Sample records for ultra-short monolithic column

  1. Sequential Injection Chromatography with an Ultra-short Monolithic Column for the Low-Pressure Separation of α-Tocopherol and γ-Oryzanol in Vegetable Oils and Nutrition Supplements.

    PubMed

    Thaithet, Sujitra; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai

    2017-01-01

    A low-pressure separation procedure of α-tocopherol and γ-oryzanol was developed based on a sequential injection chromatography (SIC) system coupled with an ultra-short (5 mm) C-18 monolithic column, as a lower cost and more compact alternative to the HPLC system. A green sample preparation, dilution with a small amount of hexane followed by liquid-liquid extraction with 80% ethanol, was proposed. Very good separation resolution (R s = 3.26), a satisfactory separation time (10 min) and a total run time including column equilibration (16 min) were achieved. The linear working range was found to be 0.4 - 40 μg with R 2 being more than 0.99. The detection limits of both analytes were 0.28 μg with the repeatability within 5% RSD (n = 7). Quantitative analyses of the two analytes in vegetable oil and nutrition supplement samples, using the proposed SIC method, agree well with the results from HPLC.

  2. Dopamine-imprinted monolithic column for capillary electrochromatography.

    PubMed

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Behavior of short silica monolithic columns in high pressure gas chromatography.

    PubMed

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2016-08-19

    In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    PubMed

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.

    PubMed

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-12

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

  6. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    PubMed

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Hydrodynamic chromatography of macromolecules using polymer monolithic columns.

    PubMed

    Edam, Rob; Eeltink, Sebastiaan; Vanhoutte, Dominique J D; Kok, Wim Th; Schoenmakers, Peter J

    2011-12-02

    The selectivity window of size-based separations of macromolecules was tailored by tuning the macropore size of polymer monolithic columns. Monolithic materials with pore sizes ranging between 75 nm and 1.2 μm were prepared in situ in large I.D. columns. The dominant separation mechanism was hydrodynamic chromatography in the flow-through pores. The calibration curves for synthetic polymers matched with the elution behavior by HDC separations in packed columns with 'analyte-to-pore' aspect ratios (λ) up to 0.2. For large-macropore monoliths, a deviation in retention behavior was observed for small polystyrene polymers (M(r)<20 kDa), which may be explained by a combined HDC-SEC mechanism for λ<0.02. The availability of monoliths with very narrow pore sizes allowed investigation of separations at high λ values. For high-molecular weight polymers (M(r)>300,000 Da) confined in narrow channels, the separation strongly depended on flow rate. Flow-rate dependent elution behavior was evaluated by calculation of Deborah numbers and confirmed to be outside the scope of classic shear deformation or slalom chromatography. Shear-induced forces acting on the periphery of coiled polymers in solution may be responsible for flow-rate dependent elution. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Optimization of monolithic columns for microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.

    2011-06-01

    Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.

  9. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography.

    PubMed

    Kumar, Avvaru Praveen; Park, Jung Hag

    2010-06-25

    This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Fiber-based monolithic columns for liquid chromatography.

    PubMed

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  11. Triazine herbicide imprinted monolithic column for capillary electrochromatography.

    PubMed

    Aşır, Süleyman; Derazshamshir, Ali; Yılmaz, Fatma; Denizli, Adil

    2015-12-01

    Trietazine was selectively separated from aqueous solution containing the competitor molecule cyanazine, which is similar in size and shape to the template molecule. Structural features of the molecularly imprinted column were figured out by SEM. The influence of the mobile-phase composition, applied electrical field, and pH of the mobile phase on the recognition of trietazine by the imprinted monolithic polymer has been evaluated, and the imprint effect in the trietazine-imprinted monolithic polymer was demonstrated by an imprinting factor. The optimized monolithic column resulted in separation of trietazine from a structurally related competitor molecule, cyanazine. In addition, fast separation was obtained within 6 min by applying higher electrical field, with the electrophoretic mobility of 2.97 × 10(-8) m(2) V(-1) s(-1) at pH 11.0. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultrafast UPLC-ESI-MS and HPLC with monolithic column for determination of principal flavor compounds in vanilla pods.

    PubMed

    Sharma, Upendra K; Sharma, Nandini; Sinha, Arun K; Kumar, Neeraj; Gupta, Ajai P

    2009-10-01

    In this study, two novel chromatographic methods based on monolithic column high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC) were developed for the ultrafast determination of principal flavor compounds namely vanillin, vanillic acid, p-hydroxybenzoic acid, and p-hydroxybenzaldehyde in ethanolic extracts of Vanilla planifolia pods. Good separation was achieved within 2.5 min using Chromolith RP18e column (100 mm x 4.6 mm) for HPLC and Acquity BEH C-18 (100 mm x 2.1 mm, 1.7 microm) column for UPLC. Both methods were compared in terms of total analysis time, mobile phase consumption, sensitivity, and validation parameters like precision, accuracy, LOD, and LOQ. Further, system suitability test data including resolution, capacity factor, theoretical plates, and tailing factor was determined for both the methods by ten replicate injections. Monolithic column based HPLC gave better results for most of the selected parameters while UPLC was found to be more eco-friendly with low mobile phase consumption and better sensitivity. Both methods may be used conveniently for the high throughput analysis of large number of samples in comparison to traditional particulate column.

  13. Behavior of macroporous vinyl silica and silica monolithic columns in high pressure gas chromatography.

    PubMed

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antionali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2017-06-30

    80% vinyltrimethoxysilane-based hybrid silica monoliths (80-VTMS), which have been initially developed for separation in reversed-phase liquid chromatography, have been investigated in high pressure gas chromatography separations (carrier gas pressure up to 60bar) and compared to silica monolithic columns. The behavior of both silica and 80-VTMS monolithic columns was investigated using helium, nitrogen and carbon dioxide as carrier gas. The efficiency of 80-VTMS monolithic columns was shown to vary differently than silica monolithic columns according to the temperature and the carrier gas used. Carrier gas nature was a significant parameter on the retention for both silica and vinyl columns in relation to its adsorption onto the stationary phase in such high pressure conditions. The comparison of retention and selectivity between 80-VTMS monoliths and silica was performed under helium using the logarithm of the retention factor according to the number of carbon atoms combined to Kovats indexes. The very good performances of these columns were demonstrated, allowing the separation of 8 compounds in less than 1min. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography.

    PubMed

    Vonk, Rudy J; Vaast, Axel; Eeltink, Sebastiaan; Schoenmakers, Peter J

    2014-09-12

    Organic-polymer monoliths with overall dimensions larger than one millimetre are prone to rupture - either within the monolith itself or between the monoliths and the containing wall - due to the inevitable shrinkage accompanying the formation of a cross-linked polymeric network. This problem has been addressed by creating titanium-scaffolded poly(styrene-co-divinylbenzene) (S-co-DVB) monoliths. Titanium-scaffolded monoliths were successfully used in liquid chromatography at very high pressures (up to 80MPa) and using gradients spanning the full range of water-acetonitrile compositions (0 to 100%). The kinetic-performance of (50-mm long) titanium-scaffolded monoliths was compared to that of similar monolith created in 1-mm i.d. glass-lined tubing at pressures up to 50MPa. The peak capacities obtained with the titanium-scaffolded column was about 30% lower. An increased Eddy-diffusion, due to the pillar-structure, and a decreased permeability are thought to be the main reasons for this reduced kinetic-performance. No decrease in performance was observed when the titanium-scaffolded columns were operated at pressures of 80MPa for up to 12h. The column-to-column repeatability (n=5) was acceptable in terms of observed peak widths at half heights (RSD ca. 10%) The run-to-run repeatability (n=135) in terms of retention times and peak widths at half height were found to be good. Titanium-scaffolded columns coupled in series up to a combined length of (200mm) were used for the analyses of a complex Escherichia coli protein sample. Our experiments demonstrate that columns based on titanium-scaffolded organic-polymer monolith can be operated under strenuous conditions without loss in performance. The titanium-scaffolded approach makes it feasible to create organic-polymer monoliths in wide-bore columns with accurate temperature control. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Recent advances in monolithic columns for protein and peptide separation by capillary liquid chromatography.

    PubMed

    Liang, Yu; Zhang, Lihua; Zhang, Yukui

    2013-03-01

    Capillary liquid chromatography (cLC) has great potential for protein and peptide separation, with advantages of high efficiency, high resolution, low sample consumption, and high sensitivity when coupled with mass spectrometry. In recent years, monoliths have been widely used as the stationary phases for capillary columns, owing to easy preparation, high permeability, fast mass transfer, and low backpressure. This review summarizes recent advances (2007-2012) in monolithic columns for protein and peptide separation by cLC. After a brief introduction on the preparation of monolithic capillary columns, the emphasis of this review is focused on the recent application of such columns for protein and peptide separation by cLC. Furthermore, the challenges and potential hot points of monolithic capillary columns in the future are discussed.

  16. Application of a Fast Separation Method for Anti-diabetics in Pharmaceuticals Using Monolithic Column: Comparative Study With Silica Based C-18 Particle Packed Column.

    PubMed

    Hemdan, A; Abdel-Aziz, Omar

    2018-04-01

    Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.

  17. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography.

    PubMed

    Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-04-27

    A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    PubMed

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  19. "One-pot" preparation of basic amino acid-silica hybrid monolithic column for capillary electrochromatography.

    PubMed

    Xu, Hongrui; Xu, Zhendong; Yang, Limin; Wang, Qiuquan

    2011-08-01

    A novel "one-pot" strategy was developed for the preparation of amino acid (AA)-silica hybrid monolithic column. The basic AA (L-Arginine, L-Lysine and L-Histidine) was covalently incorporated into the silica hybrid skeleton via the epoxy ring-opening reaction between the amine group and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS), which was confirmed by elemental analysis and FT-IR studies, while the basic AA was also found to catalyze the polycondensation of tetramethoxysilane and GPTMS. The average mesopore and macropore sizes of the prepared basic AA-silica hybrid monolithic columns were 3.86 nm and 1.71 μm for the L-Lysine-silica hybrid monolith, 5.38 nm and 4.24 μm for the L-Arginine-silica hybrid monolith, and 6.38 nm and 1.24 μm for the L-Histidine-silica hybrid monolith. The hybrid monolith afforded a zwitterionic stationary phase for CEC, the direction and magnitude of EOF can be controlled by the pH of the mobile phase used. Besides an electrophoretic mechanism, the monoliths behave in a typical hydrophilic interaction with the analytes when ACN percentage in the mobile phase is over 40%. Four polar compounds (toluene, DMF, formamide and thiourea) were tested on the three AA-silica hybrid monolithic columns, and the best separation efficiency was observed in the L-Lysine-silica hybrid monolithic column, its theoretical plate height was down to 5.7 μm for thiourea when 20 mM HCOOH-HCOONH4 containing 20% ACN (pH 4.1) was used as a running buffer. The corresponding theoretical plate number for toluene, DMF, formamide and thiourea were 123,385, 103,620, 121,845 and 105,345 plates/m, respectively. Effective separation of phenols and peptides on the L-Lysine-silica hybrid monolithic column was achieved using CEC. We believe that this strategy paves a way for the easy preparation of various functional silica hybrid monolithic columns, aiming at different separation purposes. Copyright © 2011 WILEY-VCH Verlag Gmb

  20. Purification and concentration of mycobacteriophage D29 using monolithic chromatographic columns.

    PubMed

    Liu, Keyang; Wen, Zhanbo; Li, Na; Yang, Wenhui; Hu, Lingfei; Wang, Jie; Yin, Zhe; Dong, Xiaokai; Li, Jinsong

    2012-12-01

    Bacteriophages are used widely in many fields, and phages with high purity and infectivity are required. Convective interaction media (CIM) methacrylate monoliths were used for the purification of mycobacteriophage D29. The lytic phages D29 from bacterial lysate were purified primarily by polyethylene glycol 8000 or ammonium sulphate, and then the resulting phages were passed through the CIM monolithic columns for further purification. After the whole purification process, more than 99% of the total proteins were removed irrespective which primary purification method was used. The total recovery rates of viable phages were around 10-30%. Comparable results were obtained when the purification method was scaled-up from a 0.34 mL CIM DEAE (diethylamine) monolithic disk to an 8 mL CIM DEAE monolithic column. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. One-pot preparation of a sulfamethoxazole functionalized affinity monolithic column for selective isolation and purification of trypsin.

    PubMed

    Xiao, Yuan; Guo, Jialiang; Ran, Danni; Duan, Qianqian; Crommen, Jacques; Jiang, Zhengjin

    2015-06-26

    A facile and efficient "one-pot" copolymerization strategy was used for the preparation of sulfonamide drug (SA) functionalized monolithic columns. Two novel SA-immobilized methacrylate monolithic columns, i.e. poly(GMA-SMX-co-EDMA) and poly(GMA-SAA-co-EDMA) were prepared by one-pot in situ copolymerization of the drug ligand (sulfamethoxazole (SMX) or sulfanilamide (SAA)), the monomer (glycidyl methacrylate, GMA) and the cross-linker (ethylene dimethacrylate, EDMA) within 100 μm i.d. capillaries under optimized polymerization conditions. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, scanning electron microscopy and micro-HPLC. Satisfactory column permeability, efficiency and separation performance were obtained on the optimized poly(GMA-SMX-co-EDMA) monolithic column for small molecules, such as a standard test mixture and eight aromatic ketones. Notably, it was found that the poly(GMA-SMX-co-EDMA) monolith showed a selective affinity to trypsin, while the poly(GMA-SAA-co-EDMA) monolith containing sulfanilamide did not exhibit such affinity at all. This research not only provides a novel monolith for the selective isolation and purification of trypsin, but it also offers the possibility to easily prepare novel drug functionalized methacrylate monoliths through a one-pot copolymerization strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6mm I.D. monolithic columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2011-08-05

    The corrected heights equivalent to a theoretical plate (HETP) of three 4.6mm I.D. monolithic Onyx-C(18) columns (Onyx, Phenomenex, Torrance, CA) of different lengths (2.5, 5, and 10 cm) are reported for retained (toluene, naphthalene) and non-retained (uracil, caffeine) small molecules. The moments of the peak profiles were measured according to the accurate numerical integration method. Correction for the extra-column contributions was systematically applied. The peak parking method was used in order to measure the bulk diffusion coefficients of the sample molecules, their longitudinal diffusion terms, and the eddy diffusion term of the three monolithic columns. The experimental results demonstrate that the maximum efficiency was 60,000 plates/m for retained compounds. The column length has a large impact on the plate height of non-retained species. These observations were unambiguously explained by a large trans-column eddy diffusion term in the van Deemter HETP equation. This large trans-rod eddy diffusion term is due to the combination of a large trans-rod velocity bias (≃3%), a small radial dispersion coefficient in silica monolithic columns, and a poorly designed distribution and collection of the sample streamlets at the inlet and outlet of the monolithic rod. Improving the performance of large I.D. monolithic columns will require (1) a detailed knowledge of the actual flow distribution across and along these monolithic rod and (2) the design of appropriate inlet and outlet distributors designed to minimize the nefarious impact of the radial flow heterogeneity on band broadening. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus.

    PubMed

    Ott, Sonja; Niessner, Reinhard; Seidel, Michael

    2011-08-01

    Macroporous epoxy-based monolithic columns were used for immunofiltration of bacteria. The prepared monolithic polymer support is hydrophilic and has large pore sizes of 21 μm without mesopores. A surface chemistry usually applied for immobilization of antibodies on glass slides is successfully transferred to monolithic columns. Step-by-step, the surface of the epoxy-based monolith is hydrolyzed, silanized, coated with poly(ethylene glycol diamine) and activated with the homobifunctional crosslinker di(N-succinimidyl)carbonate for immobilization of antibodies on the monolithic columns. The functionalization steps are characterized to ensure the coating of each monolayer. The prepared antibody-immobilized monolithic column is optimized for immunofiltration to enrich Staphylococcus aureus as an important food contaminant. Different kinds of geometries of monolithic columns, flow rates and elution buffers are tested with the goal to get high recoveries in the shortest enrichment time as possible. An effective capture of S. aureus was achieved at a flow rate of 7.0 mL/min with low backpressures of 20.1±5.4 mbar enabling a volumetric enrichment of 1000 within 145 min. The bacteria were quantified by flow cytometry using a double-labeling approach. After immunofiltration the sensitivity was significantly increased and a detection limit of the total system of 42 S. aureus/mL was reached. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    PubMed

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  5. Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns.

    PubMed

    Ou, Junjie; Lin, Hui; Zhang, Zhenbin; Huang, Guang; Dong, Jing; Zou, Hanfa

    2013-01-01

    Hybrid organic-silica monolithic columns, regarded as a second generation of silica-based monoliths, have received much interest due to their unique properties over the pure silica-based monoliths. This review mainly focuses on development in the fields of preparation of hybrid monolithic columns in a capillary and their application for CEC and capillary liquid chromatography separation, as well as for sample pretreatment of solid-phase microextraction and immobilized enzyme reactor since July 2010. The preparation approaches are comprehensively summarized with three routes: (i) general sol-gel process using trialkoxysilanes and tetraalkoxysilanes as coprecursors; (ii) "one-pot" process of alkoxysilanes and organic monomers concomitantly proceeding sol-gel chemistry and free radical polymerization; and (iii) other polymerization approaches of organic monomers containing silanes. The modification of hybrid monoliths containing reactive groups to acquire the desired surface functionality is also described. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development and application of a high-performance liquid chromatography method using monolithic columns for the analysis of ecstasy tablets.

    PubMed

    Mc Fadden, Kim; Gillespie, John; Carney, Brian; O'Driscoll, Daniel

    2006-07-07

    A rapid and selective HPLC method using monolithic columns was developed for the separation and quantification of the principal amphetamines in ecstasy tablets. Three monolithic (Chromolith RP18e) columns of different lengths (25, 50 and 100 mm) were assessed. Validation studies including linearity, selectivity, precision, accuracy and limit of detection and quantification were carried out using the Chromolith SpeedROD, RP-18e, 50 mm x 4.6 mm column. Column backpressure and van Deemter plots demonstrated that monolithic columns provide higher efficiency at higher flow rates when compared to particulate columns without the loss of peak resolution. Application of the monolithic column to a large number of ecstasy tablets seized in Ireland ensured its suitability for the routine analysis of ecstasy tablets.

  7. Enhanced capabilities of separation in Sequential Injection Chromatography--fused-core particle column and its comparison with narrow-bore monolithic column.

    PubMed

    Chocholouš, Petr; Kosařová, Lucie; Satínský, Dalibor; Sklenářová, Hana; Solich, Petr

    2011-08-15

    In the Sequential Injection Chromatography (SIC) only monolithic columns for chromatographic separations have been used so far. This article presents the first use of fused-core particle packed column in an attempt to extend of the chromatographic capabilities of the SIC system. A new fused-core particle column (2.7 μm) Ascentis(®) Express C18 (Supelco™ Analytical) 30 mm × 4.6 mm brings high separation efficiency within flow rates and pressures comparable to monolithic column Chromolith(®) Performance RP-18e 100-3 (Merck(®)) 100 mm × 3 mm. Both columns matches the conditions of the commercially produced SIC system - SIChrom™ (8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with 4 mL reservoir - maximal work pressure 1000 PSI) (FIAlab(®), USA). The system was tested by the separation of four estrogens with similar structure and an internal standard - ethylparaben. The mobile phase composed of acetonitrile/water (40/60 (v/v)) was pumped isocratic at flow rate 0.48 mL min(-1). Spectrophotometric detection was performed at wavelength of 225 nm and injected volume of sample solutions was 10 μL. The chromatographic characteristics of both columns were compared. Obtained results and conclusions have shown that both fused-core particle column and longer narrow shaped monolithic column bring benefits into the SIC method. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Green approach using monolithic column for simultaneous determination of coformulated drugs.

    PubMed

    Yehia, Ali M; Mohamed, Heba M

    2016-06-01

    Green chemistry and sustainability is now entirely encompassed across the majority of pharmaceutical companies and research labs. Researchers' attention is careworn toward implementing the green analytical chemistry principles for more eco-friendly analytical methodologies. Solvents play a dominant role in determining the greenness of the analytical procedure. Using safer solvents, the greenness profile of the methodology could be increased remarkably. In this context, a green chromatographic method has been developed and validated for the simultaneous determination of phenylephrine, paracetamol, and guaifenesin in their ternary pharmaceutical mixture. The chromatographic separation was carried out using monolithic column and green solvents as mobile phase. The use of monolithic column allows efficient separation protocols at higher flow rates, which results in short time of analysis. Two-factor three-level experimental design was used to optimize the chromatographic conditions. The greenness profile of the proposed methodology was assessed using eco-scale as a green metrics and was found to be an excellent green method with regard to the usage and production of hazardous chemicals and solvents, energy consumption, and amount of produced waste. The proposed method improved the environmental impact without compromising the analytical performance criteria and could be used as a safer alternate for the routine analysis of the studied drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins.

    PubMed

    Zhou, Chanyuan; Chen, Xiaoman; Du, Zhuo; Li, Gongke; Xiao, Xiaohua; Cai, Zongwei

    2017-05-19

    A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m 2 /g to 169.4m 2 /g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block.

    PubMed

    Liu, Shengju; Peng, Jiaxi; Liu, Zheyi; Liu, Zhongshan; Zhang, Hongyan; Wu, Ren'an

    2016-10-04

    A facile "one-pot" approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g. concentration of intact mesoporous silica nanoparticle, polycondensation temperature, content of vinyltrimethoxysilane and stearyl methacrylate) on the structures of the IMSN-C18 monolithic column were studied in detail. The IMSN-C18 hybrid monolithic column possessed uniform morphology, good mechanical and pH stability (pH 1.1-11), which was applied to the separations of alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), as well as proteins. The minimum plate height of 10.5 μm (corresponding to 95000 N m -1 ) for butylbenzene and high reproducibility were achieved. The analysis of tryptic digest of bovine serum albumin (BSA) was carried out on the IMSN-C18 monolithic column by cLC coupled mass spectrometry (cLC-MS/MS), with the protein sequence coverage of 87.5% for BSA, demonstrating its potential application in proteomics.

  11. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography.

    PubMed

    Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo

    2007-09-14

    Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.

  12. HPLC determination of cefprozil in tablets using monolithic and C18 silica columns.

    PubMed

    Can, Nafiz O

    2011-08-01

    Cefprozil (CPZ) is a second-generation semi-synthetic cephalosporin antibiotic that commonly exists as the mixture of Z and E diastereoisomers, at the ratio of approximately 9:1. A novel reversed-phase HPLC method for the determination of CPZ in tablets was described. The separation of CPZ diastereoisomers and caffeine (internal standard) was carried out by applying the same analytical and instrumental conditions on two stationary phases, which have different surface chemistries. The columns used in the study were monolithic silica Merck Chromolith Performance RP-18e and conventional C18 silica Phenomenex Synergi Hydro RP columns. In total, 10 μL aliquots of samples were injected into the system and eluted using water-acetonitrile (90:10, v/v) solution, which was pumped through the column at a flow rate of 1.0 mL/min. The analyte peaks were detected at 200 nm using diode array detector with high specificity. CPZ diastereoisomers and caffeine were measured within 13 min using the C18 column, whereas <5 min was required for the monolithic one. Validation studies were performed according to official recommendations. Value of a monolithic column for the assay of diastereoisomers in pharmaceutical tablets was evaluated for the first time and found as a powerful alternative to highly efficient C18 columns. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fast preparation of hybrid monolithic columns via photo-initiated thiol-yne polymerization for capillary liquid chromatography.

    PubMed

    Ma, Shujuan; Zhang, Haiyang; Li, Ya; Li, Yanan; Zhang, Na; Ou, Junjie; Ye, Mingliang; Wei, Yinmao

    2018-02-23

    Although several approaches have been developed to fabricate hybrid monoliths, it would still take a few hours to finish the formation of monoliths. Herein, photo-initiated thiol-yne polymerization was first adopted to in situ fabricate hybrid monoliths within the confines of UV-transparent fused-silica capillary. A silicon-containing diyne (1,3-diethynyltetramethyl-disiloxane, DYDS) was copolymerized with three multithiols, 1,6-hexanedithiol, trimethylolpropane tris(3-mercaptopropionate) and pentaerythriol tetrakis(3-mercaptopropionate), by using a binary porogenic system of diethylene glycol diethyl ether (DEGDE)/poly(ethylene glycol) (PEG200) within 10 min. Several characterizations of three hybrid monoliths (assigned as I, II and III, respectively) were performed. The results showed that these hybrid monoliths possessed bicontinuous porous structure, which was remarkably different from that via typical free-radical polymerization. The highest column efficiency of 76,000 plates per meter for butylbenzene was obtained on the column I in reversed-phase liquid chromatography (RPLC). It was observed that the efficiencies for strong-retained butylbenzene were almost close to those of weak-retained benzene, indicating a retention-independent efficient performance of small molecules on hybrid column I. The surface area of this hybrid monolith was very small in the dry state (less than 10.0 m 2 /g), and the chromatographic behavior of hybrid monolithic columns would be possibly explained by radical-mediated step-growth process of thiol-yne polymerization. Finally, the column I was applied for separation of BSA tryptic digest by cLC-MS/MS, indicating satisfactory separation ability for complicated samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Preparation and characterization of fluorophenylboronic acid-functionalized affinity monolithic columns for the selective enrichment of cis-diol-containing biomolecules.

    PubMed

    Li, Qianjin; Liu, Zhen

    2015-01-01

    Boronate affinity monolithic columns have been developed into an important means for the selective recognition and capture of cis-diol-containing biomolecules, such as glycoproteins, nucleosides and saccharides. The ligands of boronic acids are playing an important role in boronate affinity monolithic columns. Although several boronate affinity monoliths with high affinity toward cis-diol-containing biomolecules have been reported, only few publications are focused on their detailed procedures for preparation and characterization. This chapter describes in detail the preparation and characterization of a boronate affinity monolithic column applying 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA) as a ligand. The DFFPBA-functionalized monolithic column not only exhibited an ultrahigh boronate affinity toward cis-diol-containing biomolecules, but also showed great potential for the selective enrichment of cis-diol-containing biomolecules in real samples.

  15. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  16. Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid.

    PubMed

    Shan, Yuanhong; Qiao, Lizhen; Shi, Xianzhe; Xu, Guowang

    2015-01-02

    To develop a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid, a new ionic liquid monomer was synthesized from 1-vinylimidazole and pentafluorobenzyl bromide. By employing a facile one-step copolymerization of polyhedral-oligomeric-silsesquioxane-type (POSS) cross-linking agent and the home-made ionic liquid monomer, the hybrid monolithic columns were in situ fabricated in fused-silica capillary. The morphology of monolithic column was characterized by scanning electron microscope (SEM) and the chemical composition was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and elemental analysis. Excellent mechanical stability and slight swelling propensity were exhibited which was ascribed to the rigid hybrid monolithic skeleton. Reproducibility results of run-to-run, column-to-column, batch-to-batch and day-to-day were investigated and the RSDs were less than 0.46%, 1.84%, 3.96% and 3.17%, respectively. The mixed-mode retention mechanism with hydrophobic interaction, π-π stacking, ion-exchange, electrostatic interaction and dipole-dipole interaction was explored systematically using analytes with different structure types. Satisfied separation capability and column efficiency were achieved for the analysis of small molecular compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides and halogenated compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography.

    PubMed

    Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren

    2016-10-05

    In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16-1.20%, RSD; n = 3) and column-to-column (0.26-2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. Copyright © 2016. Published by Elsevier B.V.

  18. Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Makabe, Nobuyuki; Mitsui, Ryo; Hirokawa, Takeshi

    2005-08-12

    A fast and highly sensitive ion chromatographic method using monolithic ODS columns was developed for the determination of nitrite (NO2-) and nitrate (NO3-) in seawater. Two monolithic ODS columns (50 mm x 4.6 mm i.d. + 100 mm x 4.6 mm i.d.) connected in series were coated and equilibrated with 5 mM cetyltrimethylammonium chloride (CTAC) aqueous solution. The column efficiency with 0.5 M NaCl as the mobile phase did not decrease in spite of the increase in flow rate of the mobile phase. Thus, good chromatograms were obtained within 3 minutes for NO2- and NO3 in artificial seawater without interferences by coexisting ions. The detection limit (S/N = 3) with UV detection at 225 nm was 0.8 and 1.6 microg/L for NO2- and NO3-, respectively. The characteristics of the monolithic CTA(+)-coated ODS columns were discussed. The present method was successfully applied to the fast and sensitive determination of NO2- and NO3- in real seawater samples.

  19. Preparation of convection interaction media isobutyl disc monolithic column and its application to purification of secondary alcohol dehydrogenase and alcohol oxidase.

    PubMed

    Isobe, Kimiyasu; Kawakami, Yoshimitsu

    2007-03-09

    A convection interaction media (trade name CIM, BIA Separation, Ljubljana, Slovenia) isobutyl monolithic disc was prepared by incubating a CIM epoxy monolithic disc with isobutylamine, and it was then applied to the purification of secondary alcohol dehydrogenase (S-ADH) and primary alcohol oxidase (P-AOD). Both enzymes were adsorbed on this column and eluted with high purity. Thus, S-ADH was purified to an electrophoretically homogeneous state by four column chromatographies using CIM DEAE-8 and CIM C4-8 tube monolithic columns, blue-Sepharose column and CIM isobutyl disc monolithic column. P-AOD was also purified to an electrophoretically homogeneous state by three column chromatographies of CIM DEAE-8 tube, CIM C4-8 tube and CIM isobutyl disc columns.

  20. Monolithic column modified with bifunctional ionic liquid and styrene stationary phases for capillary electrochromatography.

    PubMed

    Mao, Zhenkun; Chen, Zilin

    2017-01-13

    A novel monolithic column with ionic liquid and styrene-modified bifunctional group was prepared for capillary electrochromatography (CEC) by in situ copolymerization in a ternary porogenic solvent. Ionic liquid (1-allyl-methylimidazolium chloride, AlMeIm + Cl - ) and styrene served as the bifunctional monomer, while ethylene dimethacrylate (EDMA) was used as the cross-linker. The monomer of AlMeIm + Cl - was introduced as anion-exchange group, while styrene as hydrophobic and aromatic group; the similar conjugated structure in AlMeIm + Cl - and styrene was beneficial for offeing obvious synergistic effect. The bifunctional stationary phase possessed powerful selectivity for the separation of neutral compounds, acidic analytes and phenols. The highest column efficiency was 2.70×10 5 platesm -1 (theoretical plates, N) for toluene. A relatively strong electroosmotic flow (EOF) was obtained in a wide range of pH values from 2.0 to 12.0, which could successfully achieve the rapid separation of the analytes within 10min. The proposed monolithic column was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The results indicated that the resultant monolithic column had good permeability and excellent mechanical stability. Good reproducibility was obtained with relative standard deviations (RSDs) of the retention time in the range of 0.24-0.47% and 0.81-2.17% for run-to-run (n=5) and day-to-day (n=5), while 1.09-2.70% and 0.98-1.70% for column-to-column (n=3) and batch-to-batch (n=3), respectively. The combination of AlMeIm + Cl - and styrene was a promising option in the fabrication of the organic polymer monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71.

    PubMed

    Gu, Huimin; Yin, Dezhong; Ren, Jie; Zhang, Baoliang; Zhang, Qiuyu

    2016-10-15

    Large size virion is unable to diffuse into pores of conventional porous chromatography particles. Therefore, separation of virion by conventional column-packing materials is not quite efficient. To solve this problem, a monolithic column with large convective pores and quaternary amine groups was prepared and was applied to separate Enterovirus 71 (EV71, ≈5700-6000kDa). Cross-section, pore structure, hydrodynamic performance, adsorption property and dynamic binding capacity of prepared monolithic column were determined. Double-pore structures, macropore at 2472nm and mesopore at 5-60nm, were formed. The porosity was up to 63.3%, which enable higher permeability and lower back pressure of the monolithic column than commercial UNO™ Q1 column. Based on the breakthrough curves, the loading capacity of bovine serum albumin was calculated to be 42.0mg per column. In addition, prepared quaternary amine monolithic column was proved to be suitable for the separation of protein mixture by strong anion-exchange chromatography. As a practical application, prepared monolith column presents excellent performance to the separation of EV71 from virus-proteins mixture. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction.

    PubMed

    Liu, Wan-Ling; Lirio, Stephen; Yang, Yicong; Wu, Lin-Tai; Hsiao, Shu-Ying; Huang, Hsi-Ya

    2015-05-22

    In this study, an organic polymer monolithic columns, which were prepared via in situ polymerization of alkyl methacrylate-ester (AMA), divinylbenzene (DVB) and vinylbenzyl trimethylammonium chloride (VBTA, charged monomer), were developed as adsorbent for solid-phase microextraction (SPME). Different parameters affecting the extraction efficiency for nine (9) non-steroidal anti-inflammatory drugs (NSAIDs) such as the ratio of the stearyl methacrylate (SMA) to DVB monomer, column length, sample pH, extraction flow rate and desorption solvent were investigated to obtain the optimal SPME condition. Also, the permeability for each poly(AMA-DVB-VBTA) monolithic column was investigated by adding porogenic solvent (poly(ethylene glycol), PEG). Using the optimized condition, a series of AMA-based poly(AMA-DVB-VBTA) monolith columns were developed to determine the effect the extraction efficiency of NSAIDs by varying the alkyl chain length of the methacrylate ester (methyl-, butyl-, octyl-, or lauryl-methacrylate; (MMA, BMA, OMA, LMA)). Results showed that decreasing the AMA chain length increases the extraction efficiency of some NSAIDs (i.e. sulindac (sul), naproxen (nap), ketoprofen (ket) and indomethacin (idm)). Among the poly(AMA-DVB-VBTA) monolithic columns, poly(BMA-DVB-VBTA) showed a highly repeatable extraction efficiency for NSAIDs with recoveries ranging from 85.0 to 100.2% with relative standard deviation (RSD) less than 6.8% (n=3). The poly(BMA-DVB-VBTA) can also be reused for at least 50 times without any significant effect in extraction efficiency for NSAIDs. Finally, using the established conditions, the poly(BMA-DVB-VBTA) was used to extract trace-level NSAIDs (100μgL(-1)) in river water with good recoveries ranging from 75.8 to 90.8% (RSD<14.9%). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Tuning preparation conditions towards optimized separation performance of thermally polymerized organo-silica monolithic columns in capillary liquid chromatography.

    PubMed

    Gharbharan, Deepa; Britsch, Denae; Soto, Gabriela; Weed, Anna-Marie Karen; Svec, Frantisek; Zajickova, Zuzana

    2015-08-21

    Tuning of preparation conditions, such as variations in the amount of a porogen, concentration of an aqueous acid catalyst, and adjustment in polymerization temperature and time, towards optimized chromatographic performance of thermally polymerized monolithic capillaries prepared from 3-(methacryloyloxy)propyltrimethoxysilane has been carried out. Performance of capillary columns in reversed-phase liquid chromatography was assessed utilizing various sets of solutes. Results describing hydrophobicity, steric selectivity, and extent of hydrogen bonding enabled comparison of performance of hybrid monolithic columns prepared under thermal (TSG) and photopolymerized (PSG) conditions. Reduced amounts of porogen in the polymerization mixture, and prolonged reaction times were necessary for the preparation of monolithic columns with enhanced retention and column efficiency that reached to 111,000 plates/m for alkylbenzenes with shorter alkyl chains. Both increased concentration of catalyst and higher temperature resulted in faster polymerization but inevitably in insufficient time for pore formation. Thermally polymerized monoliths produced surfaces, which were slightly more hydrophobic (a methylene selectivity of 1.28±0.002 TSG vs 1.20±0.002 PSG), with reduced number of residual silanols (a caffeine/phenol selectivity of 0.13±0.001 TSG vs 0.17±0.003 PSG). However, steric selectivity of 1.70±0.01 was the same for both types of columns. The batch-to-batch repeatability was better using thermal initiation compared to monolithic columns prepared under photopolymerized conditions. RSD for retention factor of benzene was 3.7% for TSG capillaries (n=42) vs. 6.6% for PSG capillaries (n=18). A similar trend was observed for columns prepared within the same batch. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles.

    PubMed

    Göktürk, Ilgım; Üzek, Recep; Uzun, Lokman; Denizli, Adil

    2016-06-01

    In this study, a new molecular imprinting (MIP)-based monolithic cryogel column was prepared using chemically crosslinked molecularly imprinted nanoparticles, to achieve a simplified chromatographic separation (SPE) for a model compound, L-glutamic acid (L-Glu). Cryogelation through crosslinking of imprinted nanoparticles forms stable monolithic cryogel columns. This technique reduces the leakage of nanoparticles and increases the surface area, while protecting the structural features of the cryogel for stable and efficient recognition of the template molecule. A non-imprinted monolithic cryogel column (NIP) was also prepared, using non-imprinted nanoparticles produced without the addition of L-Glu during polymerization. The molecularly imprinted monolithic cryogel column (MIP) indicates apparent recognition selectivity and a good adsorption capacity compared to the NIP. Also, we have achieved a significant increase in the adsorption capacity, using the advantage of high surface area of the nanoparticles.

  5. Comparison of monolithic and microparticulate columns for reversed-phase liquid chromatography of tryptic digests of industrial enzymes in cleaning products.

    PubMed

    Beneito-Cambra, M; Herrero-Martínez, J M; Ramis-Ramos, G; Lindner, W; Lämmerhofer, M

    2011-10-14

    Enzymes of several classes used in the formulations of cleaning products were characterized by trypsin digestion followed by HPLC with UV detection. A polymeric monolithic column (ProSwift) was used to optimize the separation of both the intact enzymes and their tryptic digests. This column was adequate for the quality control of raw industrial enzyme concentrates. Then, monolithic and microparticulate columns were compared for peptide analysis. Under optimized conditions, the analysis of tryptic digests of enzymes of different classes commonly used in the formulation of cleaning products was carried out. Number of peaks, peak capacity and global resolution were obtained in order to evaluate the chromatographic performance of each column. Particulate shell-core C18 columns (Kinetex, 2.6 μm) showed the best performance, followed by a silica monolithic column (Chromolith RP-18e) and the conventional C18 packings (Gemini, 5 μm or 3 μm). A polymeric monolithic column (ProSwift) gave the worst performances. The proposed method was satisfactorily applied to the characterization of the enzymes present in spiked detergent bases and commercial cleaners. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Performance Characterization of a Prototype Ultra-Short Channel Monolith Catalytic Reactor for Air Quality Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.

    2005-01-01

    Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.

  7. Ensuring repeatability and robustness of poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id through covalent bonding to the column wall.

    PubMed

    Laaniste, Asko; Kruve, Anneli; Leito, Ivo

    2013-08-01

    Two different methods to reinforce the poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A silica monolithic column prepared by the sol-gel process for enantiomeric separation by capillary electrochromatography.

    PubMed

    Kang, Jingwu; Wistuba, Dorothee; Schurig, Volker

    2002-04-01

    A method for the preparation of a silica monolithic capillary electrochromatography (CEC) column for the separation of enantiomers has been developed. The porous silica monolith was fabricated inside a fused-silica capillary column by using the sol-gel process. After gelation for 24 h, hydrothermal treatment at 100 degrees C for 24 h was performed to prevent the sol-gel matrix from cracking. The prepared monolith was then coated with Chirasil-beta-Dex which represents a chiral polymer prepared by grafting permethyl-beta-cyclodextrin to polymethylsiloxane with an octamethylene spacer. Immobilization of Chirasil-beta-Dex was performed by heat treatment at 120 degrees C for 48 h to give a nonextractable coating. The column performance was evaluated by using racemic hexobarbital as a model compound. The efficiency of 9.2 x 10(4) theoretical plates/m for the first eluted enantiomer of hexobarbital was obtained at an optimal flow rate of the mobile phase. The effect of mobile phase composition on enantiomeric separation of hexobarbital was also investigated. The column proved to be stable for more than one hundreds of runs during a two-months period. The enantiomers of several neutral and negatively charged chiral compounds were baseline separated on this column.

  9. Monolithic columns with organic sorbent based on poly-1-vinylimidazole for high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Patrushev, Y. V.; Sidelnikov, V. N.; Yudina, Y. S.

    2017-03-01

    Monolithic chromatographic columns for HPLC with sorbent based on 1-vinylimidazole are prepared. It is shown that changing the 1-vinylimidazole content in the initial solution allows us to change the polarity of columns. An example of aromatic hydrocarbons separation is presented.

  10. Controlled crosslinking of trimethylolpropane trimethacrylate for preparation of organic monolithic columns for capillary liquid chromatography.

    PubMed

    Gama, Mariana R; Aggarwal, Pankaj; Lee, Milton L; Bottoli, Carla B G

    2017-11-01

    Organic monolithic columns based on single crosslinking of trimethylolpropane trimethacrylate (TRIM) monomer were prepared in a single step by living/controlled free-radical polymerization. Full optimization of the preparation, such as using different percentages of TRIM and different amounts of radical promoter as well as various porogen solvents were explored. The resulting monolithic columns were characterized by scanning electronic microscopy and nitrogen sorption for structure morphology studies and surface area measurements, respectively. Using capillary liquid chromatography, 150 μm i.d. columns were applied to separate a mixture of small hydrophobic molecules. The results indicated that column performance is highly sensitive to the type and the amount of porogen solvents used in the polymerization mixture composition. Good resolution factors and methylene selectivity were obtained, indicating the promising potential of this material for capillary liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Facile preparation of SiO2/TiO2 composite monolithic capillary column and its application in enrichment of phosphopeptides.

    PubMed

    Wang, Shao-Ting; Wang, Meng-Ya; Su, Xin; Yuan, Bi-Feng; Feng, Yu-Qi

    2012-09-18

    A novel SiO(2)/TiO(2) composite monolithic capillary column was prepared by sol-gel technology and successfully applied to enrich phosphopeptides as a metal oxide affinity chromatography (MOAC) material. For the monolith preparation, tetramethoxysilane (TMOS) and tetrabutoxytitanium (TBOT) were used as silica and titania source, respectively, and glycerol was introduced to attenuate the activity of titanium precursor, which provided a mild synthetic condition. The prepared monolith was characterized by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results revealed an approximate 1/2 molar ratio of titanium to silica as well as an atom-scale homogeneity in the framework. The scanning electron microscopy (SEM) results demonstrated an excellent anchorage between the column and the inner capillary wall, and nitrogen adsorption-desorption experiments showed a bimodal porosity with a narrow mesopore distribution around 3.6 nm. The prepared monolith was then applied for selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA) as well as human blood serum, nonfat milk, and egg white using an in-tube solid phase microextraction (SPME) system. Our results showed that SiO(2)/TiO(2) composite monolithic capillary column could efficiently enrich the phosphopeptides from complex matrixes. To the best of our knowledge, this is the first attempt for preparing the silica-metal composite monolithic capillary column, which offers the promising application of the monolith on phosphoproteomics study.

  12. Controlling retention, selectivity and magnitude of EOF by segmented monolithic columns consisting of octadecyl and naphthyl monolithic segments--applications to RP-CEC of both neutral and charged solutes.

    PubMed

    Karenga, Samuel; El Rassi, Ziad

    2011-04-01

    Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high-molecular-weight compounds.

    PubMed

    Greiderer, Andreas; Ligon, S Clark; Huck, Christian W; Bonn, Günther K

    2009-08-01

    Monolithic poly(1,2-bis(p-vinylphenyl)ethane (BVPE)) capillary columns were prepared by thermally initiated free radical polymerisation of 1,2-bis(p-vinylphenyl)ethane in the presence of inert diluents (porogens) and alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Polymerisations were accomplished in 200 microm ID fused silica capillaries at 65 degrees C and for 60 min. Mercury intrusion porosimetry measurements of the polymeric RP support showed a broad bimodal pore-size-distribution of mesopores and small macropores in the range of 5-400 nm and flow-channels in the mum range. N(2)-adsorption (BET) analysis resulted in a tremendous enhancement of surface area (101 m(2)/g) of BVPE stationary phases compared to typical organic monoliths (approximately 20 m(2)/g), indicating the presence of a considerable amount of mesopores. Consequently, the adequate proportion of both meso- and (small) macropores allowed the rapid and high-resolution separation of low-molecular-weight compounds as well as biomolecules on the same monolithic support. At the same time, the high fraction of flow-channels provided enhanced column permeability. The chromatographic performance of poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for the separation of biomolecules (proteins, oligonucleotides) and small molecules (alkyl benzenes, phenols, phenons) are demonstrated in this article. Additionally, pressure drop versus flow rate measurements of novel poly(1,2-bis(p-vinylphenyl)ethane) capillary columns confirmed high mechanical robustness, low swelling in organic solvents and high permeability. Due to the simplicity of monolith fabrication, comprehensive studies of the retention and separation behaviour of monolithic BVPE columns resulted in high run-to-run and batch-to-batch reproducibilities. All these attributes prove the excellent applicability of monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for micro-HPLC towards a huge range of analytes of different

  14. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and high-performance liquid chromatography.

    PubMed

    Rathnasekara, Renuka; Khadka, Shantipriya; Jonnada, Murthy; El Rassi, Ziad

    2017-01-01

    This review article is a continuation of the previous reviews on the area of monolithic columns covering the progress made in the field over the last couple of years from the beginning of the second half of 2014 until the end of the first half of 2016. It summarizes and evaluates the evolvement of both polar and nonpolar organic monolithic columns and their use in hydrophilic interaction LC and CEC and reversed-phase chromatography and RP-CEC. The review article discusses the results reported in a total of 62 references. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication of an ionic-liquid-based polymer monolithic column and its application in the fractionation of proteins from complex biosamples.

    PubMed

    Zhang, Doudou; Zhang, Qian; Bai, Ligai; Han, Dandan; Liu, Haiyan; Yan, Hongyuan

    2018-05-01

    An ionic-liquid-based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless-steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross-linking agent, and polyethylene glycol 200 and isopropanol as co-porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption-desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic-liquid-based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m 2 /g. Compared to a non-ionic-liquid-based monolith prepared under the same conditions, the ionic-liquid-based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column.

    PubMed

    Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa

    2006-04-01

    A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.

  17. A novel mixed phospholipid functionalized monolithic column for early screening of drug induced phospholipidosis risk.

    PubMed

    Zhao, XiangLong; Chen, WeiJia; Liu, ZhengHua; Guo, JiaLiang; Zhou, ZhengYin; Crommen, Jacques; Moaddel, Ruin; Jiang, ZhengJin

    2014-11-07

    Drug-induced phospholipidosis (PLD) is characterized by the excessive accumulation of phospholipids, resulting in multilamellar vesicle structure within lysosomes. In the present study, a novel mixed phospholipid functionalized monolithic column was developed for the first time through a facile one-step co-polymerization approach. The phospholipid composition of the monolith can be adjusted quantitatively and accurately to mimic the mixed phospholipid environment of different biomembranes on a solid matrix. The mixed phospholipid functionalized monolith as a promising immobilized artificial membrane technique was used to study drug-phospholipid interaction. Scanning electron microscopy, elemental analysis, FT-IR spectra, ζ-potential analysis and micro-HPLC were carried out to characterize the physicochemical properties and separation performance of the monolith. Mechanism studies revealed that both hydrophobic and electrostatic interactions play an important role in the retention of analytes. The ratio of their contributions to retention can be easily manipulated by adjusting the composition of the mixed phospholipids, in order to better mimic the interaction between drugs and cell membrane. The obtained mixed phospholipid functionalized monolithic columns were applied to the screening of drug-induced PLD potency. Data from 79 drugs on the market demonstrated that the chromatographic hydrophobicity index referring to the mixed phospholipid functionalized monolith at pH 7.4 (CHI IAM7.4) for the selected drugs were highly correlated with the drug-induced PLD potency data obtained from other in vivo or in vitro assays. Moreover, the effect of the acidic phospholipid phosphatidylserine proportion on prediction accuracy was also investigated. The monolith containing 20% phosphatidylserine and 80% phosphatidylcholine exhibited the best prediction ability for the drug-induced PLD potency of the tested compounds. This research has led to the successful development of a

  18. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column.

    PubMed

    Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr

    2006-02-13

    The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.

  19. Monolithic column based on a poly(glycidyl methacrylate-co-4-vinylphenylboronic acid-co-ethylene dimethacrylate) copolymer for capillary liquid chromatography of small molecules and proteins.

    PubMed

    Lin, Zian; Huang, Hui; Sun, Xiaobo; Lin, Yao; Zhang, Lan; Chen, Guonan

    2012-07-13

    A new polymer monolith with three modes of reverse-phase, hydrophilic and cation-exchange interaction was synthesized in 100 μm i.d. fused-silica capillary by in situ polymerization procedure. The pre-polymerization mixture consisted of glycidyl methacrylate (GMA) and 4-vinylphenylboronic acid (VPBA) as bifunctional monomers, ethylene dimethacrylate (EDMA) as crosslinker, 1,4-butanediol (BDO) and diethylene glycol (DEG) as binary porogenic solvents, and azobisisobutyronitrile (AIBN) as initiator. The resulting poly(GMA-co-VPBA-co-EDMA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of monolithic column. The column performance was assessed by the separation of a series of neutral solutes, charge solutes, phenols and anilines. Compared with poly(GMA-co-EDMA) monolith, the proposed monolith exhibited more flexible adjustment of selectivity in terms of hydrophobic, hydrophilic, as well as cation-exchange interaction in the same chromatographic conditions. High column efficiencies for benzene derivatives with 70,000-102,000 theoretical plates/m could be obtained at a linear velocity of 0.265 mm/s. The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention times were less than 8.23%. Additionally, the purposed monolith was also applied to efficient separation of alkaloids and proteins for demonstrating its potential in biomolecule separation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  20. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2015-08-07

    A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Characteristic of theophylline imprinted monolithic column and its application for determination of xanthine derivatives caffeine and theophylline in green tea.

    PubMed

    Sun, Han-wen; Qiao, Feng-xia; Liu, Guang-yu

    2006-11-17

    Theophylline imprinted monolithic columns were designed and prepared for rapid separation of a homologous series of xanthine derivatives, caffeine, and theophylline by an in situ thermal-initiated copolymerization technique. Caffeine and theophylline were fully separated both under isocratic and gradient elutions on this kind of monolithic molecularly imprinted polymers (MIP) column. The broad peak showed in isocratic elution could be improved in gradient elution. Some chromatographic conditions such as mobile phase composition, flow rate, and the temperature on the retention times were investigated. Hydrogen bonding interaction and hydrophobic interaction played an important role in the retention and separation. The binding capacity was evaluated by static adsorption and Scatchard analysis, which showed that the dissociation constant (KD) and the maximum binding capacity (Qmax) were 1.50 mol/L, and 236 micromol/g for high affinity binding site, and 7.97 mol/L and 785 micromol/g for lower affinity binding site, respectively. Thermodynamic data (DeltaDeltaH and DeltaDeltaS) obtained by Van't Hoff plots revealed an enthalpy-controlled separation. The morphological characteristics of monolithic MIP were investigated by scanning electron microscope, which showed that both mesopores and macropores were formed in the monolith. The present monolithic MIP column was successfully applied for the quantitative determination of caffeine and theophylline in different kinds of green tea.

  2. Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography.

    PubMed

    Lin, Zian; Yang, Fan; He, Xiwen; Zhao, Xiaomiao; Zhang, Yukui

    2009-12-04

    A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6mm i.d. stainless steel column by a mild sol-gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of gamma-methacryloxypropyltrimethoxysilane (gamma-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template-monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.

  3. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.

    PubMed

    Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett

    2016-03-03

    The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cyclodextrins as a chiral mobile phase additive in nano-liquid chromatography: comparison of reversed-phase silica monolithic and particulate capillary columns.

    PubMed

    Rocco, Anna; Maruška, Audrius; Fanali, Salvatore

    2012-03-01

    Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R(s) = 1.80 for naproxen to R(s) = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R(s) value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R(s) = 0.89).

  5. Significant viscosity dependent deviations from classical van Deemter theory in liquid chromatography with porous silica monolithic columns.

    PubMed

    Nesterenko, Pavel N; Rybalko, Marina A; Paull, Brett

    2005-06-01

    Significant deviations from classical van Deemter behaviour, indicative of turbulent flow liquid chromatography, has been recorded for mobile phases of varying viscosity on porous silica monolithic columns at elevated mobile phase flow rates.

  6. [Rapid determination of trace iodate using monolithic column ion-pair chromatography coupled with direct conductivity detection].

    PubMed

    Liu, Yuzhen; Yu, Hong; Li, Siwen

    2011-10-01

    A method was developed on a monolithic column for the fast determination of trace iodate (IO(3)- ) by ion-pair chromatography with direct conductivity detection. The analytes were separated using a mobile phase of tetrabutylammonium hydroxide (TBA)-phthalic acid-acetonitrile on a reversed-phase silica-based monolithic column. The effects of eluent, flow rate and column temperature on the retention of iodate were investigated. The optimized chromatographic conditions for the determination of the anion were as follows: 0. 25 mmol/L TBA-0. 18 mmol/L phthalic acid-3% acetonitrile (pH 5.5) as mobile phase, a flow rate of 4.0 mL/min and a column temperature of 30 degrees C. Under the optimal conditions, retention time of iodate was less than 0. 5 min and the baseline separation of iodate was achieved without any interference by other anions (Cl-, NO , SO4(2)-, I- ). The detection limit (S/N= 3) was 0.36 mg/L for IO(3)- . Relative standard deviation (RSD, n = 5) of chromatographic peak area and retention time were 0. 35% and 0. 28%, respectively. The proposed method was applied to the determination of trace iodate in iodized medicine. The spiked recovery of iodate was 96. 4%. The method is rapid, simple, accurate, reliable, and practical.

  7. CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column.

    PubMed

    Gu, Congying; Shamsi, Shahab A

    2010-04-01

    A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.

  8. Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.

    PubMed

    Kurganov, A A; Korolev, A A; Shiryaeva, V E; Popova, T P; Kanateva, A Yu

    2013-11-08

    Poppe plots were used for analysis of kinetic efficiency of monolithic sorbents synthesized in quartz capillaries for utilization in high-pressure gas chromatography. Values of theoretical plate time and maximum number of theoretical plates occurred to depend significantly on synthetic parameters such as relative amount of monomer in the initial polymerization mixture, temperature and polymerization time. Poppe plots let one to find synthesis conditions suitable either for high-speed separations or for maximal efficiency. It is shown that construction of kinetic Poppe curves using potential Van Deemter data demands compressibility of mobile phase to be taken into consideration in the case of gas chromatography. Model mixture of light hydrocarbons C1 to C4 was then used for investigation of influence of carrier gas nature on kinetic efficiency of polymeric monolithic columns. Minimal values of theoretical plate times were found for CO2 and N2O carrier gases. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. On chip preconcentration and fluorescence labeling of model proteins by use of monolithic columns: device fabrication, optimization, and automation.

    PubMed

    Yang, Rui; Pagaduan, Jayson V; Yu, Ming; Woolley, Adam T

    2015-01-01

    Microfluidic systems with monolithic columns have been developed for preconcentration and on-chip labeling of model proteins. Monoliths were prepared in microchannels by photopolymerization, and their properties were optimized by varying the composition and concentration of the monomers to improve flow and extraction. On-chip labeling of proteins was achieved by driving solutions through the monolith by use of voltage then incubating fluorescent dye with protein retained on the monolith. Subsequently, the labeled proteins were eluted, by applying voltages to reservoirs on the microdevice, and then detected, by monitoring laser-induced fluorescence. Monoliths prepared from octyl methacrylate combine the best protein retention with the possibility of separate elution of unattached fluorescent label with 50% acetonitrile. Finally, automated on-chip extraction and fluorescence labeling of a model protein were successfully demonstrated. This method involves facile sample pretreatment, and therefore has potential for production of integrated bioanalysis microchips.

  10. Preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) monolithic column by in situ polymerization and a click reaction for capillary liquid chromatography of small molecules and proteins.

    PubMed

    Lin, Zian; Yu, Ruifang; Hu, Wenli; Zheng, Jiangnan; Tong, Ping; Zhao, Hongzhi; Cai, Zongwei

    2015-07-07

    Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.

  11. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  12. Radial distribution of the contributions to band broadening of a silica-based semi-preparative monolithic column.

    PubMed

    Abia, Jude A; Mriziq, Khaled S; Guiochon, Georges A

    2009-04-01

    Using an on-column local electrochemical microdetector operated in the amperometric mode, band elution profiles were recorded at different radial locations at the exit of a 10 mm id, 100 mm long silica-based monolithic column. HETP plots were then acquired at each of these locations, and all these results were fitted to the Knox equation. This provided a spatial distribution of the values of the eddy diffusion (A), the molecular diffusion (B), and the resistance to the kinetics of mass transfer (C) terms. Results obtained indicate that the wall region yields higher A values and smaller C values than the central core region. Significant radial fluctuations of these contributions to band broadening occur throughout the exit column cross-section. This phenomenon is due to the structural radial heterogeneity of the column.

  13. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    PubMed

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    PubMed

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues.

    PubMed

    Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-10-16

    A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A hybrid fluorous monolithic capillary column with integrated nanoelectrospray ionization emitter for determination of perfluoroalkyl acids by nano-liquid chromatography-nanoelectrospray ionization-mass spectrometry/mass spectrometry.

    PubMed

    Zhang, Haiyang; Ou, Junjie; Wei, Yinmao; Wang, Hongwei; Liu, Zhongshan; Zou, Hanfa

    2016-04-01

    A hybrid fluorous monolithic column was simply prepared via photo-initiated free radical polymerization of an acrylopropyl polyhedral oligomeric silsesquioxane (acryl-POSS) and a perfluorous monomer (2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate) in UV-transparent fused-silica capillaries within 5min. The physical characterization of hybrid fluorous monolith, including scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and nitrogen adsorption/desorption measurement was performed. Chromatographic performance was also evaluated by capillary liquid chromatography (cLC). Due to the fluorous-fluorous interaction between fluorous monolith and analytes, fluorobenzenes could well be separated, and the column efficiencies reached 86,600-92,500plates/m at the velocity of 0.87mm/s for alkylbenzenes and 51,900-76,000plates/m at the velocity of 1.10mm/s for fluorobenzenes. Meanwhile, an approach to integrate nanoelectrospray ionization (ESI) emitter with hybrid fluorous monolithic column was developed for quantitative determination of perfluoroalkyl acids by nanoHPLC-ESI-MS/MS. The integration design could minimize extracolumn volume, thus excluding undesirable peak broadening and improving separation performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides.

    PubMed

    Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek

    2017-05-19

    This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis of zirconia monoliths for chromatographic separations.

    PubMed

    Randon, Jérôme; Huguet, Samuel; Piram, Anne; Puy, Guillaume; Demesmay, Claire; Rocca, Jean-Louis

    2006-03-17

    The aim of this work is to join the advantages of two different kinds of stationary phases: monolithic columns and zirconia-based supports. On the one hand, silica monolithic columns allow a higher efficiency with a lower back-pressure than traditional packed columns. On the other hand, chromatographic stationary phases based on zirconia have a higher thermal and chemical stability and specific surface properties. Combining these advantages, a zirconia monolith with a macroporous framework could be a real improvement in separation sciences. Two main strategies can be used in order to obtain a zirconia surface on a monolithic skeleton: coating or direct synthesis. The coverage by a zirconia layer of the surface of a silica-based monolith can be performed using the chemical properties of the silanol surface groups. We realized this coverage using zirconium alkoxide and we further grafted n-dodecyl groups using phosphate derivatives. Any loss of efficiency was observed and fast separations have been achieved. The main advance reported in this paper is related to the preparation of zirconia monoliths by a sol-gel process starting from zirconium alkoxide. The synthesis parameters (hydrolysis ratio, porogen type, precursor concentration, drying step, etc.) were defined in order to produce a macroporous zirconia monoliths usable in separation techniques. We produced various homogeneous structures: zirconia rod 2 cm long with a diameter of 2.3 mm, and zirconia monolith inside fused silica capillaries with a 75 microm I.D. These monoliths have a skeleton size of 2 microm and have an average through pore size of 6 microm. Several separations have been reported.

  20. Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction - Mass spectrometry analysis.

    PubMed

    Jiang, Han-Peng; Chu, Jie-Mei; Lan, Meng-Dan; Liu, Ping; Yang, Na; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-09-02

    More than 140 modified ribonucleosides have been identified in RNA. Determination of endogenous modified ribonucleosides in biological fluids may serve as non-invasive disease diagnostic strategy. However, detection of the modified ribonucleosides in biological fluids is challenging, especially for the low abundant modified ribonucleosides due to the serious matrix interferences of biological fluids. Here, we developed a facile preparation strategy and successfully synthesized zirconium oxide-silica (ZrO2/SiO2) composite capillary monolithic column that exhibited excellent performance for the selective enrichment of cis-diol-containing compounds. Compared with the boronate-based affinity monolith, the ZrO2/SiO2 monolith showed ∼2 orders of magnitude higher extraction capacity and can be used under physiological pH (pH 6.5-7.5). Using the prepared ZrO2/SiO2 composite monolith as the trapping column and reversed-phase C18 column as the analytical column, we further established an online solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry (online SPME-LC-MS/MS) analysis for the comprehensive profiling of ribonucleosides modification in human urine. Our results showed that 68 cis-diol-containing ribosylated compounds were identified in human urine, which is, to the best of our knowledge, the highest numbers of cis-diol-containing compounds were determined in a single analysis. It is worth noting that four modified ribonucleosides were discovered in the human urine for the first time. In addition, the quantification results from the pooled urine samples showed that compared to healthy controls, the contents of sixteen ribose conjugates in the urine of gastric cancer, eleven in esophagus cancer and seven in lymphoma increased more than two folds. Among these ribose conjugates, four ribose conjugates increased more than two folds in both gastric cancer and esophagus cancer; three ribose conjugates increased more than two

  1. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li

    2012-08-01

    Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Property evaluations and application for separation of small molecules of a nanodiamond-polymer composite monolithic column.

    PubMed

    Wang, Fengqing; Wei, Aile; Wang, Xixi; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan

    2016-07-01

    A nanodiamond-polymer composite monolithic column was first prepared successfully with modified nanodiamond (ND) as monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker, 1-dodecanol as porogenic agent and benzoyl peroxide/dimethylacetamide (BPO/DMA) as initiator at 35°C for 2.5h. There was a sharp increase of specific surface area with ND added about 22 times from 0mg (3.90m(2)/g) to 7mg (81.2m(2)/g) determined with BET. Characterizations including scanning electron microscopy (SEM), fourier-transform infrared spectra (FIRT) and mercury intrusion porosimetry (MIP) were used to determine the microstructure, group composition, pore size distribution (≃1.56μm) and porosity (≃0.7484μm) of the monolith. An excellent column stability was confirmed by permeability (1.258x10(-10)cm(2)) and good linearity (R(2)=0.998) corresponding to backpressures measured at different flow rates. The highest swelling ability of the composite was about (5%) and classical RPLC of the column obtained occurred with the acetonitrile concentration increasing from 20% to 85% in the mobile phase, above which another retention model of normal-phase chromatography appeared. The items of the eddy dispersion and the absorption-release kinetics were the decisional factors of the composite column compared with the factors of longitudinal diffusion, and the skeleton-eluent mass transfer resistance due to the finite diffusivity. Good separation of neutral and basic small molecules was obtained (24,350 plates/m for neutral molecules and 22,300 plates/m for basic ones) with the hydrophobicity retention mechanism, but not for the acidic ones except to regulate the pH of the mobile phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DATA QUALITY OBJECTIVE SUMMARY REPORT FOR THE 105 K EAST ION EXCHANGE COLUMN MONOLITH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOCHEN, R.M.

    2007-08-02

    The 105-K East (KE) Basin Ion Exchange Column (IXC) cells, lead caves, and the surrounding vault are to be removed as necessary components in implementing ''Hanford Federal Facility Agreement and Consent Order'' (Ecology et al. 2003) milestone M-034-32 (Complete Removal of the K East Basin Structure). The IXCs consist of six units located in the KE Basin, three in operating positions in cells and three stored in a lead cave. Methods to remove the IXCs from the KE Basin were evaluated in KBC-28343, ''Disposal of K East Basin Ion Exchange Column Evaluation''. The method selected for removal was grouting themore » six IXCs into a single monolith for disposal at the Environmental Restoration Disposal Facility (ERDF). Grout will be added to the IXC cells, IXC lead caves containing spent IXCs, and in the spaces between the lead cave walls and metal skin, to immobilize the contaminants, provide self-shielding, minimize void space, and provide a structurally stable waste form. The waste to be offered for disposal is the encapsulated monolith defined by the exterior surfaces of the vault and the lower surface of the underlying slab. This document presents summary of the data quality objective (DQO) process establishing the decisions and data required to support decision-making activities for the disposition of the IXC monolith. The DQO process is completed in accordance with the seven-step planning process described in EPA QA/G-4, ''Guidance for the Data Quality Objectives Process'', which is used to clarify and study objectives; define the appropriate type, quantity, and quality of data; and support defensible decision-making. The DQO process involves the following steps: (1) state the problem; (2) identify the decision; (3) identify the inputs to the decision; (4) define the boundaries of the study; (5) develop a decision rule (DR); (6) specify tolerable limits on decision errors; and (7) optimize the design for obtaining data.« less

  4. Reversed-phase HPLC analysis of levetiracetam in tablets using monolithic and conventional C18 silica columns.

    PubMed

    Can, Nafiz O; Arli, Goksel

    2010-01-01

    Development and validation of an RP-HPLC method for determination of levetiracetam in pharmaceutical tablets is described. The separation and quantification of levetiracetam and caffeine (internal standard) were performed using a single analytical procedure with two different types of stationary phases, conventional Phenomenex Gemini C18 (100 x 4.6 mm, 5 microm) and Merck Chromolith Performance RP18e (100 x 4.6 mm, macropore size 2 mm, micropore size 13 nm) monolithic silica. Five-microliter aliquots of samples were injected into the system and eluted using water-acetonitrile (90 + 10, v/v) mobile phase pumped at the rate of 1 mL/min. The analyte peaks were detected at 200 nm using a diode array detector with adequate resolution. Validation studies were performed using the method recommended by the International Conference on Harmonization, the U.S. Pharmacopeia, and AOAC INTERNATIONAL, which includes accuracy, precision, range, limits, robustness, and system suitability parameters. Levetiracetam and caffeine were detected in about 7 min using the conventional column, whereas less than 5 min was required when the monolithic column was used. Calibration plots had r values close to unity in the range of 0.8-8.0 microg/mL. Assay of levetiracetam in a tablet formulation was demonstrated as an application to real samples.

  5. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

    PubMed

    Zhu, Yang; Morisato, Kei; Hasegawa, George; Moitra, Nirmalya; Kiyomura, Tsutomu; Kurata, Hiroki; Kanamori, Kazuyoshi; Nakanishi, Kazuki

    2015-08-01

    The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    PubMed

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  7. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.

    PubMed

    Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2014-09-19

    Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (Rs<1.0) and low efficiency (800-16,300plates/m), addition of a small amount of HKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A monolithic column based on covalent cross-linked polymer gels for online extraction and analysis of trace aflatoxins in food sample.

    PubMed

    Wei, Tianfu; Chen, Zhengyi; Li, Gongke; Zhang, Zhuomin

    2018-05-04

    Aflatoxins are highly toxic mycotoxin contamination, which pose serious food safety incidents. It is very important to precisely and rapidly determine trace aflatoxins in food. In this study, we designed porous monolithic column based on covalent cross-linked polymer gels for online extraction and analysis of trace aflatoxins in food samples with complicated matrices coupled with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). The prepared monolithic column showed excellent enrichment performance due to its good permeability, good reproducibility and long life span. The study of adsorption mechanism suggested that the excellent enrichment performance of this monolithic column was attributed to the multiple effect of π-π stacking interaction, hydrophobic effect and steric effect. When the online analytical method was applied for the determine of trace aflatoxins in real food samples, aflatoxins G 1 and aflatoxins B 1 could be actually found in one positive bean sauce sample and quantified to be 32.8 and 26.4 μg/kg, respectively. Aflatoxins G 1 in one bean sample could be also found and quantified to be 25.9 μg/kg. The low detection limits of the developed method were achieved in range of 0.08-0.2 μg/kg. And the recoveries for spiked samples were in range from 76.1 to 113% with RSDs of 1.1-9.6%. The developed method was proved to be a promising method for online enrichment and analysis of trace aflatoxins in complicated food samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    PubMed

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Miniaturized monolithic columns for the electrochromatographic separation and SERS detection of molecules of exobiological interest

    NASA Astrophysics Data System (ADS)

    Carbonnier, Benjamin; Guerrouache, Mohamed

    Development of miniaturized separation and detection media represents one of the major challenges in the field of modern analytical chemistry dedicated to space exploration. To date, gas chromatography-mass spectrometry has been selected as the method of choice for exobiology flight experiments for seeking for organic molecules and especially potential chemical indicators of life. [1] Liquid phase separation methods have also been developed with for instance, the so-called Mars Organic Analyzer (MOA) capillary electrophoresis (CE) microchip.[2] Although CE offers the advantages of easy miniaturization and high separation efficiency it suffers from a lack of selectivity towards a broad range of analytes with varied chemical nature. In this respect, we propose the use of capillary columns filled with monolithic stationary phases for the electrochromatographic separation of organic molecules of exobiology interest. Polymer monoliths have attracted a great deal of interest in analytical science over the last years as (electro)chromatographic stationary phases [3], immunosensors [4]. Beyond the intrinsic properties of monolithic polymers, i.e. fast mass transport between the monolithic support and the surrounding fluid and high permeability, other major advantages are their easy in situ preparation and tuning of surface functionality. Indeed, monoliths can be simply prepared through free radical copolymerization of a homogeneous mixture made of monomers, cross-linkers, porogenic solvents and initiator. UV-initiation process has been exploited to the synthesis of a discrete section of monolith as a flow-through active element within the confines of micro channels [5,6] while two-step strategies have been reported for the design of varied adsorbent starting with a generic monolith [7,8]. Although a nearly limitless range of monolithic supports can be prepared by this traditional method, the resulting monoliths exhibit unique function. In this contribution, we describe an

  11. Molecularly imprinted coated graphene oxide solid-phase extraction monolithic capillary column for selective extraction and sensitive determination of phloxine B in coffee bean.

    PubMed

    Zhai, Haiyun; Su, Zihao; Chen, Zuanguang; Liu, Zhenping; Yuan, Kaisong; Huang, Lu

    2015-03-20

    A method was developed to sensitively determine phloxine B in coffee bean by molecularly imprinted polymers (MIPs) coated graphene oxide (GO) solid-phase extraction (GO-MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC-LIF). The GO-MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using GO as supporting material, phloxine B, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade GO-MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions. The GO-MIPs were characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The mean recoveries of phloxine B in coffee bean ranged from 89.5% to 91.4% and the intra-day and inter-day relative standard deviation (RSD) values all ranged from 3.6% to 4.7%. Good linearity was obtained over 0.001-2.0 μg mL(-1) (r=0.9995) with the detection limit (S/N=3) of 0.075 ng mL(-1). Under the selected conditions, enrichment factors of over 90-fold were obtained and extraction on the monolithic column effectively cleaned up the coffee bean matrix. The results demonstrated that the proposed GO-MISPE HPLC-LIF method can be applied to sensitively determine phloxine B in coffee bean. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Analysis of bovine milk caseins on organic monolithic columns: an integrated capillary liquid chromatography-high resolution mass spectrometry approach for the study of time-dependent casein degradation.

    PubMed

    Pierri, Giuseppe; Kotoni, Dorina; Simone, Patrizia; Villani, Claudio; Pepe, Giacomo; Campiglia, Pietro; Dugo, Paola; Gasparrini, Francesco

    2013-10-25

    Casein proteins constitute approximately 80% of the proteins present in bovine milk and account for many of its nutritional and technological properties. The analysis of the casein fraction in commercially available pasteurized milk and the study of its time-dependent degradation is of considerable interest in the agro-food industry. Here we present new analytical methods for the study of caseins in fresh and expired bovine milk, based on the use of lab-made capillary organic monolithic columns. An integrated capillary high performance liquid chromatography and high-resolution mass spectrometry (Cap-LC-HRMS) approach was developed, exploiting the excellent resolution, permeability and biocompatibility of organic monoliths, which is easily adaptable to the analysis of intact proteins. The resolution obtained on the lab-made Protein-Cap-RP-Lauryl-γ-Monolithic column (270 mm × 0.250 mm length × internal diameter, L × I.D.) in the analysis of commercial standard caseins (αS-CN, β-CN and κ-CN) through Cap-HPLC-UV was compared to the one observe using two packed capillary C4 columns, the ACE C4 (3 μm, 150 mm × 0.300 mm, L × I.D.) and the Jupiter C4 column (5 μm, 150 mm × 0.300 mm, L × I.D.). Thanks to the higher resolution observed, the monolithic capillary column was chosen for the successive degradation studies of casein fractions extracted from bovine milk 1-4 weeks after expiry date. The comparison of the UV chromatographic profiles of skim, semi-skim and whole milk showed a major stability of whole milk towards time-dependent degradation of caseins, which was further sustained by high-resolution analysis on a 50-cm long monolithic column using a 120-min time gradient. Contemporarily, the exact monoisotopic and average molecular masses of intact αS-CN and β-CN protein standards were obtained through high resolution mass spectrometry and used for casein identification in Cap-LC-HRMS analysis. Finally, the proteolytic degradation of β-CN in skim milk

  13. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification.

    PubMed

    Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok

    2011-08-05

    Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. In-situ functionalized monolithic polysiloxane-polymethacrylate composite materials from polythiol-ene double click reaction in capillary column format for enantioselective nano-high-performance liquid chromatography.

    PubMed

    Wolter, Marc; Lämmerhofer, Michael

    2017-05-12

    This work reports on the proof-of-principle of preparation of novel one step in-situ functionalized monolithic polysiloxane-polymethacrylate composite materials in capillary columns for enantioselective nano-HPLC using a thiol-ene click reaction. Quinine carbamate as functional monomer and ethylene dimethacrylate as crosslinker were both used as ene components in a thermally initiated double click-type polymerization reaction with poly(3-mercaptopropyl)methylsiloxane as thiol component in presence of 1-propanol as porogenic solvent. Elemental analysis and on-capillary fluorescence measurement proved the successful incorporation of the functional chiral monomer into the polymer. Scanning electron microscopy images revealed a macroporous polymer morphology which is typical for a nucleation and growth mechanism of pore formation. The individual microglobules appear relatively spherical and smooth indicating a non-porous nature. Nano-HPLC experiments of the chiral monolithic capillary column provided successful enantiomer separation of N-3,5-dinitrobenzoylleucine as test compound in polar organic elution mode clearly documenting the successful implementation of the proposed concept towards new functionalized monolithic composite materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. On-chip sample pretreatment using a porous polymer monolithic column for solid-phase microextraction and chemiluminescence determination of catechins in green tea.

    PubMed

    Lin, Ling; Chen, Hui; Wei, Huibin; Wang, Feng; Lin, Jin-Ming

    2011-10-21

    A porous polymer monolithic column for solid-phase microextraction and chemiluminescence detection was integrated into a simple microfluidic chip for the extraction and determination of catechins in green tea. The porous polymer was prepared by poly(glycidyl methacrylate-co-ethylene dimethacrylate) and modified with ethylenediamine. Catechins can be concentrated in the porous polymer monolithic column and react with potassium permanganate to give chemiluminescence. The microfluidic chip is reusable with high sensitivity and very low reagent consumption. The on-line preconcentration and detection can be realized without an elution step. The enrichment factor was calculated to be about 20 for catechins. The relative chemiluminescence intensity increased linearly with concentration of catechin from 5.0 × 10(-9) to 1.0 × 10(-6) M and the limit of detection was 1.0 × 10(-9) M. The proposed method was applied to determine catechin in green tea. The recoveries are from 90% to 110% which benefits the actual application for green tea samples.

  16. Depletion of human serum albumin in embryo culture media for in vitro fertilization using monolithic columns with immobilized antibodies.

    PubMed

    Tarasova, Irina A; Lobas, Anna A; Černigoj, Urh; Solovyeva, Elizaveta M; Mahlberg, Barbara; Ivanov, Mark V; Panić-Janković, Tanja; Nagy, Zoltan; Pridatchenko, Marina L; Pungor, Andras; Nemec, Blaž; Vidic, Urška; Gašperšič, Jernej; Krajnc, Nika Lendero; Vidič, Jana; Gorshkov, Mikhail V; Mitulović, Goran

    2016-09-01

    Affinity depletion of abundant proteins such as HSA is an important stage in routine sample preparation prior to MS/MS analysis of biological samples with high range of concentrations. Due to the charge competition effects in electrospray ion source that results in discrimination of the low-abundance species, as well as limited dynamic range of MS/MS, restricted typically by three orders of magnitude, the identification of low-abundance proteins becomes a challenge unless the sample is depleted from high-concentration compounds. This dictates a need for developing efficient separation technologies allowing fast and automated protein depletion. In this study, we performed evaluation of a novel immunoaffinity-based Convective Interaction Media analytical columns (CIMac) depletion column with specificity to HSA (CIMac-αHSA). Because of the convective flow-through channels, the polymethacrylate CIMac monoliths afford flow rate independent binding capacity and resolution that results in relatively short analysis time compared with traditional chromatographic supports. Seppro IgY14 depletion kit was used as a benchmark to control the results of depletion. Bottom-up proteomic approach followed by label-free quantitation using normalized spectral indexes were employed for protein quantification in G1/G2 and cleavage/blastocyst in vitro fertilization culture media widely utilized in clinics for embryo growth in vitro. The results revealed approximately equal HSA level of 100 ± 25% in albumin-enriched fractions relative to the nondepleted samples for both CIMac-αHSA column and Seppro kit. In the albumin-free fractions concentrated 5.5-fold by volume, serum albumin was identified at the levels of 5-30% and 20-30% for the CIMac-αHSA and Seppro IgY14 spin columns, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental and numerical validation of the effective medium theory for the B-term band broadening in 1st and 2nd generation monolithic silica columns.

    PubMed

    Deridder, Sander; Vanmessen, Alison; Nakanishi, Kazuki; Desmet, Gert; Cabooter, Deirdre

    2014-07-18

    Effective medium theory (EMT) expressions for the B-term band broadening in monolithic silica columns are presented at the whole-column as well as at the mesoporous skeleton level. Given the bi-continuous nature of the monolithic medium, regular as well as inverse formulations of the EMT-expressions have been established. The established expressions were validated by applying them to a set of experimental effective diffusion (Deff)-data obtained via peak parking on a number of 1st and 2nd generation monolithic silica columns, as well as to a set of numerical diffusion simulations in a simplified monolithic column representation (tetrahedral skeleton model) with different external porosities and internal diffusion coefficients. The numerically simulated diffusion data can be very closely represented over a very broad range of zone retention factors (up to k″=80) using the established EMT-expressions, especially when using the inverse variant. The expressions also allow representing the experimentally measured effective diffusion data very closely. The measured Deff/Dmol-values were found to decrease significantly with increasing retention factor, in general going from about Deff/Dmol=0.55 to 0.65 at low k″ (k″≅1.5-3.8) to Deff/Dmol=0.25 at very high k″ (k″≅40-80). These values are significantly larger than observed in fully-porous and core-shell particles. The intra-skeleton diffusion coefficient (Dpz) was typically found to be of the order of Dpz/Dmol=0.4, compared to Dpz/Dmol=0.2-0.35 observed in most particle-based columns. These higher Dpz/Dmol values are the cause of the higher Deff/Dmol values observed. In addition, it also appears that the higher internal diffusion is linked to the higher porosity of the mesoporous skeleton that has a relatively open structure with relatively wide pores. The observed (weak) relation between Dpz/Dmol and the zone retention factor appears to be in good agreement with that predicted when applying the regular

  18. Chip-based molecularly imprinted monolithic capillary array columns coated GO/SiO2 for selective extraction and sensitive determination of rhodamine B in chili powder.

    PubMed

    Zhai, Haiyun; Huang, Lu; Chen, Zuanguang; Su, Zihao; Yuan, Kaisong; Liang, Guohuan; Pan, Yufang

    2017-01-01

    A novel solid-phase extraction chip embedded with array columns of molecularly imprinted polymer-coated silanized graphene oxide (GO/SiO2-MISPE) was established to detect trace rhodamine B (RB) in chili powder. GO/SiO2-MISPE monolithic columns for RB detection were prepared by optimizing the supporting substrate, template, and polymerizing monomer under mild water bath conditions. Adsorption capacity and specificity, which are critical properties for the application of the GO/SiO2-MISPE monolithic column, were investigated. GO/SiO2-MIP was examined by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy. The recovery and the intraday and interday relative standard deviations for RB ranged from 83.7% to 88.4% and 2.5% to 4.0% and the enrichment factors were higher than 110-fold. The chip-based array columns effectively eliminated impurities in chili powder, indicating that the chip-based GO/SiO2-MISPE method was reliable for RB detection in food samples using high-performance liquid chromatography. Accordingly, this method has direct applications for monitoring potentially harmful dyes in processed food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Detection of processed genetically modified food using CIM monolithic columns for DNA isolation.

    PubMed

    Jerman, Sergej; Podgornik, Ales; Cankar, Katarina; Cadet, Neza; Skrt, Mihaela; Zel, Jana; Raspor, Peter

    2005-02-11

    The availability of sufficient quantities of DNA of adequate quality is crucial in polymerase chain reaction (PCR)-based methods for genetically modified food detection. In this work, the suitability of anion-exchange CIM (Convective Interaction Media; BIA Separations, Ljubljana, Slovenia) monolithic columns for isolation of DNA from food was studied. Maize and its derivates corn meal and thermally pretreated corn meal were chosen as model food. Two commercially available CIM disk columns were tested: DEAE (diethylaminoethyl) and QA (quaternary amine). Preliminary separations were performed with standard solution of salmon DNA at different pH values and different NaCl concentrations in mobile phase. DEAE groups and pH 8 were chosen for further isolations of DNA from a complex matrix-food extract. The quality and quantity of isolated DNA were tested on agarose gel electrophoresis, with UV-scanning spectrophotometry, and by amplification with real-time PCR. DNA isolated in this way was of suitable quality for further PCR analyses. The described method is also applicable for DNA isolation from processed foods with decreased DNA content. Furthermore, it is more effective and less time-consuming in comparison with the existing proposed methods for isolation of DNA from plant-derived foods.

  20. Recognition of oxytocin by capillary electrochromatography with monolithic tetrapeptide-imprinted polymer used as the stationary phase.

    PubMed

    Zheng, Chao; Liu, Zhaosheng; Gao, Ruyu; Zhang, Lihua; Zhang, Yukui

    2007-07-01

    Using YPLG (Tyr-Pro-Leu-Gly), a tetrapeptide, as the template, an imprinted monolithic column was prepared and applied to the selective recognition of oxytocin based on the epitope approach and capillary electrochromatography (CEC). By optimizing the polymerization solution in terms of functional monomer, cross-linking reagent, porogen, and imprinted template via CEC evaluations of synthesized columns, an imprinted monolith with good recognition capacity (the imprinting factors for YPLG and oxytocin were 4.499 and 4.013, respectively) and high column efficiency (theoretical plates for YPLG and oxytocin were 22,995 plates/m and 16,952 plates/m, respectively) was achieved. In addition, the effects of various experimental parameters on the recognition of oxytocin, including the organic modifier content, the buffer concentration, and the pH value, were studied systematically. Furthermore, a mixture of oxytocin and other proteins was analyzed using this monolithic CEC column, and oxytocin was eluted much more slowly than other large biomolecules, which demonstrated the high selective recognition ability of such an imprinted monolith for oxytocin with PLG (Pro-Leu-Gly) as the epitope. Figure Separation of a mixture of oxytocin, BSA, bovine hemoglobin, ovalbumin, and lysozyme on the open column, the blank monolithic column, and the monolithic YPLG-imprinted column.

  1. MicroSPE-nanoLC-ESI-MS/MS Using 10-μm-i.d. Silica-Based Monolithic Columns for Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Quanzhou; Page, Jason S.; Tang, Keqi

    2007-01-01

    Silica-based monolithic narrow bore capillary columns (25 cm x 10 µm i.d.) with an integrated nanoESI emitter has been developed to provide high quality and robust microSPE-nanoLC-ESI-MS analyses. The integrated nanoESI emitter adds no dead volume to the LC separation, allowing stable electrospray performance to be obtained at flow rates of ~10 nL/min. In an initial application we identified 5510 unique peptides covering 1443 distinct Shewanella oneidensis proteins from a 300 ng tryptic digest sample in a single 4-h LC-MS/MS analysis using a linear ion trap MS (LTQ). We found the use of an integrated monolithic ESI emitter provided enhancedmore » resistance to clogging and good run-to-run reproducibility.« less

  2. Polymeric monolith column composited with multiwalled carbon nanotubes-β-cyclodextrin for the selective extraction of psoralen and isopsoralen.

    PubMed

    Ling, Xu; Zou, Li; Chen, Zilin

    2017-09-01

    A polymeric column that contains multiwalled carbon nanotubes-β-cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate-ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid-phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high-performance liquid chromatography with C 18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β-cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    PubMed

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids.

    PubMed

    Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-10-01

    To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.

  5. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity.

    PubMed

    Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang

    2017-03-01

    A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m 2 /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. How short are ultra short light pulses? (looking back to the mid sixties)

    NASA Astrophysics Data System (ADS)

    Weber, H. P.; Dändliker, R.

    2010-09-01

    With the arrival of mode locking for Q-switched lasers to generate ultra short light pulses, a method to measure their expected time duration in the psec range was needed. A novel method, based on an intensity correlation measurement using optical second harmonic generation, was developed. Other reported approaches for the same purpose were critically analysed. Theoretical and subsequent experimental studies lead to surprising new insight into the ultra fast temporal behaviour of broadband laser radiation: Any non mode locked multimode emission of a laser consists of random intensity fluctuations with duration of the total inverse band width of emitted radiation. However, it was shown, that with mode locking isolated ultra short pulses of psec duration can be generated. This article summarizes activities performed in the mid sixties at the University of Berne, Switzerland.

  7. Rapid determination of amino acids in biological samples using a monolithic silica column.

    PubMed

    Song, Yanting; Funatsu, Takashi; Tsunoda, Makoto

    2012-05-01

    A high-performance liquid chromatography method in which fluorescence detection is used for the simultaneous determination of 21 amino acids is proposed. Amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) and then separated on a monolithic silica column (MonoClad C18-HS, 150 mm×3 mm i.d.). A mixture of 25 mM citrate buffer containing 25 mM sodium perchlorate (pH 5.5) and acetonitrile was used as the mobile phase. We found that the most significant factor in the separation was temperature, and a linear temperature gradient from 30 to 49°C was used to control the column temperature. The limits of detection and quantification for all amino acids ranged from 3.2 to 57.2 fmol and 10.8 to 191 fmol, respectively. The calibration curves for the NBD-amino acid had good linearity within the range of 40 fmol to 40 pmol when 6-aminocaproic acid was used as an internal standard. Using only conventional instruments, the 21 amino acids could be analyzed within 10 min. This method was found to be suitable for the quantification of the contents of amino acids in mouse plasma and adrenal gland samples.

  8. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis.

    PubMed

    Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C

    2016-10-01

    The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    PubMed

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ultra-short pulse generator

    DOEpatents

    McEwan, Thomas E.

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  11. Zeolitic imidazolate framework-methacrylate composite monolith characterization by inverse gas chromatography.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; Aouak, Taieb; ALOthman, Zeid Abdullah

    2016-04-22

    Thermodynamic characterization of butyl methacrylate-co-ethylene dimethacrylate neat monolith and zeolitic imidazolate framework-8 incorporated with butyl methacrylate-co-ethylene dimethacrylate composite monolith were studied using inverse gas chromatography at infinite dilution under 1MPa column pressure and various column temperatures. The free energy of adsorption (ΔGA), enthalpy of adsorption (ΔHA) and entropy of adsorption (ΔSA) were determined using a series of n-alkanes. The dispersive component of surface energy (γS(D)) was estimated by Dorris-Gray and Schultz et al. The composite monolith showed a more energetic surface than the neat monolith. The acidic, KA, and basic, KD, parameters for both materials were estimated using a group of polar probes. A basic character was concluded with more basic behavior for the neat monolith. Flory-Huggins parameter, χ, was taken as a measure of miscibility between the probes with the low molecular weight and the high molecular weight monolith. Inverse gas chromatography provides a better understanding of the role of incorporated zeolitic imidazolate framework (ZIF-8) into the polymer matrix in its monolithic form. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mechanism of molecular recognition on molecular imprinted monolith by capillary electrochromatography.

    PubMed

    Liu, Zhao-Sheng; Xu, Yan-Li; Yan, Chao; Gao, Ru-Yu

    2005-09-16

    The recognition mechanism of molecularly imprinted polymer (MIP) in capillary electrochromatography (CEC) is complicated since it possesses a hybrid process, which comprises the features of chromatographic retention, electrophoretic migration and molecular imprinting. For an understanding of the molecular recognition of MIP in CEC, a monolithic MIP in a capillary with 1,1'-binaphthyl-2,2'-diamine (BNA) imprinting was prepared by in situ copolymerization of imprinted molecule, methacrylic acid and ethylene glycol dimethacrylate in porogenic solvent, a mixture of toluene-isooctane. Strong recognition ability and high column performance (theory plates was 43,000 plates/m) of BNA were achieved on this monolithic MIP in CEC mode. In addition, BNA and its structural analogue, 1,1'-bi-2, 2'-naphthol, differing in functional groups, were used as model compounds to study imprinting effect on the resultant BNA-imprinted monolithic column, a reference column without imprinting of BNA and a open capillary. The effects of organic modifier concentration, pH value of buffer, salt concentration of buffer and column temperature on the retention and recognition of two compounds were investigated. The results showed that the molecular recognition on MIP monolith in CEC mode mainly derived from imprinting cavities on BNA-imprinted polymer other than chromatographic retention and electrophoretic migration.

  13. Ultra-short pulse generator

    DOEpatents

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  14. Novel beta-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography.

    PubMed

    Tian, Yun; Zhong, Cheng; Fu, Enqin; Zeng, Zhaorui

    2009-02-06

    A novel enantioselective polymethacrylate-based monolithic column for capillary electrochromatography was prepared by ring-opening reaction of epoxy groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith with a novel beta-cyclodextrin derivative bearing 4-dimethylamino-1,8-naphthalimide functionalities. Conditions for the ring-opening reaction with respect to different reaction parameters were thoroughly optimized to obtain high electroosmotic flow, separation efficiency and enantioselectivity for the analytes. The nonaqueous mobile phase composition regarding acetonitrile-methanol ratio and the concentration of electrolyte were examined to manipulate the hydrophobic inclusion and anion-exchange interaction between the analytes and chiral stationary phase. It was observed that in addition to beta-cyclodextrin cavity, the electrostatic interaction exhibited pronounced influence on the enantioseparation of acidic analytes. Acidic enantiomers (ibuprofen and naproxen) could be separated with separation factor (alpha) values up to 1.08 and a maximum separation efficiency of 86000 plates/m could be achieved.

  15. Recent trends in ultra-fast HPLC: new generation superficially porous silica columns.

    PubMed

    Ali, Imran; Al-Othman, Zeid A; Nagae, Norikaju; Gaitonde, Vinay D; Dutta, Kamlesh K

    2012-12-01

    New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra-fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C(8), C(18), RP-Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP-aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5-μm-thick of outer porous layer having 90 Å pore sizes and 150 m(2)/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  17. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    PubMed

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-01-30

    A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection.

    PubMed

    Nakamoto, Akihiro; Nishida, Manami; Saito, Takeshi; Kishiyama, Izumi; Miyazaki, Shota; Murakami, Katsunori; Nagao, Masataka; Namura, Akira

    2010-02-19

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d(5) was used as an internal standard. The linear ranges were 0.01-5.0 microg mL(-1) for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 microg mL(-1) for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation > or = 0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 microg mL(-1) of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio > or = 3) in urine was 5 ng mL(-1) for MA and MDMA and 10 ng mL(-1) for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    NASA Astrophysics Data System (ADS)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  1. Monolithic metal-organic framework MIL-53(Al)-polymethacrylate composite column for the reversed-phase capillary liquid chromatography separation of small aromatics.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2016-03-01

    A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enantiomeric separation by capillary electrochromatography on a sulfated poly β-cyclodextrin modified silica-based monolith.

    PubMed

    Yuan, Ruijuan; Wang, Yan; Ding, Guosheng

    2010-01-01

    A sulfated poly β-cyclodextrin (SPCD) modified silica-based monolithic column was prepared for enantiomeric separation. First, 2-hydroxy-3-allyloxy-propyl-β-cyclodextrin (allyl-β-CD) was bonded onto a bifunctional reagent 3-(methacryloxy)propyltriethoxysilane (γ-MAPS) modified silica-based monolith through radical polymerization; the column was then sulfated with chlorosulfonic acid. The SPCD chiral stationary phase resolved the boring problem associated with desalting when sulfated CDs were synthesized to act as chiral additives. The inorganic salt in the column introduced during the sulfating process could be easily removed by washing the column with water for some time. Chiral compounds investigated were successfully resolved into their enantiomers on the SPCD modified monolith in the capillary electrochromatography (CEC) mode. Due to the existence of the -SO(3)H group, electrosmotic flow (EOF) was obviously increased, and all of the separations could be carried out in 20 min with only a minor loss in the column efficiency and resolution.

  3. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    PubMed

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-05

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evaluation of 1.0 mm i.d. column performances on ultra high pressure liquid chromatography instrumentation.

    PubMed

    Lestremau, François; Wu, Di; Szücs, Roman

    2010-07-23

    The present study focuses on the evaluation of 1.0 mm i.d. (internal diameter) columns on a commercial Ultra-High Pressure system. These systems have been developed specifically to operate columns with small volumes, typically 2.1 mm i.d., by reducing extra-column volume dispersion. The use of columns with smaller i.d. results in a reduced solvent consumption and required sample volume. The evaluation of the columns was carried out with samples containing neutral and pharmaceutical compounds. In isocratic mode, the extra-column volume produced additional band broadening leading to poor performances compared to equivalent 2.1 mm i.d. columns. By increasing the length of the column, the influence of the extra-column bandspreading could be reduced and 75,000 plates were obtained when four columns were coupled. In gradient mode, the effect of the extra-column contribution on efficiency was limited and about 80% of the performance of the 2.1 mm i.d. columns was obtained. Optimum conditions in gradient mode were further investigated by changing flow rate, gradient time and column length. A different approach of the calculation of peak capacity was also considered for the comparison of the influence of these different parameters. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, Sarah; Moriarty, T.; hide

    2007-01-01

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of approx.1 eV. For the last several years, research has been conducted by a number of organizations to develop approx.1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) approx.1- eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1- eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm2) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include

  6. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties.

    PubMed

    Li, Haibin; Liu, Chusheng; Wang, Qiqin; Zhou, Haibo; Jiang, Zhengjin

    2016-10-21

    In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of

  8. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode

    DOE PAGES

    Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...

    2014-11-04

    A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate- co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation ofmore » surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm 2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm 2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less

  9. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  10. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  11. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation.

    PubMed

    Liu, Chao; Li, Zhou; Hajagos, Tibor Jacob; Kishpaugh, David; Chen, Dustin Yuan; Pei, Qibing

    2017-06-27

    Spectroscopic gamma-photon detection has widespread applications for research, defense, and medical purposes. However, current commercial detectors are either prohibitively expensive for wide deployment or incapable of producing the characteristic gamma photopeak. Here we report the synthesis of transparent, ultra-high-loading (up to 60 wt %) Cd x Zn 1-x S/ZnS core/shell quantum dot/polymer nanocomposite monoliths for gamma scintillation by in situ copolymerization of the partially methacrylate-functionalized quantum dots in a monomer solution. The efficient Förster resonance energy transfer of the high-atomic-number quantum dots to lower-band-gap organic dyes enables the extraction of quantum-dot-borne excitons for photon production, resolving the problem of severe light yield deterioration found in previous nanoparticle-loaded scintillators. As a result, the nanocomposite scintillator exhibited simultaneous improvements in both light yield (visible photons produced per MeV of gamma-photon energy) and gamma attenuation. With these enhancements, a 662 keV Cs-137 gamma photopeak with 9.8% resolution has been detected using a 60 wt % quantum-dot nanocomposite scintillator, demonstrating the potential of such a nanocomposite system in the development of high-performance low-cost spectroscopic gamma detectors.

  13. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography.

    PubMed

    Abia, Jude A; Mriziq, Khaled S; Guiochon, Georges A

    2009-04-10

    An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6mm C18 bonded silica-based monolithic column, a 150 mm x 4.6mm column packed with 2.7 microm porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6mm column packed with 3 microm fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns.

  14. Ultra high-performance liquid chromatography of porphyrins in clinical materials: column and mobile phase selection and optimisation.

    PubMed

    Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Jones, Donald J L

    2012-06-01

    Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 µm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 µm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 µm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 µm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 µm average particle size materials for clinical sample analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  15. The synthesis of weak acidic type hybrid monolith via thiol-ene click chemistry and its application in hydrophilic interaction chromatography.

    PubMed

    Zeng, Jiao; Liu, Shengquan; Wang, Menglin; Yao, Shouzhuo; Chen, Yingzhuang

    2017-05-01

    In this work, a porous structure and good permeability monolithic column was polymerized in UV transparent fused-silica capillaries via photo-initiated thiol-ene click polymerization of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane (TMTVS), pentaerythritol tetra(3-mercaptopropionate)(PETMP), itaconic acid, respectively, in the presence of porogenic solvents (tetrahydrofuranand methanol) and an initiator (2,2-dimethoxy-2-phenylacetophenone) (DMPA) within 30 min. The physical properties of this monolith were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nitrogen adsorption/desorption measurements. For an overall evaluation of the monolith in chromatographic application, separations of polycyclic aromatic hydrocarbons (PAHs), phenols, amides and bases were carried out. The column efficiency of this monolith could be as high as 112 560 N/m. It also possesses a potential application in fabrication of monoliths with high efficiency for c-LC. In addition, the resulting monolithic column demonstrated the potential use in analysis of environment waters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation of a poly(styrene-co-DPHA-co-EDMA) monolith and its application for the separation of small molecules and biomacromolecules by HPLC.

    PubMed

    Wang, Xixi; Li, Xueying; Jiang, Xiaoya; Dong, Peipei; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan

    2017-04-01

    A high performance liquid chromatography (HPLC) monolithic column was prepared by redox polymerization of styrene, dipentaerythritol hexaacrylate (DPHA) and ethylene glycol dimethacrylate (EDMA) in a porogen system of n-propanol/PEG400. The monolith was characterized by scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and the results indicated that the monolith had a stable and homogeneous structure. The porosity of the monolithic column was 75.86% and average pore diameter was 2.1µm. Several alkylbenzenes and anilines were used to evaluate the column performance in terms of hydrophobicity. Then the column was applied to separate small molecules including phytosterol and BSA tryptic digest. Finally, five standard proteins, egg white and plasma were separated respectively and high separation capacity of protein was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths.

    PubMed

    Guo, Jialiang; Xiao, Yuan; Lin, Yuanjing; Zhang, Qiaoxuan; Chang, Yiqun; Crommen, Jacques; Jiang, Zhengjin

    2016-05-15

    In order to investigate the effect of the linking spacer on the enantioseparation ability of β-cyclodextrin (β-CD) functionalized polymeric monoliths, three β-CD-functionalized organic polymeric monoliths with different spacer lengths were prepared by using three amino-β-CDs, i.e. mono-6-amino-6-deoxy-β-CD, mono-6-ethylenediamine-6-deoxy-β-CD, mono-6-hexamethylenediamine-6-deoxy-β-CD, as starting materials. These amino-β-CDs reacted with glycidyl methacrylate to produce functional monomers which were then copolymerized with ethylene dimethacrylate. The enantioseparation ability of the three monoliths was evaluated using 14 chiral acidic compounds, including mandelic acid derivatives, nonsteroidal anti-inflammatory drugs, N-derivatized amino acids, and chiral herbicides under optimum chromatographic conditions. Notably, the poly(GMA-NH2-β-CD-co-EDMA) column provides higher enantioresolution and enantioselectivity than the poly(GMA-EDA-β-CD-co-EDMA) and poly(GMA-HDA-β-CD-co-EDMA) columns for most tested chiral analytes. Furthermore, the enantioseparation performance of triazole-linker containing monoliths was compared to that of ethylenediamine-linker containing monoliths. The results indicate that the enantioselectivity of β-CD monolithic columns is strongly related to the length and type of spacer tethering β-CD to the polymeric support. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Short-Term Prospective Clinical Evaluation of Monolithic and Partially Veneered Zirconia Single Crowns.

    PubMed

    Bömicke, Wolfgang; Rammelsberg, Peter; Stober, Thomas; Schmitter, Marc

    2017-02-01

    The purpose of this study was to prospectively evaluate the short-term clinical performance and esthetics of monolithic and partially (i.e., facially) veneered zirconia single crowns (MZC and PZC, respectively). Between September 2011 and June 2013, 68 participants received 90 MZCs and 72 PZCs. Clinical study documentation was performed at crown cementation (baseline), at the 6-month follow-up, and then yearly thereafter using standardized report forms. Eight participants with 14 single crowns (eight MZCs and six PZCs) dropped out during clinical follow-up. Thus, 60 participants (28 male, mean age 62.5 ± 13.1 years) fitted with 82 MZCs and 66 PZCs were analyzed in February 2016 (Kaplan-Meier survival; mean observation time for the restorations 35.1 ± 6.3 months). Descriptive statistics were calculated for participants' and dentists' esthetic ratings on a numerical rating scale from 0 to 10 (0 = unacceptable color and shape; 10 = excellent color and shape). Complications were predominantly biological in nature. One PZC was affected by minor chipping. Cumulative 3-year failure-free survival was 98.5% (standard error (SE), 1.5%) for both MZCs and PZCs. Three-year cumulative complication-free survival (success) was 93.6% (SE 2.8%) for MZCs and 95.5% (SE 2.6%) for PZCs. Three-year cumulative fracture-free survival was 100% for MZCs and 98.5% (SE 1.5%) for PZCs. Crowns of both types were awarded high esthetic scores by participants and dentists. Monolithic and partially veneered zirconia crowns can be used clinically with excellent short-term survival and success and without compromising esthetic appearance. Longer-term follow-up is, however, desirable. During the observation time, both monolithic and partially veneered zirconia crowns showed an outstanding low technical complication rate: only one minor chipping and three losses of retention were observed. Additionally, esthetics was excellent. Based on these results the clinical use of this kind of

  19. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    PubMed

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All

  20. Ultra-Short-Term Heart Rate Variability is Sensitive to Training Effects in Team Sports Players.

    PubMed

    Nakamura, Fabio Y; Flatt, Andrew A; Pereira, Lucas A; Ramirez-Campillo, Rodrigo; Loturco, Irineu; Esco, Michael R

    2015-09-01

    The aim of this study was to test the possibility of the ultra-short-term lnRMSSD (measured in 1-min post-1-min stabilization period) to detect training induced adaptations in futsal players. Twenty-four elite futsal players underwent HRV assessments pre- and post-three or four weeks preseason training. From the 10-min HRV recording period, lnRMSSD was analyzed in the following time segments: 1) from 0-5 min (i.e., stabilization period); 2) from 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and; 3) from 5-10 min (i.e., criterion period). The lnRMSSD was almost certainly higher (100/00/00) using the magnitude-based inference in all periods at the post- moment. The correlation between changes in ultra-short-term lnRMSSD (i.e., 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min) and lnRMSSDCriterion ranged between 0.45-0.75, with the highest value (p = 0.75; 90% CI: 0.55 - 0.85) found between ultra-short-term lnRMDSSD at 1-2 min and lnRMSSDCriterion. In conclusion, lnRMSSD determined in a short period of 1-min is sensitive to training induced changes in futsal players (based on the very large correlation to the criterion measure), and can be used to track cardiac autonomic adaptations. Key pointsThe ultra-short-term (1 min) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD) is sensitive to training effects in futsal playersThe ultra-short-term lnRMSSD may simplify the assessment of the cardiac autonomic changes in the field compared to the traditional and lengthier (10 min duration) analysisCoaches are encouraged to implement the ultra-short-term heart rate variability in their routines to monitor team sports athletes.

  1. Ultra-Short-Term Heart Rate Variability is Sensitive to Training Effects in Team Sports Players

    PubMed Central

    Nakamura, Fabio Y.; Flatt, Andrew A.; Pereira, Lucas A.; Ramirez-Campillo, Rodrigo; Loturco, Irineu; Esco, Michael R.

    2015-01-01

    The aim of this study was to test the possibility of the ultra-short-term lnRMSSD (measured in 1-min post-1-min stabilization period) to detect training induced adaptations in futsal players. Twenty-four elite futsal players underwent HRV assessments pre- and post-three or four weeks preseason training. From the 10-min HRV recording period, lnRMSSD was analyzed in the following time segments: 1) from 0-5 min (i.e., stabilization period); 2) from 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and; 3) from 5-10 min (i.e., criterion period). The lnRMSSD was almost certainly higher (100/00/00) using the magnitude-based inference in all periods at the post- moment. The correlation between changes in ultra-short-term lnRMSSD (i.e., 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min) and lnRMSSDCriterion ranged between 0.45-0.75, with the highest value (p = 0.75; 90% CI: 0.55 – 0.85) found between ultra-short-term lnRMDSSD at 1-2 min and lnRMSSDCriterion. In conclusion, lnRMSSD determined in a short period of 1-min is sensitive to training induced changes in futsal players (based on the very large correlation to the criterion measure), and can be used to track cardiac autonomic adaptations. Key points The ultra-short-term (1 min) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD) is sensitive to training effects in futsal players The ultra-short-term lnRMSSD may simplify the assessment of the cardiac autonomic changes in the field compared to the traditional and lengthier (10 min duration) analysis Coaches are encouraged to implement the ultra-short-term heart rate variability in their routines to monitor team sports athletes PMID:26336347

  2. Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading

    NASA Astrophysics Data System (ADS)

    Ketiyot, Rattapon; Hansapinyo, Chayanon

    2018-04-01

    An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.

  3. Determination of nitrite, nitrate, bromide, and iodide in seawater by ion chromatography with UV detection using dilauryldimethylammonium-coated monolithic ODS columns and sodium chloride as an eluent.

    PubMed

    Ito, Kazuaki; Nomura, Ryosuke; Fujii, Takuya; Tanaka, Masahito; Tsumura, Tomoaki; Shibata, Hiroyuki; Hirokawa, Takeshi

    2012-11-01

    A method was developed for determination of inorganic anions, including nitrite (NO(2)(-)), nitrate (NO(3)(-)), bromide (Br(-)), and iodide (I(-)), in seawater by ion chromatography (IC). The IC system used two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50 × 4.6 mm i.d. and 100 × 4.6 mm i.d.) connected in series for separation of the ions. Aqueous NaCl (0.5 mol/L; flow rate, 3 mL/min) containing 5 mmol/L phosphate buffer (pH 5) was used as the eluent, and detection was with a UV detector at 225 nm. The monolithic ODS columns were coated and equilibrated with a 1-mmol/L DDAB solution (in H(2)O/methanol, 90:10 v/v). The hydrophilic ions (NO(2)(-), NO(3)(-), and Br(-)) were separated within 3 min and the retention time of I(-) was 16 min. No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35 ‰ artificial seawater. The detection limits were 0.6 μg/L for NO(2)(-), 1.1 μg/L for NO(3)(-), 70 μg/L for Br(-), and 1.6 μg/L for I(-) with a 200-μL sample injection. The performance of the coated columns was maintained without addition of DDAB in the eluent. The IC system was successfully applied to real seawater samples with recovery rates of 94-108 % for all ions.

  4. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds.

    PubMed

    Zhang, Bingyu; Lei, Xiaoyun; Deng, Lijun; Li, Minsheng; Yao, Sicong; Wu, Xiaoping

    2018-06-06

    An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF 2 ) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type. Graphical Abstract Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF 2 ) ionic liquid for use in capillary electrochromatography.

  5. Medical applications of ultra-short pulse lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment communitymore » perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.« less

  6. Optoelectronic devices toward monolithic integration

    NASA Astrophysics Data System (ADS)

    Ghergia, V.

    1992-12-01

    Starting from the present state of tl art of discrete devices up to the on going realization of monolithic semicorxtuctor integrated prototypes an overview ofoptoelectronic devices for telecom applications is given inchiding a short classification of the different kind of integrated devices. On the future perspective of IBCN distribution network some economica of hybrid and monolithic forms of integration are attempted. lnaflyashoitpresentationoftheactivitiesperformedintbefieldofmonolithic integration by EEC ESPR1T and RACE projects is reported. 1.

  7. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  8. Less common applications of monoliths III. Gas chromatography

    PubMed Central

    Svec, Frantisek; Kurganov, Alexander A.

    2008-01-01

    Porous polymer monoliths emerged about two decades ago. Despite this short time, they are finding applications in a variety of fields. In addition to the most common and certainly best known use of this new category of porous media as stationary phases in liquid chromatography, monolithic materials also found their applications in other areas. This review article focuses on monoliths in capillaries designed for separations in gas chromatography. PMID:17645884

  9. Affinity monolith-integrated poly(methyl methacrylate) microchips for on-line protein extraction and capillary electrophoresis.

    PubMed

    Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T

    2008-07-01

    Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with eight reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in a porogenic solvent consisting of 70% 1-dodecanol and 30% cyclohexanol. Antifluorescein isothiocyanate was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of fluorescein isothiocyanate (FITC)-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis.

  10. Affinity Monolith-Integrated Poly(methyl Methacrylate) Microchips for On-Line Protein Extraction and Capillary Electrophoresis

    PubMed Central

    Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T.

    2008-01-01

    Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with 8 reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene dimethacrylate in a porogenic solvent consisting of 70% dodecanol and 30% hexanol. Anti-fluorescein isothiocyanate (FITC) was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of FITC-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis. PMID:18479142

  11. Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications

    PubMed Central

    Moreno-Castilla, Carlos; Pérez-Cadenas, Agustín F.

    2010-01-01

    Honeycomb monoliths consist of a large number of parallel channels that provide high contact efficiencies between the monolith and gas flow streams. These structures are used as adsorbents or supports for catalysts when large gas volumes are treated, because they offer very low pressure drop, short diffusion lengths and no obstruction by particulate matter. Carbon-based honeycomb monoliths can be integral or carbon-coated ceramic monoliths, and they take advantage of the versatility of the surface area, pore texture and surface chemistry of carbon materials. Here, we review the preparation methods of these monoliths, their characteristics and environmental applications.

  12. Development of a γ-alumina- nanoparticle-functionalized porous polymer monolith for the enrichment of Sudan dyes in red wine samples.

    PubMed

    Li, Wanjun; Zhou, Xiao; Ye, Juanjuan; Jia, Qiong

    2013-10-01

    Monolithic materials were synthesized in capillaries by in situ polymerization with N-isopropylacrylamide, glycidyl methacrylate, and ethylene dimethacrylate as the monomers, and methanol and PEG as the porogens. With γ-alumina nanoparticles attached to the surface of the porous monolithic column via epoxide groups, a novel polymer monolith microextraction (PMME) material was prepared with a good mechanical stability and a high extraction capacity. SEM and X-ray photoelectron spectroscopy were employed to characterize the modified monolithic column, demonstrating that γ-alumina nanoparticles were effectively functionalized onto the monolithic column. In addition, a new method was developed for the analysis of Sudan I-IV dyes using PMME coupled with HPLC. In order to obtain the optimum extraction efficiency, the PMME conditions including desorption solvent type, sample pH, sample volume, sample flow rate, and eluent flow rate were investigated. Under the optimum conditions, we obtained acceptable linearities, low LODs, and good intra- and interday RDSs. When applied to the determination of Sudan I-IV dyes in red wine samples, satisfactory recoveries were obtained in the range of 84.0-115.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Automatic and integrated micro-enzyme assay (AIμEA) platform for highly sensitive thrombin analysis via an engineered fluorescence protein-functionalized monolithic capillary column.

    PubMed

    Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo

    2015-04-21

    Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.

  14. Monolithic stationary phases with a longitudinal gradient of porosity.

    PubMed

    Urban, Jiří; Hájek, Tomáš; Svec, Frantisek

    2017-04-01

    The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer-based monolithic stationary phases. Segments of five columns hypercrosslinked for 30-360 min were coupled via zero-volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small-molecule alkylbenzenes and high-molar-mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size-exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two-dimensional liquid chromatography of polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler.

    PubMed

    Dai, Daoxin; Bowers, John E

    2011-09-12

    A novel ultra-short polarization beam splitter (PBS) based on a bent directional coupler is proposed by utilizing the evanescent coupling between two bent optical waveguides with different core widths. For the bent directional coupler, there is a significant phase-mismatch for TE polarization while the phase-matching condition is satisfied for TM polarization. Therefore, the TM polarized light can be coupled from the narrow input waveguide to the adjacent wide waveguide while the TE polarization goes through the coupling region without significant coupling. An ultra-short (<10 μm-long) PBS is designed based on silicon-on-insulator nanowires and the length of the bent coupling region is as small as 4.5 μm while the gap width is chosen as 200 nm (large enough to simplify the fabrication). Numerical simulations show that the present PBS has a good fabrication tolerance for the variation of the waveguide width (more than ± 60 nm) and a very broad band (~200 nm) for an extinction ratio of >10 dB.

  16. Development of radiation tolerant monolithic active pixel sensors with fast column parallel read-out

    NASA Astrophysics Data System (ADS)

    Koziel, M.; Dorokhov, A.; Fontaine, J.-C.; De Masi, R.; Winter, M.

    2010-12-01

    Monolithic active pixel sensors (MAPS) [1] (Turchetta et al., 2001) are being developed at IPHC—Strasbourg to equip the EUDET telescope [2] (Haas, 2006) and vertex detectors for future high energy physics experiments, including the STAR upgrade at RHIC [3] (T.S. Collaboration, 2005) and the CBM experiment at FAIR/GSI [4] (Heuser, 2006). High granularity, low material budget and high read-out speed are systematically required for most applications, complemented, for some of them, with high radiation tolerance. A specific column-parallel architecture, implemented in the MIMOSA-22 sensor, was developed to achieve fast read-out MAPS. Previous studies of the front-end architecture integrated in this sensor, which includes in-pixel amplification, have shown that the fixed pattern noise increase consecutive to ionizing radiation can be controlled by means of a negative feedback [5] (Hu-Guo et al., 2008). However, an unexpected rise of the temporal noise was observed. A second version of this chip (MIMOSA-22bis) was produced in order to search for possible improvements of the radiation tolerance, regarding this type of noise. In this prototype, the feedback transistor was tuned in order to mitigate the sensitivity of the pixel to ionizing radiation. The performances of the pixels after irradiation were investigated for two types of feedback transistors: enclosed layout transistor (ELT) [6] (Snoeys et al., 2000) and "standard" transistor with either large or small transconductance. The noise performance of all test structures was studied in various conditions (expected in future experiments) regarding temperature, integration time and ionizing radiation dose. Test results are presented in this paper. Based on these observations, ideas for further improvement of the radiation tolerance of column parallel MAPS are derived.

  17. Preparation of acryloyl β-cyclodextrin-silica hybrid monolithic column and its application in pipette tip solid-phase extraction and HPLC analysis of methyl parathion and fenthion.

    PubMed

    Chen, Ling; Dang, Xueping; Ai, Youhong; Chen, Huaixia

    2018-05-07

    An acryloyl β-cyclodextrin-silica hybrid monolithic column for pipette tip solid-phase extraction and high-performance liquid chromatography determination of methyl parathion and fenthion have been prepared through a sol-gel polymerization method. The synthesis conditions, including the volume of cross-linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid-phase extraction with high-performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15-400 μg/kg for methyl parathion and 20-400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Ultra short laser pulse modification of wave guides

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arkadi; Ashkenasi, David

    2003-11-01

    The high peak powers of ultra short (ps and sub-ps) pulsed lasers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has shown the potential of ultra short laser processing. In this study, the micro structuring of bulk transparent media was used to modify fused silica and especially the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress to overcome the barrier for enhanced optical out-coupling. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the subsurface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  19. Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column.

    PubMed

    Rahim, A A; Nofrizal, S; Saad, Bahruddin

    2014-03-15

    A rapid reversed-phase high performance liquid chromatographic method using a monolithic column for the determination of eight catechin monomers and caffeine was developed. Using a mobile phase of water:acetonitrile:methanol (83:6:11) at a flow rate of 1.4 mL min(-1), the catechins and caffeine were isocratically separated in about 7 min. The limits of detection and quantification were in the range of 0.11-0.29 and 0.33-0.87 mg L(-1), respectively. Satisfactory recoveries were obtained (94.2-105.2 ± 1.8%) for all samples when spiked at three concentrations (5, 40 and 70 mg L(-1)). In combination with microwave-assisted extraction (MAE), the method was applied to the determination of the catechins and caffeine in eleven tea samples (6 green, 3 black and 2 oolong teas). Relatively high levels of caffeine were found in black tea, but higher levels of the catechins, especially epigallocatechin gallate (EGCG) were found in green teas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Determination of azithromycin residue in pork using a molecularly imprinted monolithic microcolumn coupled to liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Tong; Yang, Haicui; Jin, Zhen; Liu, Qingying; Song, Xuqin; He, Limin; Fang, Binghu; Meng, Chenying

    2016-04-01

    Using spiramycin as a dummy template, a molecularly imprinted polymer monolithic micro-column with high selection to azithromycin was prepared in a micropipette tip. The imprinting factor of the monolithic micro-column prepared was approximately 2.67 and the morphological structure of the polymers was characterized by scanning electron microscopy. A simple, sensitive, and reproducible method based on the imprinted monolithic micro-column coupled to liquid chromatography with tandem mass spectrometry was developed for determining the residues of azithromycin in pork. Pork samples were extracted with acetonitrile, cleaned up under the optimal monolithic micro-column conditions, and analyzed using liquid chromatography with tandem mass spectrometry in the multiple reaction monitoring mode. The assay exhibited a linear dynamic range of 0.50-50 μg/L with the correlation coefficient (r(2) ) above 0.99. In the three spiking levels of 0.50, 1.0, and 10 μg/kg, the average recoveries of azithromycin from pork samples were between 85.8 and 96.5% with a relative standard deviation below 10%. The limit of detection and limit of quantitation were 0.03 and 0.1 μg/kg, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enrichment of Glycoproteins using Nano-scale Chelating Con A Monolithic Capillary Chromatography

    PubMed Central

    Feng, Shun; Yang, Na; Pennathur, Subramaniam; Goodison, Steve; Lubman, David M.

    2009-01-01

    Immobilized lectin chromatography can be employed for glycoprotein enrichment, but commonly used columns have limitations of yield and resolution. In order to improve efficiency and to make the technique applicable to minimal sample material, we have developed a nano-scale chelating Concanavalin A (Con A) monolithic capillary prepared using GMA-EDMA (glycidyl methacrylate–co-ethylene dimethacrylate) as polymeric support. Con A was immobilized on Cu(II)-charged iminodiacetic acid (IDA) regenerable sorbents by forming a IDA:Cu(II):Con A sandwich affinity structure that has high column capacity as well as stability. When compared with conventional Con A lectin chromatography, the monolithic capillary enabled the better reproducible detection of over double the number of unique N-glycoproteins in human urine samples. Utility for analysis of minimal biological samples was confirmed by the successful elucidation of glycoprotein profiles in mouse urine samples at the microliter scale. The improved efficiency of the nano-scale monolithic capillary will impact the analysis of glycoproteins in complex biological samples, especially where only limited material may be available. PMID:19366252

  2. Novel hybrid columns made of ultra-high performance concrete and fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zohrevand, Pedram

    The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column

  3. DEVELOPMENT OF AN AFFINITY SILICA MONOLITH CONTAINING HUMAN SERUM ALBUMIN FOR CHIRAL SEPARATIONS

    PubMed Central

    Mallik, Rangan; Hage, David S.

    2008-01-01

    An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3- to 2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: D/L-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase. PMID:17475436

  4. Ultra-short silicon MMI duplexer

    NASA Astrophysics Data System (ADS)

    Yi, Huaxiang; Huang, Yawen; Wang, Xingjun; Zhou, Zhiping

    2012-11-01

    The fiber-to-the-home (FTTH) systems are growing fast these days, where two different wavelengths are used for upstream and downstream traffic, typically 1310nm and 1490nm. The duplexers are the key elements to separate these wavelengths into different path in central offices (CO) and optical network unit (ONU) in passive optical network (PON). Multimode interference (MMI) has some benefits to be a duplexer including large fabrication tolerance, low-temperature dependence, and low-polarization dependence, but its size is too large to integrate in conventional case. Based on the silicon photonics platform, ultra-short silicon MMI duplexer was demonstrated to separate the 1310nm and 1490nm lights. By studying the theory of self-image phenomena in MMI, the first order images are adopted in order to keep the device short. A cascaded MMI structure was investigated to implement the wavelength splitting, where both the light of 1310nm and 1490nm was input from the same port, and the 1490nm light was coupling cross the first MMI and output at the cross-port in the device while the 1310nm light was coupling through the first and second MMI and output at the bar-port in the device. The experiment was carried on with the SOI wafer of 340nm top silicon. The cascaded MMI was investigated to fold the length of the duplexer as short as 117μm with the extinct ratio over 10dB.

  5. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.

    PubMed

    Yang, Shengchao; Ye, Fanggui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2015-04-21

    In this study, HKUST-1 was synthesized in situ on the porous polymer monolith as the stationary phase for capillary liquid chromatography (cLC). The unique carboxyl functionalized poly(methacrylic acid-co-ethylene dimethacrylate) (poly(MAA-co-EDMA)) monolith was used as a support to directly grow HKUST-1 by a controlled layer-by-layer self-assembly strategy. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectroscopy of the resulting HKUST-1-poly(MAA-co-EDMA) monoliths indicated that HKUST-1 was successfully grafted onto the pore surface of the poly(MAA-co-EDMA) monolith. The column performance of HKUST-1-poly(MAA-co-EDMA) monoliths for the separation of various small molecules, such as benzenediols, xylenes, ethylbenzenes, and styrenes, was evaluated. The chromatographic performance was found to improve with increasing HKUST-1 density, and the column efficiencies and resolutions of HKUST-1-poly(MAA-co-EDMA) monoliths were 18 320-19 890 plates m(-1) and 1.62-6.42, respectively, for benzenediols. The HKUST-1-poly(MAA-co-EDMA) monolith displayed enhanced resolution for the separation of positional isomers when compared to the traditional C18 and HKUST-1 incorporated polymer monoliths. Hydrophobic, π-π, and hydrogen bonding interactions within the HKUST-1-poly(MAA-co-EDMA) monolith were observed in the separation of small molecules. The results showed that the HKUST-1-poly(MAA-co-EDMA) monoliths are promising stationary phases for cLC.

  6. Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Tang, Shouwan; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Zou, Hanfa

    2013-08-02

    An organic-inorganic hybrid monolith was prepared by a single-step ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with poly(ethylenimine) (PEI). The obtained hybrid monoliths possessed high ordered 3D skeletal microstructure with dual retention mechanism that exhibits reversed-phase (RP) mechanism under polar mobile phase and hydrophilic-interaction liquid chromatography (HILIC) retention mechanism under less polar mobile phase. The high column efficiencies of 110,000N/m can be achieved for separation of alkylbenzenes in capillary reversed-phase liquid chromatography (cLC). Due to the robust property of hybrid monolith and the rich primary and secondary amino groups on its surface, the resulting hybrid monolith was easily modified with γ-gluconolactone and physically coated with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), respectively. The former was successfully applied for HILIC separation of neutral, basic and acidic polar compounds as well as small peptides, and the latter for enantioseparation of racemates in cLC. The high column efficiencies were achieved in all of those separations. These results demonstrated that the hybrid monolith (POSS-PEI) possessed high stability and good surface tailorbility, potentially being applied for other research fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Short-focus and ultra-wide-angle lens design in wavefront coding

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Huang, Yuanqing; Xiong, Feibing

    2016-10-01

    Wavefront coding (WFC) is a hybrid technology designed to increase depth of field of conventional optics. The goal of our research is to apply this technology to the short-focus and ultra-wide-angle lens which suffers from the aberration related with large field of view (FOV) such as coma and astigmatism. WFC can also be used to compensate for other aberration which is sensitive to the FOV. Ultra-wide-angle lens has a little depth of focus because it has small F number and short-focus. We design a hybrid lens combing WFC with the ultra-wide-angle lens. The full FOV and relative aperture of the final design are up to170° and 1/1.8 respectively. The focal length is 2 mm. We adopt the cubic phase mask (CPM) in the design. The conventional design will have a wide variation of the point spread function (PSF) across the FOV and it is very sensitive with the variation of the FOV. The new design we obtain the PSF is nearly invariant over the whole FOV. But the result of the design also shows the little difference between the horizontal and vertical length of the PSF. We analyze that the CPM is non-symmetric phase mask and the FOV is so large, which will generate variation in the final image quality. For that reason, we apply a new method to avoid that happened. We try to make the rays incident on the CPM with small angle and decrease the deformation of the PSF. The experimental result shows the new method to optimize the CPM is fit for the ultra-wide-angle lens. The research above will be a helpful instruction to design the ultra-wide-angle lens with WFC.

  8. A weak cation-exchange monolith as stationary phase for the separation of peptide diastereomers by CEC.

    PubMed

    Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E

    2011-01-01

    A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the separation of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte separation was achieved using mobile phases consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile phase due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile phase also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile phase. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary phase contribute to the CEC separations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chiral recognition ability of an (S)-naproxen- imprinted monolith by capillary electrochromatography.

    PubMed

    Xu, Yan-Li; Liu, Zhao-Sheng; Wang, He-Fang; Yan, Chao; Gao, Ru-Yu

    2005-02-01

    The racemic naproxen was selectively recognized by capillary electrochromatography (CEC) on an (S)-naproxen-imprinted monolith, which was prepared by an in situ thermal-initiated polymerization. The recognition selectivity of a selected monolith strictly relied on the CEC conditions involved. The factors that influence the imprinting selectivity as well as the electroosmotic flow (EOF), including the applied voltage, organic solvent, salt concentration and pH value of the buffer, column temperature, and surfactant modifiers were systematically studied. Once the column was prepared, the experiment results showed that the successful chiral recognition was dependent on CEC variables. For example: the recognition could be observed in acetonitrile and ethanol electrolytes, while methanol and dimethyl sulfoxide (DMSO) electrolytes had no chiral recognition ability. The buffer with pH values of 2.6 or 3.0 at a higher salt concentration had chiral recognition ability. Column temperatures of 25-35 degrees C were optimal. Three surfactants, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyoxyethylene sorbitan monolaurate (Tween 20), can improve the recognition. Baseline resolution was obtained under optimized conditions and the column efficiency of the later eluent (S)-naproxen was 90 000 plates/m.

  10. Adequacy of the Ultra-Short-Term HRV to Assess Adaptive Processes in Youth Female Basketball Players.

    PubMed

    Nakamura, Fabio Y; Pereira, Lucas A; Cal Abad, Cesar C; Cruz, Igor F; Flatt, Andrew A; Esco, Michael R; Loturco, Irineu

    2017-02-01

    Heart rate variability has been widely used to monitor athletes' cardiac autonomic control changes induced by training and competition, and recently shorter recording times have been sought to improve its practicality. The aim of this study was to test the agreement between the (ultra-short-term) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD - measured in only 1 min post-1 min stabilization) and the criterion lnRMSSD (measured in the last 5 min out of 10 min of recording) in young female basketball players. Furthermore, the correlation between training induced delta change in the ultra-short-term lnRMSSD and the criterion lnRMSSD was calculated. Seventeen players were assessed at rest pre- and post-eight weeks of training. Trivial effect sizes (-0.03 in the pre- and 0.10 in the post- treatment) were found in the comparison between the ultra-short-term lnRMSSD (3.29 ± 0.45 and 3.49 ± 0.35 ms, in the pre- and post-, respectively) and the criterion lnRMSSD (3.30 ± 0.40 and 3.45 ± 0.41 ms, in the pre- and post-, respectively) (intraclass correlation coefficient = 0.95 and 0.93). In both cases, the response to training was significant, with Pearson's correlation of 0.82 between the delta changes of the ultra-short-term lnRMSSD and the criterion lnRMSSD. In conclusion, the lnRMSSD can be calculated within only 2 min of data acquisition (the 1 st min discarded) in young female basketball players, with the ultra-short-term measure presenting similar sensitivity to training effects as the standard criterion measure.

  11. Behaviour of axially and eccentrically loaded short columns reinforced with GFRP bars

    NASA Astrophysics Data System (ADS)

    Sreenath, S.; Balaji, S.; Saravana Raja Mohan, K.

    2017-07-01

    The corrosion of steel reinforcing bars is a predominant factor in limiting the life expectancy of Reinforced Cement Concrete (RCC) structures. Corrosion resistant Fibre Reinforced Polymer (FRP) bars can be an effective alternative to steel bars in this context. Recent investigations reported the flexural behaviour of RCC beams reinforced with Glass Fibre Reinforced Polymer (GFRP) bars. This study is meant to investigate the suitability of Sand Coated GFRP reinforcement bars in short square columns which when loaded axially and loaded with a minimum eccentricity. Standard tests to assess mechanical properties of GFRP bars and pullout test to quantify the bond strength between the bars and concrete were conducted. GFRP reinforced column specimens with a cross-sectional dimension of 100mm X 100mm and of length 1000mm were cast and tested under axial and eccentric loading. The assessed load carrying capacity was compared with that of conventional steel reinforced columns of the same size. The yield load and ultimate load at failure withstood by the steel reinforced columns were considerably more than that of GFRP reinforced columns. The energy absorption capacity of GFRP reinforced columns was also poor compared to steel reinforced columns. Both the columns exhibited nearly the same ductile behaviour. Hence GFRP reinforcements are not recommendable for compression members.

  12. Gravitational Waves From Ultra Short Period Exoplanets

    NASA Astrophysics Data System (ADS)

    Cunha, J. V.; Silva, F. E.; Lima, J. A. S.

    2018-06-01

    In the last two decades, thousands of extrasolar planets were discovered based on different observational techniques, and their number must increase substantially in virtue of the ongoing and near-future approved missions and facilities. It is shown that interesting signatures of binary systems from nearby exoplanets and their parent stars can also be obtained measuring the pattern of gravitational waves that will be made available by the new generation of detectors including the space-based LISA (Laser Interferometer Space Antenna) observatory. As an example, a subset of exoplanets with extremely short periods (less than 80 min) is discussed. All of them have gravitational luminosity, LGW ˜ 1030erg/s, strain h ˜ 10-22, frequencies fgw > 10-4Hz, and, as such, are within the standard sensitivity curve of LISA. Our analysis suggests that the emitted gravitational wave pattern may also provide an efficient tool to discover ultra short period exoplanets.

  13. Poincaré plot analysis of ultra-short-term heart rate variability during recovery from exercise in physically active men.

    PubMed

    Gomes, Rayana L; Marques Vanderlei, Luiz C; Garner, David M; Ramos Santana, Milana D; de Abreu, Luiz C; Valenti, Vitor E

    2017-04-26

    Recently there has been increasing interest in the study of ultra-short- term heart rate variability (HRV) in sports performance and exercise physiology. In order to improve standardization of this specific analysis, we evaluated the ultra-short-term HRV analysis through SD1Poincaré index to identify exercise induced responses. We investigated 35 physically active men aged between 18 and 35 years old. Volunteers performed physical exercise on treadmill with intensity of 6.0 km / hour + 1% slope in the first five minutes for physical "warming up." This was followed by 25 minutes with intensity equivalent to 60% of Vmax, with the same slope according to the Conconi threshold. HRV was analyzed in the following periods: the five-minute period before the exercise and the five-minute period immediately after the exercise, the five minutes were divided into five segments of 60 RR intervals. Ultra-short-term RMSSD and SD1 analysis were performed. Ultra-short-term RMSSD and SD1 were significantly (p<0.0001) reduced during the initial five minutes divided into five segments of 60 RR intervals compared to (at rest) control. Heart rate was significantly (p<0.0001) increased 1 min and 3 min immediately after exercise compared to (at rest) control. At rest ultra-short-term SD1 presented significant correlation with short-term (256 RR intervals) RMSSD (r=0.78; p<0.0001), HF (r=0.574; p=0.0007) and SD1 (r=0.78; p<0.0001). Additionally, visual analysis with the Poincaré plot detected changes in HRV after exercise. Ultra-short-term HRV analysis through Poincaré plot identified heart rate autonomic responses induced by aerobic exercise.

  14. Silica-based monolithic column with evaporative light scattering detector for HPLC analysis of bacosides and apigenin in Bacopa monnieri.

    PubMed

    Bhandari, Pamita; Kumar, Neeraj; Singh, Bikram; Singh, Virendra; Kaur, Inderjeet

    2009-08-01

    A high performance liquid chromatographic method using a silica-based monolithic column coupled with evaporative light scattering detector (HPLC-ELSD) was developed and validated for simultaneous quantification of bacosides (bacoside A, bacopaside I, bacoside A(3), bacopaside II, bacopaside X, bacopasaponin C) and apigenin in Bacopa monnieri. The chromatographic resolution was achieved on a Chromolith RP-18 (100x4.6 mm) column with acetonitrile/water (30:70) as mobile phase in isocratic elution at a flow rate of 0.7 mL/min. The drift tube temperature of the ELSD was set to 95 degrees C, and the nitrogen flow rate was 2.0 SLM (standard liter per minute). The calibration curves revealed a good linear relationship (r(2) > 0.9988) within the test ranges. The detection limits (S/N = 3) and the quantification limits (S/N = 10) for the compounds were in the range of 0.54-6.06 and 1.61-18.78 microg/mL, respectively. Satisfactory average recovery was observed in the range of 95.8-99.0%. The method showed good reproducibility for the quantification of these compounds in B. monnieri with intra- and inter-day precision of less than 0.69 and 0.67%, respectively. The validated method was successfully applied to quantify analytes in nine accessions of B. monnieri and thus provides a new basis for overall quality assessment of B. monnieri.

  15. Adequacy of the Ultra-Short-Term HRV to Assess Adaptive Processes in Youth Female Basketball Players

    PubMed Central

    Nakamura, Fabio Y; Pereira, Lucas A; Cal Abad, Cesar C; Cruz, Igor F; Flatt, Andrew A; Esco, Michael R; Loturco, Irineu

    2017-01-01

    Abstract Heart rate variability has been widely used to monitor athletes’ cardiac autonomic control changes induced by training and competition, and recently shorter recording times have been sought to improve its practicality. The aim of this study was to test the agreement between the (ultra-short-term) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD - measured in only 1 min post-1 min stabilization) and the criterion lnRMSSD (measured in the last 5 min out of 10 min of recording) in young female basketball players. Furthermore, the correlation between training induced delta change in the ultra-short-term lnRMSSD and the criterion lnRMSSD was calculated. Seventeen players were assessed at rest pre- and post-eight weeks of training. Trivial effect sizes (-0.03 in the pre- and 0.10 in the post- treatment) were found in the comparison between the ultra-short-term lnRMSSD (3.29 ± 0.45 and 3.49 ± 0.35 ms, in the pre- and post-, respectively) and the criterion lnRMSSD (3.30 ± 0.40 and 3.45 ± 0.41 ms, in the pre- and post-, respectively) (intraclass correlation coefficient = 0.95 and 0.93). In both cases, the response to training was significant, with Pearson’s correlation of 0.82 between the delta changes of the ultra-short-term lnRMSSD and the criterion lnRMSSD. In conclusion, the lnRMSSD can be calculated within only 2 min of data acquisition (the 1st min discarded) in young female basketball players, with the ultra-short-term measure presenting similar sensitivity to training effects as the standard criterion measure. PMID:28469745

  16. Introduction of a breast cancer care programme including ultra short hospital stay in 4 early adopter centres: framework for an implementation study.

    PubMed

    de Kok, Mascha; Frotscher, Caroline N A; van der Weijden, Trudy; Kessels, Alfons G H; Dirksen, Carmen D; van de Velde, Cornelis J H; Roukema, Jan A; Bell, Antoine V R J; van der Ent, Fred W; von Meyenfeldt, Maarten F

    2007-07-02

    Whereas ultra-short stay (day care or 24 hour hospitalisation) following breast cancer surgery was introduced in the US and Canada in the 1990s, it is not yet common practice in Europe. This paper describes the design of the MaDO study, which involves the implementation of ultra short stay admission for patients after breast cancer surgery, and evaluates whether the targets of the implementation strategy are reached. The ultra short stay programme and the applied implementation strategy will be evaluated from the economic perspective. The MaDO study is a pre-post-controlled multi-centre study, that is performed in four hospitals in the Netherlands. It includes a pre and post measuring period of six months each with six months of implementation in between in at least 40 patients per hospital per measurement period. Primary outcome measure is the percentage of patients treated in ultra short stay. Secondary endpoints are the percentage of patients treated according to protocol, degree of involvement of home care nursing, quality of care from the patient's perspective, cost-effectiveness of the ultra short stay programme and cost-effectiveness of the implementation strategy. Quality of care will be measured by the QUOTE-breast cancer instrument, cost-effectiveness of the ultra short stay programme will be measured by means of the EuroQol (administered at four time-points) and a cost book for patients. Cost-effectiveness analysis will be performed from a societal perspective. Cost-effectiveness of the implementation strategy will be measured by determination of the costs of implementation activities. This study will reveal barriers and facilitators for implementation of the ultra short stay programme. Moreover, the results of the study will provide information about the cost-effectiveness of the ultra short stay programme and the implementation strategy. Current Controlled Trials ISRCTN77253391.

  17. Graphene oxide-based composite monolith as new sorbent for the on-line solid phase extraction and high performance liquid chromatography determination of ß-sitosterol in food samples.

    PubMed

    Cui, Beijiao; Guo, Bin; Wang, Huimin; Zhang, Doudou; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan; Han, Dandan

    2018-08-15

    A composite monolithic column was prepared by redox initiation method for the on-line purification and enrichment of β-sitosterol, in which graphene oxide (GO) was embedded. The obtained monolithic column was characterized by scanning electron microscopy (SEM) and nitrogen adsorption-desorption isotherm measurement, which indicated that the monolith possessed characteristics of porous structure and high permeability. Under the optimum conditions for extraction and determination, the calibration equation was y = 47.92 × -0.1391; the linear range was 0.008-1.0 mg mL -1 ; the linear regression coefficient was 0.998; the limit of detection (LOD) is 2.4 μg mL -1 ; the limit of quantitation (LOQ) was 8 μg mL -1 ; precisions for intra-day and inter-day assays presented as relative standard deviations were less than 4.3% and 6.8%, respectively. Under the selective conditions, the enrichment factor of the method was 119. The recovery was in the range of 80.40-98.00%. Moreover, the adsorption amount of the monolith was compared with silica gel-C18 adsorbent and the monolith without graphene oxide being embedded. The polymerization monolithic column showed high selectivity and good permeability, and it was successfully used as on-line solid-phase extraction (SPE) column for determination of β-sitosterol in edible oil. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short-period and Ultra-short-period Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu

    Sub-Neptunes around FGKM dwarfs are evenly distributed in log orbital period down to ∼10 days, but dwindle in number at shorter periods. Both the break at ∼10 days and the slope of the occurrence rate down to ∼1 day can be attributed to the truncation of protoplanetary disks by their host star magnetospheres at corotation. We demonstrate this by deriving planet occurrence rate profiles from empirical distributions of pre-main-sequence stellar rotation periods. Observed profiles are better reproduced when planets are distributed randomly in disks—as might be expected if planets formed in situ—rather than piled up near disk edges, as wouldmore » be the case if they migrated in by disk torques. Planets can be brought from disk edges to ultra-short (<1 day) periods by asynchronous equilibrium tides raised on their stars. Tidal migration can account for how ultra-short-period planets are more widely spaced than their longer-period counterparts. Our picture provides a starting point for understanding why the sub-Neptune population drops at ∼10 days regardless of whether the host star is of type FGK or early M. We predict planet occurrence rates around A stars to also break at short periods, but at ∼1 day instead of ∼10 days because A stars rotate faster than stars with lower masses (this prediction presumes that the planetesimal building blocks of planets can drift inside the dust sublimation radius).« less

  19. Enantioselective ultra-high and high performance liquid chromatography: a comparative study of columns based on the Whelk-O1 selector.

    PubMed

    Kotoni, Dorina; Ciogli, Alessia; D'Acquarica, Ilaria; Kocergin, Jelena; Szczerba, Ted; Ritchie, Harald; Villani, Claudio; Gasparrini, Francesco

    2012-12-21

    This paper reports on the thermodynamic and kinetic evaluation of a new ultra-high performance liquid chromatography broad-spectrum Pirkle-type chiral stationary phase (CSP) for enantioselective applications (eUHPLC). The well-known Whelk-O1 selector was covalently immobilized onto 1.7-μm high-surface-area, porous spherical silica particles to produce a totally synthetic, covalently bonded CSP that was packed into 150 mm, 100mm, 75 mm and 50mm columns, either 4.6 or 3.0mm ID. A 100 mm × 4.6 mm ID column was fully characterized from a kinetic and thermodynamic point of view, using as reference a conventional HPLC Whelk-O1 column, 250 mm×4.6mm ID, based on 5-μm porous silica particles. On the eUHPLC column, van Deemter plots generated H(min) values of 3.53 μm for 1,3-dinitrobenzene, at an interstitial mobile phase linear velocity (μ(inter)) of 5.07 mm/s, and H(min) of 4.26 and 4.17 μm for the two enantiomers of acenaphthenol, at μ(inter) of 4.85 mm/s and 4.24 mm/s, respectively. Resolution of 21 enantiomeric pairs including alcohols, epoxides, sulfoxides, phosphine oxides, benzodiazepines and 2-aryloxyproprionic esters used as herbicides, were obtained with significant advantages in terms of efficiency and analysis time. Speed gain factors were calculated for the different column geometries (150 mm, 100mm, 75 mm and 50mm, either 4.6 or 3.0mm ID), with respect to the standard HPLC column (250 mm ×4.6 mm ID), and were as high as 13, in the case of the 50-mm-long column, affording sub-minute separations of enantiomers with excellent resolution factors. In particular, trans-stilbene oxide was resolved in only 10s, while a 50 mm×3.0 mm ID column was used as a compromise between reduced mobile phase consumption (less than 1 mL per analysis) and smaller extra-column band-broadening effect. Given the relatively low viscosity in NP mode, and the excellent permeability of these eUHPLC columns, with backpressure values under 600 bar for a wide range of flow rates, the

  20. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials

    PubMed Central

    Orrù, Roberto; Cao, Giacomo

    2013-01-01

    A wider utilization of ultra high temperature ceramics (UHTC) materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS) technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS), consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS) and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step. PMID:28809229

  1. Stiffening of short small-size circular composite steel–concrete columns with shear connectors

    PubMed Central

    Younes, Sherif M.; Ramadan, Hazem M.; Mourad, Sherif A.

    2015-01-01

    An experimental program was conducted to investigate the effect of shear connectors’ distribution and method of load application on load–displacement relationship and behavior of thin-walled short concrete-filled steel tube (CFT) columns when subjected to axial load. The study focused on the compressive strength of the CFT columns and the efficiency of the shear stud in distribution of the load between the concrete core and steel tube. The study showed that the use of shear connectors enhanced slightly the axial capacity of CFT columns. It is also shown that shear connectors have a great effect on load distribution between the concrete and steel tubes. PMID:27222757

  2. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  3. [Monolithic column-gold composite substrate preparation and application to SERS detection of pigment].

    PubMed

    Xie, Yun-Fei; Li, Yan; Yu, Hui; Qian, He; Yao, Wei-Rong

    2014-03-01

    In the present study, we developed a novel SERS substrate with the porous monolith material combined with classic gold nanoparticles, and erythrosine as the research object, by adjusting the different experimental conditions for optimal SERS enhancements, including system pH and mixing time, and ultimately selected the optimum pH value 5.06 and mixing time 25 min. Compared with the traditional gold plastic substrate enhancement effect, the experimental conditions were applied to the monolith substrate SERS detection of dye erythrosine, different concentrations of samples were used for erythrosine SERS detection, and the detection limit reached 0.1 g x mL(-1). The method uses the payload of gold nanoparticles in mesoporous materials to effectively enhance the SERS signal. And this method has the advantages of simpleness and good stability, which provides a favorable theoretical basis for the rapid prohibited colorings screening.

  4. Validity of (Ultra-)Short Recordings for Heart Rate Variability Measurements

    PubMed Central

    Munoz, M. Loretto; van Roon, Arie; Riese, Harriëtte; Thio, Chris; Oostenbroek, Emma; Westrik, Iris; de Geus, Eco J. C.; Gansevoort, Ron; Lefrandt, Joop

    2015-01-01

    Objectives In order to investigate the applicability of routine 10s electrocardiogram (ECG) recordings for time-domain heart rate variability (HRV) calculation we explored to what extent these (ultra-)short recordings capture the “actual” HRV. Methods The standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive differences (RMSSD) were measured in 3,387 adults. SDNN and RMSSD were assessed from (ultra)short recordings of 10s(3x), 30s, and 120s and compared to 240s–300s (gold standard) measurements. Pearson’s correlation coefficients (r), Bland-Altman 95% limits of agreement and Cohen’s d statistics were used as agreement analysis techniques. Results Agreement between the separate 10s recordings and the 240s-300s recording was already substantial (r = 0.758–0.764/Bias = 0.398–0.416/d = 0.855–0.894 for SDNN; r = 0.853–0.862/Bias = 0.079–0.096/d = 0.150–0.171 for RMSSD), and improved further when three 10s periods were averaged (r = 0.863/Bias = 0.406/d = 0.874 for SDNN; r = 0.941/Bias = 0.088/d = 0.167 for RMSSD). Agreement increased with recording length and reached near perfect agreement at 120s (r = 0.956/Bias = 0.064/d = 0.137 for SDNN; r = 0.986/Bias = 0.014/d = 0.027 for RMSSD). For all recording lengths and agreement measures, RMSSD outperformed SDNN. Conclusions Our results confirm that it is unnecessary to use recordings longer than 120s to obtain accurate measures of RMSSD and SDNN in the time domain. Even a single 10s (standard ECG) recording yields a valid RMSSD measurement, although an average over multiple 10s ECGs is preferable. For SDNN we would recommend either 30s or multiple 10s ECGs. Future research projects using time-domain HRV parameters, e.g. genetic epidemiological studies, could calculate HRV from (ultra-)short ECGs enabling such projects to be performed at a large scale. PMID:26414314

  5. Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse

    NASA Astrophysics Data System (ADS)

    Nie, Jianye; Liu, Guodong; Zhang, Rongzhu

    2018-05-01

    Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.

  6. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    PubMed

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparison of Positively and Negatively Charged Achiral Co-Monomers Added to Cyclodextrin Monolith: Improved Chiral Separations in Capillary Electrochromatography

    PubMed Central

    Lu, Yang; Shamsi, Shahab A.

    2014-01-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate β-cyclodextrin (GMA/β-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/β-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/β-CD, GMA/β-CD-VBTA and GMA/β-CD-AMPS monolithic columns. PMID:24108813

  8. Ionic liquid-regenerated macroporous cellulose monolith: Fabrication, characterization and its protein chromatography.

    PubMed

    Du, Kaifeng

    2017-04-21

    Macroporous cellulose monolith as chromatographic support was successfully fabricated from an ionic liquid dissolved cellulose solution by an emulsification method and followed by the cross-linking reaction and DEAE modification. With the physical characterization, the cellulose monolith featured by both the interconnected macropores in range of 0.5-2.5μm and the diffusion pores centered at about 10nm. Given the bimodal pore system, the monolith possessed the specific surface area of 36.4m 2 g -1 and the column permeability of about 7.45×10 -14 m 2 . After the DEAE modification, the anion cellulose monolith was evaluated for its chromatography performances. It demonstrated that the static and dynamic adsorption capacity of BSA reached about 66.7mgmL -1 and 43.9mgmL -1 at 10% breakthrough point, respectively. The results were comparable to other chromatographic adsorbent. In addition, the proteins mixture with different pI was well separated at high flow velocity (611.0cmh -1 ) and high protein recovery (over 97%), proving the macroporous cellulose monolith had excellent separation performance. In this way, the prepared cellulose monolith with bimodal pores system is expected for the potential application in high-speed chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. In situ polymerization of monolith based on poly(Triallyl Isocyanurate-co-trimethylolpropane triacrylate) and its application in high-performance liquid chromatography.

    PubMed

    Zhong, Jing; Bai, Ligai; Qin, Junxiao; Wang, Jiafei; Hao, Mengbei; Yang, Gengliang

    2015-04-01

    A novel organic monolithic stationary phase was prepared for high-performance liquid chromatography (HPLC) by in situ copolymerization. In which, triallyl isocyanurate (TAIC) and trimethylolpropane triacrylate (TMPTA) in a binary porogenic solvent consisting of polyethylene glycol 200 and 1, 2-propanediol were used. The resultant monoliths with different column properties (e.g., morphology and pressure) were optimized by adjusting the ratio of TMPTA/TAIC and the composition of porogenic solvent. The resulting poly(TAIC-co-TMPTA) monolith showed a relatively homogeneous structure, good permeability and mechanical stability. The chemical group of the monolith was assayed by the infrared spectra method, the morphology of monolithic material was studied by scanning electron microscopy and the pore size distribution was determined by a mercury porosimeter. A series of small molecules were used to evaluate the column performance in terms of hydrophobic mode. At an optimized flow rate of 1.0 mL min(-1), the theoretical plate number of analyte was >15,000 plates m(-1). These applications demonstrated that the monoliths could be successfully used as the stationary phase in conjunction with HPLC to separate small molecules from the mixture. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kot, R. A.; Oliver, J. D.; Wilson, S. G.

    1984-01-01

    A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver.

  11. Arginine homopeptides for plasmid DNA purification using monolithic supports.

    PubMed

    Cardoso, Sara; Sousa, Ângela; Queiroz, João A; Azzoni, Adriano R; Sousa, Fani

    2018-06-15

    Purification of plasmid DNA targeting therapeutic applications still presents many challenges, namely on supports and specific ligand development. Monolithic supports have emerged as interesting approaches for purifying pDNA due to its excellent mass transfer properties and higher binding capacity values. Moreover, arginine ligands were already described to establish specific and preferential interactions with pDNA. Additionally, some studies revealed the ability of arginine based cationic peptides to condense plasmid DNA, which increased lengthening can result in strongest interactions with higher binding capacities for chromatographic purposes of large molecules such as pDNA. In this work, arginine homopeptides were immobilized in monolithic supports and their performance was evaluated and compared with a single arginine monolithic column regarding supercoiled (sc) plasmid DNA purification. Specific interactions of arginine based peptides with several nucleic acids present in a clarified Escherichia coli lysate sample showed potential for the sc pDNA purification. Effectively, the immobilization of the arginine homopeptides became more functional compared with the single arginine amino acid, showing higher binding capacities, which was also reflected in the intensity of the interactions. The combination of structural versatilities of monoliths with the specificity of arginine peptides raised as a promising strategy for sc pDNA purification. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Ultra-short wavelength operation in Thulium-doped silica fiber laser with bidirectional pumping

    NASA Astrophysics Data System (ADS)

    Xiao, Xusheng; Guo, Haitao; Yan, Zhijun; Wang, Hushan; Xu, Yantao; Lu, Min; Wang, Yishan; Peng, Bo

    2017-02-01

    An ultra-short wavelength operation of Tm-doped all fiber laser based on fiber Bragg gratings (FBGs) was developed. A bi-directional pump configuration for the ultra-short wavelength operation was designed and investigated for the first time. the laser yielded 3.15W of continuous-wave output at 1706.75nm with a narrow-linewidth of 50pm and a maximum slope efficiency of 42.1%. The dependencies of the slope efficiencies and pump threshold of the laser versus the length of active fiber and reflectivity of the output mirror (FBG) were investigated in detail. An experimental comparative study between two Thulium-doped fiber lasers (TDFLs) with two different pumping configuration(forward unidirectional pumping and bidirectional pumping) was presented. It is indisputable that the development of 1.7μm silicate fiber lasers with Watt-level output power open up a number of heart-stirring and tempting application windows.

  13. Measurement and compensation schemes for the pulse front distortion of ultra-intensity ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin

    2016-11-01

    Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.

  14. Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called π-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur,more » the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.« less

  15. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  16. Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner

    DOEpatents

    Veligdan, J.T.

    1994-03-08

    An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90[degree] angle of incidence. 8 figures.

  17. Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner

    DOEpatents

    Veligdan, James T.

    1994-01-01

    An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90.degree. angle of incidence.

  18. Cardio-pulmonary fitness test by ultra-short heart rate variability.

    PubMed

    Aslani, Arsalan; Aslani, Amir; Kheirkhah, Jalal; Sobhani, Vahid

    2011-10-01

    It is known that exercise induces cardio-respiratory autonomic modulation. The aim of this study was to assess the cardio-pulmonary fitness by ultra-short heart rate variability. Study population was divided into 3 groups: Group-1 (n = 40) consisted of military sports man. Group-2 (n = 40) were healthy age-matched sedentary male subjects with normal body mass index [BMI = 19 - 25 kg/m(2)). Group-3 (n = 40) were healthy age-matched obese male subjects [BMI > 29 kg/m(2)). Standard deviation of normal-to-normal QRS intervals (SDNN) was recorded over 15 minutes. Bruce protocol treadmill test was used; and, maximum oxygen consumption (VO(2)max) was calculated. WHEN THE STUDY POPULATION WAS DIVIDED INTO QUARTILES OF SDNN (FIRST QUARTILE: < 60 msec; second quartile: > 60 and < 100 msec; third quartile: > 100 and <140 msec; and fourth quartile: >140 msec), progressive increase was found in VO(2)max; and, SDNN was significantly linked with estimated VO(2)max. In conclusion, the results of this study demonstrate that exercise training improves cardio-respiratory autonomic function (and increases heart rate variability). Improvement in cardio-respiratory autonomic function seems to translate into a lower rate of long term mortality. Ultra-short heart rate variability is a simple cardio-pulmonary fitness test which just requires 15 minutes, and involves no exercise such as in the treadmill or cycle test.

  19. CO2 adsorption on modified carbon coated monolith: effect of surface modification by using alkaline solutions

    NASA Astrophysics Data System (ADS)

    Hosseini, Soraya; Marahel, Ehsan; Bayesti, Iman; Abbasi, Ali; Chuah Abdullah, L.; Choong, Thomas S. Y.

    2015-01-01

    A monolithic column was used to study the feasibility of modified carbon-coated monolith for recovery of CO2 from gaseous mixtures (He/CO2) in a variety of operating conditions. Carbon-coated monolith was prepared by dip-coating method and modified by two alkaline solutions, i.e. NH3 and KOH. The surface properties of the carbon-coated monolith were altered by functional groups via KOH and NH3 treatments. The comparative study of CO2 uptake by two different adsorbents, i.e. unmodified and modified carbon-coated monolith, demonstrated that the applied modification process had improved CO2 adsorption. The presence of nitrogen- and oxygen-containing functional groups on the surface of the carbon led to an improved level of microporosity on the synthesized carbon-coated monolith. The physical parameters such as higher surface area, lower pore diameter, and larger micropore volume of modified monoliths indicated direct influence on the adsorbed amount of CO2. In the present study, the Deactivation Model is applied to analyze the breakthrough curves. The adsorption capacity increased with an increase in pressure and concentration, while a reduction of CO2 adsorption capacity was occurred with increase in temperature. Ammonia (NH3) and potassium hydroxide (KOH)-modified carbon-coated monolith showed an increase of approximately 12 and 27% in CO2 adsorption, respectively, as compared to unmodified carbon-coated monolith.

  20. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    NASA Astrophysics Data System (ADS)

    Wang, Huiqi; Li, Zheng; Niu, Qian; Ma, Jiutong; Jia, Qiong

    2015-10-01

    A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  1. Influence of porogen nature on the kinetic and potential efficiencies of divinylbenzene-based monolithic sorbents in gas chromatography

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Shiryaeva, V. E.; Popova, T. P.; Kanat'eva, A. Yu.; Kurganov, A. A.

    2015-02-01

    It has been shown that using Poppe curves for characterization of monolithic sorbents makes it possible to optimize conditions for both the synthesis of monoliths intended for high-speed analysis and achievement of the best separation efficiency. The influence of the nature of a porogen on the kinetic efficiency of monolithic sorbents in high-pressure gas chromatography has been considered. It has been found that the nature of the porogen alcohol determines to a considerable extent the structure of the monolith and its kinetic efficiency. The sorbents prepared with the use of octanol-1 and dodecanol-1 have shown the best kinetic characteristics; however, minimal HETP values have been observed for the columns prepared using hexanol-1 as a porogen.

  2. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  3. Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents.

    PubMed

    Lirio, Stephen; Fu, Chung-Wei; Lin, Jhih-Yun; Hsu, Meng-Ju; Huang, Hsi-Ya

    2016-07-13

    In this study, the application of different activated carbon-polymer (AC-polymer) monoliths as adsorbents for the solid-phase microextraction (SPME) of phthalate esters (PAEs) in water sample were investigated. The activated carbon (AC) was embedded in organic polymers, poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) or poly(styrene-co-divinylbenzene) (poly(STY-DVB)), via a 5-min microwave-assisted or a 15-min water bath heating polymerization. Preliminary investigation on the performance of the native poly(BMA-EDMA) and poly(STY-DVB) demonstrated remarkable adsorption efficiencies for PAEs. However, due to the strong hydrophobic, π-π, and hydrogen bonding interactions between the analytes and polymers, low extraction recoveries were achieved. In contrast, the presence of AC in native polymers not only enhanced the adsorption efficiencies but also assisted the PAE desorption, especially for AC-poly(STY-DVB) with extraction recovery ranged of 76.2-99.3%. Under the optimized conditions, the extraction recoveries for intra-, inter-day and column-to-column were in the range of 76.5-100.8% (<3.7% RSDs), 77.2-97.6% (<5.6% RSDs) and 75.5-99.7% (<6.2% RSDs), respectively. The developed AC-poly(STY-DVB) monolithic column showed good mechanical stability, which can be reused for more than 30 extraction times without any significant loss in the extraction recoveries of PAEs. The AC-poly(STY-DVB) monolithic column was successfully applied in SPME of PAEs in water sample with extraction recovery ranged of 78.8%-104.6% (<5.5% RSDs). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparation of polyhedral oligomeric silsesquioxane based hybrid monoliths by ring-opening polymerization for capillary LC and CEC.

    PubMed

    Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa

    2013-09-01

    A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Determination of imidazole derivatives by micellar electrokinetic chromatography combined with solid-phase microextraction using activated carbon-polymer monolith as adsorbent.

    PubMed

    Shih, Yung-Han; Lirio, Stephen; Li, Chih-Keng; Liu, Wan-Ling; Huang, Hsi-Ya

    2016-01-08

    In this study, an effective method for the separation of imidazole derivatives 2-methylimidazole (2-MEI), 4- methylimidazole (4-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in caramel colors using cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-sweeping-MEKC) was developed. The limits of detection (LOD) and quantitation (LOQ) for the CSEI-sweeping-MEKC method were in the range of 4.3-80μgL(-1) and 14-270μgL(-1), respectively. Meanwhile, a rapid fabrication activated carbon-polymer (AC-polymer) monolithic column as adsorbent for solid-phase microextraction (SPME) of imidazole colors was developed. Under the optimized SPME condition, the extraction recoveries for intra-day, inter-day and column-to-column were in the range of 84.5-95.1% (<6.3% RSDs), 85.6-96.1% (<4.9% RSDs), and 81.3-96.1% (<7.1% RSDs), respectively. The LODs and LOQs of AC-polymer monolithic column combined with CSEI-sweeping-MEKC method were in the range of 33.4-60.4μgL(-1) and 111.7-201.2μgL(-1), respectively. The use of AC-polymer as SPME adsorbent demonstrated the reduction of matrix effect in food samples such as soft drink and alcoholic beverage thereby benefiting successful determination of trace-level caramel colors residues using CSEI-sweeping-MEKC method. The developed AC-polymer monolithic column can be reused for more than 30 times without any significant loss in the extraction recovery for imidazole derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Preparation of hydrophilic monolithic capillary column by in situ photo-polymerization of N-vinyl-2-pyrrolidinone and acrylamide for highly selective and sensitive enrichment of N-linked glycopeptides.

    PubMed

    Jiang, Hao; Yuan, Huiming; Qu, Yanyan; Liang, Yu; Jiang, Bo; Wu, Qi; Deng, Nan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-01-01

    In this study, a novel kind of amide functionalized hydrophilic monolith was synthesized by the in situ photo-polymerization of N-vinyl-2-pyrrolidinone (NVP), acrylamide (AM), and N, N'-methylenebisacrylamide (MBA) in a UV transparent capillary, and successfully applied for hydrophilic interaction chromatography (HILIC) based enrichment of N-linked glycopeptides. With 2 μg of the tryptic digests of IgG as the sample, after enrichment, 18 glycopeptides could be identified by MALDI-TOF/TOF MS analysis. Furthermore, with the mixture of BSA and IgG digests (10,000:1, m/m) as the sample, 6 N-linked glycopeptides were unambiguously identified after enrichment, indicating the high selectivity and good specificity of such material. Moreover, such a monolithic capillary column was also applied for the N-glycosylation sites profiling of 6 μg protein digests from HeLa cells and 1 μL human serum. In total, 530 and 262 unique N-glycosylated peptides were identified, respectively, corresponding to 282 and 124N-glycoproteins, demonstrating its great potential for the large scale glycoproteomics analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene "click" strategy.

    PubMed

    Chen, Yingzhuang; Wu, Minghuo; Wang, Keyi; Chen, Bo; Yao, Shouzhuo; Zou, Hanfa; Nie, Lihua

    2011-11-04

    A novel thiol-ene "click" strategy for the preparation of monolithic trypsin microreactor was proposed. The hybrid organic-inorganic monolithic capillary column with ene-functionality was fabricated by sol-gel process using tetramethoxysilane (TMOS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS) as precursors. The disulfide bonds of trypsin were reduced to form free thiol groups. Then the trypsin containing free thiol groups was attached on the γ-MAPS hybrid monolithic column with ene-functionality via thiol-ene click chemistry to form a trypsin microreactor. The activity of the trypsin microreactor was characterized by detecting the substrate (Nα-p-tosyl-L-arginine methyl ester hydrochloride, TAME) and the product (Nα-p-tosyl-L-arginine, TA) with on-line capillary zone electrophoresis. After investigating various synthesizing conditions, it was found that the microreactor with poly(N,N'-methylenebisacrylamide) as spacer can deliver the highest activity, yielding a rapid reaction rate. After repeatedly sampling and analyzing for 100 times, the monolithic trypsin microreactor still remained 87.5% of its initial activity. It was demonstrated that thiol-ene "click" strategy for the construction of enzyme microreactor is a promising method for the highly selective immobilization of proteins under mild conditions, especially enzymes with free thiol radicals. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Sequence-specific sepsis-related DNA capture and fluorescent labeling in monoliths prepared by single-step photopolymerization in microfluidic devices.

    PubMed

    Knob, Radim; Hanson, Robert L; Tateoka, Olivia B; Wood, Ryan L; Guerrero-Arguero, Israel; Robison, Richard A; Pitt, William G; Woolley, Adam T

    2018-05-21

    Fast determination of antibiotic resistance is crucial in selecting appropriate treatment for sepsis patients, but current methods based on culture are time consuming. We are developing a microfluidic platform with a monolithic column modified with oligonucleotides designed for sequence-specific capture of target DNA related to the Klebsiella pneumoniae carbapenemase (KPC) gene. We developed a novel single-step monolith fabrication method with an acrydite-modified capture oligonucleotide in the polymerization mixture, enabling fast monolith preparation in a microfluidic channel using UV photopolymerization. These prepared columns had a threefold higher capacity compared to monoliths prepared in a multistep process involving Schiff-base DNA attachment. Conditions for denaturing, capture and fluorescence labeling using hybridization probes were optimized with synthetic 90-mer oligonucleotides. These procedures were applied for extraction of a PCR amplicon from the KPC antibiotic resistance gene in bacterial lysate obtained from a blood sample spiked with E. coli. The results showed similar eluted peak areas for KPC amplicon extracted from either hybridization buffer or bacterial lysate. Selective extraction of the KPC DNA was verified by real time PCR on eluted fractions. These results show great promise for application in an integrated microfluidic diagnostic system that combines upstream blood sample preparation and downstream single-molecule counting detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing.

    PubMed

    Melo, Hiago M; Martins, Thiago C; Nascimento, Lucas M; Hoeller, Alexandre A; Walz, Roger; Takase, Emílio

    2018-06-04

    Recent studies have reported that Heart Rate Variability (HRV) indices remain reliable even during recordings shorter than 5 min, suggesting the ultra-short recording method as a valuable tool for autonomic assessment. However, the minimum time-epoch to obtain a reliable record for all HRV domains (time, frequency, and Poincare geometric measures), as well as the effect of respiratory rate on the reliability of these indices remains unknown. Twenty volunteers had their HRV recorded in a seated position during spontaneous and controlled respiratory rhythms. HRV intervals with 1, 2, and 3 min were correlated with the gold standard period (6-min duration) and the mean values of all indices were compared in the two respiratory rhythm conditions. rMSSD and SD1 were more reliable for recordings with ultra-short duration at all time intervals (r values from 0.764 to 0.950, p < 0.05) for spontaneous breathing condition, whereas the other indices require longer recording time to obtain reliable values. The controlled breathing rhythm evokes stronger r values for time domain indices (r values from 0.83 to 0.99, p < 0.05 for rMSSD), but impairs the mean values replicability of domains across most time intervals. Although the use of standardized breathing increases the correlations coefficients, all HRV indices showed an increase in mean values (t values from 3.79 to 14.94, p < 0.001) except the RR and HF that presented a decrease (t = 4.14 and 5.96, p < 0.0001). Our results indicate that proper ultra-short-term recording method can provide a quick and reliable source of cardiac autonomic nervous system assessment. © 2018 Wiley Periodicals, Inc.

  10. Intraday and Interday Reliability of Ultra-Short-Term Heart Rate Variability in Rugby Union Players.

    PubMed

    Nakamura, Fábio Y; Pereira, Lucas A; Esco, Michael R; Flatt, Andrew A; Moraes, José E; Cal Abad, Cesar C; Loturco, Irineu

    2017-02-01

    Nakamura, FY, Pereira, LA, Esco, MR, Flatt, AA, Moraes, JE, Cal Abad, CC, and Loturco, I. Intraday and interday reliability of ultra-short-term heart rate variability in rugby union players. J Strength Cond Res 31(2): 548-551, 2017-The aim of this study was to examine the intraday and interday reliability of ultra-short-term vagal-related heart rate variability (HRV) in elite rugby union players. Forty players from the Brazilian National Rugby Team volunteered to participate in this study. The natural log of the root mean square of successive RR interval differences (lnRMSSD) assessments were performed on 4 different days. The HRV was assessed twice (intraday reliability) on the first day and once per day on the following 3 days (interday reliability). The RR interval recordings were obtained from 2-minute recordings using a portable heart rate monitor. The relative reliability of intraday and interday lnRMSSD measures was analyzed using the intraclass correlation coefficient (ICC). The typical error of measurement (absolute reliability) of intraday and interday lnRMSSD assessments was analyzed using the coefficient of variation (CV). Both intraday (ICC = 0.96; CV = 3.99%) and interday (ICC = 0.90; CV = 7.65%) measures were highly reliable. The ultra-short-term lnRMSSD is a consistent measure for evaluating elite rugby union players, in both intraday and interday settings. This study provides further validity to using this shortened method in practical field conditions with highly trained team sports athletes.

  11. Structure for monolithic optical circuits

    NASA Technical Reports Server (NTRS)

    Evanchuk, Vincent L. (Inventor)

    1984-01-01

    A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation sensitive plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.

  12. A facile and efficient single-step approach for the fabrication of vancomycin functionalized polymer-based monolith as chiral stationary phase for nano-liquid chromatography.

    PubMed

    Xu, Dongsheng; Shao, Huikai; Luo, Rongying; Wang, Qiqin; Sánchez-López, Elena; Fanali, Salvatore; Marina, Maria Luisa; Jiang, Zhengjin

    2018-07-06

    A facile single-step preparation strategy for fabricating vancomycin functionalized organic polymer-based monolith within 100μm fused-silica capillary was developed. The synthetic chiral functional monomer, i.e 2-isocyanatoethyl methacrylate (ICNEML) derivative of vancomycin, was co-polymerized with the cross-linker ethylene dimethacrylate (EDMA) in the presence of methanol and dimethyl sulfoxide as the selected porogens. The co-polymerization conditions were systematically optimized in order to obtain satisfactory column performance. Adequate permeability, stability and column morphology were observed for the optimized poly(ICNEML-vancomycin-co-EDMA) monolith. A series of chiral drugs were evaluated on the monolith in either polar organic-phase or reversed-phase modes. After the optimization of separation conditions, baseline or partial enantioseparation were obtained for series of drugs including thalidomide, colchicine, carteolol, salbutamol, clenbuterol and several other β-blockers. The proposed single-step approach not only resulted in a vancomycin functionalized organic polymer-based monolith with acceptable performance, but also significantly simplified the preparation procedure by reducing time and labor. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Photonic generation of ultra-wide-band doublet pulse through monolithic integration of tapered directional coupler and quantum well waveguide.

    PubMed

    Kuo, Yu-Zheng; Wu, Jui-Pin; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2012-10-22

    We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530 nm photonic UWB doublet optical pulse with 75-ps pulse width, below -41.3 dBm power, 125% fractional bandwidth, and 7.5 GHz of -10 dB bandwidth has been demonstrated, fitted into FCC requirement (3.1 GHz~10.6 GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25 Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.

  14. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  15. Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty.

    PubMed

    Salemyr, Mats; Muren, Olle; Ahl, Torbjörn; Bodén, Henrik; Eisler, Thomas; Stark, André; Sköldenberg, Olof

    2015-01-01

    We hypothesized that an ultra-short stem would load the proximal femur in a more physiological way and could therefore reduce the adaptive periprosthetic bone loss known as stress shielding. 51 patients with primary hip osteoarthritis were randomized to total hip arthroplasty (THA) with either an ultra-short stem or a conventional tapered stem. The primary endpoint was change in periprosthetic bone mineral density (BMD), measured with dual-energy x-ray absorptiometry (DXA), in Gruen zones 1 and 7, two years after surgery. Secondary endpoints were change in periprosthetic BMD in the entire periprosthetic region, i.e. Gruen zones 1 through 7, stem migration measured with radiostereometric analysis (RSA), and function measured with self-administered functional scores. The periprosthetic decrease in BMD was statistically significantly lower with the ultra-short stem. In Gruen zone 1, the mean difference was 18% (95% CI: -27% to -10%). In zone 7, the difference was 5% (CI: -12% to -3%) and for Gruen zones 1-7 the difference was also 5% (CI: -9% to -2%). During the first 6 weeks postoperatively, the ultra-short stems migrated 0.77 mm more on average than the conventional stems. 3 months after surgery, no further migration was seen. The functional scores improved during the study and were similar in the 2 groups. Up to 2 years after total hip arthroplasty, compared to the conventional tapered stem the ultra-short uncemented anatomical stem induced lower periprosthetic bone loss and had equally excellent stem fixation and clinical outcome.

  16. Global distribution of the He+ column density observed by Extreme Ultra Violet Imager on the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung

    2017-07-01

    The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.

  17. Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading

    PubMed Central

    Liu, Bingyu; Chen, Jiang; Zhang, Yiping

    2016-01-01

    In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compression ratio is advantageous to the joint and the shear capacity of the horizontal joint increases with increase of the shear-span ratio. Based on the results, the methods used to estimate the shear capacity of horizontal joints in the Chinese Specification and the Japanese Guidelines are discussed and it was found that both overestimated the shear capacity of the horizontal joint. In addition, the Chinese Specification failed to consider the influence of the shear-span ratio. PMID:27861493

  18. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  19. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  20. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.

    PubMed

    Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko

    2016-11-01

    To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Separation of alpha-, beta-, gamma-, delta-tocopherols and alpha-tocopherol acetate on a pentaerythritol diacrylate monostearate-ethylene dimethacrylate monolith by capillary electrochromatography.

    PubMed

    Chaisuwan, Patcharin; Nacapricha, Duangjai; Wilairat, Prapin; Jiang, Zhengjin; Smith, Norman W

    2008-06-01

    This work reports the first use of a monolith with method development for the separation of tocopherol (TOH) compounds by CEC with UV detection. A pentaerythritol diacrylate monostearate-ethylene dimethacrylate (PEDAS-EDMA) monolithic column has been investigated for an optimised condition to separate alpha-, beta-, gamma- and delta-TOHs, and alpha-tocopherol acetate (TAc). The PEDAS-EDMA monolith showed a remarkably good selectivity for separation of the TOH isomers including the beta- and gamma-isomers which are not easily separated by standard C8 or C18 particle-packed columns. Retention studies indicated that an RP mechanism was involved in the separation on the PEDAS-EDMA column, but polar interactions with the underlying ester and hydroxyl groups enhanced the separation of the problematic beta- and gamma-isomers. Separation of all the compounds was achieved within 25 min using 3:10:87 v/v/v 100 mM Tris buffer (pH 9.3)/methanol/ACN as the mobile phase. The method was successfully applied to a pharmaceutical sample with recoveries from 93 to 99%. Intraday and interday precisions (%RSD) for peak area and retention time were less than 2.3. LODs for all four TOHs and TAc were below 1 ppm.

  2. Tunnel frit: a nonmetallic in-capillary frit for nanoflow ultra high-performance liquid chromatography-mass spectrometryapplications.

    PubMed

    Chen, Chao-Jung; Chen, Wei-Yun; Tseng, Mei-Chun; Chen, Yet-Ran

    2012-01-03

    In this study, an easy method to fabricate a durable in-capillary frit was developed for use in nanoflow liquid chromatography (nanoLC). A small orifice was tunneled into the sol-gel frit during the polymerization process resulting in the simple fabrication of a tunnel frit. A short packing tunnel frit column (2 cm, C(18) particles) was able to sustain over 10,000 psi continuous liquid flow for 10 days without observation of particle loss, and back pressure variation was less than 5%. The tunnel frit was successfully applied to the fabrication of nanoflow ultra high-performance liquid chromatography (nano-UHPLC) trap and analytical columns. In the analysis of tryptic peptides, the tunnel frit trap and analytical columns were demonstrated to have high separation efficiency and sensitivity. In analysis of phosphopeptides, the use of the nonmetallic tunnel frit column showed better sensitivity than the metallic frit column. This design can facilitate the preparation of nano-HPLC and nano-UHPLC columns and the packing material can easily be refilled when the column is severely contaminated or clogged. © 2011 American Chemical Society

  3. Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty

    PubMed Central

    Salemyr, Mats; Muren, Olle; Ahl, Torbjörn; Bodén, Henrik; Eisler, Thomas; Stark, André; Sköldenberg, Olof

    2015-01-01

    Background and purpose — We hypothesized that an ultra-short stem would load the proximal femur in a more physiological way and could therefore reduce the adaptive periprosthetic bone loss known as stress shielding. Patients and methods — 51 patients with primary hip osteoarthritis were randomized to total hip arthroplasty (THA) with either an ultra-short stem or a conventional tapered stem. The primary endpoint was change in periprosthetic bone mineral density (BMD), measured with dual-energy x-ray absorptiometry (DXA), in Gruen zones 1 and 7, two years after surgery. Secondary endpoints were change in periprosthetic BMD in the entire periprosthetic region, i.e. Gruen zones 1 through 7, stem migration measured with radiostereometric analysis (RSA), and function measured with self-administered functional scores. Results — The periprosthetic decrease in BMD was statistically significantly lower with the ultra-short stem. In Gruen zone 1, the mean difference was 18% (95% CI: −27% to −10%). In zone 7, the difference was 5% (CI: −12% to −3%) and for Gruen zones 1–7 the difference was also 5% (CI: −9% to −2%). During the first 6 weeks postoperatively, the ultra-short stems migrated 0.77 mm more on average than the conventional stems. 3 months after surgery, no further migration was seen. The functional scores improved during the study and were similar in the 2 groups. Interpretation — Up to 2 years after total hip arthroplasty, compared to the conventional tapered stem the ultra-short uncemented anatomical stem induced lower periprosthetic bone loss and had equally excellent stem fixation and clinical outcome. PMID:26134386

  4. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  5. Ion chromatographic determination of hydroxide ion on monolithic reversed-phase silica gel columns coated with nonionic and cationic surfactants.

    PubMed

    Xu, Qun; Mori, Masanobu; Tanaka, Kazuhiko; Ikedo, Mikaru; Hu, Wenzhi; Haddad, Paul R

    2004-07-02

    The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.

  6. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  7. Quantum preservation of the measurements precision using ultra-short strong pulses in exact analytical solution

    NASA Astrophysics Data System (ADS)

    Berrada, K.; Eleuch, H.

    2017-09-01

    Various schemes have been proposed to improve the parameter-estimation precision. In the present work, we suggest an alternative method to preserve the estimation precision by considering a model that closely describes a realistic experimental scenario. We explore this active way to control and enhance the measurements precision for a two-level quantum system interacting with classical electromagnetic field using ultra-short strong pulses with an exact analytical solution, i.e. beyond the rotating wave approximation. In particular, we investigate the variation of the precision with a few cycles pulse and a smooth phase jump over a finite time interval. We show that by acting on the shape of the phase transient and other parameters of the considered system, the amount of information may be increased and has smaller decay rate in the long time. These features make two-level systems incorporated in ultra-short, of-resonant and gradually changing phase good candidates for implementation of schemes for the quantum computation and the coherent information processing.

  8. Rapid chromatographic determination of caseins in milk with photometric and fluorimetric detection using a hydrophobic monolithic column.

    PubMed

    Ramírez-Palomino, P; Fernández-Romero, J M; Gómez-Hens, A

    2014-01-01

    Reverse-phase liquid chromatographic methods using a hydrophobic C18 monolithic column and on-line photometric and fluorimetric detection for the determination of the major casein (CN) proteins in milk are presented. The separation of αs1-CN, αs2-CN, β-CN and κ-CN was achieved in only five minutes. Fluorimetric detection enabled better analytical results than photometric detection. Thus, the dynamic ranges of the calibration graphs and detection limits obtained using fluorimetric detection were (mgmL(-)(1)): αs1-CN (0.74-10.0, 0.22), αs2-CN (0.15-10.0, 0.045), β-CN (0.68-10.0, 0.20) and κ-CN (0.21-10.0, 0.06). The analytical features of the photometric method, which does not allow the quantification of β-casein, were (mgmL(-)(1)): αs1-CN (1.5-9.0, 0.45), αs2-CN (1.4-10.0, 0.43) and κ-CN (0.4-9.0, 0.12). Precision data, expressed as relative standard deviation, ranged between 0.6% and 5.3% for the fluorimetric method and between 2.4% and 6.2% for the photometric method. Both methods were applied to the analysis of three different milk samples, obtaining recoveries in the ranges of 86.6-103.2% and 92.0-106.5% using fluorimetric and photometric detection, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Kinetic performance of narrow-bore columns on a micro-system for high performance liquid chromatography.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2012-05-04

    The kinetic performance of 0.5 mm × 50 mm columns packed with 2.7 μm Halo-C(18) core-shell particles and 3 μm EP-120-C(18) fully porous particles fitted on an Eksigent LC-Express Ultra μHPLC system were measured. The instrument contribution to band broadening was obtained by directly connecting the injection valve and the detector cell with a short, narrow PEEKSIL tube. The connections between the column and the connecting tubes, the column endfittings and its frits contribute to band spreading and are responsible for a significant rear peak tailing, even for retained compounds, resulting in a significant loss of efficiency. Our results show that the μHPLC system could outperform the current VHPLC systems using 2.1mm I.D. columns packed with 1.7 μm particles if it were using 0.5mm I.D. columns packed with 1 μm particles, if it could operate at a few kbar pressure drop, and if the sum of the contributions of the instrument, column endfittings and the column frits to band dispersion were three times smaller than it is at present. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2016-05-01

    Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  13. Complete temperature profiles in ultra-high-pressure liquid chromatography columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-07-01

    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  14. Simultaneous determination of tylosin and josamycin residues in muscles, liver, eggs and milk by MLC with a monolithic column and time-programmed UV detection: application to baby food and formulae

    PubMed Central

    2014-01-01

    Background Tylosin and Josamycin are macrolide antibiotics. They are used in the treatment of pneumonia, arthritis and mastitis in cattle, and mycoplasma infections in poultry. The incorrect use of antibiotics has lead to the presence of antibiotic residues in foods. The residues cause toxic effects on consumers. Results A simple and sensitive method was optimized and validated for the analysis of tylosin and josamycin residues in food samples. Analytical separation was performed in less than 10 min using a RP C18 monolithic column with time-programmed UV detection at 287 nm and 232 nm and a micellar solution of 0.17 M sodium dodecyl sulphate, 14% methanol and 0.3% triethylamine in 0.02 M phosphoric acid buffered at pH 4 as the mobile phase. The method was fully validated in accordance with ICH guidelines. The micellar method was successfully applied to quantitatively determine tylosin and josamycin residues in spiked chicken muscles, chicken liver, bovine muscles, liver, milk and eggs. It was also extended to the determination of tylosin and josamycin residues in chicken-based baby food and baby formulae. The compounds were separated by a monolithic column which, on account of its particular structure, could bear higher flow rates than usually found for this kind of analysis. High extraction efficiency for tylosin and josamycin was obtained without matrix interference in the extraction process and in the subsequent chromatographic determination. No organic solvent was used during the pretreatment step. Hence, it is considered an interesting technique for “green” chemistry. Conclusion The proposed method was validated and successfully applied for the determination of tylosin and josamycin residues in spiked chicken muscles, chicken liver, bovine muscles, liver, milk and eggs. It was also extended to the determination of tylosin and josamycin residues in chicken-based baby food and baby formulae. PMID:24976860

  15. All-fiber high-power monolithic femtosecond laser at 1.59 µm with 63-fs pulse width

    NASA Astrophysics Data System (ADS)

    Hekmat, M. J.; Omoomi, M.; Gholami, A.; Yazdabadi, A. Bagheri; Abdollahi, M.; Hamidnejad, E.; Ebrahimi, A.; Normohamadi, H.

    2018-01-01

    In this research, by adopting an alternative novel approach to ultra-short giant pulse generation which basically originated from difficulties with traditional employed methods, an optimized Er/Yb co-doped double-clad fiber amplifier is applied to boost output average power of single-mode output pulses to a high level of 2-W at 1.59-µm central wavelength. Output pulses of approximately 63-fs pulse width at 52-MHz repetition rate are obtained in an all-fiber monolithic laser configuration. The idea of employing parabolic pulse amplification for stretching output pulses together with high-power pulse amplification using Er/Yb co-doped active fibers for compressing and boosting output average power plays crucial role in obtaining desired results. The proposed configuration enjoys massive advantages over previously reported literature which make it well-suited for high-power precision applications such as medical surgery. Detailed dynamics of pulse stretching and compressing in active fibers with different GVD parameters are numerically and experimentally investigated.

  16. Mixed mode HILIC/anion exchange separations on latex coated silica monoliths.

    PubMed

    Ibrahim, Mohammed E A; Lucy, Charles A

    2012-10-15

    Bare silica monoliths do not possess anion exchange sites hence they show low retention for anions. Moreover, bare silica monoliths show low retention in hydrophilic interaction liquid chromatography (HILIC). Coating the silica surface with cationic nanoparticles e.g. AS9-SC (latex A), AS12A (latex B) and DNApac (latex C) increases the thickness of the water layer on the Onyx silica monolith 8-10 times enabling HILIC retention when a high % acetonitrile (ACN) mobile phase is used. The formed water layer by itself is not sufficient to perform good separation of the studied anions (acetate, formate, nitrate, bromate, thiocyanate and iodide). On the other hand, the latex nanoparticles introduce positively charged sites, making anion exchange chromatography possible, with the anion exchange capacity varying with the latex adsorbed (44.1 ± 0.2, 4.4 ± 0.1 and 14.0 ± 0.7 μeq/column for latex A, B and C, respectively). Latex A nanoparticles which provided the highest ion exchange capacity separated all tested anions with reasonable resolution. Fast separation (2.5 min) of acetate, formate, nitrate, bromate, thiocyanate and iodide was performed using the latex A coated silica monolith. The obtained efficiencies are 13,000-50,000 plates/m at 3 mL/min with a minimum resolution of 0.85. Retention is mixed mode under HILIC conditions with HILIC dominating for the kosmotropic anions and ion exchange dominating for the chaotropic anions. The two different brands of silica monoliths (Merck Chromolith and Phenomenex Onyx) coated with the same latex A nanoparticles displayed similar water layer volumes, ion exchange capacity and selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples.

    PubMed

    Lirio, Stephen; Liu, Wan-Ling; Lin, Chen-Lan; Lin, Chia-Her; Huang, Hsi-Ya

    2016-01-08

    In this study, aluminum based metal-organic framework (Al-MOF)-organic polymer monoliths were prepared via microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA) with different weight percentages of Al-MOF (MIL-53; 37.5-62.5%) and subsequently utilized as sorbent in solid-phase microextraction (SPME) of penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin). The Al-MOF-polymer was characterized using Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and SEM-energy-dispersive X-ray spectroscopy (SEM-EDS) to clarify the retained crystalline structure well as the homogeneous dispersion of Al-MOF (MIL-53) in polymer monolith. The developed Al-MOF-polymer (MIL-53) monolithic column was evaluated according to its extraction recovery of penicillins. Several parameters affecting the extraction recoveries of penicillins using fabricated Al-MOF-polymer (MIL-53) monolithic column including different MIL-53 weight percentages, column length, pH, desorption solvent, and mobile phase flow rate were investigated. For comparison, different Al-based MOFs (MIL-68, CYCU-4 and DUT-5) were fabricated using the optimized condition for MIL-53-polymer (sample matrix at pH 3, 200μL desorption volume using methanol, 37.5% of MOF, 4-cm column length at 0.100mLmin(-1) flow rate). Among all the Al-MOF-polymers, MIL-53(Al)-polymer still afforded the best extraction recovery for penicillins ranging from 90.5 to 95.7% for intra-day with less than 3.5% relative standard deviations (RSDs) and inter-day precision were in the range of 90.7-97.6% with less than 4.2% RSDs. Meanwhile, the recoveries for column-to-column were in the range of 89.5-93.5% (<3.4% RSDs) while 88.5-90.5% (<5.8% RSDs) for batch-to-batch (n=3). Under the optimal conditions, the limit of detections were in the range of 0.06-0.26μgL(-1) and limit of quantifications between 0.20 and 0.87

  18. Preparation of clenbuterol imprinted monolithic polymer with hydrophilic outer layers by reversible addition-fragmentation chain transfer radical polymerization and its application in the clenbuterol determination from human serum by on-line solid-phase extraction/HPLC analysis.

    PubMed

    Li, Xiaobing; Zhou, Man; Turson, Mamat; Lin, Shen; Jiang, Ping; Dong, Xiangchao

    2013-05-21

    A novel imprinted monolithic material with the ability of protein exclusion was developed for the selective extraction of clenbuterol (CLE) from biological samples by direct injection in the HPLC analysis. The material has an imprinted inner structure and hydrophilic outer layer. The reversible addition-fragmentation chain transfer (RAFT) polymerization was employed in the material preparation by a two-step procedure. In the first step, clenbuterol imprinted monolithic polymer was synthesized by combining the molecular imprinting and the RAFT polymerization techniques. The resulting monolithic polymer has a RAFT chain transfer agent (trithioester groups) in its structure, which was used to graft poly(glycerol mono-methacrylate) [pGMMA] in the second step by post-RAFT polymerization. The hydrophilic pGMMA layers grafted on the surface of the imprinted monolith created barriers for protein diffusion. More than 90% of bovine serum albumin can be excluded from the pGMMA coated monolithic column. Meanwhile the clenbuterol was retained selectively with a large retention factor. The result indicated that the column, denoted as RA-MIM, has both the merits of a molecularly imprinted polymer and restricted access material. By using RA-MIM as the solid-phase extraction pre-column, an on-line column-switching HPLC method for the determination of clenbuterol in human serum has been established and validated. The recoveries of clenbuterol from the serum were 87.3-96.9% in the spiked level 2-1000 ng mL(-1). Both good linearity (R = 0.999) and acceptable reproducibility (RSD < 7.0%) were obtained. The limit of detection and the limit of quantitation were 0.7 ng mL(-1) and 2.0 ng mL(-1) respectively, which is sensitive in terms of UV detection. The results have demonstrated that the RAFT polymerization can be used to synthesize bi-functional monolithic columns by using its living reaction property. The resulting RA-MIM in this research can be used for efficient clenbuterol

  19. Lactoferrin Isolation Using Monolithic Column Coupled with Spectrometric or Micro-Amperometric Detector

    PubMed Central

    Adam, Vojtech; Zitka, Ondrej; Dolezal, Petr; Zeman, Ladislav; Horna, Ales; Hubalek, Jaromir; Sileny, Jan; Krizkova, Sona; Trnkova, Libuse; Kizek, Rene

    2008-01-01

    Lactoferrin is a multifunctional protein with antimicrobial activity and others to health beneficial properties. The main aim of this work was to propose easy to use technique for lactoferrin isolation from cow colostrum samples. Primarily we utilized sodium dodecyl sulphate – polyacrylamide gel electrophoresis for isolation of lactoferrin from the real samples. Moreover we tested automated microfluidic Experion electrophoresis system to isolate lactoferrin from the collostrum sample. The well developed signal of lactoferrin was determined with detection limit (3 S/N) of 20 ng/ml. In spite of the fact that Experion is faster than SDS-PAGE both separation techniques cannot be used in routine analysis. Therefore we have tested third separation technique, ion exchange chromatography, using monolithic column coupled with UV-VIS detector (LC-UV-VIS). We optimized wave length (280 nm), ionic strength of the elution solution (1.5 M NaCl) and flow rate of the retention and elution solutions (0.25 ml/min and 0.75 ml/min. respectively). Under the optimal conditions the detection limit was estimated as 0.1 μg/ml of lactoferrin measured. Using LC-UV-VIS we determined that lactoferrin concentration varied from 0.5 g/l to 1.1 g/l in cow colostrums collected in the certain time interval up to 72 hours after birth. Further we focused on miniaturization of detection device. We tested amperometric detection at carbon electrode. The results encouraged us to attempt to miniaturise whole detection system and to test it on analysis of real samples of human faeces, because lactoferrin level in faeces is closely associated with the inflammations of intestine mucous membrane. For the purpose of miniaturization we employed the technology of printed electrodes. The detection limit of lactoferrin was estimated as 10 μg/ml measured by the screen-printed electrodes fabricated by us. The fabricated electrodes were compared with commercially available ones. It follows from the obtained

  20. Affinity monolith chromatography: A review of general principles and applications.

    PubMed

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Open tubular lab-on-column/mass spectrometry for targeted proteomics of nanogram sample amounts.

    PubMed

    Hustoft, Hanne Kolsrud; Vehus, Tore; Brandtzaeg, Ole Kristian; Krauss, Stefan; Greibrokk, Tyge; Wilson, Steven Ray; Lundanes, Elsa

    2014-01-01

    A novel open tubular nanoproteomic platform featuring accelerated on-line protein digestion and high-resolution nano liquid chromatography mass spectrometry (LC-MS) has been developed. The platform features very narrow open tubular columns, and is hence particularly suited for limited sample amounts. For enzymatic digestion of proteins, samples are passed through a 20 µm inner diameter (ID) trypsin + endoproteinase Lys-C immobilized open tubular enzyme reactor (OTER). Resulting peptides are subsequently trapped on a monolithic pre-column and transferred on-line to a 10 µm ID porous layer open tubular (PLOT) liquid chromatography LC separation column. Wnt/ß-catenein signaling pathway (Wnt-pathway) proteins of potentially diagnostic value were digested+detected in targeted-MS/MS mode in small cell samples and tumor tissues within 120 minutes. For example, a potential biomarker Axin1 was identifiable in just 10 ng of sample (protein extract of ∼1,000 HCT15 colon cancer cells). In comprehensive mode, the current OTER-PLOT set-up could be used to identify approximately 1500 proteins in HCT15 cells using a relatively short digestion+detection cycle (240 minutes), outperforming previously reported on-line digestion/separation systems. The platform is fully automated utilizing common commercial instrumentation and parts, while the reactor and columns are simple to produce and have low carry-over. These initial results point to automated solutions for fast and very sensitive MS based proteomics, especially for samples of limited size.

  2. [Synchronous extraction and determination of phenoxy acid herbicides in water by on-line monolithic solid phase microextraction-high performance liquid chromatography].

    PubMed

    Wang, Jiabin; Wu, Fangling; Zhao, Qi

    2015-08-01

    A C18 monolithic capillary column was utilized as the solid phase microextraction column to construct an in-tube SPME-HPLC system which was used to simultaneously extract and detect five phenoxy acid herbicides, including 2,4-dichlorophenoxyacetic acid (2,4-D), 2- (2-chloro)-phenoxy propionic acid (2,2-CPPA), 2-(3-chloro)-phenoxy propionic acid (2,3- CPPA), phenoxy propionic acid (PPA) and 2-(2,4-dichlorophenoxy) propionic acid (2,4-DP). The operating parameters of the in-tube SPME-HPLC system, including the length of the monolithic column, the sampling flow rate, the sampling time, the elution flow rate and the elution time, had been investigated in detail. The optimized operating parameters of the in-tube SPME-HPLC system were as follow: the length of the monolithic column was 20 cm, the sampling flow rate was 0. 04 mL/min, sampling time was 13 min; the elution flow rate was 0.02 mL/min, elution time was 5 min. Under the optimized conditions, the detection limits of the five phenoxy acid herbicides were as follows: 9 µg/L for PPA, 4 µg/L for 2,2-CPPA, 4 µg/L for 2,3-CPPA, 5 µg/L for 2,4-D, 5 µg/L for 2,4-DP. Compared with the HPLC method with direct injection, the combined system showed a good enrichment factors to the analytes. The recoveries of the five phenoxy acid herbicides were between 79.0% and 98.0% (RSD ≤ 3.9%). This method was successfully used to detect the five phenoxy acid herbicides in water samples with satisfactory results.

  3. In-tube solid-phase microextraction based on NH2-MIL-53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine.

    PubMed

    Luo, Xialin; Li, Gongke; Hu, Yufei

    2017-04-01

    In this work, a novel NH 2 -MIL-53(Al) incorporated poly(styrene-divinylbenzene-methacrylic acid) (poly(St-DVB-MAA)) monolith was prepared via chemical fabrication. Moreover, it has been efficiently applied to the in-tube solid-phase microextraction (SPME) for online coupling with high-performance liquid chromatography (HPLC) to the direct determination of five estrogens in human urine samples. The NH 2 -MIL-53(Al)-polymer monolith was suitable for in-tube SPME owing to its good permeability, high extraction efficiency, chemical stability, good reproducibility and long lifetime. The extraction conditions including extraction solvent, pH of sample solution, flow rate of extraction and desorption, and desorption volume were investigated. Under the optimum conditions, the enrichment factors were 180-304 and saturated amounts of extraction were 2326-21393 pmol for estriol, 17β-estradiol, estrone, ethinyl estradiol and progesterone, respectively. The adsorption mechanism was also explored which contributed to its strong extraction to target compounds. The proposed method had low limit of detection (2.0-40ng/L) and good linearity (with R 2 between 0.9908 and 0.9978). Four endogenous estrogens were detected in urine samples and the recoveries of all five analytes were ranged from 75.1-120% with relative standard deviations (RSDs) less than 8.7%. The results showed that the proposed online SPME-HPLC method based on NH 2 -MIL-53(Al)-polymer monolithic column was highly sensitive for directly monitoring trace amount of estrogens in human urine sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Polymethacrylate-based monoliths as stationary phases for separation of biopolymers and immobilization of enzymes.

    PubMed

    Martinović, Tamara; Josić, Djuro

    2017-11-01

    The experiences in the production and application of polymethacrylate-based monolithic supports, since their development almost thirty years ago, are presented. The main driving force for the development of new chromatographic supports was the necessity for the isolation and separation of physiologically active biopolymers and their use for therapeutic purposes. For this sake, a development of a method for fast separation, preventing denaturation and preserving their biological activity was necessary. Development of polysaccharide-based supports, followed by the introduction of polymer-based chromatographic media, is shortly described. This development was followed by the advances in monolithic media that are now used for both large- and small-scale separation of biopolymers and nanoparticles. Finally, a short overview is given about the applications of monoliths for sample displacement chromatography, resulting in isolation of physiologically active biomolecules, such as proteins, protein complexes, and nucleic acid, as well as high-throughput sample preparation for proteomic investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photonic crystal fiber technology for high-performance all-fiber monolithic ultrafast fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Papior, Sidsel R.; Weirich, Johannes; Johansen, Mette M.; Jakobsen, Christian; Michieletto, Mattia; Triches, Marco; Kristensen, Torben; Olesen, Anders S.; Petersen, Christian; Andersen, Thomas V.; Maack, Martin D.; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology for ultrafast fiber amplifiers traditionally uses air holes as key elements for large mode area (LMA) fiber designs. These air holes are crucial for the performance of high-end LMA PCFs, but makes splicing and interfacing more complex. To reduce this complexity in mid-range amplifiers, we present single-mode polarization-maintaining Yb-doped LMA PCFs without air holes for easier splicing into monolithic all-fiber amplifier designs. A 30 μm core all-solid spliceable PCF is presented, and amplification of 1064 nm light above 50 W with an optical to optical efficiency of 80 % is demonstrated. Furthermore, to demonstrate the excellent reliability of PCF based monolithic amplifiers, we demonstrate ultra-longterm performance data of > 35 khrs on a 14 μm core step-index type PCF amplifier with low long-term power degradation slope of < 1.5 % / 10,000 h.

  6. Absence of a Metallicity Effect for Ultra-short-period Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, Joshua N.; Sanchis-Ojeda, Roberto; Isaacson, Howard

    Ultra-short-period (USP) planets are a newly recognized class of planets with periods shorter than one day and radii smaller than about 2  R {sub ⊕}. It has been proposed that USP planets are the solid cores of hot Jupiters that have lost their gaseous envelopes due to photo-evaporation or Roche lobe overflow. We test this hypothesis by asking whether USP planets are associated with metal-rich stars, as has long been observed for hot Jupiters. We find the metallicity distributions of USP-planet and hot-Jupiter hosts to be significantly different ( p = 3 × 10{sup −4}) based on Keck spectroscopy ofmore » Kepler stars. Evidently, the sample of USP planets is not dominated by the evaporated cores of hot Jupiters. The metallicity distribution of stars with USP planets is indistinguishable from that of stars with short-period planets with sizes between 2 and 4  R {sub ⊕}. Thus, it remains possible that the USP planets are the solid cores of formerly gaseous planets that are smaller than Neptune.« less

  7. Systematic evaluation of commercially available ultra-high performance liquid chromatography columns for drug metabolite profiling: optimization of chromatographic peak capacity.

    PubMed

    Dubbelman, Anne-Charlotte; Cuyckens, Filip; Dillen, Lieve; Gross, Gerhard; Hankemeier, Thomas; Vreeken, Rob J

    2014-12-29

    The present study investigated the practical use of modern ultra-high performance liquid chromatography (UHPLC) separation techniques for drug metabolite profiling, aiming to develop a widely applicable, high-throughput, easy-to-use chromatographic method, with a high chromatographic resolution to accommodate simultaneous qualitative and quantitative analysis of small-molecule drugs and metabolites in biological matrices. To this end, first the UHPLC system volume and variance were evaluated. Then, a mixture of 17 drugs and various metabolites (molecular mass of 151-749Da, logP of -1.04 to 6.7), was injected on six sub-2μm particle columns. Five newest generation core shell technology columns were compared and tested against one column packed with porous particles. Two aqueous (pH 2.7 and 6.8) and two organic mobile phases were evaluated, first with the same flow and temperature and subsequently at each column's individual limit of temperature and pressure. The results demonstrated that pre-column dead volume had negligible influence on the peak capacity and shape. In contrast, a decrease in post-column volume of 57% resulted in a substantial (47%) increase in median peak capacity and significantly improved peak shape. When the various combinations of stationary and mobile phases were used at the same flow rate (0.5mL/min) and temperature (45°C), limited differences were observed between the median peak capacities, with a maximum of 26%. At higher flow though (up to 0.9mL/min), a maximum difference of almost 40% in median peak capacity was found between columns. The finally selected combination of solid-core particle column and mobile phase composition was chosen for its selectivity, peak capacity, wide applicability and peak shape. The developed method was applied to rat hepatocyte samples incubated with the drug buspirone and demonstrated to provide a similar chromatographic resolution, but a 6 times higher signal-to-noise ratio than a more traditional UHPLC

  8. InP-based compact transversal filter for monolithically integrated light source array.

    PubMed

    Ueda, Yuta; Fujisawa, Takeshi; Takahata, Kiyoto; Kohtoku, Masaki; Ishii, Hiroyuki

    2014-04-07

    We developed an InP-based 4x1 transversal filter (TF) with multi-mode interference couplers (MMIs) as a compact wavelength multiplexer (MUX) 1700 μm x 400 μm in size. Furthermore, we converted the MMI-based TF to a reflection type to obtain an ultra-compact MUX of only 900 μm x 50 μm. These MUXs are made with a simple fabrication process and show a satisfactory wavelength filtering operation as MUXs of monolithically integrated light source arrays, for example, for 100G bit Ethernet.

  9. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  10. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    PubMed

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of <15% (averaged for several metal ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  11. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  12. Preparation and Characterization of a Polymeric Monolithic Column for Use in High-Performance Liquid Chromatography (HPLC)

    ERIC Educational Resources Information Center

    Bindis, Michael P.; Bretz, Stacey Lowery; Danielson, Neil D.

    2011-01-01

    The high-performance liquid chromatography (HPLC) experiment, most often done in the undergraduate analytical instrumentation laboratory course, generally illustrates reversed-phase chromatography using a commercial C[subscript]18 silica column. To avoid the expense of periodic column replacement and introduce a choice of columns with different…

  13. Kron-Branin modelling of ultra-short pulsed signal microelectrode

    NASA Astrophysics Data System (ADS)

    Xu, Zhifei; Ravelo, Blaise; Liu, Yang; Zhao, Lu; Delaroche, Fabien; Vurpillot, Francois

    2018-06-01

    An uncommon circuit modelling of microelectrode for ultra-short signal propagation is developed. The proposed model is based on the Tensorial Analysis of Network (TAN) using the Kron-Branin (KB) formalism. The systemic graph topology equivalent to the considered structure problem is established by assuming as unknown variables the branch currents. The TAN mathematical solution is determined after the KB characteristic matrix identification. The TAN can integrate various structure physical parameters. As proof of concept, via hole ended microelectrodes implemented on Kapton substrate were designed, fabricated and tested. The 0.1-MHz-to-6-GHz S-parameter KB model, simulation and measurement are in good agreement. In addition, time-domain analyses with nanosecond duration pulse signals were carried out to predict the microelectrode signal integrity. The modelled microstrip electrode is usually integrated in the atom probe tomography. The proposed unfamiliar KB method is particularly beneficial with respect to the computation speed and adaptability to various structures.

  14. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guoping, E-mail: guoping.lin@femto-st.fr; Diallo, Souleymane; Saleh, Khaldoun

    2014-12-08

    We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF{sub 2}) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF{sub 2} resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  15. Preparation of 2,4-dichlorophenoxyacetic acid imprinted organic-inorganic hybrid monolithic column and application to selective solid-phase microextraction.

    PubMed

    Liu, Xiaofang; Zhu, Quanfei; Chen, Huaixia; Zhou, Liuzi; Dang, Xueping; Huang, Jianlin

    2014-03-01

    An organic-inorganic hybrid molecular imprinting monolith (HMIM) has been prepared, characterized and applied for the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in rice with high-performance liquid chromatography-photodiodes array detector (HPLC-PAD). By optimizing the polymerization conditions, such as the volume ratio of the inorganic alcoholysate and organic part, the 2,4-D-HMIM was synthesized in a micro pipette tip using acrylamide as the functional monomer, ethylene dimethacrylate as the cross-linker and methanol as the porogenic solvent. The morphology of the monolith was studied by scanning electronmicroscopy and Fourier transform infrared spectra. The imprinted factor of the monolith for 2,4-D reached 3.29. A simple, rapid and sensitive method for the determination of 2,4-D in rice using the HMIM microextraction combined with high-performance liquid chromatography-photodiodes array detector was developed. Some parameters affecting the sample pretreatment were investigated, including the type and volume of eluent, the flow rate and volume of sample solution. The assay exhibited a linear dynamic range of 167-4167μg/kg with the correlation coefficient above 0.9972. The detection limit (at S/N=3) was 50μg/kg. The proposed method was successfully applied for the selective determination of 2,4-D in rice. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    NASA Astrophysics Data System (ADS)

    Bertolini, Alessandro; DeSalvo, Riccardo; Fidecaro, Francesco; Francesconi, Mario; Marka, Szabolcs; Sannibale, Virginio; Simonetti, Duccio; Takamori, Akiteru; Tariq, Hareem

    2006-01-01

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150 Hz. The very high mechanical quality factor, Q≃3000 at a resonant frequency of 0.5 Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1 nm, integrated over the frequency band from 0.01 to 150 Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10-3 has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  17. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime.

    PubMed

    Wen, Xin; Han, Yashuai; Bai, Jiandong; He, Jun; Wang, Yanhua; Yang, Baodong; Wang, Junmin

    2014-12-29

    We demonstrate a simple, compact and cost-efficient diode laser pumped frequency doubling system at 795 nm in the low power regime. In two configurations, a bow-tie four-mirror ring enhancement cavity with a PPKTP crystal inside and a semi-monolithic PPKTP enhancement cavity, we obtain 397.5nm ultra-violet coherent radiation of 35mW and 47mW respectively with a mode-matched fundamental power of about 110mW, corresponding to a conversion efficiency of 32% and 41%. The low loss semi-monolithic cavity leads to the better results. The constructed ultra-violet coherent radiation has good power stability and beam quality, and the system has huge potential in quantum optics and cold atom physics.

  18. Chaotic behaviour of the short-term variations in ozone column observed in Arctic

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Vitale, Vito; Mazzola, Mauro; Lanconelli, Christian; Lupi, Angelo

    2015-09-01

    The diurnal variations observed in the ozone column at Ny-Ålesund, Svalbard during different periods of 2009, 2010 and 2011 have been examined to test the hypothesis that they could be a result of a chaotic process. It was found that each of the attractors, reconstructed by applying the time delay technique and corresponding to any of the three time series can be embedded by 6-dimensional space. Recurrence plots, depicted to characterise the attractor features revealed structures typical for a chaotic system. In addition, the two positive Lyapunov exponents found for the three attractors, the fractal Hausdorff dimension presented by the Kaplan-Yorke estimator and the feasibility to predict the short-term ozone column variations within 10-20 h, knowing the past behaviour make the assumption about their chaotic character more realistic. The similarities of the estimated parameters in all three cases allow us to hypothesise that the three time series under study likely present one-dimensional projections of the same chaotic system taken at different time intervals.

  19. Monolithic porous magnesium silicide.

    PubMed

    Hayati-Roodbari, N; Berger, R J F; Bernardi, J; Kinge, S; Hüsing, N; Elsaesser, M S

    2017-07-11

    Macroporous magnesium silicide monoliths were successfully prepared by a two-step synthesis procedure. The reaction of gaseous magnesium vapor with macro-/mesoporous silicon, which was generated from hierarchically organized meso-/macroporous silica by a magnesiothermic reduction reaction, resulted in monolithic magnesium silicide with a cellular, open macroporous structure. By adjusting the reaction conditions, such as experimental set-up, temperature and time, challenges namely loss of porosity or phase purity of Mg 2 Si were addressed and monolithic magnesium silicide with a cellular network builtup was obtained.

  20. Development of large-area monolithically integrated silicon-film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Rand, J. A.; Cotter, J. E.; Ingram, A. E.; Ruffins, T. R.; Shreve, K. P.; Hall, R. B.; Barnett, A. M.

    1993-06-01

    This report describes work to develop Silicon-Film (trademark) Product 3 into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product 3 structure is a thin (less than 100 micron) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200 sq cm, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 sq cm monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R(sub s) effects. Test data for a nine-cell device (16 sq cm) indicated a V(sub oc) of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (less than 0.1 mA/sq cm) due to limited conduction through the ceramic and no process-related metallization shunts.

  1. Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels.

    PubMed

    Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri

    2013-01-01

    In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn(2+)-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies.

  2. Amino Acid Bound Surfactants: A New Synthetic Family of Polymeric Monoliths Open Up Possibilities for Chiral Separations in Capillary Electrochromatography

    PubMed Central

    He, Jun; Wang, Xiaochun; Morrill, Mike; Shamsi, Shahab A.

    2012-01-01

    By combining a novel chiral amino-acid surfactant containing acryloyl amide tail, carbamate linker and leucine head group of different chain lengths with a conventional cross linker and a polymerization technique, a new “one-pot”, synthesis for the generation of amino-acid based polymeric monolith is realized. The method promises to open up the discovery of amino-acid based polymeric monolith for chiral separations in capillary electrochromatography (CEC). Possibility of enhanced chemoselectivity for simultaneous separation of ephedrine and pseudoephedrine containing multiple chiral centers, and the potential use of this amino-acid surfactant bound column for CEC and CEC coupled to mass spectrometric detection is demonstrated. PMID:22607448

  3. Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments

    NASA Astrophysics Data System (ADS)

    Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming

    2013-04-01

    Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.

  4. Absence of a Metallicity Effect for Ultra-short-period Planets

    NASA Astrophysics Data System (ADS)

    Winn, Joshua N.; Sanchis-Ojeda, Roberto; Rogers, Leslie; Petigura, Erik A.; Howard, Andrew W.; Isaacson, Howard; Marcy, Geoffrey W.; Schlaufman, Kevin C.; Cargile, Phillip; Hebb, Leslie

    2017-08-01

    Ultra-short-period (USP) planets are a newly recognized class of planets with periods shorter than one day and radii smaller than about 2 R ⊕. It has been proposed that USP planets are the solid cores of hot Jupiters that have lost their gaseous envelopes due to photo-evaporation or Roche lobe overflow. We test this hypothesis by asking whether USP planets are associated with metal-rich stars, as has long been observed for hot Jupiters. We find the metallicity distributions of USP-planet and hot-Jupiter hosts to be significantly different (p = 3 × 10-4) based on Keck spectroscopy of Kepler stars. Evidently, the sample of USP planets is not dominated by the evaporated cores of hot Jupiters. The metallicity distribution of stars with USP planets is indistinguishable from that of stars with short-period planets with sizes between 2 and 4 R ⊕. Thus, it remains possible that the USP planets are the solid cores of formerly gaseous planets that are smaller than Neptune. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted by NASA, the University of California, the California Institute of Technology, and the University of Hawaii.

  5. Quantitative determination of p-aminosalicylic acid and its degradation product m-aminophenol in pellets by ion-pair high-performance liquid chromatography applying the monolithic Chromolith Speedrod RP-18e column.

    PubMed

    Vasbinder, E; Van der Weken, G; Vander Heyden, Y; Baeyens, W R G; Debunne, A; Remon, J P; García-Campaña, A M

    2004-01-01

    An ion-pair high performance liquid chromatographic method was developed for the simultaneous determination of p-aminosalicylic acid (PAS) and its degradation product m-aminophenol (MAP) in a newly developed multiparticular drug delivery system. Owing to the concentration differences of PAS and MAP, acetanilide and sulfanilic acid were used as internal standards, respectively. The separation was performed on a Chromolith SpeedROD RP-18e column, a new packing material consisting of monolithic rods of highly porous silica. The mobile phase composition was of 20 mm phosphate buffer, 20 mm tetrabutylammonium hydrogen sulphate and 16% (v/v) methanol adjusted to pH 6.8, at a flow-rate of 1.0 mL/min, resulting in a run-time of about 6 min. Detection was by UV at 233 nm. The method was validated and proved to be useful for stability testing of the new dosage form. Separation efficiency was compared between the new packing material Chromolith SpeedROD RP-18e and the conventional reversed-phase cartridge LiChroCART 125-4 (5 microm). A robustness test was carried out on both columns and different separation parameters (retention, resolution, run time, temperature) were determined. Copyright 2004 John Wiley & Sons, Ltd.

  6. Sustainable materials used as stone column filler: A short review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    Stone columns (also known as granular piles) are one of the methods for soft soil stabilization and typically used to increase bearing capacity and stability of slope.; Apart from decreasing the compressibility of loose and fine graded soils, it also accelerates the consolidation effect by improving the drainage path for pore water pressure dissipation and reduces the liquefaction potential of soils during earthquake event. Stone columns are probably the most “natural” ground treatment method or foundation system in existence to date. The benefit of stone columns is owing to the partial replacement of compressible soil by more competent materials such as stone aggregate, sand and other granular materials. These substitutes also act as reinforcement material, hence increasing overall strength and stiffness of the soft soil. Nowadays, a number of research has been conducted on the behaviour and performance of stone columns with various materials utilized as column filler replacing the normal aggregate. This paper will review extensively on previously conducted research on some of the materials used as stone column backfill materials, its suitability and the effectiveness as a substitute for regular aggregates in soft soil improvement works.

  7. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  8. Ultra-low noise combs in the palm of your hand

    NASA Astrophysics Data System (ADS)

    Schibli, Thomas R.

    Mode-locked lasers are attractive tools for precision measurements and for photonic microwave generation. The technology around these lasers has rapidly evolved, and with the invention of optical frequency combs, fs-technology has become a ubiquitous tool science and engineering. At first, most of these combs were generated by bulky and delicate Kerr-Lens mode-locked Ti:sapphire systems, but have now been mostly replaced by the much more robust and compact fiber lasers. However, the move from table-top solid-state lasers to the fully self-contained fiber systems came with a price: the optical phase noise performance degraded due to design constraints. While this is of no concern for most spectroscopic applications, it poses a challenge for applications that require excellent short-term phase noise performance, such as, for example, required for photonic microwave generation. While much of this has been improved by ingenious laser designs, it remains a challenge to obtain ultra-low phase-noise combs from high-repetition-rate fiber lasers. Here we present a new approach consisting of a monolithic cavity design, in which the laser light is fully confined inside an optical material. Thanks to this monolithic design, these solid-state lasers are inherently robust against environmental perturbations, such as acoustics, vibrations, air pressure and humidity. Opposed to the omnipresent mode-locked fiber lasers, these monolithic lasers exhibit very low round-trip loss, dispersion and nonlinearities. As a result, they produce highly stable pulse trains, with free-running relative line-widths of the order of a few Hz in the optical domain, despite their moderately high fundamental repetition rates of 1 GHz. The compact design further simplifies integration into complex systems, and eliminates the need for an optics bench or a vibration isolated platform. These lasers produce less than 0.2 W of heat, and are fully turn-key. This work was supported by the DARPA PULSE program

  9. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  10. An ultra short episode of sleep is sufficient to promote declarative memory performance.

    PubMed

    Lahl, Olaf; Wispel, Christiane; Willigens, Bernadette; Pietrowsky, Reinhard

    2008-03-01

    Various studies have demonstrated that a night of sleep has a beneficial effect on the retention of previously acquired declarative material. In two experiments, we addressed the question of whether this effect extends to daytime naps. In the first experiment we assessed free recall of a list of 30 words after a 60 min retention interval that was either filled with daytime napping or waking activity. Memory performance was significantly enhanced after napping as opposed to waking but was not correlated with time spent in slow wave sleep or total sleep time within the napping condition. The second experiment was designed to clarify the role of total sleep time and therefore included an additional third group, which was allowed to nap for no longer than 6 min on average. In comparing word recall after conditions of no napping (waking), short napping, and long napping, we found superior recall for both nap conditions in contrast to waking as well as for long naps in contrast to short naps. These results demonstrate that even an ultra short period of sleep is sufficient to enhance memory processing. We suggest that the mere onset of sleep may initiate active processes of consolidation which - once triggered - remain effective even if sleep is terminated shortly thereafter.

  11. Method of making and structure for monolithic optical circuits

    NASA Technical Reports Server (NTRS)

    Evanchuk, Vincent L. (Inventor)

    1983-01-01

    A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation senstivie plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.

  12. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-04-11

    The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in

  13. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2016-08-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  14. Graphene-supported metal oxide monolith

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  15. Performance of a SiPM based semi-monolithic scintillator PET detector.

    PubMed

    Zhang, Xianming; Wang, Xiaohui; Ren, Ning; Kuang, Zhonghua; Deng, Xinhan; Fu, Xin; Wu, San; Sang, Ziru; Hu, Zhanli; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-09-21

    A depth encoding PET detector module using semi-monolithic scintillation crystal single-ended readout by a SiPM array was built and its performance was measured. The semi-monolithic scintillator detector consists of 11 polished LYSO slices measuring 1  ×  11.6  ×  10 mm 3 . The slices are glued together with enhanced specular reflector (ESR) in between and outside of the slices. The bottom surface of the slices is coupled to a 4  ×  4 SiPM array with a 1 mm light guide and silicon grease between them. No reflector is used on the top surface and two sides of the slices to reduce the scintillation photon reflection. The signals of the 4  ×  4 SiPM array are grouped along rows and columns separately into eight signals. Four SiPM column signals are used to identify the slices according to the center of the gravity of the scintillation photon distribution in the pixelated direction. Four SiPM row signals are used to estimate the y (monolithic direction) and z (depth of interaction) positions according to the center of the gravity and the width of the scintillation photon distribution in the monolithic direction, respectively. The detector was measured with 1 mm sampling interval in both the y and z directions with electronic collimation by using a 0.25 mm diameter 22 Na point source and a 1  ×  1  ×  20 mm 3 LYSO crystal detector. An average slice based energy resolution of 14.9% was obtained. All slices of 1 mm thick were clearly resolved and a detector with even thinner slices could be used. The y positions calculated with the center of gravity method are different for interactions happening at the same y, but different z positions due to depth dependent edge effects. The least-square minimization and the maximum likelihood positioning algorithms were developed and both methods improved the spatial resolution at the edges of the detector as compared with the center of gravity method. A mean absolute

  16. Performance of a SiPM based semi-monolithic scintillator PET detector

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Wang, Xiaohui; Ren, Ning; Kuang, Zhonghua; Deng, Xinhan; Fu, Xin; Wu, San; Sang, Ziru; Hu, Zhanli; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-10-01

    A depth encoding PET detector module using semi-monolithic scintillation crystal single-ended readout by a SiPM array was built and its performance was measured. The semi-monolithic scintillator detector consists of 11 polished LYSO slices measuring 1  ×  11.6  ×  10 mm3. The slices are glued together with enhanced specular reflector (ESR) in between and outside of the slices. The bottom surface of the slices is coupled to a 4  ×  4 SiPM array with a 1 mm light guide and silicon grease between them. No reflector is used on the top surface and two sides of the slices to reduce the scintillation photon reflection. The signals of the 4  ×  4 SiPM array are grouped along rows and columns separately into eight signals. Four SiPM column signals are used to identify the slices according to the center of the gravity of the scintillation photon distribution in the pixelated direction. Four SiPM row signals are used to estimate the y (monolithic direction) and z (depth of interaction) positions according to the center of the gravity and the width of the scintillation photon distribution in the monolithic direction, respectively. The detector was measured with 1 mm sampling interval in both the y and z directions with electronic collimation by using a 0.25 mm diameter 22Na point source and a 1  ×  1  ×  20 mm3 LYSO crystal detector. An average slice based energy resolution of 14.9% was obtained. All slices of 1 mm thick were clearly resolved and a detector with even thinner slices could be used. The y positions calculated with the center of gravity method are different for interactions happening at the same y, but different z positions due to depth dependent edge effects. The least-square minimization and the maximum likelihood positioning algorithms were developed and both methods improved the spatial resolution at the edges of the detector as compared with the center of gravity method. A mean absolute error

  17. Rapid amino acid quantitation with pre-column derivatization; ultra-performance reverse phase liquid chromatography and single quadrupole mass spectrometry.

    PubMed

    Pretorius, Carel J; McWhinney, Brett C; Sipinkoski, Bilyana; Wilce, Alice; Cox, David; McWhinney, Avis; Ungerer, Jacobus P J

    2018-03-01

    We optimized a quantitative amino acid method with pre-column derivatization, norvaline (nva) internal standard and reverse phase ultra-performance liquid chromatography by replacing the ultraviolet detector with a single quadrupole mass spectrometer (MS nva ). We used 13 C 15 N isotopically labeled amino acid internal standards and a C18 column with 1.6μm particles to optimize the chromatography and to confirm separation of isobaric compounds (MS lis ). We compared the analytical performance of MS nva with MS lis and the original method (UV nva ) with clinical samples. The chromatography time per sample of MS nva was 8min, detection capabilities were <1μmol/L for most components, intermediate imprecisions at low concentrations were <10% and there was negligible carryover. MS nva was linear up to a total amino acid concentration in a sample of approximately 9500μmol/L. The agreements between most individual amino acids were satisfactory compared to UV nva with the latter prone to outliers and suboptimal quantitation of urinary arginine, aspartate, glutamate and methionine. MS nva reliably detected argnininosuccinate, β-alanine, citrulline and cysteine-s-sulfate. MS nva resulted in a more than fivefold increase in operational efficiency with accurate detection of amino acids and metabolic intermediates in clinical samples. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Preparation of well-controlled three-dimensional skeletal hybrid monoliths via thiol-epoxy click polymerization for highly efficient separation of small molecules in capillary liquid chromatography.

    PubMed

    Lin, Hui; Chen, Lianfang; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-10-16

    Two kinds of hybrid monoliths were first prepared via thiol-epoxy click polymerization using a multi-epoxy monomer, octaglycidyldimethylsilyl POSS (POSS-epoxy), and two multi-thiols, trimethylolpropanetris(3-mercaptopropionate) (TPTM) and pentaerythritoltetrakis(3-mercaptopropionate) (PTM), respectively, as the precursors. The resulting two hybrid monoliths (assigned as POSS-epoxy-TPTM and POSS-epoxy-PTM) not only possessed high thermal, mechanical and chemical stabilities, but also exhibited well-controlled 3D skeletal microstructure and high efficiency in capillary liquid chromatography (cLC) separation of small molecules. The highest column efficiency reached 182,700N/m (for butylbenzene) on the monolith POSS-epoxy-PTM at the velocity of 0.75mm/s. Furthermore, the hybrid monolith POSS-epoxy-PTM was successfully applied for cLC separations of various samples, not only standard compounds such as alkylbenzenes, PAHs, phenols and dipeptides, as well as intact proteins, but also complex samples of EPA 610 and BSA digest. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  20. Measurement and calculation of ternary oxide mixtures for thin films for ultra short pulse laser optics

    NASA Astrophysics Data System (ADS)

    Jupé, M.; Mende, M.; Kolleck, C.; Ristau, D.; Gallais, L.; Mangote, B.

    2011-12-01

    The femto-second technology gains of increasing importance in industrial applications. In this context, a new generation of compact and low cost laser sources has to be provided on a commercial basis. Typical pulse durations of these sources are specified in the range from a few hundred femtoup to some pico-seconds, and typical wavelengths are centered around 1030-1080nm. As a consequence, also the demands imposed on high power optical components for these laser sources are rapidly increasing, especially in respect to their power handling capability in the ultra-short pulse range. The present contribution is dedicated to some aspects for improving this quality parameter of optical coatings. The study is based on a set of hafnia and silica mixtures with different compositions and optical band gaps. This material combination displays under ultra-short pulse laser irradiation effects, which are typically for thermal processes. For instance, melting had been observed in the morphology of damaged sides. In this context, models for a prediction of the laser damage thresholds and scaling laws are scrutinized, and have been modified calculating the energy of the electron ensemble. Furthermore, a simple first order approach for the calculation of the temperature was included.

  1. Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels

    PubMed Central

    Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri

    2013-01-01

    In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn2+-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies. PMID:26600734

  2. An ultra-low power self-timed column-level ADC for a CMOS pixel sensor based vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, M.

    2014-11-01

    The International Large Detector (ILD) is a detector concept for the future linear collider experiment. The vertex detector is the key tool to achieve high precision measurements for flavor tagging, which puts stringent requirements on the CMOS pixel sensors. Due to the cooling systems which deteriorate the material budget and increase the multiple scattering, it is important to reduce the power consumption. This paper presents an ultra-low power self-timed column-level ADC for the CMOS pixel sensors, aiming to equip the outer layers of the vertex detector. The ADC was designed to operate in two modes (active and idle) adapted to the low hit density in the outer layers. The architecture employs an enhanced sample-and-hold circuit and a self-timed technique. The total power consumption with a 3-V supply is 225μW during idle mode, which is the most frequent situation. This value rises to 425μW in the case of the active mode. It occupies an area of 35 × 590μm2.

  3. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.

    PubMed

    Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C

    2017-02-17

    The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Conventional and narrow bore short capillary columns with cyclodextrin derivatives as chiral selectors to speed-up enantioselective gas chromatography and enantioselective gas chromatography-mass spectrometry analyses.

    PubMed

    Bicchi, Carlo; Liberto, Erica; Cagliero, Cecilia; Cordero, Chiara; Sgorbini, Barbara; Rubiolo, Patrizia

    2008-11-28

    The analysis of complex real-world samples of vegetable origin requires rapid and accurate routine methods, enabling laboratories to increase sample throughput and productivity while reducing analysis costs. This study examines shortening enantioselective-GC (ES-GC) analysis time following the approaches used in fast GC. ES-GC separations are due to a weak enantiomer-CD host-guest interaction and the separation is thermodynamically driven and strongly influenced by temperature. As a consequence, fast temperature rates can interfere with enantiomeric discrimination; thus the use of short and/or narrow bore columns is a possible approach to speeding-up ES-GC analyses. The performance of ES-GC with a conventional inner diameter (I.D.) column (25 m length x 0.25 mm I.D., 0.15 microm and 0.25 microm d(f)) coated with 30% of 2,3-di-O-ethyl-6-O-tert-butyldimethylsilyl-beta-cyclodextrin in PS-086 is compared to those of conventional I.D. short column (5m length x 0.25 mm I.D., 0.15 microm d(f)) and of different length narrow bore columns (1, 2, 5 and 10 m long x 0.10 mm I.D., 0.10 microm d(f)) in analysing racemate standards of pesticides and in the flavour and fragrance field and real-world-samples. Short conventional I.D. columns gave shorter analysis time and comparable or lower resolutions with the racemate standards, depending mainly on analyte volatility. Narrow-bore columns were tested under different analysis conditions; they provided shorter analysis time and resolutions comparable to those of conventional I.D. ES columns. The narrow-bore columns offering the most effective compromise between separation efficiency and analysis time are the 5 and 2m columns; in combination with mass spectrometry as detector, applied to lavender and bergamot essential oil analyses, these reduced analysis time by a factor of at least three while separation of chiral markers remained unaltered.

  5. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  6. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  7. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives.

    PubMed

    Wang, Ting-Ting; Chen, Yi-Hui; Ma, Jun-Feng; Hu, Min-Jie; Li, Ying; Fang, Jiang-Hua; Gao, Hao-Qi

    2014-08-01

    A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm(-1). Good linear calibration curves (R(2) > 0.99) were obtained, and the limits of detection (S/N = 3) for the analytes were found to be in the range 1.2-13.5 ng mL(-1). The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.

  8. Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis.

    PubMed

    Castaldo, R; Xu, W; Melillo, P; Pecchia, L; Santamaria, L; James, C

    2016-08-01

    Mental stress may cause cognitive dysfunctions, cardiovascular disorders and depression. Mental stress detection via short-term Heart Rate Variability (HRV) analysis has been widely explored in the last years, while ultra-short term (less than 5 minutes) HRV has been not. This study aims to detect mental stress using linear and non-linear HRV features extracted from 3 minutes ECG excerpts recorded from 42 university students, during oral examination (stress) and at rest after a vacation. HRV features were then extracted and analyzed according to the literature using validated software tools. Statistical and data mining analysis were then performed on the extracted HRV features. The best performing machine learning method was the C4.5 tree algorithm, which discriminated between stress and rest with sensitivity, specificity and accuracy rate of 78%, 80% and 79% respectively.

  9. Novel polymeric monolith materials with a β-cyclodextrin-graphene composite for the highly selective extraction of methyl jasmonate.

    PubMed

    Yu, Xinhong; Ling, Xu; Zou, Li; Chen, Zilin

    2017-04-01

    A novel polymeric monolith column with a  β-cyclodextrin-graphene composite was prepared for extraction of methyl jasmonate. A simple, sensitive, and effective polymeric monolith microextraction with high-performance liquid chromatography method has been presented for the determination. To carry out the best microextraction efficiency, several parameters such as sample flow rate, sample volume, and sample pH value were systematically optimized. In addition, the method validation showed a wide linear range of 5-2000 ng/mL, with a good linearity and low limits of detection for methyl jasmonate. The proposed method was successfully applied for the determination of methyl jasmonate in wintersweet flowers with recoveries of 90.67%. The result was confirmed by high-performance liquid chromatography with mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analysis of free amino acids in Amur sturgeon by ultra-performance liquid chromatography using pre-column derivatization with 6-aminoquinolyl-carbamyl.

    PubMed

    Sun, Yanchun; Xu, Xianzhu; Mou, Zhenbo; Wang, Jing; Tan, Zhijun; Wu, Song

    2012-12-01

    A rapid, sensitive, and reliable ultra-performance liquid chromatography (UPLC) coupled with photodiode array detection method was developed for the amino acid analysis of Amur sturgeon (Acipenser schrenckii Brandt). The method uses minimal sample volume and automated online precolumn derivitization of amino acids with fluorescent 6-aminoquinolyl-carbamyl reagent. The chromatographic separation was achieved by UPLC, which used a column with 1.7 μm particle packing that enabled higher speed of analysis, peak capacity, greater resolution, and increased sensitivity. Amino acid derivatives obtained under optimal conditions were separated on a Waters UPLC BEH C(18) column with Acetonitrile-acetate buffer as mobile phase. Matrix effects were investigated and good linearities with correlation coefficients better than 0.9949 were obtained over a wide range of 5-1000 μmol/L for all amino acids. The simple sample preparation and minimal sample volume make the method useful for the quantitation of 17 amino acids in Amur sturgeon samples. It is concluded that a rapid and robust platform based on UPLC was established, and a total of 17 amino acids of Amur sturgeon were tentatively detected. This method showed good accuracy and repeatability that can be used for the quantification of amino acids in real samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In-column immobilization of Cs-saturated crystalline silicotitanates using phenolic resins.

    PubMed

    Curi, Rodrigo F; Luca, Vittorio

    2018-03-01

    The in situ immobilization of granulated Cs-saturated crystalline silicotitanates (Cs-CST) in fixed-bed columns has been investigated using commercially available phenol formaldehyde (PF) resin as a binding agent. Two types of PF resin were investigated as part of this study both being prepared from resol polymer having a formaldehyde:phenol ratio of 3:1. However, one of the resol polymers had water as the primary solvent and the other ethanol. Both resol polymers were observed to completely infiltrate the space between the Cs-CST beads and also the pores within the beads themselves. PF resin monoliths prepared after curing the water-based resol at 180 °C were considerably less porous than the ethanol-based counterparts cured under the same conditions. The enhanced macroporosity of the resin prepared from the ethanol-based resol was presumably the result from enhanced gas bubble generation. Little or no micro- or mesoporosity was measured using nitrogen porosimetry. For both resins cured at 180 °C, intimate contacts with the Cs-CST beads were observed that were not modified even after complete immersion in water over long time frames. Little or no migration of Cs from Cs-CST to the resin binder was observed. The compressive strength of the Cs-CST-PF resin monoliths was measured and benchmarked against cement monoliths and was found to be two to three times higher than cement in the case of the water-based resin. Leaching of the monoliths was conducted in demineralized water at 90 °C. Normalized Cs mass losses of the order of 1.0 g/m 2 were measured after 30 days for the ethanol-based resin monoliths. For the less porous water-based monoliths, the normalized mass loss was one order of magnitude lower. The leaching of monoliths irradiated with a 2-MGy dose of γ radiation showed no difference in Cs mass loss suggesting that the ability to retain Cs of either the CST or PF resin was not affected. PF resins are capable of acting as a mechanically robust

  12. Fabrication of a wide-field NIR integral field unit for SWIMS using ultra-precision cutting

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yutaro; Yamagata, Yutaka; Morita, Shin-ya; Motohara, Kentaro; Ozaki, Shinobu; Takahashi, Hidenori; Konishi, Masahiro; Kato, Natsuko M.; Kobayakawa, Yutaka; Terao, Yasunori; Ohashi, Hirofumi

    2016-07-01

    We describe overview of fabrication methods and measurement results of test fabrications of optical surfaces for an integral field unit (IFU) for Simultaneous color Wide-field Infrared Multi-object Spectrograph, SWIMS, which is a first-generation instrument for the University of Tokyo Atacama Observatory 6.5-m telescope. SWIMS-IFU provides entire near-infrared spectrum from 0.9 to 2.5 μm simultaneously covering wider field of view of 17" × 13" compared with current near-infrared IFUs. We investigate an ultra-precision cutting technique to monolithically fabricate optical surfaces of IFU optics such as an image slicer. Using 4- or 5-axis ultra precision machine we compare the milling process and shaper cutting process to find the best way of fabrication of image slicers. The measurement results show that the surface roughness almost satisfies our requirement in both of two methods. Moreover, we also obtain ideal surface form in the shaper cutting process. This method will be adopted to other mirror arrays (i.e. pupil mirror and slit mirror, and such monolithic fabrications will also help us to considerably reduce alignment procedure of each optical elements.

  13. Monolithic graphene transistor biointerface.

    PubMed

    Nam, SungWoo; Lee, Mi-Sun; Park, Jang-Ung

    2012-01-01

    We report monolithic integration of graphene and graphite for all-carbon integrated bioelectronics. First, we demonstrate that the electrical properties of graphene and graphite can be modulated by controlling the number of graphene layers, and such capabilities allow graphene to be used as active channels and graphite as metallic interconnects for all-carbon bioelectronics. Furthermore, we show that monolithic graphene-graphite devices exhibit mechanical flexibility and robustness while their electrical responses are not perturbed by mechanical deformation, demonstrating their unique electromechanical properties. Chemical sensing capability of all-carbon integrated bioelectronics is manifested in real-time, complementary pH detection. These unique capabilities of our monolithic graphene-graphite bioelectronics could be exploited in chemical and biological detection and conformal interface with biological systems in the future.

  14. Monolithic carrier-envelope phase-stabilization scheme.

    PubMed

    Fuji, Takao; Rauschenberger, Jens; Apolonski, Alexander; Yakovlev, Vladislav S; Tempea, Gabriel; Udem, Thomas; Gohle, Christoph; Hänsch, Theodor W; Lehnert, Walter; Scherer, Michael; Krausz, Ferenc

    2005-02-01

    A new scheme for stabilizing the carrier-envelope (CE) phase of a few-cycle laser pulse train is demonstrated. Self-phase modulation and difference-frequency generation in a single periodically poled lithium niobate crystal that transmits the main laser beam allows CE phase locking directly in the usable output. The monolithic scheme obviates the need for splitting off a fraction of the laser output for CE phase control, coupling into microstructured fiber, and separation and recombination of spectral components. As a consequence, the output yields 6-fs, 800-nm pulses with an unprecedented degree of short- and long-term reproducibility of the electric field waveform.

  15. The impact of column connection on band broadening in very high pressure liquid chromatography.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Guiochon, Georges

    2013-09-01

    A series of experiments was conducted to evaluate the degree of band broadening in very high pressure LC due to column connections. Different column manufacturers use slightly different designs for their column fittings. If the same column connections are repeatedly used to attach columns of different origins, different void volumes form between capillary tubes and column inlets. An Agilent Ultra Low Dispersion Kit (tubing id 75 μm) was installed on an Agilent Infinity 1290 ultra HPLC and used to connect successively an Agilent, a Phenomenex, and a Waters column. A series of uracil (unretained) samples were injected and eluted at a wide range of flow rates with a water/acetonitrile mixture as eluent. In order to determine the variance contribution from column connections as accurately as possible a nonretained probe compound was selected because the variance contribution from the column is the smallest for analytes, which have very low k values. Yet, this effect still has an impact on the resolution for moderately retained compounds (k > 2) for narrow-bore columns packed with fine particles, since variance contributions are additive for linear chromatographic systems. Each injection was replicated five times under the same experimental conditions. Then NanoViper column connections (tubing id 75 μm) were used and the same injections were made. This system was designed to minimize connection void volumes for any column. Band variances were calculated as the second central moment of elution peaks and used to assess the degree of band broadening due to the column connections. Band broadening may increase from 3.8 to 53.9% when conventional metal ferrules were used to join columns to connection sites. The results show that the variance contribution from improper connections can generate as much as 60.5% of the total variance observed. This demonstrates that column connections can play a larger role than the column packing with respect to band dispersion. © 2013 WILEY

  16. De novo design and synthesis of ultra-short peptidomimetic antibiotics having dual antimicrobial and anti-inflammatory activities.

    PubMed

    Murugan, Ravichandran N; Jacob, Binu; Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.

  17. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  18. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  19. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  20. Stable, Ultra-Low Residence Time Partial Oxidation

    DOEpatents

    Schmidt, Lanny D.; Hickman, Daniel A.

    1997-07-15

    A process for the catalytic partial oxidation of methane in gas phase at very short residence time (800,000 to 12,000,000 hr.sup.-1) by contacting a gas stream containing methane and oxygen with a metal supported catalyst, such as platinum deposited on a ceramic monolith.

  1. Safety characteristics of the monolithic CFC divertor

    NASA Astrophysics Data System (ADS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-09-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also.

  2. Evaluation of the capability of local helioseismology to discern between monolithic and spaghetti sunspot models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felipe, T.; Crouch, A. D.; Birch, A. C., E-mail: tobias@nwra.com

    2014-06-20

    The helioseismic properties of the wave scattering generated by monolithic and spaghetti sunspots are analyzed by means of numerical simulations. In these computations, an incident f- or p {sub 1}-mode travels through the sunspot model, which produces absorption and phase shift of the waves. The scattering is studied by inspecting the wavefield, computing travel-time shifts, and performing Fourier-Hankel analysis. The comparison between the results obtained for both sunspot models reveals that the differences in the absorption coefficient can be detected above noise level. The spaghetti model produces a steep increase of the phase shift with the degree of the modemore » at short wavelengths, while mode mixing is more efficient for the monolithic model. These results provide a clue for what to look for in solar observations to discern the constitution of sunspots between the proposed monolithic and spaghetti models.« less

  3. Affinity chromatography on monolithic supports for simultaneous and high-throughput isolation of immunoglobulins from human serum.

    PubMed

    Martinović, Tamara; Andjelković, Uroš; Klobučar, Marko; Černigoj, Urh; Vidič, Jana; Lučić, Marina; Pavelić, Krešimir; Josić, Djuro

    2017-11-01

    Posttranslational modifications of immunoglobulins have been a topic of great interest and have been repeatedly reported as a major factor in disease pathology. Cost-effective, reproducible, and high-throughput (HTP) isolation of immunoglobulins from human serum is vital for studying the changes in protein structure and the following understanding of disease development. Although there are many methods for the isolation of specific immunoglobulin classes, only a few of them are applicable for isolation of all subtypes and variants. Here, we present the development of a scheme for fast and simultaneous affinity purification of α (A), γ (G), and μ (M) immunoglobulins from human serum through affinity monolith chromatography. Affinity-based monolithic columns with immobilized protein A, G, or L were used for antibody isolation. Monolithic stationary phases have a high surface accessibility of binding sites, large flow-through channels, and can be operated at high flow rates, making them the ideal supports for HTP isolation of biopolymers. The presented method can be used for HTP screening of human serum in order to simultaneously isolate all three above-mentioned immunoglobulins and determine their concentration and changes in their glycosylation pattern as potential prognostic and diagnostic disease biomarkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  5. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  6. Analysis of underivatised low volatility compounds by comprehensive two-dimensional gas chromatography with a short primary column.

    PubMed

    Novaes, Fábio Junior Moreira; Kulsing, Chadin; Bizzo, Humberto Ribeiro; de Aquino Neto, Francisco Radler; Rezende, Claudia Moraes; Marriott, Philip John

    2018-02-09

    Comprehensive two-dimensional gas chromatography (GC×GC) approaches with cryogenic modulation were developed for the qualitative analysis of selected low volatility compounds in raw coffee bean extracts, without derivatisation. The approaches employed short first ( 1 D) and second ( 2 D) dimension columns, specifically a 1 D 65% phenyl methyl siloxane column (11m) and a 2 D 5% phenyl methyl siloxane column (1m), which allowed elution of high molar mass compounds (e.g.>600Da). Solutes included hydrocarbons, fatty acids, diterpenes, tocopherols, sterols, diterpene esters, and di- and triacylglycerides. An oven temperature program up to 370°C was employed. The effects of experimental conditions were investigated, revealing that the GC×GC results strongly depended on the cryogenic trap T, and oven T program. An appropriate condition was selected and further applied for group type analysis of low volatility compounds in green Arabica coffee beans. Retention indices were compiled for 1D GC analysis and were similar for the composite column data in GC×GC. The elution of some compounds was confirmed by use of authentic standards. The approach allowed direct analysis of coffee extract in ethyl acetate solution, with improved analyte peak capacity (approximately 200 compounds were detected) without prior fractionation or pre-treatment of the sample. This avoided potential hydrolysis of high molar mass conjugate esters as well as degradation of thermally labile compounds such as the derivatives of the diterpenes cafestol and kahweol. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Capillary electrochromatography immunoassay for alpha-fetoprotein based on poly(guanidinium ionic liquid) monolithic material.

    PubMed

    Liu, Cuicui; Deng, Qiliang; Fang, Guozhen; Dang, Meng; Wang, Shuo

    2017-08-01

    Alpha-fetoprotein (AFP) is widely used as a tumor marker for the serum diagnosis of primary hepatoma. Sensitive detection of AFP level plays an important role in the early diagnosis of disease and highly reliable prediction. In this study, a novel non-competitive immunoassay (IA) based on poly(guanidinium ionic liquid) monolithic material was developed for detecting ultra trace levels of AFP in capillary electrochromatography (CEC) mode. The AFP was mixed with an excess amount of fluorescently labeled antibody. After incubation, the immunocomplex was separated from the free labeled antibody and detected by CEC coupled with laser-induced fluorescence detector. Under the optimized conditions, the developed CEC-IA performed a low detection limit of 0.05 μg L -1  (S/N = 3) and a wide linearity ranging from 0.1 to 1000 μg L -1 for AFP, which can be largely attributed to the high separation and enrichment efficiency of poly(guanidinium ionic liquid) monolithic material for the targets. The application of this method was demonstrated by determining AFP in human serum. Copyright © 2017. Published by Elsevier Inc.

  8. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    Acoustical oceanography is one way to study the ocean, its internal layers, boundaries and all processes occurring within using underwater acoustics. Acoustical sensing techniques allows for the measurement of ocean processes from within that logistically or financially preclude traditional in-situ measurements. Acoustic signals propagate as pressure wavefronts from a source to a receiver through an ocean medium with variable physical parameters. The water column physical parameters that change acoustic wave propagation in the ocean include temperature, salinity, current, surface roughness, seafloor bathymetry, and vertical stratification over variable time scales. The impacts of short-time scale water column variability on acoustic wave propagation include coherent and incoherent surface reflections, wavefront arrival time delay, focusing or defocusing of the intensity of acoustic beams and refraction of acoustic rays. This study focuses on high-frequency broadband acoustic waves, and examines the influence of short-time scale water column variability on broadband high-frequency acoustics, wavefronts, from 7 to 28 kHz, in shallow water. Short-time scale variability is on the order of seconds to hours and the short-spatial scale variability is on the order of few centimeters. Experimental results were collected during an acoustic experiment along 100 m isobaths and data analysis was conducted using available acoustic wave propagation models. Three main topics are studied to show that acoustic waves are viable as a remote sensing tool to measure oceanographic parameters in shallow water. First, coherent surface reflections forming striation patterns, from multipath receptions, through rough surface interaction of broadband acoustic signals with the dynamic sea surface are analyzed. Matched filtered results of received acoustic waves are compared with a ray tracing numerical model using a sea surface boundary generated from measured water wave spectra at the time of

  9. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  10. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  11. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2007-11-16

    Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.

  12. De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996

  13. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  14. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    NASA Astrophysics Data System (ADS)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  15. Towards highest peak intensities for ultra-short MeV-range ion bunches

    NASA Astrophysics Data System (ADS)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  16. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  17. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2004-05-25

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  18. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    PubMed

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  19. Comparison of core-shell and totally porous ultra high performance liquid chromatographic stationary phases based on their selectivity towards alfuzosin compounds.

    PubMed

    Szulfer, Jarosław; Plenis, Alina; Bączek, Tomasz

    2014-06-13

    This paper focuses on the application of a column classification system based on the Katholieke Universiteit Leuven for the characterization of physicochemical properties of core-shell and ultra-high performance liquid chromatographic stationary phases, followed by the verification of the reliability of the obtained column classification in pharmaceutical practice. In the study, 7 stationary phases produced in core-shell technology and 18 ultra-high performance liquid chromatographic columns were chromatographically tested, and ranking lists were built on the FKUL-values calculated against two selected reference columns. In the column performance test, an analysis of alfuzosin in the presence of related substances was carried out using the brands of the stationary phases with the highest ranking positions. Next, a system suitability test as described by the European Pharmacopoeia monograph was performed. Moreover, a study was also performed to achieve a purposeful shortening of the analysis time of the compounds of interest using the selected stationary phases. Finally, it was checked whether methods using core-shell and ultra-high performance liquid chromatographic columns can be an interesting alternative to the high-performance liquid chromatographic method for the analysis of alfuzosin in pharmaceutical practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1987-08-01

    This interim technical report presents results of research on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. A specific objective is to extend the state-of-the-art of the Computer Aided Design (CAD) of the monolithic microwave and millimeter wave integrated circuits (MIMIC). In this reporting period, we have derived a new model for the high electron mobility transistor (HEMT) based on a nonlinear charge control formulation which takes into consideration the variation of the 2DEG distance offset from the heterointerface as a function of bias. Pseudomorphic InGaAs/GaAs HEMT devices have been successfully fabricated at UCSD. For a 1 micron gate length, a maximum transconductance of 320 mS/mm was obtained. In cooperation with TRW, devices with 0.15 micron and 0.25 micron gate lengths have been successfully fabricated and tested. New results on the design of ultra-wideband distributed amplifiers using 0.15 micron pseudomorphic InGaAs/GaAs HEMT's have also been obtained. In addition, two-dimensional models of the submicron MESFET's, HEMT's and HBT's are currently being developed for the CRAY X-MP/48 supercomputer. Preliminary results obtained are also presented in this report.

  1. Two-dimensional liquid chromatography consisting of twelve second-dimension columns for comprehensive analysis of intact proteins.

    PubMed

    Ren, Jiangtao; Beckner, Matthew A; Lynch, Kyle B; Chen, Huang; Zhu, Zaifang; Yang, Yu; Chen, Apeng; Qiao, Zhenzhen; Liu, Shaorong; Lu, Joann J

    2018-05-15

    A comprehensive two-dimensional liquid chromatography (LCxLC) system consisting of twelve columns in the second dimension was developed for comprehensive analysis of intact proteins in complex biological samples. The system consisted of an ion-exchange column in the first dimension and the twelve reverse-phase columns in the second dimension; all thirteen columns were monolithic and prepared inside 250 µm i.d. capillaries. These columns were assembled together through the use of three valves and an innovative configuration. The effluent from the first dimension was continuously fractionated and sequentially transferred into the twelve second-dimension columns, while the second-dimension separations were carried out in a series of batches (six columns per batch). This LCxLC system was tested first using standard proteins followed by real-world samples from E. coli. Baseline separation was observed for eleven standard proteins and hundreds of peaks were observed for the real-world sample analysis. Two-dimensional liquid chromatography, often considered as an effective tool for mapping proteins, is seen as laborious and time-consuming when configured offline. Our online LCxLC system with increased second-dimension columns promises to provide a solution to overcome these hindrances. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    PubMed

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  3. Synthesis of Porous Carbon Monoliths Using Hard Templates

    PubMed Central

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-01-01

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m2·g−1. The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions. PMID:28773338

  4. Void Formation/Elimination and Viscoelastic Response of Polyphenylsilsesquioxane Monolith.

    PubMed

    Daiko, Yusuke; Oda, Yuki; Honda, Sawao; Iwamoto, Yuji

    2018-05-19

    Polyphenylsilsesquioxane (PhSiO 3/2 ) particles as an organic-inorganic hybrid were prepared using sol-gel method, and monolithic samples were obtained via a warm-pressing. The reaction mechanism of particles' polymerization and transformation to the monolith under the warm-press were investigated using solid state 29 Si nuclear magnetic resonance (NMR) spectrometer, thermal gravimetric-differential thermal analyzer (TG-DTA), mass spectrometer (MS) and scanning electron microscope (SEM). Transparent and void-free monoliths are successfully obtained by warm-pressing above 180 °C. Both the terminal ⁻OH groups on particles' surface and warm-pressing are necessary for preparation of void-free PhSiO 3/2 monolith. From the load-displacement measurement at various temperatures, a viscoelastic deformation is seen for PhSiO 3/2 monolith with voids. On the other hand, an elastic deformation is seen for void-free PhSiO 3/2 monolith, and the void-free monolith shows much higher breakdown voltage.

  5. All-optical SR flip-flop based on SOA-MZI switches monolithically integrated on a generic InP platform

    NASA Astrophysics Data System (ADS)

    Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.

    2016-03-01

    At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.

  6. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  7. Rapid determination of caffeoylquinic acid derivatives in Cynara scolymus L. by ultra-fast liquid chromatography/tandem mass spectrometry based on a fused core C18 column.

    PubMed

    Shen, Qing; Dai, Zhiyuan; Lu, Yanbin

    2010-10-01

    An ultra-fast high-performance LC-ESI-MS/MS method was developed for the analysis and quantification of caffeoylquinic acid derivatives, including chlorogenic acid, 1,3-di-O-caffeoylquinic acid (cynarin) and 1,5-di-O-caffeoylquinic acid, in artichoke (Cynara scolymus L.) heads and leaves. The rapid separation (less than 4  min) was achieved based on a Halo fused core C18-silica column (50  mm × 2.1  mm id, 2.7  μm). The target compounds were detected and quantified by a triple-quadrupole mass spectrometer in multiple-reaction monitoring mode. The calibration function is linear from 0.06 to 2800  ng/mL for chlorogenic acid, 0.3-3000  ng/mL for cynarin and 0.24-4800  ng/mL for 1,5-di-O-caffeoylquinic acid, respectively. The average recoveries ranged from 92.1 to 113.2% with RSDs ≤6.5%. Moreover, four batches of artichoke head and leaf extracts were analyzed using the established method. The results indicated that the Halo fused core column provided much faster separations and higher sample throughput without sacrificing column ruggedness and reliability, and triple-quadrupole MS provided extraordinarily lower LOQs for most of the target analytes. Comparing to conventional quantitative approaches, the established method was fast, sensitive and reliable for the determination of caffeoylquinic acid derivatives in artichoke.

  8. Ultralow Noise Monolithic Quantum Dot Photonic Oscillators

    DTIC Science & Technology

    2013-10-28

    HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...TELEPHONE NUMBER (Include area code) 24-10-2013 Final 01-06-2010 to 31-05-2013 Ultralow Noise Monolithic Quantum Dot Photonic Oscillators FA9550-10-1-0276...277-7647 Reset Grant Title: ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS Grant/Contract Number: FA9550-10-1-0276 Final Performance

  9. Simultaneous Liquid Chromatographic Determination of 10 Ultra-Violet Filters in Sunscreens.

    PubMed

    Wharton, Mary; Geary, Michael; O'Connor, Niamh; Curtin, Laura; Ketcher, Krystal

    2015-09-01

    A rapid HPLC method was developed for the simultaneous determination of 10 UV filters found in sunscreen. The following UV filters were analyzed in this method; 2-phenylbenzimidazole-5-sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl dimethyl 4-aminobenzoic acid, ethylhexyl methoxycinnamate, butyl methoxydibenzoylmethane, ethylhexyl salicylate and homosalate. The method was developed on two columns; a Thermo Hypersil C18 BDS, 3 µm column (4.6 × 100 mm) and a Chromolith RP-18e Monolithic column (4.6 × 100 mm). The same mobile phase of ethanol and 1% acetic acid (70:30, v/v) was employed for both columns. The separation of the 10 UV filters was carried out successfully on both columns; the optimal resolution was obtained on the Thermo Scientific Hypersil column in a time frame of 7 min. An isocratic elution utilizing ethanol and acetic acid (70:30, v/v) at a temperature of 35°C was employed. The method was applied to a number of commercial samples of sunscreen and lotions and was validated according to International Conference on Harmonisation guidelines for selectivity, linearity, accuracy, precision and robustness. A comparison of the performances of both columns was also carried out. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Estimations of temperature deviations in chromatographic columns using isenthalpic plots. I. Theory for isocratic systems.

    PubMed

    Tarafder, Abhijit; Iraneta, Pamela; Guiochon, Georges; Kaczmarski, Krzysztof; Poe, Donald P

    2014-10-31

    We propose to use constant enthalpy or isenthalpic diagrams as a tool to estimate the extent of the temperature variations caused by the mobile phase pressure drop along a chromatographic column, e.g. of its cooling in supercritical fluid and its heating in ultra-performance liquid chromatography. Temperature strongly affects chromatographic phenomena. Any of its variations inside the column, whether intended or not, can lead to significant changes in separation performance. Although instruments use column ovens in order to keep constant the column temperature, operating conditions leading to a high pressure drop may cause significant variations of the column temperature, both in the axial and the radial directions, from the set value. Different ways of measuring these temperature variations are available but they are too inconvenient to be employed in many practical situations. In contrast, the thermodynamic plot-based method that we describe here can easily be used with only a ruler and a pencil. They should be helpful in developing methods or in analyzing results in analytical laboratories. Although the most effective application area for this approach should be SFC (supercritical fluid chromatography), it can be applied to any chromatographic conditions in which temperature variations take place along the column due to the pressure drop, e.g. in ultra-high pressure liquid chromatography (UHPLC). The method proposed here is applicable to isocractic conditions only. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  12. A review of ultra-short pulse lasers for military remote sensing and rangefinding

    NASA Astrophysics Data System (ADS)

    Lamb, Robert A.

    2009-09-01

    Advances in ultra-short pulse laser technology have resulted in commercially available laser systems capable of generating high peak powers >1GW in tabletop systems. This opens the prospect of generating very wide spectral emissions with a combination of non-linear optical effects in photonic crystal fibres to produce supercontinuua in systems that are readily accessible to military applications. However, military remote sensing rarely requires bandwidths spanning two octaves and it is clear that efficient systems require controlled spectral emission in relevant bands. Furthermore, the limited spectral responsivity of focal plane arrays may impose further restriction on the usable spectrum. A recent innovation which temporally encodes a spectrum using group velocity dispersion allows detection with a photodiode, opening the prospect for high speed hyperspectral sensing and imaging. At the opposite end of the power spectrum, ultra-low power remote sensing using time-correlated single photon counting (SPC) has reduced the laser power requirement and demonstrated remote sensing over 5km during daylight with repetition rates of ~10MHz with ps pulses. Recent research has addressed uncorrelated SPC and waveform transmission to increase data rates for absolute rangefinding whilst avoiding range aliasing. This achievement opens the prospect of combining SPC with high repetition rate temporal encoding of supercontinuua to realise practical hyperspectral remote sensing lidar. The talk will present an overview of these technologies and present a concept which combines them into a single system for high-speed hyperspectral imaging and remote sensing.

  13. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders.

    PubMed

    Rainer, Matthias; Sonderegger, Harald; Bakry, Rania; Huck, Christian W; Morandell, Sandra; Huber, Lukas A; Gjerde, Douglas T; Bonn, Günther K

    2008-11-01

    The potential of an organic monolith with incorporated titanium dioxide (TiO(2)) and zirconium dioxide (ZrO(2)) nanoparticles was evaluated for the selective enrichment of phosphorylated peptides from tryptic digests. A pipette tip was fitted with a monolith based on divinylbenzene (DVB) of highly porous structure, which allows sample to pass through the monolithic bed. The enrichment of phosphopeptides was enhanced by increasing the pipetting cycles during the sample preparation and a higher recovery could be achieved with adequate buffer systems. A complete automated process was developed for enrichment of phosphopeptides leading to high reproducibility and resulting in a robust method designed to minimize analytical variance while providing high sensitivity at high sample throughput. The effect of particle size on the selectivity of phosphopeptides was investigated by comparative studies with nano- and microscale TiO(2) and ZrO(2) powders. Eleven phosphopeptides from alpha-casein digest could be recovered by an optimized mixture of microscale TiO(2)/ZrO(2) particles, whereas nine additional phosphopeptides could be retained by the same mixture of nano-structured material. When compared to conventional immobilized metal-ion affinity chromatography and commercial phosphorylation-enrichment kits, higher selectivity was observed in case of self fabricated tips. About 20 phosphopeptides could be retained from alpha-casein and five from beta-casein digests by using TiO(2) and ZrO(2) based extraction tips. Further selectivity for phosphopeptides was demonstrated by enriching a digest of in vitro phosphorylated extracellular signal regulated kinase 1 (ERK1). Two phosphorylated peptides of ERK1 could be identified by MALDI-MS/MS measurements and a following MASCOT database search.

  14. Programmable selectivity for GC with series-coupled columns using pulsed heating of the second column.

    PubMed

    Whiting, Joshua; Sacks, Richard

    2003-05-15

    A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.

  15. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation.

    PubMed

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-12

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1+MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (∼1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.

  16. Ultra-short laser interactions with nanoparticles in different media: from electromagnetic to thermal and electrostatic effects

    NASA Astrophysics Data System (ADS)

    Itina, Tatiana E.

    2017-02-01

    Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.

  17. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  18. Seasonal and spatial variation of topside He+ column density obtained from Extreme Ultra Violet Imager onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Y.; Saito, A.; Murakami, G.; Yamazaki, A.; Yoshikawa, I.

    2016-12-01

    The seasonal, longitudinal and latitudinal variations of He+ distribution in the topside ionosphere in 2013 are elucidated with data of He+ resonant scattering obtained by Extreme Ultra Violet Imager (EUVI) onboard the International Space Station (ISS). EUVI provides a data set of the column density of He+ above the ISS orbit altitude. The data set provides a unique opportunity to study He+ distribution in the topside ionosphere from a different perspective of past studies using in-situ measurement data. During the solstice seasons, an enhancement of He+ column density in the winter hemisphere is observed. The magnitude of this hemispheric asymmetry shows a longitudinal variability. Around the June solstice, the hemispheric asymmetry was greater in the longitude sector where the geomagnetic declination angle is negative and smaller in the longitude sector where the geomagnetic declination angle is positive. Around the December solstice, on the other hand, this longitudinal variation of the asymmetry magnitude had opposite tendency. The hemispheric asymmetry of the effective neutral wind well explains this behavior of He+. The field-aligned component of neutral wind in the F-region is varied in longitude under the presence of finite geomagnetic declination angle and large zonal wind. In the equinox seasons, two longitudinal maxima were observed at around 140ºE and 30ºE. The longitudinal variation of the effective neutral wind is a candidate of these two maxima of He+ concentration. These results suggest that the transport of ions in the topside ionosphere is strongly affected by the F-region neutral wind.

  19. Monolith electroplating process

    DOEpatents

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  20. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G

    PubMed Central

    Smeltink, M. W.; Straathof, A. J. J.; Paasman, M. A.; van de Sandt, E. J. A. X.; Kapteijn, F.; Moulijn, J. A.

    2008-01-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l−1 PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml−1 gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml−1 gel. The observed volumetric reaction rate in the MLR was 0.79 mol s−1 m−3monolith. Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s−1 m−3catalyst), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different

  1. Evaluation of punching shear strength of flat slabs supported on rectangular columns

    NASA Astrophysics Data System (ADS)

    Filatov, Valery

    2018-03-01

    The article presents the methodology and results of an analytical study of structural parameters influence on the value of punching force for the joint of columns and flat reinforced concrete slab. This design solution is typical for monolithic reinforced concrete girderless frames, which have a wide application in the construction of high-rise buildings. As the results of earlier studies show the punching shear strength of slabs at rectangular columns can be lower than at square columns with a similar length of the control perimeter. The influence of two structural parameters on the punching strength of the plate is investigated - the ratio of the side of the column cross-section to the effective depth of slab C/d and the ratio of the sides of the rectangular column Cmax/Cmin. According to the results of the study, graphs of reduction the control perimeter depending on the structural parameters are presented for columns square and rectangular cross-sections. Comparison of results obtained by proposed approach and MC2010 simplified method are shown, that proposed approach gives a more conservative estimate of the influence of the structural parameters. A significant influence of the considered structural parameters on punching shear strength of reinforced concrete slabs is confirmed by the results of experimental studies. The results of the study confirm the necessity of taking into account the considered structural parameters when calculating the punching shear strength of flat reinforced concrete slabs and further development of code design methods.

  2. Transport and fate of estrogenic hormones in slurry-treated soil monoliths.

    PubMed

    Laegdsmand, Mette; Andersen, Henrik; Jacobsen, Ole Hørbye; Halling-Sørensen, Bent

    2009-01-01

    The naturally occurring hormones, such as 17-beta-estradiol, 17-alpha-estradiol, and estrone, present in livestock manure may have detrimental environmental effects if released into surface waters. In areas where manure application is intensive, estrogens have been found in surface waters in concentrations known to affect the endocrine system of fish and amphibians. How the estrogens reach the surface waters is unclear. To investigate whether leaching through the soil profile plays a significant role, we conducted leaching experiments on intact soil cores. Lysimeter soil monoliths (60 cm in diameter and 100 cm long) were excavated from two sites in Denmark (one loamy and one sandy soil). The soil monoliths were treated with pig slurry containing estrogenic hormones and amended with an estrogen tracer (17-alpha-ethinylestradiol) and a conservative tracer (bromide). 17-alpha-ethinylestradiol is a synthetic analog of 17-beta-estradiol with sorption characteristics and molecular structure similar to those of the naturally occurring estrogens in slurry. The monoliths were exposed to a short-term irrigation event (12 h) followed by a long-term semi-field experiment (16 wk), during which leaching of natural estrogens and tracers was followed. Estrogens from slurry were transported to a depth of 1 m in loamy soil and sandy soil. The estrogen concentrations in the leachate were at a level known to affect the endocrine system of aquatic organisms.

  3. Multimodal evaluation of ultra-short laser pulses treatment for skin burn injuries.

    PubMed

    Santos, Moises Oliveira Dos; Latrive, Anne; De Castro, Pedro Arthur Augusto; De Rossi, Wagner; Zorn, Telma Maria Tenorio; Samad, Ricardo Elgul; Freitas, Anderson Zanardi; Cesar, Carlos Lenz; Junior, Nilson Dias Vieira; Zezell, Denise Maria

    2017-03-01

    Thousands of people die every year from burn injuries. The aim of this study is to evaluate the feasibility of high intensity femtosecond lasers as an auxiliary treatment of skin burns. We used an in vivo animal model and monitored the healing process using 4 different imaging modalities: histology, Optical Coherence Tomography (OCT), Second Harmonic Generation (SHG), and Fourier Transform Infrared (FTIR) spectroscopy. 3 dorsal areas of 20 anesthetized Wistar rats were burned by water vapor exposure and subsequently treated either by classical surgical debridement, by laser ablation, or left without treatment. Skin burn tissues were non-invasively characterized by OCT images and biopsied for further histopathology analysis, SHG imaging and FTIR spectroscopy at 3, 5, 7 and 14 days after burn. The laser protocol was found as efficient as the classical treatment for promoting the healing process. The study concludes to the validation of femtosecond ultra-short pulses laser treatment for skinburns, with the advantage of minimizing operatory trauma.

  4. The life cycle of infrared ultra-short high intensity laser pulses in air

    NASA Astrophysics Data System (ADS)

    Ma, Cunliang; Lin, Wenbin

    2015-08-01

    The life cycle of ultra-short high intensity laser pulses propagation in air is studied. As the controversial of the high-order Kerr indices measured by Loriot et al. [Opt. Express 18, 3011 (2010)], we focus on two models which are high-order Kerr effect included and not included. Two factors are mainly analyzed, group-velocity-dispersion and the energy evolution of the pulse. It is found that the group-velocity-dispersion can not be simply ignored even though the pulse's duration is as long as several hundreds femtoseconds. The energy loss due to the multi-photon-absorption is very small, and it may hardly change the propagation length of the pulse. Another contribution of this work is to introduce a probability quantity, which may be useful in validating the positive and negative alternating of the Kerr and high-order Kerr indices.

  5. Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Bauters, Jared F.

    The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.

  6. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-01

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1 + MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (~1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1 + MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma

  7. A novel RP-HPLC method for simultaneous determination of potassium sorbate and sodium benzoate in soft drinks using C18-bonded monolithic silica column.

    PubMed

    Can, Nafiz O; Arli, Goksel; Lafci, Yigit

    2011-08-01

    Potassium sorbate and sodium benzoate are food additives that are generally employed for prevention of food spoilage originating from bacteria, molds or yeasts. Although these compounds were generally recognized as safe due to their low risk of acute and chronic toxicity, they have limitations of usage to protect human health. Development and validation of a novel RP-HPLC method, in which a C18-bonded monolithic silica column was used as stationary phase to assay these compounds, is described for the first time. Aliquots of 10 μL of samples were injected into chromatograph and eluted using phosphate buffer (0.025 M, pH 2.0)-water-acetonitrile (50:45:5, v/v/v) solution, which was pumped at the rate of 3.0 mL/min. To sharpen the peaks, 10 mM octylamine was added to the mobile phase. Potassium sorbate and sodium benzoate were detected at about 12(th) and 14(th) min, respectively, and quantified at 230 nm using photodiode array detector. A total of 41 samples were prepared by simply filtering through 0.45 μm filters after sonication, and injected into the system without any pre-treatment steps. Applicability of the method was demonstrated by performing total procedure on samples of different brands and types, and their compliance to official regulations was assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Collapse of tall granular columns in fluid

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  9. First demonstration and field trial on multi-user UDWDM-PON full duplex PSK-PSK with single monolithic integrated dual-output-DFB-SOA based ONUs.

    PubMed

    Chu, GuangYong; Maho, Anaëlle; Cano, Iván; Polo, Victor; Brenot, Romain; Debrégeas, Hélène; Prat, Josep

    2016-10-15

    We demonstrate a monolithically integrated dual-output DFB-SOA, and conduct the field trial on a multi-user bidirectional coherent ultradense wavelength division multiplexing-passive optical network (UDWDM-PON). To the best of our knowledge, this is the first achievement of simplified single integrated laser-based neighboring coherent optical network units (ONUs) with a 12.5 GHz channel spaced ultra-dense access network, including both downstream and upstream, taking the benefits of low footprint and low-temperature dependence.

  10. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  11. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  12. A new class of monolithic seismometers and accelerometers for commercial and industrial applications: the UNISA folded pendulum

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.

    2017-04-01

    In this paper we present monolithic implementations of tunable mechanical seismometers and accelerometers (horizontal, vertical and angular) based on the UNISA Folded Pendulum configuration, protected by three international patents and commercially available. Typical characteristics are measurement band 10-7 / 1kHz, sensitivity down to ≍ 10-15 m/ √ Hz, directivity > 104, weight < 1.5 kg, dimensions < 10 cm, coupled to a large insensitivity to environmental noises and capability of operating in ultra high vacuum and cryogenic environments. Typical applications of this class of sensors are in the field of earthquake engineering, seismology, geophysics, civil engineering (buildings, bridges, dams, etc.), space (inertial guide).

  13. Ultra-fast Movies Resolve Ultra-short Pulse Laser Ablation and Bump Formation on Thin Molybdenum Films

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Huber, Heinz

    For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.

  14. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  15. Ultra-Short-Term Wind Power Prediction Using a Hybrid Model

    NASA Astrophysics Data System (ADS)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.

  16. III-Nitride Digital Alloy: Electronics and Optoelectronics Properties of the InN/GaN Ultra-Short Period Superlattice Nanostructures.

    PubMed

    Sun, Wei; Tan, Chee-Keong; Tansu, Nelson

    2017-07-27

    The III-Nitride digital alloy (DA) is comprehensively studied as a short-period superlattice nanostructure consisting of ultra-thin III-Nitride epitaxial layers. By stacking the ultra-thin III-Nitride epitaxial layers periodically, these nanostructures are expected to have comparable optoelectronic properties as the conventional III-Nitride alloys. Here we carried out numerical studies on the InGaN DA showing the tunable optoelectronic properties of the III-Nitride DA. Our study shows that the energy gap of the InGaN DA can be tuned from ~0.63 eV up to ~2.4 eV, where the thicknesses and the thickness ratio of each GaN and InN ultra-thin binary layers within the DA structure are the key factors for tuning bandgap. Correspondingly, the absorption spectra of the InGaN DA yield broad wavelength tunability which is comparable to that of bulk InGaN ternary alloy. In addition, our investigation also reveals that the electron-hole wavefunction overlaps are remarkably large in the InGaN DA structure despite the existence of strain effect and build-in polarization field. Our findings point out the potential of III-Nitride DA as an artificially engineered nanostructure for optoelectronic device applications.

  17. Ultra-short beam expander with segmented curvature control: the emergence of a semi-lens

    DOE PAGES

    Abbaslou, Siamak; Gatdula, Robert; Lu, Ming; ...

    2017-01-01

    We introduce direct curvature control in designing a segmented beam expander, and explore novel design possibilities for ultra-compact beam expanders. Assisted by the particle swarm optimization algorithm, we search for an optimal curvature-controlled multi-segment taper that maintains width continuity. Counterintuitively, the optimization yields a structure with abrupt width discontinuity and width compression features. Through spatial phase and parameterized analysis, a semi-lens feature is revealed that helps to flatten the wavefront at the output end for higher coupling efficiency. Such functionality cannot be achieved by normal tapers in a short distance. The structure is fabricated and characterized experimentally. By a figuremore » of merit that accounts for expansion ratio, length, and efficiency, this structure outperforms an adiabatic taper by 9 times.« less

  18. Process Properties of Electronic High Voltage Discharges Triggered by Ultra-short Pulsed Laser Filaments

    NASA Astrophysics Data System (ADS)

    Cvecek, Kristian; Gröschel, Benjamin; Schmidt, Michael

    Remote processing of metallic workpieces by techniques based on electric arc discharge or laser irradiation for joining or cutting has a long tradition and is still being intensively investigated in present-day research. In applications that require high power processing, both approaches exhibit certain advantages and disadvantages that make them specific for a given task. While several hybrid approaches exist that try to combine the benefits of both techniques, none were as successful in providing a fixed electric discharge direction as discharges triggered by plasma filaments generated by ultra-short pulsed lasers. In this work we investigate spatial and temporal aspects of laser filament guided discharges and give an upper time delay between the filament creation and the electrical build-up of a dischargeable voltage for a successful filament triggered discharge.

  19. X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.

    2007-05-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.

  20. Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation.

    PubMed

    Li, Daojin; Yin, Danyang; Chen, Yang; Liu, Zhen

    2017-05-19

    Protein phosphorylation is a major post-translational modification, which plays a vital role in cellular signaling of numerous biological processes. Mass spectrometry (MS) has been an essential tool for the analysis of protein phosphorylation, for which it is a key step to selectively enrich phosphopeptides from complex biological samples. In this study, metal-organic frameworks (MOFs)-based monolithic capillary has been successfully prepared as an effective sorbent for the selective enrichment of phosphopeptides and has been off-line coupled with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for efficient analysis of phosphopeptides. Using š-casein as a representative phosphoprotein, efficient phosphorylation analysis by this off-line platform was verified. Phosphorylation analysis of a nonfat milk sample was also demonstrated. Through introducing large surface areas and highly ordered pores of MOFs into monolithic column, the MOFs-based monolithic capillary exhibited several significant advantages, such as excellent selectivity toward phosphopeptides, superb tolerance to interference and simple operation procedure. Because of these highly desirable properties, the MOFs-based monolithic capillary could be a useful tool for protein phosphorylation analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Montone, Carmela Maria; Piovesana, Susy; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2018-03-01

    The untargeted profiling is a promising approach for the characterization of secondary metabolites in biological matrices. Thanks to the recent rapid development of high-resolution mass spectrometry (HRMS) instrumentations, the number of applications by untargeted approaches for biological samples profiling has widely increased in the recent years. Despite the high potentialities of HRMS, however, a major issue in natural products analysis often arises in the upstream process of compounds separation. A separation technique is necessary to avoid phenomena such as signal suppression, and it is especially needed in the presence of isomeric metabolites, which are otherwise indistinguishable. Glucosinolates (GLSs), a group of secondary metabolites widely distributed among plants, resulted to be associated to the prevention of some serious diseases, such as cancer. This led to the development of several methods for the analysis of GLSs in vegetables tissues. The issue of GLSs chromatographic separation has been widely studied in the past because of the difficulty in the analysis of this highly polar and variable class of compounds. Several alternatives to reversed phase (RP) chromatography, sometimes not compatible with the coupling of liquid chromatography with mass spectrometry, have been tested for the analysis of intact GLSs. However, the availability of new stationary phases, in the last years, could allow the re-evaluation of RP chromatography for the analysis of intact GLSs. In this work, a thorough evaluation of four RP chromatographic columns for the analysis of GLSs in cauliflower (Brassica oleracea L. var. botrytis) extracts by an ultra-high performance liquid chromatographic system coupled via electrospray source to a hybrid quadrupole-Orbitrap mass spectrometer is presented. The columns tested were the following: one column Luna Omega polar C 18 , one column Kinetex Biphenyl, one column Kinetex core-shell XB-C 18 , two columns Kinetex core-shell XB-C 18

  2. Mitigation of solvent interference using a short packed column prior to ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Mossaddegh, Mehdi

    2017-05-15

    This paper introduces a novel approach to overcome the solvent interference in corona discharge-ion mobility spectrometry (CD-IMS) based on the time-resolved signals of the solvent and the analyte. To that end, a short Teflon tube was filled with a low amount of squalene or OV-1, which was prepared and located between the injection port and the entrance of the CD-IMS cell. Through this procedure, a sufficient delay (~5s) was obtained between the introduction of the solvent and the analyte into the reaction region of IMS. This resulted in removing the proton by solvent molecules, as well as increasing the effective collision during the analyte ionization, thereby providing an analysis with more sensitivity, accuracy, and precision. To show the column efficiency, ethion and diazinon (organophosphorus pesticides) were selected as the test compounds and their solutions were analyzed by the proposed method. The amount of sorbent, carrier gas flow rate, and the sorbent temperature affecting the sorbent efficiency were optimized by employing the response surface methodology and the central composite design. The proposed method was exhaustively validated in terms of sensitivity, linearity, and repeatability. In particular, the feasibility of direct injection was successfully verified by the satisfactory results, as compared with those achieved without the prior column. The methodology used in this study is very simple and inexpensive, which can overcome the solvent interference when a solution is directly injected into the CD-IMS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Reset noise suppression in two-dimensional CMOS photodiode pixels through column-based feedback-reset

    NASA Technical Reports Server (NTRS)

    Pain, B.; Cunningham, T. J.; Hancock, B.; Yang, G.; Seshadri, S.; Ortiz, M.

    2002-01-01

    We present new CMOS photodiode imager pixel with ultra-low read noise through on-chip suppression of reset noise via column-based feedback circuitry. The noise reduction is achieved without introducing any image lag, and with insignificant reduction in quantum efficiency and full well.

  4. Behavior of wet precast beam column connections under progressive collapse scenario: an experimental study

    NASA Astrophysics Data System (ADS)

    Nimse, Rohit B.; Joshi, Digesh D.; Patel, Paresh V.

    2014-12-01

    Progressive collapse denotes a failure of a major portion of a structure that has been initiated by failure of a relatively small part of the structure such as failure of any vertical load carrying element (typically columns). Failure of large part of any structure will results into substantial loss of human lives and natural resources. Therefore, it is important to prevent progressive collapse which is also known as disproportionate collapse. Nowadays, there is an increasing trend toward construction of buildings using precast concrete. In precast concrete construction, all the components of structures are produced in controlled environment and they are being transported to the site. At site such individual components are connected appropriately. Connections are the most critical elements of any precast structure, because in past major collapse of precast structure took place because of connection failure. In this study, behavior of three different 1/3rd scaled wet precast beam column connections under progressive collapse scenario are studied and its performance is compared with monolithic connection. Precast connections are constructed by adopting different connection detailing at the junction by considering reinforced concrete corbel for two specimens and steel billet for one specimen. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection and deflection measured along the span of the beam. From the results, it is observed that load carrying capacity and ductility of precast connections considered in this study are more than that of monolithic connections.

  5. New control strategies with inertial monolithic sensors: advantages and limitations in the control of benches and platforms for seismic isolation

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2018-03-01

    In this paper, we present some innovative and general strategies for the control of benches and platforms, that the introduction of the new class of monolithic UNISA Folded Pendulum is now making it possible, also in terms of environmental conditions, like ultra-high-vacuum (UHV), cryogenics and harsh environments. In particular, we present and discuss a parametric analysis of the control models in connection with the sensors limitations in terms of sensitivity and band. Finally, we present and discuss some experimental laboratory tests on a laboratory platform, underlining the present advantages and the expected future improvements.

  6. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOEpatents

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  7. Duodenal lengthening in an adult with ultra-short bowel syndrome. A case report.

    PubMed

    Bueno, Javier; Burgos, Rosa; Redecillas, Susana; López, Manuel; Balsells, Joaquin

    2018-01-01

    We have recently demonstrated the feasibility of lengthening the duodenum in children with short bowel syndrome and a dilated duodenum. This procedure gains additional intestinal length in a challenging area of autologous gut reconstruction. Herein, we report the successful application of this technique in an adult with ultra-short bowel syndrome. A 25-year-old man with a history of mid-gut volvulus was referred to our center for intestinal transplant evaluation. Only a megaduodenum stump that reached as far as the third portion (30 cm of length) and the colon up to the hepatic flexure in the form of a mucous fistula was retained. A gastrostomy tube drained gastric and bilio-pancreatic secretions (output range: 2.5-4 liters/day). The time spent on parenteral nutrition (3 liters/day; 1500 calories/day) and I.V. fluid (1.5-2 liters/day) administration was 24 hours per day. The patient underwent duodenal lengthening and tapering with 7 sequential transverse applications (5 of 45 mm and 2 of 60 mm) of an endoscopic stapler on the anterior and posterior walls of the duodenum, respecting the pancreatic parenchyma and end-to-side duodeno-colonic anastomosis. The final duodenal length was 83 cm. The pre-lengthening citrulline level increased from 13.6 micromol/L to 21.6 micromol/L one year post-lengthening. After 24 month of follow-up, the time on a parenteral pump was shortened to 9 hours during the night. The volume and calorie requirements were also reduced by half. Duodenal lengthening may be effective as part of the autologous intestinal reconstruction armamentarium in adults with short bowel syndrome.

  8. Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.

    PubMed

    Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi

    2015-11-05

    Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Simple determination of aflatoxins in rice by ultra-high performance liquid chromatography coupled to chemical post-column derivatization and fluorescence detection.

    PubMed

    Huertas-Pérez, José Fernando; Arroyo-Manzanares, Natalia; Hitzler, Dominik; Castro-Guerrero, Francisco Germán; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2018-04-15

    A fast and simple analytical method was developed and characterized for the determination of aflatoxins (B 1 , B 2 , G 1 and G 2 ) in rice. The procedure is based on a simple solid-liquid extraction without further clean-up, and analysis by ultra-high performance liquid chromatography coupled with fluorescence detection. Fluorescence emission of aflatoxins B 1 and G 1 was enhanced by post-column chemical derivatization using pyridinium bromide perbromide. The analytical method was satisfactorily characterized in white and brown rice. Under optimum conditions, external calibration in solvent could be used for quantification purposes and limits of quantification were below the maximum contents established by the European Union regulation for these contaminants/commodity group combination (0.07-0.14 µg/kg for white rice and 0.20-0.28 µg/kg for brown rice). Recovery studies carried out at three different concentration levels (0.5, 2 and 5 µg/kg) showed values in the range of 84.5-105.3%, and RSDs ≤ 5%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Validation of an ultra-fast UPLC-UV method for the separation of antituberculosis tablets.

    PubMed

    Nguyen, Dao T-T; Guillarme, Davy; Rudaz, Serge; Veuthey, Jean-Luc

    2008-04-01

    A simple method using ultra performance LC (UPLC) coupled with UV detection was developed and validated for the determination of antituberculosis drugs in combined dosage form, i. e. isoniazid (ISN), pyrazinamide (PYR) and rifampicin (RIF). Drugs were separated on a short column (2.1 mm x 50 mm) packed with 1.7 mum particles, using an elution gradient procedure. At 30 degrees C, less than 2 min was necessary for the complete separation of the three antituberculosis drugs, while the original USP method was performed in 15 min. Further improvements were obtained with the combination of UPLC and high temperature (up to 90 degrees C), namely HT-UPLC, which allows the application of higher mobile phase flow rates. Therefore, the separation of ISN, PYR and RIF was performed in less than 1 min. After validation (selectivity, trueness, precision and accuracy), both methods (UPLC and HT-UPLC) have proven suitable for the routine quality control analysis of antituberculosis drugs in combined dosage form. Additionally, a large number of samples per day can be analysed due to the short analysis times.

  11. Monolithic fiber laser oscillator with record high power

    NASA Astrophysics Data System (ADS)

    Yang, Baolai; Shi, Chen; Zhang, Hanwei; Ye, Qing; Pi, Haoyang; Tao, Rumao; Wang, Xiaolin; Ma, Pengfei; Leng, Jinyong; Chen, Zilun; Zhou, Pu; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin

    2018-07-01

    With an increasing output power, the power scaling of monolithic fiber laser oscillators faces the severe limitations of stimulated Raman scattering (SRS) and the transverse mode instability (TMI) effect. In this work, we report a high power monolithic fiber laser oscillator with a maximum output power of 5.2 kW, which is realized with a trade-off design between the SRS and TMI. The monolithic fiber laser oscillator is constructed with ytterbium-doped fiber with a core/inner cladding diameter of 25/400 µm and corresponding home-made FBG. High-power 915 nm laser diodes are employed as a pump source and are distributed in a bidirectional-pump configuration. By optimizing the bidirectional pump proportion, the monolithic fiber laser oscillator is scaled up to 5.2 kW with a slope efficiency of ~63%. Operating at 5.2 kW, the intensity of the Raman stokes light is ~22 dB below the signal laser and the beam quality (M2-factor) is ~2.2. To the best of our knowledge, this is a record high power for monolithic fiber laser oscillators.

  12. Giant electron-hole transport asymmetry in ultra-short quantum transistors.

    PubMed

    McRae, A C; Tayari, V; Porter, J M; Champagne, A R

    2017-05-31

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies η e-h . This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, η e-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

  13. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    PubMed Central

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-01-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024

  14. Comparative study of new shell-type, sub-2 micron fully porous and monolith stationary phases, focusing on mass-transfer resistance.

    PubMed

    Oláh, Erzsébet; Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin

    2010-06-04

    Today sub-2 microm packed columns are very popular to conduct fast chromatographic separations. The mass-transfer resistance depends on the particle size but some practical limits exist not to reach the theoretically expected plate height and mass-transfer resistance. Another approach applies particles with shortened diffusion path to enhance the efficiency of separations. In this study a systematical evaluation of the possibilities of the separations obtained with 5 cm long narrow bore columns packed with new 2.6 microm shell particles (1.9 microm nonporous core surrounded by a 0.35 microm porous shell, Kinetex, Core-Shell), packed with other shell-type particles (Ascentis Express, Fused-Core), totally porous sub-2 microm particles and a 5 cm long narrow bore monolith column is presented. The different commercially available columns were compared by using van Deemter, Knox and kinetic plots. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Data are presented on polar neutral real-life analytes. Comparison of a low molecular weight compounds (MW=270-430) and a high molecular weight one (MW approximately 900) was conducted. This study proves that the Kinetex column packed with 2.6 microm shell particles is worthy of rivaling to sub-2 microm columns and other commercially available shell-type packings (Ascentis Express or Halo), both for small and large molecule separation. The Kinetex column offers a very flat C term. Utilizing this feature, high flow rates can be applied to accomplish very fast separations without significant loss in efficiency. Copyright 2010 Elsevier B.V. All rights reserved.

  15. A reversed phase high performance liquid chromatography method for the determination of fumonisins B1 and B2 in food and feed using monolithic column and positive confirmation by liquid chromatography/tandem mass spectrometry.

    PubMed

    Khayoon, Wejdan Shakir; Saad, Bahruddin; Salleh, Baharuddin; Ismail, Nor Azliza; Abdul Manaf, Normaliza Hj; Abdul Latiff, Aishah

    2010-10-29

    The development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B(1) and fumonisin B(2) by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C(18) solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith(®) RP-18e column (100 mm × 4.6 mm) at 30 °C and eluted with a mobile phase of a mixture of methanol and phosphate buffer pH 3.35 (78:22, v/v) at a flow rate of 1.0 mL min(-1). The fumonisins separation was achieved in about 4 min, compared to approximately 20 min by using a C(18) particle-packed column. The fluorescence excitation and emission were at 335 nm and 440 nm, respectively. The limits of detections were 0.01-0.04 μg g(-1) fumonisin B(1) and fumonisin B(2), respectively. Good recoveries were found for spiked samples (0.1, 0.5, 1.5 μg g(-1) fumonisins B(1) and B(2)), ranging from 84.0 to 106.0% for fumonisin B(1) and from 81.0 to 103.0% for fumonisin B(2). Fifty-three samples were analyzed including 39 food and feeds and 14 inoculated corn and rice. Results show that 12.8% of the food and feed samples were contaminated with fumonisin B(1) (range, 0.01-0.51 μg g(-1)) and fumonisin B(2) (0.05 μg g(-1)). The total fumonisins in these samples however, do not exceed the legal limits established by the European Union of 0.8 μg g(-1). Of the 14 inoculated samples, 57.1% contained fumonisin B(1) (0.16-41.0 μg g(-1)) and fumonisin B(2) (range, 0.22-50.0 μg g(-1)). Positive confirmation of selected samples was carried out using

  16. Embedded-monolith armor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  17. Visualization of Middle Ear Ossicles in Elder Subjects with Ultra-short Echo Time MR Imaging.

    PubMed

    Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki; Suzuki, Kojiro; Iwano, Shingo; Satake, Hiroko; Grodzki, David

    2017-04-10

    To evaluate the visualization of middle ear ossicles by ultra-short echo time magnetic resonance (MR) imaging at 3T in subjects over 50 years old. Sixty ears from 30 elder patients that underwent surgical or interventional treatment for neurovascular diseases were included (ages: 50-82, median age: 65; 10 men, 20 women). Patients received follow-up MR imaging including routine T 1 - and T 2 -weighted images, time-of-flight MR angiography, and ultra-short echo time imaging (PETRA, pointwise encoding time reduction with radial acquisition). All patients underwent computed tomography (CT) angiography before treatment. Thin-section source CT images were correlated with PETRA images. Scan parameters for PETRA were: TR 3.13, TE 0.07, flip angle 6 degrees, 0.83 × 0.83 × 0.83 mm resolution, 3 min 43 s scan time. Two radiologists retrospectively evaluated the visibility of each ossicular structure as positive or negative using PETRA images. The structures evaluated included the head of the malleus, manubrium of the malleus, body of the incus, long process of the incus, and the stapes. Signal intensity of the ossicles was classified as: between labyrinthine fluid and air, similar to labyrinthine fluid, between labyrinthine fluid and cerebellar parenchyma, or higher than cerebellar parenchyma. In all ears, the body of the incus was visible. The head of the malleus was visualized in 36/60 ears. The manubrium of the malleus and long process of the incus was visualized in 1/60 and 4/60 ears, respectively. The stapes were not visualized in any ear. Signal intensity of the visible structures was between labyrinthine fluid and air in all ears. The body of the incus was consistently visualized with intensity between air and labyrinthine fluid on PETRA images in aged subjects. Poor visualization of the manubrium of the malleus, long process of the incus, and the stapes limits clinical significance of middle ear imaging with current PETRA methods.

  18. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  19. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  20. Monolithically integrated absolute frequency comb laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  1. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins.

    PubMed

    Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping

    2016-02-20

    Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  3. In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries.

    PubMed

    Zhang, Jianjun; Wen, Huijie; Yue, Liping; Chai, Jingchao; Ma, Jun; Hu, Pu; Ding, Guoliang; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan

    2017-01-01

    Sodium ion battery is one of the promising rechargeable batteries due to the low-cost and abundant sodium sources. In this work, a monolithic sodium ion battery based on a Na 3 V 2 (PO 4 ) 3 cathode, MoS 2 layered anode, and polyether-based polymer electrolyte is reported. In addition, a new kind of polysulfonamide-supported poly(ethylene glycol) divinyl ether based polymer electrolyte is also demonstrated for monolithic sodium ion battery via in situ preparation. The resultant polymer electrolyte exhibits relatively high ionic conductivity (1.2 mS cm -1 ) at ambient temperature, wide electrochemical window (4.7 V), and favorable mechanical strength (25 MPa). Moreover, such a monolithic Na 3 V 2 (PO 4 ) 3 /MoS 2 sodium ion battery using this polymer electrolyte delivers outstanding rate capability (up to 10 C) and superior cyclic stability (84%) after 1000 cycles at 0.5 C. What is more essential, such a polymer electrolyte based soft-package monolithic sodium ion cell can still power a red light emitting diode lamp and run finite times without suffering from any internal short-circuit failures, even in the case of a bended and wrinkled state. Considering these aspects, this work no doubt provides a new approach for the design of a high-performance polymer electrolyte toward monolithic sodium ion battery with exceptional rate capability and high safety. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultra-wideband short-pulse radar with range accuracy for short range detection

    DOEpatents

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  5. Monolithic Gallium Arsenide Superheterodyne Front End.

    DTIC Science & Technology

    1982-06-01

    which also provides a con - venient heat sink (not of primary importance in this application due to the low power dissipation of the monolithic...components utilized in the receiver front end). The thickness of the GaAs is then selected as a compromise between con - flicting requirements. A thick...International ERC41014.2FR 2.4 Analysis and Design for Low Noise The design of monolithic amplifiers for low noise must take into con - sideration active

  6. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  7. Ultra-high performance size-exclusion chromatography in polar solvents.

    PubMed

    Vancoillie, Gertjan; Vergaelen, Maarten; Hoogenboom, Richard

    2016-12-23

    Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2μm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Edge chipping and flexural resistance of monolithic ceramics☆

    PubMed Central

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  9. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.

    PubMed

    Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu

    2017-01-05

    In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. [Flexible Guidance of Ultra-Short Laser Pulses in Ophthalmic Therapy Systems].

    PubMed

    Blum, J; Blum, M; Rill, M S; Haueisen, J

    2017-01-01

    In the last 20 years, the role of ultrashort pulsed lasers in ophthalmology has become increasingly important. However, it is still impossible to guide ultra-short laser pulses with standard glass fibres. The highly energetic femtosecond pulses would destroy the fibre material, and non-linear dispersion effects would significantly change beam parameters. In contrast, photonic crystal fibres mainly guide the laser pulses in air, so that absorption and dispersive pulse broadening have essentially no effect. This article compares classical beam guidance with mirrors, lenses and prisms with photonic crystal fibres and describes the underlying concepts and the current state of technology. A classical mirror arm possesses more variable optical properties, while the HCF (Hollow-Core Photonic Crystal Fibre) must be matched in terms of the laser energy and the laser spectrum. In contrast, the HCF has more advantages in respect of handling, system integration and costs. For applications based on photodisruptive laser-tissue interaction, the relatively low damage threshold of photonic crystal fibres compared to classic beam guiding systems is unacceptable. If, however, pulsed laser radiation has a sufficiently low peak intensity, e.g. as used for plasma-induced ablation, photonic crystal fibres can definitely be considered as an alternative solution to classic beam guidance. Georg Thieme Verlag KG Stuttgart · New York.

  11. Monolithic poly[(trimethylsilyl-4-methylstyrene)-co- bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides.

    PubMed

    Jakschitz, Thomas A E; Huck, Christian W; Lubbad, Said; Bonn, Günther K

    2007-04-13

    In this paper the synthesis, optimisation and application of a silane based monolithic copolymer for the rapid separation of proteins and oligonucleotides is described. The monolith was prepared by thermal initiated in situ copolymerisation of trimethylsilyl-4-methylstyrene (TMSiMS) and bis(4-vinylbenzyl)dimethylsilane (BVBDMSi) in a silanised 200 microm I.D. fused silica column. Different ratios of monomer and crosslinker, as well as different ratios of micro- (toluene) and macro-porogen (2-propanol) were used for optimising the physical properties of the stationary phase regarding separation efficiency. The prepared monolithic stationary phases were characterised by measurement of permeability with different solvents, determination of pore size distribution by mercury intrusion porosimetry (MIP). Morphology was studied by scanning electron microscopy (SEM). Applying optimised conditions, a mixture comprised of five standard proteins ribunuclease A, cytochrome c, alpha-lactalbumine, myoglobine and ovalbumine was separated within 1 min by ion-pair reversed-phase liquid chromatography (IP-RPLC) obtaining half-height peak widths between 1.8 and 2.4 s. Baseline separation of oligonucleotides d(pT)(12-18) was achieved within 1.8 min obtaining half-height peak widths between 3.6 and 5.4 s. The results demonstrate the high potential of this stationary phase for fast separation of high-molecular weight biomolecules such as oligonucleotides and proteins.

  12. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  13. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry.

    PubMed

    Nordman, Nina; Barrios-Lopez, Brianda; Laurén, Susanna; Suvanto, Pia; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto; Sikanen, Tiina

    2015-02-01

    We report a simple protocol for fabrication of shape-anchored porous polymer monoliths (PPMs) for on-chip SPE prior to online microchip electrophoresis (ME) separation and on-chip (ESI/MS). The chip design comprises a standard ME separation channel with simple cross injector and a fully integrated ESI emitter featuring coaxial sheath liquid channel. The monolith zone was prepared in situ at the injection cross by laser-initiated photopolymerization through the microchip cover layer. The use of high-power laser allowed not only maskless patterning of a precisely defined monolith zone, but also faster exposure time (here, 7 min) compared with flood exposure UV lamps. The size of the monolith pattern was defined by the diameter of the laser output (∅500 μm) and the porosity was geared toward high through-flow to allow electrokinetic actuation and thus avoid coupling to external pumps. Placing the monolith at the injection cross enabled firm anchoring based on its cross-shape so that no surface premodification with anchoring linkers was needed. In addition, sample loading and subsequent injection (elution) to the separation channel could be performed similar to standard ME setup. As a result, 15- to 23-fold enrichment factors were obtained already at loading (preconcentration) times as short as 25 s without sacrificing the throughput of ME analysis. The performance of the SPE-ME-ESI/MS chip was repeatable within 3.1% and 11.5% RSD (n = 3) in terms of migration time and peak height, respectively, and linear correlation was observed between the loading time and peak area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, Elena M.; Heaps, William S.

    2005-01-01

    A passive Fabry-Perot based instrument is described for detecting column CO2 through absorption measurements at 1.58 microns . In this design, solar flux reaches the instrument platform and is directed through two channels. In the first channel, transmittance fi5nges from a Fabry-Perot interferometer are aligned with CO2 absorption lines so that absorption due to CO2 is primarily detected. The second channel encompasses the same frequency region as the first, but is comparatively more sensitive to changes in the solar flux than absorption due to CO2. The ratio of these channels is sensitive to changes in the total CO2 column, but not to changes in solar flux. This inexpensive instrument will offer high precision measurements (error 4%) in a compact package. Design of this instrument and preliminary ground-based measurements of column CO2 are presented here as well as strategies for deployment on aircraft and satellite platforms.

  15. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.

    PubMed

    Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak

    2018-02-08

    Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.

  16. Monolithic catalyst beds for hydrazine reactors

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monolithic catalyst bed for monopropellant hydrazine decomposition was evaluated. The program involved the evaluation of a new hydrazine catalyst concept wherein open-celled foamed materials are used as supports for the active catalysts. A high-surface-area material is deposited upon the open-celled foamed material and is then coated with an active metal to provide a spontaneous catalyst. Only a fraction of the amount of expensive active metal in currently available catalysts is needed to promote monolithic catalyst. Numerous parameters were evaluated during the program, and the importance of additional parameters became obvious only while the program was in progress. A demonstration firing (using a 2.2-Newton (N)(0.5-lbf) reactor) successfully accumulated 7,700 seconds of firing time and 16 ambient temperature starts without degradation. Based on the excellent results obtained throughout the program and the demonstrated life capability of the monolithic foam, it is recommended that additional studies be conducted to further exploit the advantages of this concept.

  17. FRACTURE-RESISTANT MONOLITHIC DENTAL CROWNS

    PubMed Central

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-01-01

    Objective To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Methods Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Results Experimental measurements and XFEM predictions were self consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. Significance The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. PMID:26792623

  18. InGaAs monolithic interconnected modules (MIM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs withmore » an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.« less

  19. Rapid process for producing transparent, monolithic porous glass

    DOEpatents

    Coronado, Paul R [Livermore, CA

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  20. Creating deep soil core monoliths: Beyond the solum

    USDA-ARS?s Scientific Manuscript database

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  1. Ultra-fast high-resolution hybrid and monolithic CMOS imagers in multi-frame radiography

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kris; Douence, Vincent; Bai, Yibin; Nedrow, Paul; Mariam, Fesseha; Merrill, Frank; Morris, Christopher L.; Saunders, Andy

    2014-09-01

    A new burst-mode, 10-frame, hybrid Si-sensor/CMOS-ROIC FPA chip has been recently fabricated at Teledyne Imaging Sensors. The intended primary use of the sensor is in the multi-frame 800 MeV proton radiography at LANL. The basic part of the hybrid is a large (48×49 mm2) stitched CMOS chip of 1100×1100 pixel count, with a minimum shutter speed of 50 ns. The performance parameters of this chip are compared to the first generation 3-frame 0.5-Mpixel custom hybrid imager. The 3-frame cameras have been in continuous use for many years, in a variety of static and dynamic experiments at LANSCE. The cameras can operate with a per-frame adjustable integration time of ~ 120ns-to- 1s, and inter-frame time of 250ns to 2s. Given the 80 ms total readout time, the original and the new imagers can be externally synchronized to 0.1-to-5 Hz, 50-ns wide proton beam pulses, and record up to ~1000-frame radiographic movies typ. of 3-to-30 minute duration. The performance of the global electronic shutter is discussed and compared to that of a high-resolution commercial front-illuminated monolithic CMOS imager.

  2. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography.

    PubMed

    Simpson, R; Cutler, T E; Danly, C R; Espy, M A; Goglio, J H; Hunter, J F; Madden, A C; Mayo, D R; Merrill, F E; Nelson, R O; Swift, A L; Wilde, C H; Zocco, T G

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  3. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R., E-mail: raspberry@lanl.gov; Cutler, T. E.; Danly, C. R.

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improvemore » upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.« less

  4. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  5. Monolithic Laser.

    DTIC Science & Technology

    1977-09-01

    procedures that could be effectively used . Neither chemical nor in situ vapor etch techniques alleviated these problems. The presence of M in the top...mask consisting of rectangles 300 um x 200 urn. The crystal is then chemically etched in two steps. First, a calibrated Na0H:H.0. 39 etch ^ is used ... fabricated (including optical cavity formation) monolithically using conventional photolithographic fabrication technology. This development is a

  6. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  7. X-ray absorption spectroscopy study of Gd3+-loaded ultra-short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Jebb, M.; Tweedle, M. F.; Wilson, L. J.

    2013-04-01

    We present an x-ray absorption spectroscopy study of the local structure around the Gd3+ion loaded in ultra short (20-100 nm) carbon nanotubes (GNTs). X-ray Gd L3 absorption near edge structure data shows that the 31.2-μM GNT suspension exhibits a clear characteristic of hydration at the [GdOn] cluster. Extended x-ray absorption fine structure data show that the Gd3+ ion is coordinated by about 9 oxygen ions and that this first coordination shell exhibits an asymmetry similar to that found in triclinic Gd-acetate or Gd[C2H3O2]3·4H2O or GdAc. After correction for the asymmetry using the cumulant of the third order, the Gd-O bond distance is found to be 2.345 Å, instead of 2.406 Å for a symmetrical (or Gaussian) distribution. It is shorter than that in the Gd-containing MRI contrast agents currently in clinical uses. This may account in part for high proton relaxivity observed for the GNT suspension.

  8. Gas bubble formation in fused silica generated by ultra-short laser pulses.

    PubMed

    Cvecek, Kristian; Miyamoto, Isamu; Schmidt, Michael

    2014-06-30

    During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles.

  9. Monolithic Active Pixel Sensors

    NASA Astrophysics Data System (ADS)

    Lutz, P.

    In close collaboration with the group from Strasbourg, Saclay has been developing fast monolithic active pixel sensors for future vertex detectors. This presentation gives some recent results from the MIMOSA serie, emphazising the participation of the group.

  10. How Do Earth-Sized, Short-Period Planets Form?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a

  11. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.

    1989-01-01

    Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.

  12. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  13. Fast and sensitive analysis of beta blockers by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry.

    PubMed

    Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan

    2017-07-01

    This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Monolithic diffraction-limited 976-nm laser based on saddle-shaped photo darkening-free Yb-doped fiber

    NASA Astrophysics Data System (ADS)

    Aleshkina, Svetlana S.; Lipatov, Denis S.; Levchenko, Andrei E.; Medvedkov, Oleg I.; Bobkov, Konstantin K.; Bubnov, Mikhail M.; Guryanov, Alexei N.; Likhachev, Mikhail E.

    2018-02-01

    Monolithic 976 nm laser design based on a newly developed saddle-shaped Yb-doped fiber has been proposed. The fiber has central single-mode part with core diameter of about 12 μm and ultra-thin square-shaped clad with side of about 42x42 μm. At the both ends of the saddle-shaped fiber the core and the clad sizes were adiabatically increased up to 20/(70x70) μm and the fiber could be spliced with standard (80..125 μm clad) passive fibers using commercially available equipment. Single-mode laser at 976 nm based on the developed fiber has been fabricated and photodarkening-free operation with output power of 10.6 W, which is the record high for all-fiber laser schemes, has been demonstrated.

  15. Preparation of novel beta-cyclodextrin functionalized monolith and its application in chiral separation.

    PubMed

    Lv, Yongqin; Mei, Danping; Pan, Xinxin; Tan, Tianwei

    2010-09-15

    A novel beta-cyclodextrin (beta-CD) functionalized organic polymer monolith was prepared by covalently bonding ethylenediamine-beta-CD (EDA-beta-CD) to poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) monolith via ring opening reaction of epoxy groups. SEM characterization was performed to confirm the homogeneity of the monolithic polymer. The resulting monolith was then characterized by DSC and XPS elemental analysis to study the thermal stability of the monolith, and to prove the successful immobilization of beta-CD on the polymer substrate. The beta-CD ligand density of 0.68 mmol g(-1) was obtained for the modified monolith, indicating the high reactivity and efficiency of the EDA-beta-CD modifier. The ethylenediamine-beta-CD functionalized monoliths were used for the chiral separation of ibuprofen racemic mixture and showed promising results. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Monolithic ceramic capacitors for high reliability applications

    NASA Technical Reports Server (NTRS)

    Thornley, E. B.

    1981-01-01

    Monolithic multi-layer ceramic dielectric capacitors are widely used in high reliability applications in spacecraft, launch vehicles, and military equipment. Their relatively low cost, wide range of values, and package styles are attractive features that result in high usage in electronic circuitry in these applications. Design and construction of monolithic ceramic dielectric capacitors, defects that can lead to failure, and methods for defect detection that are being incorporated in military specifications are discussed.

  17. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  18. Damping and impact properties of laminated scaffolds and glass columns evaluated through the use of computational methods

    NASA Astrophysics Data System (ADS)

    Nieves, Ian

    Dynamic finite element analysis (FEA) was used to verify the ability of a novel percussion instrument to characterize the composition and structure of laminated materials and glass columns and to elucidate key facets of this process. Initial simulations modeling the percussion process with varying probe geometries were performed to access which configuration most accurately represented in situ diagnostic activity. Percussion testing of monoliths and laminated duplex scaffolds consisting of PTFE and 6061 Al was simulated to assess the ability of the numeric methodology to model intrinsic damping in laminated scaffolds and determine the potential contributions of size effects, gripping configurations, and probe friction to the loading response of the material being tested. Percussion testing of laminated scaffolds and monoliths composed of either PMMA or PLGA was modeled to investigate the effects of defects on the impact response and to evaluate promising strategies for enhancing damping that promotes tissue regeneration in biomedical materials. Percussion testing of virgin and cracked glass columns was modeled and the resulting probe acceleration predictions compared to corresponding experimental findings to evaluate the overall accuracy of the methodology and to discern its capacity for elucidating facets of defect detection in rigid materials. Overall, the modeling the results validated the effectiveness of the numeric methodology for modeling and elucidating the mechanics of percussion testing and suggested strategies whereby this procedure can facilitate the development of innovative biomedical materials designed to promote tissue regeneration.

  19. Advanced diagnosis of the temporal characteristics of ultra-short electron beams

    NASA Astrophysics Data System (ADS)

    Otake, Yuji

    2011-05-01

    Monitoring the temporal structure of an ultra-short electron beam is an indispensable function in order to tune a machine to obtain a highly qualified beam for a recent sophisticated accelerator, such as an X-ray free electron laser (XFEL), and to maintain stable X-ray laser operation. For this purpose, various instruments, such as an HEM11-mode RF beam deflector (RFDEF), a screen monitor (SCM), an electro-optic (EO) sampling method that uses a ZnTe crystal, and a beam position monitor (BPM) have been developed. The SCM that is used to observe the deflected beam image has a position resolution of 2.5 μm, which corresponds to a temporal resolution of 0.5 fs and it is installed at a position 5 m downstream from the RFDEF. The EO sampling method showed the ability to observe an electron bunch length for up to 300 fs (FWHM) at the SCSS test accelerator. The phase reference cavity of the BPM has an additional function of providing beam arrival timing information. A test for the BPM showed temporal fluctuation of 46 fs on the beam arrival timing at the test accelerator. These monitors with high temporal resolutions allow us to achieve the fine beam tuning demanded for the XFEL. The above-mentioned activities are described in this paper as a review article.

  20. Characterization of new types of stationary phases for fast liquid chromatographic applications.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin

    2009-12-05

    The performance of a narrow bore silica based monolith column (5 cm x 2 mm) was compared to 5 cm long narrow bore (internal diameter < or = 2.1 mm) columns, packed with shell particles (2.7 microm) and totally porous sub-2 microm particles (1.5 microm, 1.7 microm and 1.9 microm) in gradient and isocratic elution separations of steroids. The highest peak capacity could be achieved with the column packed with 1.5 microm totally porous particles. The columns packed with porous 1.7 microm and shell 2.7 microm particles showed very similar capacity. The monolith column provided the lowest capacity during gradient elution. The plate height (HETP) of the 2.7 microm Ascentis Express column was very similar to the HETP obtained with 1.5 microm and 1.7 microm totally porous particles. The Chromolith monolithic column displayed an efficiency that is comparable to that of columns packed with spherical particles having their diameter between 3 microm and 4 microm. A kinetic plot analysis is presented to compare the theoretical analysis speed of different separation media. At 200 bar, the monolith column provided the highest performance when the required plate number was higher than 5000 (N>5000), however the efficiency drifted off faster in the range of N<5000 than in the case of packed columns. If the possibility of maximum performance was utilized (1000 bar for sub-2 microm particles, 600 bar for shell particles and 200 bar for monolith column) the monolith column would provide the poorest efficiency, while the column, packed with 1.5 microm particles offered the shortest impedance time.

  1. Fracture-resistant monolithic dental crowns.

    PubMed

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  2. Characterization of an Ultra-High Temperature Ceramic Composite

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Opila, Elizabeth J.; Robinson, Raymond C.; Lorincz, Jonathan A.

    2004-01-01

    Ultra-high temperature ceramics (UHTC) are of interest for hypersonic vehicle leading edge applications. Monolithic UHTCs are of concern because of their low fracture toughness and brittle behavior. UHTC composites (UHTCC) are being investigated as a possible approach to overcome these deficiencies. In this study a small sample of a UHTCC was evaluated by limited mechanical property tests, furnace oxidation exposures, and oxidation exposures in a flowing environment generated by an oxy-acetylene torch. The composite was prepared from a carbon fiber perform using ceramic particulates and a pre-cerns about microcracking due to thermal expansion mismatch between the matrix and the carbon fiber reinforcements, and about the oxidation resistance of the HfB2-SiC coating layer and the composite constituents. However, positive performance in the torch test warrants further study of this concept.

  3. Monolithically integrated active optical devices. [with application in optical communication

    NASA Technical Reports Server (NTRS)

    Ballantyne, J.; Wagner, D. K.; Kushner, B.; Wojtzcuk, S.

    1981-01-01

    Considerations relevant to the monolithic integration of optical detectors, lasers, and modulators with high speed amplifiers are discussed. Some design considerations for representative subsystems in the GaAs-AlGaAs and GaInAs-InP materials systems are described. Results of a detailed numerical design of an electro-optical birefringent filter for monolithic integration with a laser diode is described, and early experimental results on monolithic integration of broadband MESFET amplifiers with photoconductive detectors are reported.

  4. Development of monolithic pixel detector with SOI technology for the ILC vertex detector

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Ono, S.; Tsuboyama, T.; Arai, Y.; Haba, J.; Ikegami, Y.; Kurachi, I.; Togawa, M.; Mori, T.; Aoyagi, W.; Endo, S.; Hara, K.; Honda, S.; Sekigawa, D.

    2018-01-01

    We have been developing a monolithic pixel sensor for the International Linear Collider (ILC) vertex detector with the 0.2 μm FD-SOI CMOS process by LAPIS Semiconductor Co., Ltd. We aim to achieve a 3 μm single-point resolution required for the ILC with a 20×20 μm2 pixel. Beam bunch crossing at the ILC occurs every 554 ns in 1-msec-long bunch trains with an interval of 200 ms. Each pixel must record the charge and time stamp of a hit to identify a collision bunch for event reconstruction. Necessary functions include the amplifier, comparator, shift register, analog memory and time stamp implementation in each pixel, and column ADC and Zero-suppression logic on the chip. We tested the first prototype sensor, SOFIST ver.1, with a 120 GeV proton beam at the Fermilab Test Beam Facility in January 2017. SOFIST ver.1 has a charge sensitive amplifier and two analog memories in each pixel, and an 8-bit Wilkinson-type ADC is implemented for each column on the chip. We measured the residual of the hit position to the reconstructed track. The standard deviation of the residual distribution fitted by a Gaussian is better than 3 μm.

  5. Eigenpolarization theory of monolithic nonplanar ring oscillators

    NASA Technical Reports Server (NTRS)

    Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.

    1989-01-01

    Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.

  6. Fabrication and investigation of electrochromatographic columns with a simplex configuration.

    PubMed

    Liu, Qing; Yang, Lijun; Wang, Qiuquan; Zhang, Bo

    2014-07-04

    Duplex capillary columns with a packed and an open section are widely used in electrochromatography (CEC). The duplex column configuration leads to non-uniform voltage drop, electrical field distribution and separation performance. It also adds to the complexity in understanding and optimizing electrochromatographic process. In this study, we introduced a simplex column configuration based on single particle fritting technology. The new column configuration has an essentially uniform packed bed through the entire column length, with only 1mm length left unpacked serving as the optical detection window. The study shows that a simplex column has higher separation efficiency than a duplex column, especially at the high voltage range, due to the consistent distribution of electrical field over the column length. In comparison to the duplex column, the simplex column presented a lower flow rate at the same applied voltage, suggesting that an open section may support a higher speed than a packed section. In practice, the long and short ends of the simplex column could be used as independent CEC columns respectively. This "two-in-one" bi-functional column configuration provided extra flexibilities in selecting and optimizing electrochromatographic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  8. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  9. Versatile monolithic 2-micron laser systems

    NASA Astrophysics Data System (ADS)

    Wysmolek, M.; Steinke, M.; Neumann, J.; Kracht, D.

    2018-02-01

    To answer a growing demand in development of high power pulsed and continuous wave sources at 2 micron spectral range we have participated in several projects, which resulted in a delivery of versatile monolithic sources providing picosecond, nanosecond and CW laser signal. As an example of pulsed sources we developed all-fiber monolithic devices based on a directly modulated laser diode and gain-switched laser diode to generate nanosecond and picosecond pulses, respectively, which are amplified in the same fiber amplifier chain up to 50 µJ with 96 ps and more than 1 mJ with pulses longer than 35 ns.

  10. Highly improved operation of monolithic BGO-PET blocks

    NASA Astrophysics Data System (ADS)

    Gonzalez-Montoro, A.; Sanchez, F.; Majewski, S.; Zanettini, S.; Benlloch, J. M.; Gonzalez, A. J.

    2017-11-01

    In PET scanners both scintillation crystals and photosensors are key components defining the system's performance and cost. Original PET systems used BGO or NaI(Tl) scintillators but achieved limited performance due to its slow decay and relatively low light output. Moreover, NaI(Tl) has low stopping power for 511 keV annihilation photons. In this study we report the possibility to reintroduce BGO crystals, and in particular in the form of monolithic blocks, especially suitable for low-dose large-size PET scanners, offering significantly improved sensitivity at a highly reduced cost compared to LYSO type fast scintillators. We have studied the performance of a monolithic BGO block as large as 50 × 50 × 15 mm3 with black-painted lateral walls to reduce lights spread, enabling accurate photon depth of interaction (DOI) measurements. A directional optical layer, called retro-reflector, was coupled to the entrance face bouncing back the scintillation light in the direction of the emission source and, therefore, adding to the light signal while preserving the narrow light cone distribution. Four configurations namely 12 × 12 and 16 × 16 SiPM arrays (3 mm × 3 mm each) as photosensors, with or without a nanopattern treatment at the crystal exit face, have been studied. This structure consisted of a thin layer of a specific high refractive index material shaped with a periodic nanopattern, increasing the scintillation light extraction. The readout returned information for each SiPM row and column, characterizing the X-Y light distribution projections. We have studied the detector spatial resolution using collimated 22Na sources at normal incidence. The DOI resolution was evaluated using collimated gamma beams with lateral incidence. The overall best detector performance was obtained for the 16× 16 SiPM array offering higher readout granularity. We have determined the spatial resolution for 3 separated DOI layers, obtaining the best results for the DOI region near to

  11. InGaAs monolithic interconnected modules (MIMs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. Also, the use of a BSR reduces the requirements imposed on a front surface interference filter and may lead to using only an anti-reflection coating. As a result, MIMs are exposed to themore » entire radiator output, and with increasing output power density. MIMs were fabricated with an active area of 0.9 x 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV modules demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. The near IR reflectance (2--4 {micro}m) for both lattice-matched and lattice-mismatched structures was measured to be in the range of 80--85%. Latest electrical and optical performance results for these MIMs is presented.« less

  12. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  13. Multi-Column Experimental Test Bed for Xe/Kr Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil

    Previous research studies have shown that INL-developed engineered form sorbents are capable of capturing both Kr and Xe from various composite gas streams. The previous experimental test bed provided single column testing for capacity evaluations over a broad temperature range. To advance research capabilities, the employment of an additional column to study selective capture of target species to provide a defined final gas composition for waste storage was warranted. The second column addition also allows for compositional analyses of the final gas product to provide for final storage determinations. The INL krypton capture system was modified by adding an additionalmore » adsorption column in order to create a multi-column test bed. The purpose of this modification was to investigate the separation of xenon from krypton supplied as a mixed gas feed. The extra column was placed in a Stirling Ultra-low Temperature Cooler, capable of controlling temperatures between 190 and 253K. Additional piping and valves were incorporated into the system to allow for a variety of flow path configurations. The new column was filled with the AgZ-PAN sorbent which was utilized as the capture medium for xenon while allowing the krypton to pass through. The xenon-free gas stream was then routed to the cryostat filled with the HZ-PAN sorbent to capture the krypton at 191K. Selectivities of xenon over krypton were determined using the new column to verify the system performance and to establish the operating conditions required for multi-column testing. Results of these evaluations verified that the system was operating as designed and also demonstrated that AgZ-PAN exhibits excellent selectivity for xenon over krypton in air at or near room temperature. Two separation tests were performed utilizing a feed gas consisting of 1000 ppmv xenon and 150 ppmv krypton with the balance being made up of air. The AgZ-PAN temperature was held at 295 or 253K while the HZ-PAN was held at 191K for

  14. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water.

    PubMed

    Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine

    2018-02-02

    A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges

  15. The new methods of treatment for age-related macular degeneration using the ultra-short pulsed laser

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yumiko; Awazu, Kunio; Suzuki, Sachiko; Ohshima, Tetsuro; Sawa, Miki; Sakaguchi, Hirokazu; Tano, Yasuo; Ohji, Masahito

    2007-02-01

    The non-invasive methods of treatments have been studying for the improvement of quality of life (QOL) of patients undergoing treatment. A photodynamic therapy (PDT) is one of the non-invasive treatments. PDT is the methods of treatment using combination of a laser and a photosensitizer. PDT has few risks for patients. Furthermore, PDT enables function preservation of a disease part. PDT has been used for early cancer till now, but in late years it is applied for age-related macular degeneration (AMD). AMD is one of the causes of vision loss in older people. However, PDT for AMD does not produce the best improvement in visual acuity. The skin photosensivity by an absorption characteristic of a photosensitizer is avoided. We examined new PDT using combination of an ultra-short pulsed laser and indocyanine green (ICG).

  16. GaAs monolithic R.F. modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  17. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE PAGES

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan; ...

    2017-09-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  18. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  19. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    PubMed Central

    Buzmakov, Alexey; Jurek, Zoltan; Loh, Ne-Te Duane; Samoylova, Liubov; Santra, Robin; Schneidmiller, Evgeny A.; Tschentscher, Thomas; Yakubov, Sergey; Yoon, Chun Hong; Yurkov, Michael V.; Ziaja-Motyka, Beata; Mancuso, Adrian P.

    2017-01-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs. PMID:28989713

  20. Ultra short-term heart rate recovery after maximal exercise: relations to aerobic power in sportsmen.

    PubMed

    Ostojic, Sergej M; Stojanovic, Marko D; Calleja-Gonzalez, Julio

    2011-04-30

    The main aim of the study was to investigate whether different levels of aerobic power influence heart rate (HR) responses during the first minute of recovery following maximal exercise in athletes. Thirty-two young male soccer players were recruited for the study during the final week of their training prior to [corrected] the competition. Following the maximal exercise on treadmill the participants were placed supine for 60 s of HR recording. The time between exercise cessation and the recovery HR measurement was kept as short as possible. At the end of exercise (i.e., the start of recovery), HRs were [corrected] was similar in both trials. At both 10 s and 20 s of recovery period, the players characterized by high aerobic power (> 60 ml/kg/ min) revealed significantly lower HR as compared to their sub-elite counterparts (< 50 ml/kg/min; P < 0.05). No differences between the groups were found at later stages of the analyzed post-exercise HR. The data suggest that the athletes characterized by high aerobic capacity could be better adapted to maximal exercise with faster recovery HR immediately following an exercise test. These results generally suggest that the aerobic power along with autonomic modulation might have played a role in the ultra short-term cardiovascular responses to all-out exercise.

  1. Detecting gravesoil with headspace analysis with adsorption on short porous layer open tubular (PLOT) columns.

    PubMed

    Lovestead, Tara M; Bruno, Thomas J

    2011-01-30

    Victims of crimes are often buried in clandestine graves. There are several techniques for finding buried bodies or the scattered remains of a victim; however, none of these methods are very reliable or work in all scenarios. One way to detect gravesoil is to detect the biochemical changes of the surrounding soil due to cadaver decomposition, for example, the release of nitrogenous compounds. A simple and low-cost way to detect these compounds is based on the reaction of alpha amino groups with ninhydrin to form Ruhemann's purple. This test for ninhydrin-reactive nitrogen (NRN) has, to date, only been performed by direct solvent extraction of soil samples. Here, we present a method that detects trace quantities of NRN in the headspace air above gravesoil. Our method is based on an improved purge and trap method developed in our lab for sampling low volatility compounds, as well as volatile compounds at trace quantities, by applying low temperature collection on short alumina-coated porous layer open tubular (PLOT) columns. We modified this method to sample the headspace air above gravesoil with a motorized pipetter and a PLOT column at ambient temperatures. We generated gravesoil using rat cadavers and local soil. Trace quantities of NRN were successfully detected in the headspace air above gravesoil. We report the quantities of NRN recovered for buried rats, rats laid on top of soil, and blank graves (no rats) as a function of time (weeks to months). This work is the first (and thus far, only) example of a method for detecting NRN in the vapor phase, providing another tool for forensic investigators to aid in locating elusive clandestine graves. Published by Elsevier Ireland Ltd.

  2. A Novel Method for gamma - text{photons} Depth-of-Interaction Detection in Monolithic Scintillation Crystals

    NASA Astrophysics Data System (ADS)

    Pani, Roberto; Bettiol, Marco; Preziosi, Enrico; Borrazzo, Cristian; Pellegrini, Rosanna; González, Antonio J.; Conde, Pablo; Cinti, Maria Nerina; Fabbri, Andrea; Di Castro, Elisabetta; Majewski, Stan

    2016-10-01

    Achieved spatial resolution of the PET systems is often limited by the parallax error due to the lack of information about the Depth of Interaction (DoI) inside the crystal of the incoming 511 keV annihilation photons. The smaller the diameter of the PET ring and the thicker the scintillator are, the more this error affects imaging performance. In this work, a DoI calculator suitable for monolithic scintillation crystals and based on the shape of the scintillation light distribution at the photodetector surface has been proposed. To test the estimator performance, a test PET module with a 50 × 50 × 20 mm monolithic LYSO crystal coupled to a 12 × 12 SiPM array has been employed. In addition, for calibration and validation of the method, Geant4 simulations have been also used. The key result of the application of the proposed DoI estimator is obtaining a continuous DoI estimation with an average DoI resolution of about 5 mm in the 20 mm-thick crystal. Benefiting from the DoI estimation capabilities of the method, it has been also possible to achieve additional important goals, first of all reducing the parallax error. First, because the scintillation light collection varies as a function of the 3D position of the interaction of the annihilation photon inside the crystal, a method to correct this response variation via a proper 3D look-up-table is proposed. This has led to an improvement of about 35% in energy resolution. Moreover, a DoI-dependent position algorithm has been proposed, allowing an improvement of both planar (X-Y) position linearity and planar spatial resolution. This algorithm is specifically developed for the rows/columns multi-channel readout logic, that reduces the number of independent channels from N × N to N + N, where N is the number of SiPM photodetection elements (12 in our case) in each row and column. This development was performed in the framework of the MindView PET/MilI brain imaging project.

  3. Application of Grey Model GM(1, 1) to Ultra Short-Term Predictions of Universal Time

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Guo, Min; Zhao, Danning; Cai, Hongbing; Hu, Dandan

    2016-03-01

    A mathematical model known as one-order one-variable grey differential equation model GM(1, 1) has been herein employed successfully for the ultra short-term (<10days) predictions of universal time (UT1-UTC). The results of predictions are analyzed and compared with those obtained by other methods. It is shown that the accuracy of the predictions is comparable with that obtained by other prediction methods. The proposed method is able to yield an exact prediction even though only a few observations are provided. Hence it is very valuable in the case of a small size dataset since traditional methods, e.g., least-squares (LS) extrapolation, require longer data span to make a good forecast. In addition, these results can be obtained without making any assumption about an original dataset, and thus is of high reliability. Another advantage is that the developed method is easy to use. All these reveal a great potential of the GM(1, 1) model for UT1-UTC predictions.

  4. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    PubMed

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Ultra-short-course booster is effective in recurrent grass pollen-induced allergic rhinoconjunctivitis.

    PubMed

    Pfaar, O; Lang, S; Pieper-Fürst, U; Astvatsatourov, A; Gerich, F; Klimek, L; Kramer, M F; Reydelet, Y; Shah-Hosseini, K; Mösges, R

    2018-01-01

    A relevant proportion of allergic rhinoconjunctivitis (ARC) patients experience recurrent symptoms after successfully completing allergen immunotherapy (AIT). This prospective, controlled, noninterventional study used internationally standardized instruments to determine the clinical effects of a preseasonal, ultra-short-course booster AIT on clinical outcome parameters. This two-arm study included patients aged ≥12 years with recurrent grass pollen-induced seasonal AR who had completed a successful course of any grass pollen AIT at least 5 years before enrolment. Overall, 56 patients received one preseasonal short-course booster AIT using tyrosine-absorbed grass pollen allergoids containing the adjuvant monophosphoryl lipid A (MPL ® ); 51 control patients received symptomatic medication. The combined symptom and medication score (CSMS) was recorded in the (peak) grass pollen season. Furthermore, concomitant (antiallergic) medication use, the patients' state of health, Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) results and safety/tolerability of the treatment were assessed. The CSMS in the peak grass pollen season was significantly lower in the booster AIT group (Δ=38.4%, P<.01). Moreover, significantly more patients in this group used no concomitant antiallergic medication throughout the peak grass pollen season. Twice as many patients in the booster AIT group as in the control group reported having a better state of health than in the preceding season. MiniRQLQ results showed significant differences favouring the booster AIT. The booster AIT was generally well tolerated, with only two patients reporting mild, grade 1 systemic adverse events. Booster AIT using tyrosine-absorbed allergoids containing the adjuvant MPL ® effectively prevents re-occurrence of symptoms in patients with grass pollen-induced ARC. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  6. Preliminary evaluation of monolithic column high-performance liquid chromatography with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection for the determination of quetiapine in human body fluids.

    PubMed

    Bellomarino, Sara A; Brown, Allyson J; Conlan, Xavier A; Barnett, Neil W

    2009-03-15

    High-performance liquid chromatography (HPLC) with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection methodology is reported for the determination of the atypical antipsychotic drug quetiapine and the observation of its major active and inactive metabolites in human urine and serum. The method uses a monolithic chromatographic column allowing high flow rates of 3 mLmin(-1) enabling rapid quantification. Flow injection analysis (FIA) with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection and HPLC time of flight mass spectrometry (TOF-MS) were used for the determination of quetiapine in a pharmaceutical preparation to establish its suitability as a calibration standard. The limit of detection achieved with FIA was 2 x 10(-11) molL(-1) in simple aqueous solution. The limits of detection achieved with HPLC were 7 x 10(-8) and 2 x 10(-10) molL(-1) in urine and serum, respectively. The calibration range for FIA was between 5 x 10(-9) and 1 x 10(-6) molL(-1). The calibration ranges for HPLC were between 1 x 10(-7)-1 x 10(-4) and 1 x 10(-8)-1 x 10(-4) molL(-1) in urine and serum, respectively. The quetiapine concentrations in patient samples were found to be 3 x 10(-6) molL(-1) in urine and 7 x 10(-7) molL(-1) in serum. Without the need for preconcentration, the HPLC detection limits compared favourably with those in previously published methodologies. The metabolites were identified using HPLC-TOF-MS.

  7. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    detection via good peak separation with a longer run time is a better asset than moderate peak separation with a shorter run time. Even given that RESOLVE is highly interested in water and that mission timeline is of significant importance given the short seven-to-ten-day mission timeline, worse detection with an 8m column may lead to overlooking other substances existing on the moon that could advance planetary science. Thus, I recommend the 20m column. However, if mission timeline and water separation are deemed the highest priority, the 8m column should be selected due to its ability to separate water within a shorter run time than the 20m column.

  8. Lateral column length in adult flatfoot deformity.

    PubMed

    Kang, Steve; Charlton, Timothy P; Thordarson, David B

    2013-03-01

    In adult acquired flatfoot deformity, it is unclear whether the lateral column length shortens with progression of the deformity, whether it is short to begin with, or whether it is short at all. To our knowledge, no previous study has examined the lateral column length of patients with adult acquired flatfoot deformity compared to a control population. The purpose of our study was to compare the lateral column length in patients with and without adult acquired flatfoot deformity to see if there was a significant difference. The study was a retrospective radiographic review of 2 foot and ankle fellowship-trained orthopaedic surgeons' patients with adult flatfoot deformity. Our study population consisted of 75 patients, 85 feet (28 male, 57 female) with adult flatfoot deformity with a mean age of 64 (range, 23-93). Our control population consisted of 57 patients and 70 feet (23 male, 47 female) without flatfoot deformity with a mean age of 61 (range, 40-86 years). Weightbearing anteroposterior (AP) and lateral foot radiographs were analyzed for each patient, and the following measurements were made: medial and lateral column lengths, talonavicular uncoverage angle, talus-first metatarsal angle, calcaneal pitch angle, and medial and lateral column heights. An unpaired t test was used to analyze the measurements between the groups. Ten patients' radiographs were remeasured, and correlation coefficients were obtained to assess the reliability of the measuring techniques. For the flatfoot group, the mean medial and lateral column lengths on the AP radiograph were 108.6 mm and 95.8 mm, respectively; the mean talo-navicular uncoverage angle was 26.2 degrees; and the mean talus-first metatarsal angle was 20.0 degrees. In the control group, the mean medial and lateral column lengths on the AP radiograph were 108.8 mm and 96.5 mm, respectively; the mean talo-navicular uncoverage angle was 8.2 degrees; and the mean talus-first metatarsal angle was 7.7 degrees. On the lateral

  9. Fabrication of mesoporous polymer monolith: a template-free approach.

    PubMed

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  10. Nanoparticle-Functionalized Porous Polymer Monolith Detection Elements for Surface-Enhanced Raman Scattering

    PubMed Central

    Liu, Jikun; White, Ian; DeVoe, Don L.

    2011-01-01

    The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G (R6G) is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cyctochrome c. The SERS-active monoliths can be readily integrated into miniaturized micro-total-analysis systems for on-line and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications. PMID:21322579

  11. Monolithic methacrylate packed 96-tips for high throughput bioanalysis.

    PubMed

    Altun, Zeki; Skoglund, Christina; Abdel-Rehim, Mohamed

    2010-04-16

    In the pharmaceutical industry the growing number of samples to be analyzed requires high throughput and fully automated analytical techniques. Commonly used sample-preparation methods are solid-phase extraction (SPE), liquid-liquid extraction (LLE) and protein precipitation. In this paper we will discus a new sample-preparation technique based on SPE for high throughput drug extraction developed and used by our group. This new sample-preparation method is based on monolithic methacrylate polymer as packing sorbent for 96-tip robotic device. Using this device a 96-well plate could be handled in 2-4min. The key aspect of the monolithic phase is that monolithic material can offer both good binding capacity and low back-pressure properties compared to e.g. silica phases. The present paper presents the successful application of monolithic 96-tips and LC-MS/MS by the sample preparation of busulphan, rescovitine, metoprolol, pindolol and local anaesthetics from human plasma samples and cyklophosphamid from mice blood samples. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Surface modification of SU8 photoresist for shrinkage improvement in a monolithic MEMS microstructure

    NASA Astrophysics Data System (ADS)

    Chung, C. K.; Hong, Y. Z.

    2007-02-01

    The effect of O2 plasma treatment on the surface property of exposed and unexposed SU8 photoresist has been investigated for the fabrication of a monolithic MEMS microstructure. It can solve the non-uniformity problem of second resist coating on the SU8 with high intrinsic shrinkage after exposure and post-exposure baking (PEB) in the fabrication of the stacked polymer-metal or polymer-polymer structure, which was used in the application of microfluid, bio and chemistry. The thickness difference of untreated SU8 before PEB between the exposed and unexposed SU8 was about 0.3% while that after PEB increased to about 6%. It could result in large non-uniformity of about 18 µm thickness difference for the following second resist coating on the hydrophobic surface without plasma treatment. The surface property of SU8 in terms of the contact angle and surface energy can be adjusted by O2 plasma treatment for enhancing the coating uniformity of the following resist. The measured contact angles of the exposed and unexposed SU8 decrease with O2 plasma time, corresponding to the increased surface energy determined by the Lifshitz-van der Waals/Lewis acid-base approach. It displayed that the similar hydrophilic surface property can minimize the thickness difference of second resist coating on the first shrunken SU8. A monolithic nozzle plate with a physical resolution of 600 dpi in a single column was demonstrated for an inkjet application based on the improved uniformity.

  13. Status of the Monolithic Suspensions for Advanced Virgo

    NASA Astrophysics Data System (ADS)

    Travasso, F.; Virgo Collaboration

    2018-02-01

    Successfully implemented in GEO and Virgo+, the monolithic suspensions are one of the most important upgrades in the second generation of gravitational wave interferometric detectors, including Advanced LIGO (aLIGO) and Advanced Virgo (AdV). Characterized by a very low thermal noise, monolithic suspensions are essential for improving the interferometers sensitivity at low frequencies (10-100Hz). In Advanced Virgo their installation was delayed because of a contamination problem in the vacuum system: dust produced by scroll pumps was injected in the main vacuum chambers during the venting processes, damaging the fibers and ultimately causing their repeated failure. The effort to explain and resolve this issue was useful to further confirm the suspensions’ reliability and our control on the production process. Moreover, we developed and implemented new tools and procedures to certify each part of the monolithic suspensions. In the meanwhile, in order to join aLIGO during its second Observation Run (O2), a temporary steel suspension was implemented, based on the initial Virgo design. That solution allowed us to contribute to the first three-detector observation of a gravitational wave (GW) ([1]), and to the first observation of a coalescing neutron star binary ([2]) In the near future the monolithic suspensions will be reinstalled along with additional upgrades of Virgo.

  14. GaAs circuits for monolithic optical controller

    NASA Technical Reports Server (NTRS)

    Gustafson, G.; Bendett, M.; Carney, J.; Mactaggart, R.; Palmquist, S.

    1988-01-01

    GaAs circuits for use in a fully monolithic 1 Gb/s optical controller have been developed and tested. The circuits include photodetectors, transimpedance amplifiers and 1:16 demultiplexers that can directly control the phase of MMIC phase shifters. The entire chip contains approximately 300 self-aligned gate E/D-mode MESFETs. The MESFETs have one micron-wide gate and the E-mode FETs typically have transconductance of 200 ms/mm. Results of simulations and tests are reported. Also, the design and layout of the fully monolithic chip is discussed.

  15. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  16. Monolithic fuel injector and related manufacturing method

    DOEpatents

    Ziminsky, Willy Steve [Greenville, SC; Johnson, Thomas Edward [Greenville, SC; Lacy, Benjamin [Greenville, SC; York, William David [Greenville, SC; Stevenson, Christian Xavier [Greenville, SC

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  17. Sol-Gel Synthesis of Non-Silica Monolithic Materials

    PubMed Central

    Gaweł, Bartłomiej; Gaweł, Kamila; Øye, Gisle

    2010-01-01

    Monolithic materials have become very popular because of various applications, especially within chromatography and catalysis. Large surface areas and multimodal porosities are great advantages for these applications. New sol-gel preparation methods utilizing phase separation or nanocasting have opened the possibility for preparing materials of other oxides than silica. In this review, we present different synthesis methods for inorganic, non-silica monolithic materials. Some examples of application of the materials are also included.

  18. Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit

    NASA Technical Reports Server (NTRS)

    Reinitzhuber, F.

    1945-01-01

    When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.

  19. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  20. Macroporous Monolithic Polymers: Preparation and Applications

    PubMed Central

    Arrua, Ruben Dario; Strumia, Miriam Cristina; Alvarez Igarzabal, Cecilia Inés

    2009-01-01

    In the last years, macroporous monolithic materials have been introduced as a new and useful generation of polymers used in different fields. These polymers may be prepared in a simple way from a homogenous mixture into a mold and contain large interconnected pores or channels allowing for high flow rates at moderate pressures. Due to their porous characteristics, they could be used in different processes, such as stationary phases for different types of chromatography, high-throughput bioreactors and in microfluidic chip applications. This review reports the contributions of several groups working in the preparation of different macroporous monoliths and their modification by immobilization of specific ligands on the products for specific purposes.

  1. Metal oxide nanorod arrays on monolithic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can includemore » a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.« less

  2. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, U.; Rao, B. S.; Arora, V.

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  3. Fine-grain concrete from mining waste for monolithic construction

    NASA Astrophysics Data System (ADS)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.

    2018-03-01

    The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.

  4. Ultra-performance liquid chromatographic determination of L-ergothioneine in commercially available classes of cow milk.

    PubMed

    Sotgia, Salvatore; Pisanu, Elisabetta; Cambedda, Debora; Pintus, Gianfranco; Carru, Ciriaco; Zinellu, Angelo

    2014-09-01

    A new efficient and sensitive precolumn hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) method was established for the quantitative determination of L-ergothioneine (ERT) in milk. After derivatization of ERT with 7-diethylamino-3-[4-(iodoacetamido)phenyl]-4-methylcoumarin, chromatographic separation was achieved in a fairly short time, less than 5 min, on a 100 × 2.1 mm Waters Cortecs UPLC HILIC 1.6-μm column, by using a mixture of 30 mmol/L ammonium acetate/acetonitrile (10:90, v/v) as a mobile phase flowing isocratically at 0.9 mL/min. Limit of detection and the limit of quantification were 0.03 and 0.10 μmol/L, respectively. The method exhibited linearity in a concentration range of 0.16 and 5.08 μmol/L. Mean recovery was 106.66%, whereas intra- and interassay precisions were determined to be within 6 RSD%. On average, ERT concentration in different commercially available classes of cow milk was found to be 0.442 ± 0.191 μmol/L, with the highest levels in the ultra-high temperature milks and low values in the unprocessed and HTST whole milks. In this light, our experiments suggest that ERT could be used as a marker for the heat treatment of milk. © 2014 Institute of Food Technologists®

  5. Ultra-broadband near-field antenna for terahertz plasmonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk; Knap, W.

    A new type of ultra-broadband near-field antenna for terahertz frequencies is proposed. This antenna is a short-period planar metal array. It is theoretically shown that irradiation of the short-period array antenna by a plane homogeneous terahertz waves excite a highly inhomogeneous near electric field near the metal array. In this case, the amplitude of the excited inhomogeneous near electric field is almost independent of frequency in the entire terahertz frequency range. The excitation of plasma oscillations in a two-dimensional electron system using the antenna under study is numerically simulated in the resonant and non-resonant plasmonic response modes. This type ofmore » antenna can be used for developing ultra-broadband plasmonic detectors of terahertz radiation.« less

  6. Deposition of zeolite nanoparticles onto porous silica monolith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gackowski, Mariusz; Bielanska, Elzbieta; Szczepanowicz, Krzysztof

    2016-06-01

    A facile and effective method of deposition of MFl zeolite nanoparticles (nanocrystals) onto macro-/mesoporous silica monolith was proposed. The electrostatic interaction between those two materials was induces by adsorption of cationic polyelectrolytes. That can be realized either by adsorption of polyelectrolyte onto silica monolith or on zeolite nanocrystals. The effect of time, concentration of zeolite nanocrystals, type of polyelectrolyte, and ultrasound treatment is scrutinized. Adsorption of polyelectrolyte onto silica monolith with subsequent deposition of nanocrystals resulted in a monolayer coverage assessed with SEM images. Infrared spectroscopy was applied as a useful method to determine the deposition effectiveness of zeolite nanocrystalsmore » onto silica. Modification of nanocrystals with polyelectrolyte resulted in a multilayer coverage due to agglomeration of particles. On the other hand, the excess of polyelectrolyte in the system resulted in a low coverage due to competition between polyelectrolyte and modified nanocrystals.« less

  7. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).

    PubMed

    Burke, Jeffrey M; Smela, Elisabeth

    2012-03-01

    A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.

  8. Faraday effect in a short pulse propagating in a resonant medium under an ultra-strong magnetic field

    NASA Astrophysics Data System (ADS)

    Huang, J. G.; Slavcheva, G.; Hess, O.

    2008-04-01

    We propose a dynamical model for description of the nonlinear Faraday rotation experienced by a short pulse propagating in a resonant medium subject to an ultra-strong static magnetic field. Under the assumptions of a sufficiently strong external magnetic field, such that the Zeeman splitting of the quantum system energy levels is large compared to the linewidth of the optical transitions involved and the bandwidth of the incident light, the light effectively interacts with a two-level system. Our numerical simulations show that the Faraday effect under these conditions is significantly distinctive from the one caused by weak to moderately strong magnetic field. Nonlinear coherent effects such as inhomogeneous polarization rotation along the pulse duration and an onset of a circularly polarized stimulated emission and coherent ringing have been demonstrated. Some views on the experimental observation of the predicted phenomena are given.

  9. Estimation of methacrylate monolith binding capacity from pressure drop data.

    PubMed

    Podgornik, Aleš; Smrekar, Vida; Krajnc, Peter; Strancar, Aleš

    2013-01-11

    Convective chromatographic media comprising of membranes and monoliths represent an important group of chromatographic supports due to their flow-unaffected chromatographic properties and consequently fast separation and purification even of large biological macromolecules. Consisting of a single piece of material, common characterization procedures based on analysis of a small sample assuming to be representative for the entire batch, cannot be applied. Because of that, non-invasive characterization methods are preferred. In this work pressure drop was investigated for an estimation of dynamic binding capacity (DBC) of proteins and plasmid DNA for monoliths with different pore sizes. It was demonstrated that methacrylate monolith surface area is reciprocally proportional to pore diameter and that pressure drop on monolith is reciprocally proportional to square pore size demonstrating that methacrylate monolith microstructure is preserved by changing pore size. Based on these facts mathematical formalism has been derived predicting that DBC is in linear correlation with the square root of pressure drop. This was experimentally confirmed for ion-exchange and hydrophobic interactions for proteins and plasmid DNA. Furthermore, pressure drop was also applied for an estimation of DBC in grafted layers of different thicknesses as estimated from the pressure drop data. It was demonstrated that the capacity is proportional to the estimated grafted layer thickness. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Ultra-short term clomiphene citrate in high responder women with polycystic ovary syndrome: a case series.

    PubMed

    Kelekci, Sefa; Eris, Serenat; Demirel, Emine

    2014-04-01

    To evaluate a new trial of short-term clomiphene citrate (CC) in high responder women with polycystic ovary syndrome (PCOS). This case series was conducted in the infertility outpatient clinics of two centres. Ovulation induction was performed with CC 50-100mg a day in six high-responder women with PCOS who had a history of cancellation of treatment because of ≥3 mature follicles between March 2010 and June 2013. Induction was initiated on the third day of their cycles and the duration of induction was only two days. Demographic data of the patients, number of mature follicles on hCG day, ovulation rate, luteal phase length, pregnancy rate, and type of pregnancy were recorded. All data were analysed by SPSS packet programme (SPSS, 17.0, SPSS Inc., Chicago, IL, USA). The median number of mature follicles and duration of the follicular phase were 1.3 (1-2) and 11.9 (11-14) days, respectively. The ovulation rate was 80% (12/15) and pregnancy rate per cycle was 26.6%. If this hypothesis is supported by large prospective randomised controlled studies, ultra-short term ovulation induction with CC may provide an alternative approach for high-responder women with PCOS who have a history of treatment cycle cancellations. Copyright © 2014. Published by Elsevier Ireland Ltd.

  11. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; Eeltink, Sebastiaan; Guillarme, Davy

    2013-04-01

    Various recent wide-pore reversed-phase stationary phases were studied for the analysis of intact monoclonal antibodies (mAbs) of 150 kDa and their fragments possessing sizes between 25 and 50 kDa. Different types of column technology were evaluated, namely, a prototype silica-based inorganic monolith containing mesopores of ~250 Å and macropores of ~ 1.1 μm, a column packed with 3.6 μm wide-pore core-shell particles possessing a wide pore size distribution with an average around 200 Å and a column packed with fully porous 1.7 μm particles having pore size of ~300 Å. The performance of these wide-pore materials was compared with that of a poly(styrene-divinyl benzene) organic monolithic column, with a macropore size of approximately 1 μm but without mesopores (stagnant pores). A systematic investigation was carried out using model IgG1 and IgG2 mAbs, namely rituximab, panitumumab, and bevacizumab. Firstly, the recoveries of intact and reduced mAbs were compared on the two monolithic phases, and it appeared that adsorption was less pronounced on the organic monolith, probably due to the difference in chemistry (C18 versus phenyl) and the absence of mesopores (stagnant zones). Secondly, the kinetic performance was investigated in gradient elution mode for all columns. For this purpose, peak capacities per meter as well as peak capacities per time unit and per pressure unit (PPT) were calculated at various flow rates, to compare performance of columns with different dimensions. In terms of peak capacity per meter, the core-shell 3.6 μm and fully porous 1.7 μm columns outperformed the two monolithic phases, at a temperature of 60 °C. However, when considering the PPT values, the core-shell 3.6 μm column remained the best phase while the prototype silica-based monoliths became very interesting, mostly due to a very high permeability compared with the organic monolith. Therefore, these core-shell and silica-based monolith provided the fastest achievable

  12. Effects of Irregular Bridge Columns and Feasibility of Seismic Regularity

    NASA Astrophysics Data System (ADS)

    Thomas, Abey E.

    2018-05-01

    Bridges with unequal column height is one of the main irregularities in bridge design particularly while negotiating steep valleys, making the bridges vulnerable to seismic action. The desirable behaviour of bridge columns towards seismic loading is that, they should perform in a regular fashion, i.e. the capacity of each column should be utilized evenly. But, this type of behaviour is often missing when the column heights are unequal along the length of the bridge, allowing short columns to bear the maximum lateral load. In the present study, the effects of unequal column height on the global seismic performance of bridges are studied using pushover analysis. Codes such as CalTrans (Engineering service center, earthquake engineering branch, 2013) and EC-8 (EN 1998-2: design of structures for earthquake resistance. Part 2: bridges, European Committee for Standardization, Brussels, 2005) suggests seismic regularity criterion for achieving regular seismic performance level at all the bridge columns. The feasibility of adopting these seismic regularity criterions along with those mentioned in literatures will be assessed for bridges designed as per the Indian Standards in the present study.

  13. A Possible Astronomically Aligned Monolith at Gardom's Edge

    NASA Astrophysics Data System (ADS)

    Brown, Daniel; Alder, Andy; Bemand, Elizabeth

    2015-05-01

    A unique triangular shaped monolith located within the Peak District National Park at Gardom's Edge could be intentionally astronomically aligned. It is set within a landscape rich in late Neolithic and Bronze Age remains. We show that the stone is most likely in its original orientation owing to its clear signs of erosion and associated to the time period of the late Neolithic. It is tilted towards south and its north side slopes at an angle equal to the maximum altitude of the Sun at mid-summer. This alignment emphasizes the changing declinations of the Sun during the seasons as well as giving an indication of mid-summers day. This functionality is achieved by an impressive display of light and shadow on the north facing side of the monolith. Together with other monuments in the close vicinity the monolith would have represented an ideal marker or social arena for seasonal gatherings for the otherwise dispersed small communities.

  14. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

    PubMed

    Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo

    2015-03-25

    A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Counter-current chromatography with off-line detection by ultra high performance liquid chromatography/high resolution mass spectrometry in the study of the phenolic profile of Lippia origanoides.

    PubMed

    Leitão, Suzana Guimaraes; Leitão, Gilda Guimarães; Vicco, Douglas K T; Pereira, João Paulo Barreto; de Morais Simão, Gustavo; Oliveira, Danilo R; Celano, Rita; Campone, Luca; Piccinelli, Anna Lisa; Rastrelli, Luca

    2017-10-20

    Lippia origanoides (Verbenaceae) is an important Brazilian medicinal plant, also used for culinary purposes. Most chemical studies with this plant have been focused on its volatile composition. In this work, we combined High-Speed Counter-current Chromatography (HSCCC) and High Performance Liquid Chromatography coupled to Ultra Violet detection and High Resolution Mass Spectrometry (HPLC-UV-HRMS n ) methodologies to access the non-volatile chemical composition of L. origanoides. The crude ethanol extract of L. origanoides (LOEF) was first analyzed by HPLC-UV-HRMS n and allowed the identification of 7 major compounds. Among them, eriodictyol, naringenin and pinocembrin, were determined and are phytochemical markers of this plant. However, owing to the complexity of this plant matrix, LOEF was fractionated by HSCCC (hexane-ethanol-water, 4:3:1) as a tool for preparative pre-purification, affording a flavonoid-rich fraction. A column screening with the chromatographic stationary phases ZIC-HILIC, monolithic and particulate RP18 was performed. The best column separation was achieved with a Purospher STAR RP18e, which was used for HPLC-DAD-HRMS n studies. By this approach 12 compounds were further identified in addition to the major ones identified in the raw extract. Two of them, 6,8-di-C-hexosyl-luteolin and 6,8-di-C-glucosyl-apigenin, are being reported for the first time in the family Verbenaceae. This work shows the integration of HSCCC as a preparative tool for the fractionation and purification of natural products from a complex plant extract with other analytical techniques, with the purpose of showing each technique's potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Discovery and Mass Measurement of a New Ultra-short-period Planet: K2-131b

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Gandolfi, Davide; Wang, Sharon X.; Teske, Johanna K.; Burt, Jennifer; Albrecht, Simon; Barragán, Oscar; Cochran, William D.; Endl, Michael; Fridlund, Malcolm; Hatzes, Artie P.; Hirano, Teruyuki; Hirsch, Lea A.; Johnson, Marshall C.; Justesen, Anders Bo; Livingston, John; Persson, Carina M.; Prieto-Arranz, Jorge; Vanderburg, Andrew; Alonso, Roi; Antoniciello, Giuliano; Arriagada, Pamela; Butler, R. P.; Cabrera, Juan; Crane, Jeffrey D.; Cusano, Felice; Csizmadia, Szilárd; Deeg, Hans; Dieterich, Sergio B.; Eigmüller, Philipp; Erikson, Anders; Everett, Mark E.; Fukui, Akihiko; Grziwa, Sascha; Guenther, Eike W.; Henry, Gregory W.; Howell, Steve B.; Johnson, John Asher; Korth, Judith; Kuzuhara, Masayuki; Narita, Norio; Nespral, David; Nowak, Grzegorz; Palle, Enric; Pätzold, Martin; Rauer, Heike; Montañés Rodríguez, Pilar; Shectman, Stephen A.; Smith, Alexis M. S.; Thompson, Ian B.; Van Eylen, Vincent; Williamson, Michael W.; Wittenmyer, Robert A.

    2017-12-01

    We report the discovery of a new ultra-short-period planet and summarize the properties of all such planets for which the mass and radius have been measured. The new planet, K2-131b, was discovered in K2 Campaign 10. It has a radius of {1.81}-0.12+0.16 {R}\\oplus and orbits a G dwarf with a period of 8.9 hr. Radial velocities obtained with Magellan/PFS and TNG/HARPS-N show evidence for stellar activity along with orbital motion. We determined the planetary mass using two different methods: (1) the “floating chunk offset” method, based only on changes in velocity observed on the same night; and (2) a Gaussian process regression based on both the radial velocity and photometric time series. The results are consistent and lead to a mass measurement of 6.5+/- 1.6 {M}\\oplus and a mean density of {6.0}-2.7+3.0 g cm-3.

  17. Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating Haematococcus pluvialis.

    PubMed

    Jin, Hui; Lao, Yong Min; Zhou, Jin; Zhang, Huai Jin; Cai, Zhong Hua

    2017-03-10

    A simple ultra-high-pressure liquid chromatography (UHPLC) method for rapidly and simultaneously identifying thirteen carotenoids in Haematococcus pluvialis was developed in this study. The method is capable of effectively separating two astaxanthin isomers, two ζ-carotene isomers, and three phytoene isomers on two simple C18 columns within 9 and 12min only by using methanol and acetonitrile, respectively. To our best knowledge, this is the rapidest method for these carotenoid isomers, currently. Using this method, carotenoid profiling in the astaxanthin-accumulating H. pluvialis under environmental stresses was successfully carried out. Results indicated that carotenoid biosynthesis was differentially perturbed by environmental stresses, indicating that this simple and rapid method is suitable to not only bacterial but also algal samples, with potential applications for a wide range of samples from plant to animal. Finally, possible reasons for the elution order of carotenoids were studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Full-wafer fabrication by nanostencil lithography of micro/nanomechanical mass sensors monolithically integrated with CMOS.

    PubMed

    Arcamone, J; van den Boogaart, M A F; Serra-Graells, F; Fraxedas, J; Brugger, J; Pérez-Murano, F

    2008-07-30

    Wafer-scale nanostencil lithography (nSL) is used to define several types of silicon mechanical resonators, whose dimensions range from 20 µm down to 200 nm, monolithically integrated with CMOS circuits. We demonstrate the simultaneous patterning by nSL of ∼2000 nanodevices per wafer by post-processing standard CMOS substrates using one single metal evaporation, pattern transfer to silicon and subsequent etch of the sacrificial layer. Resonance frequencies in the MHz range were measured in air and vacuum. As proof-of-concept towards an application as high performance sensors, CMOS integrated nano/micromechanical resonators are successfully implemented as ultra-sensitive areal mass sensors. These devices demonstrate the ability to monitor the deposition of gold layers whose average thickness is smaller than a monolayer. Their areal mass sensitivity is in the range of 10(-11) g cm(-2) Hz(-1), and their thickness resolution corresponds to approximately a thousandth of a monolayer.

  19. Effect of bioparticle size on dispersion and retention in monolithic and perfusive beds

    PubMed Central

    Trilisky, Egor I.; Lenhoff, Abraham M.

    2010-01-01

    Single-component pulse response studies were used to compare the retention and transport behavior of small molecules, proteins, and a virus on commercially available monolithic and perfusive ion-exchangers. Temporal distortion and extra-column effects were corrected for using a simple algorithm based on the method of moments. It was found that temporal distortion is inversely related to the number of theoretical plates. With increasing bioparticle size, retention increased and the transition from a non-eluting to a non-adsorbing state with increasing ionic strength became more abrupt. Both of these observations are qualitatively explained by calculations of particle-surface electrostatic attractive energy. Calculations also show that, for sufficiently large bioparticles, such as viruses or cells, hydrodynamic drag can promote elution. Under non-adsorbing conditions, plate height increased only weakly with flow rate and the skew remained unchanged. With increasing retention, plate height increased dramatically for proteins. Plate height was scaled by permeability rather than bead diameter to enable comparison among different stationary phases. PMID:20951383

  20. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    PubMed

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental and numerical investigations of effect of column length on retardation factor determination: a case study of cesium transport in crushed granite.

    PubMed

    Li, Ming-Hsu; Wang, Tsing-Hai; Teng, Shi-Ping

    2009-02-15

    This study investigated breakthrough curves (BTCs) from a series of column experiments, including different column lengths and flow rates, of a conservative tracer, tritium oxide (HTO), and a radionuclide, cesium, in crushed granite using a reactive transport model. Results of the short column, with length of 2cm, showed an underestimation of the retardation factor and the corresponding HTO BTCs cannot be successfully modeled even with overestimated fluid dispersivity. Column supporting elements, including filters and rings, on both ends of packed granite were shown to be able to induce additional dispersive mixing, thus significantly affecting BTCs of short columns while those of the long column, with length of 8cm, were less affected. By increasing flow rates from 1mL/min to 5mL/min, the contribution of structural dispersive mixing to the false tilting of short column BTCs still cannot be detached. To reduce the influence of structural dispersivity on BTCs, the equivalent pore volume of column supporting materials should be much smaller than that of packed porous medium. The total length of column supporting structures should be greatly shorter than that of porous medium column.

  2. Optical properties of pre-colored dental monolithic zirconia ceramics.

    PubMed

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (P<0.001). The color differences between pre-colored monolithic zirconia and veneered zirconia or lithium disilicate glass ceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Gallium Arsenide Monolithic Optoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.

    1981-07-01

    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.

  4. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    DTIC Science & Technology

    2016-05-12

    APPROV~, Col Drew W. Fallis Dean, Air Force Postgraduate Dental School r UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES AIR FORCE...POSTGRADUATE DENTAL SCHOOL 2450 Pepperrell Street Lackland AFB Texas, 78236-5345 http://www.usuhs.mil "The author hereby certifies that the use of any...Translucency Monolithic Zirconium-Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  5. Simultaneous separation of inorganic anions and metal-citrate complexes on a zwitterionic stationary phase with on-column complexation.

    PubMed

    Nesterenko, Ekaterina P; Nesterenko, Pavel N; Paull, Brett

    2008-12-05

    The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.

  6. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    NASA Astrophysics Data System (ADS)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  7. Dual jaw treatment of edentulism using implant-supported monolithic zirconia fixed prostheses.

    PubMed

    Altarawneh, Sandra; Limmer, Bryan; Reside, Glenn J; Cooper, Lyndon

    2015-01-01

    This case report describes restoration of the edentulous maxilla and mandible with implant supported fixed prostheses using monolithic zirconia, where the incisal edges and occluding surfaces were made of monolithic zirconia. Edentulism is a debilitating condition that can be treated with either a removable or fixed dental prosthesis. The most common type of implant-supported fixed prosthesis is the metal acrylic (hybrid), with ceramo-metal prostheses being used less commonly in complete edentulism. However, both of these prostheses designs are associated with reported complications of screw loosening or fracture and chipping of acrylic resin and porcelain. Monolithic zirconia implant-supported fixed prostheses have the potential for reduction of such complications. In this case, the CAD/CAM concept was utilized in fabrication of maxillary and mandibular screw-retained implant-supported fixed prostheses using monolithic zirconia. Proper treatment planning and execution coupled with utilizing advanced technologies contributes to highly esthetic results. However, long-term studies are required to guarantee a satisfactory long-term outcome of this modality of treatment. This case report describes the clinical and technical procedures involved in fabrication of maxillary and mandibular implant-supported fixed prostheses using monolithic zirconia as a treatment of edentulism, and proposes the possible advantages associated with using monolithic zirconia in eliminating dissimilar interfaces in such prostheses that are accountable for the most commonly occurring technical complication for these prostheses being chipping and fracture of the veneering material. © 2015 Wiley Periodicals, Inc.

  8. Practical comparison of LC columns packed with different superficially porous particles for the separation of small molecules and medium size natural products.

    PubMed

    Yang, Peilin; McCabe, Terry; Pursch, Matthias

    2011-11-01

    Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Room temperature optical anisotropy of a LaMnO 3 thin-film induced by ultra-short pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun

    Ultra-short laser pulse induced optical anisotropy of LaMnO 3 thin films grown on SrTiO 3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm 2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn 3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnOmore » 3 is a result of photo-induced symmetry breaking of the orbital ordering for an optically excited state.« less

  10. Shear bond strength of indirect composite material to monolithic zirconia.

    PubMed

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

  11. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-01-05

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  12. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  13. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-03-22

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  14. Synergism between polyurethane and polydopamine in the synthesis of Ni-Fe alloy monoliths.

    PubMed

    Naresh Kumar, Thangavel; Sivabalan, Santhana; Chandrasekaran, Naveen; Phani, Kanala Lakshminarasimha

    2015-02-04

    Herein, we report the first synthesis of a light-weight macroporous 3-D alloy monolith of Ni-Fe/C using synergism between polydopamine (pDA) and polyurethane (pU); in situ formed polyurethane (pU) enables efficient mixing of pDA (carbon source) and Ni-FeOx resulting in Ni-Fe alloy monoliths at a temperature as low as ∼600 °C. The monolithic Ni-Fe/C exhibits enhanced oxygen evolution activity.

  15. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  16. Warming of Monolithic Structures in Winter

    NASA Astrophysics Data System (ADS)

    Pikus, G. A.; Lebed, A. R.

    2017-11-01

    The present work attempts to develop a mathematical model for calculating the heat transfer coefficient of the fence of monolithic structures erected in winter. The urgency and, at the same time, the practical significance of the research lies in the fact that to date no simple, effective tool has been developed to ensure the elimination of the unfavorable thermally stressed state of a structure’s concrete from maximum equalization of temperatures across its cross-section. The main problem for concrete is a high temperature which leads to a sharp decrease in the quality of erected structures due to developing cracks. This paper based on the well-known Newton’s law and its differential equation demonstrates the formula of concrete cooling and the analysis of its proportionality coefficient. Based on the literature analysis, it is established that the proportionality coefficient is determined by the thermophysical properties of concrete, the size and shape of the structure, and the intensity of its heat exchange with the surrounding medium. A limitation was used on the temperature gradient over the section of the monolithic structure to derive a formula for calculating the reduced heat transfer coefficient of a concrete fence. All mathematical calculations are given for cooling monolithic constructions in the form of plates. At the end of the work an example is given for the calculation of the required reduced heat transfer coefficient for the fence ensuring compliance with the permissible concrete temperature gradient.

  17. Mechanical monolithic sensor for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Barone, Fabrizio

    2007-10-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2006), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a new laser optical lever and laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, calculated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is that the measured natural resonance frequency of the instrument is ~ 70mHz with a Q ~ 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of 5 mHz with a more refined mechanical tuning.

  18. Electrically driven monolithic subwavelength plasmonic interconnect circuits

    PubMed Central

    Liu, Yang; Zhang, Jiasen; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2017-01-01

    In the post-Moore era, an electrically driven monolithic optoelectronic integrated circuit (OEIC) fabricated from a single material is pursued globally to enable the construction of wafer-scale compact computing systems with powerful processing capabilities and low-power consumption. We report a monolithic plasmonic interconnect circuit (PIC) consisting of a photovoltaic (PV) cascading detector, Au-strip waveguides, and electrically driven surface plasmon polariton (SPP) sources. These components are fabricated from carbon nanotubes (CNTs) via a CMOS (complementary metal-oxide semiconductor)–compatible doping-free technique in the same feature size, which can be reduced to deep-subwavelength scale (~λ/7 to λ/95, λ = 1340 nm) compared with the 14-nm technique node. An OEIC could potentially be configured as a repeater for data transport because of its “photovoltaic” operation mode to transform SPP energy directly into electricity to drive subsequent electronic circuits. Moreover, chip-scale throughput capability has also been demonstrated by fabricating a 20 × 20 PIC array on a 10 mm × 10 mm wafer. Tailoring photonics for monolithic integration with electronics beyond the diffraction limit opens a new era of chip-level nanoscale electronic-photonic systems, introducing a new path to innovate toward much faster, smaller, and cheaper computing frameworks. PMID:29062890

  19. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Allen, Phillip Grant (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor)

    2016-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  20. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Allen, Phillip Grant (Inventor); Sherrit, Stewart (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.