determined for one IDP, Clu17. This chondritic particle is a fragment of a large-sized IDP (L2008#5) known as a cluster particle. The cluster is composed of 53 fragments >5 micrometers in diameter; a detailed description of the cluster is given in [4]. IDP Clu17 has ~12 wt.% C and contains chondritic abundances (within 2xCI) for major elements. This fragment is dominated by fine-grained aggregates, also known as GEMS (glass with embedded metal and sulfide [5]), and contains some olivine, pyroxene, Fe-Ni sulfides, and carbonaceous material. Methods IDP Clu17 was analyzed for light elements quantitatively analysis using scanning electron microscopy and thin-window energy dispersive spectrometry [details of technique in 4]. Following the initial bulk chemical analysis, the particle was embedded in epoxy, thin sectioned using an ultramicrotome, and examined with a JEOL 2000 FX transmission electron microscope. Many of the sections were not complete; individual grains in some sections are lost during microtoming. Photos from nine of the best sections were digitized by scanning at 1200 dpi. The

  15. Cometary dust in Antarctic ice and snow: Past and present chondritic porous micrometeorites preserved on the Earth's surface

    NASA Astrophysics Data System (ADS)

    Noguchi, Takaaki; Ohashi, Noriaki; Tsujimoto, Shinichi; Mitsunari, Takuya; Bradley, John P.; Nakamura, Tomoki; Toh, Shoichi; Stephan, Thomas; Iwata, Naoyoshi; Imae, Naoya

    2015-01-01

    Chondritic porous interplanetary dust particles (CP IDPs) collected in the stratosphere are regarded as possibly being cometary dust, and are therefore the most primitive solar system material that is currently available for analysis in laboratories. In this paper we report the discovery of more than 40 chondritic porous micrometeorites (CP MMs) in the surface snow and blue ice of Antarctica, which are indistinguishable from CP IDPs. The CP MMs are botryoidal aggregates, composed mainly of sub-micrometer-sized constituents. They contain two components that characterize them as CP IDPs: enstatite whiskers and GEMS (glass with embedded metal and sulfides). Enstatite whiskers appear as <2-μm-long acicular objects that are attached on, or protrude from the surface, and when included in the interior of the CP MMs are composed of a unit-cell scale mixture of clino- and ortho-enstatite, and elongated along the [100] direction. GEMS appear as 100-500 nm spheroidal objects containing <50 nm Fe-Ni metal and Fe sulfide. The CP MMs also contain low-iron-manganese-enriched (LIME) and low-iron-chromium-enriched (LICE) ferromagnesian silicates, kosmochlor (NaCrSi2O6)-rich high-Ca pyroxene, roedderite (K, Na)2Mg5Si12O30, and carbonaceous nanoglobules. These components have previously been discovered in primitive solar system materials such as the CP IDPs, matrices of primitive chondrites, phyllosilicate-rich MMs, ultracarbonaceous MMs, and cometary particles recovered from the 81P/Wild 2 comet. The most outstanding feature of these CP MMs is the presence of kosmochlor-rich high-Ca pyroxene and roedderite, which suggest that they have building blocks in common with CP IDPs and cometary dust particles and therefore suggest a possible cometary origin of both CP MMs and CP IDPs. It is therefore considered that CP MMs are CP IDPs that have fallen to Earth and have survived the terrestrial environment.

  16. Dust in the Solar System - Properties and Origins

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko

    2013-01-01

    Interplanetary dust pervades the inner Solar System, giving rise to a prominent glow above the horizon at sunrise and sunset known as the zodiacal light. This dust derives from the disintegration of comets as they approach the Sun and from collisions among main-belt asteroids. The Earth accretes roughly 4x10(exp 6) kg/year of 1 - 1,000 micron dust particles as they spiral into the Sun under the influence of Poynting-Robertson drag and solar wind drag. Samples of these grains have been collected from deep sea sediments, Antarctic ice and by high-altitude aircraft and balloon flights. Interplanetary dust particles (IDPs) collected in the stratosphere have been classified by their IR spectra into olivine, pyroxene, and hydrated silicate-dominated classes. Most IDPs have bulk major and minor element abundances that are similar to carbonaceous chondrite meteorites. Hydrated silicate-rich IDPs are thought to derive from asteroids based on their mineralogy and low atmospheric entry velocities estimated from peak temperatures reached during atmospheric entry. Anhydrous IDPs are typically aggregates of 0.1 - approx. 1 micron Mg-rich olivine and pyroxene, amorphous silicates (GEMS), Fe, Nisulfides and rare spinel and oxides bound together by carbonaceous material. These IDPs are often argued to derive from comets based on compositional similarities and high atmospheric entry velocities that imply high eccentricity orbits. Infrared spectra obtained from anhydrous IDPs closely match remote IR spectra obtained from comets. The most primitive (anhydrous) IDPs appear to have escaped the parent-body thermal and aqueous alteration that has affected meteorites. These samples thus consist entirely of grains that formed in the ancient solar nebula and pre-solar interstellar and circumstellar environments. Isotopic studies of IDPs have identified silicate stardust grains that formed in the outflows of red giant and asymptotic giant branch stars and supernovae]. These stardust grains

  17. Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.; McKibben, R. B.; Simpson, J. A.; McDonnell, J. A. M.; Burchell, M. J.; Vaughan, B. A. M.; Tsou, P.; Hanner, M. S.; Clark, B. C.; Brownlee, D. E.

    2003-10-01

    The Dust Flux Monitor Instrument (DFMI) is part of the Stardust instrument payload. The prime goal of the DFMI is to measure the particle flux, intensity profile, and mass distribution during passage through the coma of comet Wild 2 in January 2004. This information is valuable for assessment of spacecraft risk and health and also for interpretation of the laboratory analysis of dust captured by the Aerogel dust collectors and returned to Earth. At the encounter speed of 6.1 km/s, the DFMI measurements will extend over the particle mass range of 8 decades, from 10-11 to >10-3 g. A secondary science goal is to measure the particle flux and mass distribution during the ~7 year interplanetary portions of the mission, where, in addition to measurements of the background interplanetary dust over the radial range 0.98 AU to 2.7 AU, multiple opportunities exist for possible detection by the DFMI of interplanetary meteor-stream particles and interstellar dust. The DFMI consists of two different dust detector systems: a polyvinylidene fluoride (PVDF) Dust Sensor Unit (SU), which measures particles with mass <~10-4 g, and a Dual Acoustic Sensor System (DASS), which utilizes two quartz piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux of particles with mass >10-4 g. The large Whipple shield structures provide the large effective sensitive area required for detection of the expected low flux of high-mass particles.

  18. Do we detect interplanetary dust with Faraday cups?

    NASA Astrophysics Data System (ADS)

    Kočiščák, S.; Pavlů, J.; Šafránková, J.; Němeček, Z.; Přech, L.

    2018-07-01

    Transient clouds of a plasma generated by hypervelocity dust particles impacting onto the spacecraft were observed in-situ by many experiments over the last 20 years. The reported observations analyze sensitive measurements of plasma waves that are transmitted to the Earth with a sufficient time resolution. The detection is based on a fact that hypervelocity impacts generate plumes of the ionized gas expanding into a space. The present paper analyzes five years of the operation of the Bright Monitor of the Solar Wind (BMSW) onboard the Spektr-R spacecraft with a motivation to demonstrate that such type of the instruments is capable to observe the dust impacts into its detectors. The results of analysis are compared with Wind electric field measurements used for a detection of hypervelocity dust impacts.

  19. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  20. Elemental Analyses of Hypervelocity Microparticle Impact Sites on Interplanetary Dust Experiment Sensor Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, J. J.; Brownlee, D. E.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to breakdown the 0.4 or 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results classification resulted from the particles' origins as 'manmade', 'natural', or 'indeterminate'. The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. Thus far, a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF were analyzed: 36 from tray C-9 (Leading (ram), or east, side), 18 from tray C-3 (Trailing

  1. GEMS and New Pre-Accretionally Irradiated RELICT Grains in Interplanetary Dust - The Plot Thickens

    NASA Astrophysics Data System (ADS)

    Bradley, J.

    1995-09-01

    The hypothesis that GEMS (glass with embedded metal and sulfides) in interplanetary dust particles (IDPs) might be the long-sought interstellar silicate grains is undergoing close scrutiny [1-3]. GEMS are proposed to be interstellar because: (a) they are abundant in cometary IDPs; (b) they were irradiated prior to incorporation into IDPs; (c) both their size distribution and Oamorphous silicate" microstructures are consistent with those of interstellar silicates; (d) they contain nanometer-sized (superparamagnetic) alpha-iron inclusions, which provides a simple explanation for the observed interstellar grain alignment and polarization [4,5]. Challenges to the GEMS hypothesis include the following: (a) GEMS may have formed and been irradiated in the solar nebula rather than a presolar interstellar environment; (b) non-solar isotope abundances have yet to be measured in GEMS; (c) the irradiation regime required to produce the observed effects in GEMS might be incompatible with the interstellar medium; (b) relationships between GEMS and carbon (e.g. core/mantle) need clarification; (c) major element abundances in GEMS should be consistent with observed interstellar gas phase depletions [2,3]. GEMS may indeed have formed in the solar nebula, in which case they would be the oldest known solar nebula solids [2]. An interstellar origin for GEMS does not require detection of non-solar isotope abundances [6]. Irradiation experiments are in progress to simulate the properties of GEMS. The petrographic relationship between GEMS and carbon in IDPs is being investigated (by examining IDPs embedded and thin-sectioned in carbon-free media). Major element abundances in GEMS are being evaluated in terms on interstellar gas phase abundances. For example, sulfur is not highly depleted in the interstellar gas, implying that it must be significantly depleted in interstellar grains [3]. GEMS are significantly depleted in sulfur relative to solar abundances. Analytical electron

  2. Principal Components Constrain Dynamic Pyrometamorphism in a Partially Melted Interplanetary Dust Particle

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.

    1996-03-01

    All interplanetary dust particles [IDPs] that decelerate in the Earth's atmosphere experience flash heating whereby their orbital velocity (km s^-1) is reduced to cm s^-1. Iron-oxide rims that may either be continuous on the particle surface, or discontinuous along its perimeter, occur on many IDPs. It is the most conspicuous mineralogical indicator of dynamic pyrometamorphism and its formation is interpreted as 'intense' IDP heating. It appears that the formation of these magnetite and maghemite rims is intimately linked to the presence of Fe,Ni-sulfides in the pre-entry particle. In this regard chondritic porous (CP) IDP L2011K7 may be an unusual particle. This porous aggregate consists of S-free polyphase units (PUs), nonstoichiometric diopside and Mg-rich wollastonite single-crystals and small, accessory Fe,Ni-sulfide grains. Only a few Fe-oxide nanograins are present along its perimeter. The nonstoichiometry of its Ca,Mg-clinopyroxenes indicates incongruent melting or vaporization that was experimentally determined at 1300 degrees-1400 degrees C. The CP IDP L2011K7 is probably of cometary origin since active comet nuclei are the most likely sources for uncompacted aggregate IDPs whereby their low density (< 1 g cm^-3) enhances atmospheric entry survival of large particles. In addition, the fluffy texture which inhibits chemical exchange among its components further enhances their survival unless compaction occurs during deceleration in the Earth's atmosphere.

  3. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    NASA Astrophysics Data System (ADS)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  4. Highlights and discoveries of the Cosmic Dust Analyser (CDA) during its 15 years of exploration

    NASA Astrophysics Data System (ADS)

    Srama, R.; Moragas-Klostermeyer, G.; Kempf, S.; Postberg, F.; Albin, T.; Auer, S.; Altobelli, N.; Beckmann, U.; Bugiel, S.; Burton, M.; Economou, T.; Fliege, K.; Grande, M.; Gruen, E.; Guglielmino, M.; Hillier, J. K.; Schilling, A.; Schmidt, J.; Seiss, M.; Spahn, F.; Sterken, V.; Trieloff, M.

    2014-04-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching

  5. Interplanetary dust profile observed on Juno's cruise from Earth to Jupiter

    NASA Astrophysics Data System (ADS)

    Joergensen, J. L.; Benn, M.; Jørgensen, P. S.; Denver, T.; Jørgensen, F. E.; Connerney, J. E. P.; Andersen, A. C.; Bolton, S. J.; Levin, S.

    2017-12-01

    Juno was launched August 5th, 2011, and entered the highly-elliptical polar orbit about Jupiter on July 4th, 2016, some 5 years later. Juno's science objectives include the mapping of Jupiter's gravity and magnetic fields and observation of the planet's deep atmosphere, aurora and polar regions. The Juno spacecraft is a large spin-stabilized platform powered by three long solar panel structures, 11 m in length, extending radially outward from the body of the spacecraft with panel normal parallel to the spacecraft spin axis. During almost 5 years in cruise, Juno traversed the inner part of the solar system, from Earth, to a deep space maneuver at 2.2AU, back to 0.8AU for a subsequent rendezvous with Earth for gravity assist, and then out to Jupiter (at 5.4AU at the time of arrival). The solar panels were nearly sun-pointing during the entire cruise phase, with the 60 m2 of solar panel area facing the ram direction (panel normal parallel to the spacecraft velocity vector). Interplanetary Dust Particles (IPDs) impacting Juno's solar panels with typical relative velocities of 20 km/s excavate target mass, some of which will leave the spacecraft at moderate speeds (few m/s) in the form of a few large spallation products. Many of these impact ejecta have been recorded and tracked by one of the autonomous star trackers flown as part of the Juno magnetometer investigation (MAG). Juno MAG instrumentation is accommodated on a boom at the end of one of the solar arrays, and consists of two magnetometer sensor suites each instrumented with two star trackers for accurate attitude determination at the MAG sensors. One of the four star trackers was configured to report such fast moving objects, effectively turning Juno's large solar array area into the largest-aperture IPD detector ever flown - by far. This "detector", by virtue of its prodigious collecting area, is sensitive to the relatively infrequent impacts of particles much larger (at 10's of microns) than those collected

  6. Dust Measurements Between Earth and Saturn by the Venetia Burney Student Dust Counter of the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    James, D.; Poppe, A.; Horanyi, M.

    2008-12-01

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons mission is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the spacecraft as it traverses our solar system. VSDC is the first student-built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when a dust particle impacts them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (12/2008), VSDC will have operated for about 500 days, and will have data covering an approximate distance of 1.2 to 11.0 AU from the Sun. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses and Galileo.

  7. Cometary Dust

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  8. Interrelationships among Circumstellar, Interstellar and Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III (Editor); Stencel, R. E. (Editor)

    1986-01-01

    Proceedings of a workshop held from February 27 to March 1, l985. The workshop was attended by 50 astronomers, astrophysicists, planetary scientists and meteoriticists; and emphasized the interdisciplinary nature of studies of cosmic dust.

  9. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1977-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  10. Lunar dust simulant charging and transport under UV irradiation in vacuum: Experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    Champlain, A.; Matéo-Vélez, J.-C.; Roussel, J.-F.; Hess, S.; Sarrailh, P.; Murat, G.; Chardon, J.-P.; Gajan, A.

    2016-01-01

    Recent high-altitude observations, made by the Lunar Dust Experiment (LDEX) experiment on board LADEE orbiting the Moon, indicate that high-altitude (>10 km) dust particle densities are well correlated with interplanetary dust impacts. They show no evidence of high dust density suggested by Apollo 15 and 17 observations and possibly explained by electrostatic forces imposed by the plasma environment and photon irradiation. This paper deals with near-surface conditions below the domain of observation of LDEX where electrostatic forces could clearly be at play. The upper and lower limits of the cohesive force between dusts are obtained by comparing experiments and numerical simulations of dust charging under ultraviolet irradiation in the presence of an electric field and mechanical vibrations. It is suggested that dust ejection by electrostatic forces is made possible by microscopic-scale amplifications due to soil irregularities. At low altitude, this process may be complementary to interplanetary dust impacts.

  11. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2012-01-01

    To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and

  12. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of evolution. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tail is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  13. Analysis of the Organic Matter in Interplanetary Dust Particles: Clues to the Organic Matter in Comets, Asteroids, and Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2003-01-01

    Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.

  14. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  15. Stardust in meteorites.

    PubMed

    Davis, Andrew M

    2011-11-29

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars.

  16. Stardust in meteorites

    PubMed Central

    Davis, Andrew M.

    2011-01-01

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars. PMID:22106261

  17. Meteoroid Measurements in the Deep Space Cruising and the Jupiter Trojan Rendezvous Phases of the Solar Power Sail Mission by the Arrayed Large-Area Dust Detectors in INterplanetary Space (ALADDIN)-II

    NASA Astrophysics Data System (ADS)

    Yano, H.; Hirai, T.; Arai, K.; Fujii, M.

    2017-12-01

    The PVDF thin films have been long, space-proven instruments for hypervelocity impact detection in the diverse regions of the Solar System from orbits of Venus by IKAROS and of Pluto by New Horizons. In particular, light weight but large area membranes of a solar sail spacecraft is an ideal location for such detectors to be deployed for detecting statistically enough nubers of so large micrometeoroids that are sensitive to mean motion resonances and other gravitational effects of flux enhancements and voids with planets. The IKAROS spacecraft first detected in situ dust flux enhancement and gap region within the Earth's circumsolar dust ring as well as those of Venus by 0.54 m^2 detection area of ALADDIN sensors on the slar sail membrane. Advancing this heritage, the Solar Power Sail membrane will carry 0.4+ m^2 ALADDIN-II PVDF sensors with improved impact signal prosessng units to detect both hyperveloity dust impacts in the interplanetary space cruising phase and slow dust impacts bound to the Jupiter Trojan region in its rendezvours phase.

  18. Rotational bursting of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.; Rhee, J. W.

    1974-01-01

    Solar radiation pressure is discussed as a cause of rotational bursting, and of eventual elimination of asymmetric dust particles from the solar system, by a windmill effect. The predicted life span with this process for metallic particles with radii of 0.00001 to 0.01 cm ranges from 10 to 10,000 years. The effects of magnetic spin damping were considered. This depletion mechanism works faster than the traditional Poynting-Robertson effect by approximately one order of magnitude for metallic particles and about two orders of magnitude for nonmetallic particles.

  19. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  20. Modeling the Solar Dust Environment at 9.5 Solar Radii: Revealing Radiance Trends with MESSENGER Star Tracker Data

    NASA Astrophysics Data System (ADS)

    Strong, S. B.; Strikwerda, T.; Lario, D.; Raouafi, N.; Decker, R.

    2010-12-01

    The main components of interplanetary dust are created through destruction, erosion, and collision of asteroids and comets (e.g. Mann et al. 2006). Solar radiation forces distribute these interplanetary dust particles throughout the solar system. The percent contribution of these source particulates to the net interplanetary dust distribution can reveal information about solar nebula conditions, within which these objects are formed. In the absence of observational data (e.g. Helios, Pioneer), specifically at distances less than 0.3 AU, the precise dust distributions remain unknown and limited to 1 AU extrapolative models (e.g. Mann et al. 2003). We have developed a model suitable for the investigation of scattered dust and electron irradiance incident on a sensor for distances inward of 1 AU. The model utilizes the Grün et al. (1985) and Mann et al. (2004) dust distribution theory combined with Mie theory and Thomson electron scattering to determine the magnitude of solar irradiance scattered towards an optical sensor as a function of helio-ecliptic latitude and longitude. MESSENGER star tracker observations (launch to 2010) of the ambient celestial background combined with Helios data (Lienert et al. 1982) reveal trends in support of the model predictions. This analysis further emphasizes the need to characterize the inner solar system dust environment in anticipation of near-Solar missions.

  1. What predictions can be made on the nature of carbon and carbon-bearing compounds (hydrocarbons) in the interstellar medium based on studies of interplanetary dust particles?

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1986-01-01

    The nature of hydrocarbons and properties of elemental carbon in circumstellar, interstellar, and interplanetary dust is a long standing problem in astronomy and meteorite research. The textures and crystallographical properties of poorly graphitized carbon (PGC) from carbonaceous chondrites and Chondritic Porous Aggregates (CPAs) are comparable with PGCs formed by dehydrogenation and carbonization of hydrocarbon precursors under natural terrestrial and experimental conditions. A multistage model of hydrocarbon diagenesis in CPA and carbonaceous chondrite (proto-) planetary parent bodies was proposed in which hydrocarbons are subjected to low temperature hydrous pyrolysis. Continued efforts to recognize hydrocarbons and elemental phases in CPAs may allow understanding of the multistage hydrocarbon/elemental carbon model.

  2. Sediment focusing creates 100-ka cycles in interplanetary dust accumulation on the Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Higgins, Sean M.; Anderson, Robert F.; Marcantonio, Franco; Schlosser, Peter; Stute, Martin

    2002-10-01

    The accumulation of extraterrestrial 3He, a tracer for interplanetary dust particles (IDPs), in sediments from the Ontong Java Plateau (OJP; western equatorial Pacific Ocean) has been shown previously to exhibit a regular cyclicity during the late Pleistocene, with a period of ∼100 ka. Those results have been interpreted to reflect periodic variability in the global accretion of IDPs that, in turn, has been linked to changes in the inclination of Earth's orbit with respect to the invariable plane of the solar system. Here we show that the accumulation in OJP sediments of authigenic 230Th, produced by radioactive decay of 234U in seawater, exhibits a 100-ka cyclicity similar in phase and amplitude to that evident in the 3He record. We interpret the similar patterns of 230Th and 3He accumulation to reflect a common origin within the ocean-climate system. Comparing spatial and temporal patterns of sediment accumulation against regional patterns of biological productivity and against the well-established pattern of CaCO3 dissolution in the deep Pacific Ocean leads to the further conclusion that a common 100-ka cycle in accumulation of biogenic, authigenic and extraterrestrial constituents in OJP sediments reflects the influence of climate-related changes in sediment focusing, rather than changes in the rate of production or supply of sedimentary constituents.

  3. Coordinated In Situ Analyses of Organic Nanoglobules in the Sutter's Mill Meteorite

    NASA Technical Reports Server (NTRS)

    Nakamura--Messenger, K.; Messenger, S.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Gibson, E. K.

    2013-01-01

    The Sutter s Mill meteorite is a newly fallen carbonaceous chondrite that was collected and curated quickly after its fall [1]. Preliminary petrographic and isotopic investigations suggest affinities to the CM2 carbonaceous chondrites. The primitive nature of this meteorite and its rapid recovery provide an opportunity to investigate primordial solar system organic matter in a unique new sample. Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and N-15/N-14 relative to terrestrial values [2-4]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [2]. Some meteorites and IDPs contain gm-size inclusions with extreme H and N isotopic anomalies [3-5], possibly due to preserved primordial organic grains. The abundance and isotopic composition of C in Sutter's Mill were found to be similar to the Tagish Lake meteorite [6]. In the Tagish Lake meteorite, the principle carriers of large H and N isotopic anomalies are sub-micron hollow organic spherules known as organic nanoglobules [7]. Organic nanoglobules are commonly distributed among primitive meteorites [8, 9] and cometary samples [10]. Here we report in-situ analyses of organic nano-globules in the Sutter's Mill meteorite using UV fluorescence imaging, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), NanoSIMS, and ultrafast two-step laser mass spectrometry (ultra-L2MS).

  4. The Cosmic Dust Analyzer for Cassini

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Gruen, Eberhard; Srama, Ralf

    1996-01-01

    The Cosmic Dust Analyzer (CDA) is designed to characterize the dust environment in interplanetary space, in the Jovian and in the Saturnian systems. The instrument consists of two major components, the Dust Analyzer (DA) and the High Rate Detector (HRD). The DA has a large aperture to provide a large cross section for detection in low flux environments. The DA has the capability of determining dust particle mass, velocity, flight direction, charge, and chemical composition. The chemical composition is determined by the Chemical Analyzer system based on a time-of-flight mass spectrometer. The DA is capable of making full measurements up to one impact/second. The HRD contains two smaller PVDF detectors and electronics designed to characterize dust particle masses at impact rates up to 10(exp 4) impacts/second. These high impact rates are expected during Saturn ring, plane crossings.

  5. Investigations of Wind/WAVES Dust Impacts

    NASA Astrophysics Data System (ADS)

    St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.

    2017-12-01

    The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year

  6. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cécile; Duprat, Jean; Bardin, Noémie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Remusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin

    2016-10-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.

  7. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials.

  8. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including

  9. The Diversity of Carbon in Cometary Refractory Dust Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2018-01-01

    When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.

  10. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  11. Mineralogy of dark clasts in primitive versus differentiated meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Weisberg, M. K.; Barrett, R. A.; Prinz, M.

    1993-01-01

    The presence of dark lithic clasts within meteorites can provide information concerning asteroidal regolith processes, the extent of interactions between asteroids, and the relationship between meteorite types, micrometeorites, and interplanetary dust particles. Accordingly, we have been seeking and characterizing dark clasts found within carbonaceous chondrites, unequilibrated ordinary chondrites, howardites, and eucrites. We find that unequilibrated chondrites in this study contain fine-grained, anhydrous unequilibrated inclusions, while the howardites often contain inclusions from geochemically processed, hydrous asteroids (type 1 and 2 carbonaceous chondrites). Eucrites and howardities contain unusual clasts, not easily classified.

  12. Final Reports of the Stardust ISPE: Seven Probable Interstellar Dust Particles

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sans Tresseras, Juan-Angel; Westphal, Andrew J.; Stroud, Rhonda M.; Bechtel, Hans A.; Brenker, Frank E.; Butterworth, Anna L.; Flynn, George J.; Frank, David R.; Gainsforth, Zack; hide

    2014-01-01

    The Stardust spacecraft carried the first spaceborne collector specifically designed to capture and return a sample of contemporary interstellar dust to terrestrial laboratories for analysis [1]. The collector was exposed to the interstellar dust stream in two periods in 2000 and 2002 with a total exposure of approximately 1.8 10(exp 6) square meters sec. Approximately 85% of the collector consisted of aerogel, and the remainder consisted of Al foils. The Stardust Interstellar Preliminary Examination (ISPE) was a consortiumbased effort to characterize the collection in sufficient detail to enable future investigators to make informed sample requests. Among the questions to be answered were these: How many impacts are consistent in their characteristics with interstellar dust, with interplanetary dust, and with secondary ejecta from impacts on the spacecraft? Are the materials amorphous or crystalline? Are organics detectable? An additional goal of the ISPE was to develop or refine the techniques for preparation, analysis, and curation of these tiny samples, expected to be approximately 1 picogram or smaller, roughly three orders of magnitude smaller in mass than the samples in other small particle collections in NASA's collections - the cometary samples returned by Stardust, and the collection of Interplanetary Dust Particles collected in the stratosphere.

  13. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  14. In situ observations of dust particles in Martian dust belts using a large-sensitive-area dust sensor

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masanori; Krüger, Harald; Senshu, Hiroki; Wada, Koji; Okudaira, Osamu; Sasaki, Sho; Kimura, Hiroshi

    2018-07-01

    In order to determine whether Martian dust belts (ring or torus) actually exist and, if so, to determine the characteristics of the dust, we propose a Circum-Martian Dust Monitor (CMDM) to be deployed on the Martian Moons Exploration (MMX) project, in which JAXA plans to launch the spacecraft in 2024, investigate Phobos and Deimos, and return samples back to Earth. The CMDM is a newly developed instrument that is an impact dust detector. It weighs only 650 g and has a sensor aperture area of ∼1 m2, according to the conceptual design study. Detectable velocities (v) range from 0.5 km/s to more than 70 km/s, which will cover all possible dust particles: circummartian (low v), interplanetary (mid v), and interstellar (high v) particles. The measurable mass ranges from 1.3 × 10-9 g to 7.8 × 10-7 g at v = 0.5 km/s. Since the MMX spacecraft will take a quasi-circular, prograde orbit around Mars, the CMDM will be able to investigate particles from Phobos and Deimos with relative velocities lower than 1 km/s. Therefore, the CMDM will be able to determine whether or not a confined dust ring exists along Phobos' orbit and whether an extended dust torus exists along Deimos' orbit. It may also be able to clarify whether or not any such ring or torus are self-sustained.

  15. The effects of electrostatic charging on the dust distribution at Halley's Comet

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Mendis, D. A.

    1986-01-01

    The distribution of fine dust near Comet Halley at its 1910 and 1986 apparitions is investigated by means of computer simulations, taking the effects of EM forces due to the dust electrostatic charge into account. It is found that the nucleus spin period and orbital obliquity estimated by Sekanina and Larson (1984) from the 1910 observations are unaffected by these EM forces because the 1910 dust morphology involved mainly large grains. For 1986, the orientation of the smaller dust is shown to depend on the interplanetary magnetic field, with implications for the dust distribution encountered by the Halley probes.

  16. Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space

    NASA Technical Reports Server (NTRS)

    Janches, Diego

    2015-01-01

    The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade.

  17. The radiation-induced rotation of cosmic dust particles: A feasibility study

    NASA Technical Reports Server (NTRS)

    Misconi, N. Y.; Ratcliff, K. F.

    1981-01-01

    A crossed beam, horizontal optical trap, used to achieve laser levitation of particles in an effort to determine how solar radiation produces high spin rate in interplanetary dust particles, is described. It is suggested that random variations in albedo and geometry give rise to a nonzero effective torque when the influence of a unidrectional source of radiaton (due to the Sun) over the surface of a interplanetary dust particle is averaged. This resultant nonzero torque is characterized by an asymmetry factor which is the ratio of the effective moment arm to the maximum linear dimension of the body and is estimated to be 5 X 10 to the minus four power. It is hoped that this symmetry factor, which stabilizes the nonstatistical response of the particle, can be measured in a future Spacelab experiment.

  18. Long Duration Exposure Facility (LDEF) attitude measurements of the interplanetary dust experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.; Motley, William R., III

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) was unique in providing a time history of impacts of micron-sized particles on six orthogonal faces of LDEF during the first year in orbit. The value of this time resolved data depended on and was enhanced by the proper operation of some basic LDEF systems. Thus, the value of the data is greatly enhanced when the location and orientation of LDEF is known for each time of impact. The location and velocity of LDEF as a function of time can be calculated from the 'two-line elements' published by GSFC during the first year of the LDEF mission. The attitude of LDEF was passively stabilized in a gravity-gradient mode and a magnetically anchored viscous damper was used to dissipate roll, pitch, and yaw motions. Finally, the IDE used a standard LDEF Experiment Power and Data System (EPDS) to collect and store data and also to provide a crystal derived clock pulse (1 count every 13.1072 seconds) for all IDE time measurements. All that remained for the IDE was to provide a system to calibrate the clock, eliminating accumulative errors, and also verify the attitude of LDEF. The IDE used solar cells on six orthogonal faces to observe the LDEF sunrise and provide data about the LDEF attitude. The data was recorded by the EPDS about 10 times per day for the first 345 days of the LDEF mission. This data consist of the number of IDE counts since the last LDEF sunrise and the status of the six solar cells (light or dark) at the time of the last IDE count. The EPDS determined the time that data was recorded and includes, with each record, the master EPDS clock counter (1 count every 1.6384 seconds) that provided the range and resolution for time measurements. The IDE solar cells provided data for an excellent clock calibration, meeting their primary purpose, and the time resolved LDEF attitude measurements that can be gleaned from this data are presented.

  19. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  20. Spectrophotometry of Dust in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  1. Astrophysical dust grains in stars, the interstellar medium, and the solar system

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1991-01-01

    Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.

  2. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  3. A new method to generate dust with astrophysical properties

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; van Breugel, W.; Bringa, E. M.; Eberly, B.; Graham, G. A.; Remington, B. A.; Taylor, E. A.; Tielens, A. G. G. M.

    2011-05-01

    To model the size distribution and composition of interstellar and interplanetary dust grains, and their effect on a wide range of phenomena, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new laser experiment that subjects dust grains to pressure spikes similar to those of colliding astrophysical dust, and that accelerates the grains to astrophysical velocities. This new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields. We also measure the in-flight velocity ( ~ 4.5km/s) of hundreds of grains simultaneously by use of a particle image velocimetry (PIV) technique.

  4. On Synchronization Primitive Systems.

    DTIC Science & Technology

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  5. The Origin of Organic Matter in the Solar System: Evidence from Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Jacobsen, C.; Wirick, S.

    2001-01-01

    The origin of the organic matter in interplanetary materials has not been established. A variety of mechanisms have been proposed, with two extreme cases being a Fisher-Tropsch type process operating in the gas phase of the solar nebula or a Miller-Urey type process, which requires interaction with an aqueous fluid, presumably occurring on an asteroid. In the Fisher-Tropsch case, we might expect similar organic matter in hydrated and anhydrous interplanetary materials. However, aqueous alteration is required in the case of the Miller-Urey process, and we would expect to see organic matter preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. The types and abundance of organic matter in meteorites have been used as an indicator of the origin of organic matter in the Solar System. Indigenous complex organic matter, including amino acids, has been found in hydrated carbonaceous chondrite meteorites, such as Murchison. Much lower amounts of complex organic matter, possibly only terrestrial contamination, have been found in anhydrous carbonaceous chondrite meteorites, such as Allende, that contain most of their carbon in elemental form. These results seem to favor production of the bulk of the organic matter in the Solar System by aqueous processing on parent bodies such as asteroids, a Miller-Urey process. However, the hydrated carbonaceous chondrite meteorites have approximately solar abundances of the moderately volatile elements, while all anhydrous carbonaceous chondrite meteorites have significantly lower contents of these moderately volatile elements. Two mechanisms, incomplete condensation or evaporation, both of which involve processing at approx. 1200 C, have been suggested to explain the lower content of the moderately volatile elements in all anhydrous meteorites. Additional information is contained in the original extended abstract.

  6. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  7. Interstellar and Solar Nebula Materials in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon

    2017-01-01

    Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive

  8. Dynamics of Solar System Dust

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2002-01-01

    The ongoing aim of the research is to investigate the dynamical and physical evolution of interplanetary dust particles in order to produce a detailed global model of the zodiacal cloud and its constituent components that is capable of predicting thermal fluxes in mid-infrared wave bands to an accuracy of 1% or better; with the additional aim of exploiting this research as a basis for predicting structure in exozodiacal clouds that may be signatures of unseen planets.

  9. Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.; hide

    2012-01-01

    Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.

  10. Low-temperature crystallization of silicate dust in circumstellar disks.

    PubMed

    Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C

    1999-10-07

    Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.

  11. The Impact of Mars Atmospheric Dust on Human Health

    NASA Astrophysics Data System (ADS)

    Kamakolanu, U. G.

    2017-06-01

    The martian dust impact can be considered as an exposure to ultra fine particles of martian dust. Direct nose to brain pathway of particulate matter can affect the fine motor skills and gross motor skills, cognition may be affected.

  12. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  13. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    PubMed

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  14. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  15. Dust arcs in the region of Jupiter's Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Schmidt, Jürgen

    2018-01-01

    Aims: The surfaces of the Trojan asteroids are steadily bombarded by interplanetary micrometeoroids, which releases ejecta of small dust particles. These particles form the faint dust arcs that are associated with asteroid clouds. Here we analyze the particle dynamics and structure of the arc in the region of the L4 Trojan asteroids. Methods: We calculate the total cross section of the L4 Trojan asteroids and the production rate of dust particles. The motion of the particles is perturbed by a variety of forces. We simulate the dynamical evolution of the dust particles, and explore the overall features of the Trojan dust arc. Results: The simulations show that the arc is mainly composed of grains in the size range 4-10 microns. Compared to the L4 Trojan asteroids, the dust arc is distributed more widely in the azimuthal direction, extending to a range of [30, 120] degrees relative to Jupiter. The peak number density does not develop at L4. There exist two peaks that are azimuthally displaced from L4.

  16. Hypervelocity Dust Impacts in Space and the Laboratory

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  17. Physical characteristics of cometary dust from dynamical studies - A review

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1980-01-01

    Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.

  18. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogliore, Ryan C.; Butterworth, Anna L.; Fakra, Sirine C.

    2010-07-16

    The fragile structure of chondritic-porous interplanetary dust particles (CP-IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alterations have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed {approx}300 ng of Wild 2 material - three orders of magnitude more materialmore » than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are > 2{sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent-body, or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do not appear to be consistent with the origin of CP-IDPs. However, comets that formed from a different mix of nebular material and are more oxidized than Wild 2 could be the source of CP-IDPs.« less

  19. Infrared to millimetre photometry of ultra-luminous IR galaxies: New evidence favouring a 3-stage dust model

    NASA Astrophysics Data System (ADS)

    Klaas, U.; Haas, M.; Müller, S. A. H.; Chini, R.; Schulz, B.; Coulson, I.; Hippelein, H.; Wilke, K.; Albrecht, M.; Lemke, D.

    2001-12-01

    Infrared to millimetre spectral energy distributions (SEDs) have been obtained for 41 bright ultra-luminous infrared galaxies (ULIRGs). The observations were carried out with ISOPHOT between 10 and 200 mu m and supplemented for 16 sources with JCMT/SCUBA at 450 and 850 mu m and with SEST at 1.3 mm. In addition, seven sources were observed at 1.2 and 2.2 mu m with the 2.2 m telescope on Calar Alto. These new SEDs represent the most complete set of infrared photometric templates obtained so far on ULIRGs in the local universe. The SEDs peak at 60-100 mu m and show often a quite shallow Rayleigh-Jeans tail. Fits with one single modified blackbody yield a high FIR opacity and small dust emissivity exponent beta < 2. However, this concept leads to conflicts with several other observational constraints, like the low PAH extinction or the extended filamentary optical morphology. A more consistent picture is obtained using several dust components with beta = 2, low to moderate FIR opacity and cool (50 K > T > 30 K) to cold (30 K > T > 10 K) temperatures. This provides evidence for two dust stages, the cool starburst dominated one and the cold cirrus-like one. The third stage with several hundred Kelvin warm dust is identified in the AGN dominated ULIRGs, showing up as a NIR-MIR power-law flux increase. While AGNs and SBs appear indistinguishable at FIR and submm wavelengths, they differ in the NIR-MIR. This suggests that the cool FIR emitting dust is not related to the AGN, and that the AGN only powers the warm and hot dust. In comparison with optical and MIR spectroscopy, a criterion based on the SED shapes and the NIR colours is established to reveal AGNs among ULIRGs. Also the possibility of recognising evolutionary trends among the ULIRGs via the relative amounts of cold, cool and warm dust components is investigated. Based on observations with the Infrared Space Observatory ISO, the James Clerk Maxwell Telescope JCMT, the Swedish ESO Submillimetre Telescope SEST and

  20. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  1. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  2. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  3. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  4. Dust Observations by Faraday Cups Onboard Spektr-R

    NASA Astrophysics Data System (ADS)

    Pavlu, J.; Kociscak, S.; Safrankova, J.; Nemecek, Z.; Prech, L.

    2017-12-01

    Dust of both interstellar and interplanetary origins was reported in many in-situ experiments devoted to dust detection during past tens of years. Recently, a number of reports employed unintended devices to observe dust (Voyager, Cassini, STEREO …). Most of such observations is based on impact ionization occurring when hypervelocity grains hit a surface being vaporized together with a portion of the surface material. The thermal ionization generates a plasma plume and the dust detection is based on collection of plasma particles by, e.g., antennas. In this contribution, we apply a similar approach to dust impact detection using the multi Faraday cup instrument (BMSW) onboard the Spektr-R spacecraft. It is orbiting the Earth along the highly elliptical trajectory with perigee of 2 and apogee of 50 Re. The BMSW instrument consists of 6 Faraday cups measuring local environmental properties with a rate as high as 30 Hz, i.e., high enough to detect aforementioned plasma plumes. The advantages of the multiple Faraday cup instrument include an easy recognition of dust impacts among plasma disturbances/solitons — dust grain impact can be detected only by one Faraday cup at a given time. We analyze Faraday cup waveforms applying simple criteria on impact spike shape and find a number of dust impact candidates. Based on this experience, we suggest a modification of future devices with a similar detection system.

  5. Coordinated STEM/FIB/NanoSIMS Analyses of Presolar Silicates in Comet Dust and Primitive Meteorites

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay; Nguyen, A.; Rahman, Z.; Messenger, S.

    2012-01-01

    Silicate grains were among the most abundant mineralogical building blocks of our Solar System. These grains were the detritus from earlier generations of stars that have been recycled in the early solar nebula. Rare sub-micrometer survivors of this processing have been identified in meteorites, micrometeorites and interplanetary dust particles (IDPs). These silicate grains are recognized as presolar in origin because of their extremely anomalous isotopic compositions that reflect nucleosynthetic processes in their stellar sources (evolved stars, novae and supernovae). We perform coordinated chemical, mineralogical and isotopic studies of these grains to determine their origins and histories. We examine the complex mineralogy and petrography of presolar silicates using imaging, diffraction and chemical data obtained from thin sections with the JSC JEOL 2500 field-emission STEM equipped with a Noran thin window energy dispersive x-ray (EDX) spectrometer and a Gatan Tridiem GIF. Quantitative element x-ray maps (spectrum images) are acquired by rastering a 4 nm incident probe whose dwell time is minimized to avoid beam damage and element diffusion during mapping. Successive image layers are acquired and combined in order to achieve approx 1% counting statistics for major elements. The IDP samples are prepared by ultramicrotomy of particles embedded in epoxy or elemental sulfur. After EDX mapping, the sections are subjected to C, N, and O isotopic imaging with the JSC NanoSIMS 50L ion microprobe. We prepare sections of some meteorite grains using the JSC FEI Quanta 3D focused ion beam (FIB) instrument. The specimen surface is protected from the FIB milling process by layers of electron beam-deposited C and Pt followed by an ion-deposited Pt layer. We also use the FIB to preferentially remove surrounding grains to reduce the background in subsequent NanoSIMS measurements. For mineralogical studies, we again employ the FIB instrument to deposit a protective cap over the

  6. Interaction between solar energetic particles and interplanetary grains

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Calcagno, L.; Foti, G.; Sheng, K. L.

    Some laboratory-studied effects induced by the fluence of fast ions on frosts of astrophysical interest are summarized. The results are applied to the interaction between energetic solar ions and interplanetary dust grains assumed to be cometary debris which spends about one-million yr before being collected in the earth's atmosphere or colliding on the moon's surface. The importance of erosion by particles to the stability of ice grains is confirmed. The build up of carbonaceous material by ion fluence on hydrocarbon containing grains is discussed. It is suggested that these new materials could be the glue which cements submicron silicate particles to form a complex agglomeration whose density increases with increasing proton fluence (packing effect). The IR spectra of laboratory synthesized carbonaceous material are compared with those observed in some carbonaceous meteoritic extracts.

  7. Moon Dust may Simulate Vascular Hazards of Urban Pollution

    NASA Astrophysics Data System (ADS)

    Rowe, W. J.

    A long duration mission to the moon presents several potential cardiovascular complications. To the risks of microgravity and hypokinesia, and the fact that pharmaceuticals cannot be always depended upon in the space fight conditions, there is a possible additional risk due to inhalation in the lunar module of ultra-fine dust (<100 nm). This may trigger endothelial dysfunction by mechanisms similar to those shown to precipitate endothelial insults complicating ultra-fine urban dust exposure. Vascular constriction and a significant increase in diastolic blood pressures have been found in subjects inhaling urban dust within just two hours, possibly triggered by oxidative stress, inflammatory effects, and calcium overload with a potential magnesium ion deficit playing an important contributing role. Both Irwin and Scott on Apollo 15, experienced arrhythmias, and in Irwin's case associated with syncope and severe dyspnea with angina during reentry. After the mission both had impairment in cardiac function, and delay in cardiovascular recovery, with Irwin in addition having stress test- induced extremely high blood pressures, with no available stress test results in Scott's case for comparison. It is conceivable that the chemical nature or particle size of the lunar dust is sufficiently variable to account for these complications, which were not described on the other Apollo missions. This could be determined by non-invasive endothelial-dependent flow-mediated dilatation studies in the lunar environment at various sites, thereby determining the site with the least endothelial vulnerability to dysfunction. These studies could be used also to demonstrate possible intensification of endothelial dysfunction from inhalation of ultra-fine moon dust in the lunar module.

  8. Dynamic Primitives of Motor Behavior

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations and mechanical impedances, the latter necessary for interaction with objects. Due to fundamental features of the neuromuscular system, most notably its slow response, we argue that encoding in terms of parameterized primitives may be an essential simplification required for learning, performance, and retention of complex skills. Primitives may simultaneously and sequentially be combined to produce observable forces and motions. This may be achieved by defining a virtual trajectory composed of submovements and/or oscillations interacting with impedances. Identifying primitives requires care: in principle, overlapping submovements would be sufficient to compose all observed movements but biological evidence shows that oscillations are a distinct primitive. Conversely, we suggest that kinematic synergies, frequently discussed as primitives of complex actions, may be an emergent consequence of neuromuscular impedance. To illustrate how these dynamic primitives may account for complex actions, we briefly review three types of interactive behaviors: constrained motion, impact tasks, and manipulation of dynamic objects. PMID:23124919

  9. Development of a high resolution interstellar dust engineering model - overview of the project

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.; Strub, P.; Soja, R. H.; Srama, R.; Krüger, H.; Grün, E.

    2013-09-01

    Beyond 3 AU heliocentric distance, the flow of interstellar dust through the solar system is a dominant component of the total dust population. The modulation of this flux with the solar cycle and the position in the solar system has been predicted by theoretical studies since the seventies. The modulation was proven to exist by matching dust trajectory simulations with real spacecraft data from Ulysses in 1998. The modulations were further analyzed and studies in detail in 2012. The current ESA interplanetary meteoroid model IMEM includes an interstellar dust component, but this component was modelled only with straight line trajectories through the solar system. For the new ESA IMEX model, a high-resolution interstellar dust component is implemented separately from a dust streams module. The dust streams module focuses on dust in streams that was released from comets (cf. Abstract R. Soja). Parallel processing techniques are used to improve computation time (cf. Abstract P. Strub). The goal is to make predictions for the interstellar dust flux as close to the Sun as 1 AU or closer, for future space mission design.

  10. Nitrogen in Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Keller, L. P.; Thomas, K. L.; Bradley, J. P.; McKay, D. S.

    1995-09-01

    Little is known about the abundance, distribution and chemical state of nitrogen in IDPs with the exceptions of the isotopic enrichment in 15N displayed by many particles [1-3], and the inferred association of nitrogen with polyaromatic hydrocarbons in some IDPs [4]. Like carbon, nitrogen is strongly fractionated among meteoritic materials and it is well known that the most primitive carbon-rich meteorites also tend to have high nitrogen abundances [5]. Nitrogen-bearing compounds are also a significant component of the carbonaceous material (CHON particles) sampled during the comet Halley encounter [e.g. 6]. We describe here the first reported detection and location of nitrogen concentrations in several IDPs using electron energy-loss spectroscopy. Three chondritic, anhydrous IDPs (L2011R11, L2008F13, and a fragment from L2006, cluster 14) were embedded in sulfur [7] and tranmission electron microscope (TEM) specimens were prepared by ultramicrotomy. The IDP thin sections were placed on copper TEM grids with SiO thin film substrates and analyzed using a JEOL 2010 TEM equipped with a thin-window energy-dispersive X-ray detector and a Gatan 666 parallel EELS spectrometer. We also analyzed W7027H14, a carbon-rich, chondritic-porous IDP that was embedded in epoxy. The EELS data from carbon-rich amorphous regions of the analyzed IDPs typically show a small, but distinct nitrogen edge at ~400 eV (Figure 1). The nitrogen is not homogeneously distributed in the carbonaceous material in the four IDPs analyzed to date, but occurs in "hot spots". However, these "hot spots" do not appear to be associated with a distinct N-bearing mineral (e.g. nitrides); the nitrogen is indigenous to the carbonaceous material in these IDPs. Although the quantitative N analyses using EELS are still in progress, the preliminary data from one IDP (L2011R11) indicates an upper N/C atom ratio of ~0.1, which is comparable to the chondritic value (N/C ~0.08, [8]). It should be noted however, that the

  11. Electrostatic effects on dust particles in space

    NASA Astrophysics Data System (ADS)

    Leung, Philip; Wuerker, Ralph

    1992-02-01

    The star scanner of the Magellan spacecraft experienced operational anomalies continuously during Magellan's journey to Venus. These anomalies were attributed to the presence of dust particles in the vicinity of the spacecraft. The dust particles, which were originated from the surface of thermal blankets, were liberated when the electrostatic force acting on them was of sufficient magnitude. In order to verify this hypothesis, an experimental program was initiated to study the mechanisms responsible for the release of dust particles from a spacecraft surface. In the experiments, dust particles were immersed in a plasma and/or subjected to ultra-violet irradiation. Results showed that the charging state of a dust particle was strongly dependent on the environment, and the charge on a dust particle was approximately 10(exp 3) elementary charges. Consequently, in the space environment, electrostatic force could be the most dominant force acting on a dust particle.

  12. On the Origin of GEMS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2004-01-01

    GEMS (glass with embedded metal and sulfides) are a major component of anhydrous interplanetary dust particles (IDPs) their physical and chemical characteristics show marked similarities to contemporary interstellar dust. Recent oxygen isotopic measurements confirm that at least a small fraction (less than 5%) of GEMS are demonstrably presolar, while the remainder have ratios that are indistinguishable from solar values. GEMS with solar oxygen isotopic compositions either (1) had their isotopic compositions homogenized through processing in the interstellar medium (ISM), or (2) formed in the early solar system. Isotopic homogenization necessarily implies chemical homogenization, so (interstellar) GEMS compositions should reflect the average composition of dust in the local ISM. We performed a systematic examination of the bulk chemistry of GEMS in primitive IDPs in order to test this hypothesis.

  13. Sub-Micrometer Scale Minor Element Mapping in Interplanetary Dust Particles: A Test for Stratospheric Contamination

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Sutton, S. R.

    2004-01-01

    Combined X-ray microprobe (XRM), energy dispersive x-ray fluorescence using a Transmission Electron Microscope (TEM), and electron microprobe measurements have determined that the average bulk chemical composition of the interplanetary dust particles (IDPs) collected from the Earth s stratosphere is enriched relative to the CI meteorite composition by a factor of 2 to 4 for carbon and for the moderately volatile elements Na, K, P, Mn, Cu, Zn, Ga, Ge, and Se, and enriched to approximately 30 times CI for Br. However, Jessberger et al., who have reported similar bulk enrichments using Proton Induced X-ray Emission (PIXE), attribute the enrichments to contamination by meteor-derived atmospheric aerosols during the several weeks these IDPs reside in the Earth s atmosphere prior to collection. Using scanning Auger spectroscopy, a very sensitive surface analysis technique, Mackinnon and Mogk have observed S contamination on the surface of IDPs, presumably due to the accretion of sulfate aerosols during stratospheric residence. But the S-rich layer they detected was so thin (approximately 100 angstroms thick) that the total amount of S on the surface was too small to significantly perturb the bulk S-content of a chondritic IDP. Stephan et al. provide support for the contamination hypothesis by reporting the enrichment of Br on the edges of the IDPs using Time-of-Flight Secondary-Ion Mass-Spectrometry (TOFSIMS), but TOF-SIMS is notorious for producing false edge-effects, particularly on irregularly-shaped samples like IDPs. Sutton et al. mapped the spatial distribution of Fe, Ni, Zn, Br, and Sr, at the approximately 2 m scale, in four IDPs using element-specific x-ray fluorescence (XRF) computed microtomography. They found the moderately volatile elements Zn and Br, although spatially inhomogeneous, were not concentrated on the surface of any of the IDPs they examined, suggesting that the Zn and the Br enrichments in the IDPs are not due to contamination during

  14. Dust Analyzer Instrument (DANTE) for the detection and elemental analysis of dust particles originating from the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; O'brien, L.; Gruen, E.; Horanyi, M.; Malaspina, D.; Moebius, E.; Rocha, J. R. R.

    2016-12-01

    Nano- to sub-micron-size dust particles generated by the collisional breakup of interplanetary dust particles (IDPs) in the inner solar system can be accelerated away from the Sun and are available for detection and analysis near 1 AU. Beta-meteoroids are sub-micron sized particles for which the radiation pressure dominates over gravity and have already been detected by dedicated dust instrument. Charged nano-sized dust particles are picked up by the expanding solar wind and arrive to 1 AU with high velocity. The recent observations by the WAVE instrument on the two STEREO spacecraft indicated that these particles may exist in large numbers. The Dust Analyzer Instrument (DANTE) is specifically developed to detect and analyze these two populations of dust particles arriving from a direction close to the Sun. DANTE is a linear time-of-flight (ToF) mass spectrometer analyzing the ions generated by the dust impact on a target surface. DANTE is derived from the Cosmic Dust Analyzer instrument operating on Cassini. DANTE has a 300 cm2 target area and a mass resolution of approximately m/dm = 50. The instrument performance has been verified using the dust accelerator facility operating at the University of Colorado. A light trap system, consisting of optical baffles, is designed and optimized in terms of geometry and surface optical properties. A solar wind ion repeller system is included to prevent solar wind from entering the sensor. Both measures facilitate the detection with the instrument pointing close to the Sun's direction. The DANTE measurements will help to understand the sources, sinks and distribution of dust between the Sun and 1 AU, and, when combined with solar wind ion analyzer instrument, they will provide insight on the suspected link between dust particles and pickup ions, and how the massive particles affect the dynamics and energetics of the solar wind.

  15. Space dust and debris; Proceedings of the Topical Meeting of the Interdisciplinary Scientific Commission B (Meetings B2, B3, and B5) of the COSPAR 28th Plenary Meeting, The Hague, Netherlands, June 25-July 6, 1990

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Editor); Zarnecki, J. C. (Editor); Matson, D. L. (Editor)

    1991-01-01

    The present conference on space dust and debris encompasses orbital debris, in situ measurements and laboratory analysis of space-dust particles, comparative studies of comets, asteroids, and dust, the protection and maneuvering of spacecraft in space-debris environments, and the out-of-elliptic distribution of interplanetary dust derived from near-earth flux. Specific issues addressed include asteroid taxonomy, the optical properties of dust from cometary and interplanetary grains, light scattering by rough surfaces on asteroidal/lunar regoliths, and the first results of particulate impacts and foil perforations on the Long Duration Exposure Facility. Also addressed are collision probability and spacecraft disposition in the geostationary orbit, a flash on the moon caused by orbital debris, the limits of population growth in low earth orbit due to collisional cascading, and the simulation of cosmic man-made dust effects on space-vehicle elements in rocket and laboratory experiments.

  16. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  17. Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Schmidt, Jrgen

    2018-06-01

    In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.

  18. Micro-analyses of Interplanetary Dust Particles (IDPs) and Micrometeorites (MMs): Implications for sample return missions to undifferentiated protoplanets

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F.

    The good news is that the original, typically non-chondritic, presolar dust had an extremely simple mineralogy of predominantly Mg-rich olivines and -pyroxenes, pyrrhotite (Fe7 S8 ), Fe-o xides and Fe,Ni-metal. This unique property is preserved in the least modified protoplanets for in situ sampling (e.g. STARDUST, MUSES-C) and in their debris in the form of stratospheric IDPs and MMs. The corollary is that mineralogical complexity in all extraterrestrial materials is an evolved secondary property. The earliest stages of solar system evolution were defined by hierarchical dust accretion whereby the accreting dust was recycled prior to the formation of the final surviving protoplanets. This recycling concentrated initially minor elements so they could form new minerals , e.g. alkali-feldspars and plagioclase. The least- modified protoplanets are comet nuclei, i.e. random mixtures of rubble piles and dirty snowballs, and the icy (ultra)carbonaceous asteroids. Second best are the dormant, extinct and rare active comet nuclei among the near-Earth asteroids that are relatively easy to access by sample return missions. Third are the anhydrous CO/CV carbonaceous chondrites and the low metamorphic grade, unequilibrated ordinary chondrites from the main asteroid belt. Lithification of the original rubble piles in these asteroids erased all structural properties but not the mineralogy and chemistry of the accreted entities, i.e. matrix, chondrules and CAIs.Consequently , returned samples of small chips, fragments or powders from the surface of undifferentiated protoplanets will amply suffice for a full mineralogical and chemical characterization of these small bodies, including modifications from interactions with the space environment, e.g. space weathering, regolith formation and the black mantle on icy-protoplanets. Major improvements in the sensitivity of available micro-analytical tools means that in situ acquired samples can be analyzed at scales of individual, n m-s i

  19. Primitive ultrafine matrix in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Fredriksson, B. J.; Fredriksson, K.

    1981-01-01

    Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), 'Holy Smoke' (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the 'primitive' regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent 'cosmic dust' studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.

  20. GRB 080407: An Ultra-long Burst Discovered by the IPN

    NASA Technical Reports Server (NTRS)

    Cummings, J; Barthelmy, S.; Gehrels, N.; Krimm, H.; Palmer, D.; Palshin, V.; Hurley, K.; Goldsten, J.; Mitrofanov, I. G.; Boynton, W.; hide

    2012-01-01

    We present observations of the extremely long GRB 080704 obtained with the instruments of the Interplanetary Network (IPN). The observations reveal two distinct emission episodes, separated by a approx.1500 s long period of quiescence. The total burst duration is about 2100 s. We compare the temporal and spectral characteristics of this burst with those obtained for other ultra-long GRBs and discuss these characteristics in the context of different models.

  1. RIPE integrity primitives, part 2 (RACE Integrity Primitives Evaluation)

    NASA Astrophysics Data System (ADS)

    Denboer, B.; Boly, J. P.; Bosselaers, A.; Brandt, J.; Chaum, D.; Damgaard, I.; Dichtl, M.; Fumy, W.; Vanderham, M.; Jansen, C. J. A.

    1993-04-01

    A manual intended for those seeking to secure information systems by applying modern cryptography is presented. It represents the successful attainment of goals by RIPE (RACE (Research and development of Advanced Communications technology in Europe) Integrity Primitives Evaluation). The recommended portfolio of integrity primitives, which is the main product of the project, forms the heart of the manual. By integrity, is meant the kinds of security that can be achieved through cryptography, apart from keeping messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified, that parties exchanging messages are actually present, and that 'signed' electronic messages can be recognized as authentic by anyone. Of particular concern to the project were the high speed requirements of broadband communication. The project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, that is building blocks, that can meet most of today's perceived needs for integrity.

  2. RIPE integrity primitives, part 1 (RACE Integrity Primitives Evaluation)

    NASA Astrophysics Data System (ADS)

    Denboer, B.; Boly, J. P.; Bosselaers, A.; Brandt, J.; Chaum, D.; Damgaard, I.; Dichtl, M.; Fumy, W.; Vanderham, M.; Jansen, C. J. A.

    1993-04-01

    A manual intended for those seeking to secure information systems by applying modern cryptography is presented. It represents the successful attainment of goals by RIPE (RACE (Research and development of Advanced Communication technology in Europe) Integrity Primitives Evaluation). The recommended portfolio of integrity primitives, which is the main product of the project, forms the heart of the manual. By integrity, is meant the kinds of security that can be achieved through cryptography, apart from keeping messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified, that parties exchanging messages are actually present, and that 'signed' electronic messages can be recognized as authentic by anyone. Of particular concern to the project were the high speed requirements of broadband communication. The project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, that is building blocks, that can meet most of today's perceived needs for integrity.

  3. Inference of dust opacities for the 1977 Martian great dust storms from Viking Lander 1 pressure data

    NASA Technical Reports Server (NTRS)

    Zurek, R. W.

    1981-01-01

    The tidal heating components for the dusty Martian atmosphere are computed based on dust optical parameters estimated from Viking Lander imaging data, and used to compute the variation of the tidal surface pressure components at the Viking Lander sites as a function of season and the total vertical extinction optical depth of the atmosphere. An atmospheric tidal model is used which is based on the inviscid, hydrostatic primitive equations linearized about a motionless basic state the temperature of which varies only with height, and the profiles of the tidal forcing components are computed using a delta-Eddington approximation to the radiative transfer equations. Comparison of the model results with the observed variations of surface pressure and overhead dust opacity at the Viking Lander 1 site reveal that the dust opacities and optical parameters derived from imaging data are roughly representative of the global dust haze necessary to reproduce the observed surface pressure amplitudes, with the exception of the model-inferred asymmetry parameter, which is smaller during the onset of a great storm. The observed preferential enhancement of the semidiurnal tide with respect to the diurnal tide during dust storm onset is shown to be due primarily to the elevation of the tidal heating source in a very dusty atmosphere.

  4. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    NASA Astrophysics Data System (ADS)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  5. The Interplanetary Meteoroid Environment for eXploration

    NASA Astrophysics Data System (ADS)

    Soja, R.; Sommer, M.; Srama, R.; Strub, P.; Grün, E.; Rodmann, J.; Vaubaillon, J.; Hornig, A.; Bausch, L.

    2014-07-01

    The Interplanetary Meteoroid Environment for eXploration (IMEX) project, funded by the European Space Agency (ESA), aims to characterize dust trails and streams produced by comets in the inner solar system. The goal is to predict meteor showers at any position or time in the solar system, such as at specific spacecraft or planets. This model will allow for the assessment of the dust impact hazard to spacecraft, which is important because hypervelocity impacts of micrometeoroids can damage or destroy spacecraft or their subsystems through physical damage or electromagnetic effects. Such considerations are particularly important in the context of human exploration of the solar system. Additionally, such a model will allow for scientific study of specific trails and their connections to observed dust phenomena, such as cometary trails and new meteor showers at Earth. We have recently expanded the model to include explicit integrations of large numbers of particles from each comet, utilizing the Constellation platform to perform the calculations. This is a distributed computing system, where currently 10,000 users are donating their idle computing time at home and thus generating a virtual supercomputer of 40,000 host PCs connected via the Internet (aerospaceresearch.net). This form of citizen science provides the required computing performance for simulating millions of particles ejected by each of the ˜400 comets, while developing the relationship between scientists and the general public. The result will be a unique set of saved orbital information for a large number of cometary streams, allowing efficient computation of their locations at any point in space and time. Here we will present the results from several test streams and discuss the progress towards obtaining the full set of integrated particles for each of the selected ˜400 short-period comets. individual Constellation users for their computing time.

  6. Dust Measurements On-board the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    Poppe, A.; James, D.; Horanyi, M.

    2007-12-01

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft was successfully commissioned on March 3, 2006 (DOY 2006/061). VSDC is a dust impact detector designed to map the dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and it is currently operated by a small group of undergraduate and graduate students at the Laboratory of Atmospheric and Space Physics (LASP), University of Colorado. By the time of this meeting (12/2007), VSDC will have operated for about 330 days, covering an approximate distance from 1.21 to 10 AU. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters, and the detection threshold is about a micron in particle radius. In this talk we will briefly review the VSDC instrument. The in-flight tests and calibrations, as well as our initial science results will be discussed. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the encounter with Jupiter. These measurements will be compared with earlier measurements by Ulysses, Galileo, and Cassini.

  7. Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Hahn, Joseph M.; Zook, Herbert A.; Cooper, Bonnie; Sunkara, Bhaskar

    2002-01-01

    Using the Moon to occult the Sun, the Clementine spacecraft used its navigation cameras to map the inner zodiacal light at optical wavelengths over elongations of 3 approx. less than epsilon approx. less than 30 deg from the Sun. This surface brightness map is then used to infer the spatial distribution of interplanetary dust over heliocentric distances of about 10 solar radii to the orbit of Venus. The averaged ecliptic surface brightness of the zodiacal light falls off as Z(epsilon) is a member of epsilon(sup -2.45 +/- 0.05), which suggests that the dust cross-sectional density nominally falls off as sigma(r) is a member of r(sup - 1.45 +/- 0.05). The interplanetary dust also has an albedo of alpha approx. = 0.1 that is uncertain by a factor of approx. 2. Asymmetries of approx. 10% are seen in directions east-west and north-south of the Sun, and these may be due the giant planets' secular gravitational perturbations. We apply a simple model that attributes the zodiacal light as due to three dust populations having distinct inclination distributions, namely, dust from asteroids and Jupiter-family comets (JFCs) having characteristic inclinations of i approx. 7 deg, dust from Halley-type comets having i approx. 33 deg, and an isotropic cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that asteroids + JFCs are the source of about 45% of the optical dust cross section seen in the ecliptic at 1 AU but that at least 89% of the dust cross section enclosed by a 1-AU-radius sphere is of a cometary origin. Each population's radial density variations can also deviate somewhat from the nominal sigma(r) is a member of r(sup -1.45). When these results are extrapolated out to the asteroid belt, we find an upper limit on the mass of the light-reflecting asteroidal dust that is equivalent to a 12-km asteroid, and a similar extrapolation of the isotropic dust cloud out to Oort Cloud distances yields a mass equivalent to a 30-km comet, although the latter

  8. Stardust Interstellar Preliminary Examination II: Curating the Interstellar Dust Collector, Picokeystones, and Sources of Impact Tracks

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.

    2013-01-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  9. Radio-scintillation observations of interplanetary disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.; Kakinuma, T.

    1984-01-01

    Recent developments in the studies of interplanetary disturbances by scintillation techniques are briefly reviewed. The turbulent postshock region of an interplanetary disturbance produces transient enhancements in the scintillation level and the flow speed in many cases. An empirical method to determine three-dimensional angular distribution of the propagation speed of the disturbance on the basis of interplanetary scintillation measurements of postshock flow speeds is applied to 17 events which took place in 1978-1981. Among them, four representative examples, including two events which were associated with disappearing solar filaments, are described in detail. Several disturbances had oblate configurations the latitudinal extent ismore » smaller than the longitudinal extent. On the average, the angular distribution of the propagation speed at 1-AU heliocentric distance is quasi-isotropic over a longitudinal range of 100 deg centered at the normal of relevant solar phenomenon. The net excess mass and energy in an interplanetary disturbance associated with a disappearing solar filament can be comparable to those of an interplanetary disturbance associated with a large solar flare. 57 references.« less

  10. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  11. Isotopic Ratios Measured in the Dust of Comet 67P/Churyumov-Gerasimenko Using Rosetta/COSIMA

    NASA Astrophysics Data System (ADS)

    Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O.; Merouane, S.

    2017-12-01

    The COSIMA instrument aboard the Rosetta orbiter captured dust from the coma of comet 67P/Churyumov-Gerasimenko on metal targets. The dust was then imaged, and some of it was subjected to Time of Flight Secondary Ion Mass Spectrometry, yielding information on the dust composition. Isotopic ratios for species such as oxygen and sulfur have been measured for a number of COSIMA dust particles and these measurements are presented in this talk. Isotopic ratios for several species have been measured for a number of comets, but with the exception of the Stardust results, these have been measurements in the gas phase. The measurements presented here are from the solid phase, most probably from silicate or carbonaceous material. The isotopic ratios measured in the dust are compared to the measurements in the gas, to values measured in the insoluble organic matter of meteorites, and to the values measured in interplanetary dust particles and Antarctic micrometeorites.

  12. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  13. Modeling Nucleation and Grain Growth in the Solar Nebula: Initial Progress Report

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, J. A.; Ferguson, F. T.

    2010-01-01

    The primitive solar nebula was a violent and chaotic environment where high energy collisions, lightning, shocks and magnetic re-connection events rapidly vaporized some fraction of nebular dust, melted larger particles while leaving the largest grains virtually undisturbed. At the same time, some tiny grains containing very easily disturbed noble gas signatures (e.g., small, pre-solar graphite or SiC particles) never experienced this violence, yet can be found directly adjacent to much larger meteoritic components (chondrules or CAIs) that did. Additional components in the matrix of the most primitive carbonaceous chondrites and in some chondritic porous interplanetary dust particles include tiny nebular condensates, aggregates of condensates and partially annealed aggregates. Grains formed in violent transient events in the solar nebula did not come to equilibrium with their surroundings. To understand the formation and textures of these materials as well as their nebular abundances we must rely on Nucleation Theory and kinetic models of grain growth, coagulation and annealing. Such models have been very uncertain in the past: we will discuss the steps we are taking to increase their reliability.

  14. Solar wind and the motion of dust grains

    NASA Astrophysics Data System (ADS)

    Klačka, J.; Petržala, J.; Pástor, P.; Kómar, L.

    2012-04-01

    In this paper, we investigate the action of solar wind on an arbitrarily shaped interplanetary dust particle. The final relativistically covariant equation of motion of the particle also contains the change of the particle's mass. The non-radial solar wind velocity vector is also included. The covariant equation of motion reduces to the Poynting-Robertson effect in the limiting case when a spherical particle is treated, when the speed of the incident solar wind corpuscles tends to the speed of light and when the corpuscles spread radially from the Sun. The results of quantum mechanics have to be incorporated into the physical considerations, in order to obtain the limiting case. If the solar wind affects the motion of a spherical interplanetary dust particle, then ?. Here, p'in and p'out are the incoming and outgoing radiation momenta (per unit time), respectively, measured in the proper frame of reference of the particle, and ? and ? are the solar wind pressure and the total scattering cross-sections, respectively. An analytical solution of the derived equation of motion yields a qualitative behaviour consistent with numerical calculations. This also holds if we consider a decrease of the particle's mass. Using numerical integration of the derived equation of motion, we confirm our analytical result that the non-radial solar wind (with a constant value of angle between the radial direction and the direction of the solar wind velocity) causes outspiralling of the dust particle from the Sun for large values of the particle's semimajor axis. The non-radial solar wind also increases the time the particle spirals towards the Sun. If we consider the periodical variability of the solar wind with the solar cycle, then there are resonances between the particle's orbital period and the period of the solar cycle.

  15. Nucleus structure and dust morphology: Post-Rosetta understanding and implications

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A.; Bentley, Mark; Ciarletti, Valérie; Kofman, Woldek; Lasue, Jeremie; Mannel, Thurid; Herique, Alain

    2017-10-01

    The structure of cometary nuclei and the morphology of dust particles they eject have long been unknowns in cometary science. The combination of these two subjects, as revealed by the Rosetta mission at 67P/C-G, is currently providing an unprecedented insight about Solar System formation and early evolution.Rosetta has established that the bulk porosity of 67P/C-G nucleus is high, in the 70% to 85% range, both from the determination of its density and from permittivity measurements with CONSERT bistatic radar experiment [1-2]. CONSERT, through operations after Philae landing on 12-13 November 2014, has also allowed us to estimate that i) the porosity is likely to be higher inside the nucleus than on its subsurface, ii) a major component of the nucleus is refractory carbonaceous compounds, and iii) the small lobe is homogeneous at a scale of a few wavelengths (i.e., about 10 m), while heterogeneities in the 3-m range (similar to the rounded nodules noticed on walls of large pits) cannot be ruled out [2-4].Rosetta has also established, through its 26 months rendezvous with 67P/C-G, the aggregated structure of dust particles within a wide range of sizes in the inner cometary coma. The MIDAS atomic force microscope experiment has given us evidence (from 3D topographic images with nano- to micrometer resolution) for i) a hierarchical structure of aggregated dust particles, down to tens of nm-sized grains, ii) one extremely porous dust particle, with a fractal dimension of (1.7 ± 0.1) [5-6]. The accuracy of comparisons between cometary dust particles and interplanetary dust particles collected in the stratosphere (including CP-IDPs) could thus be improved.Such results should further refine the main processes (e.g., low velocity aggregation) that allowed the formation of comets in the early Solar System, and the implications of a possible late heavy bombardment on the interplanetary dust clouds and on telluric planets.References. 1. Pätzold et al. Nature 530 63 2016. 2

  16. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team

    2015-08-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.

  17. Stardust from Supernovae and Its Isotopes

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter

    Primitive solar system materials, namely, meteorites, interplanetary dust particles, and cometary matter contain small quantities of nanometer- to micrometer-sized refractory dust grains that exhibit large isotopic abundance anomalies. These grains are older than our solar system and have been named "presolar grains." They formed in the winds of red giant and asymptotic giant stars and in the ejecta of stellar explosions, i.e., represent a sample of stardust that can be analyzed in terrestrial laboratories for isotopic compositions and other properties. The inventory of presolar grains is dominated by grains from red giant and asymptotic giant branch stars. Presolar grains from supernovae form a minor but important subpopulation. Supernova (SN) minerals identified to date include silicon carbide, graphite, silicon nitride, oxides, and silicates. Isotopic studies of major, minor, and trace elements in these dust grains have provided detailed insights into nucleosynthetic and mixing processes in supernovae and how dust forms in these violent environments.

  18. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  19. Spin-State-Dependent Ion-Molecule Chemistry as the Origin of N-15 and D Isotopic Anomalies in Primitive Matter.

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Cordiner, M. A.; Milam, S. N.

    2012-01-01

    Many meteoritic and interplanetary dust particle (IDP) samples contain bulk enhancements and hotspots rich in N-15. Similarly low C(14)N/C(15)N ratios have been observed in numerous comets, An almost constant enrichment factor in comets from disti'nct formation zones in the nebular disk (i.e. both Jupiter Family and Oort Cloud comets), strongly suggests that this fractionation is primordial and was set in the protsolar cloud core. Deuterium enrichment is observed in both meteorites and IDPs

  20. Measuring the Dust Flux and Dust Particle Mass Distribution in the Saturn Rings with HRD Dust Instrument on the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.

    In July 2004, the Cassini spacecraft will go into the Saturn orbit and start a 4 year intensive investigation of the planet itself, its multiple satellites and its rings with a multinational instrument payload. The High Rate Detectors (HRD) instrument provided by the Laboratory of Astrophysics and Space Research of the University of is part of the German Cosmic Dust Analyzer (CDA) and its main scientific objective is to provide quantitative measurements and mass distributions of dust particles in the rings of Saturn in the 10-11 to 10-4 grams mass range. The HRD instrument consists of two dust detectors -- a 20 and a 200 cm2 polyvinylidene fluoride (PVDF) sensors -- and an electronic box that contains all the analog and digital electronics and in addition provides interface between the HRD and CDA instrument. The CDA stores all the HRD data in its memory and transmits the data to Earth. The HRD weighs 1.7 kg and consumes 1.8 W of power [1]. The HRD instrument was fully calibrated through the entire mass range using two dust particle accelerators at Heidelberg and Munich in Germany. The HRD electronics is very fast and it will provide spatial and time distributions of up to 0.1 second. It can handle rates up to 104 counts/sec expected to be encountered during the Saturn ring crossings without any dead time. The HRD instrument operated successfully during all of the time that it was under power and detected many interplanetary dust particles. Almost all of these particles were close to the lowest mass threshold. References 1 A.J. TUZZOLINO, T.E. ECONOMOU, R.B. MCKIBBEN, J.A. SIMPSON, J.A.M. MCDONNELL, M.J. BURCHELL, B.A.M. VAUGHAN, P. TSOU, M.S. HANNER, B.C. CLARK AND D.E. BROWNLEE. THE DUST FLUX MONITOR INSTRUMENT FOR THE STARDUST MISSION TO COMET WILD-2, J. GEOPHYS. RES., 108, DOI:10.1029/2003JE002091, 2003.

  1. Isotopic Fractionation in Primitive Material: Quantifying the Contribution of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2010-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.

  2. Electrostatic charge on a dust size distribution in a plasma. [in interplanetary space

    NASA Technical Reports Server (NTRS)

    Houpis, Harry L. F.; Whipple, Elden C., Jr.

    1987-01-01

    The capacitance of a grain immersed in a steady state plasma containing a size distribution of dust particles is studied. The grain charge is determined by assuming the equilibrium potential has been obtained by a simple balance of electron and ion collection currents. It is shown that the validity of the analytical treatment given here for the linearized Poisson equation is confined to a certain region of space. Within this region and starting at very small plasma Debye length lambda(D), the capacitance at first exhibits a monotonic increase with increasing lambda(D). The capacitance eventually reaches a maximum, followed by a monotonic decrease. The charge density of the dust in the plasma is found to be only a function of the lambda(D); there is no significant dependence on the interparticle spacing.

  3. Characteristics of the dust trail of 67P/Churyumov-Gerasimenko: an application of the IMEX model

    NASA Astrophysics Data System (ADS)

    Soja, R. H.; Sommer, M.; Herzog, J.; Agarwal, J.; Rodmann, J.; Srama, R.; Vaubaillon, J.; Strub, P.; Hornig, A.; Bausch, L.; Grün, E.

    2015-11-01

    Context. Here we describe a new model of the dust streams of comet 67P/Churyumov-Gerasimenko that has been developed using the Interplanetary Meteoroid Environment for Exploration (IMEX). This is a new universal model for recently created cometary meteoroid streams in the inner solar system. Aims: The model can be used to investigate characteristics of cometary trails: here we describe the model and apply it to the trail of comet 67P/Churyumov-Gerasimenko to develop our understanding of the trail and assess the reliability of the model. Methods: Our IMEX model provides trajectories for a large number of dust particles released from ~400 short-period comets. We use this to generate optical depth profiles of the dust trail of comet 67P/Churyumov-Gerasimenko and compare these to Spitzer observations of the trail of this comet from 2004 and 2006. Results: We find that our model can match the observed trails if we use very low ejection velocities, a differential size distribution index of α ≈ -3.7, and a dust production rate of 300-500 kg s-1 at perihelion. The trail is dominated by mm-sized particles and can contain a large proportion of dust produced before the most recent apparition. We demonstrate the strength of IMEX in providing time-resolved histories of meteoroid streams. We find that the passage of Mars through the stream in 2062 creates visible gaps. This indicates the utility of this model in providing insight into the dynamical evolution of streams and trails, as well as impact hazard assessment for spacecraft on interplanetary missions. A movie is available in electronic form at http://www.aanda.org

  4. Cosmic Dust Collection Facility: Scientific objectives and programmatic relations

    NASA Technical Reports Server (NTRS)

    Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.

    1990-01-01

    The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.

  5. Lunar Dust Monitor for the orbiter of the next Japanese lunar mission SELENE2

    NASA Astrophysics Data System (ADS)

    Hirai, Takayuki; Sasaki, Sho; Ohashi, Hideo; Kobayashi, Masanori; Fujii, Masayuki; Shibata, Hiromi; Iwai, Takeo; Nogami, Ken-Ichi; Kimura, Hiroshi; Nakamura, Maki

    2010-05-01

    The next Japanese lunar mission SELENE2, after a successful mission Kaguya (a project named SELENE), is planned to launch in mid 2010 and to consists of a lander, a rover, and an orbiter, as a transmitting satellite to the earth [1]. A dust particle detector is proposed to be onboard the orbiter that is planned to be in operation for one year or more. Dust particles around the Moon include interplanetary dust, beta-meteoroids, interstellar dust, and possibly lunar dust that originate from the subsurface materials of the Moon. It is considered that several tens of thousands of tons of dust particles per year fall onto the Moon and supply materials to its surface layer. "Inflow" and "outflow" dust particles are very important for understanding material compositions of lunar surface. In past missions, dust detectors onboard the Hiten and Nozomi (Hiten-MDC and Nozomi-MDC) measured the flues of dust particles in the lunar orbit [2, 3]. These observations by Hiten- and Nozomi-MDCs created a small dataset of statistics of dust particles excluding earth-orbiting dust once in a week, because the dust detectors had small sensitive areas, 0.01 m2 and 0.014 m^2, respectively. The Lunar Dust EXperiment (LDEX) is designed to map a spatial and temporal variability of the dust size and density distributions in the lunar environment and will be onboard LADEE, which will be launched in 2012 [4]. LDEX will observe the lunar environment for 90 days in a nominal case or for a maximum of 9 months. It has a sensor area of 0.01 m2 at 50 km altitude. For a quantitative study of circumlunar dust, we propose a dust monitoring device with a large aperture size and a large sensor area, called the lunar dust monitor (LDM). The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a large target (gold-plated Al) of 400 cm^2, to which a high voltage of +500 V is applied. The LDM also has two meshed grids parallel to the target. The grids are 90% transparent: the

  6. Microfluidic assay of the deformability of primitive erythroblasts.

    PubMed

    Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi

    2017-09-01

    Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

  7. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  8. Calibration of impact ionization cosmic dust detectors: first tests to investigate how the dust density influences the signal

    NASA Astrophysics Data System (ADS)

    Jasmin Sterken, Veerle; Moragas-Klostermeyer, Georg; Hillier, Jon; Fielding, Lee; Lovett, Joseph; Armes, Steven; Fechler, Nina; Srama, Ralf; Bugiel, Sebastian; Hornung, Klaus

    2016-10-01

    Impact ionization experiments have been performed since more than 40 years for calibrating cosmic dust detectors. A linear Van de Graaff dust accelerator was used to accelerate the cosmic dust analogues of submicron to micron-size to speeds up to 80 km s^-1. Different materials have been used for calibration: iron, carbon, metal-coated minerals and most recently, minerals coated with conductive polymers. While different materials with different densities have been used for instrument calibration, a comparative analysis of dust impacts of equal material but different density is necessary: porous or aggregate-like particles are increasingly found to be present in the solar system: e.g. dust from comet 67P Churyumov-Gerasimenko [Fulle et al 2015], aggregate particles from the plumes of Enceladus [Gao et al 2016], and low-density interstellar dust [Westphal 2014 et al, Sterken et al 2015]. These recalibrations are relevant for measuring the size distributions of interplanetary and interstellar dust and thus mass budgets like the gas-to-dust mass ratio in the local interstellar cloud.We report about the calibrations that have been performed at the Heidelberg dust accelerator facility for investigating the influence of particle density on the impact ionization charge. We used the Cassini Cosmic Dust Analyzer for the target, and compared hollow versus compact silica particles in our study as a first attempt to investigate experimentally the influence of dust density on the signals obtained. Also, preliminary tests with carbon aerogel were performed, and (unsuccessful) attempts to accelerate silica aerogel. In this talk we explain the motivation of the study, the experiment set-up, the preparation of — and the materials used, the results and plans and recommendations for future tests.Fulle, M. et al 2015, The Astrophysical Journal Letters, Volume 802, Issue 1, article id. L12, 5 pp. (2015)Gao, P. et al 2016, Icarus, Volume 264, p. 227-238Westphal, A. et al 2014, Science

  9. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  10. Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Srama, Ralf; Henkel, Hartmut; Sternovsky, Zoltan; Kempf, Sascha; Wu, Yiyong; Grün, Eberhard

    2014-11-01

    One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.

  11. Interplanetary Coronal Mass Ejections During 1996 - 2007

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2007-01-01

    Interplanetary coronal mass ejections, the interplanetary counterparts of coronal mass ejections at the Sun, are the major drivers of interplanetary shocks in the heliosphere, and are associated with modulations of the galactic cosmic ray intensity, both short term (Forbush decreases caused by the passage of the shock, post-shock sheath, and ICME), and possibly with longer term modulation. Using several in-situ signatures of ICMEs, including plasma temperature, and composition, magnetic fields, and cosmic ray modulations, made by near-Earth spacecraft, we have compiled a "comprehensive" list of ICMEs passing the Earth since 1996, encompassing solar cycle 23. We summarize the properties of these ICMEs, such as their occurrence rate, speeds and other parameters, the fraction of ICMEs that are classic magnetic clouds, and their association with solar energetic particle events, halo CMEs, interplanetary shocks, geomagnetic storms, shocks and cosmic ray decreases.

  12. Workshop on Evolution of Martian Volatiles. Part 1

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.

  13. The Polar Ionosphere and Interplanetary Field.

    DTIC Science & Technology

    1987-08-01

    model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field

  14. Cosmic dust in the earth's atmosphere.

    PubMed

    Plane, John M C

    2012-10-07

    This review discusses the magnitude of the cosmic dust input into the earth's atmosphere, and the resulting impacts from around 100 km to the earth's surface. Zodiacal cloud observations and measurements made with a spaceborne dust detector indicate a daily mass input of interplanetary dust particles ranging from 100 to 300 tonnes, which is in agreement with the accumulation rates of cosmic-enriched elements (Ir, Pt, Os and super-paramagnetic Fe) in polar ice cores and deep-sea sediments. In contrast, measurements in the middle atmosphere - by radar, lidar, high-flying aircraft and satellite remote sensing - indicate that the input is between 5 and 50 tonnes per day. There are two reasons why this huge discrepancy matters. First, if the upper range of estimates is correct, then vertical transport in the middle atmosphere must be considerably faster than generally believed; whereas if the lower range is correct, then our understanding of dust evolution in the solar system, and transport from the middle atmosphere to the surface, will need substantial revision. Second, cosmic dust particles enter the atmosphere at high speeds and undergo significant ablation. The resulting metals injected into the atmosphere are involved in a diverse range of phenomena, including: the formation of layers of metal atoms and ions; the nucleation of noctilucent clouds, which are a sensitive marker of climate change; impacts on stratospheric aerosols and O(3) chemistry, which need to be considered against the background of a cooling stratosphere and geo-engineering plans to increase sulphate aerosol; and fertilization of the ocean with bio-available Fe, which has potential climate feedbacks.

  15. Nanodust released in interplanetary collisions

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.

    2018-07-01

    The lifecycle of near-Earth objects (NEOs) involves a collisional cascade that produces ever smaller debris ending with nanoscale particles which are removed from the solar system by radiation pressure and electromagnetic effects. It has been proposed that the nanodust clouds released in collisions perturb the background interplanetary magnetic field and create the interplanetary field enhancements (IFEs). Assuming that this IFE formation scenario is actually operating, we calculate the interplanetary collision rate, estimate the total debris mass carried by nanodust, and compare the collision rate with the IFE rate. We find that to release the same amount of nanodust, the collision rate is comparable to the observed IFE rate. Besides quantitatively testing the association between the collisions evolving large objects and giant solar wind structures, such a study can be extended to ranges of smaller scales and to investigate the source of moderate and small solar wind perturbations.

  16. Size Dependence of Dust Distribution around the Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Kobayashi, Hiroshi; Takeuchi, Taku; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting-Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI. The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μm band and 3.0% in the 18 μm band. In order to reveal dust properties causing leading-trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading-trailing asymmetry so that intermediate sized dust (˜10-100 μm) produces a greater asymmetry than zodiacal light. The leading-trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μm and 18 μm bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μm and 18 μm bands, respectively, if the maximum dust radius is set to be s max = 3000 μm. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ˜10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  17. Size Dependence of Dust Distribution around the Earth Orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and amore » dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.« less

  18. The interplanetary Internet

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    2000-01-01

    Architectural design of the interplanetary internet is now underway and prototype flight testing of some of the candidate protocols is anticipated within a year. This talk will describe the current status of the project.

  19. The NASA Solar Probe mission - In situ determination of interplanetary out-of-the ecliptic and near-solar dust environments

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Randolph, James E.

    1991-01-01

    The NASA Solar Probe mission will be one of the most exciting dust missions ever flown and will lead to a revolutionary advance in our understanding of dust within our solar system. Solar Probe will map the dust environment from the orbit of Jupiter (5 AU), to within 4 solar radii of the sun's center. The region between 0.3 AU and 4 Rs has never been visited before, so the ten days that the spacecraft spends during each (of the two) orbit is purely exploratory in nature. Solar Probe will also reach heliographic latitudes as high as about 15 to 28 deg above (below) the ecliptic on its trajectory inbound (outbound) to (from) the sun. This, in addition to the ESA/NASA Ulysses mission, will help determine the out-of-the-ecliptic dust environment. A post-perihelion burn will reduce the satellite orbital period to 2.5 years about the sun. A possible extended mission would allow data reception for two more revolutions, mapping out a complete solar cycle. Because the near-solar dust environment is not well understood (or is controversial at best), and it is very important to have better knowledge of the dust environment to protect Solar Probe from high velocity dust hits, we urgently request the scientific community to obtain further measurements of the nearsolar dust properties.

  20. Trace element content of chondritic cosmic dust: Volatile enrichments, thermal alterations, and the possibility of contamination

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.

    1993-01-01

    Trace element abundances in 51 chondritic Interplanetary Dust Particles (IDP's) were measured by Synchrotron X-Ray Fluorescence (SXRF). The data allow us to determine an average composition of chondritic IDP's and to examine the questions of volatile loss during the heating pulse experienced on atmospheric entry and possible element addition due to contamination during atmospheric entry, stratospheric residence, and curation.

  1. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  2. Basic primitives for molecular diagram sketching

    PubMed Central

    2010-01-01

    A collection of primitive operations for molecular diagram sketching has been developed. These primitives compose a concise set of operations which can be used to construct publication-quality 2 D coordinates for molecular structures using a bare minimum of input bandwidth. The input requirements for each primitive consist of a small number of discrete choices, which means that these primitives can be used to form the basis of a user interface which does not require an accurate pointing device. This is particularly relevant to software designed for contemporary mobile platforms. The reduction of input bandwidth is accomplished by using algorithmic methods for anticipating probable geometries during the sketching process, and by intelligent use of template grafting. The algorithms and their uses are described in detail. PMID:20923555

  3. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected tomore » mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.« less

  4. Different Types of Ion Populations Upstream of the 2013 October 8 Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Kajdič, Primož; Hietala, Heli; Blanco-Cano, Xóchitl

    2017-11-01

    We show for the first time that different types of suprathermal ion distributions may exist upstream of a single interplanetary shock. ACE and the two ARTEMIS satellites observed a shock on 2013 October 8. The ARTEMIS P1 and P2 spacecraft first observed field-aligned ions (P1) and gyrating ions (P2) arriving from the shock. These were followed by intermediate ions and later by a diffuse population. At the location of the P2 the shock exhibited an Alfvénic Mach number of M A = 5.7 and was marginally quasi-perpendicular ({θ }{Bn}=47^\\circ ). At P1 spacecraft the shock was weaker (M A = 4.9) and more perpendicular ({θ }{Bn}=61^\\circ ). Consequently, the observed suprathermal ion and ultra-low-frequency wave properties were somewhat different. At P2 the ultra-low-frequency waves are more intense and extend farther upstream from the shock. The energies of field-aligned and gyrating ions in the shock rest-frame were ˜20 keV, which is much more than in the case of the stronger (M A = 6-7) Earth’s bow shock, where they are less than 10 keV.

  5. Condition for dust evacuation from the first galaxies

    NASA Astrophysics Data System (ADS)

    Fukushima, Hajime; Yajima, Hidenobu; Omukai, Kazuyuki

    2018-06-01

    Dust enables low-mass stars to form from low-metallicity gas by inducing fragmentation of clouds via cooling by thermal emission. Dust may, however, be evacuated from star-forming clouds due to the radiation force from massive stars. We study here the condition for dust evacuation by comparing the dust evacuation time with the time of cloud destruction due to either expansion of H II regions or supernovae. The cloud destruction time has a weak dependence on cloud radius, while the dust evacuation time is shorter for a cloud with a smaller radius. Dust evacuation, thus, occurs in compact star-forming clouds whose column density is NH ≃ 1024-1026 cm-2. The critical halo mass above which dust evacuation occurs is lower for higher formation red shift, e.g. ˜109 M⊙ at red shift z ˜ 3 and ˜107 M⊙ at z ˜ 9. In addition, the metallicity of the gas should be less than ˜10-2 Z⊙, otherwise attenuation by dust reduces the radiation force significantly. From the dust-evacuated gas, massive stars are likely to form, even with a metallicity above ˜10-5 Z⊙, the critical value for low-mass star formation due to dust cooling. This can explain the dearth of ultra-metal-poor stars with a metallicity lower than ˜10-4 Z⊙.

  6. Dome C ultracarbonaceous Antarctic micrometeorites. Infrared and Raman fingerprints

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Engrand, C.; Duprat, J.; Godard, M.; Charon, E.; Delauche, L.; Sandt, C.; Borondics, F.

    2018-01-01

    Context. UltraCarbonaceous Antarctic MicroMeteorites (UCAMMs) represent a small fraction of interplanetary dust particles reaching the Earth's surface and contain large amounts of an organic component not found elsewhere. They are most probably sampling a contribution from the outer regions of the solar system to the local interplanetary dust particle (IDP) flux. Aims: We characterize UCAMMs composition focusing on the organic matter, and compare the results to the insoluble organic matter (IOM) from primitive meteorites, IDPs, and the Earth. Methods: We acquired synchrotron infrared microspectroscopy (μFTIR) and μRaman spectra of eight UCAMMs from the Concordia/CSNSM collection, as well as N/C atomic ratios determined with an electron microprobe. Results: The spectra are dominated by an organic component with a low aliphatic CH versus aromatic C=C ratio, and a higher nitrogen fraction and lower oxygen fraction compared to carbonaceous chondrites and IDPs. The UCAMMs carbonyl absorption band is in agreement with a ketone or aldehyde functional group. Some of the IR and Raman spectra show a C≡N band corresponding to a nitrile. The absorption band profile from 1400 to 1100 cm-1 is compatible with the presence of C-N bondings in the carbonaceous network, and is spectrally different from that reported in meteorite IOM. We confirm that the silicate-to-carbon content in UCAMMs is well below that reported in IDPs and meteorites. Together with the high nitrogen abundance relative to carbon building the organic matter matrix, the most likely scenario for the formation of UCAMMs occurs via physicochemical mechanisms taking place in a cold nitrogen rich environment, like the surface of icy parent bodies in the outer solar system. The composition of UCAMMs provides an additional hint of the presence of a heliocentric positive gradient in the C/Si and N/C abundance ratios in the solar system protoplanetary disc evolution. Part of the equipment used in this work has been

  7. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  8. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  9. OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp

    2015-02-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less

  10. QCAPUF: QCA-based physically unclonable function as a hardware security primitive

    NASA Astrophysics Data System (ADS)

    Abutaleb, M. M.

    2018-04-01

    Physically unclonable functions (PUFs) are increasingly used as innovative security primitives to provide the hardware authentication and identification as well as the secret key generation based on unique and random variations in identically fabricated devices. Security and low power have appeared to become two crucial necessities to modern designs. As an emerging nanoelectronic technology, a quantum-dot cellular automata (QCA) can achieve ultra-low power consumption as well as an extremely small area for implementing digital designs. However, there are various classes of permanent defects that can happen during the manufacture of QCA devices. The recent extensive research has been focused on how to eliminate errors in QCA structures resulting from fabrication variances. By a completely different vision, to turn this disadvantage into an advantage, this paper presents a novel QCA-based PUF (QCAPUF) architecture to exploit the unique physical characteristics of fabricated QCA cells in order to produce different hardware fingerprint instances. This architecture is composed of proposed logic and interconnect blocks that have critical vulnerabilities and perform unexpected logical operations. The behaviour of QCAPUF is thoroughly analysed through physical relations and simulations. Results confirm that the proposed QCAPUF has state of the art PUF characteristics in the QCA technology. This paper will serve as a basis for further research into QCA-based hardware security primitives and applications.

  11. Research on Dust Concentration Measurement Technique Based on the Theory of Ultrasonic Attenuation

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Lou, Wenzhong; Liao, Maohao

    2018-03-01

    In this paper, a method of characteristics dust concentration is proposed, which based on ultrasonic changes of MEMS piezoelectric ultrasonic transducer. The principle is that the intensity of the ultrasonic will produce attenuation with the propagation medium and propagation distance, the attenuation coefficient is affect by dust concentration. By detecting the changes of ultra acoustic in the dust, the concentration of the dust is calculate by the attenuation-concentration model, and the EACH theory model is based on this principle. The experimental results show that the MEMS piezoelectric ultrasonic transducer can be use for dust concentration of 100-900 g/m3 detection, the deviation between theory and experiments is smaller than 10.4%.

  12. Density of Primitive Pythagorean Triples

    ERIC Educational Resources Information Center

    Killen, Duncan A.

    2004-01-01

    Based on the properties of a Primitive Pythagorean Triple (PPT), a computer program was written to generate, print, and count all PPTs greater than or equal to I[subscript x], where I[subscript x] is an arbitrarily chosen integer. The Density of Primitive Pythagorean Triples may be defined as the ratio of the number of PPTs whose hypotenuse is…

  13. UNCOMPAHGRE PRIMITIVE AREA, COLORADO.

    USGS Publications Warehouse

    Luedke, R.G.; Sheridan, M.J.

    1984-01-01

    A mineral-resource study was made of that part of the Uncompahgre National Forest, Colorado constituting the officially designated primitive area. Because the primitive area and its southern border zone contained operating mines producing gold, silver, copper, lead, zinc, and minor amounts of a few other metals, and had been a part of a highly productive mining region, the area was concluded to have large segments of both probable and substantiated mineral-resource potential. No energy resources were identified in the study.

  14. Interplanetary field and plasma during initial phase of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.; Wiskerchen, M. J.

    1975-01-01

    A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.

  15. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  16. Inward electrostatic precipitation of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.

    1993-01-01

    An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.

  17. Dynamic primitives in the control of locomotion.

    PubMed

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  18. Dynamic primitives in the control of locomotion

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term “rhythmic” may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered. PMID:23801959

  19. Study of Travelling Interplanetary Phenomena Report

    NASA Astrophysics Data System (ADS)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  20. Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2010-01-01

    The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.

  1. The interplanetary exchange of photosynthesis.

    PubMed

    Cockell, Charles S

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  2. Risk Assessment of Cassini Sun Sensor Integrity Due to Hypervelocity Impact of Saturn Dust Particles

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    2016-01-01

    A sophisticated interplanetary spacecraft, Cassini is one of the heaviest and most sophisticated interplanetary spacecraft humans have ever built and launched. Since achieving orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for first and second extended missions through September 2017. In late 2016, the Cassini spacecraft will begin a daring set of ballistic orbits that will hop the rings and dive between the upper atmosphere of Saturn and its innermost D-ring twenty-two times. The "dusty" environment of the inner D-ring region the spacecraft must fly through is hazardous because of the possible damage that dust particles, travelling at speeds as high as 31.4 km/s, can do to spacecraft hardware. During hazardous proximal ring-plane crossings, the Cassini mission operation team plans to point the high-gain antenna to the RAM vector in order to protect most of spacecraft instruments from the incoming energetic ring dust particles. However, this particular spacecraft attitude will expose two Sun sensors (that are mounted on the antenna dish) to the incoming dust particles. High-velocity impacts on the Sun sensor cover glass might penetrate the 2.54-mm glass cover of the Sun sensor. Even without penetration damage, craters created by these impacts on the surface of the cover glass will degrade the transmissibility of light through it. Apart from being directly impacted by the dust particles, the Sun sensors are also threatened by some fraction of ricochet ejecta that are produced by dust particle impacts on the large antenna dish (made of graphite fiber epoxy composite material). Finally, the spacecraft attitude control system must cope with disturbances due to both the translational and angular impulses imparted on the large antenna dish and the long magnetometer boom by the incoming high-velocity projectiles. Analyses performed to quantify the risks the Sun sensors must contend

  3. Trace Element Abundance Measurements on Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1996-01-01

    The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.

  4. Interplanetary Small Satellite Conference 2017 Program

    NASA Technical Reports Server (NTRS)

    Dalle, Derek Jordan

    2017-01-01

    The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.

  5. The delivery of organic matter from asteroids and comets to the early surface of Mars

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.

    1996-01-01

    Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.

  6. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  7. Lunar Dust: Properties and Investigation Techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. A.; Zakharov, A. V.; Dolnikov, G. G.; Lyash, A. N.; Afonin, V. V.; Popel, S. I.; Shashkova, I. A.; Borisov, N. D.

    2017-12-01

    Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth's magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967-1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.

  8. THE FORMATION OF THE PRIMITIVE STAR SDSS J102915+172927: EFFECT OF THE DUST MASS AND THE GRAIN-SIZE DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, S.; Banerjee, R.; Grassi, T.

    Understanding the formation of the extremely metal-poor star SDSS J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package krome coupled with the hydrodynamical code enzo assuming grain-size distributions produced by the explosion of core-collapse supernovae (SNe) of 20 and 35 M {sub ⊙} primordial stars, which are suitable to reproduce the chemical patternmore » of the SDSS J102915+172927 star. We find that the dust mass yield produced from Population III SNe explosions is the most important factor that drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single SN event or efficient dust growth should be invoked to get such high dust content.« less

  9. Primitive erythrocytes are generated from hemogenic endothelial cells.

    PubMed

    Stefanska, Monika; Batta, Kiran; Patel, Rahima; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges

    2017-07-25

    Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic βH1 hemoglobin gene expressed specifically in primitive erythroid cells. Using this ES cell line, we observed that the first primitive erythroblasts are detected in vitro around day 1.5 of blast colony differentiation, within the cell population positive for the early hematopoietic progenitor marker CD41. Moreover, we establish that these eGFP + cells emerge from a hemogenic endothelial cell population similarly to their definitive hematopoietic counterparts. We further generated a corresponding βH1-eGFP transgenic mouse model and demonstrated the presence of a primitive erythroid primed hemogenic endothelial cell population in the developing embryo. Taken together, our findings demonstrate that both in vivo and in vitro primitive erythrocytes are generated from hemogenic endothelial cells.

  10. Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.

    2011-01-01

    We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).

  11. MACOP modular architecture with control primitives

    PubMed Central

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140

  12. A Generalized-Compliant-Motion Primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1993-01-01

    Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.

  13. Constraining the Origin of Impact Craters on Al Foils from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Ansari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; hide

    2012-01-01

    Preliminary examination (PE) of the aerogel tiles and Al foils from the Stardust Interstellar Dust Collector has revealed multiple impact features. Some are most likely due to primary impacts of interstellar dust (ISD) grains, and others are associated with secondary impacts of spacecraft debris, and possibly primary impacts of interplanetary dust particles (IDPs) [1, 2]. The current focus of the PE effort is on constraining the origin of the individual impact features so that definitive results from the first direct laboratory analysis of contemporary ISD can be reported. Because crater morphology depends on impacting particle shape and composition, in addition to the angle and direction of impact, unique particle trajectories are not easily determined. However, elemental analysis of the crater residues can distinguish real cosmic dust from the spacecraft debris, due to the low cosmic abundance of many of the elements in the spacecraft materials. We present here results from the elemental analysis of 24 craters and discuss the possible origins of 4 that are identified as candidate ISD impacts

  14. The Evolution of the Surface of Symmetry of the Interplanetary Dust from 24° to 5° Elongation

    NASA Astrophysics Data System (ADS)

    Stenborg, Guillermo; Howard, Russell A.

    2017-10-01

    The white-light STEREO/SECCHI images include light scattered by dust in orbit about the Sun (the F-corona). We analyzed the evolution of the symmetry axis of the F-corona between 2007 and 2012 in the elongation range covered by the STEREO-A/HI-1 instrument (4°-24° elongation) to characterize the plane of symmetry of the zodiacal dust cloud. The symmetry axes both above and below the ecliptic plane were derived separately without assuming any particular functional form. No noticeable time dependence was observed. However, we did find an evolution with elongation of both the inclination I and the ascending node {{{Ω }}}A of the inferred plane of symmetry. Both parameters appeared fairly constant in the outer half of the elongation range studied (I=˜ 3\\buildrel{\\circ}\\over{.} 7,{{{Ω }}}A=˜ 83^\\circ ; values close to those of Venus’s orbit). Then, they start to evolve, becoming I=˜ 6^\\circ (I.e., a trend toward the solar equatorial plane) and {{{Ω }}}A=˜ 57^\\circ at about 5° elongation. This variation indicates that the zodiacal dust cloud exhibits a warped plane of symmetry, with an estimated center of symmetry at about 0.5 {R}⊙ from the Sun’s center on the side of the heliosphere containing Jupiter. We found a marginal difference between the inclination of the axes below and above the ecliptic. This is suggestive of an increased dust density distribution at certain fixed longitudes, which could be explained by the dust deposition of Kreutz Sun-grazing comets. We conjecture that the circumsolar dust is mainly affected by gravitational forces, other forces becoming dominant only where the more rapid changes occur.

  15. "Driverless" Shocks in the Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS:AAF INTERNATIONAL, PERFECTPLEAT ULTRA, 175-102-863

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the PerfectPleat Ultra 175-102-863 air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 112 Pa clean and 229 Pa dust lo...

  17. International Launch Vehicle Selection for Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  18. Dust That's Worth Keeping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2006-01-25

    's Ames Research Center for their discovery. The team analyzed micrometer-size interplanetary dust particles (IDPs), each about one-tenth the diameter of a human hair. Within the particles, they found carriers of the 2,175-angstrom feature: organic carbon mixed with amorphous silicates (glass with embedded metals and sulfides, GEMS), two of the most common materials in interstellar space. Ishii says, ''Organic carbon and amorphous silicates are abundant in interstellar dust clouds, and abundant carriers are needed to account for the frequent astronomical observation of the 2,175-angstrom feature. It makes sense that this ubiquitous feature would come from common materials in interstellar space''. The group's results increase scientific understanding of the starting materials for the formation of the Sun, solar system, and life on Earth.« less

  19. Dust That's Worth Keeping

    NASA Technical Reports Server (NTRS)

    Hazi, A.

    2006-01-01

    Research Center for their discovery. The team analyzed micrometer-size interplanetary dust particles (IDPs), each about one-tenth the diameter of a human hair. Within the particles, they found carriers of the 2,175-angstrom feature: organic carbon mixed with amorphous silicates (glass with embedded metals and sulfides, GEMS), two of the most common materials in interstellar space. Ishii says, 'Organic carbon and amorphous silicates are abundant in interstellar dust clouds, and abundant carriers are needed to account for the frequent astronomical observation of the 2,175-angstrom feature. It makes sense that this ubiquitous feature would come from common materials in interstellar space'. The group's results increase scientific understanding of the starting materials for the formation of the Sun, solar system, and life on Earth.

  20. A method of plane geometry primitive presentation

    NASA Astrophysics Data System (ADS)

    Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

  1. Invited Review Small is beautiful: The analysis of nanogram-sized astromaterials

    NASA Astrophysics Data System (ADS)

    Zolensky, M. E.; Pieters, C.; Clark, B.; Papike, J. J.

    2000-01-01

    The capability of modern methods to characterize ultra-small samples is well established from analysis of interplanetary dust particles (IDPs), interstellar grains recovered from meteorites, and other materials requiring ultra-sensitive analytical capabilities. Powerful analytical techniques are available that require, under favorable circumstances, single particles of only a few nanograms for entire suites of fairly comprehensive characterizations. A returned sample of >1,000 particles with total mass of just one microgram permits comprehensive quantitative geochemical measurements that are impractical to carry out in situ by flight instruments. The main goal of this paper is to describe the state-of-the-art in microanalysis of astromaterials. Given that we can analyze fantastically small quantities of asteroids and comets, etc., we have to ask ourselves how representative are microscopic samples of bodies that measure a few to many km across? With the Galileo flybys of Gaspra and Ida, it is now recognized that even very small airless bodies have indeed developed a particulate regolith. Acquiring a sample of the bulk regolith, a simple sampling strategy, provides two critical pieces of information about the body. Regolith samples are excellent bulk samples since they normally contain all the key components of the local environment, albeit in particulate form. Furthermore, since this fine fraction dominates remote measurements, regolith samples also provide information about surface alteration processes and are a key link to remote sensing of other bodies. Studies indicate that a statistically significant number of nanogram-sized particles should be able to characterize the regolith of a primitive asteroid, although the presence of larger components within even primitive meteorites (e.g.. Murchison), e.g. chondrules, CAI, large crystal fragments, etc., points out the limitations of using data obtained from nanogram-sized samples to characterize entire primitive

  2. The rarity of dust in metal-poor galaxies.

    PubMed

    Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2014-01-09

    Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.

  3. HIGH UINTAS PRIMITIVE AREA, UTAH.

    USGS Publications Warehouse

    Crittenden, Max D.; Sheridan, Michael J.

    1984-01-01

    Mineral surveys in the High Uintas Primitive Area, Utah and the additions subsequently proposed concluded that the area has little promise for mineral resources. Of the areas around the fringes, a strip along the north flank fault can be classed as having probable energy-resource potential for oil and gas. The oil and gas potential could be tested by additional seismic studies followed by drilling. Much of the necessary information probably could be obtained without drilling within the primitive area itself.

  4. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individualmore » micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.« less

  5. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  6. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  7. A manual for PARTI runtime primitives

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel

    1990-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  8. Aquarius, a reusable water-based interplanetary human spaceflight transport

    NASA Astrophysics Data System (ADS)

    Adamo, Daniel R.; Logan, James S.

    2016-11-01

    Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.

  9. Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment.

    PubMed

    Tabata, Makoto; Yano, Hajime; Kawai, Hideyuki; Imai, Eiichi; Kawaguchi, Yuko; Hashimoto, Hirofumi; Yamagishi, Akihiko

    2015-06-01

    In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles, comprising two layers with densities of 0.01 and 0.03 g/cm(3) developed using our production technique, were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.

  10. Primitive African Medical Lore and Witchcraft *

    PubMed Central

    Thompson, Ethel E.

    1965-01-01

    This article presents a comprehensive study of the methods, practices, equipment, and paraphernalia of African witch doctors in carrying out primitive medical practices. The chief tribes studied are the Azandes of the Sudan, the Manos of Liberia, the Congo tribes, the Bundas of Angola, and the Zulus and other Bantu tribes of South Africa. Primitive beliefs and customs are discussed only insofar as they have a direct bearing on medical practices. The medical practices considered deal mainly with the application of general remedies for ailments and diseases, but certain specialized fields such as obstetrics, surgery, treatment for fractures, and dentistry are also included. Primitive medicaments are presented with reference to their application for various illnesses. An alphabetical list of these medicaments is given at the end of the article. PMID:14223742

  11. Does the presence of cosmic dust influence the displacement of the Earth's Magnetopause?

    NASA Astrophysics Data System (ADS)

    Mann, I.; Hamrin, M.

    2012-04-01

    In a recent paper Treumann and Baumjohann propose that dust particles in interplanetary space occasionally cause large compressions of the magnetopause that, in the absence of coronal mass ejections, are difficult to explain by other mechanisms (R.A. Treumann and W. Baumjohann, Ann. Geophys. 30, 119-130, 2012). They suggest that enhanced dust number density raises the contribution of the dust component to the solar wind dynamical pressure and hence to the pressure balance that determines the extension of the magnetopause. They quantify the influence of the dust component in terms of a variation of the magnetopause stagnation point distance. As a possible event to trigger the compressions they propose the encounters with meteoroid dust streams along Earth's orbit. We investigate the conditions under which these compressions may occur. The estimate by Treumann and Baumjohann of the magnetopause variation presupposes that the dust particles have reached solar wind speed. Acceleration by electromagnetic forces is efficient in the solar wind for dust particles that have a sufficiently large ratio of surface charge to mass (Mann et al. Plasma Phys. Contr. Fusion, Vol. 52, 124012, 2010). This applies to small dust particles that contribute little to the total dust mass in meteoroid streams. The major fraction of dust particles that reach high speed in the solar wind are nanometer-sized dust particles that form and are accelerated in the inner solar system (Czechowski and Mann, ApJ, Vol. 714, 89, 2010). Observations suggest that the flux of these nanodust particles near 1 AU is highly time-variable (Meyer-Vernet, et al. Solar Physics, Vol. 256, 463, 2009). We estimate a possible variation of the magnetopause stagnation point distance caused by these nanodust fluxes and by the dust associated to meteoroid streams. We conclude that the Earth's encounters with meteoroid dust streams are not likely to strongly influence the magnetopause according to the proposed effect. We

  12. Dust in the Outer Solar System as measured by Cassini-CDA: KBOs, Centaurs and TNOs as parent bodies?

    NASA Astrophysics Data System (ADS)

    Altobelli, N.; Kempf, S.; Srama, R.

    2017-09-01

    We analyse 13 years of data acquired by the Cosmic Dust Analyser (CDA)-Entrance Grid (EG) subsystem on-board the Cassini spacecraft around Saturn. We confirm the presence of exogenous dust, originating from the interplanetary space and permanently crossing the Saturnian system. We analyse the range of possible heliocentric orbital elements in order to identify their possible origin. We observe particles whose dynamics is compatible with 'old' collisional debris from the Kuiper-Belt, migrating inward the Solar System under influence of the Poynting-Robertson drag, or relatively fresh grains from recently discovered cometary activity of Centaurs. A population of particles entering the Saturn's system with high velocities can be linked to Halley-type comets as parent bodies.

  13. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  14. The mini-CIDEX GC/IMS: Analysis of cometary ice and dust

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Carle, Glenn C.; Humphry, Donald E.; Shao, Maxine; Takeuchi, Nori

    1995-01-01

    Comets are recognized as among the most scientifically important objects in the solar system. They are presumed relics of the early primitive material in the solar nebula and are believed to have provided a general enrichment of volatiles to the inner solar system. The Cometary Coma Chemical Composition (C4) Mission, a proposed Discovery-Class Mission, will analyze materials released into the coma, providing information leading to the understanding of the chemical composition and make-up of the cometary nucleus. As one of two scientific instruments in the C4 spacecraft, an advanced and streamlined version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX, will employ an X-Ray Fluorescence (XRF) spectrometer to determine bulk elemental composition of cometary dust grains and a Gas Chromatograph/Ion Mobility Spectrometer (GC/IMS) for determination of the molecular composition of dust and ices following stepwise pyrolysis and combustion. A description of the mini-CIDEX IMS will be provided as well as data from analyses conducted using the mini-CIDEX breadboard instrument.

  15. SBDN: an information portal on small bodies and interplanetary dust inside the Europlanet Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; de Sanctis, Maria Cristina; Carraro, Francesco; Fonte, Sergio; Giacomini, Livia; Politi, Romolo

    In the framework of the Sixth Framework Programme (FP6) for Research and Technological Development of the European Community, the Europlanet project started the Integrated and Distributed Information Service (IDIS) initiative. The goal of this initiative was to "...offer to the planetary science community a common and user-friendly access to the data and infor-mation produced by the various types of research activities: earth-based observations, space observations, modelling and theory, laboratory experiments...". Four scientific nodes, repre-sentative of a significant fraction of the scientific themes covered by planetary sciences, were created: the Interiors and Surfaces node, the Atmospheres node, the Plasma node and the Small Bodies and Dust node. The original Europlanet program evolved into the Europlanet Research Infrastructure project, funded by the Seventh Framework Programme (FP7) for Research and Technological Development, and the IDIS initiative has been renewed with the addiction of a new scientific node, the Planetary Dynamics node. Here we present the Small Bodies and Dust node (SBDN) and the services it already provides to the scientific community, i.e. a searchable database of resources related to its thematic domains, an online and searchable cat-alogue of emission lines observed in the visible spectrum of comet 153P/2002 C1 Ikeya-Zhang supplemented by a visualization facility, a set of models of the simulated evolution of comet 67P/Churyumov-Gerasimenko with a particular focus on the effects of the distribution of dust and a information system on meteors through the Virtual Meteor Observatory. We will also introduce the new services that will be implemented and made available in the course of the Europlanet Research Infrastructure project.

  16. Ultra-Compact Ka-Band Parabolic Deployable Antenna for RADAR and Interplanetary CubeSats

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan; Chahat, Nacer; Thomson, Mark; Hodges, Richard; Peral, Eva; Rahmat-Samii, Yahya

    2015-01-01

    Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue. To solve this challenge, JPL has initiated a research and technology development effort to design a 0.5 meter Ka-band parabolic deployable antenna (KaPDA) which would stow in 1.5U (10 x 10 x 15 cu cm) and provide 42dB of gain (50% efficiency). A folding rib architecture and dual reflector Cassegrainian design was selected as it best balances RF gain and stowed size. The design implements an innovative telescoping waveguide and gas powered deployment. RF simulations show that after losses, the antenna would have over 42 dB gain, supported by preliminary test results. KaPDA would create opportunities for a host of new CubeSat missions by allowing high data rate communication which would enable using high fidelity instruments or venturing further into deep space, including potential interplanetary missions. Additionally KaPDA would provide a solution for other small antenna needs and the opportunity to obtain Earth science data. This paper discusses the design challenges encountered, the architecture of the solution, and the antennas expected performance capabilities.

  17. The mevalonate pathway regulates primitive streak formation via protein farnesylation

    PubMed Central

    Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi

    2016-01-01

    The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036

  18. Side Group Addition to the PAH Coronene by UV Photolysis in Cosmic Ice Analogs

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Elsila, Jamie E.; Dworkin, Jason P.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Ultraviolet photolysis of various ice mixtures at low temperature and pressure caused the addition of amino (-NH2), methyl (-CH3), methoxy (-OCH3), and cyano (-CN) functional groups to the polycyclic aromatic hydrocarbon (PAH) coronene (C22H12). The implications of these results for interstellar and meteoritic chemistry are discussed. Previously only simple PAH photo-oxidation had been reported. This work represents the first experimental evidence that ice photochemistry may have contributed to aromatics bearing carbon and nitrogen containing side groups that are detected in primitive meteorites and interplanetary dust particles. Furthermore, these results suggest a wider range of modified PAHs should be expected in interstellar lees and materials predating solar system formation.

  19. The physical and compositional properties of dust: what do we really know?

    NASA Astrophysics Data System (ADS)

    Jones, A.

    Many things in current interstellar dust studies are taken as well understood givens by much of the community. For example, it is widely held that interstellar dust is made up of only three components, i.e., “astronomical silicates”, graphite and polycyclic aromatic hydrocarbons, and that our understanding of these is now complete and sufficient enough to interpret astronomical observations of dust in galaxies. To zeroth order this is a reasonable approximation. However, while these “three pillars” of dust modelling have been useful in advancing our understanding over the last few decades, it is now apparent that they are insufficient to explain the observed evolution of the dust properties from one region to another. Thus, it is time to abandon the “three pillars” approach and to seek more physically-realistic interstellar dust analogues. The analysis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the Stardust mission, and the interpretation of x-ray scattering and absorption observations, supports the view that our current view of the interstellar dust composition(s) is indeed too naïve. The aim of this review is to point out where our current views are rather secure and, perhaps more importantly, where they are far from secure and we must re-think our ideas. To this aim ten aspects of interstellar dust will be scrutinised and re-evaluated in terms of their validity within the current observational, experimental, modelling and theoretical constraints. It is concluded from this analysis that we really do need to re-assess many of the fundamental assumptions relating to what we think we really do ‘know’ about interstellar dust. In particular, it is clear that unravelling the nature dust evolution in the interstellar medium is perhaps the key to significantly advancing our current understanding of interstellar dust. For example, the dust in the diffuse interstellar medium, molecular clouds, photo

  20. Preliminary Examination of Impact Craters on Al Foil from the Stardust Interstellar Dust Collector

    NASA Astrophysics Data System (ADS)

    Stroud, R.; Stardust Interstellar Preliminary Examination Team; 29,000 Stardust@home Dusters

    2011-12-01

    The Interstellar Dust Collector from the NASA Stardust mission provides an unprecedented opportunity for direct laboratory study of particles from the contemporary interstellar dust (ISD) stream in order to obtain such information as grain composition and microstructure. The collector is comprised of two collection media: silica aerogel tiles and Al foil strips. Preliminary examination (PE) of particles captured in each medium is on-going. To-date, four grains analyzed in situ in aerogel with synchrotron X-ray techniques show track trajectories and elemental composition that indicate a probable interstellar origin. In addition, we report here the discovery of one crater on an Al foil for which the residue elemental composition and crater shape are consistent with the impact of a grain of interstellar origin, although an interplanetary origin has not been ruled out. Automated mapping by SEM is the primary tool for identifi-cation of craters on the Al foils. A complete map of each foil requires collection of several thousand images at a resolution of ~ 50 nm/px. Automated software has been developed to identify crater candidates, but so far it has not replaced manual efforts. Identified candidates are then re-imaged at ~ 15 nm/px, for confirmation as impact craters. Fifteen foils have been imaged; crater identification is complete for eight, yielding 32 craters. The average areal density of craters is 9.7 cm-2, which extrapolates to ~1500 craters on the total foil collection area. Initial elemental analysis of residues in six craters has been performed with a combination of Auger spectroscopy, conventional, off-axis energy dispersive X-ray spectroscopy (EDX), on-axis, silicon drift-detector EDX. Additional analysis by TEM of the residue composition and crater morphology was obtained on FIB cross-sections of four of the craters. All craters contained detectable levels of Si and O. One crater was found to contain Mg, Si, O, Fe, Ni, S, Ca and Cr, indicative of an

  1. A late Miocene dust shower from the break-up of an asteroid in the main belt.

    PubMed

    Farley, Kenneth A; Vokrouhlický, David; Bottke, William F; Nesvorný, David

    2006-01-19

    Throughout the history of the Solar System, Earth has been bombarded by interplanetary dust particles (IDPs), which are asteroid and comet fragments of diameter approximately 1-1,000 microm. The IDP flux is believed to be in quasi-steady state: particles created by episodic main belt collisions or cometary fragmentation replace those removed by comminution, dynamical ejection, and planetary or solar impact. Because IDPs are rich in 3He, seafloor sediment 3He concentrations provide a unique means of probing the major events that have affected the IDP flux and its source bodies over geological timescales. Here we report that collisional disruption of the >150-km-diameter asteroid that created the Veritas family 8.3 +/- 0.5 Myr ago also produced a transient increase in the flux of interplanetary dust-derived 3He. The increase began at 8.2 +/- 0.1 Myr ago, reached a maximum of approximately 4 times pre-event levels, and dissipated over approximately 1.5 Myr. The terrestrial IDP accretion rate was overwhelmingly dominated by Veritas family fragments during the late Miocene. No other event of this magnitude over the past approximately 10(8) yr has been deduced from main belt asteroid orbits. One remarkably similar event is present in the 3He record 35 Myr ago, but its origin by comet shower or asteroid collision remains uncertain.

  2. Pristine Stratospheric Collections of Cosmic Dust

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Clemett, S. J.

    2012-01-01

    Since 1981, NASA has routinely collected interplanetary dust particles (IDPs) in the stratosphere by inertial impact onto silicone oil-coated flat plate collectors deployed on the wings of high-altitude aircraft [1]. The highly viscous oil traps and localizes the particles, which can fragment during collection. Particles are removed from the collectors with a micromanipulator and washed of the oil using organic solvents, typically hexane or xylene. While silicone oil is an efficient collection medium, its use is problematic. All IDPs are initially coated with this material (polydimethylsiloxane, n(CH3)2SiO) and traces of oil may remain after cleaning. The solvent rinse itself is also a concern as it likely removes indigenous organics from the particles. To avoid these issues, we used a polyurethane foam substrate for the oil-free stratospheric collection of IDPs.

  3. Observations of interactions between interplanetary and geomagnetic fields

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Magnetospheric effects associated with variations of the north-south component of the interplanetary magnetic field are examined in light of recent recent experimental and theoretical results. Although the occurrence of magnetospheric substorms is statistically related to periods of southward interplanetary magnetic field, the details of the interaction are not understood. In particular, attempts to separate effects resulting directly from the interaction between the interplanetary and geomagnetic fields from those associated with substorms have produced conflicting results. The transfer of magnetic flux from the dayside to the nightside magnetosphere is evidenced by equatorward motion of the polar cusp and increases of the magnetic energy density in the lobes of the geomagnetic tail. The formation of a macroscopic X-type neutral line at tail distances less than 35 R sub E appears to be a substorm phenomenon.

  4. Shock Effects on Cometary-Dust Simulants

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, Elizabeth; Wooden, Diane H.; Lindsay, Sean S.; Smith, Douglas H.; Nakamura-Messenger, Keiko; Keller, Lindsay P.; Cardenas, Francisco; Cintala, Mark J.; Montes, Roland

    2014-01-01

    While comets are perhaps best known for their ability to put on spectacular celestial light shows, they are much more than that. Composed of an assortment of frozen gases mixed with a collection of dust and minerals, comets are considered to be very primitive bodies and, as such, they are thought to hold key information about the earliest chapters in the history of the solar system. (The dust and mineral grains are usually called the "refractory" component, indicating that they can survive much higher temperatures than the ices.) It has long been thought, and spacecraft photography has confirmed, that comets suffer the effects of impacts along with every other solar system body. Comets spend most of their lifetimes in the Kuiper Belt, a region of the solar system between 30 and 50 times the average distance of the Earth from the Sun, or the Oort Cloud, which extends to approximately 1 light year from the Sun. Those distances are so far from the Sun that water ice is the equivalent of rock, melting or vaporizing only through the action of strong, impact-generated shock waves.

  5. Carbon petrology in cometary dust

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1992-01-01

    Chondritic porous (CP) interplanetary dust particles (IDP's) are collected in the Earth's stratosphere. There exists an extensive database on major and minor element chemistry, stable isotopes, noble gas abundances and mineralogy of many CP IDP's, as well as infrared and Raman spectroscopic properties. For details on the mineralogy, chemistry and physical properties of IDP's, I refer to the reviews by Mackinnon and Rietmeijer (1987), Bradley et al. (1988) and Sandford (1987). Texture, mineralogy (Mackinnon and Rietmeijer, 1987) and chemistry (Schramm et al., 1989; Flynn and Sutton, 1991) support the notion that CP IDP's are a unique group of ultrafine-grained extraterrestiral materials that are distinct from any known meteorite class. Their fluffy, or porous, morphology suggests that CP IDP's probably endured minimal alteration by protoplanetary processes since their formation. It is generally accepted that CP IDP's are solid debris from short-period comets. The evidence is mostly circumstantial but this notion gained significant support based on the comet Halley dust data (Brownlee, 1990). In this paper, I will accept that CP IDP's are indeed cometary dust. The C/Si ratio in CP IDP's is 3.3 times higher than in CI carbonaceous chondrites (Schramm et al. 1989). The intraparticle carbon distribution is heteorogeneous (Rietmeijer and McKay, 1986). Carbon occurs both in oxidized and reduced forms. Analytical electron microscope (AEM) and Raman spectroscopic analyses have shown the presence of several carbon forms in CP IDP's but the data are scattered in the literature. Carbons in cometary CP IDP's are among the most pristine Solar System carbons available for laboratory study. Similar to a recently developed petrological model for the diversity of layer silicates in CP IDP's (Zolensky, 1991) that is useful to constrain in situ aqueous alteration in comets (Rietmeijer and Mackinnon, 1987a), I here present the first effort to develop a petrological concept of carbons

  6. AGUA TIBIA PRIMITIVE AREA, CALIFORNIA.

    USGS Publications Warehouse

    Irwin, William P.; Thurber, Horace K.

    1984-01-01

    The Agua Tibia Primitive Area in southwestern California is underlain by igneous and metamorphic rocks that are siilar to those widely exposed throughout much of the Peninsular Ranges. To detect the presence of any concealed mineral deposits, samples of stream sediments were collected along the various creeks that head in the mountain. As an additional aid in evaluating the mineral potential, an aeromagnetic survey was made and interpreted. A search for records of past or existing mining claims within the primitive area was made but none was found. Evidence of deposits of metallic or nonmetallic minerals was not seen during the study.

  7. Mars Science Laboratory Interplanetary Navigation Performance

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau

    2013-01-01

    The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.

  8. PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results

    NASA Astrophysics Data System (ADS)

    de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco

    2015-11-01

    NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.

  9. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  10. Cosmic dust and space debris; Proceedings of the Topical Meetings and Workshop 6 of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M. (Editor); Hanner, M. S. (Editor); Kessler, D. J. (Editor)

    1986-01-01

    These proceedings encompass topics in the fields of extraterrestrial material samples, IRAS solar system and dust model results, and earth orbit debris. Attention is given to chemical fractionation during high velocity impact, particle deceleration and survival in multiple thin foil targets, and IRAS studies of asteroids, comets, cometary tails, the zodiacal background, and the three-dimensional modeling of interplanetary dust. Also discussed are the evolution of an earth orbit debris cloud, orbital debris due to future space activities, collision probabilities in geosynchronous orbits, and a bitelescopic survey of low altitude orbital debris.

  11. Pluto' interaction with its space environment: Solar wind, energetic particles, and dust

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Horányi, M.; McComas, D. J.; McNutt, R. L.; Elliott, H. A.; Hill, M. E.; Brown, L. E.; Delamere, P. A.; Kollmann, P.; Krimigis, S. M.; Kusterer, M.; Lisse, C. M.; Mitchell, D. G.; Piquette, M.; Poppe, A. R.; Strobel, D. F.; Szalay, J. R.; Valek, P.; Vandegriff, J.; Weidner, S.; Zirnstein, E. J.; Stern, S. A.; Ennico, K.; Olkin, C. B.; Weaver, H. A.; Young, L. A.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hinson, D. P.; Holdridge, M. E.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Stryk, T.; Summers, M. E.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.

    2016-03-01

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers-3 for the dust density in the Pluto system.

  12. Cosmic dust collection with a sub-satellite tethered to a space station

    NASA Technical Reports Server (NTRS)

    Corso, G. J.

    1986-01-01

    The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the Beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the Earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer that 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made Earth orbiting debris in any direction within 100 km or so of the space station.

  13. Cosmic dust collection with a sub satellite tethered to a Space Station

    NASA Technical Reports Server (NTRS)

    Corso, George J.

    1987-01-01

    The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer than 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made earth orbiting debris in any direction within 100 km or so of the space station.

  14. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Glassmeier, K.-H.; Coates, A. J.; Goldstein, R.; Acuna, M. H.

    1990-01-01

    This paper describes 13 very short events in the magnetic field of the inner magnetic pile-up region of Comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera. Their characteristic shape generally involves a sudden decrease in magnetic-field magnitude, a subsequent overshoot beyond initial field values, and an asymptotic approach to the initial field (somewhat reminiscent of the magnetic-field signature after the AMPTE releases in the solar wind). These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft.

  15. ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience

    NASA Astrophysics Data System (ADS)

    Budnik, F.; Morley, T. A.; MacKenzie, R. A.

    A system for interplanetary orbit determination has been developed at ESOC over the past six years. Today, the system is in place and has been proven to be both reliable and robust by successfully supporting critical operations of ESA's interplanetary spacecraft Rosetta, Mars Express, and SMART-1. To reach this stage a long and challenging way had to be travelled. This paper gives a digest about the journey from the development and testing to the operational use of ESOC's new interplanetary orbit determination system. It presents the capabilities and reflects experiences gained from the performed tests and tracking campaigns.

  16. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 3: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. Here, information is given on the IPOST code.

  17. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  18. Primitive neuroectodermal tumors of the central nervous system.

    PubMed

    Becker, L E; Hinton, D

    1983-06-01

    Primitive neuroectodermal tumors are morphologically similar malignant tumors arising in intracranial and peripheral sites of the nervous system, showing varying degrees of cellular differentiation with a tendency to disseminate along cerebrospinal fluid pathways. They occur primarily in children and young adults. Under the designation primitive neuroectodermal tumors are included medulloblastomas and tumors that may differentiate in other directions, such as medulloepithelioma, neuroblastoma, polar spongioblastoma, pineoblastoma, ependymoblastoma, retinoblastoma, and olfactory neuroblastoma. From a practical, histologic point of view, these tumors are often indistinguishable from one another and are best thought of as primitive neuroectodermal tumors with or without differentiating features.

  19. 36 CFR 261.21 - National Forest primitive areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false National Forest primitive areas. 261.21 Section 261.21 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS General Prohibitions § 261.21 National Forest primitive areas. The following are...

  20. Remote sensing of dust in the Solar system and beyond using wavelength dependence of polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.

    2011-12-01

    For a long time, the main polarimetric tool to study dust in the Solar system has been the dependence of polarization on phase (scattering) angle. Surprisingly, a variety of cosmic dusts (interplanetary and cometary dust, dust on the surfaces of asteroids and in debris disks) possesses a very similar phase dependence of polarization with a negative bowl-shaped part at small phase angles and a positive bell-shaped region with maximum polarization around 95-105 deg. Numerous laboratory and theoretical simulations showed that a polarimetric phase curve of this shape is typical for fluffy materials, e.g., porous, aggregated particles. By contrast, the wavelength dependence of polarization is different for different types of dust. In the visual, polarization decreases with wavelength (negative gradient) for asteroids and interplanetary dust, but usually increases with wavelength (positive gradient) for cometary dust. In debris disks both signs of the spectral gradient of polarization have been found. Moreover, it was found that a cometary positive spectral gradient can change to a negative one as observations move to longer (near-infrared) wavelengths (Kelley et al. AJ, 127, 2398, 2004) and some comets(Kiselev et al. JQSRT, 109, 1384, 2008) have negative gradient even in the visible. The diversity of the spectral dependence of polarization therefore gives us hope that it can be used for characterization of the aggregates that represent different types of cosmic dust. To accomplish this, the physics behind the spectral dependence of polarization need to be revealed. Our recent study shows that the spectral dependence of polarization depends on the strength of electromagnetic interaction between the monomers in aggregates. The strength of the interaction mainly depends on how many monomers the electromagnetic wave covers on the light path equal to one wavelength. Since the electromagnetic interaction depolarizes the light, the more particles a single wavelength covers the

  1. A mutli-technique search for the most primitive CO chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'D.; Greenwood, R. C.; Bowden, R.; Gibson, J. M.; Howard, K. T.; Franchi, I. A.

    2018-01-01

    As part of a study to identify the most primitive COs and to look for weakly altered CMs amongst the COs, we have conducted a multi-technique study of 16 Antarctic meteorites that had been classified as primitive COs. For this study, we have determined: (1) the bulk H, C and N abundances and isotopes, (2) bulk O isotopic compositions, (3) bulk modal mineralogies, and (4) for some selected samples the abundances and compositions of their insoluble organic matter (IOM). Two of the 16 meteorites do appear to be CMs - BUC 10943 seems to be a fairly typical CM, while MIL 090073 has probably been heated. Of the COs, DOM 08006 appears to be the most primitive CO identified to date and is quite distinct from the other members of its pairing group. The other COs fall into two groups that are less primitive than DOM 08006 and ALH 77307, the previously most primitive CO. The first group is composed of members of the DOM 08004 pairing group, except DOM 08006. The second group is composed of meteorites belonging to the MIL 03377 and MIL 07099 pairing groups. These two pairing groups should probably be combined. There is a dichotomy in the bulk O isotopes between the primitive (all Antarctic finds) and the more metamorphosed COs (mostly falls). This dichotomy can only partly be explained by the terrestrial weathering experienced by the primitive Antarctic samples. It seems that the more equilibrated samples interacted to a greater extent with 16O-poor material, probably water, than the more primitive meteorites.

  2. Iron, magnesium, and silicon in dust from Comet Halley

    NASA Technical Reports Server (NTRS)

    Lawler, Mark E.; Brownlee, Donald E.; Temple, Scott; Wheelock, Maya M.

    1989-01-01

    The highest-quality impact mass spectrometer data from the Vega-1 and Giotto spacecraft are presently used to study the Mg, Si, and Fe composition of dust grains in Comet Halley. The results thus obtained are in general agreement with previously reported data, but differ with respect to ion ratio dispersions. A lack of sharp clustering in the data indicates that none of the detected particles can be characterized as single mineral grains; an abundant glass content in the solids may be indicated. The best match of the distribution of Fe/(Fe+Mg) is with interplanetary particles containing high temperature, Mg-rich silicates dominated by anhydrous minerals, so that Comet Halley may be a mixture of ice and high-temperature anhydrous minerals.

  3. Interplanetary Trajectories, Encke Method (ITEM)

    NASA Technical Reports Server (NTRS)

    Whitlock, F. H.; Wolfe, H.; Lefton, L.; Levine, N.

    1972-01-01

    Modified program has been developed using improved variation of Encke method which avoids accumulation of round-off errors and avoids numerical ambiguities arising from near-circular orbits of low inclination. Variety of interplanetary trajectory problems can be computed with maximum accuracy and efficiency.

  4. Galileo dust data from the jovian system: 2000 to 2003

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Bindschadler, D.; Dermott, S. F.; Graps, A. L.; Grün, E.; Gustafson, B. A.; Hamilton, D. P.; Hanner, M. S.; Horányi, M.; Kissel, J.; Linkert, D.; Linkert, G.; Mann, I.; McDonnell, J. A. M.; Moissl, R.; Morfill, G. E.; Polanskey, C.; Roy, M.; Schwehm, G.; Srama, R.

    2010-06-01

    The Galileo spacecraft was the first man-made satellite of Jupiter, orbiting the planet between December 1995 and September 2003. The spacecraft was equipped with a highly sensitive dust detector that monitored the jovian dust environment between approximately 2 and 370 RJ (jovian radius RJ=71 492 km). The Galileo dust detector was a twin of the one flying on board the Ulysses spacecraft. This is the tenth in a series of papers dedicated to presenting Galileo and Ulysses dust data. Here we present data from the Galileo dust instrument for the period January 2000 to September 2003 until Galileo was destroyed in a planned impact with Jupiter. The previous Galileo dust data set contains data of 2883 particles detected during Galileo's interplanetary cruise and 12 978 particles detected in the jovian system between 1996 and 1999. In this paper we report on the data of additional 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21 250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. They were detected throughout the jovian system and the impact rates frequently exceeded 10 min -1. Surprisingly large impact rates up to 100 min -1 occurred in August/September 2000 when Galileo was far away (≈280RJ) from Jupiter, implying dust ejection rates in excess of 100 kg s -1. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large

  5. Software Risk Identification for Interplanetary Probes

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert J.; Papadopoulos, Periklis E.

    2005-01-01

    The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.

  6. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  7. Corneal permeability for cement dust: prognosis for occupational safety

    NASA Astrophysics Data System (ADS)

    Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.

    2018-02-01

    The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.

  8. Fundamental physical theories: Mathematical structures grounded on a primitive ontology

    NASA Astrophysics Data System (ADS)

    Allori, Valia

    In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about a clear three-dimensional primitive ontology that evolves according to a law determined by the wave function. The primitive ontology is what matter is made of while the wave function tells the matter how to move. One might think that what is important in the notion of primitive ontology is their three-dimensionality. If so, in a theory like classical electrodynamics electromagnetic fields would be part of the primitive ontology. I argue that, reflecting on what the purpose of a fundamental physical theory is, namely to explain the behavior of objects in three-dimensional space, one can recognize that a fundamental physical theory has a particular architecture. If so, electromagnetic fields play a different role in the theory than the particles and therefore should be considered, like the wave function, as part of the law. Therefore, we can characterize the general structure of a fundamental physical theory as a mathematical structure grounded on a primitive ontology. I explore this idea to better understand theories like classical mechanics and relativity, emphasizing that primitive ontology is crucial in the process of building new theories, being fundamental in identifying the symmetries. Finally, I analyze what it means to explain the word around us in terms of the notion of primitive ontology in the case of regularities of statistical character. Here is where the notion of typicality comes into play: we have explained a phenomenon if the typical histories of the primitive

  9. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    NASA Astrophysics Data System (ADS)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  10. Electrostatic Levitation of Lunar Dust: Preliminary Experimental Observations

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Davis, S.; Laub, J.

    2007-12-01

    A lunar dust laboratory has been established in the Space Science Division at NASA Ames to evaluate fundamental electrostatic processes at the Moon's surface. Photoelectric charging, triboelectric charging, and interactions of these processes are investigated for dust-size materials. An electric field simulating the solar- plasma induced E-field of the lunar surface has been created with parallel charged capacitance plates. The field is linear, but field-shaping to create lunar-like exponentially decaying E-fields will be conducted in the near future. Preliminary tests of dust tribocharging have been conducted using a vibrating base plate within the electric field and have produced electrostatic levitation of 1.6 micron diameter silicate particles. We were able to achieve levitation in a modest vacuum environment (1.7 Torr) with the particles charged to approximately 15 percent of the Gaussian limit (defined as 2.64 E-5 C/m-2 for atmospheric air) at a threshold field strength of 2250 V/m. This charging corresponds to only a few hundred (negative) charges per particle; the field strength drops to 375 V/m when gravitationally scaled for the Moon, while dust tribocharging to greater than 100 percent of the Gaussian limit would be possible in the ultra high vacuum environment on the Moon and result in even lower threshold field strengths. We conclude therefore, that anthropogenic disturbance of lunar dust (as a result of NASA's proposed base construction, mining, vehicle motion, etc) could potentially pollute the lunar environment with levitated dust and severely impair scientific experiments requiring a pristine lunar exosphere.

  11. Security Primitives for Reconfigurable Hardware-Based Systems

    DTIC Science & Technology

    2010-05-01

    work, we propose security primitives using ideas centered around the notion of “moats and drawbridges .” The primitives encompass four design properties...Santa Bar- bara, CA 93106; email: sherwood@cs.ucsb.edu; R. Kastner, Department of Computer Science and Engineering , University of California, San...fingerprint reader), the other to control the ethernet IP core—and an AES encryption engine used by both of the processor cores. These cores are all implemented

  12. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  13. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on

  14. Interplanetary laser ranging - an emerging technology for planetary science missions

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Vermeersen, L. L. A.

    2012-09-01

    Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.

  15. POPO AGIE PRIMITIVE AREA, WYOMING.

    USGS Publications Warehouse

    Pearson, Robert C.; Patten, L.L.

    1984-01-01

    A mineral-resource appraisal was made of the Popo Agie Primitive Area and some adjoining lands. This scenic mountainous region of the Wind River Range in west-central Wyoming is composed largely of ancient granitic rocks in which virtually no evidence of mineral deposits was found. Deep crustal seismic-reflection profiles obtained across the southern Wind River Range suggest the possibility that young sedimentary rocks, similar to those at the surface along the northeast flank of the range, are present at depth beneath the granite in the Popo Agie primitive Area. If present, such buried sedimentary rocks could be petroleum bearing. Additional seismic and gravity studies would probably add valuable information, but ultimately very expensive, very deep drilling will be necessary to test this possibility.

  16. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  17. Permissible Exposure Level for Lunar Dusts: Gaps are Closing

    NASA Technical Reports Server (NTRS)

    James, John T.; Lam, Chiu-Wing; Scully Robert; Santana, Patricia; Cooper, Bonnie; McKay, David; Zeidler-Erdely, Patti C.; Castranova, Vincent

    2010-01-01

    Space faring nations plan to return human explorers to the moon within the next decade. Experience during the Apollo flights suggests that lunar dust will invariably get into the habitat where the finest portion (less than 5 micrometers) could be inhaled by the crew before it is cleared from the atmosphere. NASA is developing a database from which a 6-month, episodic exposure standard for lunar dust can be set. Three kinds of moon dust were prepared from a parent sample of Apollo 14 regolith #14003,96. Our goal was to prepare each type of dust sample with a mean diameter less than 2 m, which is suitable for instillation into the lungs of rats. The three samples were prepared as follows: separation from the parent sample using a fluidized bed, grinding using a jet mill grinder, or grinding with a ball-mill grinder. Grinding simulated restoration of surface activation of dust expected to occur at the surface of the moon on native lunar dust. We used two grinding methods because they seemed to produce different modes of activation. The effects of grinding were preserved by maintaining the dust in ultra-pure nitrogen until immediately before it was placed in suspension for administration to rats. The dust was suspended in physiological saline with 10% Survanta, a lung surfactant. Rats were given intratrachael instillations of the dust suspension at three doses. In addition to the three moon dusts (A, C and E), we instilled the same amount of a negative control (TiO2, B) and a highly-toxic, positive control (quartz, D). These additional mineral dusts were selected because they have well-established and very different permissible exposure levels (PELs). Our goal was to determine where lunar dusts fit between these extremes, and then estimate a PEL for each lunar dust. We evaluated many indices of toxicity to the lung. The figure shows the changes in lactate dehydrogenase (LDH), a marker of cell death, for the five dusts. Benchmark dose software (Version 2.1.2) from the

  18. Can Lightning Produce Significant Levels of Mass-Independent Oxygen Isotopic Fractionation in Nebular Dust?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam

    2012-01-01

    Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .

  19. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  20. A manual for PARTI runtime primitives, revision 1

    NASA Technical Reports Server (NTRS)

    Das, Raja; Saltz, Joel; Berryman, Harry

    1991-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  1. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.

  2. Astrophysics with Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.; Ciesla, Fred

    2016-09-01

    Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.

  3. Genesis of Interplanetary Intermittent Turbulence: a Case Study of Rope-Rope Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.- L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Munoz, Pablo R.; Sibeck, David G.; Wu, De J.

    2016-01-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  4. Essential roles for Cdx in murine primitive hematopoiesis.

    PubMed

    Brooke-Bisschop, Travis; Savory, Joanne G A; Foley, Tanya; Ringuette, Randy; Lohnes, David

    2017-02-15

    The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  6. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  7. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    PubMed

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  8. The morphology of cometary dust: Subunit size distributions down to tens of nanometres

    NASA Astrophysics Data System (ADS)

    Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus

    2017-04-01

    The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M

  9. 3-D model of ICME in the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  10. Electron dropout echoes induced by interplanetary shock: A statistical study

    NASA Astrophysics Data System (ADS)

    Liu, Z. Y.; Zong, Q.-G.; Hao, Y. X.; Zhou, X.-Z.; Ma, X. H.; Liu, Y.

    2017-08-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the outer radiation belt region has been investigated systematically. The electron moderate dropout and its echoes are usually found for higher-energy (>300 keV) channel fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. The electron dropout echo events are found to be usually associated with the interplanetary shocks arrival. The 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on the Los Alamos National Laboratory satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the ˜1 min electric field impulse induced by the interplanetary shock produces a more pronounced inward migration of electrons at the duskside, resulting in the observed duskside moderate dropout of electron flux and its consequent echoes.

  11. Primitive ideals of C q [ SL(3)

    NASA Astrophysics Data System (ADS)

    Hodges, Timothy J.; Levasseur, Thierry

    1993-10-01

    The primitive ideals of the Hopf algebra C q [ SL(3)] are classified. In particular it is shown that the orbits in Prim C q [ SL(3)] under the action of the representation group H ≅ C *× C * are parameterized naturally by W×W, where W is the associated Weyl group. It is shown that there is a natural one-to-one correspondence between primitive ideals of C q [ SL(3)] and symplectic leaves of the associated Poisson algebraic group SL(3, C).

  12. Evolution of the Edgeworth-Kuiper Belt and Kuiperoidal Dust

    NASA Astrophysics Data System (ADS)

    Ozernoy, L. M.; Ipatov, S. I.

    Evolution of orbits of Edgeworth-Kuiper belt objects (EKBOs) under the gravitational influence of the giant planets has been studied by a number of authors (e.g., Duncan & Levison; Budd; Ozernoy, Gorkavyi & Taidakova). Here we show that the gravitational interactions of EKBOs can also play a certain role in their orbital evolution. For instance, during the last 4 Gyr as many as several percents of EKBOs could change their semimajor axes by more than 1 AU due to close encounters with other EKBOs. Even small variations in orbital elements of EKBOs caused by their mutual collisions coupled with the mutual gravitational influence can cause large variations in the orbital elements due to the gravitational influence of planets. About 6% of Neptune-crossers can reach the orbit of the Earth, with the average time in Earth-crossing orbits of about 5× 103 yr. The portion of former EKBOs now moving in Earth-crossing orbits can exceed 20% of all Earth-crossers. Evaporation of the volatile material from the EKBOs surfaces, due to mutual EKBO collisions, along with the Solar wind and the heating by the Sun, are the sources of the dust in the outer Solar system. The evolution and structure of the interplanetary dust cloud computed, in some approximations, by Gorkavyi, Ozernoy, Mather, & Taidakova offers a preliminary 3-D physical model of the cloud, which includes three dust components (asteroidal, cometary, and kuiperoidal), which is fairly consistent with the available data of Pioneer and Voyager dust detectors and contribution of the zodiacal light into the COBE/DIRBE data. We acknowledge support of this work by NASA grant NAG5-10776, the Russian Federal Program ``Astronomy'' (section 1.9.4.1), RFBR (01-02-17540), and INTAS (00-240).

  13. High energy astronomy or astrophysics and properties of the interplanetary plasma

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The research activities related to high energy astrophysics and interplanetary plasma are reported. The experimental work in the following areas are described: (1) balloon-and rocket-borne cosmic X-ray, (2) X-ray spectroscopy, and (3) OSO-3 gamma ray experiment. Plasma studies in the interplanetary region, magnetosphere, and geomagnetic tail are included.

  14. The nature of cometary dust as determined from infrared observations

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. Krishna; Sandford, Scott A.; Allamandola, Louis J.; Witteborn, Fred C.; Bregman, Jesse D.

    1989-01-01

    The infrared measurements of comets, the compositional information available from interplanetary dust particles (IDPs), and the recent results of flybys to Comet Halley can help in restricting the nature and composition of cometary dust models (c.f., Proceedings of the 20th ESLAB Symposium on Exploration of Halley's Comet, 1986). Researchers tried to incorporate some of these results into a coherent model to account for the observed cometary infrared emission. The presence of 10 and 3.4 micron features in Comet Halley (c.f. Bregman et al. 1987; Wickramasinghe and Allen 1986) indicated the presence of at least two components in the grain material, namely silicates and some form of amorphous carbon. These two components could reside in separate grains or may be parts of composite particles. Both these cases have been considered (see Krishna Swamy el a. 1988a, 1988b). In the absence of refractive index data for cometary analogs, the authors used the optical constants of olivine-rich lunar material 12009.48 (Perry et al. 1972) for the infrared region and that of alpha:C-H film for amorphous carbon (angus et al. 1986). For the visible region, a value of m = 1.38-0.39i was used for the silicates, and values published by Arakawa et al. (1985) were used for the amorphous carbon. These materials should give a representative behavior of the expected results. The model results were compared to observational data. The strength of the 3.4 micron and 10 micron features relative to the adjacent continuum, as well as the slope of the continuum between 2500 and 1250 cm(exp -1) (4 to 8 microns), were used as criteria for comparison. Model calculations with alpha approx. equals -3.5, and also the size distribution function inferred for Comet Halley, with a mass fraction (X) of silicate to amorphous carbon grains of about 40 to 1 can fit the data. A good match is obtained for the infrared spectra of Comets Halley and West from a 40 to 1 mixture of silicate and amorphous carbon grains

  15. Operating CFDP in the Interplanetary Internet

    NASA Technical Reports Server (NTRS)

    Burleigh, S.

    2002-01-01

    This paper examines the design elements of CCSDS File Delivery Protocol and Interplanetary Internet technologies that will simplify their integration and discusses the resulting new capabilities, such as efficient transmission of large files via multiple relay satellites operating in parallel.

  16. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron

  17. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for [CII] Line and Dust Emission in 6

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.

    2016-12-01

    We present a search for [C II] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212-272 GHz, encompass approximately the range of 6 < z < 8 for [C II] line emission and reach a limiting luminosity of L [C II] ˜ (1.6-2.5) × 108 L ⊙. We identify 14 [C II] line emitting candidates in this redshift range with significances >4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C II] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C II] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M ⊙ yr-1. We find that the two highest-SFR objects have candidate [C II] lines with luminosities that are consistent with the low-redshift L [C II] versus SFR relation. The other candidates have significantly higher [C II] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C II] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C II] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.

  18. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chian, Abraham C.-L.; Loew, Murray H.; Feng, Heng Q.

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event.more » The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.« less

  19. Transceiver optics for interplanetary communications

    NASA Astrophysics Data System (ADS)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  20. IDIS Small Bodies and Dust Node

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. C.; Capria, M. T.; Carraro, F.; Fonte, S.; Giacomini, L.; Turrini, D.

    2009-04-01

    Node aims at becoming a focus point in the fields of Solar System's minor bodies and interplanetary dust by providing the community with a central, user friendly resource and service inventory and contact point. The main aim of the Small Bodies and Dust Node will be to: • support collaborative work in the field of Small Bodies and Dust • provide information about databases and scientific tools in this field • establish a scientific information management system • define and develop Science Cases regarding IDIS

  1. STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.

  2. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents.

    PubMed

    Stuper-Szablewska, Kinga; Rogoziński, Tomasz; Perkowski, Juliusz

    2017-06-27

    Wood compounds, especially sterols, are connected with the level of contamination with microscopic fungi. Within this study, tests were conducted on wood dust samples collected at various work stations in a pine and birch timber conversion plant. Their contamination with mycobiota was measured as the concentration of ergosterol (ERG) by ultra performance liquid chromatography (UPLC). Another aim of this study was to assess the effect of contamination with microscopic fungi on the sterol contents in wood dusts. Analyses were conducted on five sterols: desmosterol, cholesterol, lanosterol, stigmasterol, and β-sitosterol using UPLC and their presence was confirmed using gas chromatography/mass spectrometry (GC/MS). The results of chemical analyses showed the greatest contamination with mycobiota in birch wood dust. We also observed varied contents of individual sterols depending on the wood dust type. Their highest concentration was detected in birch dust. The discriminant analysis covering all tested compounds as predictors showed complete separation of all tested wood dust types. The greatest discriminatory power was found for stigmasterol, desmosterol, and ergosterol.

  3. Deictic primitives for general purpose navigation

    NASA Technical Reports Server (NTRS)

    Crismann, Jill D.

    1994-01-01

    A visually-based deictic primative used as an elementary command set for general purpose navigation was investigated. It was shown that a simple 'follow your eyes' scenario is sufficient for tracking a moving target. Limitations of velocity, acceleration, and modeling of the response of the mechanical systems were enforced. Realistic paths of the robots were produced during the simulation. Scientists could remotely command a planetary rover to go to a particular rock formation that may be interesting. Similarly an expert at plant maintenance could obtain diagnostic information remotely by using deictic primitives on a mobile are used in the deictic primitives, we could imagine that the exact same control software could be used for all of these applications.

  4. Primitive macrophages control HSPC mobilization and definitive haematopoiesis.

    PubMed

    Travnickova, Jana; Tran Chau, Vanessa; Julien, Emmanuelle; Mateos-Langerak, Julio; Gonzalez, Catherine; Lelièvre, Etienne; Lutfalla, Georges; Tavian, Manuela; Kissa, Karima

    2015-02-17

    In vertebrates, haematopoietic stem/progenitor cells (HSPCs) first emerge in the aorta-gonad-mesonephros (AGM) before colonizing transitory and subsequently definitive haematopoietic organs allowing haematopoiesis throughout adult life. Here we identify an unexpected primitive macrophage population accumulated in the dorsal mesenteric mesoderm surrounding the dorsal aorta of the human embryo and study its function in the transparent zebrafish embryo. Our study reveals dynamic interactions occurring between the HSPCs and primitive macrophages in the AGM. Specific chemical and inducible genetic depletion of macrophages or inhibition of matrix metalloproteinases (Mmps) leads to an accumulation of HSPCs in the AGM and a decrease in the colonization of haematopoietic organs. Finally, in vivo zymography demonstrates the function of primitive macrophages in extracellular matrix degradation, which allows HSPC migration through the AGM stroma, their intravasation, leading to the colonization of haematopoietic organs and the establishment of definitive haematopoiesis.

  5. Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

    Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

  6. Relativistic electron dropout echoes induced by interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  7. Trace element distributions in primitive achondrites

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Prinz, Martin; Weisberg, Michael K.

    1993-01-01

    The primitive achondrites have approximately chondritic bulk chemical composition but achondritic textures. Clayton et al. show that nine of these meteorites, the acapulcoites and the lodranites, have similar oxygen isotopic compositions. The acapulcoites appear to be highly metamorphosed, but undifferentiated meteorites of chondritic composition; whereas, the lodranites appear to have lost a feldspathic partial melt. In order to learn more about metamorphic processes and partial melt removal, we have measured the trace element compositions of constituent phases of a number of primitive achondrites by ion microprobe. We have analyzed two acapulcoites, Acapulco and ALH81261 (paired with ALH77081), and three londranites, Lodran, LEW88280, and MAC88177. In addition, we analyzed LEW88663, which has the bulk composition, mineral chemistry, and oxygen isotopic composition of L-chondrites, but is metal-free and has an achondrite texture; and Divnoe, a plagioclase-poor, olivine-rich primitive achondrite with an oxygen isotopic composition similar to that of the group IAB iron meteorites. These meteorites show a variety of REE patterns in their constituent phases, and there are consistent differences between acapulcoites and lodranites that are consistent with removal of a LREE- and Eu-enriched melt that is apparently responsible for the low plagioclase content of lodranites.

  8. GCR Modulation by Small-Scale Features in the Interplanetary Medium

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.; Galametz, M.

    2007-12-01

    In an effort to uncover the properties of structures in the interplanetary medium (IPM) that modulate galactic cosmic rays (GCR) on short time-scales (from hours to days), we study periods of differing conditions in the IPM. We analyze GCR variations from spacecraft both inside and outside the magnetosphere, using the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the observed GCR modulations and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. Our analysis spans time-/size-scale variations ranging from classic Forbush decreases (Fds), to substructure embedded within Fds, to much smaller amplitude and shorter duration variations observed during comparatively benign interplanetary conditions. We compare and contrast the conditions leading to the range of different GCR responses to modulating structures in the IPM.

  9. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  10. The interplanetary and solar magnetic field sector structures, 1962 - 1968

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1972-01-01

    The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.

  11. Testing Fundamental Gravity with Interplanetary Laser Ranging

    NASA Astrophysics Data System (ADS)

    Turyshev, S. G.; Shao, M.; Hahn, I.

    2018-02-01

    Very accurate range measurements with the Interplanetary Laser Ranging Terminal (ILRT) will push high-precision tests of astrophysics/gravitation into a new regime. It could be used for navigation and investigations in planetary/lunar science.

  12. Primitive neuroectodermal tumor of the cervix: a case report

    PubMed Central

    2011-01-01

    Introduction Peripheral primitive neuroectodermal tumor of the cervix uteri is extremely rare. Between 1987 and 2010, there were only nine cases reported in the English literature, with considerably different management policies. Case presentation A 45-year-old Iranian woman presented to our facility with a primitive neuroectodermal tumor of the cervix uteri. Her clinical stage IB2 tumor was treated successfully with chemotherapy. Our patient underwent radical hysterectomy. There was no trace of the tumor after four years of follow-up. Conclusions According to current knowledge, primitive neuroectodermal tumors belong to the Ewing's sarcoma family, and the improvement of treatment outcome in our patient was due to dose-intensive neoadjuvant chemotherapy, surgery and consolidation chemotherapy in accordance with the protocol for bony Ewing's sarcoma. PMID:21962148

  13. PROGRA2 experiment: new results for dust clouds and regoliths

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.

    With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.

  14. Solar events and their influence on the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.

  15. The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.

  16. Multipoint study of interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, Xochitl; Kajdic, Primoz; Russell, Christopher T.; Aguilar-Rodriguez, Ernesto; Jian, Lan K.; Luhmann, Janet G.

    2016-04-01

    Interplanetary (IP) shocks are driven in the heliosphere by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs). These shocks perturb the solar wind plasma, and play an active role in the acceleration of ions to suprathermal energies. Shock fronts evolve as they move from the Sun. Their surfaces can be far from uniform and be modulated by changes in the ambient solar wind (magnetic field orientation, flow velocity), shocks rippling, and perturbations upstream and downstream from the shocks, i.e., electromagnetic waves. In this work we use multipoint observations from STEREO, WIND, and MESSENGER missions to study shock characteristics at different helio-longitudes and determine the properties of the waves near them. We also determine shock longitudinal extensions and foreshock sizes. The variations of geometry along the shock surface can result in different extensions of the wave and ion foreshocks ahead of the shocks, and in different wave modes upstream and downtream of the shocks. We find that the ion foreshock can extend up to 0.2 AU ahead of the shock, and that the upstream region with modified solar wind/waves can be very asymmetric.

  17. Proceedings of the Symposium on the Study of the Sun and Interplanetary Medium in Three Dimensions. [space mission planning and interplanetary trajectories by NASA and ESA to better observe the sun and solar system

    NASA Technical Reports Server (NTRS)

    Fisk, L. A. (Editor); Axford, W. I. (Editor)

    1976-01-01

    A series of papers are presented from a symposium attended by over 200 European and American scientists to examine the importance of exploring the interplanetary medium and the sun by out-of-the-ecliptic space missions. The likely scientific returns of these missions in the areas of solar, interplanetary, and cosmic ray physics is examined. Theoretical models of the solar wind and its interaction with interplanetary magnetic fields are given.

  18. Interplanetary medium data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Unresolved questions on the physics of solar wind and its effects on magnetospheric processes and cosmic ray propagation were addressed with hourly averaged interplanetary plasma and magnetic field data. This composite data set is described with its content and extent, sources, limits of validity, and the mutual consistency studies and normalizations to which the input data were subjected. Hourly averaged parameters were presented in the form of digital listings and 27-day plots. The listings are contained in a separately bound appendix.

  19. LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Cook, Amanda; Colaprete, Anthony; Shirley, Mark; Vargo, Kara; Elphic, Richard C.; Hermalyn, Brendan; Stubbs, Timothy John; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of

  20. Nonthermal Radiation Processes in Interplanetary Plasmas

    NASA Astrophysics Data System (ADS)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  1. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  2. Counting Primitive Pythagorean Triples

    ERIC Educational Resources Information Center

    Ayoub, Ayoub B.

    2005-01-01

    A triple (x,y,z) of natural numbers is called a Primitive Pythagorean Triple (PPT) if it satisfies two conditions: (1) x[squared] + y[squared] = z[squared]; and (2) x, y, and z have no common factor other than one. All the PPT's are given by the parametric equations: (1) x = m[squared] - n[squared]; (2) y = 2mn; and (3) z = m[squared] +…

  3. The Interplanetary Internet: A Communications Infrastructure for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.

    2002-01-01

    A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the

  4. Odorant-binding proteins from a primitive termite.

    PubMed

    Ishida, Yuko; Chiang, Vicky P; Haverty, Michael I; Leal, Walter S

    2002-09-01

    Hitherto, odorant-binding proteins (OBPs) have been identified from insects belonging to more highly evolved insect orders (Lepidoptera, Coleoptera, Diptera, Hymenoptera, and Hemiptera), whereas only chemosensory proteins have been identified from more primitive species, such as orthopteran and phasmid species. Here, we report for the first time the isolation and cloning of odorant-binding proteins from a primitive termite species, the dampwood termite. Zootermopsis nevadensis nevadensis (Isoptera: Termopsidae). A major antennae-specific protein was detected by native PAGE along with four other minor proteins, which were also absent in the extract from control tissues (hindlegs). Multiple cDNA cloning led to the full characterization of the major antennae-specific protein (ZnevOBP1) and to the identification of two other antennae-specific cDNAs, encoding putative odorant-binding proteins (ZnevOBP2 and ZnevOBP3). N-terminal amino acid sequencing of the minor antennal bands and cDNA cloning showed that olfaction in Z. n. nevadensis may involve multiple odorant-binding proteins. Database searches suggest that the OBPs from this primitive termite are homologues of the pheromone-binding proteins from scarab beetles and antennal-binding proteins from moths.

  5. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-08-15

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution ofmore » each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.« less

  6. Earth orbital operations supporting manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  7. Earth orbital operations supporting manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    1989-01-01

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  8. Hard Spheres on the Primitive Surface

    NASA Astrophysics Data System (ADS)

    Dotera, Tomonari; Takahashi, Yusuke

    2015-03-01

    Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.

  9. High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.; Alexander, Conel M. O'D.; Davidson, Jemma; Riebe, My E. I.; Stroud, Rhonda M.; Wang, Jianhua

    2018-04-01

    NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains, and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.

  10. Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance

    NASA Technical Reports Server (NTRS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-01-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  11. Curiosity Observes Whirlwinds Carrying Martian Dust

    NASA Image and Video Library

    2017-02-27

    Dust devils dance in the distance in this frame from a sequence of images taken by the Navigation Camera on NASA's Curiosity Mars rover on Feb. 12, 2017, during the summer afternoon of the rover's 1,607th Martian day, or sol. Within a broader context view, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. One dust devil appears at the right edge of the inset -- toward the south from the rover -- in the first few frames. Another appears on the left -- toward south-southeast -- later in the sequence. Contrast has been modified to make frame-to-frame changes easier to see. A black frame is added between repeats of the sequence. Portions of Curiosity are visible in the foreground. The cylindrical UHF (ultra-high frequency) antenna on the left is used for sending data to Mars orbiters, which relay the data to Earth. The angled planes to the right of this antenna are fins of the rover's radioisotope thermoelectric generator, which provides the vehicle's power. The post with a knob on top at right is a low-gain, non-directional antenna that can be used for receiving transmissions from Earth, as backup to the main high-gain antenna (not shown here) used for that purpose. On Mars as on Earth, dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21482

  12. Dynamics of aspherical dust grains in a cometary atmosphere: I. axially symmetric grains in a spherically symmetric atmosphere

    NASA Astrophysics Data System (ADS)

    Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.

    2017-01-01

    In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.

  13. Study of cosmic dust particles on board LDEF: The FRECOPA experiments AO138-1 and AO138-2

    NASA Technical Reports Server (NTRS)

    Mandeville, J. C.; Borg, Janet

    1992-01-01

    Two experiments, within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust, were flown on the LDEF. A variety of sensors and collecting devices have made possible the study of impact processes on materials of technological interest. Preliminary examination of hypervelocity impact features gives valuable data on size distribution and nature of interplanetary dust particles in low earth orbit, within the 0.5 to 300 micrometer size range. Most of the events detected on the trailing face of LDEF are expected to be the result of impacts of meteoritic particles only. So far, chemical analysis of craters by EDS clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. Systematic occurrence of C and O in crater residues is an important result, to be compared with the existence of CHON particles detected in P-Halley comet nucleus. Crater size distribution is in good agreement with results from other dust experiments flown on LDEF. However, no crater smaller than 1.5 micron was observed, thus suggesting a cutoff in the near earth particle distribution. Possible origin and orbital evolution of micrometeoroids is discussed.

  14. Study of Travelling Interplanetary Phenomena (STIP) workshop travel

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1986-01-01

    Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.

  15. Spatial distribution of carbon dust in the early solar nebula and the carbon content of planetesimals

    NASA Astrophysics Data System (ADS)

    Gail, Hans-Peter; Trieloff, Mario

    2017-09-01

    Context. A high fraction of carbon bound in solid carbonaceous material is observed to exist in bodies formed in the cold outskirts of the solar nebula, while bodies in the region of terrestrial planets contain only very small mass fractions of carbon. Most of the solid carbon component is lost and converted into CO during the spiral-in of matter as the Sun accretes matter from the solar nebula. Aims: We study the fate of the carbonaceous material that entered the proto-solar disc by comparing the initial carbon abundance in primitive solar system material and the abundance of residual carbon in planetesimals and planets in the asteroid belt and the terrestrial planet region. Methods: We constructed a model for the composition of the pristine carbonaceous material from observational data on the composition of the dust component in comets and of interplanetary dust particles and from published data on pyrolysis experiments. This material entered the inner parts of the solar nebula during the course of the build-up of the proto-sun by accreting matter from the proto-stellar disc. Based on a one-zone evolution model of the solar nebula, we studied the pyrolysis of the refractory and volatile organic component and the concomitant release of hydrocarbons of high molecular weight under quiescent conditions of disc evolution, while matter migrates into the central parts of the solar nebula. We also studied the decomposition and oxidation of the carbonaceous material during violent flash heating events, which are thought to be responsible for the formation of chondrules. To do this, we calculated pyrolysis and oxidation of the carbonaceous material in temperature spikes that were modeled according to cosmochemical models for the temperature history of chondrules. Results: We find that the complex hydrocarbon components of the carbonaceous material are removed from the disc matter in the temperature range between 250 and 400 K, but the amorphous carbon component survives to

  16. Probing Cosmic Dust of the Early Universe through High-Redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liang, S. L.; Li, Aigen

    2009-01-01

    We explore the extinction properties of the dust in the distant universe through the afterglows of high-redshifted gamma-ray bursts (GRBs) based on the "Drude" model which, unlike previous studies, does not require a prior assumption of template extinction laws. We select GRB 070802 at z ≈ 2.45 (which shows clear evidence for the 2175 Å extinction bump) and GRB 050904 at z ≈ 6.29, the second most distant GRB observed to date. We fit their afterglow spectra to determine the extinction of their host galaxies. We find that (1) their extinction curves differ substantially from that of the Milky Way and the Small and Large Magellanic Clouds (which were widely adopted as template extinction laws in the literature); (2) the 2175 Å extinction feature appears to be also present in GRB 050904 at z ≈ 6.29; and (3) there does not appear to be strong evidence for the dependence of dust extinction on redshifts. The inferred extinction curves are closely reproduced in terms of a mixture of amorphous silicate and graphite, both of which are expected supernova condensates and have been identified in primitive meteorites as presolar grains originating from supernovae (which are considered as the main source of dust at high-z).

  17. Developmental Approach for Behavior Learning Using Primitive Motion Skills.

    PubMed

    Dawood, Farhan; Loo, Chu Kiong

    2018-05-01

    Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.

  18. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less

  19. Velocity profiles of interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1983-01-01

    The type 2 radio burst was identified as a shock propagating through solar corona. Radio emission from shocks travelling through the interplanetary (IP) medium was observed. Using the drift rates of IP type II bursts the velocity characteristics of eleven shocks were investigated. It is indicated that shocks in the IP medium undergo acceleration before decelerating and that the slower shocks take longer to attain their maximum velocity.

  20. UltraSail CubeSat Solar Sail Flight Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, David; Burton, Rodney; Coverstone, Victoria; Swenson, Gary

    2013-01-01

    UltraSail is a next-generation, highrisk, high-payoff sail system for the launch, deployment, stabilization, and control of very large (km2 class) solar sails enabling high payload mass fractions for interplanetary and deep space spacecraft. UltraSail is a non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation- flying microsatellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 km2, sail subsystem area densities approaching 1 g/m2, and thrust levels many times those of ion thrusters used for comparable deep space missions. UltraSail can achieve outer planetary rendezvous, a deep-space capability now reserved for high-mass nuclear and chemical systems. There is a twofold rationale behind the UltraSail concept for advanced solar sail systems. The first is that sail-andboom systems are inherently size-limited. The boom mass must be kept small, and column buckling limits the boom length to a few hundred meters. By eliminating the boom, UltraSail not only offers larger sail area, but also lower areal density, allowing larger payloads and shorter mission transit times. The second rationale for UltraSail is that sail films present deployment handling difficulties as the film thickness approaches one micrometer. The square sail requires that the film be folded in two directions for launch, and similarly unfolded for deployment. The film is stressed at the intersection of two folds, and this stress varies inversely with the film thickness. This stress can cause the film to yield, forming a permanent crease, or worse, to perforate. By rolling the film as UltraSail does, creases are prevented. Because the film is so thin, the roll thickness is small. Dynamic structural analysis of UltraSail coupled with dynamic control analysis shows that the system can be designed to eliminate longitudinal torsional waves created while controlling the pitch of the blades

  1. Correlation of interplanetary-space B sub z field fluctuations and trapped-particle redistribution.

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Pellat, R.

    1972-01-01

    Observations of interplanetary magnetic field fluctuations in correlation with trapped particle fluctuations are discussed. From observations of particle-redistribution effects, properties of the magnetospheric electric field are derived. The obtained results suggest that the interplanetary B(sub z) field fluctuations might represent a strong driving source for particle diffusion.

  2. Characterizing the Dust-Correlated Anomalous Emission in LDN 1622

    NASA Astrophysics Data System (ADS)

    Cleary, Kieran; Casassus, Simon; Dickinson, Clive; Lawrence, Charles; Sakon, Itsuki

    2008-03-01

    The search for 'dust-correlated microwave emission' was started by the surprising excess correlation of COBE-DMR maps, at 31.5, 53 and 91GHz, with DIRBE dust emission at 140 microns. It was first thought to be Galactic free-free emission from the Warm Ionized Medium (WIM). However, Leitch et al. (1997) ruled out a link with free-free by comparing with Halpha templates and first confirmed the anomalous nature of this emission. Since then, this emission has been detected by a number of experiments in the frequency range 5-60 GHz. The most popular explanation is emission from ultra-small spinning dust grains (first postulated by Erickson, 1957), which is expected to have a spectrum that is highly peaked at about 20 GHz. Spinning dust models appear to be broadly consistent with microwave data at high latitudes, but the data have not been conclusive, mainly due to the difficulty of foreground separation in CMB data. LDN 1622 is a dark cloud that lies within the Orion East molecular cloud at a distance of 120 pc. Recent cm-wave observations, in combination with WMAP data, have verified the detection of anomalous dust-correlated emission in LDN 1622. This mid-IR-cm correlation in LDN 1622 is currently the only observational evidence that very small grains VSG emit at GHz frequencies. We propose a programme of spectroscopic observations of LDN 1622 with Spitzer IRS to address the following questions: (i) Are the IRAS 12 and 25 microns bands tracing VSG emission in LDN 1622? (ii) What Mid-IR features and continuum bands best correlate with the cm-wave emission? and (iii) How do the dust properties vary with the cm-wave emission? These questions have important implications for high-sensitivity CMB experiments.

  3. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamicmore » propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.« less

  4. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  5. N-15-Rich Organic Globules in a Cluster IDP and the Bells CM2 Chondrite

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, Lindsay P.

    2008-01-01

    Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and 15N/14N relative to terrestrial values [1-3]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [1]. Some meteorites and IDPs contain m-size inclusions with extreme H and N isotopic anomalies [2-4], possibly due to preserved pristine primordial organic grains. We recently showed that the in the Tagish Lake meteorite, the principle carriers of these anomalies are sub- m, hollow organic globules [5]. The globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk [5]. We proposed that similar materials should be common among primitive meteorites, IDPs, and comets. Similar objects have been observed in organic extracts of carbonaceous chondrites [6-8], however their N and H isotopic compositions are generally unknown. Bulk H and N isotopic compositions may indicate which meteorites best preserve interstellar organic compounds. Thus, we selected the Bells CM2 carbonaceous chondrites for study based on its large bulk 15N (+335 %) and D (+990 %) [9].

  6. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.

  7. Probing interferometric parallax with interplanetary spacecraft

    NASA Astrophysics Data System (ADS)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  8. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  9. Lunar and Planetary Science XXXVI, Part 6

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: A Model for Multiple Populations of Presolar Diamonds. Characterization of Martian North Polar Geologic Units Using Mars Odyssey THEMIS Data. Effect of Flow on the Internal Structure of the Martian North Polar Layered Deposits. Elemental Abundance Distributions in Basalt Clays and Meteorites: Is It a Biosignature? Early Results on the Saturn System from the Composite Infrared Spectrometer. NanoSIMS D/H Imaging of Isotopically Primitive Interplanetary Dust Particles. Presolar (Circumstellar and Interstellar) Phases in Renazzo: The Effects of Parent Body Processing. Catastrophic Disruption of Hydrated Targets: Implications for the Hydrated Asteroids and for the Production of Interplanetary Dust Particles. Chemical and Mineralogical Analyses of Particles from the Stratospheric Collections Coinciding with the 2002 Leonid Storm and the 2003 Comet Grigg-Skjellerup Trail Passage. An Analysis of the Solvus in the CaS-MnS System. ESA s SMART-1 Mission at the Moon: First Results, Status and Next Steps. Europa Analog Ice-splitting Measurements and Experiments with Ice-Hunveyor on the Frozen Balaton-Lake, Hungary. Chromium on Eros: Further Evidence of Ordinary Chondrite Composition. Dust Devil Tracks on Mars: Observation and Analysis from Orbit and the Surface. Spatial Variation of Methane and Other Trace Gases Detected on Mars: Interpretation with a General Circulation Model. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations. Component Separation of OMEGA Spectra with ICA. Clathrate Formation in the Near-Surface Environment of Titan. Space Weathering: A Proposed Laboratory Approach to Explaining the Sulfur Depletion on Eros. Sample Collection from Small Airless Bodies: Examination of Temperature Constraints for the TGIP. Sample Collector for the Hera Near-Earth Asteroid Sample Return Mission. A Rugged Miniature Mass-Spectrometer for Measuring Aqueous Geochemistry on Mars

  10. Optimization of the Nano-Dust Analyzer (NDA) for operation under solar UV illumination

    NASA Astrophysics Data System (ADS)

    O`Brien, L.; Grün, E.; Sternovsky, Z.

    2015-12-01

    The performance of the Nano-Dust Analyzer (NDA) instrument is analyzed for close pointing to the Sun, finding the optimal field-of-view (FOV), arrangement of internal baffles and measurement requirements. The laboratory version of the NDA instrument was recently developed (O'Brien et al., 2014) for the detection and elemental composition analysis of nano-dust particles. These particles are generated near the Sun by the collisional breakup of interplanetary dust particles (IDP), and delivered to Earth's orbit through interaction with the magnetic field of the expanding solar wind plasma. NDA is operating on the basis of impact ionization of the particle and collecting the generated ions in a time-of-flight fashion. The challenge in the measurement is that nano-dust particles arrive from a direction close to that of the Sun and thus the instrument is exposed to intense ultraviolet (UV) radiation. The performed optical ray-tracing analysis shows that it is possible to suppress the number of UV photons scattering into NDA's ion detector to levels that allow both high signal-to-noise ratio measurements, and long-term instrument operation. Analysis results show that by avoiding direct illumination of the target, the photon flux reaching the detector is reduced by a factor of about 103. Furthermore, by avoiding the target and also implementing a low-reflective coating, as well as an optimized instrument geometry consisting of an internal baffle system and a conical detector housing, the photon flux can be reduced by a factor of 106, bringing it well below the operation requirement. The instrument's FOV is optimized for the detection of nano-dust particles, while excluding the Sun. With the Sun in the FOV, the instrument can operate with reduced sensitivity and for a limited duration. The NDA instrument is suitable for future space missions to provide the unambiguous detection of nano-dust particles, to understand the conditions in the inner heliosphere and its temporal

  11. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-03-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  12. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less

  13. The interplanetary pioneers. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The Pioneer Space Probe Project is explained to document the events which occurred during the project. The subjects discussed are: (1) origin and history of interplanetary Pioneer program, (2) Pioneer system development and design, (3) Pioneer flight operations, and (4) Pioneer scientific results. Line drawings, circuit diagrams, illustrations, and photographs are included to augment the written material.

  14. Evolution of Computational Toxicology-from Primitive ...

    EPA Pesticide Factsheets

    Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 on the Evolution of Computational Toxicology-from Primitive Beginnings to Sophisticated Application

  15. Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2

  16. Insights to primitive replication derived from structures of small oligonucleotides

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Fox, G. E.

    1995-01-01

    Available information on the structure of small oligonucleotides is surveyed. It is observed that even small oligomers typically exhibit defined structures over a wide range of pH and temperature. These structures rely on a plethora of non-standard base-base interactions in addition to the traditional Watson-Crick pairings. Stable duplexes, though typically antiparallel, can be parallel or staggered and perfect complementarity is not essential. These results imply that primitive template directed reactions do not require high fidelity. Hence, the extensive use of Watson-Crick complementarity in genes rather than being a direct consequence of the primitive condensation process, may instead reflect subsequent selection based on the advantage of accuracy in maintaining the primitive genetic machinery once it arose.

  17. Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; McAdams, James

    2011-01-01

    The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.

  18. Forecast the energetic electron flux on geosynchronous orbit with interplanetary parameters

    NASA Astrophysics Data System (ADS)

    Xue, B.; Ye, Z.

    The high flux of energetic electron on geo-synchronous orbit can cause many kinds of malfunction of the satellite there, within which the bulk charging is the most significant that several broadcast satellite failures were confirmed to be due to this effect. The electron flux on geo-synchronous orbit varies in a large range even up to three orders accompanied the passage of interplanetary magnetic cloud and the following geomagnetic disturbances. Upon investigating electron flux, interplanetary solar wind data, and geomagnetic data as well, we found that: (1) The enhancement of energetic flux on the geo-synchronous orbit exhibits periodic recurrence of 27days. (2)Significant increase of electron flux relates to interplanetary index and characters of their distribution. (3)The electron flux also has relation to solar activity index. In our research work, artificial neural network was employed and constructed according to the job. The neural network, we call it full connecting network, was proved to be a sufficient tool to analyze the character of the evolving parameters, remember the omen of "electron storm", and establish the relationship between interplanetary parameters etc., and the fluence of high energetic electrons. The neural network was carefully constructed and trained to do the job mentioned above. Preliminary result showed that the accuracy forecast of electron flux 1 day ahead can reach 80%, and 70% for 2 days ahead.

  19. Design of Quasi-Terminator Orbits near Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Lantoine, Gregory; Broschart, Stephen B.; Grebow, Daniel J.

    2013-01-01

    Quasi-terminator orbits are a class of quasi-periodic orbits around a primitive body that exist in the vicinity of the well-known terminator orbits. The inherent stability of quasi-terminator trajectories and their wide variety of viewing geometries make them a very compelling option for primitive body mapping missions. In this paper, we discuss orbit design methodologies for selection of an appropriate quasi-terminator orbit that would meet the needs of a specific mission. Convergence of these orbits in an eccentric, higher-fidelity model is also discussed with an example case at Bennu, the target of the upcoming NASA's OSIRIS-REx mission.

  20. Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event

    NASA Astrophysics Data System (ADS)

    Manchester, W. B., IV; van der Holst, B.; Lavraud, B.

    2014-06-01

    Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.

  1. Observational Evidence for Mixing and Dust Condensation in Core-Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent findings of isotopic anomalies of Ca-44 (the decay product of Ti-44) and the enhanced ratio of Si-28/Si-30 in SiC grains X, TiC subgrains, and graphite dust grains within primitive meteorites provides strong evidence that these presolar grains came from core-collapse supernovae. The chemical composition of the presolar grains requires macroscopic mixing of newly nucleo-synthesized elements from explosive silicon burning at the innermost zone of the ejects to higher velocities where C exists and where C/O > 1 in either the outer edge of the oxygen zone or in the He-C zone. To date, the only core-collapse supernova observed to form dust is the brightest supernova of the past four centuries, SN1987A in the Large Magellanic Cloud. Observations of SN1987A confirm large scale macroscopic mixing occurs in the explosions of massive stars. Rayleigh-Taylor instabilities macroscopically mix most of the ejects into regions which are still chemically homogeneous and which cool with different time scales. Only small clumps in the ejects are microscopically mixed. Observations show that dust condensed in the ejects of SN1987A after approx.500 days in the Fe-rich gas. Neither silicates nor SiC grains were seen in the dust emission spectrum of SN1987A. SN1987A, the Rosetta Stone of core-collapse supernovae, shows that while the mixing required to explain presolar grains occurs, the rapid cooling of the Fe zone and the sustained high temperatures of the O-Si, O-C, and He-C zones favor the formation of iron-rich rather than oxygen- or carbon-rich grains.

  2. Respirable dust measured downwind during rock dust application.

    PubMed

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  3. A comment on methanogenic bacteria and the primitive ecology

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1977-01-01

    As the phenotype of methanogenic bacteria is suggested to have been one of the major factors creating a dynamic balance between CO2 and CH4 in the primitive atmosphere, these organisms are thought to be very ancient. Their antiquity may be further postulated by comparative characterization of their ribosomal RNA. Accepting this antiquity, it is concluded that a carbon-dioxide-methane cycle, driven by photosynthesis, was the major carbon cycle in primitive ecology, and that photosynthesis and methanogens were thus contemporaneous.

  4. Nitrogen Isotopic Composition of Organic Matter in a Pristine Collection IDP

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Walker, Robert M.

    2012-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) are probable cometary materials that show primitive characteristics, such as unequilibrated mineralogy, fragile structure, and abundant presolar grains and organic matter [1-3]. CP IDPs are richer in aliphatic species and N-bearing aromatic hydrocarbons than meteoritic organics and commonly exhibit highly anomalous H and N isotopic compositions [4,5]. Cometary organic matter is of interest in part because it has escaped the hydrothermal processing experienced by meteorites. However, IDPs are collected using silicon oil that must be removed with strong organic solvents such as hexane. This procedure is likely to have removed some fraction of soluble organic phases in IDPs. We recently reported the first stratospheric collection of IDPs without the use of silicone oil [6]. Here we present initial studies of the carbonaceous material in an IDP from this collection.

  5. Cosmic dust synthesis by accretion and coagulation

    NASA Technical Reports Server (NTRS)

    Praburam, G.; Goree, J.

    1995-01-01

    The morphology of grains grown by accretion and coagulation is revaled by a new laboratory method of synthesizing cosmic dust analogs. Submicron carbon particles, grown by accretion of carbon atoms from a gas, have a spherical shape with a cauliflower-like surface and an internal micro-structure of radial columns. This shape is probably common for grains grown by accretion at a temperature well below the melting point. Coagulated grains, consisting of spheres that collided to form irregular strings, were also synthesized. Another shape we produced had a bumpy non- spherical morphology, like an interplanetary particle collected in the terrestrial stratosphere. Besides these isolated grains, large spongy aggregates of nanometer-size particles were also found for various experimental conditions. Grains were synthesized using ions to sputter a solid target, producing an atomic vapor at a low temperature. The ions were provided by a plasma, which also provided electrostatic levitation of the grains during their growth. The temporal development of grain growth was studied by extinguishing the plasma after various intervals.

  6. Physics of the primitive solar nebula and of giant gaseous protoplanets

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1978-01-01

    It has been proposed that the supernova responsible for injecting Al-26 into the early solar system was in fact responsible for triggering the collapse of an interstellar cloud in order to produce a system of stars, one of which would be the solar system. Details concerning the mechanism involved in such a process are discussed. Attention is given to the evolution of the primitive solar nebula, the instabilities in the primitive solar nebula, and the giant gaseous protoplanets. The principal conclusion to be drawn from the material presented is that the primitive solar nebula was a rather chaotic place, highly turbulent, with the multiple formation of giant gaseous protoplanets.

  7. Interplanetary medium data book, appendix

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.

  8. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  9. Atypical Particle Heating at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  10. The cytotoxic and genetoxic effects of dust and soil samples from E-waste recycling area on L02 cells.

    PubMed

    Wang, Liulin; Hou, Meiling; An, Jing; Zhong, Yufang; Wang, Xuetong; Wang, Yangjun; Wu, Minghong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2011-10-01

    Electrical and electronic waste (E-waste) has now become the fastest growing solid waste around the world. Primitive recycling operations for E-waste have resulted in severe contamination of toxic metals and organic chemicals in the related areas. In this study, six dust and soil samples collected from E-waste recycling workshops and open-burning sites in Longtang were analyzed to investigate their cytotoxicity and genotoxicity on L02 cells. These six samples were: dust No. 1 collected at the gate of the workshop; dust No. 2 collected from air conditioning compressor dismantling site; dust No. 3 collected from where some motors, wires, and aluminium products since the 1980s were dismantled; soil No. 1 collected at the circuit board acid washing site; soil No. 2 collected from a wire open-burning site; soil No. 3 collected near a fiber open-burning site. At the same time, two control soil samples were collected from farmlands approximately 8 km away from the dismantling workshops. The results showed that all of these samples could inhibit cell proliferation and cause cell membrane lesion, among which dust No. 3 and soil No. 2 had the strongest toxicity. Moreover, the comet assay showed that the dust No. 3 had the most significant capability to cause DNA single-strand beaks (SSB), while the road dust (dust No. 1) collected at the gate of the workshop, a relatively farer site, showed the slightest capability to induce DNA SSB. The intracellular reactive oxygen species (ROS) detection showed that ROS level was elevated with the increase of dust and soil samples concentration. Dust No. 3 and soil No. 2 had the highest ROS level, followed by dust No. 2 and 1, soil No. 3 and 1. All of the above results indicated that polluted soil and dust from the E-waste area had cytotoxicity and genotoxicity on L02 cells, the mechanism might involve the increased ROS level and consequent DNA SSB.

  11. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    NASA Astrophysics Data System (ADS)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target

  12. Polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in surface dust at an E-waste processing site in Southeast China.

    PubMed

    Leung, Anna O W; Zheng, Jinshu; Yu, Chik Kin; Liu, Wing Keung; Wong, Chris K C; Cai, Zongwei; Wong, Ming H

    2011-07-01

    Surface dust collected from printed circuit board recycling workshop floors, roads, a schoolyard, and an outdoor food market in Guiyu, China, a village intensely involved in e-waste processing, were investigated for levels of polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). PBDE concentrations in dust from workshop-floors (14,800 ± 5130 ng/g) and on adjacent roads to the workshops (24,900 ± 31,600 ng/g) were highest among the study sites whereas PCDD/F concentrations were highest at the schoolyard (1316 pg/g) and in a workshop (1264 pg/g). Analyses of <2 mm and <53 μm dust particle sizes did not show any significant differences in PBDE concentrations. The cytotoxicity was investigated using two bioassays: 7-ethoxyresorufin O-deethylase (EROD-TEQ) and MTT. EROD-TEQ values ranged from 260 to 432 pg/g, with the highest in dust collected from a street lined with workshops. Using the MTT assay, cytoxicity of dust from the plastic chips drying district in Guiyu was higher than dust from the other sites investigated. This study showed that the primitive recycling of e-waste introduced toxic pollutants into the environment which are potentially harmful to the health of e-waste workers and local residents, especially children, and warrants an urgent investigation into POPs related health impacts.

  13. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust

  14. Modeling solar wind with boundary conditions from interplanetary scintillations

    DOE PAGES

    Manoharan, P.; Kim, T.; Pogorelov, N. V.; ...

    2015-09-30

    Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less

  15. The solar origins of two high-latitude interplanetary disturbances

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Acton, L. W.; Alexander, D.; Harvey, K. L.; Kurokawa, H.; Kahler, S.; Lemen, J. R.

    1995-01-01

    Two extremely similar interplanetary forward/reverse shock events, with bidirectional electron streaming were detected by Ulysses in 1994. Ground-based and Yohkoh/SXT observations show two strikingly different solar events that could be associated with them: an LDE flare on 20 Feb. 1994, and a extremely large-scale eruptive event on 14 April 1994. Both events resulted in geomagnetic storms and presumably were associated with coronal mass ejections. The sharply contrasting nature of these solar events argues against an energetic causal relationship between them and the bidirectional streaming events observed by Ulysses during its S polar passage. We suggest instead that for each pair of events. a common solar trigger may have caused independent instabilities leading to the solar and interplanetary phenomena.

  16. MEDUSA (Martian Environmental DUst Systematic Analyser)

    NASA Astrophysics Data System (ADS)

    Battaglia, R.; Colangeli, L.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Palomba, E.; Palumbo, P.; Panizza, A.; Rotundi, A.

    2003-04-01

    Aerosol dust suspended in the atmosphere thermally influences the behaviour of the lower atmosphere by absorbing solar radiation and by increasing the thermal inertia. Main dust parameters influencing the atmosphere heating are size distribution, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, atmospheric dust seems to have had long term effects on the surface geology, too. In fact, in the present environment of Mars, the most active surface modifying agent is the wind. Vast dune fields, various albedo patterns that change with time, wind eroded hills and drifts of fine grained material observed at the Viking landing sites are all attributed to aeolian processes. Large parts of the cratered uplands and smooth terrain in both polar regions are believed to be composed of deposits of windblown particles. These deposits may be important reservoirs for volatiles and may influence climate changes via variation of regional albedo. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand the climate and the surface evolution on Mars. Dust deposition also may be a key process in the volatile cycle on the planet. In situ results obtained so far do not give exhaustive information on dust physical properties and concentration near the surface. On the other hand H_2O is important as indicator of global climate changes on long time-scales and has fundamental links to life forms origin. Furthermore, the past volcanism on Mars, associated with a "wetter" environment, most probably caused in the past hydro-thermal activities that would be particularly suited for the existence of the most primitive organisms. Most of our understanding of the water vapour circulation derives from orbiter-based observations by the Mars Atmospheric Water Detection experiment, onboard the Viking Orbiters and from the Thermal Emission Spectrometer (TES

  17. Comprehensive BRL-CAD Primitive Database

    DTIC Science & Technology

    2015-03-01

    are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of...database provides the target describers of BRL–CAD with a representative example of each primitive’s shape and its properties. In addition to the...database was completed, a tool was created to generate primitive shapes automatically. This provides target describers—CAD experts who generate

  18. A likely detection of a local interplanetary dust cloud passing near the Earth in the AKARI mid-infrared all-sky map

    NASA Astrophysics Data System (ADS)

    Ishihara, D.; Kondo, T.; Kaneda, H.; Suzuki, T.; Nakamichi, K.; Takaba, S.; Kobayashi, H.; Masuda, S.; Ootsubo, T.; Pyo, J.; Onaka, T.

    2017-07-01

    Context. We are creating the AKARI mid-infrared all-sky diffuse maps. Through a foreground removal of the zodiacal emission, we serendipitously detected a bright residual component whose angular size is about 50° × 20° at a wavelength of 9 μm. Aims: We investigate the origin and the physical properties of the residual component. Methods: We measured the surface brightness of the residual component in the AKARI mid-infrared all-sky maps. Results: The residual component was significantly detected only in 2007 January, even though the same region was observed in 2006 July and 2007 July, which shows that it is not due to the Galactic emission. We suggest that this may be a small cloud passing near the Earth. By comparing the observed intensity ratio of I9 μm/I18 μm with the expected intensity ratio assuming thermal equilibrium of dust grains at 1 AU for various dust compositions and sizes, we find that dust grains in the moving cloud are likely to be much smaller than typical grains that produce the bulk of the zodiacal light. Conclusions: Considering the observed date and position, it is likely that it originates in the solar coronal mass ejection (CME) which took place on 2007 January 25.

  19. Intrapartum synthetic oxytocin reduce the expression of primitive reflexes associated with breastfeeding.

    PubMed

    Marín Gabriel, Miguel A; Olza Fernández, Ibone; Malalana Martínez, Ana M; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes

    2015-05-01

    Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. A cohort prospective study was conducted at a tertiary hospital. Mother-infant dyads who received intrapartum oxytocin (n=53) were compared with mother-infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent.

  20. Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307 - Origins and evidence for diverse, primitive nebular dust components

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    1993-01-01

    SEM, TEM, and electron microprobe analysis were used to investigate in detail the mineralogical and chemical characteristics of dark matrix and fine-grained rims in the unequilibrated CO3 chondrite ALHA77307. Data obtained revealed that there was a remarkable diversity of distinct mineralogical components, which can be identified using their chemical and textural characteristics. The matrix and rim components in ALHA77307 formed by disequilibrium condensation process as fine-grained amorphous dust that is represented by the abundant amorphous component in the matrix. Subsequent thermal processing of this condensate material, in a variety of environments in the nebula, caused partial or complete recrystallization of the fine-grained dust.

  1. Observations of a Small Interplanetary Magnetic Flux Rope Opening by Interchange Reconnection

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Feng, H. Q.; Zhao, G. Q.

    2018-01-01

    Interchange reconnection, specifically magnetic reconnection between open magnetic fields and closed magnetic flux ropes, plays a major role in the heliospheric magnetic flux budget. It is generally accepted that closed magnetic field lines of interplanetary magnetic flux ropes (IMFRs) can gradually open through reconnection between one of its legs and other open field lines until no closed field lines are left to contribute flux to the heliosphere. In this paper, we report an IMFR associated with a magnetic reconnection exhaust, whereby its closed field lines were opening by a magnetic reconnection event near 1 au. The reconnection exhaust and the following IMFR were observed on 2002 February 2 by both the Wind and ACE spacecraft. Observations on counterstreaming suprathermal electrons revealed that most magnetic field lines of the IMFR were closed, especially those after the front boundary of the IMFR, with both ends connected to the Sun. The unidirectional suprathermal electron strahls before the exhaust manifested the magnetic field lines observed before the exhaust was open. These observations provide direct evidence that closed field lines of IMFRs can be opened by interchange reconnection in interplanetary space. This is the first report of the closed field lines of IMFRs being opened by interchange reconnection in interplanetary space. This type of interplanetary interchange reconnection may pose important implications for balancing the heliospheric flux budget.

  2. Primitive myxoid mesenchymal tumor of infancy in a preterm infant.

    PubMed

    Lam, Joseph; Lara-Corrales, Irene; Cammisuli, Salvatore; Somers, Gino R; Pope, Elena

    2010-01-01

    Primitive myxoid mesenchymal tumor of infancy is a recently recognized entity that has been added to the differential diagnosis of myxoid tumors of the soft tissue. Few cases have been reported of this entity in the literature, but none presenting in a preterm infant. We present the case and clinical course of a preterm boy with a primitive myxoid mesenchymal tumor of infancy that occurred following excision of a congenital juvenile xanthogranuloma. © 2010 Wiley Periodicals, Inc.

  3. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  4. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  5. NASA Marshall Impact Testing Facility Capabilities Applicable to Lunar Dust Work

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Finchum, Andy; Hubbs, Whitney; Eskridge, Richard; Martin, Jim

    2008-01-01

    The Impact Testing Facility at Marshall Space Flight Center has several guns that would be of use in studying impact phenomena with respect to lunar dust. These include both ballistic guns, using compressed gas and powder charges, and hypervelocity guns, either light gas guns or an exploding wire gun. In addition, a plasma drag accelerator expected to reach 20 km/s for small particles is under development. Velocity determination and impact event recording are done using ultra-high-speed cameras. Simulation analysis is also available using the SPHC hydrocode.

  6. 10 years of Cassini/VIMS observations at Titan

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Brown, R. H.; Baines, K. H.; Barnes, J.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; LeMouelic, S.; Nicholson, P. D.; Rodriguez, S.; Soderblom, J.; Soderblom, L.; Stephan, K.

    2014-04-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching

  7. Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.

    PubMed

    Hughs, Sidney E; Wakelyn, Phillip J

    2017-04-26

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.

  8. An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.

    NASA Astrophysics Data System (ADS)

    Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.

    2017-12-01

    It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.

  9. Interplanetary monitoring platform engineering history and achievements

    NASA Technical Reports Server (NTRS)

    Butler, P. M.

    1980-01-01

    In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.

  10. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results

  11. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Technical Reports Server (NTRS)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  12. Interrelationships between interstellar and interplanetary grains

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1986-01-01

    The relationship between solar system dust (SSD) and interstellar dust particles (ISMD) is being reconsidered because of the discovery of isotopic anomalies in meteorites. Meteoritic, circumstellar/meteoritic, interstellar/meteoritic, planetary, and cometary data are reviewed.

  13. The Interplanetary Overlay Networking Protocol Accelerator

    NASA Technical Reports Server (NTRS)

    Pang, Jackson; Torgerson, Jordan L.; Clare, Loren P.

    2008-01-01

    A document describes the Interplanetary Overlay Networking Protocol Accelerator (IONAC) an electronic apparatus, now under development, for relaying data at high rates in spacecraft and interplanetary radio-communication systems utilizing a delay-tolerant networking protocol. The protocol includes provisions for transmission and reception of data in bundles (essentially, messages), transfer of custody of a bundle to a recipient relay station at each step of a relay, and return receipts. Because of limitations on energy resources available for such relays, data rates attainable in a conventional software implementation of the protocol are lower than those needed, at any given reasonable energy-consumption rate. Therefore, a main goal in developing the IONAC is to reduce the energy consumption by an order of magnitude and the data-throughput capability by two orders of magnitude. The IONAC prototype is a field-programmable gate array that serves as a reconfigurable hybrid (hardware/ firmware) system for implementation of the protocol. The prototype can decode 108,000 bundles per second and encode 100,000 bundles per second. It includes a bundle-cache static randomaccess memory that enables maintenance of a throughput of 2.7Gb/s, and an Ethernet convergence layer that supports a duplex throughput of 1Gb/s.

  14. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  15. Intrapartum Synthetic Oxytocin Reduce the Expression of Primitive Reflexes Associated with Breastfeeding

    PubMed Central

    Olza Fernández, Ibone; Malalana Martínez, Ana M.; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes

    2015-01-01

    Abstract Aim: Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. Materials and Methods: A cohort prospective study was conducted at a tertiary hospital. Mother–infant dyads who received intrapartum oxytocin (n=53) were compared with mother–infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. Results: The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Conclusions: Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent. PMID:25785487

  16. Chemical Heterogeneity and Mineralogy of Halley's Dust

    NASA Astrophysics Data System (ADS)

    Schulze, H.; Kissel, J.

    1992-07-01

    groups partly correspond to classifications of interplanetary dust particles (Brownlee et al., 1982). Half of the spectra have chondritic abundances within the experimental uncertainty. About 25% are dominated by Mg and Si indicating a significant portion of Fe-poor Mg silicates in the dust. Nearly 7% of the spectra are typically enriched in Fe and S due to pure Fe sulfide grains which seem to be partly enriched in Ni. Rarely, particles extremely rich in iron occur. Many silicatic spectra show a sulfur excess of unknown origin. Interpreting this heterogeneity in terms of mineralogy indicates that about half of Halley's dust grains are almost monomineralic and composed of Mg-rich silicates (enstatite and/or forsterite), Fe sulfides and Fe metal. Hydrated silicates and magnetite seem to play only a small role. The prevalence of minerals which were formed at rather high temperatures according to the condensation sequence (above ~600 K), is evidence that equilibration to Fe-rich and hydrated silicates by diffusion reactions at lower temperatures is a process too slow to affect these dust particles in their formation environment (Fegley and Prinn, 1988), and that these particles were not intensively altered at low temperatures in the comet. References: Bradley J.P. (1988) Geochim. Cosmochim. Acta. 52. 889-900. Brownlee D.E., Olszewski E., and Wheelock M.M. (1982) Lunar Planet. Sci. XIII, 71-72. Brownlee D.E., Wheelock M.M., Temple S., Bradley J.P., and Kissel J. (1987) Lunar Planet. Sci. XVIII, 134-135. Fegley B. and Prinn G. (1989) The formation and evolution of planetary systems (eds. H.A. Weaver and L. Danly), pp. 171-211. Cambridge. Jessberger E.K., Christoforidis A., and Kissel J. (1988) Nature 332, 691-695. Kissel J. (1986) Europ. Space Agency Spec. Publ. 1077, 67-83. Schulze H. and Kissel J. (1992) Earth Planet. Sci. Lett., submitted. Kissel J. and Krueger F.R. (1987) Appl. Phys. A42, 69-85.

  17. An interplanetary magnetic field ensemble at 1 AU

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; King, J. H.

    1985-01-01

    A method for calculation ensemble averages from magnetic field data is described. A data set comprising approximately 16 months of nearly continuous ISEE-3 magnetic field data is used in this study. Individual subintervals of this data, ranging from 15 hours to 15.6 days comprise the ensemble. The sole condition for including each subinterval in the averages is the degree to which it represents a weakly time-stationary process. Averages obtained by this method are appropriate for a turbulence description of the interplanetary medium. The ensemble average correlation length obtained from all subintervals is found to be 4.9 x 10 to the 11th cm. The average value of the variances of the magnetic field components are in the approximate ratio 8:9:10, where the third component is the local mean field direction. The correlation lengths and variances are found to have a systematic variation with subinterval duration, reflecting the important role of low-frequency fluctuations in the interplanetary medium.

  18. Recent collisional jet from a primitive asteroid

    NASA Astrophysics Data System (ADS)

    Novaković, Bojan; Dell'Oro, Aldo; Cellino, Alberto; Knežević, Zoran

    2012-09-01

    In this paper we show an example of a young asteroid cluster located in a dynamically stable region, which was produced by partial disruption of a primitive body about 30 km in size. We estimate its age to be only 1.9 ± 0.3 Myr; thus, its post-impact evolution should have been very limited. The large difference in size between the largest object and the other cluster members means that this was a cratering event. The parent body had a large orbital inclination and was subject to collisions with typical impact speeds higher by a factor of 2 than in the most common situations encountered in the main belt. For the first time, we have at our disposal the observable outcome of a very recent event to study high-speed collisions involving primitive asteroids, providing very useful constraints to numerical simulations of these events and to laboratory experiments.

  19. Level Zero Trigger Processor for the ultra rare kaon decay experiment: NA62

    NASA Astrophysics Data System (ADS)

    Soldi, Dario; Chiozzi, S.; Gamberini, E.; Gianoli, A.; Mila, G.; Neri, I.; Petrucci, F.

    2017-02-01

    The NA62 experiment is designed to measure the (ultra-)rare decay K+ →π+ ν ν bar branching ratio with a precision of ∼ 10 % at the CERN Super Proton Synchrotron (SPS). The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the L0TP is completely new for a high energy physics experiment. It is fully digital, based on a standard gigabit ethernet communication between detectors and L0TP Board. The L0TP Board is a commercial development board, Terasic DE4, mounting an Altera Stratix IV FPGA. The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period (about 5 seconds). The L0TP realigns in time the primitives coming from 7 different sources and manages the information of the time plus all the characteristics of the event as energy, multiplicity and position of hits in order to select good events with a comparison with preset masks. It should guarantee a maximum latency of 1 ms. The maximum input rate is 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A complete trigger-less parasitic acquisition of the primitives is possible using mirroring switches to monitor the L0 behavior. A first version of the L0TP was commissioned during the 2014 NA62 pilot run and it is used in the current data taking. A description of the trigger algorithm is here presented.

  20. Determining inert content in coal dust/rock dust mixture

    DOEpatents

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  1. Propagation and Evolution of CMEs in the Interplanetary Medium: Analysis of Remote Sensing and In situ Observations

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Gomez-Herrero, Raul; Malandraki, Olga; Szabo, Adam; Dresing, Nina; Davila, Joseph M.

    2010-01-01

    EUV disk imagers and white light coronagraphs have provided for many years information on the early formation and evolution of corona) mass ejections (CMEs). More recently, the novel heliospheric imaging instruments aboard the STEREO mission are providing crucial remote sensing information on the interplanetary evolution of these events while in situ instruments complete the overall characterization of the interplanetary CMEs. In this work, we present an analysis of CMEs from the Sun to the interplanetary medium using combined data from THE SOHO, STEREO, WIND, and ACE spacecraft. The events were selected to cover the widest possible spectrum of different ambient solar wind, magnetic field configurations, plasma parameters, etc. to allow uncovering those aspects that are important in understanding the propagation and evolution mechanisms of CMEs in the interplanetary medium.

  2. Abiogenic synthesis of nucleotides on the surface of small space bodies with high energy particles

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.; Kuzicheva, E. A.; Antropov, A. E.; Dodonova, N. Ya

    Abiotic formation of such complex biochemical compounds as nucleotides and oligopeptides on the surface of interstellar and interplanetary dust particles (IDP) by cosmic radiation was examined. In order to study the formation of organic compounds on IDPs, solid films prepared from nucleososide and inorganic phosphate were irradiated with high energy protons. Irradiated products were analyzed with HPLC. The natural nucleotides were detected. The main products were 5' AMP (3.2%) and 2'3' cAMP (2.7%). The results were compared with others experiments on the action of ultraviolet radiation with different wavelengths, γ-radiation and heat on solid mixtures of biologically significant compounds. The experiment on abiogenic synthesis of nucleotides on board of space satellite "BION-11" was compared also. The present results suggest that a considerable amount of complex biochemical compounds formed in extraterrestrial environments could have been supplied to the primitive earth before the origin of life.

  3. A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice

    NASA Technical Reports Server (NTRS)

    Maurette, M.; Olinger, C.; Michel-Levy, M. C.; Kurat, G.; Pourchet, M.

    1991-01-01

    A new type of meteoritic material, intermediate in size between meteorites and interplanetary dust particles (IDPs), is described. Melting and filtering of about 100 tons of blue ice near Cap Prudhomme, Antarctica, yielded 7500 or more irregular, friable particles and about 1500 melted spherules, about 100 microns in size, both showing a 'chondritic' composition suggestive of an extraterrestrial origin. Analyzed irregular particles appear to be unmelted and have similarities with the fine-grained matrix of primitive carbonaceous chondrites, but are extremely diverse in composition. Isotopic analysis of trapped neon confirms an extraterrestrial origin for 16 of 47 irregular particles and 2 of 19 spherules studied and strongly suggests that they were exposed in space as micrometeoroids. These large Antarctic micrometeorites constitute a new family, or at least a new population, of solar system objects, in a mass range corresponding to the bulk of extraterrestrial material accreted by the earth today.

  4. DustEM: Dust extinction and emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  5. Dust and gas around young stars

    NASA Astrophysics Data System (ADS)

    Chen, Christine Hsiao-Ching

    To understand how asteroids, planets, and comets form in circumstellar disks of gas and dust, we have carried out a high resolution mid-infrared imaging study and a high resolution ultra violet spectroscopic study of the dust and gas around nearby pre-main sequence Herbig Ae stars and dusty main sequence stars. We have used the Keck I telescope to image at 11.7 μm and 17.9 μm the dust emission around ζ Lep, a main sequence A-type star with an infrared excess, 21.5 pc from the Sun. The excess is at most marginally resolved at 17.9 μm. The dust distance from the star is probably ≤6 AU, although some dust may extend to 9 AU. The mass of observed dust is ˜10 22 g. Since the lifetime of dust particles is about 104 yr because of the Poynting- Robertson effect, we robustly estimate at least 4 × 1026 g must reside in parent bodies which may be asteroids if the system is in a steady state and has an age of ˜300 Myr. This mass is approximately 200 times that contained within the main asteroid belt in our solar system. We have obtained FUSE spectra of σ Her, a nearby binary system, with a main sequence primary, that has a Vega-like infrared excess. We observe absorption in the excited fine structure lines C II* at 1037 Å, N II* at 1085 Å, and N II** at 1086 Å that are blueshifted by as much as ˜30 km/sec with respect to the star. Since these features are considerably narrower than the stellar lines and broader than interstellar features, the C II and N II are circumstellar. Since σ Her has a high luminosity, we suggest that there is a radiatively driven wind, arising from the circumstellar matter, rather than accretion as occurs around β Pic. Assuming that the gas is liberated by collisions between parent bodies at 20 AU, the approximate distance at which blackbody grains are in radiative equilibrium with the star and at which 3-body orbits become unstable, we infer dM/dt ˜6 × 10-12 M⊙ yr-1. This wind depletes the minimum mass of parent bodies in less than

  6. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  7. Correct Patterning of the Primitive Streak Requires the Anterior Visceral Endoderm

    PubMed Central

    Stuckey, Daniel W.; Di Gregorio, Aida; Clements, Melanie; Rodriguez, Tristan A.

    2011-01-01

    Anterior-posterior axis specification in the mouse requires signalling from a specialised extra-embryonic tissue called the anterior visceral endoderm (AVE). AVE precursors are induced at the distal tip of the embryo and move to the prospective anterior. Embryological and genetic analysis has demonstrated that the AVE is required for anterior patterning and for correctly positioning the site of primitive streak formation by inhibiting Nodal activity. We have carried out a genetic ablation of the Hex-expressing cells of the AVE (Hex-AVE) by knocking the Diphtheria toxin subunit A into the Hex locus in an inducible manner. Using this model we have identified that, in addition to its requirement in the anterior of the embryo, the Hex-AVE sub-population has a novel role between 5.5 and 6.5dpc in patterning the primitive streak. Embryos lacking the Hex-AVE display delayed initiation of primitive streak formation and miss-patterning of the anterior primitive streak. We demonstrate that in the absence of the Hex-AVE the restriction of Bmp2 expression to the proximal visceral endoderm is also defective and expression of Wnt3 and Nodal is not correctly restricted to the posterior epiblast. These results, coupled with the observation that reducing Nodal signalling in Hex-AVE ablated embryos increases the frequency of phenotypes observed, suggests that these primitive streak patterning defects are due to defective Nodal signalling. Together, our experiments demonstrate that the AVE is not only required for anterior patterning, but also that specific sub-populations of this tissue are required to pattern the posterior of the embryo. PMID:21445260

  8. Establishing a molecular relationship between chondritic and cometary organic solids

    PubMed Central

    Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.

    2011-01-01

    Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292

  9. Alfven wave refraction by interplanetary inhomogeneities

    NASA Technical Reports Server (NTRS)

    Daily, W. D.

    1973-01-01

    Pioneer 6 magnetic data reveals that the propagation direction of Alfven waves in the interplanetary medium is strongly oriented along the ambient field. Magnetic fluctuations of frequencies up to 1/30 sec in the spacecraft frame are shown to satisfy a necessary condition for Alfven wave normal. It appears from this analysis that geometrical hydromagnetics may satisfactorily describe deviation of the wave normal from the background field. The rotational discontinuity is likely also to propagate along the field lines.

  10. Radio Emmision during the interaction of two Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Lara, Alejandro; Niembro, Tatiana; González, Ricardo

    2016-07-01

    We show that some sporadic radio emission observed by the WIND/WAVES experiment in the decametric/kilometric bands are due to the interaction of two interplanetary Coronal Mass Ejections. We have performed hydrodynamic simulations of the evolution of two consecutive Coronal Mass ejections in the interplanetary medium. With these simulations it is possible to follow the density evolution of the merged structure, and therefore, compute the frequency limits of the possible plasma emission. We study four well documented ICME interaction events, and found radio emission at the time and frequencies predicted by the simulations. This emission may help to anticipate the complexity of the merged region before it reaches one AU.

  11. Division E Commission 49: Interplanetary Plasma and Heliosphere

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Manoharan, P. K.; Gopalswamy, Natchimuthuk; Briand, Carine; Chashei, Igor V.; Gibson, Sarah E.; Lario, David; Hanaoka, Yoichiro; Malandraki, Olga; Kontar, Eduard; Richardson, John D.

    2016-04-01

    After a little more than forty years of work related to the interplanetary plasma and the heliosphere the IAU's Commission 49 was formally discontinued in 2015. The commission started its work when the first spacecraft were launched to measure the solar wind in-situ away from Earth orbit, both inward and outward from 1 AU. It now hands over its activities to a new commission during an era of space research when Voyager 1 measures in-situ the parameters of the local interstellar medium at the edge of the heliosphere. The commission will be succeeded by C.E3 with a similar area of responsibility but with more focused specific tasks that the community intends to address during the coming several years. This report includes a short description of the motivation for this commission and of the historical context. It then describes work from 2012 to 2015 during the present solar cycle 24 that has been the weakest in the space era so far. It gave rise to a large number of studies on solar energetic particles and cosmic rays. Other studies addressed e.g. the variation of the solar wind structure and energetic particle fluxes on long time scales, the detection of dust in the solar wind and the Voyager measurements at the edge of the heliosphere. The research is based on measurements from spacecraft that are at present operational and motivated by the upcoming Solar Probe + and Solar Orbiter missions to explore the vicinity of the Sun. We also report here the progress on new and planned radio instruments and their importance for heliospheric studies. Contributors to this report are Carine Briand, Yoichiro Hanaoka, Eduard Kontar, David Lario, Ingrid Mann, John D. Richardson.

  12. SPANISH PEAKS PRIMITIVE AREA, MONTANA.

    USGS Publications Warehouse

    Calkins, James A.; Pattee, Eldon C.

    1984-01-01

    A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.

  13. MOUNT JEFFERSON PRIMITIVE AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Pattee, Eldon C.

    1984-01-01

    Mineral and reconnaissance geothermal surveys of the Mount Jefferson Primitive Area in the Cascade Range of Oregon indicate little likelihood that metallic or nonmetallic mineral or energy resources exist in the area. Several mining claims, presumably located for gold, are present, but analyses of samples from the claims failed to detect the presence of gold or other valuable metals. Rock for construction purposes is abundantly present, but better and more accessible deposits are available in adjacent areas.

  14. Insight to forcing of late Quaternary climate change from aeolian dust archives in eastern Australia

    NASA Astrophysics Data System (ADS)

    McGowan, H. A.; Marx, S.; Soderholm, J.; Denholm, J.; Petherick, L.

    2010-12-01

    Australia the effect on the hydroclimate is incorporated into the design of water allocation policy and infrastructure, and the management of environmental systems. Comparison with ice core records from Greenland and Antarctica indicate both synchronicity of global climate variability and the impact of forcings originating from the North Hemisphere. These results highlight the potential for adverse impacts on the climate of Australia by disturbance to North Atlantic Ocean circulation. References Marx, S. K., et al. 2005: Provenance of long travelled dust determined with ultra trace element composition: A pilot study with samples from New Zealand glaciers. Earth Surf. Processes Landforms, 30, 699-716. McGowan, H.A., et al. 2008: An ultra-high resolution record of aeolian sedimentation during the late Quaternary from eastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 265(3-4), 171-181. McGowan, H. A., et al. 2010: Evidence of solar and tropical ocean forcing of hydroclimate cycles in southeastern Australia for the past 6500 years. Geophys. Res. Lett., 37, L10705, doi:10.1029/2010GL042918.

  15. Interplanetary Propagation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Although more than ten thousand coronal mass ejections (CMEs) are produced during each solar cycle at the Sun, only a small fraction hits the Earth. Only a small fraction of the Earth-directed CMEs ultimately arrive at Earth depending on their interaction with the solar wind and other large-scale structures such as coronal holes and CMEs. The interplanetary propagation is essentially controlled by the drag force because the propelling force and the solar gravity are significant only near the Sun. Combined remote-sensing and in situ observations have helped us estimate the influence of the solar wind on the propagation of CMEs. However, these measurements have severe limitations because the remote-sensed and in-situ observations correspond to different portions of the CME. Attempts to overcome this problem are made in two ways: the first is to model the CME and get the space speed of the CME, which can be compared with the in situ speed. The second method is to use stereoscopic observation so that the remote-sensed and in-situ observations make measurements on the Earth-arriving part of CMEs. The Solar Terrestrial Relations Observatory (STEREO) mission observed several such CMEs, which helped understand the interplanetary evolution of these CMEs and to test earlier model results. This paper discusses some of these issues and updates the CME/shock travel time estimates for a number of CMEs.

  16. Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.

    2017-12-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.

  17. Creation of fully vectorized FORTRAN code for integrating the movement of dust grains in interplanetary environments

    NASA Technical Reports Server (NTRS)

    Colquitt, Walter

    1989-01-01

    The main objective is to improve the performance of a specific FORTRAN computer code from the Planetary Sciences Division of NASA/Johnson Space Center when used on a modern vectorizing supercomputer. The code is used to calculate orbits of dust grains that separate from comets and asteroids. This code accounts for influences of the sun and 8 planets (neglecting Pluto), solar wind, and solar light pressure including Poynting-Robertson drag. Calculations allow one to study the motion of these particles as they are influenced by the Earth or one of the other planets. Some of these particles become trapped just beyond the Earth for long periods of time. These integer period resonances vary from 3 orbits of the Earth and 2 orbits of the particles to as high as 14 to 13.

  18. Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.

    1991-07-01

    The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetricmore » propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.« less

  19. A comparative study of the continuum and emission characteristics of comet dust. 1: Are the silicates in Comet Halley and Kohoutek amorphous or crystalline

    NASA Technical Reports Server (NTRS)

    Nansheng, Zhao; Greenberg, J. Mayo; Hage, J. I.

    1989-01-01

    A continuum emission was subtracted from the 10 micron emission observed towards comets Halley and Kohoutek. The 10 micron excess emissions were compared with BN absorption and laboratory amorphous silicates. The results show that cometary silicates are predominantly amorphous which is consistent with the interstellar dust model of comets. It is concluded that cometary silicates are predominantly similar to interstellar silicates. For a periodic comet like Comet Halley, it is to be expected that some of the silicate may have been heated enough to convert to crystalline form. But apparently, this is only a small fraction of the total. A comparison of Comet Halley silicates with a combination of the crystalline forms observed in interplanetary dust particles (IPDs) seemed reasonable at first sight (Walker 1988, Brownlee 1988). But, if true, it would imply that the total silicate mass in Comet Halley dust is lower than that given by mass spectrometry data of Kissel and Krueger (1987). They estimated m sub org/m sub sil = 0.5 while using crystalline silicate to produce the 10 micron emission would give m sub org/m sub sil = 5 (Greenberg et al. 1988). This is a factor of 10 too high.

  20. Dimensional analysis using toric ideals: primitive invariants.

    PubMed

    Atherton, Mark A; Bates, Ronald A; Wynn, Henry P

    2014-01-01

    Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.