Sample records for ultra-small fe3o4 nanoparticles

  1. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wang, Guannan; Zhang, Xuanjun; Skallberg, Andreas; Liu, Yaxu; Hu, Zhangjun; Mei, Xifan; Uvdal, Kajsa

    2014-02-01

    Uniform, highly water-dispersible and ultra-small Fe3O4 nanoparticles were synthesized via a modified one-step coprecipitation approach. The prepared Fe3O4 nanoparticles not only show good magnetic properties, long-term stability in a biological environment, but also exhibit good biocompatibility in cell viability and hemolysis assay. Due to the ultra-small sized and highly water-dispersibility, they exhibit excellent relaxivity properties, the 1.7 nm sized Fe3O4 nanoparticles reveal a low r2/r1 ratio of 2.03 (r1 = 8.20 mM-1 s-1, r2 = 16.67 mM-1 s-1) and the 2.2 nm sized Fe3O4 nanoparticles also appear to have a low r2/r1 ratio of 4.65 (r1 = 6.15 mM-1 s-1, r2 = 28.62 mM-1 s-1). This demonstrates that the proposed ultra-small Fe3O4 nanoparticles have great potential as a new type of T1 magnetic resonance imaging contrast agents. Especially, the 2.2 nm sized Fe3O4 nanoparticles, have a competitive r1 value and r2 value compared to commercial contrasting agents such as Gd-DTPA (r1 = 4.8 mM-1 s -1), and SHU-555C (r2 = 69 mM-1 s-1). In vitro and in vivo imaging experiments, show that the 2.2 nm sized Fe3O4 nanoparticles exhibit great contrast enhancement, long-term circulation, and low toxicity, which enable these ultra-small sized Fe3O4 nanoparticles to be promising as T1 and T2 dual contrast agents in clinical settings.Uniform, highly water-dispersible and ultra-small Fe3O4 nanoparticles were synthesized via a modified one-step coprecipitation approach. The prepared Fe3O4 nanoparticles not only show good magnetic properties, long-term stability in a biological environment, but also exhibit good biocompatibility in cell viability and hemolysis assay. Due to the ultra-small sized and highly water-dispersibility, they exhibit excellent relaxivity properties, the 1.7 nm sized Fe3O4 nanoparticles reveal a low r2/r1 ratio of 2.03 (r1 = 8.20 mM-1 s-1, r2 = 16.67 mM-1 s-1) and the 2.2 nm sized Fe3O4 nanoparticles also appear to have a low r2/r1 ratio of 4.65 (r1 = 6.15 mM-1 s

  2. Au Nanocage Functionalized with Ultra-small Fe3O4 Nanoparticles for Targeting T1-T2Dual MRI and CT Imaging of Tumor

    NASA Astrophysics Data System (ADS)

    Wang, Guannan; Gao, Wei; Zhang, Xuanjun; Mei, Xifan

    2016-06-01

    Diagnostic approaches based on multimodal imaging of clinical noninvasive imaging (eg. MRI/CT scanner) are highly developed in recent years for accurate selection of the therapeutic regimens in critical diseases. Therefore, it is highly demanded in the development of appropriate all-in-one multimodal contrast agents (MCAs) for the MRI/CT multimodal imaging. Here a novel ideal MCAs (F-AuNC@Fe3O4) were engineered by assemble Au nanocages (Au NC) and ultra-small iron oxide nanoparticles (Fe3O4) for simultaneous T1-T2dual MRI and CT contrast imaging. In this system, the Au nanocages offer facile thiol modification and strong X-ray attenuation property for CT imaging. The ultra-small Fe3O4 nanoparticles, as excellent contrast agent, is able to provide great enhanced signal of T1- and T2-weighted MRI (r1 = 6.263 mM-1 s-1, r2 = 28.117 mM-1 s-1) due to their ultra-refined size. After functionalization, the present MCAs nanoparticles exhibited small average size, low aggregation and excellent biocompatible. In vitro and In vivo studies revealed that the MCAs show long-term circulation time, renal clearance properties and outstanding capability of selective accumulation in tumor tissues for simultaneous CT imaging and T1- and T2-weighted MRI. Taken together, these results show that as-prepared MCAs are excellent candidates as MRI/CT multimodal imaging contrast agents.

  3. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  4. Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamzin, A. S.; Valiullin, A. A.; Khurshid, H.; Nemati, Z.; Srikanth, H.; Phan, M. H.

    2018-02-01

    FeO/Fe3O4 nanoparticles were synthesized by thermal decomposition. Electron microscopy revealed that these nanoparticles were of the core-shell type and had a spherical shape with an average size of 20 nm. It was found that the obtained FeO/Fe3O4 nanoparticles had exchange coupling. The effect of anisotropy on the efficiency of heating (hyperthermic effect) of FeO/Fe3O4 nanoparticles by an external alternating magnetic field was examined. The specific absorption rate (SAR) of the studied nanoparticles was 135 W/g in the experiment with an external alternating magnetic field with a strength of 600 Oe and a frequency of 310 kHz. These data led to an important insight: the saturation magnetization is not the only factor governing the SAR, and the efficiency of heating of magnetic FeO/Fe3O4 nanoparticles may be increased by enhancing the effective anisotropy. Mössbauer spectroscopy of the phase composition of the synthesized nanoparticles clearly revealed the simultaneous presence of three phases: magnetite Fe3O4, maghemite γ-Fe2O3, and wustite FeO.

  5. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Robles, J.; Das, R.; Glassell, M.; Phan, M. H.; Srikanth, H.

    2018-05-01

    We report a systematic study of the effects of core and shell size on the magnetic properties and heating efficiency of exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) confirmed the formation of spherical Fe3O4 and Fe3O4/CoFe2O4 nanoparticles. Magnetic measurements showed high saturation magnetization for the nanoparticles at room temperature. Increasing core diameter (6.4±0.7, 7.8±0.1, 9.6±1.2 nm) and/or shell thickness (˜1, 2, 4 nm) increased the coercive field (HC), while an optimal value of saturation magnetization (MS) was achieved for the Fe3O4 (7.8±0.1nm)/CoFe2O4 (2.1±0.1nm) nanoparticles. Magnetic hyperthermia measurements indicated a large increase in specific absorption rate (SAR) for 8.2±1.1 nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of same size. The SAR of the Fe3O4/CoFe2O4 nanoparticles increased from 199 to 461 W/g for 800 Oe as the thickness of the CoFe2O4 shell was increased from 0.9±0.5 to 2.1±0.1 nm. The SAR enhancement is attributed to a combination of the large MS and the large HC. Therefore, these Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  6. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  7. Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Lee, Sang Hyup; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2017-02-01

    Iron (Fe)-based nanoparticles are extremely valuable in biomedical applications owing to their low toxicity and high magnetization values at room temperature. In this study, we synthesized nearly monodisperse iron oxide (Fe3O4) and Fe@Fe3O4 (core: Fe, shell: Fe3O4) nanoparticles in aqueous medium under argon flow and then, coated them with various biocompatible ligands and silica. In this study, eight types of surface-modified nanoparticles were investigated, namely, Fe3O4@PAA (PAA = polyacrylic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PAA-FA (FA = folic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PEI-fluorescein (PEI = polyethylenimine; Mw of PEI = 1300 amu), Fe@Fe3O4@PEI (Mw of PEI = 10,000 amu), Fe3O4@SiO2 and Fe@Fe3O4@SiO2 nanoparticles. We characterized the prepared surface-modified nanoparticles using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy, a superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and confocal microscopy. Finally, we measured the cytotoxicity of the samples. The results indicate that the surface-modified nanoparticles are biocompatible and are potential candidates for various biomedical applications.

  8. Towards hybrid biocompatible magnetic rHuman serum albumin-based nanoparticles: use of ultra-small (CeLn)3/4+ cation-doped maghemite nanoparticles as functional shell

    NASA Astrophysics Data System (ADS)

    Israel, Liron L.; Kovalenko, Elena I.; Boyko, Anna A.; Sapozhnikov, Alexander M.; Rosenberger, Ina; Kreuter, Jörg; Passoni, Lorena; Lellouche, Jean-Paul

    2015-01-01

    Human serum albumin (HSA) is a protein found in human blood. Over the last decade, HSA has been evaluated as a promising drug carrier. However, not being magnetic, HSA cannot be used for biomedical applications such as magnetic resonance imaging (MRI) and magnetic drug targeting. Therefore, subsequent composites building on iron oxide nanoparticles that are already used clinically as MRI contrast agents are extensively studied. Recently and in this context, innovative fully hydrophilic ultra-small CAN-stabilized maghemite ((CeLn)3/4+-γ-Fe2O3) nanoparticles have been readily fabricated. The present study discusses the design, fabrication, and characterization of a dual phase hybrid core (rHSA)-shell ((CeLn)3/4+-γ-Fe2O3 NPs) nanosystem. Quite importantly and in contrast to widely used encapsulation strategies, rHSA NP surface-attached (CeLn)3/4+-γ-Fe2O3 NPs enabled to exploit both rHSA (protein functionalities) and (CeLn)3/4+-γ-Fe2O3 NP surface functionalities (COOH and ligand L coordinative exchange) in addition to very effective MRI contrast capability due to optimal accessibility of H2O molecules with the outer magnetic phase. Resulting hybrid nanoparticles might be used as a platform modular system for therapeutic (drug delivery system) and MR diagnostic purposes.

  9. Large magnetoresistance in Fe3O4/molecule nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.; Yue, F. J.; Lin, L.; Shi, Y. J.; Wu, D.

    2010-08-01

    In this work, we successfully fabricate Fe3O4 nanoparticles self-assembled with molecules to explore a new approach of studying the molecular spintronics. Fourier transform infrared spectroscopy measurements indicate that one monolayer molecules chemically bonds to the Fe3O4 nanoparticles and the physically absorbed molecules do not exist in the samples. The magnetoresistance (MR) of molecule fully coated ~10 nm size nanoparticles is up to 7.3% at room temperature and 17.5% at 115 K under a field of 5.8 kOe. And the MR ratio is more than two times larger than that of pure Fe3O4 nanoparticles. This enhanced MR is likely arising from weak spin scattering while carriers transport through the molecules. Moreover, a very large low field magnetoresistance is also observed with ~500nm ferromagnetic Fe3O4 nanoparticles coated with acetic acid molecules. Those features open a door for the development of future spin-based molecular electronics.

  10. Ni doped Fe3O4 magnetic nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.

  11. Preparation of SiO2/(PMMA/Fe3O4) from monolayer linolenic acid modified Fe3O4 nanoparticles via miniemulsion polymerization.

    PubMed

    He, Lei; Li, Zhiyang; Fu, Jing; Deng, Yan; He, Nongyue; Wang, Zhifei; Wang, Hua; Shi, Zhiyang; Wang, Zunliang

    2009-10-01

    SiO2/(PMMA/Fe3O4) composite particles were prepared from linolenic acid (LA) instead of oleic acid (OA) modified Fe3O4 nanoparticles by miniemulsion polymerization. LA has three unsaturated double bonds with which it can polymerizate more easily than OA. And coating Fe3O4 with polymethyl methacrylate (PMMA) polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. Finally, the resulting PMMA/Fe3O4 nanoparticles were coated with silica, forming SiO2/(PMMA/Fe3O4) core-shell structure particles. The sizes of nanoparticles with core-shell structure were in the range from 300 to 600 nm. The nanoparticles were spherical particles and had consistent size. The result of magnetic measurement showed that the composite particles had superparamagnetic property.

  12. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles.

    PubMed

    Wang, Liying; Sun, Ying; Wang, Jing; Wang, Jian; Yu, Aimin; Zhang, Hanqi; Song, Daqian

    2011-06-01

    In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Thermodynamic Properties of α-Fe 2O 3 and Fe 3O 4 Nanoparticles

    DOE PAGES

    Spencer, Elinor C.; Ross, Nancy L.; Olsen, Rebecca E.; ...

    2015-04-21

    Here we comprehansively assessed the thermodynamic properties of hydrated α-Fe 2O 3 (hematite) and Fe 3O 4 (magnetite) nanoparticles. In addition to 9 nm Fe 3O 4, three α-e 2O 3nanoparticles samples of different sizes (11, 14, and 25 nm) and bulk α-e 2O 3 have been evaluated by inelastic neutron scattering methods. The contribution of the two-level magnetic spin flip transition to the heat capacity of the α-e 2O 3 particles has been determined. The isochoric heat capacity of the water confined on the surface of these two types of iron oxide particles have been calculated from their INSmore » spectra, and is affected by the chemical composition of the underlying particle. Furthermore, the heat capacity and dynamics of the particle hydration layers appear to be influenced by a complex array of factors including particle size, water coverage, and possibly the magnetic state of the particle itself.« less

  14. Enzymes immobilization on Fe 3O 4-gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szymański, K.

    2012-01-01

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  15. A moderate method for preparation DMSA coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, L. N.; Gu, N.; Zhang, Y.

    2017-01-01

    A moderate way to prepare water soluble magnetic Fe3O4 nanoparticles has been developed. Firstly, oleic acid coated Fe3O4 is prepared by coprecipitation. Second, oleic acid were replaced by 2,3-dimercaptosuccinnic acid (DMSA) to prepare DMSA/Fe3O4 in the mixed solution of n-hexane and acetone. After dialysis and filtration the DMSA/Fe3O4 can be transferred into distilled water to form stable Fe3O4 nanoparticle solutions. The TEM images indicated that the particles had spherical shape and the nanoparticles were found to be 12 nm with a relatively narrow size distribution with the hydrodynamic size of 30 nm. And the result of VSM shows that DMSA/Fe3O4 nanoparticles have a saturation magnetization of 31 emu/g. The IR spectra indicated that the iron oxide was located by carboxyl matrix.

  16. Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures

    NASA Astrophysics Data System (ADS)

    Okuda, Mitsuhiro; Eloi, Jean-Charles; Jones, Sarah E. Ward; Sarua, Andrei; Richardson, Robert M.; Schwarzacher, Walther

    2012-10-01

    The synthesis of magnetic, monodisperse nanoparticles has attracted great interest in nanoelectronics and nanomedicine. Here we report the fabrication of pure magnetite nanoparticles, less than ten nanometers in size, using the cage-shaped protein apoferritin (Fe3O4-ferritin). Crystallizable proteins were obtained through careful successive separation methods, including a magnetic chromatography that enabled the effective separation of proteins, including a Fe3O4 nanoparticle (7.9 ± 0.8 nm), from empty ones. Macroscopic protein crystals allowed the fabrication of three-dimensional arrays of Fe3O4 nanoparticles with interparticle gaps controlled by dehydration, decreasing their magnetic susceptibilities and increasing their blocking temperatures through enhanced dipole-dipole interactions.

  17. Exchange bias effect in Au-Fe 3O 4 dumbbell nanoparticles induced by the charge transfer from gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feygenson, Mikhail; Bauer, John C; Gai, Zheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe 3O 4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe 3O 4 nanoparticles (9.8 nm). The magnetization, small-angle neutron scattering, synchrotron x-ray diffraction and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wüstite phase within Fe 3O 4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe 3O 4 is giving rise to the exchange bias effect. The strength of the exchange bias fieldsmore » depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe 3O 4 into FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed across the interface to accommodate an excess of oxygen released during the reduction of magnetite.« less

  18. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feygenson, Mikhail; Bauer, John C.; Gai, Zheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch betweenmore » both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite« less

  19. Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.

    PubMed

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-17

    Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    NASA Astrophysics Data System (ADS)

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional

  1. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization

    PubMed Central

    Huang, Jun; Liu, Cheng; Xiao, Haiyan; Wang, Juntao; Jiang, Desheng; GU, Erdan

    2007-01-01

    Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45°. The immobilization yields and Km value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 μM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis. PMID:18203444

  2. Development of new magnetic nanoparticles: Oligochitosan obtained by γ-rays and -coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Le Thi, Thao Nguyen; Nguyen, Thi Hiep; Hoang, Dong Quy; Tran, Tuong, Vi; Nguyen, Ngoc Thuy; Nguyen, Dai Hai

    2017-11-01

    Oligochitosan (OCS) have been utilized as a potential bioactive material for improving food quality and human health. In this study, superparamagnetic iron oxide (Fe3O4) nanoparticles were originally coated with OCS irradiated by gamma rays for their possible biomedical applications. The formation of Fe3O4@OCS was characterized by Fourier transform infrared (FT-IR), X-ray diffraction patterns (XRD), energy dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TGA). In addition, the superparamagnetic properties and sizes and morphologies of Fe3O4 and Fe3O4@OCS nanoparticles were demonstrated by vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM), respectively. These results indicated that Fe3O4@OCS nanoparticles still maintained their superparamagnetic properties after polymeric coating, and were nearly spherical in shape with average diameter of 14.4 ± 0.31 nm, compared with 11.8 ± 0.52 nm of bare Fe3O4 nanoparticles, respectively. As a result, Fe3O4@OCS nanoparticles may serve as a promising platform for the development of new magnetic materials, which could be useful for biomedical applications.

  3. Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications

    NASA Astrophysics Data System (ADS)

    Kelgenbaeva, Zhazgul; Abdullaeva, Zhypargul; Murzubraimov, Bektemir

    2018-04-01

    We present Au@Fe3O4 nanoparticles obtained from Fe nanoparticles and HAuCl4 using a simple solvothermal method. Trisodium citrate (C6H5Na3O7*2H2O) served as a reducing agent for Au. X-ray diffraction analysis, electronic microscopes and energy-dispersive X-ray spectroscopy revealed cubic structure, elemental composition (Au, Fe and O) and spherical shape of nanoparticles. Antibacterial activity of the sample was tested against E. coli bacteria and obtained results were discussed.

  4. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment

    PubMed Central

    Lee, Ming-Song; Su, Chao-Ming; Yeh, Jih-Chao; Wu, Pei-Ru; Tsai, Tien-Yao; Lou, Shyh-Liang

    2016-01-01

    Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis. PMID

  5. Large low-field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Yue, F. J.; Wang, S.; Lin, L.; Zhang, F. M.; Li, C. H.; Zuo, J. L.; Du, Y. W.; Wu, D.

    2011-01-01

    Acetic acid molecule-coated Fe3O4 nanoparticles, 450-650 nm in size, have been synthesized using a chemical solvothermal reduction method. Fourier transform infrared spectroscopy measurements confirm one monolayer acetic acid molecules chemically bond to the Fe3O4 nanoparticles. The low-field magnetoresistance (LFMR) of more than -10% at room temperature and -23% at 140 K is achieved with saturation field of less than 2 kOe. In comparison, the resistivity of cold-pressed bare Fe3O4 nanoparticles is six orders of magnitudes smaller than that of Fe3O4/molecule nanoparticles, and the LFMR ratio is one order of magnitude smaller. Our results indicate that the large LFMR in Fe3O4/molecule nanoparticles is associated with spin-polarized electrons tunnelling through molecules instead of direct nanoparticle contacts. These results suggest that magnetic oxide-molecule hybrid materials are an alternative type of materials to develop spin-based devices by a simple low-cost approach.

  6. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, HongLing; Wu, JunHua; Min, Ji Hyun; Hou, Peng; Song, Ah-Young; Kim, Young Keun

    2011-02-01

    The Fe3O4-Ca3(PO4)2 core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe3O4 and the bioactive functions of Ca3(PO4)2 into single entities. The Fe3O4 nanoparticles were pre-formed first by thermal reduction of Fe(acac)3 and then the Ca3(PO4)2 layer was coated by simultaneous deposition of Ca2 + and PO43 - . The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca3(PO4)2 shell forms an hcp phase (a = 7.490 Å, c = 9.534 Å) on the Fe3O4 surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca3(PO4)2 and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe3O4 and Ca3(PO4)2 in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles.

  7. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle

    PubMed Central

    Chang, Ming; Lin, Yu-Hao; Gabayno, Jacque Lynn; Li, Qian; Liu, Xiaojun

    2017-01-01

    ABSTRACT In this study, the control of magnetic fields to manipulate surface-functionalized Fe3O4 nanoparticles by urokinase coating is investigated for thrombolysis in a microfluidic channel. The urokinase-coated Fe3O4 nanoparticles are characterized using particle size distribution, zeta potential measurement and spectroscopic data. Thrombolytic ratio tests reveal that the efficiency for thrombus cleaning is significantly improved when using magnetically-controlled urokinase-coated Fe3O4 nanoparticles than pure urokinase solution. The average increase in the rate of thrombolysis with the use of urokinase-coated Fe3O4 nanoparticles is about 50%. In vitro thrombolysis test in a microfluidic channel using the coated nanoparticles shows nearly complete removal of thrombus, a result that can be attributed to the clot busting effect of the urokinase as it inhibits the possible formation of blood bolus during the magnetically-activated microablation process. The experiment further demonstrates that a thrombus mass of 10.32 mg in the microchannel is fully removed in about 180 s. PMID:27689864

  8. Feasibility study of Fe3O4/TaO x nanoparticles as a radiosensitizer for proton therapy

    NASA Astrophysics Data System (ADS)

    Ahn, Sang Hee; Lee, Nohyun; Choi, Changhoon; Shin, Sung Won; Han, Youngyih; Park, Hee Chul

    2018-06-01

    We investigated the feasibility of using multifunctional Fe3O4/TaO x (core/shell) nanoparticles, developed for use in contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI), as dose-enhancing radiosensitizers. First, to verify the detectability of Fe3O4/TaO x nanoparticles in imaging, in vivo tests were conducted. Approximately 600 mg kg‑1 of 19 nm-diameter Fe3O4/TaO x nanoparticles dispersed in phosphate-buffered saline was injected into the tail vein of six Balb/c mice used as tumour (4T1 mammary carcinoma cell) models. Three mice underwent MRI (BioSpec 70/20 USR, Bruker, Billerica, MA, USA) and micro-CT (Inveon, Siemens Preclinical, Knoxville, TN, USA) before and after the injection. The difference between the pre- and post-injection images was quantified by finding the correlation coefficient. The aorta, blood vessel, and liver were clearly seen in the MRI and micro-CT images 60 min after intravenous injection of Fe3O4/TaO x nanoparticles, but the tumour region was not visible in the CT images until after 24 h. There were large differences between the pre- and post-injection images. Second, the therapeutic enhancement dose of nanomaterials was computed via Monte Carlo simulation. Monoenergetic 70- and 150 MeV proton beams irradiated x-ray contrast agent (iodine, BaSO4), MRI contrast agent (gadolinium, Fe3O4), Au, Fe3O4/TaO x (core/shell) nanoparticles and water located at the centre of a 4  ×  4  ×  4 µm3 water phantom, upon which the dose enhancement ratio (DER) (dose with/without nanoparticles) was computed. When 70 MeV protons irradiated the Au, gadolinium, Fe3O4/TaO x , Fe3O4, iodine, and BaSO4 nanoparticles, the DERs at 1 nm were 15.76, 7.68, 7.82, 6.17, 4.85, and 5.51, respectively. Fe3O4/TaO x nanoparticles have the potential to be used as a multifunctional agent that enhances tumour detection and increases the dose. Dose enhancement with Fe3O4/TaO x was half that with Au. However, Fe3O4/TaO x is

  9. The Effect of Ligands on FePt–Fe 3O 4 Core–Shell Magnetic Nanoparticles

    DOE PAGES

    Kim, Dong-Hyun; Tamada, Yoshinori; Ono, Teruo; ...

    2014-03-01

    FePt–Fe 3O 4 core–shell nanoparticles functionalized with 3,4-dihydroxyphenylacetic acid (DOPAC) and dimercaptosuccinic acid (DMSA) ligands were synthesized and characterized. We also found that the DOPAC ligand enhances the magnetic properties of the FePt–Fe 3O 4 particles, in comparison with the DMSA ligand, which induces the oxidation of the shell layer that causes a significant reduction of the saturation magnetization. We evaluated the synthesized magnetic nanoparticles for applications in magnetic hyperthermia and magnetic resonance imaging contrast enhancement.

  10. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    PubMed

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of bracelet-like magnetic nanorings consisting of Ag-Fe3O4 bi-component nanoparticles.

    PubMed

    Zhou, Shuai; Chen, Qianwang

    2011-09-14

    Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent. This journal is © The Royal Society of Chemistry 2011

  12. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems

    PubMed Central

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-01-01

    Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914

  13. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    PubMed

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu

    2007-09-01

    Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.

  15. Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings.

    PubMed

    Li, Junli; Hu, Jing; Xiao, Lian; Wang, Yunqiang; Wang, Xilong

    2018-06-01

    The interactions between α-Fe 2 O 3 , γ-Fe 2 O 3 , and Fe 3 O 4 nanoparticles (NPs) and Citrus maxima seedlings were examined so as to better understand possible particle applications as an Fe source for crop plants. NPs toxicity to the exposed plant was investigated as well. The α- and γ-Fe 2 O 3 NPs were accumulated by plant root cells through diapirism and endocytosis, respectively, but translocation to the shoots was negligible. Analysis of malondialdehyde (MDA), soluble protein content, and antioxidant enzyme activity revealed that Fe deficiency induced strong oxidative stress in Citrus maxima seedlings, which followed an order of Fe deficiency>Fe 3+ >α-Fe 2 O 3 , γ-Fe 2 O 3 NPs>Fe 3 O 4 NPs. However, the chlorophyll leaf content of plants exposed to α-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 NPs and Fe 3+ were significantly reduced by 31.1%, 14.8%, 18.8% and 22.0%, respectively, relative to the control. Furthermore, RT-PCR analysis revealed no up-regulation of AHA and Nramp3 genes in Citrus maxima roots; however, the relative FRO2 gene expression upon exposure to iron oxide NPs was 1.4-2.8-fold higher than the control. Ferric reductase activity was consistently enhanced upon iron oxide NPs exposure. These findings advance understanding of the interaction mechanisms between metal oxide NPs and plants, and provide important knowledge need for the possible application of these materials in agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Xing, Meiying; Liu, J. Ping

    2018-05-01

    We demonstrate magnetic and hyperthermia properties of CoxFe3-xO4 (x = 0, 0.1, 0.3 and 0.5) nanoparticles synthesized via a simple cation exchange reaction of ˜12 nm Fe3O4 nanoparticles. The substitution of Fe cations with Co2+ ions leads to enhanced magnetocrystalline anisotropy and coercivity of the pristine superparamagnetic Fe3O4 nanoparticles. Hyperthermia measurement shows that by controlling the Co content (x = 0 to 0.5) in CoxFe3-xO4 nanoparticles, their specific absorption rate (SAR) can be greatly improved from 132 to 534 W/g. The strong enhancement in SAR value is attributed to the increased anisotropy and coercivity. Moreover, with the increase of ac magnetic field from 184 to 491 Oe, the SAR values of Fe3O4 and Co0.5Fe2.5O4 nanoparticles increase from 81 to 132 W/g and 220 to 534 W/g, respectively.

  17. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O 4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Cai, Yan; Shen, Yuhua; Xie, Anjian; Li, Shikuo; Wang, Xiufang

    2010-10-01

    Superparamagnetic Fe 3O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature ( TB) of 150 K and saturation magnetization of 37.1 emu/g.

  18. Hydrothermal synthesis of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with ionic liquids as stabilizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Di, E-mail: liuxiaodiny@126.com; Chen, Hao; Liu, Shan-Shan

    2015-02-15

    Highlights: • Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C{sub 16}mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate thatmore » the as-synthesized inverse spinel Fe{sub 3}O{sub 4} nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K.« less

  19. Conjugating folate on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles using click chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xiaofang, E-mail: xfshen@jiangnan.edu.cn; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-15

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe{sub 3}O{sub 4}@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenousmore » leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe{sub 3}O{sub 4}@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe{sub 3}O{sub 4}@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry.« less

  20. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment

    PubMed Central

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2015-01-01

    A coagulation (FeCl3)-ultrafiltration process was used to treat two different raw waters with/without the presence of Fe3O4 nanoparticle contaminants. The existence of Fe3O4 nanoparticles in the raw water was found to increase both irreversible and reversible membrane fouling. The trans-membrane pressure (TMP) increase was similar in the early stages of the membrane runs for both raw waters, while it increased rapidly after about 15 days in the raw water with Fe3O4 nanoparticles, suggesting the involvement of biological effects. Enhanced microbial activity with the presence of Fe3O4 nanoparticles was evident from the measured concentrations of extracellular polymeric substances (EPS) and deoxyribonucleic acid (DNA), and fluorescence intensities. It is speculated that Fe3O4 nanoparticles accumulated in the cake layer and increased bacterial growth. Associated with the bacterial growth is the production of EPS which enhances the bonding with, and between, the coagulant flocs; EPS together with smaller sizes of the nano-scale primary particles of the Fe3O4-CUF cake layer, led to the formation of a lower porosity, more resilient cake layer and membrane pore blockage. PMID:26268589

  1. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  2. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed ( Kappaphycus alvarezii) Extract

    NASA Astrophysics Data System (ADS)

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-06-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii ( K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm-1, which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

  3. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract.

    PubMed

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-12-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii (K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm(-1), which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

  4. Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix

    NASA Astrophysics Data System (ADS)

    Schneeweiss, O.; Zboril, R.; Pizurova, N.; Mashlan, M.; Petrovsky, E.; Tucek, J.

    2006-01-01

    Thermally induced reduction of amorphous Fe2O3 nanopowder (2-3 nm) with nanocrystalline Mg (~20 nm) under a hydrogen atmosphere is presented as a novel route to obtain α-Fe and Fe3O4 magnetic nanoparticles dispersed in a MgO matrix. The phase composition, structural and magnetic properties, size and morphology of the nanoparticles were monitored by x-ray diffraction, 57Fe Mössbauer spectroscopy at temperatures of 24-300 K, transmission electron microscopy and magnetic measurements. Spherical magnetite nanoparticles prepared at a reaction temperature of 300 °C revealed a well-defined structure, with a ratio of tetrahedral to octahedral Fe sites of 1/2 being common for the bulk material. A narrow particle size distribution (20-30 nm) and high saturation magnetization (95 ± 5 A m2 kg-1) predispose the magnetite nanoparticles to various applications, including magnetic separation processes. The Verwey transition of Fe3O4 nanocrystals was found to be decreased to about 80 K. The deeper reduction of amorphous ferric oxide at 600 °C allows α-Fe (40-50 nm) nanoparticles to be synthesized with a coercive force of about 30 mT. They have a saturation magnetization 2.2 times higher than that of synthesized magnetite nanoparticles, which corresponds well with the ratio usually found for the pure bulk phases. The magnetic properties of α-Fe nanocrystals combined with the high chemical and thermal stability of the MgO matrix makes the prepared nanocomposite useful for various magnetic applications.

  5. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Micro-tube biotemplate synthesis of Fe3O4/C composite as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Du, Jun; Ding, Yu; Guo, Liangui; Wang, Li; Fu, Zhengbing; Qin, Caiqin; Wang, Feng; Tao, Xinyong

    2017-12-01

    Kapok fibres were used as micro-tube biotemplate and bio-carbon source to synthesise Fe3O4/C composites, which were then utilised as anode materials. Fe3O4 nanoparticles were grown uniformly onto the external surface and internal channel of kapok carbon fibres. The flexibility, high specific surface area and electronic conduction of kapok fibres can buffer the volume expansion as well as inhibit the aggregation of Fe3O4 nanoparticles. Thus, the electrical integrity and structural of the Fe3O4/C composites electrode during lithiation/delithiation processes. The Fe3O4/C composites electrode delivers a high reversible capacity of 596 mA h g-1 after 100 cycles and an ultra-high coulombic efficiency approaching 100%. The high electrochemical performance of the Fe3O4/C composites can be caused by the synergistic effect of the Fe3O4 nanoparticles and the structure of kapok carbon fibres.

  7. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  8. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Tianyi; Zhao, Zhiwei; Liang, Zhijie; Liu, Jie; Shi, Wenxin; Cui, Fuyi

    2017-09-01

    Bifunctional ZrO2-Fe3O4 magnetic nanoparticles were synthesized and characterized, to remove As(III) through photocatalyic oxidation and adsorption. With a saturation magnetization of 27.39 emu/g, ZrO2-Fe3O4 nanoparticles with size of 10-30 nm could be easily separated from solutions with a simple magnetic process. Under UV light, As(III) could be completely oxidized to less toxic As(V) by ZrO2-Fe3O4 nanoparticles within 40 min in the photocatalytic reaction. Simultaneously, As(V) could be adsorbed onto the surface of nanoparticles with high efficiency. The adsorption of As(V) was well fitted by the pseudo-second-order model and the Freundlich isotherm model, respectively, and the maximum adsorption capacities of the nanoparticles was 133.48 mg/g at pH 7.0. As(III) could be effectively removed by ZrO2-Fe3O4 nanoparticles at initial pH range from 4 to 8. Among all the common coexisting ions investigated, except for chloride and sulfate, carbonate, silicate and phosphate decreased the As(III) removal by competing with arsenic species for adsorption sites. The synthesized magnetic ZrO2-Fe3O4 combined the photocatalytic oxidation property of ZrO2 and the high adsorption capacity of both ZrO2 and Fe3O4, which make it have significant potential applications in the As(III)-contaminated water treatment.

  9. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Zou, Ping; Cao, Jian; Sun, Yunfei; Han, Donglai; Yang, Shuo; Chen, Gang; Kong, Xiangwang; Yang, Jinghai

    2014-12-01

    The Fe3O4@SiO2 core-shell nanoparticles (NPs) had been successfully fabricated via direct decomposition of tetraethyl orthosilicate (TEOS) in solution under the presence of as-synthesized Fe3O4 NPs prepared by chemical coprecipitation method. The structure and magnetic properties of Fe3O4@SiO2 NPs were characterized and the result indicated that Fe3O4@SiO2 NPs are about 12 nm in size with paramagnetic property. The possible growth and magnetic mechanism was discussed in detail.

  10. Triton X-100 functionalized Fe3O4 nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gawali, Santosh L.; Madan, Devendra P.; Barick, K. C.; Somani, R.; Hassan, P. A.

    2018-04-01

    We report the preparation of Triton X-100 functionalized Fe3O4 nanoparticles (TXMNPs) and investigated their potential application in hyperthermia therapy. The formation of highly crystalline, spinel-structured Fe3O4 nanoparticles of average size of about 10 nm was evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy and zeta-potential measurements suggest the successful functionalization of nanoparticles with TX-100. These TXMNPs exhibit good colloidal stabilization in aqueous medium and show protein resistance characteristic in physiological medium. They showed excellent heating efficacy under AC magnetic field (AMF) with specific absorption rate (SAR) values of 146 and 260 W/g of Fe for 1.25 and 0.625 mg/ml of Fe, respectively at an applied AMF of 507 Oe and frequency of 300 kHz. Thus, these nanoparticles can be used as effective thermoseed for hyperthermia treatment of cancer.

  11. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding

  12. Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials

    NASA Astrophysics Data System (ADS)

    He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu

    2018-06-01

    The magnetic nanocomposite thermoelectric materials xFe3O4/YbAl3 ( x = 0%, 0.3%, 0.6%, 1.0%, and 1.5%) have been prepared by the combination of ultrasonic dispersion and spark plasma sintering process. The nanocomposites retain good chemical stability in the presence of the second-phase Fe3O4. The second-phase Fe3O4 magnetic nanoparticles are distributed on the interfaces and boundaries of the matrix. The x dependences of thermoelectric properties indicate that Fe3O4 magnetic nanoparticles can significantly decrease the thermal conductivity and electrical conductivity. The magnetic nanoparticles embedded in YbAl3 matrix are not only the phonon scattering centers of nanostructures, but also the electron scattering centers due to the Kondo-like effect between the magnetic moment of Fe3O4 nanoparticles and the spin of electrons. The ZT values of the composites are first increased in the x range 0%-1.0% and then decreased when x > 1.0%. The highest ZT value reaches 0.3 at 300 K for the nanocomposite with x = 1.0%. Our work demonstrates that the Fe3O4 magnetic nanoparticles can greatly increase the thermoelectric performance of heavy-fermion YbAl3 thermoelectric materials through simultaneously scattering electrons and phonons.

  13. Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Wang, Jun

    2018-01-01

    Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g-1 when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.

  14. Ex-Situ Synthesis of Polyvinyl alcohol(PVA)-coated Fe3O4 Nanoparticles by Coprecipitation-Ultrasonication Method

    NASA Astrophysics Data System (ADS)

    Riva'i, Imam; Oktavia Wulandari, Ika; Sulistyarti, Hermin; Sabarudin, Akhmad

    2018-01-01

    In this study, the synthesis of Fe3O4 nanoparticles was done with surface modification using PVA with coprecipitation-ultrasonication method. Time variations and PVA concentrations were added to determine the effect on crystallite size and lattice parameters on the synthesis of Fe3O4-PVA nanoparticles. Fe3O4 characterization was done using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) instruments. FTIR was employed to determine PVA coating on the surface of Fe3O4 nanoparticles. The crystallite size and lattice parameters were analyzed using XRD. From the FTIR data, it is known that the interaction between PVA and Fe3O4 nanoparticles is characterized by Fe-O-C group at 1100 cm-1 region which is characteristic of Fe3O4-PVA nanoparticles, C-H groups of PVA in the range of 2950 cm-1 wave number, C-C of PVA regions of wave number 1405 cm-1, Fe3O4 and Fe3O4-PVA samples are in the range of 565 cm-1. In addition, the variation of ultrasonication time and the addition of PVA concentration have an effect on the crystallite size change and the lattice parameter observed from the XRD data. The use of ultrasonication time will affect the size of the crystallite become smaller and the grating lattice parameters obtained are wider. The effect of addition of PVA showed that higher concentration of PVA resulted in smaller crystallite size and larger lattice parameters. These results indicated that ultrasonication time and addition of PVA concentration greatly affect the characteristics of nanoparticles.

  15. Comparison of Fe2O3 and Fe2CoO4 core-shell plasmonic nanoparticles for aptamer mediated SERS assays

    NASA Astrophysics Data System (ADS)

    Marks, Haley; Mabbott, Samuel; Huang, Po-Jung; Jackson, George W.; Kameoka, Jun; Graham, Duncan; Coté, Gerard L.

    2016-03-01

    Conjugation of oligonucleotides or aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound bundles of nanoparticles which cause a measurable change in the colloid's optical properties. Here, we present further optimization of a "SERS off" competitive binding assay utilizing plasmonic and magnetic nanoparticles for the detection of the toxin bisphenol A (BPA). The assay involves 1) a `target' silver nanoparticle functionalized with a Raman reporter dye and PEGylated BPA-binding DNA aptamers, and 2) a version of the toxin BPA, bisphenol A diglycidyl ether (BADGE), PEGylated and immobilized onto a silver coated magnetic 'probe' nanoparticle. When mixed, these target and probe nanoparticles cluster into magnetic dimers and trimers and an enhancement in their SERS spectra is observed. Upon introduction of free BPA in its native form, target AgNPs are competitively freed; reversing the nanoparticle assembly and causing the SERS signal to "turn-off" and decrease in response to the competitive binding event. The assay particles were housed inside two types of optofluidic chips containing magnetically active nickel pads, in either a straight or spotted pattern, and both Fe2O3 and Fe2CoO4 were compared as magnetic cores for the silver coated probe nanoparticle. We found that the Ag@ Fe2O3 particles were, on average, more uniform in size and more stable than Ag@ Fe2CoO4, while the addition of cobalt significantly improved the collection time of particles within the magnetic chips. Using 3D Raman mapping, we found that the straight channel design with the Ag@ Fe2O3 particles provided the most uniform nanoparticle organization, while the spotted channel design with Ag@ Fe2CoO4 demonstrated a larger SERS enhancement, and thus a lower limit of detection.

  16. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.

    PubMed

    He, Hongkun; Gao, Chao

    2010-11-01

    The amazing properties of graphene are triggering extensive interests of both scientists and engineers, whereas how to fully utilize the unique attributes of graphene to construct novel graphene-based composites with tailor-made, integrated functions remains to be a challenge. Here, we report a facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability. The synthesis method is efficient, scalable, green, and controllable and has the feature of reduction of graphene oxide and formation of Fe(3)O(4) nanoparticles in one step. When the feed ratios are adjusted, the average diameter of Fe(3)O(4) nanoparticles (1.2-6.3 nm), the coverage density of Fe(3)O(4) nanoparticles on graphene nanosheets (5.3-57.9%), and the saturated magnetization of graphene@Fe(3)O(4) (0.5-44.1 emu/g) can be controlled readily. Because of the good solubility of the as-prepared graphene@Fe(3)O(4), highly flexible and multifunctional films composed of polyurethane and a high content of graphene@Fe(3)O(4) (up to 60 wt %) were fabricated by the solution-processing technique. The graphene@Fe(3)O(4) hybrid sheets showed electrical conductivity of 0.7 S/m and can be aligned into a layered-stacking pattern in an external magnetic field. The versatile graphene@Fe(3)O(4) nanosheets hold great promise in a wide range of fields, including magnetic resonance imaging, electromagnetic interference shielding, microwave absorbing, and so forth.

  17. Tailoring the nickel nanoparticles anchored on the surface of Fe3O4@SiO2 spheres for nanocatalysis.

    PubMed

    Ding, Lei; Zhang, Min; Zhang, Yanwei; Yang, Jinbo; Zheng, Jing; Hayat, Tasawar; Alharbi, Njud S; Xu, Jingli

    2017-08-25

    Herein, we report an efficient and universal strategy for synthesizing a unique triple-shell structured Fe 3 O 4 @SiO 2 @C-Ni hybrid composite. Firstly, the Fe 3 O 4 cores were synthesized by hydrothermal reaction, and sequentially coated with SiO 2 and a thin layer of nickel-ion-doped resin-formaldehyde (RF-Ni 2+ ) using an extended Stöber method. This was followed by carbonization to produce the Fe 3 O 4 @SiO 2 @C-Ni nanocomposites with metallic nickel nanoparticles embedded in an RF-derived thin graphic carbon layer. Interestingly, the thin SiO 2 spacer layer between RF-Ni 2+ and Fe 3 O 4 plays a critical role on adjusting the size and density of the nickel nanoparticles on the surface of Fe 3 O 4 @SiO 2 nanospheres. The detailed tailoring mechanism is explicitly discussed, and it is shown that the iron oxide core can react with the nickel nanoparticles without the SiO 2 spacer layer, and the size and density of the nickel nanoparticles can be effectively controlled when the SiO 2 layer exits. The multifunctional composites exhibit a significantly enhanced catalytic performance in the reduction of 4-nitrophenol (4-NP).

  18. Synthesis, Properties and Application of Glucose Coated Fe3O4 Nanoparticles Prepared by Co-precipitation Method

    NASA Astrophysics Data System (ADS)

    Sari, Ayu Y.; Eko, A. S.; Candra, K.; Hasibuan, Denny P.; Ginting, M.; Sebayang, P.; Simamora, P.

    2017-07-01

    Synthesis of glucose coated Fe3O4 magnetic nanoparticles have been successfully prepared with co-precipitation method. Raw material of natural iron-sand was obtained from Buaya River, Deliserdang, Indonesia. The milled iron-sand was dissolved in HCl (37 mole %), and stirred in 300 rpm at 70°C for 90 minutes. Glucose was added to the filtered powder with varied content of 0.01, 0.02, and 0.03 mole, and precipitated by NH3 (25 mole%). After drying process, the final product subsequently was glucose coated magnetite (Fe3O4) nanoparticles. The characterizations performed were true density measurement, FTIR, VSM, XRD, BET, and adsorbent performance by AAS. The FTIR analysis showed that M-O (bending) with M=Fe (stretching vibration) with υ = 570.92 and 401.19 cm-1. While glucose coated well on nanoparticle Fe3O4, proved by functional groups C=O (stretching), M-O (stretching) and C-H (bending) with υ = 1404.17, 570.92, and 2368.58 cm-1, respectively. Single phase of magnetite (Fe3O4) structure was determined from XRD analysis with cubic spinel structure and lattice parameter of 8.396 Å. The optimum conditions, obtained on the Fe3O4 nanoparticles with 0.01 mole of glucose addition, which has true density value of 4.57 g/cm3, magnetic saturation, M s = 35,41 emu/g, coercivity, H cJ = 83.58 Oe, average particle size = 12.3 nm and surface area = 124.88 m2/g. This type magnetic nanoparticles of glucose-coated Fe3O4 was capable to adsorbed 93.78 % of ion Pb. Therefore, the glucose-coated Fe3O4 nanoparticle is a potential candidate to be used as heavy metal removal from wastewater.

  19. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  20. Beyond Yolk–Shell Nanoparticles: Fe 3 O 4 @Fe 3 C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage

    DOE PAGES

    Zhang, Jianan; Wang, Kaixi; Xu, Qun; ...

    2015-02-25

    In order to well address the problems of large volume change and dissolution of Fe 3O 4 nanomaterials during Li + intercalation/extraction, herein we demonstrate a one-step in situ nanospace-confined pyrolysis strategy for robust yolk–shell nanospindles with very sufficient internal void space (VSIVS) for high-rate and long-term lithium ion batteries (LIBs), in which an Fe 3O 4@Fe 3C core@shell nanoparticle is well confined in the compartment of a hollow carbon nanospindle. This structure can not only introduce VSIVS to accommodate volume change of Fe 3O 4 but also afford a dual shell of Fe 3C and carbon to restrict Femore » 3O 4 dissolution, thus providing dual roles for greatly improving the capacity retention. Consequently, Fe 3O 4@Fe 3C–C yolk–shell nanospindles deliver a high reversible capacity of 1128.3 mAh g –1 at even 500 mA g –1, excellent high rate capacity (604.8 mAh g –1 at 2000 mA g –1), and prolonged cycling life (maintaining 1120.2 mAh g –1 at 500 mA g –1 for 100 cycles) for LIBs, which are much better than those of Fe 3O 4@C core@shell nanospindles and Fe 3O 4 nanoparticles. The present Fe 3O 4@Fe 3C–C yolk–shell nanospindles are the most efficient Fe 3O 4-based anode materials ever reported for LIBs.« less

  1. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Zhang, Kaichuang; Gao, Xinbao; Zhang, Qian; Chen, Hao; Chen, Xuefang

    2018-04-01

    Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites were synthesized using a co-precipitation method and a calcination process. As one kind absorbing material, we researched the electromagnetic absorption properties of the composites that were mixed with a filler loading of 80 wt% paraffin. In addition, we studied the influence of the magnetic nanoparticle content on the absorbing properties. The results showed that the frequency corresponding to the maximum absorptions shifted to lower frequency when the magnetic nanoparticles content increased. The Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites with approximately 60% Fe3O4 nanoparticles showed the best electromagnetic absorption properties. The maximum reflection loss was -52.47 dB with a thickness of 2.0 mm at 10.4 GHz.

  2. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    PubMed

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetic studies of SiO2 coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Singh, Shashi B.; Das, Raja; Poddar, Pankaj; Abyaneh, Majid K.; Kulkarni, Sulabha K.

    2017-11-01

    Oleic acid capped CoFe2O4 nanoparticles which exhibit a high coercivity of ∼9.47 kOe at room temperature were coated with a robust coating of SiO2. We have used chemical synthesis method to obtain SiO2 coated CoFe2O4 nanoparticles with different weight percentages of CoFe2O4 in SiO2 (1.5, 3.1 and 4.8 wt.%). The morphological investigation of the coated nanoparticles by transmission electron microscopy shows that the particles are spherical with average size ∼160 nm. Infrared spectroscopy reveals that oleic acid capping on the surface of CoFe2O4 nanoparticles is retained after silica coating process. The complete coating of SiO2 on CoFe2O4 nanoparticles is confirmed by X-ray photoelectron spectroscopy as there is no signature of cobalt or iron ions on the surface. Magnetic measurements show that coercivity of SiO2 coated CoFe2O4 particles remains more or less unaffected as in CoFe2O4 nanoparticles at room temperature. In addition, the temperature dependent magnetic measurements show that at 5 K the CoFe2O4 and SiO2 coated 1.5 wt.% CoFe2O4 samples exhibit a very high value of coercivity (∼20 kOe) which is more than twice as compared to room temperature coercivity value (∼9.47 kOe). We conclude that silica coating in our study does not significantly affect the coercivity of CoFe2O4 nanoparticles.

  4. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica.

    PubMed

    Gan, Qi; Lu, Xunyu; Yuan, Yuan; Qian, Jiangchao; Zhou, Huanjun; Lu, Xun; Shi, Jianlin; Liu, Changsheng

    2011-03-01

    Stimuli-sensitive mesoporous silica nanoparticles (MSNs)-based hybrid "gate-like" ensembles capable of performing specific programmed release mode represent a new generation delivery system in recent years. In this paper, a magnetic and reversible pH-responsive, MSNs-based nanogated ensemble was fabricated by anchoring superparamagnetic Fe(3)O(4) nanoparticles on the pore outlet of MSNs via a reversible boronate esters linker. To achieve this, MSNs and Fe(3)O(4) nanoparticles were first synthesized and functionalized by polyalcohol derivative and boronic acid, respectively. The successful incorporation of Fe(3)O(4) nanoparticles onto the MSNs was confirmed by the results of XRD, TEM, XPS and N(2) adsorption-desorption method. The pH-driven "gate-like" effect was studied by in vitro release of an entrapped model dexamethasone from the pore voids into the bulk solution at different pH values. The results indicated that at pH 5-8, the pores of the MSNs were effectively capped with Fe(3)O(4) nanoparticles and the drug release was strongly inhibited. While at pH 2-4, the hydrolysis of the boroester bond took place and thus resulted in a rapid release of the entrapped drug. And by alternately changing the pH from 3 to 7, these Fe(3)O(4) cap gate could be switched "on" and "off" and thereby released the entrapped drug in a pulsinate manner (in small portions). Additionally, this nanogated release system exhibited good magnetic property, high cell biocompatibility and cellular uptake for MC3T3-E1 cells. The present data suggest that it is possible to obtain simple and very effective pH-driven pulsinate release using these Fe(3)O(4)-capped-MSNs, and this new platform represents a promising candidate in the formulation of in vivo targeted delivery of therapeutic agents to low pH tissues, such as tumors and inflammatory sites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Rapid Detection of Tetrodotoxin Using Surface-Enhanced Raman Spectroscopy and Fe3O4/SiO2/Au Gold/Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Neng, Jing; Wang, Xujun; Jia, Kan; Sun, Peilong

    2018-03-01

    Fe3O4 nanoparticles were first modified with tetraethoxylsilane to form Fe3O4/SiO2 nanoparticles, followed by the addition of 3-aminopropyltriethoxysilane and 3-thiolpropyltriethoxysilane to introduce -NH2 and -SH groups to the surface of Fe3O4/SiO2 nanoparticles. Gold nanoparticles were further assembled on the surface of Fe3O4/SiO2 via the electrostatic adsorption of -NH2 and the Au-S bond to produce stable core-shell Fe3O4/SiO2/Au gold/magnetic nanoparticles. These Fe3O4/SiO2/Au gold/magnetic nanoparticles were characterized by a variety of techniques such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), and afterwards conjugated with tetrodotoxin antibodies (Ab) and used as a Raman active substrate (Fe3O4/SiO2/Au-Ab) with Rhodamine B (RhB)-labeled tetrodotoxin antibody as a Raman reporter (Ab-RhB). Upon mixing these reagents with tetrodotoxin (TTX), a sandwich complex [Fe3O4/SiO2/Au-Ab···TTX···Ab-RhB] was generated due to the specific antibody-antigen interactions. The immunocomplex was subsequently separated by an externally applied magnetic source and concentrated into a pellet point, where the laser interrogation of the pellet produced a strong signal characteristic of RhB. The logarithmic intensity of the signal was found to be proportional to the concentration of TTX with a limit of detection of 0.01 μg/mL and a detection linearity range of 0.01-0.5 μg/mL. The established method eliminates the complicated procedures of traditional centrifuging, column separation, and incubation and achieves a rapid detection of tetrodotoxin with improved detection sensitivity.

  6. Preparation and characterization of Fe3O4-Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Andrade, Ângela Leão; Cavalcante, Luis Carlos Duarte; Fabris, José Domingos; Pereira, Márcio César; Ardisson, José Domingos; Domingues, Rosana Zacarias

    2017-11-01

    Pt and Pt-based nanomaterials are active anticancer drugs for their ability to inhibit the division of living cells. Nanoparticles of magnetite containing variable proportions of platinum were prepared in the laboratory. The magnetite nanoparticles with platinum (Pt-Fe3O4) were obtained by reducing the Fe3+ of the maghemite ( γ Fe2O3) mixed with platinum (II) acetylacetonate and sucrose in two inversely coupled ceramic crucibles and heated in a furnace at 400 °C for 20 min. The formed carbon during this preparation acts to chemically reduce the ferric iron in maghemite. Moreover, its residual layer on the particle surface prevents the forming magnetite from oxidizing in air and helps retain the platinum in the solid mixture. The produced Pt-magnetite samples were characterized by 57Fe-Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, and magnetization measurements. Measurements of AC magnetic-field-induced heating properties of the obtained nanocomposites, in aqueous solution, showed that they are suitable as a hyperthermia agent for biological applications.

  7. One-pot Synthesis and Surface Modification of Fe3O4 Nanoparticles Using Polyvinyl Alcohol by Coprecipitation and Ultrasonication Methods

    NASA Astrophysics Data System (ADS)

    Nugraha, Aditya D.; Wulandari, Ika O.; Hutami Rahayu, L. B.; Riva'i, Imam; Santojo, D. J. Djoko H.; Sabarudin, Akhmad

    2018-01-01

    Among the various substances developed through nanoparticles, iron oxide (Fe3O4) nanoparticle is one of the substances that have been widely used in various fields such as industry, agriculture, biotechnology and biomedicine. The synthesis of Fe3O4 nanoparticle can be carried out by two methods, consist of chemical and mechanical synthesis methods. Coprecipitation is one of the most commonly used methods for chemical synthesis. Fe3O4 compounds are easily oxidized because they are amphoteric. To avoid the continuous oxidation process, chemical modification process should be carried out with the addition of a solution of polyvinyl alcohol (PVA). In this study, PVA-coated Fe3O4 nanoparticles were synthesized by in-situ coprecipitation and ultrasonication methods through direct mixing (one-pot synthesis) of the iron (II) chloride tetrahydrate (FeCl2.4H2O), iron (III) chloride hexahydrate (FeCl3.6H2O), and PVA under alkaline condition. The effects of addition amount of NH3solution (by adjusting its flow rate using automated syringe pump) and PVA concentration were gently studied. Interaction of PVA with Fe3O4 nanoparticle was identified by infrared spectroscopy whereas lattice parameters and crystallite sizes of the synthesized Fe3O4 nanoparticles and PVA-coated Fe3O4 nanoparticles were assessed by X-ray diffraction (XRD).

  8. Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe3O4 magnetic nanocomposites: Synthesis and properties.

    PubMed

    Mohammadi, Abbas; Barikani, Mehdi; Lakouraj, Moslem Mansour

    2016-09-01

    In this study, a series of magnetic polyurethane/Fe3O4 elastomer nanocomposites were prepared by covalently embedding novel thiacalix[4]arenes (TC4As) functionalized Fe3O4 nanoparticles (TC4As-Fe3O4) which contain macrocycles with reactive hydroxyl groups. Surface functionalization of Fe3O4 nanoparticles with TC4As macrocycles as unique reactive surface modifier not only gives specific characteristics to Fe3O4 nanoparticles but also improves the interphase interaction between nanoparticles and the polyurethane matrices through covalent attachment of polymer chains to nanoparticle surfaces. The novel synthesized TC4As-Fe3O4 nanoparticles were characterized by FTIR, XRD, TGA, VSM and SEM analysis. Furthermore, the effect of functionalization of Fe3O4 nanoparticles on the various properties of resulting nanocomposites was studied by XRD, TGA, DMTA, SEM, and a universal tensile tester. It was found that the functionalization of nanoparticles with TC4As affords better mechanical and thermal properties to polyurethane nanocomposites in comparison with unmodified nanoparticles. The SEM analysis showed finer dispersion of TC4As-Fe3O4 nanoparticles than unmodified Fe3O4 nanoparticles within the polyurethane matrices, which arising from formation of covalent bonding between TC4As functionalized Fe3O4 nanoparticles and polyurethane matrices. Moreover, the investigation of in vitro biocompatibility of novel nanocomposites showed that these samples are excellent candidate for biomedical use. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst

    USDA-ARS?s Scientific Manuscript database

    This paper discusses the potential use of (Fe3O4@SiO2-SO3H) nanoparticle catalyst for the dehydration of glucose into 5-hydroxymethylfurfural (HMF). A magnetically recoverable (Fe3O4@SiO2-SO3H) nanoparticle catalyst was successfully prepared by supporting sulfonic acid groups (SO3H) on the surface o...

  10. Theoretical investigation on the magnetization enhancement of Fe3O4-reduced graphene oxide nanoparticle system

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Wicaksono, Y.; Fauzi, A. D.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We present a theoretical study on the enhancement of magnetization of Fe3O4 nanoparticle system upon addition of reduced graphene oxide (rGO). Experimental data have shown that the magnetization of Fe3O4-rGO nanoparticle system increases with increasing rGO content up to about 5 wt%, but decreases back as the rGO content increases further. We propose that the enhancement is due to spin-flipping of Fe ions at the tetrahedral sites assisted by oxygen vacancies at the Fe3O4 particle boundaries. These oxygen vacancies are induced by the presence of rGO flakes that adsorb oxygen atoms from Fe3O4 particles around them. To understand the enhancement of the magnetization, we construct a tight-binding based model Hamiltonian for the Fe3O4 nanoparticle system with the concentration of oxygen vacancies being controlled by the rGO content. We calculate the magnetization as a function of the applied magnetic field for various values of rGO wt%. We use the method of dynamical mean-field theory and perform the calculations for a room temperature. Our result for rGO wt% dependence of the saturated magnetization shows a very good agreement with the existing experimental data of the Fe3O4-rGO nanoparticle system. This result may confirm that our model already carries the most essential idea needed to explain the above phenomenon of magnetization enhancement.

  11. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    PubMed

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  12. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  13. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe{sub 3}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriyaprabha, R., E-mail: sooriyarajendran@gmail.com; Khan, Samreen Heena; Pathak, Bhawana

    2016-04-13

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe{sub 3}O{sub 4}, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from themore » industrial effluent. Fe{sub 3}O{sub 4} is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe{sub 3}O{sub 4} nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe{sub 3}O{sub 4} nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe{sub 3}O{sub 4} proved

  14. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose.

    PubMed

    Sanaeifar, Niuosha; Rabiee, Mohammad; Abdolrahim, Mojgan; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2017-02-15

    In this research, a new electrochemical biosensor was constructed for the glucose detection. Iron oxide nanoparticles (Fe 3 O 4 ) were synthesized through co-precipitation method. Polyvinyl alcohol-Fe 3 O 4 nanocomposite was prepared by dispersing synthesized nanoparticles in the polyvinyl alcohol (PVA) solution. Glucose oxidase (GOx) was immobilized on the PVA-Fe 3 O 4 nanocomposite via physical adsorption. The mixture of PVA, Fe 3 O 4 nanoparticles and GOx was drop cast on a tin (Sn) electrode surface (GOx/PVA-Fe 3 O 4 /Sn). The Fe 3 O 4 nanoparticles were characterized by X-ray diffraction (XRD). Also, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) techniques were utilized to evaluate the PVA-Fe 3 O 4 and GOx/PVA-Fe 3 O 4 nanocomposites. The electrochemical performance of the modified biosensor was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Presence of Fe 3 O 4 nanoparticles in the PVA matrix enhanced the electron transfer between enzyme and electrode surface and the immobilized GOx showed excellent catalytic characteristic toward glucose. The GOx/PVA-Fe 3 O 4 /Sn bioelectrode could measure glucose in the range from 5 × 10 -3 to 30 mM with a sensitivity of 9.36 μA mM -1 and exhibited a lower detection limit of 8 μM at a signal-to-noise ratio of 3. The value of Michaelis-Menten constant (K M ) was calculated as 1.42 mM. The modified biosensor also has good anti-interfering ability during the glucose detection, fast response (10 s), good reproducibility and satisfactory stability. Finally, the results demonstrated that the GOx/PVA-Fe 3 O 4 /Sn bioelectrode is promising in biosensor construction. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Exosome purification based on PEG-coated Fe3O4 nanoparticles.

    PubMed

    Chang, Ming; Chang, Yaw-Jen; Chao, Pei Yu; Yu, Qing

    2018-01-01

    Cancer cells secrete many exosomes, which facilitate metastasis and the later growth of cancer. For early cancer diagnosis, the detection of exosomes is a crucial step. Exosomes exist in biological fluid, such as blood, which contains various proteins. It is necessary to remove the proteins in the biological fluid to avoid test interference. This paper presented a novel method for exosome isolation using Fe3O4 magnetic nanoparticles (MNPs), which were synthesized using the chemical co-precipitation method and then coated with polyethylene glycol (PEG). The experimental results showed that the diameter of the PEG-coated Fe3O4 nanoparticles was about 20 nm, while an agglomerate of MNPs reached hundreds of nanometers in size. In the protein removal experiments, fetal bovine serum (FBS) was adopted as the analyte for bioassays of exosome purification. PEG-coated Fe3O4 MNPs reduced the protein concentration in FBS to 39.89% of the original solution. By observing a particle size distribution of 30~200 nm (the size range of various exosomes), the exosome concentrations were kept the same before and after purification. In the gel electrophoresis experiments, the bands of CD63 (~53 kDa) and CD9 (~22 kDa) revealed that exosomes existed in FBS as well as in the purified solution. However, the bands of the serum albumins (~66 kDa) and the various immunoglobulins (around 160 ~ 188 kDa) in the purified solution's lane explained that most proteins in FBS were removed by PEG-coated Fe3O4 MNPs. When purifying exosomes from serum, protein removal is critical for further exosome investigation. The proposed technique provides a simple and effective method to remove proteins in the serum using the PEG-coated Fe3O4 MNPs.

  16. Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khurshid, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu; Nemati, Z.; Phan, M. H.

    2015-05-07

    Spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles, with different FeO:Fe{sub 3}O{sub 4} ratios, have been prepared by a thermal decomposition method to probe anisotropy effects on their heating efficiency. X-ray diffraction and transmission electron microscopy reveal that the nanoparticles are composed of FeO and Fe{sub 3}O{sub 4} phases, with an average size of ∼20 nm. Magnetometry and transverse susceptibility measurements show that the effective anisotropy field is 1.5 times larger for the cubes than for the spheres, while the saturation magnetization is 1.5 times larger for the spheres than for the cubes. Hyperthermia experiments evidence higher values of the specificmore » absorption rate (SAR) for the cubes as compared to the spheres (200 vs. 135 W/g at 600 Oe and 310 kHz). These observations point to an important fact that the saturation magnetization is not a sole factor in determining the SAR and the heating efficiency of the magnetic nanoparticles can be improved by tuning their effective anisotropy.« less

  17. Oxidase-functionalized Fe(3)O(4) nanoparticles for fluorescence sensing of specific substrate.

    PubMed

    Liu, Cheng-Hao; Tseng, Wei-Lung

    2011-10-03

    This study reports the development of a reusable, single-step system for the detection of specific substrates using oxidase-functionalized Fe(3)O(4) nanoparticles (NPs) as a bienzyme system and using amplex ultrared (AU) as a fluorogenic substrate. In the presence of H(2)O(2), the reaction pH between Fe(3)O(4) NPs and AU was similar to the reaction of oxidase and the substrate. The catalytic activity of Fe(3)O(4) NPs with AU was nearly unchanged following modification with poly(diallyldimethylammonium chloride) (PDDA). Based on these features, we prepared a composite of PDDA-modified Fe(3)O(4) NPs and oxidase for the quantification of specific substrates through the H(2)O(2)-mediated oxidation of AU. By monitoring fluorescence intensity at 587 nm of oxidized AU, the minimum detectable concentrations of glucose, galactose, and choline were found to be 3, 2, and 20 μM using glucose oxidase-Fe(3)O(4), galactose oxidase-Fe(3)O(4), and choline oxidase-Fe(3)O(4) composites, respectively. The identification of glucose in blood was selected as the model to validate the applicability of this proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Fabrication by Electrophoretic Deposition of Nano-Fe3O4 and Fe3O4@SiO2 3D Structure on Carbon Fibers as Supercapacitor Materials

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Abouzari-Lotf, Ebrahim; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Kianvash, Abbas

    2018-05-01

    Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder ( 11.26 emu/g) compared with Fe3O4 powder ( 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of - 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of - 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.

  19. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  20. Synthesis and characterization of SiO2/(PMMA/Fe3O4) magnetic nanocomposites.

    PubMed

    Wang, Zhifei; Guo, Yafei; Li, Song; Sun, Yueming; He, Nongyue

    2008-04-01

    Magnetic silica nanocomposites (magnetic nanoparticles core coated by silica shell) have the wide promising applications in the biomedical field and usually been prepared based on the famous Stöber process. However, the flocculation of Fe3O4 nanoparticles easily occurs during the silica coating, which limits the amount of magnetic silica particles produced in the Stöber process. In this paper, PMMA/Fe3O4 nanoparticles were used in the Stöber process instead of the "nude" Fe3O4 nanoparticles. And coating Fe3O4 with PMMA polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. The results show that the critical concentration of magnetic nanoparticles can increase from 12 mg/L for "nude" Fe3O4 nanoparticles to 3 g/L for PMMA/Fe3O4 nanoparticles during the Stöber process. And before the deposition of silica shell, the surface of PMMA/FeO4 nanoparticles had to be further modified by hydrolyzing them in CH3OH/NH3 x H2O mixture solution, which provides the carboxyl groups on their surface to react further with the silanol groups of silicic acid.

  1. Fabrication and Luminescence Characterization of a Silica Nanomatrix Embedded with NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Thangaraju, Dheivasigamani; Santhana, Vedi; Matsuda, Satoshi; Hayakawa, Yasuhiro

    2018-05-01

    Hexagonal NaYF4:Yb:Er:Tm@NaGdF4 core-shell nanocrystals were synthesized using a seed mediated hot injection method, and monodispersed Fe3O4 (4 nm) nanoparticles were prepared from iron(II) actylacetonate by a precursor thermal decomposition method. Structural and morphology verified NaYF4:Yb:Er:Tm@NaGdF4 and Fe3O4 nanoparticles were utilized for the preparation of NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4@SiO2 nanocomposite using a micro-emulsion method. Existence of Fe3O4 in NaYF4:Yb:Er:Tm@NaGdF4 in SiO2 nano-spheres were confirmed with transmission electron microscopy. Luminescence measurement revealed that NaYF4:Yb:Er:Tm@NaGdF4 exhibited strong emissions at green and red regions, in addition to a weak blue emission also observed under 980 nm excitation. Up-conversion emission of the nanoparticle-embedded silica nanocomposite showed that the up-conversion emission was not affected by Fe3O4 nanoparticles.

  2. Preparation and Characterization of Chitosan-coated Fe3O4 Nanoparticles using Ex-Situ Co-Precipitation Method and Tripolyphosphate/Sulphate as Dual Crosslinkers

    NASA Astrophysics Data System (ADS)

    Wulandari, Ika O.; Mardila, Vita T.; Santjojo, D. J. Djoko H.; Sabarudin, Akhmad

    2018-01-01

    The unique properties of nanomaterial provide great opportunities to develop in several fields. Several types of nanoparticles have been proven beneficial for biomedical and therapeutic agent development. Particularly for clinical use, nanoparticles must be biocompatible and non-toxic. Iron oxide nanoparticles consist of either magnetite (Fe3O4) or maghemite (γ-Fe2O3) was eligible to use for in vivo application including targeting drug delivery. Due to their distinct properties, these nanoparticles could be directed to the specific target under external magnetic field. However, nanoparticles have a tendency to form agglomeration. Therefore, surface modification was required to reduce the agglomeration. In this study, nanoparticles of Fe3O4 were produced and coated by biomaterial (chitosan) using ex-situ co-precipitation method. Nanoparticles of Fe3O4 were synthesized by adding ammonia water into iron ferric and ferrous solution. Synthesis process of Fe3O4 was conducted prior to adding chitosan. Chitosan was then cross-linked by a combination of tripolyphosphate/sulphate. The different composition ratio and crosslinking time provide the different physical and magnetic characteristics of nanoparticles. Particle and crystallite size was determined by using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) respectively, whereas magnetic characteristic was determined by Electron Spin Resonance (ESR). The results showed that the ratio enhancement between chitosan: Fe3O4 increase the particle size, while decreased the crystallite size. Morphology and particle size were influenced by the ratio of crosslinkers. It was found that the higher tripolyphosphate content was contributed to the small size and more spherical morphology. In addition, the influence of crosslinking time toward crystallite size was determined by altering stirring time. The longer duration of crosslinking time, provide the larger crystallite size of chitosan-Fe3O4. There was an interesting

  3. Magnetic domain interactions of Fe3O4 nanoparticles embedded in a SiO2 matrix.

    PubMed

    Fuentes-García, J A; Diaz-Cano, A I; Guillen-Cervantes, A; Santoyo-Salazar, J

    2018-03-23

    Currently, superparamagnetic functionalized systems of magnetite (Fe 3 O 4 ) nanoparticles (NPs) are promising options for applications in hyperthermia therapy, drug delivery and diagnosis. Fe 3 O 4 NPs below 20 nm have stable single domains (SSD), which can be oriented by magnetic field application. Dispersion of Fe 3 O 4 NPs in silicon dioxide (SiO 2 ) matrix allows local SSD response with uniaxial anisotropy and orientation to easy axis, 90° <001> or 180° <111>. A successful, easy methodology to produce Fe 3 O 4 NPs (6-17 nm) has been used with the Stöber modification. NPs were embedded in amorphous and biocompatible SiO 2 matrix by mechanical stirring in citrate and tetraethyl orthosilicate (TEOS). Fe 3 O 4 NPs dispersion was sampled in the range of 2-12 h to observe the SiO 2 matrix formation as time function. TEM characterization identified optimal conditions at 4 h stirring for separation of SSD Fe 3 O 4 in SiO 2 matrix. Low magnetization (M s ) of 0.001 emu and a coercivity (H c ) of 24.75 Oe indicate that the embedded SSD Fe 3 O 4 in amorphous SiO 2 reduces the M s by a diamagnetic barrier. Magnetic force microscopy (MFM) showed SSD Fe 3 O 4 of 1.2 nm on average embedded in SiO 2 matrix with uniaxial anisotropy response according to Fe 3+ and Fe 2+ electron spin coupling and rotation by intrinsic Neél contribution.

  4. Encapsulation of superparamagnetic Fe 3 O 4 @SiO 2 core/shell nanoparticles in MnO 2 microflowers with high surface areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu-Gang; Truong, Tu T.; Liu, Yu-Zi

    2015-02-01

    Microflowers made of interconnected MnO2 nanosheets have been successfully synthesized in a microwave reactor through a hydrothermal reduction of KMnO4 with aqueous HCl at elevated temperatures in the presence of superparamagnetic Fe3O4@SiO2 core-shell nanoparticles. Due to the chemical compatibility between SiO2 and MnO2, the heterogeneous reaction leads to the spontaneous encapsulation of the Fe3O4@SiO2 core-shell nanoparticles in the MnO2 microflowers. The resulting hybrid particles exhibit multiple properties including high surface area associated with the MnO2 nanosheets and superparamagnetism originated from the Fe3O4@SiO2 core-shell nanoparticles, which are beneficial for applications requiring both high surface area and magnetic separation. (C) 2014 Yu-Gangmore » Sun.« less

  5. Sustained magnetization oscillations in polyaniline-Fe{sub 3}O{sub 4} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araújo, A. C. V. de; Rodrigues, A. R., E-mail: ricalde@df.ufpe.br; Machado, F. L. A.

    2015-09-28

    We report experiments with polyaniline-Fe{sub 3}O{sub 4} (PANI-Fe{sub 3}O{sub 4}) nanocomposites synthesized under several different conditions. With a reaction carried out at room temperature and assisted by intense ultra-violet (UV) irradiation, we observe sustained oscillations in the magnetization with a period of about 25 min. The oscillations are interpreted as the result of an oscillatory chemical reaction in which part of the Fe{sup +2} ions of magnetite, Fe{sub 3}O{sub 4}, are oxidized by the UV irradiation to form Fe{sup +3} so that a fraction of the magnetite content transforms into maghemite, γ-Fe{sub 2}O{sub 3}. Then, Fe{sup +3} ions at themore » nanoparticle surfaces are reduced and transformed back into Fe{sup +2}, when acting as an oxidizing agent for polyaniline in the polymerization process. Since maghemite has smaller magnetization than magnetite, the oscillating chemical reaction results in the oscillatory magnetization. The observations are interpreted with the Lotka-Volterra nonlinear coupled equations with parameters that can be adjusted to fit very well the experimental data.« less

  6. Feasibility study of Fe3O4/TaOx nanoparticles as a radiosensitizer for proton therapy.

    PubMed

    Ahn, Sang Hee; Lee, Nohyun; Choi, Changhoon; Shin, Sung Won; Han, Youngyih; Park, Hee Chul

    2018-05-04

    We investigated the feasibility of using multifunctional Fe3O4/TaOx (core/shell) nanoparticles, developed for use in contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI), as dose-enhancing radiosensitizers. First, to verify the detectability of Fe3O4/TaOx nanoparticles in imaging, in vivo tests were conducted. Approximately 600 mg/kg of 19-nm-diameter Fe3O4/TaOx nanoparticles dispersed in phosphate-buffered saline was injected into the tail vein of six Balb/c mice used as tumour (4T1 mammary carcinoma cell) models. Three mice underwent MRI (BioSpec 70/20 USR, Bruker, Billerica, MA, USA) and micro-CT (Inveon, Siemens Preclinical, Knoxville, TN, USA) before and after the injection. The difference between the pre- and post-injection images was quantified by finding the correlation coefficient. The aorta, blood vessel, and liver were clearly seen in the MRI and micro-CT images 60 min after intravenous injection of Fe3O4/TaOx nanoparticles, but the tumour region was not visible in the CT images until after 24 h. There were large differences between the pre- and post-injection images. Second, the therapeutic enhancement dose of nanomaterials was computed via Monte Carlo simulation. Monoenergetic 70- and 150-MeV proton beams irradiated X-ray contrast agent (iodine, BaSO4) , MRI contrast agent (gadolinium, Fe3O4), Au, Fe3O4/TaOx (core/shell) nanoparticles and water located at the centre of a 444-μm3 water phantom, upon which the dose enhancement ratio (DER) (dose with/without nanoparticles) was computed. When 70-MeV protons irradiated the Au, gadolinium, Fe3O4/TaOx, Fe3O4, iodine, and BaSO4 nanoparticles, the DERs at 1 nm were 15.76, 7.68, 7.82, 6.17, 4.85, and 5.51, respectively. Fe3O4/TaOx nanoparticles have the potential to be used a multifunctional agent that enhances tumour detection and increases the dose. Dose enhancement with Fe3O4/TaOx was half that with Au. However, Fe3O4/TaOx is much cheaper than Au, and it is expected

  7. Sol-gel NiFe2O4 nanoparticles: Effect of the silica coating

    NASA Astrophysics Data System (ADS)

    Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Gómez-Polo, C.

    2012-05-01

    NiFe2O4 and NiFe2O4-SiO2 nanoparticles were synthesized by a sol-gel method using citric acid as fuel, giving rise its combustion to the crystallization of the spinel phase. Different synthesis conditions were analyzed with the aim of obtaining stoichiometric NiFe2O4 nanoparticles. The spinel structure in the calcined nanoparticles (400 °C, 2 h) was evaluated by x-ray diffraction. Their nanometer size (mean diameters around 10-15 nm) was confirmed through electron microscopy (field emission scanning electron microscopy and transmission electron microscopy). Rietveld refinement indicates the existence of a small percentage of NiO and Fe3O4 phases and a certain degree of structural disorder. The main effect of the silica coating is to enhance the disorder effects and prevent the crystalline growth after post-annealing treatments. Due to the small particle size, the nanoparticles display characteristic superparamagnetic behaviour and surface effects associated to a spin-glass like state: i.e., reduction in the saturation magnetization values and splitting of the zero field cooled (ZFC)-field cooled (FC) high field magnetization curves. The fitting of the field dependence of the ZFC-FC irreversibility temperatures to the Almeida—Thouless equation confirms the spin-glass nature of the detected magnetic phenomena. Exchange bias effects (shifts in the FC hysteresis loops) detected below the estimated freezing temperature support the spin-glass nature of the spin disorder effects.

  8. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    PubMed Central

    Loh, Kee-Shyuan; Lee, Yook Heng; Musa, Ahmad; Salmah, Abdul Aziz; Zamri, Ishak

    2008-01-01

    Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe3O4 nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe3O4 nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method. PMID:27873839

  9. Passage of Magnetic Tat-Conjugated Fe3O4@SiO2 Nanoparticles Across In Vitro Blood-Brain Barrier

    NASA Astrophysics Data System (ADS)

    Zhao, Xueqin; Shang, Ting; Zhang, Xiaodan; Ye, Ting; Wang, Dajin; Rei, Lei

    2016-10-01

    Delivery of diagnostic or therapeutic agents across the blood-brain barrier (BBB) remains a major challenge of brain disease treatment. Magnetic nanoparticles are actively being developed as drug carriers due to magnetic targeting and subsequently reduced off-target effects. In this paper, we developed a magnetic SiO2@Fe3O4 nanoparticle-based carrier bound to cell-penetrating peptide Tat (SiO2@Fe3O4 -Tat) and studied its fates in accessing BBB. SiO2@Fe3O4-Tat nanoparticles (NPs) exhibited suitable magnetism and good biocompatibility. NPs adding to the apical chamber of in vitro BBB model were found in the U251 glioma cells co-cultured at the bottom of the Transwell, indicating that particles passed through the barrier and taken up by glioma cells. Moreover, the synergistic effects of Tat and magnetic field could promote the efficient cellular internalization and the permeability across the barrier. Besides, functionalization with Tat peptide allowed particles to locate into the nucleus of U251 cells than the non-conjugated NPs. These results suggest that SiO2@Fe3O4-Tat NPs could penetrate the BBB through the transcytosis of brain endothelial cells and magnetically mediated dragging. Therefore, SiO2@Fe3O4-Tat NPs could be exploited as a potential drug delivery system for chemotherapy and gene therapy of brain disease.

  10. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Liu, Xinyu; Wei, Chao; Xu, Zhichuan J.; Sim, Stanley Siong Wei; Liu, Linbo; Xu, Chenjie

    2015-10-01

    Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05459a

  11. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    NASA Astrophysics Data System (ADS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  12. Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Lin, C. K.

    2011-04-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders were then used as magnetic fillers and added to an epoxy resin to prepare MnOx-coated Fe3O4 composites for the complex permittivity (ɛ'-jɛ″) and permeability (μ'-jμ″) measurements. After the sol-gel process, the coating of manganese oxide (mixture of major Mn2O3 and minor Mn3O4) reduced the value of ɛ'. The lower the heat-treating temperature, the larger the decrease in ɛ'. The relative decrease in ɛ', compared with uncoated Fe3O4 nanoparticles, is 28.7, 23.5, and 20.0% for coated MnOx heat-treated at 300, 400, and 500 °C, respectively, while the relative decrease in ɛ″ is 74.1, 68.8, and 65.2%, respectively. In the present study, MnOx-coated Fe3O4 exhibited a significant decrease in dielectric loss tangent of ˜100% compared to that of uncoated NPs and can be of practical use for microwave components.

  13. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    NASA Astrophysics Data System (ADS)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  14. Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization.

    PubMed

    Qiu, Guihua; Wang, Qi; Wang, Chao; Lau, Willie; Guo, Yili

    2007-01-01

    Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles was successfully employed to prepare polystyrene (PS)/Fe3O4 magnetic emulsion and nanocomposite. The effects of Fe3O4 nanoparticles on miniemulsion polymerization process, the structure, morphology and properties of PS/Fe3O4 nanocomposite were investigated. The increase in the amount of Fe3O4 nanoparticles drastically increases the polymerization rate due to that Fe3O4 nanoparticles increase the number of radicals and the cavitation bubbles. Polymerization kinetics of ultrasonically initiated miniemulsion polymerization is similar to that of conventional miniemulsion polymerization. PS/Fe3O4 magnetic emulsion consists of two types of particles: latex particles with Fe3O4 nanoparticles and latex particles with no encapsulated Fe3O4 nanoparticles. Fe3O4 nanoparticles lower the molecular weight of PS and broaden the molecular weight and particle size distribution. Thermal stability of PS/Fe3O4 nanocomposite increases with the increase in Fe3O4 content. PS/Fe3O4 emulsion and nanocomposite exhibit magnetic properties. PS/Fe3O4 magnetic particles can be separated from the magnetic emulsion by an external magnetic field and redispersed into the emulsion with agitation.

  15. Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure

    NASA Astrophysics Data System (ADS)

    Yang, Lingfeng; Cai, Haopeng; Zhang, Bin; Huo, Siqi; Chen, Xi

    2018-02-01

    Novel electromagnetic functionalized carbon nanofibers (CNFs) have been synthesized by coating with Fe3O4 magnetite nanoparticles and conducting polymers polyaniline (PANI) on CNFs through a layer by layer assembly. The Fe3O4@CNFs were first prepared by coating nano-Fe3O4 particles on CNFs via co-precipitation method; Then the PANI was coated on Fe3O4@CNFs using an in situ polymerization process to obtain PANI@Fe3O4@CNFs nanoparticles. The prepared PANI@Fe3O4@CNFs nanoparticles were dispersed in the epoxy matrix to fabricate microwave absorbing nanocomposites. Compared with the Fe3O4@CNFs/epoxy nanocomposites, the PANI@Fe3O4@CNFs/epoxy nanocomposites exhibit better microwave absorbing properties. The composite containing 15 wt% of PANI@Fe3O4@CNFs with the thickness of 2 mm showed a minimum reflection loss (RL) value of -23.7 dB with an effective absorption bandwidth which is about 3.7 GHz (11.9-15.6 GHz) in the frequency range of 1-18 GHz, indicating that it is an attractive candidate for efficient microwave absorber. A potential absorption mechanism was proposed for enhancement of the impedance-matching condition and electromagnetic wave-attenuation characteristic of materials. Specifically, the impedance-matching condition was improved by the combination of conductive polymers and magnetic nanoparticles with CNFs. The electromagnetic wave attenuation characteristic was enhanced by multiple reflections, due to the increased propagation paths.

  16. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper.

    PubMed

    Liu, Kai; Nasrallah, Joseph; Chen, Lihui; Huang, Liulian; Ni, Yonghao

    2015-08-01

    Well-dispersed Fe3O4 nanoparticles (NPs) were synthesized by a co-precipitation method in the presence of cellulose nano-crystals (CNC) as the template. The thus prepared Fe3O4 NPs were then used as a coating agent for the preparation of conductive paper. Fourier transform infrared spectroscopy (FTIR) results revealed that the Fe3O4 NPs were immobilized on the CNC through interactions between the hydroxyl groups of CNC and Fe3O4. Scanning transmission electron microscopy (STEM) images showed that the Fe3O4 NPs prepared in the presence of CNC can be dispersed in the CNC network, while the Fe3O4 NPs prepared in the absence of CNC tended to aggregate in aqueous solutions. The conductivity of the Fe3O4 NPs coated paper can reach to 0.0269 S/m at the coating amount of 14.75 g/m(2) Fe3O4/CNC nanocomposites. Therefore, the thus obtained coated paper can be potentially used as anti-static packaging material in the packaging field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized bymore » quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.« less

  18. Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization.

    PubMed

    Ulu, Ahmet; Ozcan, Imren; Koytepe, Suleyman; Ates, Burhan

    2018-05-01

    The scope of our research was to prepare the organosilane-modified Fe 3 O 4 @MCM-41 core-shell magnetic nanoparticles, used for L-ASNase immobilization and explored screening of immobilization conditions such as pH, temperature, thermal stability, kinetic parameters, reusability and storage stability. In this content, Fe 3 O 4 core-shell magnetic nanoparticles were prepared via co-precipitation method and coated with MCM-41. Then, Fe 3 O 4 @MCM-41 magnetic nanoparticles were functionalized by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as an organosilane compound. Subsequently, L-ASNase was covalently immobilized on epoxy-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The immobilized L-ASNase had greater activity at high pH and temperature values. It also maintained >92% of the initial activity after incubation at 55 °C for 3 h. Regarding kinetic values, immobilized L-ASNase showed a higher Vmax and lower Km compared to native L-ASNase. In addition, it displayed excellent reusability for 12 successive cycles. After 30 days of storage at 4 °C and 25 °C, immobilized L-ASNase retained 54% and 26% of its initial activities while native L-ASNase lost about 68% and 84% of its initial activity, respectively. As a result, the immobilization of L-ASNase onto magnetic nanoparticles may provide an advantage in terms of removal of L-ASNase from reaction media. Copyright © 2018. Published by Elsevier B.V.

  19. Synthesis and Characterization of Fe3O4 Nanoparticles using Polyvinyl Alcohol (PVA) as Capping Agent and Glutaraldehyde (GA) as Crosslinker

    NASA Astrophysics Data System (ADS)

    Budi Hutami Rahayu, Lale; Oktavia Wulandari, Ika; Herry Santjojo, Djoko; Sabarudin, Akhmad

    2018-01-01

    The use of polyvinyl alcohol (PVA) as a capping agent and glutaraldehyde (GA) as a crosslinker for a synthesis of magnetite (Fe3O4) nanoparticles is able to reduce agglomeration of produced Fe3O4. Additionally, oxidation of Fe3O4 by air could be avoided. The synthesis is carried out in two steps: first step, magnetite (Fe3O4) nanoparticles were prepared by dissolving the FeCl3.6H2O and FeCl2.4H2O in alkaline media (NH3.H2O). The second step, magnetite nanoparticles were coated with polyvinyl alcohol (PVA) and glutaraldehyde (GA) to obtain Fe3O4-PVA-GA. The latter material was then characterized by FTIR to determine the typical functional groups of magnetite coated with PVA-GA. X-ray Diffraction analysis was used to determine structure and size of crystal as well as the percentage of magnetite produced. It was found that the produced nanoparticles have crystal sizes around 4-9 nm with the cubic crystal structure. The percentage of magnetite phase increases when the amount of glutaraldehyde increased. SEM-EDX was employed to assess the surface morphology and elemental composition of the resulted nanoparticles. The magnetic character of the magnetite and Fe3O4- PVA-GA were studied using Electron Spin Resonance.

  20. Magnetic field enhanced photothermal effect of Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Pengfei; Lin, Yawen; Gan, Zhixing; Luo, Xiaobin; Zhou, Weiping; Zhang, Ning

    2018-03-01

    Photothermal and magnetothermal effects are promising in hyperthermia for cancer therapy. However, the development of safe treatments with limited side-effects requires a relatively-high thermal efficiency triggered by mild near-infrared (NIR) light and alternating magnetic field (HAC), which remains a formidable challenge. In this work, a magnetic field enhanced photothermal effect (MFEP) of Fe3O4 nanoparticles is proposed and investigated systematically. The results suggest remarkable temperature increments of 9.59 to 36.90 °C under irradiation of NIR with different light power densities (808 nm, 0-6.98 W/cm2) combined with a certain magnetic field (HAC = 1.5 kA/m at 90 kHz). The rise of temperature induced by MFEP is substantially larger than the sum of isolated photothermal and magnetothermal effects, which is attributed to the hot-phonon bottleneck effect. The MFEP of Fe3O4 nanoparticles could serve as an effective treatment for cancer therapy in the future.

  1. TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Chengliang; Zhu, Dejie; Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong

    2016-06-01

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe3O4 NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe3O4 with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe3O4 NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe3O4 NPs exhibited superparamagnetic behavior and the saturation magnetization (Ms) was about 70 emu/g, which had potential applications in magnetic science and technology.

  2. Theoretical exploration of optical response of Fe3O4-reduced graphene oxide nanoparticle system within dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Kusumaatmadja, R.; Fauzi, A. D.; Phan, W. Y.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We theoretically investigate the optical conductivity and its related optical response of Fe3O4-reduced graphene oxide (rGO) nanoparticle system. Experimental data of magnetization of the Fe3O4-rGO nanoparticle system have shown that the saturation magnetization can be enhanced by controlling the rGO content with the maximum enhancement reached at the optimal rGO content of about 5 weight percentage. We hypothesize that the magnetization enhancement is due to spin-flipping of Fe ions at tetrahedral sites induced by oxygen vacancies at the Fe3O4 nanoparticle boundaries. These oxygen vacancies are formed due to adsorption of oxygen atoms by rGO flakes around the Fe3O4 nanoparticle. In this study, we aim to explore the implications of this effect to the optical response of the system as a function of the rGO content. Our model incorporates Hubbard-repulsive interactions between electrons occupying the e g orbitals of Fe3+ and Heisenberg-like interactions between electron spins and spins of Fe3+ ions. We treat the relevant interactions within mean-field and dynamical mean-field approximations. Our results are to be compared with the existing experimental reflectance data of Fe3O4 nanoparticle system.

  3. Mapping the subcellular localization of Fe3O4@TiO2 nanoparticles by X-ray Fluorescence Microscopy.

    PubMed

    Yuan, Y; Chen, S; Gleber, S C; Lai, B; Brister, K; Flachenecker, C; Wanzer, B; Paunesku, T; Vogt, S; Woloschak, G E

    The targeted delivery of Fe 3 O 4 @TiO2 nanoparticles to cancer cells is an important step in their development as nanomedicines. We have synthesized nanoparticles that can bind the Epidermal Growth Factor Receptor, a cell surface protein that is overexpressed in many epithelial type cancers. In order to study the subcellular distribution of these nanoparticles, we have utilized the sub-micron resolution of X-ray Fluorescence Microscopy to map the locationof Fe 3 O4@TiO 2 NPs and other trace metal elements within HeLa cervical cancer cells. Here we demonstrate how the higher resolution of the newly installed Bionanoprobe at the Advanced Photon Source at Argonne National Laboratory can greatly improve our ability to distinguish intracellular nanoparticles and their spatial relationship with subcellular compartments.

  4. Potentiometric glucose biosensor based on core-shell Fe3O4-enzyme-polypyrrole nanoparticles.

    PubMed

    Yang, Zhengpeng; Zhang, Chunjing; Zhang, Jianxin; Bai, Wanbei

    2014-01-15

    Core-shell Fe3O4-enzyme-polypyrrole (Ppy) nanoparticles with excellent magnetism and conductivity were successfully prepared via the surface modification and enzyme self-encapsulation within Ppy. A novel potentiometric glucose biosensor has been constructed by effectively attaching the proposed Fe3O4-enzyme-Ppy nanoparticles to the surface of the magnetic glassy carbon electrode (MGCE). The optimum biosensing conditions could be provided with polymerization time of pyrrole for 6h and 0.42 mg immobilization amount of Fe3O4-enzyme-Ppy nanoparticles on MGCE. The performance of the developed glucose biosensor was evaluated and the results indicated that a sensitive glucose biosensor could be fabricated. The obtained glucose biosensor presents shorter response time (6 s), wider linear range (0.5 μM to 34 mM), lower limit of detection (LOD, 0.3 μM), high-selectivity monitoring of glucose and good stability (with about 98.1% of the initial response signal retained after 20 days). The analytical application of the glucose biosensor confirms the feasibility of glucose detection in serum sample. © 2013 Elsevier B.V. All rights reserved.

  5. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  6. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  7. Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yeh, Yaowen; Liu, Rui; You, Jinmao; Qu, Fengli

    2015-07-01

    A simple and green method for the controllable synthesis of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ˜240 nm were coated with a polydopamine shell layer with a tunable thickness of 15-45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for potential applications.

  8. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles.

    PubMed

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-08-01

    A core-shell nanostructure composed of zero-valent Cu (core) and Fe 3 O 4 (shell) (Cu@Fe 3 O 4 ) was prepared by a simple reduction method and was evaluated for the degradation of oxytetracycline (OTC), an antibiotic. The Cu core and the Fe 3 O 4 shell were verified by X-ray diffractometry (XRD) and transmission electron microscopy. The optimal molar ratio of [Cu]/[Fe] (1/1) in Cu@Fe 3 O 4 created an outstanding synergic effect, leading to >99% OTC degradation as well as H 2 O 2 decomposition within 10min at the reaction conditions of 1g/L Cu@Fe 3 O 4 , 20mg/L OTC, 20mM H 2 O 2 , and pH3.0 (and even at pH9.0). The OTC degradation rate by Cu@Fe 3 O 4 was higher than obtained using single nanoparticle of Cu or Fe 3 O 4 . The results of the study using radical scavengers showed that OH is the major reactive oxygen species contributing to the OTC degradation. Finally, good stability, reusability, and magnetic separation were obtained with approximately 97% OTC degradation and no notable change in XRD patterns after the Cu@Fe 3 O 4 catalyst was reused five times. These results demonstrate that Cu@Fe 3 O 4 is a novel prospective candidate for the pharmaceutical and personal care products degradation in the aqueous phase. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Re-appearance of cooperativity in ultra-small spin-crossover [Fe(pz){Ni(CN)₄}] nanoparticles.

    PubMed

    Peng, Haonan; Tricard, Simon; Félix, Gautier; Molnár, Gábor; Nicolazzi, William; Salmon, Lionel; Bousseksou, Azzedine

    2014-10-06

    A reverse nanoemulsion technique was used for the elaboration of [Fe(pz){Ni(CN)4}] nanoparticles. Low-temperature micellar exchange made it possible to elaborate ultra-small nanoparticles with sizes down to 2 nm. When decreasing the size of the particles from 110 to 12 nm the spin transition shifts to lower temperatures, becomes gradual, and the hysteresis shrinks. On the other hand, a re-opening of the hysteresis was observed for smaller (2 nm) particles. A detailed (57)Fe Mössbauer spectroscopy analysis was used to correlate this unusual phenomenon to the modification of the stiffness of the nanoparticles thanks to the determination of their Debye temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan

    2014-12-01

    Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0-110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole-dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction.

  11. Effects of core/shell structure on magnetic induction heating promotion in Fe3O4/γ-Fe2O3 magnetic nanoparticles for hyperthermia

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chi; Fu, Chao-Ming; Chang, Fu-Hsiung

    2013-10-01

    Fe3O4/γ-Fe2O3 core-shell magnetic nanoparticles have demonstrated superior heating efficiency by applying the alternating magnetic field. The magnetic induction heating properties of core-shell magnetic nanoparticles were analyzed by the rate-dependent hysteresis model, taken into account the magnetic anisotropies and actual size distribution of particles. The analyzed results have disclosed the significance of magnetic anisotropies and shell-thickness to the promotion of magnetic induction heating performance. Further experiments about the cancer cells with uptake of these core-shell magnetic nanoparticles conjugated biocompatible cationic liposomes have achieved in vitro intracellular magnetically induced hyperthermia under a weak alternating magnetic field.

  12. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity

    NASA Astrophysics Data System (ADS)

    Prasad, Ch.; Gangadhara, S.; Venkateswarlu, P.

    2016-08-01

    Novel and bio-inspired magnetic nanoparticles were synthesized using watermelon rinds (WR) which are nontoxic and biodegradable. Watermelon rind extract was used as a solvent and capping and reducing agent in the synthesis. The Fe3o4 MNPs were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer techniques (VSM). XRD studies revealed a high degree of crystalline and monophasic Fe nanoparticles of face-centered cubic stricture. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process in an excellent candidate for the synthesis of iron nanoparticles that is simple, easy to execute, pollutant free and inexpensive. A practical and convenient method for the synthesis of highly stable and small-sized iron nanoparticles with a narrow distribution from 2 to 20 nm is reported. Also, the MNPs present in higher saturation magnetization (Ms) of 14.2 emu/g demonstrate tremendous magnetic response behavior. However, the synthesized iron nanoparticles were used as a catalyst for the preparation of biologically interesting 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives in high yields. These results exhibited that the synthesized Fe3O4 MNPs could be used as a catalyst in organic synthesis.

  13. Fe doped BaTiO3 sensitized by Fe3O4 nanoparticles for improved photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rishibrind Kumar; Sharma, Dipika

    2018-01-01

    Nanostructured powders of pristine Fe3O4, BaTiO3, and Fe-BaTiO3 were synthesized using hydrothermal method and BaTiO3/Fe3O4 and Fe-BaTiO3/Fe3O4 composite sample were also prepared by mixing the appropriate amount of pristine powders. All samples were characterized using x-ray diffraction, SEM and UV-vis spectrometry. Photoelectrochemical properties were investigated in a three-electrode cell system. Maximum photocurrent density of 2.1 mA cm-2 at 0.95 V/SCE was observed for Fe-BaTiO3/Fe3O4 composite sample. Increased photocurrent density offered by composite may be attributed to improved conductivity and better separation of the photogenerated charge carriers at interface.

  14. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.

    PubMed

    Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying

    2016-02-01

    Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.

  15. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    NASA Astrophysics Data System (ADS)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  16. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    PubMed

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  17. Effect of Fe{sub 3}O{sub 4} nanoparticles on positive streamer propagation in transformer oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yuzhen, E-mail: yzlv@ncepu.edu.cn; School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206; Wang, Qi

    Fe{sub 3}O{sub 4} nanoparticles with an average diameter of 10 nm were prepared and used to modify streamer characteristic of transformer oil. It was found that positive streamer propagation velocity in transformer oil-based Fe{sub 3}O{sub 4} nanofluid is greatly reduced by 51% in comparison with that in pure oil. The evolution of streamer shape is also dramatically affected by the presence of nanoparticles, changing from a tree-like shape with sharp branches in pure oil to a bush-like structure with thicker and denser branches in nanofluid. The TSC results reveal that the modification of Fe{sub 3}O{sub 4} nanoparticle can greatly increasemore » the density of shallow trap and change space charge distribution in nanofluid by converting fast electrons into slow electrons via trapping and de-trapping process in shallow traps. These negative space charges induced by nanoparticles greatly alleviate the electric field distortion in front of the positive streamer tip and significantly hinder the propagation of positive streamer.« less

  18. Preparation and characterization of magnetic nanoparticles containing Fe(3)O(4)-dextran-anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector.

    PubMed

    Jingting, Cai; Huining, Liu; Yi, Zhang

    2011-01-01

    To evaluate the feasibility of using magnetic iron oxide (Fe(3)O(4))-dextran-anti-β-human chorionic gonadotropin (HCG) nanoparticles as a gene vector for cellular transfections. Fe(3)O(4)-dextran-anti-β-HCG nanoparticles were synthesized by chemical coprecipitation. The configuration, diameter, and iron content of the nanoparticles were detected by transmission electron microscopy (TEM), light scatter, and atomic absorption spectrophotometry. A3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide assay was used to evaluate the cytotoxicity of Fe(3)O(4)-dextran-anti-β-HCG nanoparticles. Enzyme-linked immunosorbent assay and indirect immunofluorescence were used to evaluate immunoreactivity. The efficiency of absorbing DNA and resisting deoxyribonuclease I (DNase I) digestion when bound to Fe(3)O(4)-dextran-anti-β-HCG nanoparticles was examined by agarose gel electrophoresis. The ability of Fe(3)O(4)-dextran-anti-β-HCG nanoparticles to absorb heparanase antisense oligodeoxynucleotides (AS-ODN) nanoparticles in different cell lines was evaluated by flow cytometry. The tissue distribution of heparanase AS-ODN magnetic nanoparticles in choriocarcinoma tumors transplanted in nude mice was detected by atomic absorption spectrophotometry. TEM demonstrated that the shape of nanoparticles is irregular. Light scatter revealed nanoparticles with a mean diameter of 75.5 nm and an iron content of 37.5 μg/mL. No cytotoxicity was observed when the concentration of Fe(3)O(4)-dextran-anti-β-HCG nanoparticles was <37.5 μg/mL. Fe(3)O(4)-dextran nanoparticles have a satisfactory potential to combine with β-HCG antibody. Agarose gel electrophoresis analysis of binding experiments showed that after treatment with sodium periodate, Fe(3)O(4)-dextran-anti-β-HCG nanoparticles have a satisfactory potential to absorb DNA, and the protection experiment showed that nanoparticles can effectively protect DNA from DNase I digestion. Aldehyde Fe(3)O(4)-dextran

  19. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  20. Examination of the magnetic hyperthermia and other magnetic properties of CoFe2O4@MgFe2O4 nanoparticles using external field Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jeongho; Choi, Hyunkyung; Kim, Sam Jin; Kim, Chul Sung

    2018-05-01

    CoFe2O4@MgFe2O4 core/shell nanoparticles were synthesized by high temperature thermal decomposition with seed-mediated growth. The crystal structure and magnetic properties of the nanoparticles were investigated using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectrometry. The magnetic hyperthermia properties were investigated using a MagneTherm device. Analysis of the XRD patterns showed that CoFe2O4@MgFe2O4 had a cubic spinel crystal structure with space group Fd-3m and a lattice constant (a0) of 8.3686 Å. The size and morphology of the CoFe2O4@MgFe2O4 nanoparticles were confirmed by HR-TEM. The VSM measurements showed that the saturation magnetization (MS) of CoFe2O4@MgFe2O4 was 77.9 emu/g. The self-heating temperature of CoFe2O4@MgFe2O4 was 37.8 °C at 112 kHz and 250 Oe. The CoFe2O4@MgFe2O4 core/shell nanoparticles showed the largest saturation magnetization value, while their magnetic hyperthermia properties were between those of the CoFe2O4 and MgFe2O4 nanoparticles. In order to investigate the hyperfine interactions of CoFe2O4, MgFe2O4, and CoFe2O4@MgFe2O4, we performed Mössbauer spectrometry at various temperatures. In addition, Mössbauer spectrometry of CoFe2O4@MgFe2O4 was performed at 4.2 K with applied fields of 0-4.5 T, and the results were analyzed with sextets for the tetrahedral A-site and sextets for the octahedral B-site.

  1. Optical and superparamagnetic behavior of ZnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lal, Ganesh; Punia, Khushboo; Dolia, S. N.; Kumar, Sudhish

    2018-05-01

    Nanoparticles of zinc ferrite have been synthesized using a low temperature citrate sol-gel route and characterized by powder X-ray diffraction (XRD), Raman & UV-Vis-NIR spectroscopic and SQUID magnetometry measurements. Analysis of XRD pattern and Raman spectrum confirmed that the synthesized ZnFe2O4 sample crystallizes in single phase fcc spinel ferrite structure and the average particle size of nanoparticles is estimated to 24nm. Optical absorption study shows that maximum photo absorption take place in the visible band and peaking in UV band at 206nm and the band gap energy is estimated to Eg = 2.1eV. Zero Field Cooled (ZFC) and Field Cooled (FC) modes of magnetization down to 5K and in fields up to 20kOe shows that ZnFe2O4 nanoparticles exhibits superparamagnetism with high magneto-crystalline anisotropy and high magnetization. Small difference of 9K between the separation temperature TS=˜30K and blocking temperature TB= 21K are suggestive of the formation of ferromagnetic clusters and a narrow particle size distribution of the nanoparticles in superparamagnetic ZnFe2O4 nanoparticles.

  2. Effective capture and release of circulating tumor cells using core-shell Fe3O4@MnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiao, Liang; He, Zhao-Bo; Cai, Bo; Rao, Lang; Cheng, Long; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2017-01-01

    Circulating tumor cells (CTCs) have been believed to hold significant insights for cancer diagnosis and therapy. Here, we developed a simple and effective method to capture and release viable CTCs using core-shell Fe3O4@MnO2 nanoparticles. Fe3O4@MnO2 nanoparticles bioconjugated with anti-EpCAM antibody have characteristics of specific recognition, magnetic-driven cell isolation and oxalic acid-assisted cell release. The capture and release efficiency of target cancer cells were ∼83% and ∼55%, respectively. And ∼70% of released cells kept good viability, which could facilitate the subsequent cellular analysis.

  3. A simple approach to design chitosan functionalized Fe3O4 nanoparticles for pH responsive delivery of doxorubicin for cancer therapy

    NASA Astrophysics Data System (ADS)

    Adimoolam, Mahesh G.; Amreddy, Narsireddy; Nalam, Madhusudana Rao; Sunkara, Manorama V.

    2018-02-01

    The use of magnetic nanoparticles (MNPs) in cancer therapy offer many advantages due to their unique size, physical and biocompatible properties. In this study we have developed a formulation, comprising of anti-cancer drug doxorubicin (Dox) conjugated to iron oxide nanoparticles via a pH sensitive imine linker. Different amounts of chitosan functionalized superparamagnetic iron oxide nanoparticles (Fe3O4-CHI) were synthesized in-situ by a simple hydrolysis method at room temperature. The synthesized nanoparticles were well characterized by TEM, Zeta Potential, TOC, XPS, TGA and VSM for their physicochemical properties. Dox was conjugated to the Fe3O4-CHI nanoparticles via a glutaraldehyde cross linker with the imine (sbnd Cdbnd Nsbnd) bond, which is sensitive to cleavage in the pH range of 4.4-6.4. The synthesized Fe3O4-Dox nanoparticles exhibited enhanced drug release in lower pH conditions which mimics the tumor microenvironment or intracellular organelles such as endosomes/lysosomes. The cell uptake and therapeutic efficacy of Fe3O4-Dox nanoparticles carried out in ovarian cancer cell (SK-OV-3) and breast cancer cell line (MCF7) showed improved therapeutic efficacy of Dox by nearly four-fold with Fe3O4-Dox nanoparticles.

  4. Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids

    NASA Astrophysics Data System (ADS)

    Aktas, Sitki; Thornton, Stuart C.; Binns, Chris; Denby, Phil

    2016-12-01

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO x nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO x nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 104 J/m3 (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO x suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM-1 s-1.

  5. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent.

    PubMed

    Yang, Meicheng; Gao, Lipeng; Liu, Kai; Luo, Chunhua; Wang, Yiting; Yu, Lei; Peng, Hui; Zhang, Wen

    2015-01-01

    Core/shell/shell structured Fe3O4/SiO2/Gd2O(CO3)2 nanoparticles were successfully synthesized. Their properties as a new type of T1-T2 dual model contrast agent for magnetic resonance imaging were investigated. Due to the introduce of a separating SiO2 layer, the magnetic coupling between Gd2O(CO3)2 and Fe3O4 could be modulated by the thickness of SiO2 layer and produce appropriate T1 and T2 signal. Additionally, the existence of Gd(3+) enhances the transverse relaxivity of Fe3O4 possibly because of the magnetic coupling between Gd(3+) and Fe3O4. The Fe3O4/SiO2/Gd2O(CO3)2 nanoparticles exhibit good biocompatibility, showing great potential for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A Discovery of Strong Metal-Support Bonding in Nanoengineered Au-Fe3O4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy.

    PubMed

    Han, Chang Wan; Choksi, Tej; Milligan, Cory; Majumdar, Paulami; Manto, Michael; Cui, Yanran; Sang, Xiahan; Unocic, Raymond R; Zemlyanov, Dmitry; Wang, Chao; Ribeiro, Fabio H; Greeley, Jeffrey; Ortalan, Volkan

    2017-08-09

    The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe 3 O 4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe 3 O 4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe 3 O 4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe 3 O 4 , as the surface reduction of nano-Fe 3 O 4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe 3 O 4 and the extremely strong adhesion between Au and the reduced Fe 3 O 4 . This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

  7. Implantation of Fe3O4 Nanoparticles in Shells of Au@m-SiO2 Yolk@Shell Nanocatalysts with Both Improved Recyclability and Catalytic Activity.

    PubMed

    Li, Yanan; Jin, Chenjing; Yuan, Ganyin; Han, Jie; Wang, Minggui; Guo, Rong

    2017-08-01

    Multifunctional nanocatalysts of Au@Fe 3 O 4 /m-SiO 2 yolk@shell hybrids had been developed through a template-assisted synthesis, where Fe 3 O 4 nanoparticles (∼12 nm) and m-SiO 2 shells were sequentially assembled on surfaces of Au/SiO 2 core/shell templates, followed by selective etching of the inner SiO 2 cores, leading to the formation of Au@Fe 3 O 4 /m-SiO 2 yolk@shell hybrids. The Fe 3 O 4 nanoparticles were implanted in the inner surfaces of m-SiO 2 shells with partially exposed surfaces to the inner cavity. The novel design not only ensures a high surface area (540.0 m 2 /g) and saturation magnetization (48.6 emu/g) of the hybrids but also enables interaction between Au and Fe 3 O 4 nanoparticles. Catalytic tests toward the reduction of 4-nitrophenol in the presence of NaBH 4 indicated that Au@Fe 3 O 4 /m-SiO 2 yolk@shell nanocatalysts not only showed high stability and recyclability but also maintained improved catalytic activity as a result of the synergetic effect resulting from Au and Fe 3 O 4 interactions.

  8. Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing; Wang, Lu; Wang, Jing, E-mail: Jingwang@home.ipe.ac.cn

    Graphical abstract: A facile method to produce monodispersed magnetite nanoparticles is based on the solvothermal reaction of iron acetylacetonate (Fe(acac)3) decomposition. The sizes ranged from 7 to 12 nm, which could be controlled by adjusting the volume ratio of oleylamine to n-hexane. Display Omitted Highlights: ► The solvethermal reaction of Fe(acac){sub 3} decomposition was carried out at mild temperature in the presence of oleylamine and n-hexane. ► The size of nanocrystals is controlled by adjusting the volume ratio of oleylamine to n-hexane. ► The low-boiling-point solvent n-hexane offered autogenous pressure parameter after gasified in the reaction temperature. ► The asmore » prepared hydrophobic monodisperse Fe{sub 3}O{sub 4} NPs can be used to prepare the magnetic micelles for future biomedical applications. -- Abstract: A new solvothermal method is proposed for the preparation of Fe{sub 3}O{sub 4} nanoparticles (NPs) from iron acetylacetonate in the presence of oleylamine and n-hexane. The products are characterized by X-ray powder diffraction, infrared (IR) spectroscopy, transmission electron microscopy, thermogravimetry/differential thermogravimetry (TG/DTG) analysis, and vibrating sample magnetometery. The new procedure yields superparamagnetic monodispersed Fe{sub 3}O{sub 4} particles with sizes ranging from 7 nm to 12 nm. The nanocrystal sizes are controlled by adjusting the volume ratio of oleylamine to n-hexane. IR and TG/DTG analyses indicate that the oleylamine molecules, as stabilizers, are adsorbed on the surface of Fe{sub 3}O{sub 4} NPs as bilayer adsorption models. The surface adsorption quantities of oleylamine on 7.5 and 10.4 nm-diameter Fe{sub 3}O{sub 4} NPs are 18% and 11%, respectively. The hydrophobic surface of the obtained nanocrystals is passivated by adsorbed organic solvent molecules. These molecules provide stability against agglomeration, enable solubility in nonpolar solvents, and allow the formation of magnetic

  9. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells.

    PubMed

    Lu, Qianling; Dai, Xinyu; Zhang, Peng; Tan, Xiao; Zhong, Yuejiao; Yao, Cheng; Song, Mei; Song, Guili; Zhang, Zhenghai; Peng, Gang; Guo, Zhirui; Ge, Yaoqi; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe 3 O 4 @Au magnetic nanoparticles (Fe 3 O 4 @Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. The core-shell Fe 3 O 4 @Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe 3 O 4 @Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe 3 O 4 @Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. The inhibitory and apoptotic rates of Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Our studies illustrated that Fe 3 O 4 @Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future.

  10. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells

    PubMed Central

    Tan, Xiao; Zhong, Yuejiao; Yao, Cheng; Song, Mei; Song, Guili; Zhang, Zhenghai; Peng, Gang; Guo, Zhirui; Ge, Yaoqi; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Background Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe3O4@Au magnetic nanoparticles (Fe3O4@Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. Methods The core-shell Fe3O4@Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe3O4@Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe3O4@Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. Results The inhibitory and apoptotic rates of Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Conclusion Our studies illustrated that Fe3O4@Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future. PMID:29719396

  11. Fe3O4 nanoparticles for magnetic hyperthermia and drug delivery; synthesis, characterization and cellular studies

    NASA Astrophysics Data System (ADS)

    Palihawadana Arachchige, Maheshika

    In recent years, magnetic nanoparticles (MNPs), especially superparamagnetic Fe3O4nanoparticles, have attracted a great deal of attention because of their potential applications in biomedicine. Among the other applications, Magnetic hyperthermia (MHT), where localized heating is generated by means of relaxation processes in MNPs when subjected to a radio frequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. Specific absorption rate (SAR), which measures the efficiency of heat generation, depends on magnetic properties of the particles such as saturation magnetization (M s), magnetic anisotropy (K), particle size distribution, magnetic dipolar interactions, and the rheological properties of the target medium.We have investigated MHT in two Fe3O4 ferrofluids prepared by co-precipitation (CP) and hydrothermal (HT) synthesis methods showing similar physical particle size distribution and Ms, but very different SAR 110 W/g and 40 W/g at room temperature. This observed reduction in SAR has been explained by taking the dipolar interactions into account using the so called T* model. Our analysis reveals that HT ferrofluid shows an order of magnitude higher effective dipolar interaction and a wider distribution of magnetic core size of MNPs compared to that of CP ferrofluid. We have studied dextran coated Gd-doped Fe3O4 nanoparticles as a potential candidate in theronostics for multimodal contrast imaging and cancer treatment by hyperthermia. The effect of surfactant on the MHT efficiency and cytotoxicity on human pancreatic cancer cells was explored as well. Though further in vivo study is necessary in the future, these results imply that the dextran coated Fe3O4 dispersion could maintain their high heating capacity in physiological environments while citric acid coating require further surface modification to reduce the non-specific protein adsorption. We have also investigated the traffic, distribution, and cytotoxicity, associated

  12. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-02-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization ( M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design.

  13. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles.

    PubMed

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-12-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization (M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design.

  14. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  15. Composite multifunctional nanostructures based on ZnO tetrapods and superparamagnetic Fe3O4 nanoparticles.

    PubMed

    Villani, M; Rimoldi, T; Calestani, D; Lazzarini, L; Chiesi, V; Casoli, F; Albertini, F; Zappettini, A

    2013-04-05

    A nanocomposite material is obtained by coupling superparamagnetic magnetite nanoparticles (Fe3O4 NP) and vapor phase grown zinc oxide nanostructures with 'tetrapod' morphology (ZnO TP). The aim is the creation of a multifunctional material which retains the attractive features of ZnO (e.g. surface reactivity, strong UV emission, piezoelectricity) together with added magnetism. Structural, morphological, optical, magnetic and functional characterization are performed. In particular, the high saturation magnetization of Fe3O4 NP (above 50 A m(2) kg(-1)), the strong UV luminescence and the enhanced photocatalytic activity of coupled nanostructures are discussed. Thus the nanocomposite turns out to be suitable for applications in energy harvesting and conversion, gas- and bio-sensing, bio-medicine and filter-free photocatalysis.

  16. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance

    PubMed Central

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Background Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe3O4 magnetic nanoparticles (Fe3O4-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Methods Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe3O4-MNP, and Fe3O4-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe3O4-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Results Fe3O4-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe3O4-MNP and Fe3O4-MNP-DNR-5-BrTet groups, especially in the Fe3O4-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe3O4-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Conclusion Fe3O4-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia. PMID:22619560

  17. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance.

    PubMed

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe(3)O(4)-MNP, and Fe(3)O(4)-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe(3)O(4)-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Fe(3)O(4)-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe(3)O(4)-MNP and Fe(3)O(4)-MNP-DNR-5-BrTet groups, especially in the Fe(3)O(4)-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia.

  18. Reversal of multidrug resistance in xenograft nude-mice by magnetic Fe(3)O(4) nanoparticles combined with daunorubicin and 5-bromotetrandrine.

    PubMed

    Wu, Ya-Nan; Chen, Bao-An; Cheng, Jian; Gao, Feng; Xu, Wen-Lin; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Li, Guo-Hong; Chen, Wen-Ji; Liu, Li-Jie; Li, Xiao-Mao; Wang, Xue-Mei

    2009-02-01

    This study was aimed to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (Fe(3)O(4)-MNPs) combined with DNR in vivo. The xenograft leukemia model with stable multiple drug resistance in nude mice was established. The two sub-clones of K562 and K562/A02 cells were respectively inoculated subcutaneously into back of athymic nude mice (1 x 10(7) cells/each) to establish the leukemia xenograft models. Drug resistant and the sensitive tumor-bearing nude mice were both assigned randomly into 5 groups: group A was treated with NS; group B was treated with DNR; group C was treated with nanoparticle of Fe(3)O(4) combined with DNR; group D was treated with 5-BrTet combined with DNR; group E was treated with 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR. The incidence of tumor formation, growth characteristics, weight and volume of tumor were observed. The histopathologic examination of tumors and organs were carried out. The protein levels of BCL-2, BAX, and Caspase-3 in resistant tumors were detected by Western blot. The results indicated that 5-BrTet and magnetic nanoparticle of Fe(3)O(4) combined with DNR significantly suppressed growth of K562/A02 cell xenograft tumor, histopathologic examination of tumors showed the tumors necrosis obviously. Application of 5-BrTet and magnetic nanoparticle of Fe(3)O(4) inhibited the expression of BCL-2 protein and up-regulated the expression of BAX, and Caspase-3 protein in K562/A02 cell xenograft tumor. It is concluded that 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR have significant tumor-suppressing effect on MDR leukemia cell xenograft model.

  19. Effect of surfactant amount on the morphology and magnetic properties of monodisperse ZnFe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haitao, E-mail: zht95711lunwen@163.com; Liu, Ruiping; Zhang, Qiang

    2016-03-15

    Graphical abstract: Polyol process to monodisperse ZnFe{sub 2}O{sub 4} nanoparticles. - Highlights: • An one-step, facile and inexpensive synthetic route to monodisperse ZnFe{sub 2}O{sub 4} nanoparticles is described. • The sodium citrate stabilized ZnFe{sub 2}O{sub 4} nanoparticles with a diameter in the 5–8 nm size range can be easily dispersed in water. • The synthesis is very robust in terms of variations of experimental parameters. • ZnFe{sub 2}O{sub 4} nanoparticles present ferrimagnetic behavior at room temperature with a small hysteresis. - Abstract: The spinel ZnFe{sub 2}O{sub 4} ferrites with sodium citrate as a surfactant were fabricated by polyol process. Themore » effect of surfactant amount on the structure, morphology and magnetic properties of ZnFe{sub 2}O{sub 4} ferrites were investigated by X-ray diffraction(XRD), transmission electron microscope (TEM), thermogravimetric and differential scanning calorimetry (TG–DSC) and vibrating sample magnetometry (VSM), respectively. The results indicate that the structure of ZnFe{sub 2}O{sub 4} ferrites is a pure cubic spinel structure with a particle size of 5–8 nm. The dispersion of the synthesized ZnFe{sub 2}O{sub 4} is enhanced when the mole ratio of Fe(acac){sub 3} to sodium citrate decreases. The synthesized particles present ferrimagnetic behavior with a small hysteresis at room temperature. The increase of surfactant amount conversely leads to the decrease in the saturation magnetization value (Ms) especially when the mole ratio of Fe(acac){sub 3} to sodium citrate decreases to 8:3. Its Ms value is drastically reduced to 18.97 emu/g.« less

  20. A Discovery of Strong Metal–Support Bonding in Nanoengineered Au–Fe 3 O 4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Chang Wan; Choksi, Tej; Milligan, Cory

    The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous “strong metal-support bonding” between gold nanoparticles and “nano-engineered” Fe 3O 4 substrates by in-situ microscopy. During in-situ vacuum annealing of Au-Fe 3O 4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe 3O 4 on Au nanoparticles, the gold nanoparticles transform into the monolayered gold thinfilms and wet the surface of nano-Fe 3O 4, as the surface reduction of nano-Fe 3O 4 proceeds. This phenomenon results frommore » a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe 3O 4 and the extremely strong adhesion between Au and the reduced Fe 3O 4. This strong-metal support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and, ultimately, for the development of improved catalysts and functional nanostructures.« less

  1. A Discovery of Strong Metal–Support Bonding in Nanoengineered Au–Fe 3 O 4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy

    DOE PAGES

    Han, Chang Wan; Choksi, Tej; Milligan, Cory; ...

    2017-06-26

    The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous “strong metal-support bonding” between gold nanoparticles and “nano-engineered” Fe 3O 4 substrates by in-situ microscopy. During in-situ vacuum annealing of Au-Fe 3O 4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe 3O 4 on Au nanoparticles, the gold nanoparticles transform into the monolayered gold thinfilms and wet the surface of nano-Fe 3O 4, as the surface reduction of nano-Fe 3O 4 proceeds. This phenomenon results frommore » a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe 3O 4 and the extremely strong adhesion between Au and the reduced Fe 3O 4. This strong-metal support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and, ultimately, for the development of improved catalysts and functional nanostructures.« less

  2. Synthesis and characterization of magnetic opal/Fe3O4 colloidal crystal

    NASA Astrophysics Data System (ADS)

    Carmona-Carmona, A. J.; Palomino-Ovando, M. A.; Hernández-Cristobal, Orlando; Sánchez-Mora, E.; Toledo-Solano, M.

    2017-03-01

    We report an experimental study of colloidal crystals based on SiO2 artificial opals, infiltrated with 1.34(M1), 2.03(M2) and 24.4(M3) wt% Fe3O4 nanoparticles, using the co-assembly method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and Vibration sample magnetometer (VSM) were used to study the structural, magnetic and optical properties of the samples. At 300 K all the samples exhibit superparamagnetic behavior due to the magnetic coupling of Fe3O4 nanoparticles infiltrated into opal. However, for higher concentration of nanoparticles this strong coupling distorts the opal network. The UV-vis diffuse reflectance spectroscopy and Kubelka-Munk theory were applied to determine that the energy band gap of the opal-magnetite composites can be adjusted by varying the concentration of Fe3O4 nanoparticles. This values are between the energy band gap of SiO2 and Fe3O4.

  3. Magnetically separable mesoporous Fe{sub 3}O{sub 4}/silica catalysts with very low Fe{sub 3}O{sub 4} content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grau-Atienza, A.; Serrano, E.; Linares, N.

    2016-05-15

    Two magnetically separable Fe{sub 3}O{sub 4}/SiO{sub 2} (aerogel and MSU-X) composites with very low Fe{sub 3}O{sub 4} content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe{sub 3}O{sub 4} nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe{sub 3}O{sub 4} NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe{sub 3}O{sub 4} NPs content (ca. 1 wt%). These novel hybrid Fe{sub 3}O{sub 4}/SiO{sub 2} materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) withmore » hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe{sub 3}O{sub 4}/silica aerogel as compared to the Fe{sub 3}O{sub 4} NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe{sub 3}O{sub 4}/SiO{sub 2} systems. - Graphical abstract: Novel magnetically separable mesoporous silica-based composites with very low magnetite content. - Highlights: • An innovative way to prepare magnetically separable composites with <1 wt% NPs. • The Fe{sub 3}O{sub 4}/silica composites are readily magnetized/demagnetized. • The Fe{sub 3}O{sub 4}/silica composites can be easily recovered using an external magnetic field. • Excellent catalytic performance and recyclability despite the low Fe{sub 3}O{sub 4} NPs content.« less

  4. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity.

    PubMed

    Zheng, Jinmin; Dong, Yalei; Wang, Weifeng; Ma, Yanhua; Hu, Jing; Chen, Xiaojiao; Chen, Xingguo

    2013-06-07

    In this work, a facile approach was successfully developed for in situ catalyzing Au nanoparticles loaded on Fe3O4@SiO2 magnetic nanospheres via Sn(2+) linkage and reduction. After the Fe3O4@SiO2 MNPs were first prepared via a sol-gel process, only one step was needed to synthesize the Fe3O4@SiO2-Au magnetic nanocomposites (Fe3O4@SiO2-Au MNCs), so that both the synthesis step and the reaction cost were remarkably decreased. Significantly, the as-synthesized Fe3O4@SiO2-Au MNCs showed high performance in the catalytic reduction of 4-nitrophenol to 4-aminophenol and could be reused for several cycles with convenient magnetic separability. This approach provided a useful platform based on Fe3O4@SiO2 MNPs for the fabrication of Au or other noble metal magnetic nanocatalysts, which would be very useful in various catalytic reductions.

  5. Size-dependent magnetic and inductive heating properties of Fe3O4 nanoparticles: scaling laws across the superparamagnetic size.

    PubMed

    Mohapatra, Jeotikanta; Zeng, Fanhao; Elkins, Kevin; Xing, Meiying; Ghimire, Madhav; Yoon, Sunghyun; Mishra, Sanjay R; Liu, J Ping

    2018-05-09

    An efficient heat activating mediator with an enhanced specific absorption rate (SAR) value is attained via control of the iron oxide (Fe3O4) nanoparticle size from 3 to 32 nm. Monodispersed Fe3O4 nanoparticles are synthesized via a seed-less thermolysis technique using oleylamine and oleic acid as the multifunctionalizing agents (surfactant, solvent and reducing agent). The inductive heating properties as a function of particle size reveal a strong increase in the SAR values with increasing particle size up to 28 nm. In particular, the SAR values of ferromagnetic nanoparticles (>16 nm) are strongly enhanced with the increase of ac magnetic field amplitude than that for the superparamagnetic (3-16 nm) nanoparticles. The enhanced SAR values in the ferromagnetic regime are attributed to the synergistic contribution from the hysteresis and susceptibility loss. Specifically, the 28 nm Fe3O4 nanoparticles exhibit an enhanced SAR value of 801 W g-1 which is nearly an order higher than that of the commercially available nanoparticles.

  6. Magnetism mediated by a majority of [Fe3+ + \\mathbf{V}_{\\mathbf{O}}^{\\mathbf{2-}} ] complexes in Fe-doped CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Paidi, V. K.; Ferreira, N. S.; Goltz, D.; van Lierop, J.

    2015-08-01

    We examine the role of Fe3+ and vacancies ({{V}\\text{O}} ) on the magnetism of Fe-doped CeO2 nanoparticles. Magnetic nanoparticles of Ce100-xFexO2 (x  =  0, 0.26, 1.82, 2.64, 5.26, 6.91, and 7.22) were prepared by a co-precipitation method, and their structural, compositional and magnetic properties were investigated. The CeO2 nanoparticles had a mixed valance of Ce4+ and Ce3+ ions, and doping introduced Fe3+ ions. The decrease in Ce3+ and increase in Fe3+ concentrations indicated the presence of more [Fe3+ +V\\text{O}2- ] complexes with Fe loading in the particles. Charge neutralization, Fe3+ + V\\text{O}2- + 2Ce4+ ≤ftrightarrow 2Ce3+ + Fe3+, identified the impact of {{V}\\text{O}} on the magnetism, where our results suggest that the Fe-doped CeO2 nanoparticle magnetism is mediated by a majority of [Fe3+ +V\\text{O}2- ]—Ce3+ —[Fe3+ +V\\text{O}2- ] complexes.

  7. Selective binding and magnetic separation of His-tagged proteins using Fe3O4/PAM/NTA-Ni2+ Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Huiling; Li, Mengyun; Tu, Shu; Sun, Honghao

    2018-03-01

    Fe3O4 nanoparticles coated with polyacrylamide (PAM) were synthesized. The magnetic core, with an average hydrodynamic size of 235.5 nm, allowed the magnetic nanoparticles (MNPs) rapid separation from solutions under an external magnetic field. NTA-Ni2+ was modified on the surface of Fe3O4/PAM MNPs to selectively trap his-tagged green fluorescent protein (GFP). The results showed that Fe3O4/PAM/NTA-Ni2+ MNPs exhibited remarkable capability of selective binding and separating his-tagged GFP. The adsorption efficiency was 93.37%.

  8. Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance

    NASA Astrophysics Data System (ADS)

    Luo, Dahao; Wu, Chen; Yan, Mi

    2018-04-01

    Three inorganic-organic hybrids have been designed by incorporating epoxy-modified silicone resin (ESR) with SiO2, Fe3O4 and their mixture in the application as the coating of Fe soft magnetic composites (SMCs). The introduced SiO2 nanoparticles are well dispersed in the ESR, while the Fe3O4 tends to agglomerate or even separate from the ESR. Simultaneous addition of the SiO2 and Fe3O4 gives rise to satisfactory distribution of both nanoparticles and optimized magnetic performance of the SMCs with high permeability (124.6) and low loss (807.8 mW/cm3). On one hand, introduction of the ferromagnetic Fe3O4 reduces the magnetic dilution effect, which is beneficial for improved magnetization and permeability. On the other hand, SiO2 incorporation prevents the agglomeration of the Fe3O4 nanoparticles and gives rise to increased electrical resistivity for reduced core loss as well as enhanced mechanical strength of the SMCs.

  9. Selectively Adsorptive Extraction of Phenylarsonic Acids in Chicken Tissue by Carboxymethyl α-Cyclodextrin Immobilized Fe3O4 Magnetic Nanoparticles Followed Ultra Performance Liquid Chromatography Coupled Tandem Mass Spectrometry Detection

    PubMed Central

    Jia, Jing; Zhang, Wei; Wang, Jing; Wang, Peilong; Zhu, Ruohua

    2014-01-01

    Carboxymethyl α-cyclodextrin immobilized Fe3O4 magnetic nanoparticles (CM-α-CD-Fe3O4) were synthesized for the selectively adsorptive extraction of five phenylarsonic acids including p-amino phenylarsonic acid, p-nitro phenylarsonic acid, p-hydroxy phenylarsonic acid, p-acylamino phenylarsonic acid and p-hydroxy-3-nitro phenylarsonic acid in chicken tissue. Using ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), a highly sensitive analytical method was proposed for the determination of five phenylarsonic acids. It was shown that CM-α-CD-Fe3O4 could extract the five phenylarsonic acids in complex chicken tissue samples with high extraction efficiency. Under the optimal conditions, a high enrichment factor, ranging from 349 to 606 fold, was obtained. The limits of detection (LODs) (at a signal-to-noise ratio of 3) were in the range of 0.05–0.11 µg/kg for the five phenylarsonic acids. The proposed method was applied for the determination of five target phenylarsonic acids in chicken muscle and liver samples. Recoveries for the spiked samples with 0.2 µg/kg, 2.0 µg/kg and 20 µg/kg of each phenylarsonic acids were in the range of 77.2%–110.2%, with a relative standard deviation (RSD) of less than 12.5%. PMID:25215503

  10. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier.

    PubMed

    Absalan, Ghodratollah; Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila; Goltz, Douglas M

    2011-08-30

    The nanoparticles of Fe(3)O(4) as well as the binary nanoparticles of ionic liquid and Fe(3)O(4) (IL-Fe(3)O(4)) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe(3)O(4) nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60mg, a pH of 2.5, and a contact time of 2min when initial dyes concentrations of 10-200mg L(-1) were used. The maximum adsorption capacity of IL-Fe(3)O(4) was 166.67 and 49.26mg g(-1) for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62L mg(-1) for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe(3)O(4) by using a mixed NaCl-acetone solution and adsorbent was reusable. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Removal of Organophosphorus Pesticides from Aqueous Solution by Magnetic Fe3O4/Red Mud-Nanoparticles.

    PubMed

    Aydin, Senar

    2016-12-01

      The aim of this study was to investigate the usability of magnetic Fe3O4/red mud nanoparticles (NPs) for the removal of organophosphorus pesticides from water samples. The effect of various experimental parameters such as red mud amount in Fe3O4/red mud-NPs, pH, contact time, initial pesticide concentrations and adsorbent dose was studied in order to find the optimum conditions for their removal in a batch process. The Fe3O4/red mud-NPs were characterized by using TGA, SEM, XRD, VSM, and determination of the BET surface area. After the regenerated Fe3O4/red mud-NPs were used three times, the sorption capacity and the magnetic separability were observed to be unaffected. Freundlich model described the sorption process better than Langmuir isotherm and the pseudo second-order kinetic model was determined as the best-fit model. The film diffusion mechanism was found to be a main rate control mechanism. The Fe3O4/red mud-NPs satisfactorily removed the OPPS from real water samples.

  12. Hydrothermal fabrication of octahedral-shaped Fe{sub 3}O{sub 4} nanoparticles and their magnetorheological response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, H. S.; Choi, H. J., E-mail: hjchoi@inha.ac.kr

    2015-05-07

    Octahedral-shaped Fe{sub 3}O{sub 4} nanoparticles were synthesized in the presence of 1,3-diaminopropane using a hydrothermal method and assessed as a potential magnetorheological (MR) material. Their morphology, crystal structure, and magnetic properties were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. The MR characteristics of the octahedral-shaped, Fe{sub 3}O{sub 4} nanoparticle-based MR particles when dispersed in silicone oil with a 10 vol. % particle concentration were examined using a rotational rheometer under an external magnetic field. The resulting MR fluids exhibited a Bingham-like behavior with a distinctive yield stress from their flow curves.

  13. Synthesis and characterization of ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres

    NASA Astrophysics Data System (ADS)

    Koc, Kenan; Karakus, Baris; Rajar, Kausar; Alveroglu, Esra

    2017-10-01

    Herein, we synthesized and characterized fluorescent and super paramagnetic ZnS@Fe3O4 nanospheres. First, (3-mercaptopropyl) trimethoxysilane (MPS) capped ZnS quantum dots (QDs) and SiO2 coated Fe3O4 nanoparticles were synthesized separately by using solution growth and co-precipitation techniques. After synthesis and characterization of these two nanoparticles, they were conglutinated together in a nano sized sphere. The QDs were attached to the surface of the Fe3O4 nanoparticles by Sisbnd Osbnd Si bonds and so Sisbnd Osbnd Si bonds created a SiO2 network around the nanoparticles during the formation of the ZnS@Fe3O4 nanospheres. The synthesized MPS capped ZnS fluorescent QDs, SiO2 coated magnetite super paramagnetic nanoparticles and ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres were characterized by using UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, X-ray analysis, Vibrating Sample Magnetometer analysis, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope and Energy-dispersive X-ray spectroscopy. ZnS@Fe3O4 bifunctional nanospheres were shown to retain the magnetic properties of magnetite, while exhibiting the luminescent optical properties of ZnS nanoparticles. The combination of fluorescent and magnetic behaviors of nano composites make them useful for potential applications in the field of bio-medical and environmental.

  14. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.

    PubMed

    Yu, Lan; Xue, Weihua; Cui, Lei; Xing, Wen; Cao, Xinli; Li, Hongyu

    2014-03-01

    Fe3O4 nanoparticles were modified with Hydroxypropyl-β-cyclodextrin (HP-β-CD) and Polyethylene glycol 400 (PEG400) by a facile one-pot homogeneous precipitation method, and were used as a novel nano-adsorbent for the removal of congo red (CR) from aqueous solutions. The polymer-modified composites were characterized by FTIR, TEM, TGA, XRD and VSM, and showed excellent adsorption efficiency for CR. The value of the maximum adsorption capacity calculated according to the Langmuir isotherm model were 1.895g/g, which are much high and about 19 times that of Fe3O4 nanoparticles. Desorption study further indicates the good regeneration ability of the nanocomposites. The results suggest that the HP-β-CD/PEG400-modified Fe3O4 nanoparticles is a promising adsorbent for CR removal from aqueous solutions, and it is easily recycled owing to its large specific surface area and unique magnetic responsiveness. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  15. Synthesis and characterization of a pH-sensitive conjugate of isoniazid with Fe3O4@SiO2 magnetic nanoparticles.

    PubMed

    Sedlák, Miloš; Bhosale, Dattatry Shivajirao; Beneš, Ludvík; Palarčík, Jiří; Kalendová, Andrea; Královec, Karel; Imramovský, Aleš

    2013-08-15

    The Letter describes the preparation and characterization of a conjugate of isoniazid (INH) with magnetic nanoparticles Fe3O4@SiO2 115±60 nm in size. The INH molecules were attached to the surface of nanoparticles by a covalent pH-sensitive amidine bond. The conjugate was characterized by X-ray diffraction, SEM, dynamic light scattering, IR spectroscopy and microanalysis. The conjugate released isoniazid under in vitro conditions (pH=4; 37 °C; t1/2≈115 s). In addition, the cytotoxicity of the Fe3O4@SiO2-INH conjugate was evaluated in SK-BR-3 cells using the xCELLigence system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    PubMed Central

    2011-01-01

    Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior. PMID:21711771

  17. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization.

    PubMed

    Ulu, Ahmet; Noma, Samir Abbas Ali; Koytepe, Suleyman; Ates, Burhan

    2018-06-06

    l-Asparaginase (l-ASNase) is a vital enzyme for medical treatment and food industry. Here, we assessed the use of Fe 3 O 4 @Mobil Composition of Matter No. 41 (MCM-41) magnetic nanoparticles as carrier matrix for l-ASNase immobilization. In addition, surface of Fe 3 O 4 @MCM-41 magnetic nanoparticles was functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) to enhance stability of l-ASNase. The chemical structure, thermal properties, magnetic profile and morphology of the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and zeta-potential measurement. l-ASNase was covalently immobilized onto the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The properties of the immobilized enzyme, including optimum pH, temperature, kinetic parameters, thermal stability, reusability and storage stability were investigated and compared to free one. Immobilized enzyme was found to be stable over a wide range of pH and temperature range than free enzyme. The immobilized l-ASNase also showed higher thermal stability after 180 min incubation at 50 °C. The immobilized enzyme still retained 63% of its original activity after 16 times of reuse. The Km value for the immobilized enzyme was 1.15-fold lower than the free enzyme, which indicates increased affinity for the substrate. Additionally, the immobilized enzyme was active over 65% and 53% after 30 days of storage at 4 °C and room temperature (∼25 °C), respectively. Thereby, the results confirmed that thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles had high efficiency for l-ASNase immobilization and improved stability of L-ASNase.

  18. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh; Mansouri, Kamran

    2016-05-01

    In this study, Fe3O4@SiO2-cytarabine magnetic nanoparticles (MNPs) were prepared via chemical coprecipitation reaction and coating silica on the surface of Fe3O4 MNPs by Stöber method via sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an anticancer drug, cytarabine. The structural properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Zetasizer analyzer, and transmission electron microscopy (TEM). The results indicated that the crystalline phase of iron oxide NPs was magnetite (Fe3O4) and the average sizes of Fe3O4@SiO2-cytarabine MNPs were about 23 nm. Also, the surface characterization of Fe3O4@SiO2-cytarabine MNPs by FT-IR showed that successful coating of Fe3O4 NPs with SiO2 and binding of cytarabine drug onto the surface of Fe3O4@SiO2 MNPs were through the hydroxyl groups of the drug. The in vitro cytotoxic activity of Fe3O4@SiO2-cytarabine MNPs was investigated against cancer cell line (HL60) in comparison with cytarabine using MTT colorimetric assay. The obtained results showed that the effect of Fe3O4@SiO2-cytarabine magnetic nanoparticles on the cell lines were about two orders of magnitude higher than that of cytarabine. Furthermore, in vitro DNA binding studies were investigated by UV-vis, circular dichroism, and fluorescence spectroscopy. The results for DNA binding illustrated that DNA aggregated on Fe3O4@SiO2-cytarabine MNPs via groove binding. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A highly sensitive detection of chloramphenicol based on chemiluminescence immunoassays with the cheap functionalized Fe3 O4 @SiO2 magnetic nanoparticles.

    PubMed

    Linyu, Wang; Manwen, Yao; Chengzhi, Fang; Xi, Yao

    2017-09-01

    A strategy has been applied to chloramphenicol (CAP) detection with chemiluminescence immunoassays (CLIA) based on cheap functionalized Fe 3 O 4 @SiO 2 magnetic nanoparticles (Fe-MNPs). The strategy that bovine serum albumin (BSA) was immobilized on cheap functionalized Fe-MNPs and that the CAP molecules were then immobilized on BSA, avoided the long process of dialysis for preparation of the BSA-CAP conjugates. The samples were detected for both methods that utilized two different kinds of functionalized Fe-MNPs (amine-functionalized Fe 3 O 4 @SiO 2 and carboxylic acid-functionalized Fe 3 O 4 @SiO 2 ). The sensitivities and limits of detection (LODs) of the two methods were obtained and compared based on inhibition curves. The 50% inhibition concentrations (IC 50 ) values of the two methods were about 0.024 ng ml -1 and 0.046 ng ml -1 respectively and LODs were approximately 0.0002 ng ml -1 and 0.001 ng ml -1 respectively. These methods were much more sensitive than that of any traditional enzyme-linked immunosorbent assay (ELISA) previously reported. Therefore, such chemiluminescence methods could be easily adapted for small molecule detection in a variety of foods using Fe-MNPs. Copyright © 2017 John Wiley & Sons, Ltd.

  20. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    PubMed

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  1. An effective approach to study the biocompatibility of Fe3O4 nanoparticles, graphene and their nanohybrid composite

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Singh, Pallavi; Verma, Rajiv Kumar; Yadav, Suresh; Singh, Kedar; Srivastava, Amit

    2018-02-01

    The present manuscript describes a simple, facile and effective solvothermal route to synthesize Fe3O4 nanoparticles (Fe3O4 NPs), reduced graphene oxide nanosheets (rGO NSs) and Fe3O4/reduced graphene oxide nanohybrid composite (Fe3O4/rGO nanohybrid composite) and subsequently examines their comparative biocompatibilities. The as-obtained Fe3O4 NPs, rGO NSs and Fe3O4/rGO nanohybrid composite have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The XRD studies and scanning electron microscope confirmed the proper phase formation and the surface morphology of the as-synthesized products, respectively. The Raman spectra of Fe3O4 NPs show the strongest peak at 673 cm-1 which can be assigned to A1g peak of bare Fe3O4 NPs and it complements the XRD studies. Furthermore, the increment in the I D/I G ratio in the Fe3O4/rGO nanohybrid composite suggests the creation of defects in graphene sheets due to strain caused by Fe3O4 NPs. The biocompatibility of these samples has been tested using Lung cancer cell line H1299 through MTT assay. The MTT assay reveals that the nanohybrid composite endows more biocompatible and effectiveness than rGO NSs and Fe3O4 NPs individually, as anti-proliferative agent for cancer treatment.

  2. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Jun; Zhang, Bin; Wu, Qilei; Su, Xiaogang

    2017-12-01

    The multiscale approach has been adapted to enhance the electromagnetic interference shielding properties of carbon fiber (CF) veil epoxy-based composites. The Fe3O4 nanoparticles (NPs) were homogeneously dispersed in the epoxy matrix after surface modification by using silane coupling agent. The CF veil/Fe3O4 NPs/epoxy multiscale composites were manufactured by impregnating the CF veils with Fe3O4 NPs/epoxy mixture to prepare prepreg followed by vacuum bagging process. The electromagnetic interference shielding properties combined with the complex permittivity and complex permeability of the composites were investigated in the X-band (8.2-12.4 GHz) range. The total shielding effectiveness (SET) increases with increasing Fe3O4 NPs loadings and the maximum SET is 51.5 dB at low thickness of 1 mm. The incorporation of Fe3O4 NPs into the composites enhances the complex permittivity and complex permeability thus enhancing the electromagnetic wave absorption capability. The increased SET dominated by absorption loss SEA is attributed to the enhanced magnetic loss and dielectric loss generated by Fe3O4 NPs and multilayer construction of the composites. The microwave conductivity increases and the skin depth decreases with increasing Fe3O4 NPs loadings.

  3. Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe2O3–Pd): applications in the Heck–Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes

    EPA Science Inventory

    A nanocatalyst comprising ultra-small Pd/PdO nanoparticles (<5 nm) supported on maghemite was prepared by a co-precipitation protocol using inexpensive raw materials and was deployed successfully in various significant synthetic transformations, namely the Heck–Mizoroki olefinati...

  4. Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion.

    PubMed

    Li, Ruyi; Fu, Guiming; Liu, Chengmei; McClements, David Julian; Wan, Yin; Wang, Shaoman; Liu, Ting

    2018-07-15

    The tannase (from Aspergillus niger) was immobilised by glutaraldehyde conjugation to amino-functionalised chitosan-coated magnetic nanoparticles (Fe 3 O 4 -CS nanoparticles). Fourier-transform infrared spectroscopy and thermo-gravimetric analysis showed that chitosan was coated on the surface of magnetic nanoparticles. Transmission electron microscopy indicated that the synthesised nanoparticles (Fe 3 O 4 -CS) were almost spherical or ellipsoidal with an average diameter of 5.97 ± 1.25 nm. The stability and functionality of free and immobilised tannase were compared. Both forms of tannase exhibited the same optimal temperature of 30 °C, whereas the optimal pH value of immobilised tannase (pH 4.5) was lower than that of the free tannase (pH 5.5). The pH and thermal stabilities of immobilised tannase were significantly better than those of free tannase. Immobilised tannase retained over 50% of its initial activity after repeated utilisation for eight cycles. Furthermore, the immobilised tannase effectively improve the clarity and colour of black and green tea infusions. These results showed that amino-functionalised Fe 3 O 4 -CS nanoparticles are an efficient carrier for immobilising tannase, and immobilised tannase can be used in the clarification of tea infusion. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug.

    PubMed

    Prabha, G; Raj, V

    2016-05-01

    In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Sonochemical approach to the synthesis of Fe(3)O(4)@SiO(2) core-shell nanoparticles with tunable properties.

    PubMed

    Morel, Anne-Laure; Nikitenko, Sergei I; Gionnet, Karine; Wattiaux, Alain; Lai-Kee-Him, Josephine; Labrugere, Christine; Chevalier, Bernard; Deleris, Gerard; Petibois, Cyril; Brisson, Alain; Simonoff, Monique

    2008-05-01

    In this study, we report a rapid sonochemical synthesis of monodisperse nonaggregated Fe(3)O(4)@SiO(2) magnetic nanoparticles (NPs). We found that coprecipitation of Fe(II) and Fe(III) in aqueous solutions under the effect of power ultrasound yields smaller Fe(3)O(4) NPs with a narrow size distribution (4-8 nm) compared to the silent reaction. Moreover, the coating of Fe(3)O(4) NPs with silica using an alkaline hydrolysis of tetraethyl orthosilicate in ethanol-water mixture is accelerated many-fold in the presence of a 20 kHz ultrasonic field. The thickness of the silica shell can be easily controlled in the range of several nanometers during sonication. Mossbauer spectra revealed that nonsuperparamagnetic behavior of obtained core-shell NPs is mostly related to the dipole-dipole interactions of magnetic cores and not to the particle size effect. Core-shell Fe(3)O(4)@SiO(2) NPs prepared with sonochemistry exhibit a higher magnetization value than that for NPs obtained under silent conditions owing to better control of the deposited silica quantities as well as to the high speed of sonochemical coating, which prevents the magnetite from oxidizing.

  7. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  8. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.

    2015-01-01

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  9. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat, M E; Patel, Ronak; Sookoor, Jason

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while themore » unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.« less

  10. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles.

    PubMed

    Abo Markeb, Ahmad; Alonso, Amanda; Sánchez, Antoni; Font, Xavier

    2017-11-15

    Synthesized magnetic core-shell Ce-Ti@Fe 3 O 4 nanoparticles were tested, as an adsorbent, for fluoride removal and the adsorption studies were optimized. Adsorption capacity was compared with the synthesized Ce-Ti oxide nanoparticles. The adsorption equilibrium for the Ce-Ti@Fe 3 O 4 adsorbent was found to occur in <15min and it was demonstrated to be stable and efficient in a wide pH range of 5-11 with high fluoride removal efficiency over 80% of all cases. Furthermore, isotherm data were fitted using Langmuir and Freundlich models, and the adsorption capacities resulted in 44.37 and 91.04mg/g, at pH7, for Ce-Ti oxides and Ce-Ti@Fe 3 O 4 nanoparticles, respectively. The physical sorption mechanism was estimated using the Dubinin-Radushkevich model. An anionic exchange process between the OH - group on the surface of the Ce-Ti@Fe 3 O 4 nanomaterial and the F - was involved in the adsorption. Moreover, thermodynamic parameters proved the spontaneous process for the adsorption of fluoride on Ce-Ti@Fe 3 O 4 nanoparticles. The reusability of the material through magnetic recovery was demonstrated for five cycles of adsorption-desorption. Although the nanoparticles suffer slight structure modifications after their reusability, they keep their adsorption capacity. Likewise, the efficiency of the Ce-Ti@Fe 3 O 4 was demonstrated when applied to real water to obtain a residual concentration of F - below the maximum contaminated level, 1.5mg/L (WHO, 2006). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.

    PubMed

    Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu

    2013-08-01

    A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Abouzari-Lotf, Ebrahim

    2018-05-01

    Structural and electrochemical behaviors of electrophortically-deposited Fe3O4 and Fe3O4@C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV-visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization (M s) of the Fe3O4@C ( 26.99 emu/g) was about 20% higher than that of Fe3O4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe3O4 and Fe3O4@C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe3O4@CF. The Fe3O4@C@CF composite exhibited a higher specific capacitance of 412 F g-1 at scan rate of 0.05 V/s compared to the Fe3O4@CF with a value of 193 F g-1. The superb electrochemical properties of Fe3O4@C@CF confirm their potential for applications as supercapacitors in the energy storage field.

  13. Fresnel Lorentz Microscopy Imaging of Domains in Fe3O4 Nanoparticle Arrays

    NASA Astrophysics Data System (ADS)

    Majetich, S. A.; Evarts, E. R.; Hogg, C.; Yamamoto, K.; Hirayama, T.

    2009-03-01

    Fresnel Lorentz microscopy was used to study the magnetic domain structures of self-assembled nanoparticle arrays as a function of temperature, from 24 to 605 C. 11 nm diameter Fe3O4 nanoparticles with an edge-to-edge spacing of 2.5 nm form magnetic domains through magnetostatic interactions alone. At room temperature stripe domains were evident in monolayer arrays. The average domain size in monolayer regions is larger than that in bilayers. Mean field theories predict a reduced stabilization energy for bilayers, relative to that for monolayers. The domain wall positions were fairly stable up to 500 C, though the contrast in the walls diminished, indicating reduced magnetic order. Above 500 C there were large temperature-dependent changes. The walls surrounding the smaller domains disappeared at lower temperatures than those of the larger domains. Some magnetic contrast was visible up to 575 C, close to the Curie temperature of Fe3O4 (585 C). Transmission electron microscopy after cooling showed that the particle shape and position in the ordered arrays had been preserved during the high temperature imaging experiments.

  14. Investigation of magnetic properties of Fe{sub 3}O{sub 4} nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemala, H.; Thakur, J. S.; Lawes, G.

    2014-07-21

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe{sub 3}O{sub 4} nanoparticles, subjected to external magnetic fields of various frequencies (188–375 kHz) and amplitudes (140–235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8 ± 3.1 nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6 ± 1.2 nm, and a reduced saturation magnetization (∼65 emu/g) comparedmore » to the bulk value of Fe{sub 3}O{sub 4} (∼95 emu/g). This is due to the presence of a finite surface layer (∼1 nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe{sub 3}O{sub 4} core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28 ± 2 kJ/m{sup 3}) of Fe{sub 3}O{sub 4} nanoparticles.« less

  15. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    NASA Astrophysics Data System (ADS)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-12-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.

  16. Magnetism from Fe2O3 nanoparticles embedded in amorphous SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sendil Kumar, A.; Bhatnagar, Anil K.

    2018-02-01

    Fe2O3 nanoparticles are embedded in amorphous SiO2 matrix by coprecipitation method with varying concentrations. Conditions are optimized to get almost monodispersed Fe2O3 nanoparticles with high chemical stability. Microstructure of synthesized nanoparticles is well characterized and found that Fe2O3 is in nanocrystalline form and embedded uniformly in amorphous SiO2 matrix. Enhanced surface reactivity is found for nanoparticles which influences physical properties of the SiO2 supported Fe2O3 system due to adsorption. In oxide nanoparticles, significant number of defect sites at the surface is expected but when supported medium such as SiO2 it reduces this defect concentration. Field- and temperature-dependent magnetisation studies on these samples show superparamagnetic behaviour. Superparamagnetic behaviour is seen in all the concentration systems but the coercivity observed in the lower concentration systems is found to be anomalous compared to that of higher concentrations. The observed magnetic behaviour comes from either unsaturated bond existing due to the absence of anions at the surface of nanoparticles or reconstruction of atomic orbitals taking place at interface of Fe2O3-SiO2 system.

  17. Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors.

    PubMed

    Zhu, Jian; Tang, Shaochun; Xie, Hao; Dai, Yuming; Meng, Xiangkang

    2014-10-22

    Hierarchically porous yet densely packed MnO2 microspheres doped with Fe3O4 nanoparticles are synthesized via a one-step and low-cost ultrasound assisted method. The scalable synthesis is based on Fe(2+) and ultrasound assisted nucleation and growth at a constant temperature in a range of 25-70 °C. Single-crystalline Fe3O4 particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. A systematic optimization of reaction parameters results in isolated, porous, and uniform Fe3O4-MnO2 composite spheres. The spheres' average diameter is dependent on the temperature, and thus is controllable in a range of 0.7-1.28 μm. The involved growth mechanism is discussed. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO2 nanostructures (309 F/g). Especially, such a structure allows significantly improved stability at high charging rates. The composite has a capacitance of 367.4 F/g at a high scan rate of 100 mV/s, which is 82% of that at 5 mV/s. Also, it has an excellent cycling performance with a capacitance retention of 76% after 5000 charge/discharge cycles at 5 A/g.

  18. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery.

    PubMed

    Liu, Bei; Li, Chunxia; Ma, Ping'an; Chen, Yinyin; Zhang, Yuanxin; Hou, Zhiyao; Huang, Shanshan; Lin, Jun

    2015-02-07

    A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.

  19. Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application.

    PubMed

    Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E

    2014-02-04

    Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

  20. Enhanced magnetization in VxFe3-xO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pool, V. L.; Kleb, M. T.; Chorney, C. L.; Arenholz, E.; Idzerda, Y. U.

    2015-12-01

    Nanoparticles of VxFe3-xO4 with up to 33% vanadium doping (x=0 to 1) and a 9 nm diameter are investigated in order to determine the site preference of the vanadium and the magnetic behavior of the nanoparticles. The iron and vanadium L23-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD) spectra are used to identify that vanadium initially substitutes into the tetrahedral iron site as V3+ and that the average iron moment is observed to increase with vanadium concentration up to 12.5% (x=.375). When the vanadium incorporation exceeds 12.5%, the XAS and MCD show that the vanadium begins substituting as V2+ in the octahedral coordination. This coincides with a rapid reduction of the average moment to zero by 25% (x=.75). The frequency-dependent alternating-current magnetic susceptibility (ACMS) displays a substantial increase in blocking temperature with vanadium concentration and indicated substantial variation in the strength of inter-particle interactions.

  1. Activated carbon/Fe(3)O(4) nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide.

    PubMed

    Do, Manh Huy; Phan, Ngoc Hoa; Nguyen, Thi Dung; Pham, Thi Thu Suong; Nguyen, Van Khoa; Vu, Thi Thuy Trang; Nguyen, Thi Kim Phuong

    2011-11-01

    In the water treatment field, activated carbons (ACs) have wide applications in adsorptions. However, the applications are limited by difficulties encountered in separation and regeneration processes. Here, activated carbon/Fe(3)O(4) nanoparticle composites, which combine the adsorption features of powdered activated carbon (PAC) with the magnetic and excellent catalytic properties of Fe(3)O(4) nanoparticles, were fabricated by a modified impregnation method using HNO(3) as the carbon modifying agent. The obtained composites were characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption isotherms and vibrating sample magnetometer. Their performance for methyl orange (MO) removal by adsorption was evaluated. The regeneration of the composite and PAC-HNO(3) (powdered activated carbon modified by HNO(3)) adsorbed MO by hydrogen peroxide was investigated. The composites had a high specific surface area and porosity and a superparamagnetic property that shows they can be manipulated by an external magnetic field. Adsorption experiments showed that the MO sorption process on the composites followed pseudo-second order kinetic model and the adsorption isotherm date could be simulated with both the Freundlich and Langmuir models. The regeneration indicated that the presence of the Fe(3)O(4) nanoparticles is important for a achieving high regeneration efficiency by hydrogen peroxide. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  3. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Wang, Hongbo; Yang, Chunming

    2013-03-15

    Novel Fe3O4 at TiO2 magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe3O4 at TiO2 nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe3O4 magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe3O4 at TiO2 nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was served by quantum dots (QDs)-taggedmore » anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe3O4 at TiO2/OP-BChE/QDs-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides.« less

  4. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3).

    PubMed

    Bisht, Gunjan; Rayamajhi, Sagar; Kc, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe 3 O 4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe 3 O 4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe 3 O 4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe 3 O 4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles. Schematic representation of the conjugation, characterization and cytotoxicity analysis of Fe 3 O 4 -ZnO magnetic composite particles (MCPs).

  5. Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route

    NASA Astrophysics Data System (ADS)

    Rahmawati, R.; Melati, A.; Taufiq, A.; Sunaryono; Diantoro, M.; Yuliarto, B.; Suyatman, S.; Nugraha, N.; Kurniadi, D.

    2017-05-01

    The composites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sand were successfully prepared via the sonochemical route. In this experiment, the MWCNT-Fe3O4 nanocomposites were prepared with different compositions of MWCNT (0.01%, 0.02%, and 0.04%) with the constant composition of Fe3O4 particles. The characterizations were performed by means of X-Ray Diffractometry (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer and Scanning Electron Microscopy (SEM) integrated with Energy Dispersive X-Ray (EDX). The XRD data analysis showed that the Fe3O4 crystallize in spinel structure in nanometric size. Furthermore, the crystallinity of the samples tended to reduce by increasing the MWCNT compositions. The SEM images showed that Fe3O4 tend to agglomerate in nanometric size. The FTIR spectra detected the functional groups of Fe-O bonding that showed the existence of Fe2+ and Fe3+. In the composites, the Fe3O4 nanoparticles were physically mixed with the MWCNTs constructing a unique structure. The as prepared MWCNT-Fe3O4 nanocomposites have the potential for bio-applications.

  6. Formation of Fe3O4@SiO2@C/Ni hybrids with enhanced catalytic activity and histidine-rich protein separation.

    PubMed

    Zhang, Yanwei; Zhang, Min; Yang, Jinbo; Ding, Lei; Zheng, Jing; Xu, Jingli; Xiong, Shenglin

    2016-09-21

    In this paper, we have developed an extended Stöber method to construct a Ni(2+)-polydopamine (PDA) complex thin coating on Fe3O4@SiO2 spheres, which can be carbonized to produce hybrid composites with metallic nickel nanoparticles embedded in a PDA-derived thin graphitic carbon layer (named Fe3O4@SiO2@C/Ni). Interestingly, by introducing a thin SiO2 spacer layer between PDA-Ni(2+) and Fe3O4, the reverse electron transfer from PDA to Fe3O4 is probably able to be suppressed in the calcination process, which leads to the in situ reduction of only Ni(2+) by PDA instead of Fe3O4 and Ni(2+). Consequently, the size and density of nickel nanoparticles on the surface of SiO2@Fe3O4 can be finely adjusted. Moreover, it is found that the ability of tuning nickel nanoparticles is mainly dependent on the thickness of the spacer layer. When the thickness of the SiO2 spacer is beyond the electron penetration depth, the size and density of nickel nanoparticles can be exactly tuned. The as-prepared Fe3O4@SiO2@C/Ni was employed as the catalyst to investigate the catalytic performance in the reduction of 4-nitrophenol (4-NP); furthermore, nickel nanoparticles decorated on Fe3O4@SiO2@C spheres display a strong affinity to His-tagged proteins (BHb and BSA) via a specific metal affinity force between polyhistidine groups and nickel nanoparticles.

  7. Solvothermal in situ synthesis of Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Jingheng; Wen, Xianghua, E-mail: xhwen@tsinghua.edu.cn; Wang, Qinian

    Graphical abstract: After purification, the multi-wall carbon nanotubes (MWCNTs) act as seeds for Fe{sub 3}O{sub 4} nanoparticles heterogeneous nucleation. The Fe{sub 3}O{sub 4} nanoparticles with diameter range of 4.2–10.0 nm synthesized in situ on the MWCNTs under solvothermal condition. The formed nano Fe{sub 3}O{sub 4}-MWCNTs decolorized the Acid Orange II effectively via Fenton-like reaction. Highlights: ► The amount of water tunes size and size distribution of the Fe{sub 3}O{sub 4} nanoparticles (FNs). ► FNs are homogeneously coated on the multi-walled carbon nanotubes (MWCNTs). ► FNs have diameters in the range of 4.2–10.0 nm, average grain size of 7.4 nm. ►more » Fe{sub 3}O{sub 4}-MWCNTs are used as a Fenton-like catalyst to decompose Acid Orange II. ► Fe{sub 3}O{sub 4}-MWCNTs displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}. -- Abstract: Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes (Fe{sub 3}O{sub 4}-MWCNTs) hybrid materials were synthesized by a solvothermal process using acid treated MWCNTs and iron acetylacetonate in a mixed solution of ethylene glycol and ultrapure water. The materials were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The results showed that a small amount of water in the synthesis system played a role in controlling crystal phase formation, size of Fe{sub 3}O{sub 4}, and the homogeneous distribution of the Fe{sub 3}O{sub 4} nanoparticles deposited on the MWCNTs. The Fe{sub 3}O{sub 4} nanoparticles had diameters in the range of 4.2–10.0 nm. They displayed good superparamagnetism at room temperature and their magnetization was influenced by the reaction conditions. They were used as a Fenton-like catalyst to decompose Acid Orange II and displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}.« less

  8. Synthesis and characterization of novel Cu(II) complex coated Fe3O4@SiO2 nanoparticles for catalytic performance

    NASA Astrophysics Data System (ADS)

    Nasrollahzadeh, Mahmoud; Sajjadi, Mohaddeseh; Khonakdar, Hossein Ali

    2018-06-01

    In this study, a convenient method for the synthesis of arylaminotetrazoles has been developed using a copper (II)-aminotetrazole complex immobilized on silica-coated Fe3O4 (Fe3O4@SiO2) nanoparticles (Fe3O4@SiO2-aminotet-Cu(II)) as a novel and efficient magnetically catalyst. The constructed superparamagnetic core-shell nanoparticles were successfully prepared, as proven using different spectroscopic techniques such as fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), thermogravimetry and differential thermogravimetry (TG-DTG) and vibrating sample magnetometer (VSM) analysis. The applicability of Fe3O4@SiO2-aminotet-Cu(II) magnetic catalyst allows the efficient synthesis of a variety of arylaminotetrazoles from the reaction between various arylcyanamides with sodium azide in high yields. The effect of catalyst loading was investigated. In addition, the reaction mechanism for the synthesis of arylaminotetrazoles was reasonably proposed. Results show that the 1-aryl-5-amino-1H-tetrazole (B isomer) and 5-arylamino-1H-tetrazole (A isomer) can be obtained from the arylcyanamides carrying electron-donating and electron-withdrawing substituents, respectively. This procedure offers a simple methodology, relatively short reaction times, easy work-up, high yields of the products and a cleaner reaction with elimination of hydrazoic acid (HN3). Moreover, catalyst can be conveniently recovered through the use of external magnet and reused for at least 6 times without any significant loss of its activity.

  9. Effect of capping and particle size on Raman laser-induced degradation of {gamma}-Fe{sub 2}O{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varadwaj, K.S.K.; Panigrahi, M.K.; Ghose, J.

    2004-11-01

    Diol capped {gamma}-Fe{sub 2}O{sub 3} nanoparticles are prepared from ferric nitrate by refluxing in 1,4-butanediol (9.5nm) and 1,5-pentanediol (15nm) and uncapped particles are prepared by refluxing in 1,2-propanediol followed by sintering the alkoxide formed. X-ray diffraction (XRD) shows that all the samples have the spinel phase. Raman spectroscopy shows that the samples prepared in 1,4-butanediol and 1,5-pentanediol and 1,2-propanediol (sintered at 573 and 673K) are {gamma}-Fe{sub 2}O{sub 3} and the 773K-sintered sample is Fe{sub 3}O{sub 4}. Raman laser studies carried out at various laser powers show that all the samples undergo laser-induced degradation to {alpha}-Fe{sub 2}O{sub 3} at higher lasermore » power. The capped samples are however, found more stable to degradation than the uncapped samples. The stability of {gamma}-Fe{sub 2}O{sub 3} sample with large particle size (15.4nm) is more than the sample with small particle size (10.2nm). Fe{sub 3}O{sub 4} having a particle size of 48nm is however less stable than the smaller {gamma}-Fe{sub 2}O{sub 3} nanoparticles.« less

  10. Efficient Removal of Tetracycline from Aqueous Media with a Fe3O4 Nanoparticles@graphene Oxide Nanosheets Assembly

    PubMed Central

    Hu, Xinjiang; Zhao, Yunlin; Wang, Hui; Tan, Xiaofei; Yang, Yuanxiu; Liu, Yunguo

    2017-01-01

    A readily separated composite was prepared via direct assembly of Fe3O4 magnetic nanoparticles onto the surface of graphene oxide (GO) (labeled as Fe3O4@GO) and used as an adsorbent for the removal of tetracycline (TC) from wastewater. The effects of external environmental conditions, such as pH, ionic strength, humic acid (HA), TC concentration, and temperature, on the adsorption process were studied. The adsorption data were analyzed by kinetics and isothermal models. The results show that the Fe3O4@GO composite has excellent sorptive properties and can efficiently remove TC. At low pH, the adsorption capacity of Fe3O4@GO toward TC decreases slowly with increasing pH value, while the adsorption capacity decreases rapidly at higher pH values. The ionic strength has insignificant effect on TC adsorption. The presence of HA affects the affinity of Fe3O4@GO to TC. The pseudo-second-order kinetics model and Langmuir model fit the adsorption data well. When the initial concentration of TC is 100 mg/L, a slow adsorption process dominates. Film diffusion is the rate limiting step of the adsorption. Importantly, Fe3O4@GO has good regeneration performance. The above results are of great significance to promote the application of Fe3O4@GO in the treatment of antibiotic wastewater. PMID:29194395

  11. Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee

    2016-01-01

    This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.

  12. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation.

    PubMed

    Boruah, Purna K; Sharma, Bhagyasmeeta; Karbhal, Indrapal; Shelke, Manjusha V; Das, Manash R

    2017-03-05

    Synthesis of easily separable and eco-friendly efficient catalyst with both photocatalytic and photo-Fenton degradation properties is of great importance for environment remediation application. Herein, ammonia-modified graphene (AG) sheets decorated with Fe 3 O 4 nanoparticles (AG/Fe 3 O 4 ) as a magnetically recoverable photocatalyst by a simple in situ solution chemistry approach. First, we have functionalized graphene oxide (GO) sheets by amide functional group and then Fe 3 O 4 nanoparticles (NPs) are doped onto the functionalized GO surface. The AG/Fe 3 O 4 nanocomposite showed efficient photocatalytic activity towards degradation of phenol (92.43%), 2-nitrophenol (2-NP) (98%) and 2-chlorophenol (2-CP) (97.15%) within 70-120min. Consequently, in case of photo-Fenton degradation phenomenon, 93.56% phenol, 98.76% 2-NP and 98.06% of 2-CP degradation were achieved within 50-80min using AG/Fe 3 O 4 nanocomposite under sunlight irradiation. The synergistic effect between amide functionalized graphene and Fe 3 O 4 nanoparticles (NPs) enhances the photocatalytic activity by preventing the recombination rate of electron-hole-pair in Fe 3 O 4 NPs. Furthermore, the remarkable reusability of the AG/Fe 3 O 4 nanocomposite was observed up to ten cycles during the photocatalytic degradation of these phenolic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media.

    PubMed

    Mukherjee, Joyeeta; Gupta, Munishwar N

    2012-11-08

    Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter) led to the formation of enzyme coated clusters of nanoparticles (ECCNs). These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering). Transmission electron microscopy (TEM), showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3) showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein.Circular Dichroism (CD)(with a spinning cell accessory) showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15% α-helix, 37%

  14. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media

    PubMed Central

    2012-01-01

    Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter) led to the formation of enzyme coated clusters of nanoparticles (ECCNs). These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering). Transmission electron microscopy (TEM), showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3) showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD)(with a spinning cell accessory) showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15%

  15. Fabrication and Characterization of Luminescent Magnetic Bifunctional Nanocomposite Based on TbPO4·H2O Nanowires and Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huong, Nguyen Thanh; Hung, Nguyen Manh; Lien, Pham Thi; Van, Nguyen Duc; Nam, Pham Hong; Binh, Nguyen Thanh; Minh, Le Quoc

    2016-07-01

    The fabrication and properties of luminescent magnetic bifunctional nanocomposites comprised of TbPO4·H2O nanowires as a core and magnetite nanoparticles as a shell are presented. TbPO4·H2O nanowires were synthesized by a microwave-assisted method while the grafting process of freshly-formed superparamagnetic magnetite nanoparticles on the surface of luminescent nanowires was carried out by a co-precipitate method. The effects of the Fe3O4/TbPO4·H2O mass ratio on the luminescent and magnetic properties of the obtained nanocomposite were also investigated. The results showed that, for the optimized bifunctional nanocomposites, green luminescent emissions at 488 nm, 542 nm, 585 nm, 620 nm and superparamagnetic behavior with saturation magnetization M s of 6 emu/g were achieved. With a hyperthermia temperature of ~43.5°C under an alternating current (AC) magnetic field, the obtained TbPO4·H2O/Fe3O4 nanocomposite was expected to be used for both optical probing and hyperthermia cancer treatments in biomedical applications.

  16. An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites.

    PubMed

    Sarkar, Joy; Mollick, Md Masud Rahaman; Chattopadhyay, Dipankar; Acharya, Krishnendu

    2017-03-01

    In recent times, biosynthetic approaches toward the synthesis of nanoparticles have been shown to have several advantages over physical and chemical methods. Here, we report the extracellular mycosynthesis of γ-Fe 2 O 3 nanoparticles by Alternaria alternata. The fungal biomass when exposed to aqueous iron(III) chloride solution led to the formation of highly stable γ-Fe 2 O 3 nanoparticles extracellularly. The influence of these biosynthesized γ-Fe 2 O 3 nanoparticles on the properties of hydroxyl propyl methyl cellulose was also investigated. Characterization of the biosynthesized γ-Fe 2 O 3 nanoparticles and HPMC-γ-Fe 2 O 3 nanocomposite films were done by the different types of spectral and electron microscopic analysis. The size of the γ-Fe 2 O 3 nanoparticles ranges from 75 to 650 nm. The mechanical effect of the agglomerated γ-Fe 2 O 3 nanoparticles into the HPMC polymer matrix was also investigated.

  17. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    NASA Astrophysics Data System (ADS)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  18. Magnetic and Mössbauer spectroscopy studies of hollow microcapsules made of silica-coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Gervits, N. E.; Starchikov, S. S.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Wang, Cheng-Chien; Chen, I.-Han; Ogarkova, Yu L.; Korotkov, N. Yu

    2016-01-01

    The hollow microcapsules made of silica-coated CoFe2O4 nanoparticles were synthesized using chemical co-precipitation, followed by the sol-gel method. Poly(MMA-co-MAA) microspheres were used as a core template which can be completely removed after annealing at 450 °C. The microcapsules are monodisperse with the outer diameter of about 450 nm and the thickness of the shell is about 50 nm. The nanoparticles of Co-ferrite are single crystalline. The size of the nanoparticles and magnetic properties of CoFe2O4/SiO2 hollow spheres can be tuned with high accuracy at the annealing stage. The Mössbauer data indicate that CoFe2O4 ferrite is an inverse spinel, in which Fe3+ and Co2+ ions are distributed in both octahedral and tetrahedral sites with the inversion degree close to the bulk ferrite value. At low temperature the CoFe2O4/SiO2 nanoparticles are in antiferromagnetic (AFM) state due to the canted or triangular magnetic structure. Under heating in the applied field, AFM structure transforms to the ferrimagnetic (FM) structure, that increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles do not show superparamagnetic behavior, but they transit to the paramagnetic state by the jump-like first order magnetic transition (JMT). This effect is a specific property of the magnetic nanoparticles isolated by inert material. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  19. Self-assembly and electrical characteristics of 4-pentynoic acid functionalized Fe3O4-γ-Fe2O3 nanoparticles on SiO2/n-Si

    NASA Astrophysics Data System (ADS)

    Baharuddin, Aainaa Aqilah; Ang, Bee Chin; Wong, Yew Hoong

    2017-11-01

    A novel investigation on a relationship between temperature-influential self-assembly (70-300 °C) of 4-pentynoic acid functionalized Fe3O4-γ-Fe2O3 nanoparticles (NPs) on SiO2/n-Si with electrical properties was reported with the interests for metal-oxide-semiconductor applications. X-ray diffractometer (XRD) analysis conveyed that 8 ± 1 nm of the NPs were assembled. Increasing heating temperature induced growth of native oxide (SiO2). Raman analysis confirmed the coexistence of Fe3O4-γ-Fe2O3. Attenuated Total Reflectance Infrared (ATR-IR) spectra showed that self-assembly occurred via Sisbnd Osbnd C linkages. While Sisbnd Osbnd C linkages were broken down at elevated temperatures, formations of Si-OH defects were amplified; a consequence of physisorbed surfactants disintegration. Atomic force microscopy (AFM) showed that sample with more physisorbed surfactants exhibited the highest root-mean-square (RMS) roughness (18.12 ± 7.13 nm) whereas sample with lesser physisorbed surfactants displayed otherwise (12.99 ± 4.39 nm RMS roughness). Field Emission Scanning Electron Microscope (FE-SEM) analysis showed non-uniform aggregation of the NPs, deposited as film (12.6 μm thickness). The increased saturation magnetization (71.527 A m2/kg) and coercivity (929.942 A/m) acquired by vibrating sample magnetometer (VSM) of the sample heated at 300 °C verified the surfactants' disintegration. Leakage current density-electric field (J-E) characteristics showed that sample heated at 150 °C with the most aggregated NPs as well as the most developed Sisbnd Osbnd C linkages demonstrated the highest breakdown field and barrier height at 2.58 × 10-3 MV/cm and 0.38 eV respectively. Whereas sample heated at 300 °C with the least Sisbnd Osbnd C linkages as well as lesser aggregated NPs showed the lowest breakdown field and barrier height at 1.08 × 10-3 MV/cm and 0.19 eV respectively. This study opens up better understandings on how formation and breaking down of covalent

  20. Polyaniline/Fe3O4-RGO Nanocomposites for Microwave Absorption

    NASA Astrophysics Data System (ADS)

    Mathew, Jithin; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.; Sabarish Narayanan, B.

    2018-02-01

    Fe3O4 nanoparticles were synthesized by co-precipitation of ferric chloride (FeCl3) and ferrous chloride (FeCl2). Reduced graphene oxide (RGO) was prepared by reducing the graphene oxide, which was synthesized by Hummer’s method, using hydrazine hydrate. Three nanocomposites based on sodium dodecyl benzene sulphonate (SDBS)-doped polyaniline were synthesized through in situ polymerization in the presence of the fillers (i) Fe3O4, (ii) reduced graphene oxide (RGO) and (iii) Fe3O4-decorated RGO respectively. The synthesized PANI and the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Their microstructures, electrical conductivities, and EMI shielding effectiveness were studied. The nanocomposite containing 10 % RGO showed the maximum electrical conductivity and the one with 10 % RGO and 10 % Fe3O4 showed the maximum EMI shielding effectiveness of 7.5 dB for a 1 mm thick sample.

  1. Developmental toxicity of Fe3O4 nanoparticles on cysts and three larval stages of Artemia salina.

    PubMed

    Zhu, Song; Xue, Ming-Yang; Luo, Fei; Chen, Wei-Chao; Zhu, Bin; Wang, Gao-Xue

    2017-11-01

    Using Artemia salina cysts (capsulated and decapsulated) and larvae (instar I, II and III) as experimental models, the potential effects of Fe 3 O 4 nanoparticles (Fe 3 O 4 -NPs) on marine ecosystems were investigated. Hatchability, mortality and a number of ethological, morphological and biochemical parameters were selected as end-points to define the toxic responses. Data showed that the hatching rates of capsulated and decapsulated cysts were significantly decreased (p < 0.01) following exposure to 600 mg/L for 24 and 36 h. The LC 50 values for instar II and III were 482 and 561 mg/L (could not be measured for instar I), and the EC 50 values for swimming inhibition of instar I, II and III were 474, 365 and 421 mg/L, respectively. Effects on hatchability, mortality and swimming were accounted for Fe 3 O 4 -NPs rather than iron ion released from the NPs. Instar II larvae showed the greatest sensitivity to Fe 3 O 4 -NPs, and followed by instar III, instar I, decapsulated cysts and capsulated cysts. Body lengths of instar I, II and III larvae were decreased in dose-dependent manners. Fe 3 O 4 -NPs attached onto the gills and body surface, resulting in irreversible damages. Reactive oxygen species, malondialdehyde content, total antioxidant capacity and antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) activities were substantially increased following exposure, indicating that toxic effects were related to oxidative stress. Mitochondrial malformation, cristae rupturing and membranous structure disruption were clearly observed after Fe 3 O 4 -NPs exposure. Fe 3 O 4 -NPs were ingested and well distributed in the gut, yolk and primary body cavity. Uptake kinetics data showed that the maximum Fe 3 O 4 -NPs content (16.4 mg/g) was reached at 30 h. The combined results so far indicate that Fe 3 O 4 -NPs have the potential to affect aquatic organisms when released into the marine ecosystems. Copyright © 2017 Elsevier Ltd. All rights

  2. Effect of Fe{sub 3}O{sub 4} nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sima, Wenxia, E-mail: cqsmwx@cqu.edu.cn; Song, He; Yang, Qing

    2015-12-15

    Addition of nanoparticles of the ferromagnetic material Fe{sub 3}O{sub 4} can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe{sub 3}O{sub 4} nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generationmore » and transportation of the space charge, especially the negative space charge.« less

  3. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    PubMed

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused.

  4. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for pesticide detection

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-04-01

    As a novel surface-enhanced Raman spectroscopic (SERS) nanocomposite, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles (NPs) were synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size were achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity was achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling a PEI shell via sonication. Furthermore, the Au@Ag particles were densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibited an excellent SERS behavior, reflected by the low detection of limit (p-ATP) at the 5 × 10-14 M level. Moreover, these nanocubes were used for the detection of thiram, and the detection limit can reach 5 × 10-11 M. Meanwhile, the U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in the rapid detection of chemical, biological, and environment pollutants with a simple portable Raman instrument at trace level.

  5. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Allam, Ayat A.; Sadat, Md Ehsan; Potter, Sarah J.; Mast, David B.; Mohamed, Dina F.; Habib, Fawzia S.; Pauletti, Giovanni M.

    2013-10-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid

  6. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Myeongjin; Kim, Jooheon

    2017-05-01

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe3O4), SiCF/Fe3O4, were prepared via the chemical deposition of Fe3O4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe3O4 electrodes were fabricated at different Fe3O4 feeding ratios to determine the optimal Fe3O4 content that can maintain a high total surface area of SiCF/Fe3O4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe3O4. The SiCF/Fe3O4 electrode fabricated with a Fe3O4/SiCF feeding ratio of 1.5:1 (SiCF/Fe3O4(1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g-1 at a scan rate of 5 mV s-1 with a rate performance of 81.8% from 5 to 500 mV s-1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe3O4(1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe3O4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe3O4(1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  7. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors.

    PubMed

    Kim, Myeongjin; Kim, Jooheon

    2017-05-12

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe 3 O 4 ), SiCF/Fe 3 O 4 , were prepared via the chemical deposition of Fe 3 O 4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe 3 O 4 electrodes were fabricated at different Fe 3 O 4 feeding ratios to determine the optimal Fe 3 O 4 content that can maintain a high total surface area of SiCF/Fe 3 O 4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe 3 O 4 . The SiCF/Fe 3 O 4 electrode fabricated with a Fe 3 O 4 /SiCF feeding ratio of 1.5:1 (SiCF/Fe 3 O 4 (1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 with a rate performance of 81.8% from 5 to 500 mV s -1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe 3 O 4 (1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe 3 O 4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe 3 O 4 (1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  8. Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe3O4 nanoparticle rings.

    PubMed

    Takeno, Yumu; Murakami, Yasukazu; Sato, Takeshi; Tanigaki, Toshiaki; Park, Hyun Soon; Shindo, Daisuke; Ferguson, R Matthew; Krishnan, Kannan M

    2014-11-03

    This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe 3 O 4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25 nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.

  9. Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Liu, Yongkang; Wang, Zhuo-Wei; Song, Yingpan; Wang, Minghua; Zhang, Zhihong; Liu, Chun-Sen

    2018-05-01

    We report on the synthesis of Co- and Fe-based bimetallic nanocatalysts embedded in mesoporous carbon and g-C3N4 nanosheets (denoted as Co3O4/Fe3O4/mC@g-C3N4) for selectively simultaneous determination of ascorbic acid (AA), dopamine acid (DA), and uric acid (UA). These electrocatalysts consisting of bimetallic Co-Fe alloy nanoparticles encapsulated in N-doped carbon matrix were prepared via pyrolysis of Co/Fe-MOFs after grinding with high amounts of melamine. Chemical/crystal structures suggest high contents of mesoporous carbon in calcinated Co3O4/Fe3O4/mC nanocomposites, which exhibited enhanced electrocatalytic activity toward small biomolecules. The intrinsic performances of Co/Fe-MOFs with large specific surface area and regular nodes in the two-dimensional nanostructured g-C3N4 nanosheets endowed the as-prepared series of Co3O4/Fe3O4/mC@g-C3N4 nanocomposites with remarkable electrocatalytic activities and high adsorption ability toward oxidation of AA, DA, and UA. The developed biosensors also showed long-term stability and high selectivity for targeted analytes, with satisfactory results on actual samples in human urine. The results indicate that the as-synthesized Co3O4/Fe3O4/mC@g-C3N4 nanostructure exhibits good electrocatalytic activity and potential applications in clinical diagnosis and biosensing.

  10. Bi-functional Au/FeS (Au/Co3O4) composite for in situ SERS monitoring and degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ma, Shuzhen; Cai, Qian; Lu, Kailing; Liao, Fan; Shao, Mingwang

    2016-01-01

    The bi-functional Au/FeS (Au/Co3O4) composite was fabricated by in situ reducing Au nanoparticles onto the surface of FeS (Co3O4). The as-prepared FeS possessed a multi-structure composed of plenty of nanoplates, which were coated by Au nanoparticles with an average size of 47.5 nm. While the Co3O4 showed a thin hexagonal sheet containing Au nanoparticles on its surface with an average size of 79.0 nm. Both the as-prepared Au/FeS and Au/Co3O4 composites exhibited excellent SERS performance, capable of enhancing the Raman signals of R6G molecules with the enhancement factor up to 1.81 × 106 and 7.60 × 104, respectively. Moreover, Au/FeS (Au/Co3O4) composite also has been verified to have intrinsic peroxidase-like activity, which could decompose H2O2 into hydroxyl radicals and then degrade organic pollutants into small molecules. Therefore, SERS can be used to real-time and in situ monitoring the degradation process of R6G molecules, employing the Au/FeS (Au/Co3O4) composite both as SERS substrate and catalyst.

  11. Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Xiong, Luyao; Yu, Xiang; He, Shuli; Zhang, Bo; Shen, Jingling

    2018-03-01

    A multifunctional terahertz (THz) wave modulator fabricated from Fe3O4 nanoparticle ferrofluids and metamaterials was characterized in externally applied magnetic fields. Specifically, modulation depths and frequency shifts by the wave modulators were examined. A 34% THz amplitude modulation depth was demonstrated and the absorption peak of the metamaterial induced a frequency shift of 33 GHz at low magnetic field intensities. It is anticipated that this device structure and its tunable properties will have many potential applications in THz filtering, modulation, and sensing.

  12. Pure dipolar-interacted CoFe{sub 2}O{sub 4} nanoparticles and their magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shi-tao; School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000; Ma, Yong-qing, E-mail: yqma@ahu.edu.cn

    2015-02-15

    Graphical abstract: The mono-dispersed CoFe{sub 2}O{sub 4} nanoparticles with the uniform size of 10.5 ± 2 nm were first synthesized and then they were embedded in amorphous SiO{sub 2} matrix with different CoFe{sub 2}O{sub 4} nanoparticles’ concentrations. The large coercivity (3056 Oe) and the remanence ratio (0.63) were obtained by suitably diluting CoFe{sub 2}O{sub 4} nanoparticles into the SiO{sub 2} matrix. The reciprocal of the absolute maximum of δm and the M{sub r}/M{sub s} ratio behave in the same trend (as shown in (e)), indicating that the M{sub r}/M{sub s} ratio was dominated by the interparticle dipolar interaction. The presentmore » work is meaningful for revealing the underlying mechanism in nano-scaled magnetic system and improving the magnetic performance. - Highlights: • The mono-dispersed CoFe{sub 2}O{sub 4} nanoparticles with the uniform size of 10.5 ± 2 nm were synthesized by the thermal decomposition of metals acetylacetonates in solvents with high boiling point. • The large coercivity (3056 Oe) and the remanence ratio (0.63) were obtained by diluting CoFe{sub 2}O{sub 4} nanoparticles into the SiO{sub 2} matrix with a suitable concentration. • The surface anisotropy and interparticle dipolar interaction affect the magnetic performance and magnetic ordering state. • It was observed that the M{sub r}/M{sub s} ratio was dominated by the interparticle dipolar interaction. - Abstract: The mono-dispersed and uniform CoFe{sub 2}O{sub 4} nanoparticles were synthesized by the thermal decomposition of Fe(acac){sub 3} and Co(acac){sub 2}. Then the CoFe{sub 2}O{sub 4} nanoparticles were diluted in amorphous SiO{sub 2} matrix with different CoFe{sub 2}O{sub 4} nanoparticles’ concentrations. All samples show the positive or negative exchange bias behavior, indicating the presence of canted spin layer at the CoFe{sub 2}O{sub 4} nanoparticles’ surface. The large effective anisotropy constant (3.38 × 10{sup 6} erg/cm{sup 3}) was observed

  13. Multifunctional Fe3O4/ZnO nanocomposites with magnetic and optical properties.

    PubMed

    Zou, Peng; Hong, Xia; Chu, Xueying; Li, Yajun; Liu, Yichun

    2010-03-01

    Multifunctional Fe3O4/ZnO nanocomposites were successfully synthesized through two-step solution-based methods. Fe3O4 nanoparticles were used as seeds for the deposit and growth of ZnO nanocrystals. Transmission electron microscopy (TEM) images, X-ray diffraction (XRD) patterns, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) were employed to observe the morphology, size, structure, and crystalline phase of the nanocomposites and confirm their chemical composition. The results of magnetization curves, resonant Raman scattering, and photoluminescence spectra revealed that the nanocomposites simultaneously possessed the super-paramagnetism of Fe3O4 and the multiphonon resonant Raman scattering and photoluminescence (PL) properties of ZnO. Compared with that of pure Fe3O4, the saturation magnetization of the Fe3O4 component within the nanocomposites was enhanced. The Raman spectroscopic fingerprint of ZnO component was preserved, and the fluorescent background was efficiently reduced. The interfacial effect was found to play an important role in modulating or improving the properties of the nanocomposites.

  14. Toxicity of PEG-Coated CoFe2O4 Nanoparticles with Treatment Effect of Curcumin

    NASA Astrophysics Data System (ADS)

    Akhtar, Shahnaz; An, Wenzhen; Niu, Xiaoying; Li, Kang; Anwar, Shahzad; Maaz, Khan; Maqbool, Muhammad; Gao, Lan

    2018-02-01

    In this work, CoFe2O4 nanoparticles coated with polyethylene glycol (PEG) were successfully synthesized via a hydrothermal technique. Morphological studies of the samples confirmed the formation of polycrystalline pure-phase PEG-CoFe2O4 nanoparticles with sizes of about 24 nm. Toxicity induced by CoFe2O4 nanoparticles was investigated, and biological assays were performed to check the toxicity effects of CoFe2O4 nanoparticles. Moreover, the healing effect of toxicity induced in living organisms was studied using curcumin and it was found that biochemical indexes detoxified and improved to reach its normal level after curcumin administration. Thus, PEG-coated CoFe2O4 synthesized through a hydrothermal method can be utilized in biomedical applications and curcumin, which is a natural chemical with no side effects, can be used for the treatment of toxicity induced by the nanoparticles in living organisms.

  15. Dispersed synthesis of uniform Fe3O4 magnetic nanoparticles via in situ decomposition of iron precursor along cotton fibre for Sudan dyes analysis in food samples.

    PubMed

    Bentahir, Yassine; Elmarhoum, Said; Salghi, Rachid; Algarra, Manuel; Ríos, Angel; Zougagh, Mohammed

    2017-11-01

    Fe 3 O 4 magnetic nanoparticles, with a negative charge surface, are known to have efficient adsorbent properties, but they tend to be agglomerated into larger aggregates or flocs, which can cause loss of specific area. The addition of cotton fibre, as a stabiliser in preparation of the Fe 3 O 4 nanoparticles, is able to efficiently reduce particle aggregation, and thus, effective particle size, resulting in much greater specific surface area and adsorption sites. Fe 3 O 4 nanoparticles synthesis was accomplished by in situ high-temperature decomposition of the precursor ferric ion in the presence of cotton fibre and ethylene glycol solvent. The morphology of Fe 3 O 4 nanoparticles was characterised by field emission scanning electron microscopy and X-ray diffraction, which confirmed that the magnetic nanoparticles are highly dispersed. These Fe 3 O 4 nanoparticles were used for clean-up and pre-concentration of Sudan dyes in chilli and hot red sauces, prior to their determination by capillary liquid chromatography diode array detection. A comparative study of analyte pre-concentration was conducted with magnetic nanoparticles prepared with and without cotton fibre showing that both solid phases adsorb the analytes, but higher recoveries were obtained when using cotton fibre which therefore was selected for extraction of Sudan dyes.

  16. Structural, optical and dielectric investigation of CdFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sagadevan, Suresh; Pal, Kaushik; Zaman Chowdhury, Zaira; Enamul Hoque, Md

    2017-07-01

    A simple thermal decomposition technique has been executed for the synthesis of cadmium ferrite (CdFe2O4) nanoparticles. With the help of x-ray diffraction; scanning electron microscopy, energy-dispersive x-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy the prepared nanoparticles were identified. The crystal size of the average particles aggregated and was found approximately to be 10-14 nm by means of XRD studies. However, the results of high-resolution transmission electron microscopy (HR-TEM) investigation ensured distinguished nanoparticles, and also the polycrystalline nature of those nanoparticles was confirmed by selected area diffraction (SAED) patterns. The scanning electron microscopy (SEM) images explored a random distribution of grains within the sample. Thin film surface topology of roughness and surface current measurement were studied by atomic force microscopy (TP-AFM, C-AFM). Hence, from the ultraviolet-visible (UV) spectroscopic absorption illustrated significant optical properties. Moreover, the optical energy band gap (E g) of CdFe2O4 nanoparticle was determined to be 1.74 eV. By studying the variation of dielectric constant and dielectric loss with respect to frequency, the CdFe2O4 nanoparticles electrical properties were analyzed. Analysis in the real and imaginary part of impedance explained their frequency and temperature dependence of the CdFe2O4 nanoparticles. The traditional solution-phase organometallic approach provides an effective way to synthesize high quality hydrophobic semiconductor-CdFe2O4 nanoparticles. Our simple, cost-effective approach is quite general, which is applicable to other nanomaterials, and it utilizes the currently mature in Nano-chemistry. The nanocomposite assemblies’ exhibit strong anisotropic optical and electrical properties are open up new possibilities in remarkable applications for optoelectronics in the near future.

  17. Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal.

    PubMed

    Guo, Liangqia; Ye, Peirong; Wang, Jing; Fu, Fengfu; Wu, Zujian

    2015-11-15

    3D graphene macroscopic gel synthesized via self-assembly of GO nanosheets under basic conditions at low temperature is modified with polydopamine and Fe3O4 nanoparticles. The modification of polydopamine can not only strengthen the 3D graphene-based macroscopic architecture but also enhance the loadage and binding ability of Fe3O4 nanoparticles. The synthesized 3D Fe3O4-graphene macroscopic composites are characterized by SEM, XRD, XPS, BET, Raman and magnetic property and used as a versatile adsorbent for sub-ppm concentration of As(III) and As(V) removal from aqueous solutions. The experimental results suggest that the synthesized 3D Fe3O4-graphene macroscopic composites are promising for treating low concentration of arsenic contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai

    2013-06-01

    Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e

  19. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    PubMed Central

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  20. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    PubMed

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  1. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-06-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K.

  2. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole.

    PubMed

    Niu, Hongyun; Zhang, Di; Zhang, Shengxiao; Zhang, Xiaole; Meng, Zhaofu; Cai, Yaqi

    2011-06-15

    Humic acid coated Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)/HA) were prepared for the removal of sulfathiazole from aqueous media. Fe(3)O(4)/HA exhibited high activity to produce hydroxyl (OH) radicals through catalytic decomposition of H(2)O(2). The degradation of sulfathiazole was strongly temperature-dependent and favored in acidic solution. The catalytic rate was increased with Fe(3)O(4)/HA dosage and H(2)O(2) concentration. When 3 g L(-1) of Fe(3)O(4)/HA and 0.39 M of H(2)O(2) were introduced to the aqueous solution, most sulfathiazole was degraded within 1h, and >90% of total organic carbon (TOC) were removed in the reaction period (6h). The major final products were identified as environmentally friendly ions or inorganic molecules (SO(4)(2-), CO(2), and N(2)). The corresponding degradation rate (k) of sulfathiazole and TOC was 0.034 and 0.0048 min(-1), respectively. However, when 3 g L(-1) of bare Fe(3)O(4) were used as catalyst, only 54% of TOC was eliminated, and SO(4)(2-) was not detected within 6h. The corresponding degradation rate for sulfathiazole and TOC was 0.01 and 0.0016 min(-1), respectively. The high catalytic ability of Fe(3)O(4)/HA may be caused by the electron transfer among the complexed Fe(II)-HA or Fe(III)-HA, leading to rapid regeneration of Fe(II) species and production of OH radicals. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effect of Fe3O4 addition on dielectric properties of LaFeO3 nano-crystalline materials synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Laysandra, H.; Triyono, D.

    2017-04-01

    Dielectric properties of nano-crystalline material LaFeO3.xFe3O4 with x = 0, 0.1, 0.2, 0.3, and 0.4 at.% have been studied by impedance spectroscopy method. LaFeO3 was synthesized by sol-gel method resulting nano-particle. Then, it was mixed with Fe3O4 powder. The mixture powder was pressed to form pellet and then sintered at 1300°C for 1 h to form nano-crystalline of LaFeO3.xFe3O4. X-ray diffraction characterization at room temperature for all samples show two phases i.e. perovskite LaFeO3 (orthorhombic) as a main phase and Fe3O4 (cubic) as second phase. It is found that the crystallite size of main phase increases with addition of Fe3O4 until 0.3 at.%. The electrical properties as a function of temperature (300-500 K) and frequency (100 Hz - 1 MHz) are presented in Nyquist and Bode plots. It is observed that from equivalent circuit and their parameters, dielectrical properties are contributed by grain and grain boundary. The dielectric constant, ε‧ were calculated by parallel plate method and their values reach up to 107 exhibiting typical colossal dielectric constant (CDC) material like behavior.

  4. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry.

    PubMed

    Asadpour-Zeynali, Karim; Mollarasouli, Fariba

    2017-06-15

    This work introduces a new electrochemical sensor based on polyvinyl pyrrolidone capped CoFe 2 O 4 @CdSe core-shell modified electrode for a rapid detection and highly sensitive determination of rifampicin (RIF) by square wave adsorptive stripping voltammetry. The new PVP capped CoFe 2 O 4 @CdSe with core-shell nanostructure was synthesized by a facile synthesis method for the first time. PVP can act as a capping and etching agent for protection of the outer surface nanoparticles and formation of a mesoporous shell, respectively. Another important feature of this work is the choice of the ligand (1,10-phenanthroline) for precursor cadmium complex that works as a chelating agent in order to increase optical and electrical properties and stability of prepared nanomaterial. The nanoparticles have been characterized by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-vis, photoluminescence (PL) spectroscopy, FT-IR, and cyclic voltammetry techniques. The PL spectroscopy study of CoFe 2 O 4 @CdSe has shown significant PL quenching by the formation of CoFe 2 O 4 core inside CdSe, this shows that CoFe 2 O 4 NPs are efficient electron acceptors with the CdSe. It is clearly observed that the biosensor can significantly enhance electrocatalytic activity towards the oxidation of RIF, under the optimal conditions. The novelty of this work arises from the new synthesis method for the core-shell of CoFe 2 O 4 @CdSe. Then, the novel electrochemical biosensor was fabricated for ultra-trace level determination of rifampicin with very low detection limit (4.55×10 -17 M) and a wide linear range from 1.0×10 -16 to 1.0×10 -7 M. The fabricated biosensor showed high sensitivity and selectivity, good reproducibility and stability. Therefore, it was successfully applied for the determination of ultra-trace RIF amounts in biological and pharmaceutical samples with

  5. A simple method to synthesize modified Fe3O4 for the removal of organic pollutants on water surface

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Li, Chuanhao; Wang, Juan; Zhang, Hui; Zhang, Jian; Shen, Yuhua; Li, Cun; Wang, Cuiping; Xie, Anjian

    2012-06-01

    In this article, a simple, economic and environment-friendly approach is explored to prepare Fe3O4 nanoparticles by using air oxidation at room temperature. Furthermore, the Fe3O4 magnetic nanoparticles (MNPs) have been modified with sodium oleate successfully to form super-hydrophobic surfaces. The alkali source played an important role in controlling the morphologies of Fe3O4 MNPs. Either Fe3O4 MNPs or sodium oleate modified Fe3O4 MNPs possessed good magnetic property, and the as-prepared modified Fe3O4 nanoparticles are both hydrophobic and lipophilic. Therefore, Fe3O4/sodium oleate could be dispersed stable in the oil medium and have been applied in the cleanup engine oil from the water surface. It will open up a potential and broad application in wastewater treatment.

  6. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging

    PubMed Central

    Cui, Xianjin; Belo, Salome; Krüger, Dirk; Yan, Yong; de Rosales, Rafael T.M.; Jauregui-Osoro, Maite; Ye, Haitao; Su, Shi; Mathe, Domokos; Kovács, Noémi; Horváth, Ildikó; Semjeni, Mariann; Sunassee, Kavitha; Szigeti, Krisztian; Green, Mark A.; Blower, Philip J.

    2014-01-01

    Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [18F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for 18F-fluoride and 100% for 64Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of 18F from NPs, but no sign of efflux of 64Cu. PMID:24768194

  7. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2014-12-01

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications.The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional

  8. Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection

    NASA Astrophysics Data System (ADS)

    Wu, Yihang; Song, Mengjie; Xin, Zhuang; Zhang, Xiaoqing; Zhang, Yu; Wang, Chunyu; Li, Suyi; Gu, Ning

    2011-06-01

    Dimercaptosuccinic acid (DMSA) modified ultra-small particles of iron oxide (USPIO) were synthesized through a two-step process. The first step: oleic acid (OA) capped Fe3O4 (OA-USPIO) were synthesized by a novel oxidation coprecipitation method in H2O/DMSO mixing system, where DMSO acts as an oxidant simultaneously. The second step: OA was replaced by DMSA to obtain water-soluble nanoparticles. The as-synthesized nanoparticles were characterized by TEM, FTIR, TGA, VSM, DLS, EDS and UV-vis. Hydrodynamic sizes and Peroxidase-like catalytic activity of the nanoparticles were investigated. The hydrodynamic sizes of the nanoparticles (around 24.4 nm) were well suited to developing stable nanoprobes for bio-detection. The kinetic studies were performed to quantitatively evaluate the catalytic ability of the peroxidase-like nanoparticles. The calculated kinetic parameters indicated that the DMSA-USPIO possesses high catalytic activity. Based on the high activity, immunohistochemical experiments were established: using low-cost nanoparticles as the enzyme instead of expensive HRP, Nimotuzumab was conjugated onto the surface of the nanoparticles to construct a kind of ultra-small nanoprobe which was employed to detect epidermal growth factor receptor (EGFR) over-expressed on the membrane of esophageal cancer cell. The proper sizes of the probes and the result of membranous immunohistochemical staining suggest that the probes can be served as a useful diagnostic reagent for bio-detection.

  9. Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies

    NASA Astrophysics Data System (ADS)

    Prasad, Cheera; Yuvaraja, Gutha; Venkateswarlu, Ponneri

    2017-02-01

    We have been developed facile and ecofriendly method for the synthesis of Fe3O4 magnetic nanoparticles (MNPs) using an aqueous extract of Pisum sativum peels (PS) is used as reducing and capping agent. The as synthesized PS-Fe3O4 MNPs are characterized by diverse techniques such as FTIR, powder XRD, TEM, BET and Raman spectroscopy measurements. The results show that the obtained Fe3O4 nanoparticles exhibits high specific surface area (∼17.6 m2/g) and agglomerated spherical in shape with the size range of 20-30 nm. The magnetic properties of PS-Fe3O4 MNPs sample clearly exhibits ferromagnetic nature with a saturation magnetization of 64.2 emu/g. Further, the catalytic properties of PS-Fe3O4 MNPs for degradation of Methyl orange (MO) dye in aqueous solution have been investigated by UV-visible spectroscopy. The results show that PS-Fe3O4 MNPs is an efficient catalyst for degradation of Methyl orange dye than previously reported ones.

  10. Superparamagnetic Fe3 O4 @SiO2 core-shell composite nanoparticles for the mixed hemimicelle solid-phase extraction of benzodiazepines from hair and wastewater samples before high-performance liquid chromatography analysis.

    PubMed

    Esmaeili-Shahri, Effat; Es'haghi, Zarrin

    2015-12-01

    Magnetic Fe3 O4 /SiO2 composite core-shell nanoparticles were synthesized, characterized, and applied for the surfactant-assisted solid-phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high-performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3 O4 nanoparticles were prepared by the chemical co-precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3 /H2 O as precipitant. Second, the surface of Fe3 O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3 O4 /SiO2 composite were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3 O4 /SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10-15 μgmL(-1) . The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. h-BN Nanosheets as 2D Substrates to Load 0D Fe3O4 Nanoparticles: A Hybrid Anode Material for Lithium-Ion Batteries.

    PubMed

    Duan, Zhi-Qiang; Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying; Zhu, Xiao-Dong

    2016-03-18

    h-BN, as an isoelectronic analogue of graphene, has improved thermal mechanical properties. Moreover, the liquid-phase production of h-BN is greener since harmful oxidants/reductants are unnecessary. Here we report a novel hybrid architecture by employing h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles, followed by phenol/formol carbonization to form a carbon coating. The resulting carbon-encapsulated h-BN@Fe3O4 hybrid architecture exhibits synergistic interactions: 1) The h-BN nanosheets act as flexible 2D substrates to accommodate the volume change of the Fe3O4 nanoparticles; 2) The Fe3O4 nanoparticles serve as active materials to contribute to a high specific capacity; and 3) The carbon coating not only protects the hybrid architecture from deformation but also keeps the whole electrode highly conductive. The synergistic interactions translate into significantly enhanced electrochemical performances, laying a basis for the development of superior hybrid anode materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis, structure and magnetic properties of porous magnetic composite, based on MCM-41 molecular sieve with Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolotilov, Sergey V.; Shvets, Oleksiy; Cador, Olivier

    2006-08-15

    Porous magnetic composites were prepared by the synthesis of molecular sieve MCM-41 in the presence of Fe{sub 3}O{sub 4} nanoparticles with average diameter of 15 nm. Nanoparticles were captured by porous silica matrix MCM-41, which resulted in their incorporation, as it was confirmed by TEM, SEM and X-ray diffraction. The materials possessed high surface area (392-666 m{sup 2} g{sup -1}), high pore volume (0.39-0.73 cm{sup 3} g{sup -1}) along with high magnetic response (M {sub S} up to 28.4 emu g{sup -1} at 300 K). Calcination of samples resulted in partial oxidation of Fe{sub 3}O{sub 4} to {alpha}-Fe{sub 2}O{sub 3}.more » The influence of nanoparticles content on sorption and magnetic properties of the composites was shown. No hysteresis was found for the samples at 300 K; at 5 K, H {sub C} was in the range 370-385 G for non-calcinated samples and 350-356 G for calcinated ones. - Graphical abstract: Schematic presentation of MCM-41/Fe{sub 3}O{sub 4} composite.« less

  13. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    NASA Astrophysics Data System (ADS)

    Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-11-01

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.

  14. Highly regenerable carbon-Fe3O4 core-satellite nanospheres as oxygen reduction electrocatalyst and magnetic adsorbent

    NASA Astrophysics Data System (ADS)

    Zhou, Wenqiang; Liu, Minmin; Cai, Chao; Zhou, Haijun; Liu, Rui

    2017-02-01

    We present the synthesis and multifunctional utilization of core-satellite carbon-Fe3O4 nanoparticles to serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. Starting from polydopamine (PDA) nanoparticles and Fe(NO3)3, carbon-Fe3O4 core-satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The synergistic combination of Fe3O4 and N-doped carbon endows the nanocomposite with high electrochemical activity in ORR and mainly four electrons transferred in reaction process. Furthermore, carbon-Fe3O4 nanoparticles used as magnetic adsorbent exhibit the efficient removal of Rhodamine B from an aqueous solution. The recovery and reuse of the adsorbent is demonstrated 5 times without any detectible loss in activity.

  15. Fe3O4@Au@mSiO2 as an enhancing nanoplatform for Rose Bengal photodynamic activity.

    PubMed

    Rosa-Pardo, I; Roig-Pons, M; Heredia, A A; Usagre, J V; Ribera, A; Galian, R E; Pérez-Prieto, J

    2017-07-27

    A novel nanoplatform composed of three types of materials with different functionalities, specifically core-shell Fe 3 O 4 @Au nanoparticles encapsulated near the outer surface of mesoporous silica (mSiO 2 ) nanoparticles, has been successfully synthesised and used to enhance the efficiency of a photosensitiser, namely Rose Bengal, in singlet oxygen generation. Fe 3 O 4 is responsible for the unusual location of the Fe 3 O 4 @Au nanoparticle, while the plasmonic shell acts as an optical antenna. In addition, the mesoporous silica matrix firmly encapsulates Rose Bengal by chemical bonding inside the pores, thus guaranteeing its photostability, and in turn making the nanosystem biocompatible. Moreover, the silica surface of the nanoplatform ensures further functionalisation on demand.

  16. Magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles for visible light photodegradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Suresh D., E-mail: suresh.dk@manipal.edu; Kumbar, Sagar; Menon, Samvit G.

    Highlights: • Phase pure, magnetic ZnFe{sub 2}O{sub 4}@ZnO nanoparticles synthesized with excellent yield. • ZnFe{sub 2}O{sub 4}@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe{sub 2}O{sub 4}@ZnO. • Excellent reusability of ZnFe{sub 2}O{sub 4}@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area ofmore » 41 m{sup 2}/g and visible light absorption make ZnFe{sub 2}O{sub 4}@ZnO nanoparticles a good solar photocatalyst. ZnFe{sub 2}O{sub 4}@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe{sub 2}O{sub 4}@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.« less

  17. Green synthesis of Fe3O4 nanoparticles using aqueous extracts of Pandanus odoratissimus leaves for efficient bifunctional electro-catalytic activity

    NASA Astrophysics Data System (ADS)

    Alajmi, Mohamed F.; Ahmed, Jahangeer; Hussain, Afzal; Ahamad, Tansir; Alhokbany, Norah; Amir, Samira; Ahmad, Tokeer; Alshehri, Saad M.

    2018-04-01

    Iron oxide (Fe3O4) nanoparticles (NPs) were prepared at room temperature by one-step synthesis via green chemistry using aqueous extracts of Pandanus odoratissimus leaves. Fe3O4 NPs show uniform particle size distribution with an average diameter of 5.0 nm. BET surface area and average pore diameter of the nanoparticles were found to be 150 m2/g and 3.0 nm, respectively. FTIR, Raman, EDAX and XPS studies were also carried out to confirm the phase purity of the prepared materials. Electrochemical water splitting reactions have been carried out using Fe3O4 NPs as electrocatalysts in 0.1 M KOH electrolyte solution. Polarization studies confirm dual nature of Fe3O4 electro-catalysts in water electrolysis for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Potentiodynamic polarization curves reveal low Tafel values of 295 and 126 mV/dec (± 2) for OER and ORR, respectively. The overpotential for water oxidation reaction was found to be 390 mV (± 5) at the current density of 1 mA/cm2 in 0.1 M KOH. Chronoamperometry and chronopotentiometry experiments were conducted for stability tests of the electrodes.

  18. Structural, magnetic and hyperfine characterization of ZnxFe3-xO4 nanoparticles prepared by sol-gel approach via inorganic precursors

    NASA Astrophysics Data System (ADS)

    Kotsikau, Dzmitry; Pankov, Vladimir; Petrova, Elena; Natarov, Valentin; Filimonov, Dmitry; Pokholok, Konstantin

    2018-03-01

    Structural characteristics and magnetic properties of ZnxFe3-xO4 (where x = 0; 0.09; 0.18; 0.45; 1) nanoparticles were studied with X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR) and vibrating sample magnetometry (VSM). Oxidation of Fe2+ ions, redistribution of Zn2+ and Fe3+ ions between octahedral and tetrahedral sites, and the formation of cation vacancies in spinel-type cubic structure of the obtained ZnxFe3-x-y□yO4 substitutional solid solutions were revealed by 57Fe Mössbauer spectroscopy. The nanoparticles synthesized via a modified sol-gel method using inorganic precursors have a size of 4-10 nm, single-phase composition, superparamagnetic behavior at room temperature (300 K) and a relatively hydrophilic surface to form stable aqueous suspensions. The maximum magnetization of 59 emu/g at 300 K corresponds to Zn0.18Fe2.82O4 composition. The listed features make the materials promising candidates for various biological and medical applications such as contrast-enhanced magnetic resonance imaging, hyperthermia of pathological tissues, controlled drug release, and separation of nucleic acids.

  19. Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Maleki-Ghaleh, H.; Aghaie, E.; Nadernezhad, A.; Zargarzadeh, M.; Khakzad, A.; Shakeri, M. S.; Beygi Khosrowshahi, Y.; Siadati, M. H.

    2016-06-01

    Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.

  20. Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism.

    PubMed

    Kataria, Navish; Garg, V K

    2018-06-04

    This study focused on the synthesis and characterization of novel magnetic iron oxide nanoparticles loaded sawdust carbon (Fe 3 O 4 /SC) and EDTA modified Fe 3 O 4 /SC (EDTA@Fe 3 O 4 /SC) nanocomposites (ncs) by low cost biogenic green synthesis approach and their application for Cd (II) removal from aqueous medium in batch mode. In isotherm studies, Langmuir and Freundlich models are best fitted to Cd (II) removal data. Langmuir maximum adsorption capacity of EDTA@Fe 3 O 4 /SC ncs was found to be 63.3, 22.4 and 25 mg/g that is greater than maximum adsorption capacity of Fe 3 O 4 /SC ncs that is 51, 18.9 and 15 mg/g at the adsorbent doses of 0.4, 1.2 and 2.0 g/L, respectively. Cd (II) adsorption rate is well explained by Pseudo-second order model. Cd (II) adsorption process is spontaneous and endothermic in nature expressed by Enthalpy, Entropy and Free Energy change. The results of regeneration studies showed that EDTA modified Fe 3 O 4 /SC ncs is promising, low cost and eco-friendly for heavy metal adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.

    PubMed

    Wang, Hong; Yang, Chi; Liu, Shu-Xin

    2014-09-01

    Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).

  2. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles.

    PubMed

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M

    2013-10-17

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid

  3. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  4. Metallic Nanoparticle (TiO2 and Fe3O4) Application Modifies Rhizosphere Phosphorus Availability and Uptake by Lactuca sativa.

    PubMed

    Zahra, Zahra; Arshad, Muhammad; Rafique, Rafia; Mahmood, Arshad; Habib, Amir; Qazi, Ishtiaq A; Khan, Saud A

    2015-08-12

    Application of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days. Different techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and Fourier transform infrared spectroscopy (FTIR) were used to monitor translocation and understand the possible mechanisms for phosphorus (P) uptake. The trends for P accumulation were different for roots (TiO2 > Fe3O4 > control) and shoots (Fe3O4 > TiO2 > control). Cystine and methionine were detected in the rhizosphere in Raman spectra. Affinities of NPs to adsorb phosphate ions, modifications in P speciation, and NP stress in the rhizosphere had possibly contributed to enhanced root exudation and acidification. All of these changes led to improved P availability and uptake by the plants. These promising results can help to develop an innovative strategy for using NPs for improved nutrient management to ensure food security.

  5. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Li, Chao; Han, Chao; Luo, Xiaogang; Shen, Liang; Xue, Yanan; Yu, Faquan

    2016-04-01

    In this work, magnetic Fe3O4 nanoparticles (NPs) were utilized to improve the mechanical and antibacterial properties of chitosan (CS)/gelatin (GE) composite nanofiber membranes. Homogeneous Fe3O4/CS/GE nanofibers were electrospun successfully. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the presence of well-dispersed Fe3O4 NPs in the composite nanofibers. Fourier transform infrared spectroscopy (FTIR) spectra revealed the effective interactions of Fe3O4 NPs to the composite matrix through hydrogen bonding. The improvement on the thermal stability of the Fe3O4/CS/GE was observed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), which is tightly correlated to strong filler-matrix adhesion. The incorporation of Fe3O4 NPs resulted in a substantial enhancement of mechanical properties. The optimum mechanical performance was demonstrated on 1 wt% Fe3O4/CS/GE nanofiber membranes, achieving 155% augment of Young's modulus, 128% increase of tensile strength, and 100% boost of toughness from CS/GE. The excellent mechanical enhancement can be explained by the effective dispersion of fillers and the filler-matrix interactions, which ensures the efficient load transfer from CS/GE matrix to Fe3O4 nanofillers. Moreover, zones of inhibition for Escherichia coli and Staphylococcus aureus expanded markedly with the supplement of Fe3O4 NPs. In all, nanofiber membranes made of Fe3O4/CS/GE composite with tailored mechanical and antibacterial properties appear a promising wound dressing material.

  6. Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Ebrahimi Fard, Ali; Zarepour, Atefeh; Zarrabi, Ali; Shanei, Ahmad; Salehi, Hossein

    2015-11-01

    Cancer is a group of disease characterized by uncontrolled growth and spread of abnormal cells in the body. The clinical treatments for cancer include surgery, chemotherapy and radiotherapy. Currently, employing new approaches for treatment has attracted more attentions. One of these approaches is sonodynamic therapy, which is an analogous approach based on the synergistic effect of ultrasound and a chemical component referred to as sonosensitizer. Recent years applications of nanotechnology have witnessed a tremendous expansion of research in medicine especially in treatment of cancers. The combination of sonodynamic therapy and nanotechnology can introduce a new way for cancer therapy. In this study, we used therapeutic ultrasonic waves with intensity of 1 MHz and different concentrations of Fe3O4 nanoparticles, as sonosensitizer, to investigate their combination effect on MCF-7 cell line. Briefly, we divided cells into four different groups; control, cells which got in touch with nanoparticles, cells that with exposure to ultrasound waves and cells which were influenced with combination of nanoparticles and ultrasonic waves. Finally, cell viability assay was used for detection of cytotoxicity effects. Experimental results revealed a significant decrease in viability of cells, which were affected by the combined action of ultrasound field and Fe3O4 nanoparticles, compared to the separate exposure of Fe3O4 nanoparticles or ultrasonic field. The synergic effect of ultrasound waves and Fe ions might be due to the production of toxic free radicals.

  7. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for detection of pesticide.

    PubMed

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-02-09

    As a novel SERS nanocomposities, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles have been synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size can be achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity were achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling PEI shell via sonication. Furthermore, the Au@Ag particles can be densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibit an excellent surface-enhanced Raman (SERS) behavior, reflected from low detection of limit (p-ATP) at 5×10-14 M level. Moreover, these nanocubes are used for detection of thiram and the detection limit can reach up to 5×10-11 M, while the rule of U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in rapid detection of chemical, biological and environment pollutants with a simple portable Raman instrument at trace level. © 2018 IOP Publishing Ltd.

  8. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    PubMed

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  9. The dynamic magnetoviscoelastic properties of biomineralized (Fe3O4) PVP-CMC hydrogel

    NASA Astrophysics Data System (ADS)

    Ray, Ayan; Saha, Nabanita; Saha, Petr

    2017-05-01

    The Polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC) based polymer matrix was used as a template for the preparation of magnetic hydrogel. This freshly prepared PVP-CMC hydrogel template was successfully mineralized by in situ synthesis of magnetic nanoparticles (Fe3O4) via chemical co-precipitation reaction using liquid diffusion method. The present study emphasizes on the rheological behavior of non-mineralized and mineralized PVP-CMC hydrogels. Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) pattern, Fourier transform infrared spectroscopy (FT-TR), Vibrating sample magnetometer (VSM) and dynamic magneto rheometer were used to study the morphological, physical, chemical and magnetic properties of nanoparticle (Fe3O4) filled PVP-CMC hydrogel respectively in order to monitor how Fe3O4 magnetic nanoparticles affects the mechanical properties of the hydrogel network. The storage (G') and loss (G") moduli with a complex viscosity of the system was measured using a parallel plate rheometer. Frequency and amplitude sweep with temperature variation was performed to determine the frequency and amplitude dependent magneto viscoelastic moduli for both hydrogel samples. A strong shear thinning effect was observed in both (non-mineralized and mineralized) PVP-CMC hydrogels, which confirm that Fe3O4 filled magnetic hydrogels, are pseudoplastic in nature. This Fe3O4 filled PVP-CMC hydrogel can be considered as stimuli-responsive soft matter that may be used as an actuator in medical devices.

  10. Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles.

    PubMed

    Kamińska, I; Sikora, B; Fronc, K; Dziawa, P; Sobczak, K; Minikayev, R; Paszkowicz, W; Elbaum, D

    2013-05-15

    A facile sol-gel synthesis of novel ZnO/MgO/Fe2O3 nanoparticles (NPs) is reported and their performance is compared to that of ZnO/MgO. Powder x-ray diffraction (XRD) patterns reveal the crystal structure of the prepared samples. The average particle size of the sample was found to be 4.8 nm. The optical properties were determined by UV-vis absorption and fluorescence measurements. The NPs are stable in biologically relevant solutions (phosphate buffered saline (PBS), 20 mM, pH = 7.0) contrary to ZnO/MgO NPs which degrade in the presence of inorganic phosphate. Superparamagnetic properties were determined with a superconducting quantum interference device (SQUID). Biocompatible and stable in PBS ZnO/MgO/Fe2O3 core/shell composite nanocrystals show luminescent and magnetic properties confined to a single NP at room temperature (19-24 ° C), which may render the material to be potentially useful for biomedical applications.

  11. Rapid and highly efficient preconcentration of Eu(III) by core-shell structured Fe3O4@humic acid magnetic nanoparticles.

    PubMed

    Yang, Shitong; Zong, Pengfei; Ren, Xuemei; Wang, Qi; Wang, Xiangke

    2012-12-01

    In this study, humic acid-coated Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)@HA MNPs) were synthesized using a chemical coprecipitation method and characterized in detail. The XRD analysis results showed that HA coating did not change the phase of Fe(3)O(4) cores. The TEM image suggested that Fe(3)O(4)@HA MNPs had nearly uniform size without the observation of aggregation. The Fe(3)O(4)@HA MNPs were stable in solution and could be easily separated from aqueous solution using a magnetic separation method. A batch technique was adopted to investigate the removal efficiency of Fe(3)O(4)@HA MNPs toward Eu(III) under various environmental conditions. The kinetic process of Eu(III) sorption on Fe(3)O(4)@HA MNPs reached equilibrium within <30 min. The fast sorption kinetics and high sorption amount were attributed to the plentiful surface sites provided by the surface-coated HA macromolecules. The Fe(3)O(4)@HA MNPs was able to remove ~99% of Eu(III) in aqueous solution at pH 8.5. Except for SO(4)(2-) anions, the coexisting electrolyte ions had no significant competition effects on the removal of Eu(III) by Fe(3)O(4)@HA MNPs. The obvious sorption-desorption hysteresis suggested that the removal of Eu(III) was dominated by inner-sphere surface complexation. The sorption isotherm agreed well with the Langmuir model, having a maximum sorption capacity of 6.95 × 10(-5) mol g(-1). The leaching test showed that the Eu(III)-loaded Fe(3)O(4)@HA colloids were capable to maintain high thermodynamic stability for long aging times. The findings herein suggested that Fe(3)O(4)@HA MNPs could be potentially used as a highly effective material for the enrichment and preconcentration of radionuclide Eu(III) or other trivalent lanthanides/actinides in geological repositories or in nuclear waste management.

  12. One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury(II) removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shen, Xiaofang; Wang, Qin; Chen, WenLing; Pang, Yuehong

    2014-10-01

    Cysteine functionalized Fe3O4 magnetic nanoparticles (Cys-Fe3O4 MNPs) were prepared facilely for Hg(II) removal from aqueous solutions. Using Fe2+ as precursors, air as oxidant and Cys as protectant, this novel material was one-pot synthesis at room temperature by oxidation-precipitation method with the assistance of sonication. The MNPs were characterized by TEM, VSM, FTIR, X-ray powder diffraction analysis (XRD) and TGA methods. Under the optimum experimental conditions, the removal efficiency was as high as 95% and the maximum sorption capacity is found to be 380 mg/mol for Hg(II). Study on adsorption kinetics shows that adsorption of Hg(II) onto Cys-Fe3O4 MNPs follows pseudo-first-order kinetic model and the adsorption rate constant was 0.22 min-1. Additionally, the Hg(II)-loaded Cys-Fe3O4 MNPs could be easily regenerated up to 95% using 1.0 M acetic acid. These results indicated that Cys-Fe3O4 MNPs is a potentially attractive material for the removal of Hg(II) from water.

  13. Highly efficient and porous TiO2-coated Ag@Fe3O4@C-Au microspheres for degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Shen, Mao; Chen, Suqing; Jia, Wenping; Fan, Guodong; Jin, Yanxian; Liang, Huading

    2016-12-01

    In this paper, we reported a novel hierarchical porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe3O4 magnetic embedded Ag core (Ag@Fe3O4), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe3O4@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe3O4@C-PEI (Ag@Fe3O4@C-Au), and an ordered porous TiO2 structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO2 and Ag@Fe3O4@C@TiO2 microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  14. Mössbauer study and magnetic properties of MgFe2O4 crystallized from the glass system B2O3/K2O/P2O5/MgO/Fe2O3

    NASA Astrophysics Data System (ADS)

    Shabrawy, S. El; Bocker, C.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2017-01-01

    An iron containing magnesium borate glass with the mol% composition 51.7 B2O3/9.3 K2O /1 P2O5/27.6MgO/10.4Fe2O3was prepared by the conventional melts quenching method followed by a thermal treatment process at temperatures in the range from 530 to 604 °C.The thermally treated samples were characterized by X-ray diffraction, scanning and transmission electron microscopy. It was shown that superparamagnetic MgFe2O4 nanoparticles were formed during thermal treatment. The size of the spinel type crystals was in the range from 6 to 15 nm. Mössbauer spectra of the powdered glass ceramic samples and the extracted nanoparticles after dissolving the glass matrix in diluted acid were recorded at room temperature. The deconvolution of the spectra revealed the crystallization of two spinel phases MgFe2O4 (as a dominant phase) and superparamagnetic maghemite, γ-Fe2O3 (as a secondary phase). Room temperature magnetic measurements showed that, increasing the crystallization temperature changed the superparamagnetic behavior of the samples to ferrimagnetic behavior. The Curie temperatures of the samples were measured and showed a higher value than that of the pure bulk MgFe2O4.

  15. Multifunctional hybrid Fe 2O 3-Au nanoparticles for efficient plasmonic heating

    DOE PAGES

    Murph, Simona E. Hunyadi; Larsen, George K.; Lascola, Robert J.

    2016-02-20

    We describe the synthesis and properties of multifunctional Fe 2O 3-Au nanoparticles produced by a wet chemical approach and investigate their photothermal properties using laser irradiation. Here, the composite Fe 2O 3-Au nanoparticles retain the properties of both materials, creating a multifunctional structure with excellent magnetic and plasmonic properties.

  16. Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik-Fields multicomponent reaction

    NASA Astrophysics Data System (ADS)

    Rostamnia, Sadegh; Doustkhah, Esmail

    2015-07-01

    Water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 were successfully synthesized. β-Cyclodextrin acts as stabilizer and structure directing agent of Fe3O4. Subsequently, the dispersion of Fe3O4@β-CD was applied for the Kabachnik-Fields multicomponent reaction through three-component synthesis of an amine, aldehyde, and dimethylphosphonate. β-CD had also a drastic effect in accelerating the catalysis of phosphonate synthesis. By this protocol, phosphonate derivatives were synthesized in high yields and the catalyst was recycled for 10 successful runs.

  17. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior

    NASA Astrophysics Data System (ADS)

    Sun, Pengfei; Hui, Cai; Azim Khan, Rashid; Du, Jingting; Zhang, Qichun; Zhao, Yu-Hua

    2015-07-01

    Biochar shows great promise for use in adsorbing pollutants. However, a process for enhancing its adsorption capacity and re-collection efficiency is yet to be further developed. Hence, in this study, we developed a type of biochar coated with magnetic Fe3O4 nanoparticles (i.e., magnetic biochar (MBC)) and assessed its use for crystal violet (CV) adsorption as well as its recycling potential. The coating of Fe3O4 nanoparticles, which was not only on the surface, but also in the interior of biochar, performed two functions. Firstly, it produced a saturation magnetization of 61.48 emu/g, which enabled the biochar being efficiently re-collected using a magnet. Secondly, it significantly enhanced the adsorption capacity of the biochar (from 80.36 to 99.19 mg/g). The adsorption capacity of the MBC was determined to be the largest by so far (349.40 mg/g) for an initial CV concentration of 400 mg/L, pH of 6.0, and temperature of 40 °C, and the adsorption capacity of re-collected MBC was 73.31 mg/g. The adsorption of CV by the MBC was found to be a spontaneous and endothermic physical process in which the intraparticle diffusion was the limiting step. These findings inspire us to use other similar materials to tackle the menace of pollutions.

  18. Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Lari, Hadi; Morsali, Ali; Heravi, Mohammad Momen

    2018-05-01

    Using density functional theory (DFT), noncovalent interactions and four mechanisms of covalent functionalization of melphalan anticancer drug onto γ-Fe2O3 nanoparticles have been studied. Quantum molecular descriptors of noncovalent configurations were investigated. It was specified that binding of melphalan onto γ-Fe2O3 nanoparticles is thermodynamically suitable. Hardness and the gap of energy between LUMO and HOMO of melphalan are higher than the noncovalent configurations, showing the reactivity of drug increases in the presence of γ-Fe2O3 nanoparticles. Melphalan can bond to γ-Fe2O3 nanoparticles through NH2 (k1 mechanism), OH (k2 mechanism), C=O (k3 mechanism) and Cl (k4 mechanism) groups. The activation energies, the activation enthalpies and the activation Gibbs free energies of these reactions were calculated. Thermodynamic data indicate that k3 mechanism is exothermic and spontaneous and can take place at room temperature. These results could be generalized to other similar drugs.

  19. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  20. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline

    NASA Astrophysics Data System (ADS)

    Abbas, Mohamed; Torati, Sri Ramulu; Kim, Cheolgi

    2015-07-01

    A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency.A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the

  1. Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyan; He, Zhenghong; Mao, Hong; Zhang, Ting; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Meng, Xiangshen; Li, Jian

    2017-11-01

    Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3ṡ6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent "dead layer", which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which "awakened" the "dead layer" on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.

  2. Immobilization of PMIDA on Fe3O4 magnetic nanoparticles surface: Mechanism of bonding

    NASA Astrophysics Data System (ADS)

    Demin, Alexander M.; Mekhaev, Alexander V.; Esin, Alexander A.; Kuznetsov, Dmitry K.; Zelenovskiy, Pavel S.; Shur, Vladimir Ya.; Krasnov, Victor P.

    2018-05-01

    The mechanism of N-phosphonomethyl iminodiacetic acid (PMIDA) binding with the Fe3O4 magnetic nanoparticle (MNPs) surface by Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetry was comprehensive studied. To study of microstructure, size and core structure of synthesized nanoparticles the scanning electron microscopy, X-ray diffraction analysis and Raman spectroscopy were carried out. A new scheme for the tridentate bonding of the phosphonomethyl derivative with surface Fe atoms involving unequal Psbnd Osbnd Fe bonds was proposed. The mechanism of thermal decomposition of PMIDA molecules on the MNP surface was studied using a thermogravimetric analyzer combined with infrared spectrometer. It was shown for the first time that during the thermal treatment of phosphonomethyl-modified MNPs, PMIDA molecules are not desorbed from the surface of MNPs but gradually decompose. We believe that obtained in this work data will be useful for a deeper understanding of the mechanisms of phosphonic acid derivatives interaction with MNPs, as well as in the design of new biomedical materials, in which the conjugation of biomolecules with carboxyl groups of PMIDA-modified MNPs is assumed.

  3. Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Lak, Aidin; Niculaes, Dina; Anyfantis, George C.; Bertoni, Giovanni; Barthel, Markus J.; Marras, Sergio; Cassani, Marco; Nitti, Simone; Athanassiou, Athanassia; Giannini, Cinzia; Pellegrino, Teresa

    2016-09-01

    Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe1-xO/Fe3O4 core-shell nanocubes to Fe3O4 phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the Fe1-xO core to Fe3O4, as evidenced by structural analysis including high resolution electron microscopy and Rietveld analysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent Fe3O4 domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to γ-Fe2O3. In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 °C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity.

  4. Highly visible-light-responsive Cu2O/rGO decorated with Fe3O4@SiO2 nanoparticles as a magnetically recyclable photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Shou-Heng; Lu, Jun-Sheng; Yang, Sheng-Wei

    2018-07-01

    The rhombic dodecahedral cuprous oxide-reduced graphene oxide/core–shell Fe3O4@SiO2 composites (denoted as rCu2O-rGO/Fe3O4@SiO2) are successfully synthesized facilely via a wet-chemical route. The resulting rCu2O-rGO/Fe3O4@SiO2 combines the unique structure of Cu2O, electronic characteristics of reduced graphene oxide (rGO) and magnetic property of Fe3O4@SiO2 to be an effective and recoverable photocatalyst for the degradation of methyl orange (MO). The obtained results show that rCu2O-rGO/Fe3O4@SiO2 is capable of completely degrading MO in the presence of a very low catalyst concentration (0.125 g l‑1) within a short time (60 min) under visible light compared to the reported catalysts. The observations may be due to the distinctive interfacial structures of rhombic dodecahedral Cu2O nanoparticles connected to rGO sheets that can enhance the separation of photogenerated electron–hole pairs, stabilize the Cu2O and increase MO adsorption, as evidenced by a variety of spectroscopic analyses (transmission electron microscopy, x-ray photoelectron spectroscopy and photoluminescence). More importantly, these efficient photocatalysts can easily be recovered under a magnetic field and remain highly photoactive towards the degradation of MO after cyclic tests, and may be promising photocatalysts for practical applications in the solar-energy purification of wastewater.

  5. Highly visible-light-responsive Cu2O/rGO decorated with Fe3O4@SiO2 nanoparticles as a magnetically recyclable photocatalyst.

    PubMed

    Liu, Shou-Heng; Lu, Jun-Sheng; Yang, Sheng-Wei

    2018-07-27

    The rhombic dodecahedral cuprous oxide-reduced graphene oxide/core-shell Fe 3 O 4 @SiO 2 composites (denoted as rCu 2 O-rGO/Fe 3 O 4 @SiO 2 ) are successfully synthesized facilely via a wet-chemical route. The resulting rCu 2 O-rGO/Fe 3 O 4 @SiO 2 combines the unique structure of Cu 2 O, electronic characteristics of reduced graphene oxide (rGO) and magnetic property of Fe 3 O 4 @SiO 2 to be an effective and recoverable photocatalyst for the degradation of methyl orange (MO). The obtained results show that rCu 2 O-rGO/Fe 3 O 4 @SiO 2 is capable of completely degrading MO in the presence of a very low catalyst concentration (0.125 g l -1 ) within a short time (60 min) under visible light compared to the reported catalysts. The observations may be due to the distinctive interfacial structures of rhombic dodecahedral Cu 2 O nanoparticles connected to rGO sheets that can enhance the separation of photogenerated electron-hole pairs, stabilize the Cu 2 O and increase MO adsorption, as evidenced by a variety of spectroscopic analyses (transmission electron microscopy, x-ray photoelectron spectroscopy and photoluminescence). More importantly, these efficient photocatalysts can easily be recovered under a magnetic field and remain highly photoactive towards the degradation of MO after cyclic tests, and may be promising photocatalysts for practical applications in the solar-energy purification of wastewater.

  6. Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract

    NASA Astrophysics Data System (ADS)

    Sari, I. P.; Yulizar, Y.

    2017-04-01

    Magnetite nanoparticles (MNPs) attracted the attention of many researchers due to their unique properties. In this research, nanoscale magnetite particles have been successfully synthesized through an environmentally friendly method using aqueous extract of Graptophyllum pictum leaf (GPLE). In MNPs formation, GPLE acted as a base source and capping agent. Alkaloids in GPLE were hydrolyzed in water and hydroxilated Fe2+ to form Fe3O4 nanoparticles powder through calcination. After the addition of leaf extract, MNPs formation was observed by color change from pale yellow to dark brown. The synthesized nanoparticles were characterized using UV-Vis spectrophotometer, X-Ray diffraction (XRD), and Fourier transform infra red (FTIR) spectroscopy. The results confirmed that MNPs formation indicated the surface plasmon resonance at a maximum wavelength, λmax 291 nm. The average crystallite size is 23.17 nm. The formed MNPs through green synthesis method promise in various medical applications such as drug carrier and targeted therapy.

  7. Liquid-phase deposition of TiO2 nanoparticles on core-shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jian-Qi; Guo, Shao-Bo; Guo, Xiao-Hua; Ge, Hong-Guang

    2015-07-01

    To prevent and avoid magnetic loss caused by magnetite core phase transition involving in high-temperature crystallization of amorphous sol-gel TiO2, core-shell Fe3O4@SiO2@TiO2 composite spheres were synthesized via non-thermal process of TiO2. First, core-shell Fe3O4@SiO2 particles were synthesized through a solvothermal method followed by a sol-gel process. Second, anatase TiO2 nanoparticles (NPs) were directly coated on Fe3O4@SiO2 surface by liquid-phase deposition method, which uses (NH4)2TiF6 as Ti source for TiO2 and H3BO3 as scavenger for F- ions at 50 °C. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs with an average size of 6-8 nm were uniformly deposited on the Fe3O4@SiO2 surface. Magnetic hysteresis curves indicate that the composite spheres exhibit superparamagnetic characteristics with a magnetic saturation of 32.5 emu/g at room temperature. The magnetic TiO2 composites show high photocatalytic performance and can be recycled five times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

  8. Magnetic and interface properties of the core-shell Fe3O4/Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Baskakov, A. O.; Solov'eva, A. Yu.; Ioni, Yu. V.; Starchikov, S. S.; Lyubutin, I. S.; Khodos, I. I.; Avilov, A. S.; Gubin, S. P.

    2017-11-01

    Core-shell Fe3O4/Au nanostructures were obtained with an advanced method of two step synthesis and several complementary methodics were applied for investigation structural and magnetic properties of the samples. Along with X-ray diffraction and transmission electron microscopy, electron diffraction, optical, Raman and Mössbauer spectroscopy were used for nanoparticle characterization. It was established that the physical and structural properties Fe3O4/Au nanocomposites are specific of intrinsic properties of gold and magnetite. Mössbauer and Raman spectroscopy data indicated that magnetite was in a nonstoichiometric state with an excess of trivalent iron both in the initial Fe3O4 nanoparticles and in the Fe3O4/Au nanocomposites. As follows from the Mössbauer data, magnetic properties of iron ions in the internal area (in core) and in the surface layer of magnetite nanoparticles are different due to the rupture of exchange bonds at the particles surface. This leads to decrease in an effective magnetic moment at the surface. Gold atoms at the interface of the composites interact with dangling bonds of magnetite and stabilize the magnetic properties of the surface layers of magnetite.

  9. Ni-Fe2O4 nanoparticles as contrast agents for magnetic resonance imaging.

    PubMed

    Ahmad, Tanveer; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun

    2011-07-01

    Reported herein is the synthesis of a dextran coating on nickel ferrite (Ni-Fe2O4) nanoparticles via chemical coprecipitation. The aqueous solution of the synthesized nanoparticles showed good colloidal stability, and no precipitate was observed 20 months after the synthesis. The coated nanoparticles were found to be cylindrical in shape in the TEM images, and showed a uniform size distribution with an average length and diameter of 17 and 4 nm, respectively. The coated particles were evaluated as potential T1 and T2 contrast agents for MRI. The T1 and T2 relaxations of the hydrogen protons in the water molecules in an aqueous solution of dextran-coated Ni-Fe2O4 nanoparticles were studied. It was found that the T1 relaxivity for the aqueous solution of dextran-coated nanoparticles was slightly greater than that of a commercial Gd-DTPA-BMA contrast agent. The T2 relaxivity, however, was almost twice that of the commercial Gd-DTPA-BMA contrast agent. Animal experimentation also demonstrated that the dextran-coated Ni-Fe2O4 nanoparticles are suitable for use as either T1 or T2 contrast agents in MRI.

  10. Magnetic resonance of the NiFe2O4 nanoparticles in the gigahertz range

    PubMed Central

    2013-01-01

    We report an adjustable magnetic resonance frequency from 1.45 to 2.54 GHz for NiFe2O4 nanoparticles which were prepared by a sol–gel process. X-ray diffraction and scanning electron microscopy results indicate that the samples are polycrystalline nanoparticles, and the size of the particles increases obviously with the thermal treatment temperature. The consequence of the surface composition suggests that the oxygen defects are present in the nanoparticle surface, and this surface magnetic state can show a strong surface anisotropy. With decreasing size of the particle, the surface magnetic effect is predominant, resulting in an increase of resonance frequency for NiFe2O4 nanoparticles. This finding provides a new route for NiFe2O4 materials that can be used in the gigahertz range. PMID:24083340

  11. Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.

    2017-11-01

    In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.

  12. Crystal structures and magnetic properties of magnetite (Fe{sub 3}O{sub 4})/Polyvinyl alcohol (PVA) ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardiyanti, Harlina; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Kato, Takeshi

    2016-04-19

    Ribbon of magnetite (Fe{sub 3}O{sub 4})/Polyvinyl Alcohol (PVA) nanoparticles have been successfully fabricated with various concentration of PVA synthesized by co-precipitation method. Particle size of nanoparticles Fe{sub 3}O{sub 4} sample and ribbon Fe{sub 3}O{sub 4}/PVA 25% sample is about 9.34 nm and 11.29 nm, respectively. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization value decreased from 76.99 emu/g to 15.01 emu/g and coercivity increased from 49.30 Oe to 158.35 Oe as increasing concentration of PVA. Atomic Force Microscopy (AFM) analysis showed that encapsulated PVA given decreasing agglomeration, controlled shape of nanoparticles Fe{sub 3}O{sub 4} more spherical and dispersed. Surfacemore » roughness decreased with increasing concentration of PVA.« less

  13. A comparative study on the morphology of P3HT:PCBM solar cells with the addition of Fe3O4 nanoparticles by spin and rod coating methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wenluan; Nguyen, Ngoc A.; Murray, Roy; Xin, Jiyuan; Mackay, Michael E.

    2017-09-01

    Our previous study presented up to 20% power conversion efficiency (PCE) enhancement of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells under the Fe3O4 nanoparticles (NPs) self-assembly (SA) effect by spin coating. Fe3O4 NPs (about 11 nm hydrodynamic diameter) form a thin layer at the top interface of the light absorbing active layer, which results in the generation of PCBM rich region improving the charge transport (Zhang et al. Sol Energ Mat Sol C 160:126-133, 2017). In order to investigate the feasibility of this Fe3O4 NPs SA effect under large-scale production condition, a smooth rod was implemented to mimic roll-to-roll coating technique and yield active layers having about the same thickness as the spin-coated ones. Small angle neutron scattering and grazing incidence X-ray diffraction were employed finding out similar morphologies of the active layers by these two coating techniques. However, rod-coated solar cell's PCE decreases with the addition of Fe3O4 NPs compared with the one without them. This is because PCBM rich region is not created at the top interface of the active layer due to the absence of Fe3O4 NPs, which is attributed to the weak convective flow and low diffusion rate. Moreover, in the rod-coated solar cells, the presence of Fe3O4 NPs causes decrease in P3HT crystallinity, thus the charge transport and the device performance. Our study confirms the role of spin coating in the Fe3O4 NPs SA effect and enables researchers to explore this finding in other polymer nanocomposite systems.

  14. Synthesis of SiO2-Coated Fe3O4 Nanoparticles Using Ultrasound and Its Application in DNA Extraction from Formalin-Fixed, Paraffin-Embedded Human Cancer Tissues

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Minh; Nam, Nguyen Hoang; Huyen, Nguyen Thi; Van Anh, Nguyen Thi; Nghia, Phan Tuan; Khoa, Nguyen Ba; Toan, Nguyen Linh; Luong, Nguyen Hoang

    2017-06-01

    SiO2-coated Fe3O4 nanoparticles (Fe3O4@SiO2 NPs) were successfully synthesized using ultrasound in order to extract DNA from cancer tissues for application in diagnostics. The core 10.7-nm-diameter Fe3O4 nanoparticles were synthesized by co-precipitation of Fe3+ and Fe2+ as reaction substrates and NH4OH as precipitant, then coated with a thin layer of amorphous silica by a modified Stober method. Further SiO2 coating using alkaline hydrolysis of tetraethyl orthosilicate in ethanol and water mixture was accelerated in the presence of a 37-kHz ultrasound, resulting in the NPs having different sizes of 14.5 nm (version M1), 24.4 nm (version M2), and 34.9 nm (version M3) with saturation magnetization values of 50.2 emu/g, 18.6 emu/g, 10.3 emu/g, respectively. Among the three Fe3O4@SiO2 NPs versions, the M1 NPs allowed extraction of DNAs from 10 mg formalin-fixed and paraffin-embedded (FFPE) tissues of nasopharyngeal carcinoma patients with the highest recovery of about 100-500 ng/ μl and good purity (A260/A280: 1.8-1.9). The extracted DNAs could be used as templates for downstream amplification of 252-bp sequencing specifically for the Braf cancer biomarker gene using polymerase chain reaction (PCR), as well as detection of the pathogenic Epstein-Barr virus (EBV) and the human papilloma-virus (HPV) using real-time PCR. DNA extraction recoveries of both EBV and HPV using Fe3O4@SiO2 NPs M1 were significantly better that those using commercialized Fe3O4@SiO2 microbeads, as indicated by lower threshold cycles of all fluorescent signals including fluorescein amidite (FAM) dye representative for EBV infection, hexachlorofluorescein (HEX) dye representative for β-globin (internal control), and SYBR Green dye representative for HPV infection in tested clinical samples from patients with nasopharyngeal carcinoma (NPC).

  15. Surface passivation of Fe{sub 3}O{sub 4} nanoparticles with Al{sub 2}O{sub 3} via atomic layer deposition in a rotating fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Chen-Long; Deng, Zhang; Cao, Kun

    2016-07-15

    Iron(II,III) oxide (Fe{sub 3}O{sub 4}) nanoparticles have shown great promise in many magnetic-related applications such as magnetic resonance imaging, hyperthermia treatment, and targeted drug delivery. Nevertheless, these nanoparticles are vulnerable to oxidation and magnetization loss under ambient conditions, and passivation is usually required for practical applications. In this work, a home-built rotating fluidized bed (RFB) atomic layer deposition (ALD) reactor was employed to form dense and uniform nanoscale Al{sub 2}O{sub 3} passivation layers on Fe{sub 3}O{sub 4} nanoparticles. The RFB reactor facilitated the precursor diffusion in the particle bed and intensified the dynamic dismantling of soft agglomerates, exposing every surfacemore » reactive site to precursor gases. With the aid of in situ mass spectroscopy, it was found that a thicker fluidization bed formed by larger amount of particles increased the residence time of precursors. The prolonged residence time allowed more thorough interactions between the particle surfaces and the precursor gas, resulting in an improvement of the precursor utilization from 78% to nearly 100%, even under a high precursor feeding rate. Uniform passivation layers around the magnetic cores were demonstrated by both transmission electron microscopy and the statistical analysis of Al mass concentrations. Individual particles were coated instead of the soft agglomerates, as was validated by the specific surface area analysis and particle size distribution. The results of thermogravimetric analysis suggested that 5 nm-thick ultrathin Al{sub 2}O{sub 3} coatings could effectively protect the Fe{sub 3}O{sub 4} nanoparticles from oxidation. The x-ray diffraction patterns also showed that the magnetic core crystallinity of such passivated nanoparticles could be well preserved under accelerated oxidation conditions. The precise thickness control via ALD maintained the saturation magnetization at 66.7 emu/g with a 5

  16. Thermal stability of γ-Fe2O3 nanoparticles and their employment for sensing of acetone vapours

    NASA Astrophysics Data System (ADS)

    Luby, Š.; Ivančo, J.; Jergel, M.; Švec, P., Jr.; Kotlár, M.; Kostiuk, D.; Halahovets, J.; Kollár, J.; Mosnáček, J.; Majková, E.

    2017-12-01

    Stability of γ-Fe2O3 nanoparticles-based films upon an isochronal annealing in air was investigated by x-ray diffraction, differential scanning calorimetry, and thermogravimetry. The γ-α transformation temperature increased owing to the nanoscaling of Fe2O3; the higher stability of the γ phase was explained on the ground of the surface free energy of nanoparticles (with the size of about 6.4 nm). Further, chemiresistors based on the Fe2O3 nanoparticle bilayer prepared by the Langmuir-Schaefer method were fabricated and examined in terms of their sensitivity to acetone vapours down to 500 ppb concentration in air.

  17. Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis

    NASA Astrophysics Data System (ADS)

    Cahyana, A. H.; Fitria, D.; Ardiansah, B.; Rahayu, D. U. C.

    2017-04-01

    A novel heterogeneous organobase catalyst of Fe3O4/SiO2-guanidine was prepared in three stages. First, Fe3O4 nanoparticle was obtained by co-precipitation method using seaweed Sargassum Sp. as natural reductant. Fe3O4 was then coated by SiO2 using TEOS as silica source, resulting Fe3O4/SiO2. Finally, Fe3O4/SiO2-Guanidine was obtained by modifying Fe3O4/SiO2 with guanidine in the suitable reaction condition. This organobase catalyst was characterized by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Particle Size Analyzer (PSA). The material was then used as a highly active catalyst in aldol condensation reaction between acetophenone and cinnamaldehyde to produce 1,5-diphenylpenta-2,4-dien-1-one. The structure elucidation of the organic product was confirmed by UV-Vis, FTIR, and LC-MS.

  18. Magnetic properties of M0.3Fe2.7O4 (M = Fe, Zn and Mn) ferrites nanoparticles

    NASA Astrophysics Data System (ADS)

    Modaresi, Nahid; Afzalzadeh, Reza; Aslibeiki, Bagher; Kameli, Parviz

    2018-06-01

    In the present article a comparative study on the structural and magnetic properties of nano-sized M0.3Fe0.7Fe2O4 (M = Fe, Zn and Mn) ferrites have been reported. The X-ray diffraction (XRD) patterns show that the crystallite size depends on the cation distribution. The Rietveld refinement of XRD patterns using MAUD software determines the distribution of cations and unit cell dimensions. The magnetic measurements show that the maximum and minimum value of saturation magnetization is obtained for Zn and Mn doped samples, respectively. The peak temperature of AC magnetic susceptibility of Zn and Fe doped samples below 300 K shows the superparamagnetic behavior in these samples at room temperature. the AC susceptibility results confirm the presence of strong interactions between the nanoparticles which leads to a superspin glass state in the samples at low temperatures.

  19. Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao

    2018-01-01

    Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.

  20. Crystal-growth kinetics of magnetite (Fe3O4) nanoparticles with Ostwald Ripening Model approach

    NASA Astrophysics Data System (ADS)

    Utami, S. P.; Fadli, A.; Sari, E. O.; Addabsi, A. S.

    2018-04-01

    Magnetite (Fe3O4) nanoparticles is a magnetic nanomaterial that have potential properties to be applied as drug delivery The purpose of this study was to determine the influence of time and temperature synthesis of magnetie characteristics and determine its crystal growth kinetics model with Ostwald ripening model approach. Magnetite nanoparticles synthesized from FeCl3, citrate, urea and polyethylene glycol with hydrothermal method at 180, 200 and 220 °C for 1,3,5,7,9 and 12 hours. Characterization by X-ray Diffraction (XRD) indicated that magnetite formed at temperatures of 200 and 220 °C. Magnetite crystallite diameter obtained was 10-29 nm. Characterization by Transmission Electron Mycroscope (TEM) shows that magnetite nanoparticles have uniform size and non-agglomerated. Core-shell shaped particles formed at 200 °C and 220 °C for 3 hours. Irregular shape obtained at 220 °C for 12 hour synthesis with particle diameter about 120 nm. Characterization using Vibrating Sample Magnetometer (VSM) shown that magnetite has super paramagnetism behaviour with the highest saturation magnetization (Ms) was 70.27 emu/g. magnetite crystal growth data at temperature of 220 °C can be fitted by Ostwald ripening growth model with growth controlled by the dissolution of surface reaction (n≈4) with the percent error of 2.53%.

  1. Magneto-optical and catalytic properties of Fe3O4@HA@Ag magnetic nanocomposite

    NASA Astrophysics Data System (ADS)

    Amir, Md.; Güner, S.; Yıldız, A.; Baykal, A.

    2017-01-01

    Fe3O4@HA@Ag magnetic nanocomposites (MNCs) were successfully synthesized by the simple reflux method for the removal of azo dyes from the industrial aqueous media. Fe3O4@HA@AgMNCs exhibited high catalytic activity to reduce MB within 20 min from the waste water. The obtained materials were characterized by the means of different techniques. Powder X-ray diffraction (XRD) analysis confirmed the single-phase of Fe3O4 spinel structure. SEM and TEM analysis indicated that Fe3O4@HA@AgMNCs were nanoparticles like structure with small agglomeration. TG result showed that the products contained 9% of HA. The characteristic peaks of HA at 1601 cm-1 and 1703 cm-1 was observed by the means of FT-IR spectra of Fe3O4@HA@AgMNCs. The hysteresis (σ-H) curves revealed Fe3O4@HA@Ag MNCs exhibit a typical superparamagnetic characteristic with a saturation magnetization of 59.11 emu/g and measured magnetic moment is 2.45 μB. The average magnetic particle dimension (Dmag) is 13.25 nm. In accordance, the average crystallite and particle dimensions were obtained as 11.50 nm and 13.10 nm from XRD and TEM measurements, respectively. Magnetocrystalline anisotropy was offered as uniaxial and calculated effective anisotropy constant (Keff) is 2.96×105 Erg/g. The blocking temperature was estimated as 522 K. The size-dependent saturation magnetization suggests the existence of a magnetically dead layer as 0.793 nm for Fe3O4@HA@Ag MNCs. The UV-vis diffuse reflectance spectroscopy (DRS) and Kubelka-Munk theory were applied to determine the optical properties of powder samples. The direct optical energy band gap (Eg) values were estimated from Tauc plots between 1.62 eV and 2.12 eV.

  2. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance

    PubMed Central

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-01-01

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg−1, a high reversible specific capacity of 1055.20 mAhg−1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg−1 when cycled at the current density of 1000 mAg−1, indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries. PMID:27296103

  3. Effects of coating molecules on the magnetic heating properties of Au-Fe3O4 heterodimer nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ogasawara, J.; Himukai, H.; Itoh, T.

    2016-10-01

    In this paper, we report the heating properties of gold-magnetite (Au-Fe3O4) heterodimer nanoparticles (NPs) subjected to an alternating magnetic field. The Au-Fe3O4 NPs coated with oleic acid and oleylamine (OA) were synthesized through a method that combines seed mediation and high-temperature decomposition. The coating was replaced with dimercaptosuccinic acid (DMSA) by the ligand-exchange method. The specific absorption rates (SARs) for the OA- and DMSA-coated Au-Fe3O4 NPs coated with OA and DMSA at room temperature were determined through the calorimetric and magnetometric methods. SAR depended on the square of the magnetic field H up to an H value of 4 kA/m. The absolute value of the SAR for DMSA-coated NPs is about fivefold higher than that of the OA-coated NPs. The AC magnetic hysteresis measurements showed the recovery of the magnetic volume and the decrease in the magnetic anisotropy of the DMSA-coated NPs relative to those of the OA-coated NPs. These results suggest that the protective agent influences the magnetic properties of magnetite NPs via gold NPs.

  4. Novel yolk-shell-structured Fe3O4@γ-AlOOH nanocomposite modified with Pd nanoparticles as a recyclable catalyst with excellent catalytic activity

    NASA Astrophysics Data System (ADS)

    Cui, Xueliang; Zheng, Yunfeng; Tian, Meng; Dong, Zhengping

    2017-09-01

    A novel yolk-shell-structured material (Fe3O4@γ-AlOOH-YSMs) with hierarchical γ-AlOOH flakes as the mesoporous shell and Fe3O4 nanoparticles (NPs) in the hollow core was prepared by using Fe3O4@SiO2 NPs as the seeds as well as NaAlO2 and urea as the precursor. The prepared Fe3O4@γ-AlOOH-YSMs were used as a catalyst support for fabricating a Pd/Fe3O4@γ-AlOOH-YSMs nanocatalyst with no obvious aggregation of the Pd NPs. The Pd/Fe3O4@γ-AlOOH-YSMs nanocatalyst was utilized for the catalytic reduction of the widely used and highly toxic 4-nitrophenol, rhodamine B, methylene blue, and methyl orange; and showed excellent catalytic activity as compared with other noble-metal-based catalysts. Furthermore, the Pd/Fe3O4@γ-AlOOH-YSMs nanocatalyst also can be easily separated from the reaction mixture and reused for at least ten times without any obvious decrease in the catalytic activity, indicating its reusability and stability.

  5. Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles.

    PubMed

    Long, Jie; Zhang, Bao; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Xie, Zhengjun; Jin, Zhengyu

    2018-01-15

    In this study, pullulanase was firstly immobilized by covalent bonding onto chitosan/Fe 3 O 4 nanoparticles or encapsulation in sol-gel after bonding onto chitosan/Fe 3 O 4 nanoparticles, and then the immobilized pullulanase was used for the effective production of resistant starch (RS). The highest RS content (35.1%) was obtained under the optimized condition of pH 4.4, enzyme concentration of 10ASPU/g and hydrolysis time of 12h when debranched by free pullulsanase, indicating that RS content was significantly (p<0.05) increased when compared to native starch (4.3%) and autoclaved starch (12.5%). Under these conditions, the immobilized pullulanase (10ASPU/g dry starch) yielded higher RS content compared to free enzyme (10ASPU/g dry starch), especially, the pullulanse immobilized by sol-gel encapsulation yielded the highest RS content (43.4%). Moreover, compared to starches hydrolyzed by free pullulanase, starches hydrolyzed by immobilized pullulanase showed a different saccharide profile of starch hydrolysate, including a stronger peak C (MW=5.0×10 3 ), as well as exhibited an additional absorption peak around 140°C. Reusability results demonstrated that pullulanase immobilized by sol-gel encapsulation had the advantages of producing higher RS content as well as better operational stability compared to pullulanase immobilized by cross-linking. The resulting enhanced RS content generated by the process described in this work could be used as an adjunct in food processing industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    PubMed Central

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe3O4 combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe3O4 combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe3O4 combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe3O4 inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe3O4 combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model. PMID:19421372

  7. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice.

    PubMed

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (MNP-Fe(3)O(4)) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 x 10(7) cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe(3)O(4) combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe(3)O(4) combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe(3)O(4) combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe(3)O(4) inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe(3)O(4) combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.

  8. Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate.

    PubMed

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-01-01

    Novel Cu@Fe 3 O 4 core-shell nanoparticles prepared via a simple reduction method were evaluated for degradation of oxytetracycline (OTC) in pre-treated leachate (L p-TREA ) (leachate treated by conventional methods). Changes in the characteristics of dissolved organic matter (DOM) in the leachate were also investigated to gain a better understanding of the effects of DOM on the performance of Cu@Fe 3 O 4 . An excellent OTC degradation of >99% was achieved within 30 min under conditions of 1 g/L Cu@Fe 3 O 4 , 20 mg/L OTC, 20 mM H 2 O 2 , and initial pH 3.0, which was similar to the efficiency obtained in deionized water (90% even at pH 9.05). Humic acid (HA) and fulvic acid (FA) were completely degraded at initial pH 3, while aromatic protein (AP) with 32.7% of 1-3 kDa constituents were totally transformed to 0.5-1 kDa compounds, and 17% < 0.5 kDa material was degraded. The OTC removal rate decreased gradually as Cu@Fe 3 O 4 was repeatedly used, but it was significantly enhanced when Cu@Fe 3 O 4 was washed after five uses to remove the organic matter on its surface. The results suggest that Cu@Fe 3 O 4 is a promising and effective catalyst for pharmaceutical and personal care product degradation in landfill leachates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

    PubMed

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-05-22

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.

  10. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system

    PubMed Central

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-01-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe3+ can be achieved to regenerate Fe2+. Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe2+ and Fe3+. All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds. PMID:26000975

  11. One-pot synthesis of LaFeO3-NiFe2O4 nanocomposite ceramic by egg-white method and its magnetic and dielectric properties

    NASA Astrophysics Data System (ADS)

    Muthu, K. Sudalai; Lakshminarasimhan, N.; Perumal, P.

    2017-10-01

    A facile, one-pot synthesis of nanocomposite of LaFeO3-NiFe2O4 was demonstrated by using egg-white method. The same method was adopted to synthesize the individual component oxide nanoparticles of LaFeO3 (LFO) and NiFe2O4 (NFO). The phase formation of individual components and the nanocomposite was confirmed using powder X-Ray diffraction (XRD) technique. The measured room temperature magnetic properties of LFO, NFO and LFO-NFO nanoparticles revealed an enhancement in the properties of the nanocomposite. The dielectric behaviours of LFO, NFO and LFO-NFO pellets sintered at different temperatures such as 800, 900 and 1000 °C were investigated and correlated with the microstructures.

  12. Synthesis and photochemical properties of ferrotitanate In4FeTi3O13.5 with layer structure

    NASA Astrophysics Data System (ADS)

    Liu, Xuanxuan; Huang, Yanlin; Qin, Chuanxiang; Seo, Hyo Jin

    2018-01-01

    In4FeTi3O13.5 (InTi0.75Fe0.25O3.375) semiconductor was prepared via sol-gel citrate-complexation synthesis. This ferrotitanate derives from a solid-solution with InFeO3:In2Ti2O7 = 2:3. Phase formation and crystal structure of the sample were confirmed via XRD Rietveld refinement. Structural analyses indicated that there were two dimensional layers in the structure. The mutual repulsion in the layers induces great displacements of oxygen ions. The optical properties of In4FeTi3O13.5 nanoparticles were investigated. The direct allowed band gap (2.56 eV) shows a characteristic charge-transfer (CT) transitions of (O2p + Fe3d) → (Ti/Fe)3d in visible-light region. The band structure and energy positions were discussed. In4FeTi3O13.5 nanoparticles are demonstrated to be efficient for the photodegradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The photocatalytic activities were attributed to the special layer structure and the catalytic mediators of multivalent Ti4+/3+ and Fe3+/2+ confirmed by XPS measurements.

  13. Fe 3 O 4 Nanoparticles Anchored on Carbon Serve the Dual Role of Catalyst and Magnetically Recoverable Entity in the Aerobic Oxidation of Alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Longlong; Zheng, Bin; Wang, Xiang

    2016-01-13

    Carbon supported γ-Fe2O3 nanoparticle (γ-Fe2O3/C) possessing both superparamagnetism and activating molecular oxygen properties were prepared by an ammonia-assisted precipitation method. It could catalyze the selective oxidation of various benzyl alcohols with air as oxidant source, and could be easily recycled with an external magnet separation. The correlation between the intrinsic properties of γ-Fe2O3 nanoparticles and the catalytic performance was investigated with a series of characterizations. It shows that the oxidation state of γ-Fe2O3 nanoparticles were facile to be changed, which should be related to its inverse spinel type crystal structure with vacant cation sites. These γ-Fe2O3 nanoparticles should be themore » active sites and responsible for the high activity of γ-Fe2O3/C in the air oxidation of alcohols. The formation of γ-Fe2O3 nanoparticle was controlled by precipitation agent and carbon support. Using ammonia ethanol solution as precipitation agent, the hydrolysis rate of iron species could be decreased. The surface functional groups of carbon support could act as chelating sites for iron species, controlling the nucleation and growth of the γ-Fe2O3 nanoparticles in the preparation process. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.« less

  14. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    PubMed

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Magnetic glass-film based on single-nanosize 𝜺 -Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Yoshikiyo, Marie; Namai, Asuka; Nakagawa, Kosuke; Ohkoshi, Shin-ichi

    2017-05-01

    We report a magnetic thin film of single-nanosize ɛ-Fe2O3 in SiO2 matrix. The glass-film was prepared by sintering a silica coated iron oxide hydroxide on a quartz substrate in air. The glass-film consists of ɛ-Fe2O3 of 8.8 nm size, and its thickness was 570 nm (0.57 μm) with a roughness of 10 nm (0.01 μm). UV-vis spectrum showed that the glass-film has small absorbance of 0.043 at 500 nm. The magneto-optical effect was investigated, and Faraday ellipticity showed a magnetic hysteresis loop with a coercive field of 3.0 ± 0.2 kOe. Furthermore, single-nanosize ɛ-Fe2O3 without silica was prepared as a reference sample, and ferroelectricity was observed. Therefore, the present thin glass-film consists of single-nanosize ferroelectric-ferromagnetic nanoparticles.

  16. Facile solvothermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for pH-responsive drug delivery and magnetic resonance imaging contrast agents.

    PubMed

    Zhao, Guanghui; Wang, Jianzhi; Peng, Xiaomen; Li, Yanfeng; Yuan, Xuemei; Ma, Yingxia

    2014-02-01

    We report a facile fabrication of a host-metal-guest coordination-bonding system in a mesostructured Fe3O4/chitosan nanoparticle that can act as a pH-responsive drug-delivery system. The mesostructured Fe3O4/chitosan was synthesized by a solvothermal approach with iron(III) chloride hexahydrate as a precursor, ethylene glycol as a reducing agent, ammonium acetate as a porogen, and chitosan as a surface-modification agent. Subsequently, doxorubicin (DOX), acting as a model drug (guest), was loaded onto the mesostructured Fe3O4/chitosan nanoparticles, with chitosan acting as a host molecule to form the NH2-Zn(II)-DOX coordination architecture. The release of DOX can be achieved through the cleavage of coordination bonds that are sensitive to variations in external pH under weakly acidic conditions. The pH-responsive nature of the nanoparticles was confirmed by in vitro releases and cell assay tests. Furthermore, the relaxation efficiency of the nanoparticles as high-performance magnetic resonance imaging contrast agents was also investigated. Experimental results confirm that the synthesized mesostructured Fe3O4/chitosan is a smart nanovehicle for drug delivery owing to both its pH-responsive nature and relaxation efficiency. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Polyethylene glycol coated CoFe{sub 2}O{sub 4} nanoparticles: A potential spinel ferrite for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbe, Ashok V.; Birajdar, Shankar D.; Jadhav, K. M., E-mail: drjadhavkm@gmail.com

    2015-06-24

    The structural and magnetic properties of the polyethylene glycol (PEG) coated cobalt spinel ferrite (CoFe{sub 2}O{sub 4}) nanoparticles have been reported in the present study. CoFe{sub 2}O{sub 4} nanoparticles were prepared by sol-gel auto-combustion method using citric acid + ethylene glycol as a fuel. The prepared powder of cobalt ferrite nanoparticles was annealed at 600°C for 6h and used for further study. The structural characterization of CoFe{sub 2}O{sub 4} nanoparticles were carried out by X-ray diffraction technique. The X-ray analysis confirmed the formation of single phase cubic spinel structure. The crystallite size, Lattice constant and X-ray density of the PEGmore » coated CoFe{sub 2}O{sub 4} nanoparticles were calculated by using XRD data. The presence of PEG on CoFe{sub 2}O{sub 4} nanoparticles and reduced agglomeration in the CoFe{sub 2}O{sub 4} nanoparticles were revealed by SEM studies. The magnetic properties were studied by pulse field hysteresis loop tracer technique at a room temperature. The magnetic parameters such as saturation magnetization, remanence magnetization, coercivity etc have been obtained. These magnetic parameters were get decreased by PEG coating.« less

  18. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    NASA Astrophysics Data System (ADS)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  19. Canted spin structure and the first order magnetic transition in CoFe2O4 nanoparticles coated by amorphous silica

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Starchikov, S. S.; Gervits, N. E.; Korotkov, N. Yu.; Dmitrieva, T. V.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Lee, Jiann-Shing; Wang, Cheng-Chien

    2016-10-01

    The functional polymer (PMA-co-MAA) latex microspheres were used as a core template to prepare magnetic hollow spheres consisting of CoFe2O4/SiO2 composites. The spinel type crystal structure of CoFe2O4 ferrite is formed under annealing, whereas the polymer cores are completely removed after annealing at 450 °C. Magnetic and Mössbauer spectroscopy measurements reveal very interesting magnetic properties of the CoFe2O4/SiO2 hollow spheres strongly dependent on the particle size which can be tuned by the annealing temperature. In the ground state of low temperatures, the CoFe2O4 nanoparticles are in antiferromagnetic state due to the canted magnetic structure. Under heating in the applied field, the magnetic structure gradually transforms from canted to collinear, which increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles (2.2-4.3 nm) do not show superparamagnetic behavior but transit from the magnetic to the paramagnetic state by a jump-like magnetic transition of the first order This effect is a specific property of the magnetic nanoparticles isolated by inert material, and can be initiated by internal pressure creating at the particle surface. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  20. Bottom-up meets top-down: tailored raspberry-like Fe3O4-Pt nanocrystal superlattices.

    PubMed

    Qiu, Fen; Vervuurt, René H J; Verheijen, Marcel A; Zaia, Edmond W; Creel, Erin B; Kim, Youngsang; Urban, Jeffrey J; Bol, Ageeth A

    2018-03-29

    Supported catalysts are widely used in industry and can be optimized by tuning the composition, chemical structure, and interface of the nanoparticle catalyst and oxide support. Here we firstly combine a bottom up colloidal synthesis method with a top down atomic layer deposition (ALD) process to achieve a raspberry-like Pt-decorated Fe3O4 (Fe3O4-Pt) nanoparticle superlattices. This nanocomposite ensures the precision of the catalyst/support interface, improving the catalytic efficiency of the Fe3O4-Pt nanocomposite system. The morphology of the hybrid nanocomposites resulting from different cycles of ALD was monitored by scanning transmission electron microscopy, giving insight into the nucleation and growth mechanism of the ALD process. X-ray photoelectron spectroscopy studies confirm the anticipated electron transfer from Fe3O4 to Pt through the nanocomposite interface. Photocurrent measurement further suggests that Fe3O4 superlattices with controlled decoration of Pt have substantial promise for energy-efficient photoelectrocatalytic oxygen evolution reaction. This work opens a new avenue for designing supported catalyst architectures via precisely controlled decoration of single component superlattices with noble metals.

  1. Fabrication of Fe3O4 Nanoparticle-coalesced Hydroxylated Multi-walled Carbon Nanotubes for the Analysis of Strychnine in Human Serum.

    PubMed

    Feng, Zufei; Xu, Yuehong; Wei, Shuguang; Zhang, Bao; Guan, Fanglin; Li, Shengbin

    2015-01-01

    A magnetic carbon nanomaterial for Fe3O4-modified hydroxylated multi-walled carbon nanotubes (Fe3O4-MWCNTs-OH) was prepared by the aggregating effect of Fe3O4 nanoparticles on MWCNTs-OH, and this material was combined with high-performance liquid chromatography (HPLC)/photodiode array detector (PAD) to determine strychnine in human serum samples. Some important parameters that could influence the extraction efficiency of strychnine were optimized, including the extraction time, amounts of Fe3O4-MWCNTs-OH, pH of sample solution, desorption solvent and desorption time. Under optimal conditions, the recoveries of spiked serum samples were between 98.3 and 102.7%, and the relative standard deviations (RSDs) ranged from 0.9 to 5.3%. The correlation coefficient was 0.9997. The LODs and LOQs of strychnine were 6.2 and 20.5 ng mL(-1), at signal-to-noise ratios of 3 and 10, respectively. These experimental results showed that the proposed method is feasible for the analysis of strychnine in serum samples.

  2. Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl

    NASA Astrophysics Data System (ADS)

    He, Jun; Deng, Lianwen; Liu, Sheng; Yan, Shuoqing; Luo, Heng; Li, Yuhan; He, Longhui; Huang, Shengxiang

    2017-12-01

    The magnetic insulator Fe3O4-modified flaky Fe85Si9.5Al5.5 (FeSiAl) powders with significantly enhanced electromagnetic wave absorption properties in the frequency range of 2-8 GHz were prepared by chemical co-precipitation. X-ray diffraction (XRD) and scanning electron microscopy (SEM) have confirmed the formation of nanoparticles Fe3O4 precipitated on the flake-shaped FeSiAl. The electromagnetic measurements of the modified flakes presents a nearly invariable complex permeability and decreased complex permittivity in the 2-8 GHz, as well as improved impedance matching performance. More importantly, an excellent microwave absorbing performance with the bandwidth (RL <-10 dB) of 5.36 GHz is achieved in modified sample with the thickness of 1.5 mm, which is a promising microwave absorbing material in 2-8 GHz.

  3. Synthesis and characterization of Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a magnetic drug delivery system

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad; Bigham, Ashkan; Hassanzadeh-Tabrizi, S. A.; Abbastabar Ahangar, H.

    2017-10-01

    Mixed spinel ferrite nanoparticles are being applied in biomedical applications due to their biocompatibility, antibacterial activity, particular magnetic and electronic properties with chemical and thermal stabilities. The Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles are synthesized through the thermal treatment method. Polyvinyl alcohol (PVA) is used as the capping agent to stabilize the particles and prevent their agglomeration. The synthesized nanoparticles are characterized through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, field emission scanning electron microscopy (FESEM), and transmission electron microscope (TEM). The magnetic characterization is made on a vibrating sample magnetometer (VSM), which displayed super-paramagnetic behavior of the synthesized sample. Potential application of the Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a drug delivery agent is assessed in vitro by estimating their release properties. The obtained results indicate that the amount of ibuprofen (IBU) adsorbed into the nanocarrier of Cu0.3Zn0.5Mg0.2Fe2O4 is 104 mg/g and the drug release is sustained up to 72 h.

  4. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  5. Synthesis, Characterization, and Application of Core–Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents

    PubMed Central

    2015-01-01

    Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM–1 s–1 at 3T, a high affinity to [18F]-fluoride or radiometal-bisphosphonate conjugates (e.g., 64Cu and 99mTc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging. PMID:26172432

  6. Structural and Magnetic Studies of Thermally Treated NiFe2O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghosh, Surajit; Patel, Prayas Chandra; Gangopadhyay, Debraj; Sharma, Poornima; Singh, Ranjan K.; Srivastava, P. C.

    2017-12-01

    The heat treatment of nanoparticles can have a direct effect on their particle sizes, which, in turn, can influence many of their structural and magnetic properties. Here, we report the effect of sintering temperature on the chemically synthesized high-quality NiFe2O4 nanoparticles. The structural studies show the formation of pure NiFe2O4 nanoparticles with the space group Fd{\\bar{3}}m . The inverse spinel structure was also confirmed from the lattice vibrations analyzed from Raman and Fourier transform infrared spectroscopy (FTIR) spectra. The presence of strong exchange interactions was detected from the temperature-dependent magnetization study. Moreover, at higher sintering temperatures, the grain growth due to fusion of several smaller particles by coalescing their surfaces enhances the crystallinity and its magnetocrystalline anisotropy. Coercivity and saturation magnetization were found to depend significantly on the sintering temperature, which was understood in the realm of the formation of single-domain-like structure and change in magnetocrystalline anisotropy at higher sintering temperatures.

  7. Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Lv, Xvdan; Li, Guohui; Pang, Zengyuan; Li, Dawei; Lei, Luo; Lv, Pengfei; Mushtaq, Muhammad; Wei, Qufu

    2018-05-01

    For flexible film supercapacitor, high areal capacitance is a main evaluating indicator. In this paper, bacterial cellulose (BC) with special three-dimensional structure was used as the natural flexible base material. Fe3O4 nanoparticles with average diameter of 20 nm were synthesized on the surface of BC fibers. The conductive path polypyrrole (PPy) was introduced as shell of BC/Fe3O4 fibers to further improve the pseudo capacitance in 1 mol/L H2SO4 solution. Besides, the BC/Fe3O4@PPy was used for supercapacitor application in acid electrolyte, and delivered higher areal capacitance compared to other Fe3O4 composites in previous reports. The obtained BC/Fe3O4@PPy film showed excellent mechanical strength (tensile strength reached 11 MPa), high areal specific capacitance (5.4 F cm-2 at active mass of 8.4 mg cm-2), and long cycle life (1.95 F cm-2 over 3500 cycles).

  8. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-André; Petoral, Rodrigo M., Jr.; Söderlind, Fredrik; Klasson, A.; Engström, Maria; Veres, Teodor; Käll, Per-Olof; Uvdal, Kajsa

    2007-10-01

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG-Gd2O3 and PEG-silane-SPGO (Gd2O3,< 40 nm diameter). The small and narrow size distribution of US-Gd2O3 was confirmed with TEM (~3 nm) and DLS. PEG-silane-US-Gd2O3 relaxation parameters were twice as high as for Gd-DTPA and the r2/r1 ratio was 1.4. PEG-silane-SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG-Gd2O3. Treatment of DEG-US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  9. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.

    2011-12-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  10. Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion

    NASA Astrophysics Data System (ADS)

    Yadav, Raghvendra Singh; Kuřitka, Ivo; Vilcakova, Jarmila; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Tkacz, Jakub; Enev, Vojtěch; Hajdúchová, Miroslava

    2017-08-01

    In this study, NiFe2O4 nanoparticles were synthesized using a honey-mediated sol-gel combustion method. The synthesized nanoparticles and samples annealed at 800 °C and 1100 °C were characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). XRD and Raman spectroscopy confirmed the formation of a cubic spinel ferrite structure. FE-SEM demonstrated the octahedral morphology of the NiFe2O4 spinel ferrite nanoparticles with sizes ranging from 10 to 70 nm. Quantitative analysis based on XPS suggested a mixed spinel structure comprising NiFe2O4 nanoparticles. XPS analysis determined occupation formulae of (Ni0.212+ Fe0.443+)[Ni0.792+ Fe1.563+]O4 and (Ni0.232+ Fe0.503+)[Ni0.772+ Fe1.503+]O4, for the as-prepared NiFe2O4 nanoparticles and those annealed at 1100 °C, respectively. Magnetic measurements showed that the saturation magnetization increased with the crystallite size from 32.3 emu/g (20 nm) to 49.9 emu/g (163 nm), whereas the coercivity decreased with the crystallite size from 162 Oe (20 nm) to 47 Oe (163 nm). Furthermore, the dielectric constant, dielectric loss tangent, and AC conductivity of the NiFe2O4 nanoparticles were dependent on the frequency (1-107 Hz) and grain size. The influence of the grain size was also observed by modulus spectroscopy based on the Cole-Cole plot.

  11. Role of oxygen defects on the magnetic properties of ultra-small Sn1-xFexO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dodge, Kelsey; Chess, Jordan; Eixenberger, Josh; Alanko, Gordon; Hanna, Charles B.; Punnoose, Alex

    2013-05-01

    Although the role of oxygen defects in the magnetism of metal oxide semiconductors has been widely discussed, it is been difficult to directly measure the oxygen defect concentration of samples to verify this. This work demonstrates a direct correlation between the photocatalytic activity of Sn1-xFexO2 nanoparticles and their magnetic properties. For this, a series of ˜2.6 nm sized, well characterized, single-phase Sn1-xFexO2 crystallites with x = 0-0.20 were synthesized using tin acetate, urea, and appropriate amounts of iron acetate. X-ray photoelectron spectroscopy confirmed the concentration and 3+ oxidation state of the doped Fe ions. The maximum magnetic moment/Fe ion, μ, of 1.6 × 10-4 μB observed for the 0.1% Fe doped sample is smaller than the expected spin-only contribution from either high or low spin Fe3+ ions, and μ decreases with increasing Fe concentration. This behavior cannot be explained by the existing models of magnetic exchange. Photocatalytic studies of pure and Fe-doped SnO2 were used to understand the roles of doped Fe3+ ions and of the oxygen vacancies and defects. The photocatalytic rate constant k also showed an increase when SnO2 nanoparticles were doped with low concentrations of Fe3+, reaching a maximum at 0.1% Fe, followed by a rapid decrease of k for further increase in Fe%. Fe doping presumably increases the concentration of oxygen vacancies, and both Fe3+ ions and oxygen vacancies act as electron acceptors to reduce e--h+ recombination and promote transfer of electrons (and/or holes) to the nanoparticle surface, where they participate in redox reactions. This electron transfer from the Fe3+ ions to local defect density of states at the nanoparticle surface could develop a magnetic moment at the surface states and leads to spontaneous ferromagnetic ordering of the surface shell under favorable conditions. However, at higher doping levels, the same Fe3+ ions might act as recombination centers causing a decrease of both k and

  12. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  13. Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Raland, R. D.; Borah, J. P.

    2017-01-01

    Manganese doped Zinc ferrite (Mn-ZnFe2O4, where Mn  =  0%, 3%, 5% and 7%) nanoparticles were synthesized by a simple co-precipitation method. CTAB (cetyltrimethylammonium bromide) was used as a surfactant to inhibitgrowth and agglomeration. In this work, we have discussed on the influence of CTAB and Mn doping in tailoring the structural and magnetic properties of Mn-ZnFe2O4 nanoparticles for the effective application of magnetic hyperthermia. X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure of Mn-ZnFe2O4 nanoparticles. Lattice parameter and x-ray densities were obtained from the Rietveld refinement of the XRD pattern. The presence of CTAB as a stabilizing layer adsorbed on the surface of the nanoparticles were confirmed by transmission electron microscope (TEM) and Raman vibrational spectrum. The saturation magnetization showsan increasing trend with Mn addition owing to cationic re-distribution and an increase super-exchange interaction between the two sub-lattices. Superparamagnetic behaviorof Mn-ZnFe2O4 nanoparticles were confirmed by temperature-dependent zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves. The efficiency of induction heating measured by its specific absorption rate (SAR) and intrinsic loss power (ILP) value varies as a function of saturation magnetization. It has been hypothesized that the maximum generation of heat arises from Neel relaxation mechanism. The optimum generation of heat of Mn-ZnFe2O4 nanoparticle is determined by the higher frequency (f  =  337 kHz) range and maximum concentration of Mn doping.

  14. Synthesis, characterization and application of iron (II, III) oxide (Fe3O4) magnetic nanoparticles in mimic of wound healing model

    NASA Astrophysics Data System (ADS)

    Konyala, Divya

    The research study focused on synthesis, characterization and applications of Fe3O4 core-shelled magnetic nanomaterials. This Fe3O4 magnetic nanomaterials will be prepared by using cost effective and convenient wet-chemistry method and will encapsulated using aqueous extracts of medicinal natural products. Three natural products namely Symplocos racemosa, Picrorhiza kurroa and Butea monosperma used to encapsulate Fe3O 4 MNMs due to their scope to reduce the risk of cancer, improves health, increase energy and enhance the immunity. These three medicinal natural products are synthesize by using water as a solvents to derive its active constituents, which will further used to functionalize the magnetic nanomaterials. The magnetic nanoparticles characterization studies performed using X-ray powder diffraction, Scanning electron microscope, Transmission electron microscope, Ultraviolet-visible spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR) and Magnetic property. Fe3O4 magnetic nanomaterials biological activity was tested on Gram-negative bacteria (Escherichia coli). The results pointed out that, due to the adequate coating of Fe 3O4 (Iron Oxide) core by the medicinal chemical constituents from the natural products, the absorption of Fe3O4 magnetic nanomaterials was not detected in the UV-VIS Spectroscopy. TEM images showed that Fe3O4 coated with natural product extract in core-shelled structure, and the size of the particle ranges from 6 nm to 10 nm. Fourier Transform Infrared spectroscopy (FT-IR) was performed to determine the nature of chemicals present in natural extracts and functionalized Fe3O 4 magnetic nanomaterials. The model of wound healing mimic and antibacterial activity performed on gram-negative (Escherichia coli), indicating steady increasing cell growth after adding Fe3O4 MNMs. It was also found that MNMs synthesized at high temperatures shows less wound healing activity, when compared to MNMs prepared at room temperature due to formation

  15. Effect of chitosan coating on the structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mdlalose, W. B.; Mokhosi, S. R.; Dlamini, S.; Moyo, T.; Singh, M.

    2018-05-01

    We report the influence of polymer coatings on structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoferrites synthesized by glycol thermal technique and then coated with chitosan viz. CHI-MnFe2O4 and CHI-Mn0.5Co0.5Fe2O4. The compounds were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), Mössbauer spectroscopy and magnetization measurements. The powder XRD patterns of naked nanoferrites confirmed single-phase spinel cubic structure with an average crystallite size of 13 nm, while the coated samples exhibited an average particle size of 15 nm. We observed a reduction in lattice parameters with coating. HRTEM results correlated well with XRD results. 57Fe Mössbauer spectra showed ordered magnetic spin states in both nanoferrites. This study shows that coatings have significant effects on the structural and magnetic properties of Mn-nanoferrites. Magnetization studies performed at room temperature in fields up to 14 kOe revealed the superparamagnetic nature of both naked and coated nanoparticles with spontaneous magnetizations at room temperature of 49.2 emu/g for MnFe2O4, 23.6 emu/g for coated CHI-MnFe2O4 nanoparticles, 63.2 emu/g for Mn0.5Co0.5Fe2O4 and 33.2 emu/g for coated CHI-Mn0.5Co0.5Fe2O4 nanoparticles. We observed reduction in coercive fields due to coating. Overall, chitosan-coated manganese and manganese-cobalt nanoferrites present as suitable candidates for biomedical applications owing to physicochemical, and magnetic properties exhibited.

  16. Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, S.; Prabu, D.; Srinivas, V.

    2017-05-01

    Magnesium ferrite, MgFe2O4, (MgFO) nanoparticles (NPs) have been synthesized through sol-gel process. Subsequently, as prepared particles were coated with Zinc-oxide (ZnO) layer(s) through ultrasonication process. Thermal stability, structure and magnetic properties of as-prepared (AP) and annealed samples in the temperature range of 350 °C-1200 °C have been investigated. Structural data suggests that AP MgFO NPs and samples annealed below 500 °C in air exhibit stable ferrite phase. However, α-Fe2O3 and a small fraction of MgO secondary phases appear along with ferrite phase on annealing in the temperatures range 500 °C- 1000 °C. This results in significant changes in magnetic moment for AP NPs 0.77 μB increases to 0.92 μB for 1200 °C air annealed sample. The magnetic properties decreased at intermediate temperatures due to the presence of secondary phases. On the other hand, pure ferrite phase could be stabilized with an optimum amount of ZnO coated MgFO NPs for samples annealed in the temperature range 500 °C-1000 °C with improvement in magnetic behavior compared to that of MgFO samples.

  17. Facile one-step synthesis of Ag@Fe3O4 core-shell nanospheres for reproducible SERS substrates

    NASA Astrophysics Data System (ADS)

    Sun, Lijuan; He, Jiang; An, Songsong; Zhang, Junwei; Ren, Dong

    2013-08-01

    A facile approach has been developed to synthesize Ag@Fe3O4 core-shell nanospheres, in which the Ag nanoparticle core was well wrapped by a permeable Fe3O4 shell. An in situ reduction of AgNO3 and Fe(NO3)3 was the basis of this one-step method with ethylene glycol as the reducing agent. The as-obtained Ag@Fe3O4 nanospheres were a highly efficient surface-enhanced Raman scattering (SERS) substrate; high reproducibility, stability, and reusability were obtained by employing 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) as the Raman probe molecules. It was revealed that the SERS signals of 4-ATP and R6G on the Ag@Fe3O4 nanospheres were much stronger than those on the pure Ag nanoparticles, demonstrating that the magnetic enrichment procedures can improve SERS detection sensitivity efficiently. A highly efficient and recyclable SERS substrate was produced by the new model system that has potential applications in chemical and biomolecular assays.

  18. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Shofiah, Siti; Muflihatun, Suharyadi, Edi

    2016-04-01

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe2O4) nanoparticles comparable sizes have been studied in detail. NiFe2O4 were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe2O4 was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe2O4 as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe2O4 became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe2O3 phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe2O4 nanoparticles.

  19. Floral Biosynthesis of Mn3O4 and Fe2O3 Nanoparticles Using Chaenomeles sp. Flower Extracts for Efficient Medicinal Applications

    NASA Astrophysics Data System (ADS)

    Karunakaran, Gopalu; Jagathambal, Matheswaran; Kolesnikov, Evgeny; Dmitry, Arkhipov; Ishteev, Artur; Gusev, Alexander; Kuznetsov, Denis

    2017-08-01

    Manganese oxide (Mn3O4) and iron oxide (Fe2O3) nanoparticles were successfully synthesized with the flower extracts of Chaenomeles sp. This is the first ever approach to synthesize nanoparticles from Chaenomeles sp. flower extracts. The organic molecules present in the flower extracts actively converted the nitrate precursor into its corresponding nanoparticles. The organic molecules that are involved in the synthesis of nanoparticles are identified using different phytochemical and gas chromatography-mass spectrometry analyses. The identified components are glycosides, alkaloids, terpenoids, saponins, flavonoids, quinines, and steroids. The structural and chemical compositions of the synthesized powder were also analyzed. The x-ray powder diffraction analysis revealed that the particles show tetragonal and rhombohedral crystalline phases. The Fourier transform infrared spectroscopy analysis showed the functional groups that are involved in the reduction of nitrates into the corresponding nanoparticles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of the elements in the synthesized nanoparticles. Transmission electron microscopy images showed the formation of spherical nanoparticles with an average size of 30-100 nm. Antioxidant analysis showed that the synthesized nanoparticles had excellent antioxidant potential. The antibacterial study showed that they inhibit the growth of harmful bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes. Thus, this study proposes a new eco-friendly and nontoxic method to synthesize nanoparticles for medicinal applications.

  20. Sensitive Determination of 6-Thioguanine Using Caffeic Acid-functionalized Fe3O4 Nanoparticles as an Electrochemical Sensor

    NASA Astrophysics Data System (ADS)

    Amir, Md.; Tunesi, Mawada M.; Soomro, Razium A.; Baykal, Abdülhadi; Kalwar, Nazar H.

    2018-04-01

    The study demonstrates the potential application of caffeic acid-functionalized magnetite nanoparticles (CA-Fe3O4 NPs) as an effective electrode modifying material for the electrochemical oxidation of the 6-thioguanine (6-TG) drug. The functionalized Fe3O4 NPs were prepared using simple wet-chemical methodology where the used caffeic acid acted simultaneously as growth controlling and functionalizing agent. The study discusses the influence of an effective functionalization on the signal sensitivity observed for the electro-oxidation of 6-TG over CA-Fe3O4 NPs in comparison to a glassy carbon electrode modified with bare and nicotinic acid (NA)-functionalized Fe3O4 NPs. The experiment results provided sufficient evidence to support the importance of favorable functionality to achieve higher signal sensitivity for the electro-oxidation of 6-TG. The presence of favorable interactions between the active functional moieties of caffeic acid and 6-TG synergized with the greater surface area of magnetic NPs produces a stable electro-oxidation signal within the working range of 0.01-0.23 μM with sensitive up to 0.001 μM. Additionally, the sensor showed the strong anti-interference potential against the common co-existing drug molecules such as benzoic acid, acetaminophen, epinephrine, norepinephrine, glucose, ascorbic acid and l-cysteine. In addition, the successful quantification of 6-TG from the commercial tablets obtained from local pharmacy further signified the practical capability of the discussed sensor.

  1. γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold.

    PubMed

    Ngadiman, Nor Hasrul Akhmal; Idris, Ani; Irfan, Muhammad; Kurniawan, Denni; Yusof, Noordin Mohd; Nasiri, Rozita

    2015-09-01

    Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity. Empirical models for both responses as a function of the input factors were developed and the optimum input factors setting were determined, and found to be at 5% nanoparticle content, 35 kV voltage, and 1 ml/h volume flow rate. The characteristics and performance of the optimum PVA/γ-Fe2O3 nanofiber mats were compared with those of neat PVA nanofiber mats in terms of morphology, thermal properties, and hydrophilicity. The PVA/γ-Fe2O3 nanofiber mats exhibited higher fiber diameter and surface roughness yet similar thermal properties and hydrophilicity compared to neat PVA PVA/γ-Fe2O3 nanofiber mats. Biocompatibility test by exposing the nanofiber mats with human blood cells was performed. In terms of clotting time, the PVA/γ-Fe2O3 nanofibers exhibited similar behavior with neat PVA. The PVA/γ-Fe2O3 nanofibers also showed higher cells proliferation rate when MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was done using human skin fibroblast cells. Thus, the PVA/γ-Fe2O3 electrospun nanofibers can be a promising biomaterial for tissue engineering scaffolds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Shun; Wang, Mengya; Luo, Yan; Huang, Jianguo

    2016-07-13

    A bioinspired hierarchical nanofibrous Fe3O4-TiO2-carbon composite was fabricated by employing natural cellulose substance (e.g., filter paper) as both the scaffold and the carbon source and showed improved electrochemical performances when it is employed as an anode material for lithium-ion batteries. FeOOH nanoparticles were first grown uniformly onto the surface of the titania thin-layer precoated cellulose nanofibers, and thereafter, the as-prepared FeOOH-TiO2-cellulose composite was calcined and carbonized in argon atmosphere at 500 °C for 6 h to produce the Fe3O4-TiO2-carbon composite. The resultant composite possesses a hierarchical structure that was faithfully inherited from the initial cellulose substance, which was composed of titania-coated carbon fibers with corncob-like shaped Fe3O4 nanoparticles immobilized on the surfaces. The diameter of the composite nanofiber is ca. 100-200 nm, and the diameter of the Fe3O4 nanoparticle is about 30 nm, which is coated with an ultrathin carbon layer with a thickness about 3 nm. This composite displayed superior lithium-ion storage performance. It showed a first-cycle discharge capacity of 1340 mAh/g, delivering a stable reversible capacity of ca. 525 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g, and the efficiency is as high as ca. 95% of the theoretical value. This is much higher than those of the commercial Fe3O4 powder (160 mAh/g) and the Fe3O4-carbon counter material (310 mAh/g). It was demonstrated that the thin titania precoating layer (thickness ca. 3-5 nm) is necessary for the high content loading of the Fe3O4 nanoparticles onto the carbon nanofibers. Owing to the unique three-dimensional porous network structure of the carbon-fiber scaffold, together with the ultrathin outer carbon-coating layer, the composite showed significantly improved cycling stability and rate capability.

  3. Magnetic Pd nanocatalyst Fe3O4@Pd for C-C bond formation and hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Biglione, Catalina; Cappelletti, Ariel L.; Strumia, Miriam C.; Martín, Sandra E.; Uberman, Paula M.

    2018-05-01

    Small core-shell Fe3O4@Pd superparamagnetic nanoparticles (MNPs) were obtained with good control in size and shape distribution by metal-complex thermal decomposition in organic media. The role of the stabilizer in the synthesis of MNPs was studied, employing oleylamine (OA), triphenylphosphine (TPP) and triphenylamine (TPA). The results revealed that, among the stabilizer investigated, the presence of oleylamine in the reaction media is crucial in order to obtain an uniform shell of Pd(0) in Fe3O4@Pd MNPs of 7 ± 1 nm. The synthesized core-shell MNPs were tested in Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura coupling reactions and p-chloronitrobenzene hydrogenation. High conversion, good reaction yields, and good TOF values were achieved in the three reaction systems with this nanocatalyst. The core-shell nanoparticle was easily recovered by a simple magnetic separation using a neodymium commercial magnet, which allowed performing up to four cycles of reuse. [Figure not available: see fulltext.

  4. Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ping; Huang, Yu-Bin; Lai, Ying-Huang

    2018-03-01

    There is a high demand for multifunctional materials that can integrate sample collection and sensing. In this study, magnetic Fe3O4 clusters were fabricated using a simple solvent-thermal method. The effect of the reductant (sodium citrate, SC) on the structure and morphology of Fe3O4 was examined by the variation in the reagent amount. The resulting Fe3O4 clusters were functionalized with 3-aminopropyltriethoxysilane (APTES) to anchor Au nanoparticles to its surface. The fabricated composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID) magnetometer. Dual-functional Fe3O4/Au clusters were obtained, effectively combining magnetic and plasmonic optical properties. The magnetic Fe3O4 cluster cores permitted the adsorption of the probe molecules, while sample concentration and collection were carried out under an external magnetic field. In addition, 4-nitrothiophenol (4-NTP) was chosen as the probe molecule to examine the analyte concentration ability and surface-enhanced Raman scattering (SERS) activity of the Fe3O4/Au composites. The results indicated that the Fe3O4/Au clusters exhibit a prominent SERS effect. The best 4-NTP detection limit obtained was 1 × 10-8 M, with a corresponding SERS analytical enhancement factor (AEF) exceeding 2 × 105.

  5. Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Maleki, A.; Ara, M. H. Majles; Saboohi, F.

    2017-04-01

    The influence of Fe3O4 nanoparticles (NPs) on dielectric properties of planar and homeotropic oriented nematic liquid crystals (NLCs) were studied during the temperature interval of 298-322 °K. It was found that the dielectric permittivity was considerably increased by adding NPs mass percentages. The structural characterization of the synthesized NPs with the scale 14-18 nm has been analyzed by the X-ray diffraction and field-emission scanning electron microscopy results. The obtained dielectric anisotropy (?) and mean dielectric (?) have shown an immense increment in the value of 1% and 10% wt. NPs doped NLCs, respectively. These results were assigned to the strong dipole-dipole interaction between the superparamagnetic particles and the surrounding liquid crystal molecules.

  6. Facile one-pot synthesis of cellulose nanocrystal-supported hollow CuFe2O4 nanoparticles as efficient catalyst for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Sufeng; Zhao, Dongyan; Hou, Chen; Liang, Chen; Li, Hao

    2018-06-01

    A facile and efficient one-pot method for the synthesis of well-dispersed hollow CuFe2O4 nanoparticles (H-CuFe2O4 NPs) in the presence of cellulose nanocrystals (CNC) as the support was described. Based on the one-pot solvothermal condition control, magnetic H-CuFe2O4 NPs were in-situ grown on the CNC surface uniformly. TEM images indicated good dispersity of H-CuFe2O4 NPs with uniform size of 300 nm. The catalytic activity of H-CuFe2O4/CNC was tested in the catalytic reduction of 4-nitrophenol (4-NP) in aqueous solution. Compared with most CNC-based ferrite catalysts, H-CuFe2O4/CNC catalyst exhibited an excellent catalytic activity toward the reduction of 4-NP. The catalytic performance of H-CuFe2O4/CNC catalyst was remarkably enhanced with the rate constant of 3.24 s-1 g-1, which was higher than H-CuFe2O4 NPs (0.50 s-1 g-1). The high catalytic activity was attributed to the introduction of CNC and the special hollow mesostructure of H-CuFe2O4 NPs. In addition, the H-CuFe2O4/CNC catalyst promised good conversion efficiency without significant decrease even after 10 cycles, confirming relatively high stability. Because of its environmental sustainability and magnetic separability, H-CuFe2O4/CNC catalyst was shown to indicate that the ferrite nanoparticles supported on CNC were acted as a promising catalyst and exhibited potential applications in numerous ferrite based catalytic reactions.

  7. Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Xiang-Yu; Jiang, Xiao-Ping; Ye, Jing-Jing; Zhang, Ye-Wang; Zhang, Xiao-Yun

    2015-01-01

    Fe3O4@SiO2-graphene oxide (GO) composites were successfully fabricated by chemical binding of functional Fe3O4@SiO2 and GO and applied to immobilization of cellulase via covalent attachment. The prepared composites were further characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. Fe3O4 nanoparticles (NPs) were monodisperse spheres with a mean diameter of 17 ± 0.2 nm. The thickness of SiO2 layer was calculated as being 6.5 ± 0.2 nm. The size of Fe3O4@SiO2 NPs was 24 ± 0.3 nm, similar to that of Fe3O4@SiO2-NH2. Fe3O4@SiO2-GO composites were synthesized by linking of Fe3O4@SiO2-NH2 NPs to GO with the catalysis of EDC and NHS. The prepared composites were used for immobilization of cellulase. A high immobilization yield and efficiency of above 90 % were obtained after the optimization. The half-life of immobilized cellulase (722 min) was 3.34-fold higher than that of free enzyme (216 min) at 50 °C. Compared with the free cellulase, the optimal temperature of the immobilized enzyme was not changed; but the optimal pH was shifted from 5.0 to 4.0, and the thermal stability was enhanced. The immobilized cellulase could be easily separated and reused under magnetic field. These results strongly indicate that the cellulase immobilized onto the Fe3O4@SiO2-GO composite has potential applications in the production of bioethanol.

  8. Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials

    PubMed Central

    Cendrowski, Krzysztof; Nawrotek, Paweł; Mijowska, Ewa

    2018-01-01

    Nanoparticles were proposed as antibacterial cement admixtures for the production of cement-based composites. Nevertheless, the standards for evaluation of such admixtures still do not indicate which model organisms to use, particularly in regard to the further application of material. Apart from the known toxicity of nanomaterials, in the case of cement-based composites there are limitations associated with the mixing and dispersion of nanomaterials. Therefore, four nanooxides (Al2O3, CuO, Fe3O4, and ZnO) and seven microorganisms were tested to initially evaluate the applicability of nanooxides in relation to their further use in cement-based composites. Studies of nanoparticles included chemical analysis, microbial growth kinetics, 4- and 24 h toxicity, and biofilm formation assay. Nanooxides showed toxicity against microorganisms in the used concentration, although the populations were able to re-grow. Furthermore, the effect of action was variable even between strains from the same genus. The effect of nanoparticles on biofilms depended on the used strain. Gathered results show several problems that can occur while studying nanoparticles for specific further application. Proper protocols for nanomaterial dispersion prior the preparation of cement-based composites, as well as a standardized approach for their testing, are the fundamental issues that have to be resolved to produce efficient composites. PMID:29614721

  9. Sol-gel derived silica/chitosan/Fe3O4 nanocomposite for direct electrochemistry and hydrogen peroxide biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Rohiwal, S. S.; Tiwari, A. P.; Raut, A. V.; Tiwale, B. M.; Pawar, S. H.

    2015-01-01

    A novel strategy to fabricate hydrogen peroxide third generation biosensor has been developed from sol-gel of silica/chitosan (SC) organic-inorganic hybrid material assimilated with iron oxide magnetic nanoparticles (Fe3O4). The large surface area of Fe3O4 and porous morphology of the SC composite facilitates a high loading of horseradish peroxidase (HRP). Moreover, the entrapped enzyme preserves its conformation and biofunctionality. The fabrication of hydrogen peroxide biosensor has been carried out by drop casting of the SC/F/HRP nanocomposite on glassy carbon electrode (GCE) for study of direct electrochemistry. The x-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) confirms the phase purity and particle size of as-synthesized Fe3O4 nanoparticles, respectively. The nanocomposite was characterized by UV-vis spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FTIR) for the characteristic structure and conformation of enzyme. The surface topographies of the nanocomposite thin films were investigated by scanning electron microscopy (SEM). Dynamic light scattering (DLS) was used to determine the particle size distribution. The electrostatic interactions of the SC composite with Fe3O4 nanoparticles were studied by the zeta potential measurement. Electrochemical impedance spectroscopy (EIS) of the SC/F/HRP/GCE electrode displays Fe3O4 nanoparticles as an excellent candidate for electron transfer. The SC/F/HRP/GCE exhibited a pair of well-defined quasi reversible cyclic voltammetry peaks due to the redox couple of HRP-heme Fe (III)/Fe (II) in pH 7.0 potassium phosphate buffer. The biosensor was employed to detect H2O2 with linear range of 5 μM to 40 μM and detection limit of 5 μM. The sensor displays excellent selectivity, sensitivity, good reproducibility and long term stability.

  10. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution.

    PubMed

    Snovski, Ron; Grinblat, Judith; Margel, Shlomo

    2011-09-06

    Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres. © 2011 American Chemical Society

  11. The synthesis of Fe3O4/MWCNT nanocomposites from local iron sands for electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Rahmawati, Retno; Taufiq, Ahmad; Sunaryono, Yuliarto, Brian; Suyatman, Nugraha, Noviandri, Indra; Setyorini, Dian Ayu; Kurniadi, Deddy

    2018-05-01

    The aim of this research is producing the electrochemical sensor, especially for working electrodes based on the nanocomposites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sands. The sonochemical method by ultrasonic horn was successfully used for the synthesis of the nanocomposites. The characterizations of the sample were conducted via X-Ray Diffractometer (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Brunauer-Emmett-Teller (BET) method for surface area, Vibrating Sample Magnetometer (VSM) and Cyclic Voltammetry (CV). The analysis of X-Ray Diffraction (XRD) pattern showed two phases of crystalline, namely MWCNT and Fe3O4, peak of MWCNT comes from (002) plan while peaks of Fe3O4 come from (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) plans. From XRD data, MWCNT has a hexagonal structure and Fe3O4 has inverse spinel cubic structure, respectively. The FTIR spectra revealed that the functionalization process of MWCNT successfully generated carboxyl and carbonyl groups to bind Fe3O4 on MWCNT surfaces. Moreover, the functional groups of Fe-O bonding that showed the existence of Fe3O4 in the nanocomposites were also detected in those spectra. Meanwhile, the SEM and TEM images showed that the nanoparticles of Fe3O4 attached on the MWCNT surface and formed agglomeration between particles due to magnetic forces. Through Brunauer-Emmett-Teller (BET) method, it is identified that the nanocomposite has a large surface area 318 m2/g that makes this material very suitable for electrochemical sensor applications. Moreover, the characterization of magnetic properties via Vibrating Sample Magnetometer (VSM) showed that the nanocomposites have superparamagnetic behavior at room temperature and the presence of the MWCNT reduced the magnetic properties of Fe3O4. Lastly, the electrochemical characterization with Cyclic Voltammetry (CV) proved that

  12. Proteasome inhibitory, antioxidant, and synergistic antibacterial and anticandidal activity of green biosynthesized magnetic Fe3O4 nanoparticles using the aqueous extract of corn (Zea mays L.) ear leaves.

    PubMed

    Patra, Jayanta Kumar; Ali, Md Sarafat; Oh, In-Gyung; Baek, Kwang-Hyun

    2017-03-01

    Herein, Fe 3 O 4 nanoparticles synthesized using aqueous extract of corn ear leaves were investigated for proteasome inhibitory activity, antioxidant activity, synergistic antibacterial, and anticandidal potential. The UV-Vis spectrum displayed an absorption band at 355 nm that indicated the formation of nano-sized Fe 3 O 4 particles. Vibrating sample magnetometer analysis revealed its superparamagnetic nature. Fe 3 O 4 nanoparticles exhibited strong proteasome inhibitory potential and antioxidant activity and exerted strong synergistic antibacterial and anticandidal activity. Its significant proteasome inhibitory potential could be useful in cancer treatment and drug delivery. Furthermore, strong antioxidant, antibacterial, and anticandidal activity make them a promising candidate for biomedical and pharmaceutical applications.

  13. Synthesis of Cu-Fe{sub 3}O{sub 4}@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ran; Bi, Huiping, E-mail: hpbi@njust.edu.cn; He, Guangyu

    2014-09-15

    Highlights: • The Cu-Fe{sub 3}O{sub 4}@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe{sub 3}O{sub 4}@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe{sub 3}O{sub 4}@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe{sub 3}O{sub 4}@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopymore » (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe{sub 3}O{sub 4} NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe{sub 3}O{sub 4}@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability.« less

  14. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-06-01

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting

  15. Interparticle interactions effects on the magnetic order in surface of FeO4 nanoparticles.

    PubMed

    Lima, E; Vargas, J M; Rechenberg, H R; Zysler, R D

    2008-11-01

    We report interparticle interactions effects on the magnetic structure of the surface region in Fe3O4 nanoparticles. For that, we have studied a desirable system composed by Fe3O4 nanoparticles with (d) = 9.3 nm and a narrow size distribution. These particles present an interesting morphology constituted by a crystalline core and a broad (approximately 50% vol.) disordered superficial shell. Two samples were prepared with distinct concentrations of the particles: weakly-interacting particles dispersed in a polymer and strongly-dipolar-interacting particles in a powder sample. M(H, T) measurements clearly show that strong dipolar interparticle interaction modifies the magnetic structure of the structurally disordered superficial shell. Consequently, we have observed drastically distinct thermal behaviours of magnetization and susceptibility comparing weakly- and strongly-interacting samples for the temperature range 2 K < T < 300 K. We have also observed a temperature-field dependence of the hysteresis loops of the dispersed sample that is not observed in the hysteresis loops of the powder one.

  16. Effect of betaine in the successful synthesis of CoFe2O4 containing octahedron nanoparticles for electrocatalytic water oxidation

    NASA Astrophysics Data System (ADS)

    Valdez, R.; Olivas, A.; Grotjahn, D. B.; Barrios, E.; Arjona, N.; Antaño, R.; Oropeza-Guzman, M. T.

    2017-12-01

    The development of robust catalysts that oxidize water is necessary for their application in artificial photosynthesis cells. Here we report the synthesis and characterization of octahedral CoFe2O4 nanoparticles obtained through a novel aqueous method that employs betaine, (CH3)3+NCH2COO-, as the stabilizer agent. The synthetic conditions are modified changing the betaine content and the metal precursor ratios. These conditions modify the shape of CoFe2O4 finding both, octahedral and semi-spherical nanoparticles. Linear voltammetry measurements show the octahedral CoFe2O4 lead to an overpotential of ∼390 mV at the onset potential for water oxidation at alkaline conditions. Among the as-synthesized cobalt-ferrite nanomaterials, the CoFe(1:2)-C in the form of tiny nanoparticles performed a superior electrocatalytic water oxidation in alkaline conditions, showing an overpotential of ∼335 mV, which is lower than other similar catalysts in literature.

  17. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Ye, Min; Wei, Zewen; Hu, Fei; Wang, Jianxin; Ge, Guanglu; Hu, Zhiyuan; Shao, Mingwang; Lee, Shuit-Tong; Liu, Jian

    2015-08-01

    It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance.It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have

  18. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method

    NASA Astrophysics Data System (ADS)

    Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed

    2017-02-01

    Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.

  19. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin

    2014-02-01

    A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.

  20. Aptamer-functionalized Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri.

    PubMed

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin

    2017-07-01

    The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications

    NASA Astrophysics Data System (ADS)

    Khashan, Saud; Dagher, Sawsan; Omari, Salahaddin Al; Tit, Nacir; Elnajjar, Emad; Mathew, Bobby; Hilal-Alnaqbi, Ali

    2017-05-01

    This work proposes and demonstrates the novel idea of using Fe3O4@SiO2 core/shell structure nanoparticles (NPs) to improve the solar thermal conversion efficiency. Magnetite (Fe3O4) NPs are synthesized by controlled co-precipitation method. Fe3O4@SiO2 NPs are prepared based on sol-gel approach, then characterized. Water-based Fe3O4@SiO2 nanofluid is prepared and usedto illustrate the photo-thermal conversion characteristics of a solar collector under solar simulator. The temperature rise characteristics of the nanofluids are investigated at different heights of the solar collector, for duration of 300 min, under a solar intensity of 1000 W m-2. The experimental results show that Fe3O4@SiO2 NPs have a core/shell structure with spherical morphology and size of about 400 nm. Fe3O4@SiO2/H2O nanofluid enhances the photo-thermal conversion efficiency compared with base fluid and Fe3O4/H2O nanofluid, since the silica coating improves both the thermodynamic stability of the nanofluid and the light absorption effectiveness of the NPs. At a concentration of 1 mg/1 ml of Fe3O4@SiO2/H2O, and with the utilization of kerosene into the solar collector, and exposure for radiation for 5 min, the photo-thermal conversion efficiency has shown an enhancement at the bottom of the collector of about 32.9% compared to the base fluid.

  2. Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose.

    PubMed

    Qian Tang, Xue; Dan Zhang, Yi; Wei Jiang, Zhong; Mei Wang, Dong; Zhi Huang, Cheng; Fang Li, Yuan

    2018-03-01

    In this work, Fe 3 O 4 and metal-organic framework MIL-101(Fe) composites (Fe 3 O 4 /MIL-101(Fe)) was demonstrated to possess excellent catalytic property to directly catalyze luminol chemiluminescence without extra oxidants. We utilized Fe 3 O 4 /MIL-101(Fe) to develop a ultra-sensitive quantitative analytical method for H 2 O 2 and glucose. The possible mechanism of the chemiluminescence reaction had been investigated. Under optimal conditions, the relative chemiluminescence intensity was linearly proportional to the logarithm of H 2 O 2 concentration in the range of 5-150nM with a limit of detection of 3.7nM (signal-to-noise ratio = 3), and glucose could be linearly detected in the range from 5 to 100nM and the detection limit was 4.9nM (signal-to-noise ratio = 3). Furthermore, the present approach was successfully applied to quantitative determination of H 2 O 2 in medical disinfectant and glucose in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.

    PubMed

    Wang, Cailian; Zhang, Haijun; Chen, Yan; Shi, Fangfang; Chen, Baoan

    2012-01-01

    E26 transformation-specific sequence-1 (ETS1) transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles (GA-MNP-Fe(3)O(4)) on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells. The effects caused by GA-MNP-Fe(3)O(4) on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA), and VEGF (vascular endothelial growth factor) were examined by Western blot to elucidate the possible mechanisms involved. In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP-Fe(3)O(4) was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF. Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP-Fe(3)O(4) nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.

  4. Highly efficient photocatalysis by BiFeO3/α(γ)-Fe2O3 ferromagnetic nano p/n junctions formed by dopant-induced phase separation

    NASA Astrophysics Data System (ADS)

    Ramadan, Wegdan; Shaikh, Parvez A.; Ebrahim, Sh.; Ramadan, Abdallah; Hannoyer, Beatrice; Jouen, Samuel; Sauvage, Xavier; Ogale, Satishchandra

    2013-08-01

    A series of Bi1- x Ca x FeO3 (BCFO) nanoparticles (with x = 0.0, 0.03, 0.07, 0.10, 0.15, and 0.20) have been synthesized by sol-gel reaction. X-ray diffraction patterns establish the formation of hexagonal bismuth ferrite as the prominent phase, with a small contribution of the Bi2Fe4O9 phase (as reported by others as well) which diminishes rapidly with the increase in Ca concentration. Interestingly, above a calcium dopant concentration of about 10 % peaks of Fe2O3 (both α and γ components) are observed with a concomitant enhancement of ferromagnetism. Small contribution of the Bi6Ca4O13 phase is also noted in these samples. This phase evolution is driven by dopant-induced strain energy and increasing oxygen vacancy concentration for local charge balance. Transmission electron microscopy (with elemental scanning) and Mössbauer spectroscopy techniques bring out the evolution of nanoparticle morphology (and elemental distribution) and phase configuration, respectively. Measurements of photocatalytic activity (and photo-Fenton activity with H2O2) reveal that Ca doping at the Bi site in BFO enhances the activity significantly in the concentration regime where BFO/α(γ)-Fe2O3 phases coexist in the form of a nanocomposite. The enhancement can thus be attributed to the carrier transfer between BFO and α(γ)-Fe2O3 across nano p/n junctions leading to enhanced carrier lifetime. Importantly, the magnetization of the nanocomposite (about 16 emu gm-1 at x = 0.20) provides a convenient way to collect the photocatalyst with the help of an external magnet for reuse.

  5. Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.

    PubMed

    Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O

    2014-11-11

    α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads.

    PubMed

    Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid

    2016-12-01

    In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Magnetic upconverting fluorescent NaGdF4:Ln3+ and iron-oxide@NaGdF4:Ln3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Shrivastava, Navadeep; Rocha, Uéslen; Muraca, Diego; Jacinto, Carlos; Moreno, Sergio; Vargas, J. M.; Sharma, S. K.

    2018-05-01

    Microwave assisted solvothermal method has been employed to synthesize multifunctional upconverting β-NaGdF4:Ln3+ and magnetic-upconverting Fe3O4/γ-Fe2O3@NaGdF4:Ln3+ (Ln = Yb and Er) nanoparticles. The powder x-ray diffraction data confirms the hexagonal structure of NaGdF4:Ln3+ and high resolution transmission electron microscopy shows the formation of rod shaped NaGdF4:Ln3+ (˜ 20 nm) and ovoid shaped Fe3O4/γ-Fe2O3@NaGdF4:Ln3+ (˜ 15 nm) nanoparticles. The magnetic hysteresis at 300 K for β-NaGdF4:Ln3+ demonstrates paramagnetic features, whereas iron-oxide@β-NaGdF4:Ln3+ exhibits superparamagnetic behavior along with a linear component at large applied field due to paramagnetic NaGdF4 matrix. Both nanoparticle samples provide an excellent green emitting [(2H11/2, 4S3/2)→4I15/2 (˜ 540 nm)] upconversion luminescence emission under excitation at 980 nm. The energy migration between Yb and Er in NaGdF4 matrix has been explored from 300-800 nm. Intensity variation of blue, green and red lines and the observed luminescence quenching due to the presence of Fe3O4/γ-Fe2O3 in the composite has been proposed. These kinds of materials contain magnetic and luminescence characteristics into single nanoparticle open new possibility for bioimaging applications.

  8. Synthesis and Structural Characterization of CdFe2O4 Nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    The synthesis of CdFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic precursor, [CdFe2(cin)3(N2H4)3], which was obtained by a simple precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. On appropriate annealing, [CdFe2(cin)3(N2H4)3] yielded CdFe2O4 nanoparticles. The XRD studies showed that the crystallite size of the particles was 13nm. The results of HRTEM studies also agreed well with those of XRD. SAED pattern of the sample established the polycrystalline nature of the nanoparticles. SEM images displayed a random distribution of grains in the sample.

  9. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    NASA Astrophysics Data System (ADS)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  10. Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G.

    PubMed

    Deng, Lin; Shi, Zhou; Zou, Zhiyan; Zhou, Shiqing

    2017-04-01

    EDTA functionalized CoFe 2 O 4 nanoparticles (EDTA-CoFe 2 O 4 ) synthesized using a facile one-pot solvothermal method were employed as catalysts to activate peroxymonosulfate (PMS) with Orange G (OG) as the target pollutant. Effects of operating parameters including initial solution pH, catalyst dosage, PMS dosage, and water matrix components such as Cl - , NO 3 - , CO 3 2- , and humic acid were evaluated. A degradation efficiency of 93% was achieved in 15 min with 1 mM PMS and 0.2 g/L EDTA-CoFe 2 O 4 catalyst, while only 57% of OG was degraded within 15 min in CoFe 2 O 4 /PMS system. The degradation of OG followed pseudo-first-order kinetics, and the apparent first-order date constant (k obs ) for OG in EDTA-CoFe 2 O 4 /PMS and CoFe 2 O 4 /PMS system was determined to be 0.152 and 0.077 min -1 , respectively. OG degradation by EDTA-CoFe 2 O 4 /PMS was enhanced with the increase of catalyst and PMS doses at respective range of 0.1-2.0 g/L and 0.5-10.0 mM. Higher efficiency of OG oxidation was observed within a wide pH range (3.0-9.0), implying the possibility of applying EDTA-CoFe 2 O 4 /PMS process under environmental realistic conditions. Humic acid (HA) at low concentration accelerated the removal of OG; however, a less apparent inhibitive effect was observed at HA addition of 10 mg/L. The k obs value was found to decrease slightly from 0.1601 to 0.1274, 0.1248, and 0.1152 min -1 with the addition of NO 3 - , CO 3 2- , and Cl - , respectively, but near-complete removal of OG could still be obtained after 15 min. Both of the sulfate radicals and hydroxyl radicals were produced in the reaction, and sulfate radicals were the dominant according to the scavenging tests and electron paramagnetic resonance (EPR) tests. Finally, a degradation mechanism was proposed, and the stability and reusability of the EDTA-CoFe 2 O 4 were evaluated.

  11. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery

    NASA Astrophysics Data System (ADS)

    Zhou, Shuai; Zhou, Yu; Jiang, Wei; Guo, Huajun; Wang, Zhixing; Li, Xinhai

    2018-05-01

    Iron oxides are considered as attractive electrode materials because of their capability of lithium storage, but their poor conductivity and large volume expansion lead to unsatisfactory cycling stability. We designed and synthesized a novel Fe3O4 cluster microspheres/Graphene aerogels composite (Fe3O4/GAs), where Fe3O4 nanoparticles were assembled into cluster microspheres and then embedded in 3D graphene aerogels framework. In the spheres, the sufficient free space between Fe3O4 nanoparticles could accommodate the volume change during cycling process. Graphene aerogel works as flexible and conductive matrix, which can not only significantly increase the mechanical stress, but also further improve the storage properties. The Fe3O4/GAs composite as an anode material exhibits high reversible capability and excellent cyclic capacity for lithium ion batteries (LIBs). A reversible capability of 650 mAh g-1 after 500 cycles at a current density of 1 A g-1 can be maintained. The superior storage capabilities of the composites make them potential anode materials for LIBs.

  12. A transmission electron microscopy study of CoFe2O4 ferrite nanoparticles in silica aerogel matrix using HREM and STEM imaging and EDX spectroscopy and EELS.

    PubMed

    Falqui, Andrea; Corrias, Anna; Wang, Peng; Snoeck, Etienne; Mountjoy, Gavin

    2010-04-01

    Magnetic nanocomposite materials consisting of 5 and 10 wt% CoFe2O4 nanoparticles in a silica aerogel matrix have been synthesized by the sol-gel method. For the CoFe2O4-10wt% sample, bright-field scanning transmission electron microscopy (BF STEM) and high-resolution transmission electron microscopy (HREM) images showed distinct, rounded CoFe2O4 nanoparticles, with typical diameters of roughly 8 nm. For the CoFe2O4-5wt% sample, BF STEM images and energy dispersive X-ray (EDX) measurements showed CoFe2O4 nanoparticles with diameters of roughly 3 +/- 1 nm. EDX measurements indicate that all nanoparticles consist of stoichiometric CoFe2O4, and electron energy-loss spectroscopy measurements from lines crossing nanoparticles in the CoFe2O4-10wt% sample show a uniform composition within nanoparticles, with a precision of at best than +/-0.5 nm in analysis position. BF STEM images obtained for the CoFe2O4-10wt% sample showed many "needle-like" nanostructures that typically have a length of 10 nm and a width of 1 nm, and frequently appear to be attached to nanoparticles. These needle-like nanostructures are observed to contain layers with interlayer spacing 0.33 +/- 0.1 nm, which could be consistent with Co silicate hydroxide, a known precursor phase in these nanocomposite materials.

  13. CoFe2O4-TiO2 and CoFe2O4-ZnO thin film nanostructures elaborated from colloidal chemistry and atomic layer deposition.

    PubMed

    Clavel, Guylhaine; Marichy, Catherine; Willinger, Marc-Georg; Ravaine, Serge; Zitoun, David; Pinna, Nicola

    2010-12-07

    CoFe(2)O(4)-TiO(2) and CoFe(2)O(4)-ZnO nanoparticles/film composites were prepared from directed assembly of colloidal CoFe(2)O(4) in a Langmuir-Blodgett monolayer and atomic layer deposition (ALD) of an oxide (TiO(2) or ZnO). The combination of these two methods permits the use of well-defined nanoparticles from colloidal chemistry, their assembly on a large scale, and the control over the interface between a ferrimagnetic material (CoFe(2)O(4)) and a semiconductor (TiO(2) or ZnO). Using this approach, architectures can be assembled with a precise control from the Angstrom scale (ALD) to the micrometer scale (Langmuir-Blodgett film). The resulting heterostructures present well-calibrated thicknesses. Electron microscopy and magnetic measurement studies give evidence that the size of the nanoparticles and their intrinsic magnetic properties are not altered by the various steps involved in the synthesis process. Therefore, the approach is suitable to obtain a layered composite with a quasi-monodisperse layer of ferrimagnetic nanoparticles embedded in an ultrathin film of semiconducting material.

  14. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  15. Mössbauer and X-ray study of biodegradation of 57Fe3 O 4 magnetic nanoparticles in rat brain

    NASA Astrophysics Data System (ADS)

    Gabbasov, R. R.; Cherepanov, V. M.; Chuev, M. A.; Lomov, A. A.; Mischenko, I. N.; Nikitin, M. P.; Polikarpov, M. A.; Panchenko, V. Y.

    2016-12-01

    Biodegradation of a 57Fe3 O 4 - based dextran - stabilized ferrofluid in the ventricular cavities of the rat brain was studied by X-ray diffraction and Mössbauer spectroscopy. A two-step process of biodegradation, consisting of fast disintegration of the initial composite magnetic beads into separate superparamagnetic nanoparticles and subsequent slow dissolution of the nanoparticles has been found. Joint fitting of the couples of Mössbauer spectra measured at different temperatures in the formalism of multi-level relaxation model with one set of fitting parameters, allowed us to measure concentration of exogenous iron in the rat brain as a function of time after the injection of nanoparticles.

  16. Timely Visualization of the Collaterals Formed during Acute Ischemic Stroke with Fe3 O4 Nanoparticle-based MR Imaging Probe.

    PubMed

    Wang, Ting; Hou, Yi; Bu, Bo; Wang, Wenxin; Ma, Tiancong; Liu, Chunyan; Lin, Lan; Ma, Lin; Lou, Xin; Gao, Mingyuan

    2018-04-17

    Ischemic stroke is one of the major leading causes for long-term disability and mortality. Collateral vessels provide an alternative pathway to protect the brain against ischemic injury after arterial occlusion. Aiming at visualizing the collaterals occurring during acute ischemic stroke, an integrin α v β 3 -specific Fe 3 O 4 -Arg-Gly-Asp (RGD) nanoprobe is prepared for magnetic resonance imaging (MRI) of the collaterals. Rat models are constructed by occluding the middle cerebral artery for imaging studies of cerebral ischemia and ischemia-reperfusion on 7.0 Tesla MRI using susceptibility-weighted imaging sequence. To show the binding specificity to the collaterals, the imaging results acquired with the Fe 3 O 4 -RGD nanoprobe and the Fe 3 O 4 mother nanoparticles, respectively, are carefully compared. In addition, an RGD blocking experiment is also carried out to support the excellent binding specificity of the Fe 3 O 4 -RGD nanoprobe. Following the above experiments, cerebral ischemia-reperfusion studies show the collateral dynamics upon reperfusion, which is very important for the prognosis of various revascularization therapies in the clinic. The current study has, for the first time, enabled the direct observation of collaterals in a quasi-real time fashion and further disclosed that the antegrade flow upon reperfusion dominates the blood supply of primary ischemic tissue during the early stage of infarction, which is significantly meaningful for clinical treatment of stroke. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B.

    PubMed

    Jiao, Yue; Wan, Caichao; Bao, Wenhui; Gao, He; Liang, Daxin; Li, Jian

    2018-06-01

    A magnetic cellulose aerogel-supported Fe 3 O 4 nanoparticles composite was designed as a highly efficient and eco-friendly catalyst for Fenton-like degradation of Rhodamine B (RhB). The composite (coded as Fe 3 O 4 @CA) was formed by embedding well-dispersed Fe 3 O 4 nanoparticles into the 3D structure of cellulose aerogels by virtue of a facile and cheap hydrothermal method. Comparative studies indicate that the RhB decolorization ratio is much higher in co-presence of Fe 3 O 4 and H 2 O 2 than that in presence of Fe 3 O 4 or H 2 O 2 only, revealing that the Fe 3 O 4 @CA-catalyzed Fenton-like reaction governed the RhB decolorization process. It was also found that almost 100% RhB removal was achieved in the Fenton-like system. Moreover, the composite exhibited higher catalytic activity than that of the individual Fe 3 O 4 particles. In addition, the Fe 3 O 4 @CA catalyst retained ∼97% of its ability to degrade RhB after the six successive degradation experiments, suggesting its excellent reusability. All these merits indicate that the green and low-cost catalyst with strong magnetic responsiveness possesses good potential for H 2 O 2 -driven Fenton-like treatment of organic dyestuff wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Synthesis of magnetic Bi2O2CO3/ZnFe2O4 composite with improved photocatalytic activity and easy recyclability

    NASA Astrophysics Data System (ADS)

    Liu, Yumin; Ren, Hao; Lv, Hua; Guang, Jing; Cao, Yafei

    2018-03-01

    Magnetic Bi2O2CO3/ZnFe2O4 heterojunction photocatalysts with varying content of ZnFe2O4 were constructed by modifying Bi2O2CO3 nanosheets with mesoporous ZnFe2O4 nanoparticles. The photoactivity of the products was investigated by decomposing RhodamineB (RhB) and it was found that the photoactivity of Bi2O2CO3/ZnFe2O4 composite was closely related to the loading amount of ZnFe2O4. Under simulant sunlight irradiation, the optimum photoactivity of Bi2O2CO3/ZnFe2O4 composite was almost 2.3 and 2.1 times higher than that by bare ZnFe2O4 and Bi2O2CO3, respectively. The improved photoactivity resulted from the synergistic effect of Bi2O2CO3 and ZnFe2O4, which not only extended the photoabsorption region but also significantly facilitated the interfacial charge transfer. Besides the high photocatalytic performance, Bi2O2CO3/ZnFe2O4 composite also exhibited excellent stable and recycling properties, which enabled it have great potential in a long-term practical use.

  19. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Long, Zhihang; Wan, Xinyi; Zhang, Jiemin; He, Shuangjiang; He, Yi

    2018-06-01

    To obtain high-performance electromagnetic shielding materials, structure and morphology are two key factors. We here developed an efficient and facial method to prepare high-performance 3D carbon nanofiber mats (CFM)/Fe3O4 hybrid electromagnetic shielding materials. For this purpose, the CFM were chemically modified by mussel-inspired poly-dopamine coating, which were further used as templates for decoration of Fe3O4 nanoparticles via solvothermal route. It was found that the Fe3O4 nano-spheres with diameters of 200-250 nm were uniformly coated on the surface of 3D carbon nanofibers. More importantly, the morphology and structure of resulting 3D carbon nanofiber mats/Fe3O4 hybrids could be easily controlled by altering the experiment parameters, which were examined by FT-IR, XPS, TGA, XRD, SEM, and TEM. The measured magnetic properties showed that saturation magnetism and coercivity increased from 13.4 to 39.7 emu/g and 85.3 to 104.6 Oe, respectively. The lowest reflectivity of resulting hybrid was calculated to be -47 dB at 10.0 GHz (2.5 mm). In addition, the reflectivity of 3D carbon nanofiber mats/Fe3O4 hybrid was less than -25 dB in the range of 7-13 GHz. Moreover, the resulting 3D carbon nanofiber mats/Fe3O4 hybrid exhibited an EMI shielding performance of -62.6 dB in the frequency range of 8.2-12.4 GHz. Therefore, 3D carbon fiber mats/Fe3O4 hybrids can be ideal EMI materials with strong absorption, low density, and wide absorption range.

  20. Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojia; Yang, Xiaoyu; Li, Guang

    2018-01-01

    We report magnetically separable Fe2O3/g-C3N4 nanocomposites as a photocatalyst under visible-light irradiation in this study. The Fe2O3/g-C3N4 nanocomposites were synthesized through a two-step hydrothermal method. The Fe2O3 with cocoon-like shape was obviously dispersed on the surface of g-C3N4 with porous and layered nanostructure as seen from micrographs of the particles. Furthermore, the magnetic conversion of the samples was studied via vibrating sample magnetometer technology. It was found that the saturated magnetization Ms of the Fe2O3/g-C3N4 nanoparticles obviously decreased in the presence of g-C3N4, and the photocatalytic activity of the samples investigated by degrading Rhodamine B suggested that the Fe2O3/g-C3N4 photocatalyst was prior to the pure Fe2O3 and g-C3N4 samples. In addition, the magnetically separable ability of Fe2O3/g-C3N4 nanocomposites was efficiently exhibited by an external magnet.

  1. Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method

    NASA Astrophysics Data System (ADS)

    Kurian, Jessyamma; Mathew, M. Jacob

    2018-04-01

    In this paper we report the structural, optical and magnetic studies of three spinel ferrites namely CuFe2O4, MgFe2O4 and ZnFe2O4 prepared in an autoclave under the same physical conditions but with two different liquid medium and different surfactant. We use water as the medium and trisodium citrate as the surfactant for one method (Hydrothermal method) and ethylene glycol as the medium and poly ethylene glycol as the surfactant for the second method (solvothermal method). The phase identification and structural characterization are done using XRD and morphological studies are carried out by TEM. Cubical and porous spherical morphologies are obtained for hydrothermal and solvothermal process respectively without any impurity phase. The optical studies are carried out using FTIR and UV-Vis reflectance spectra. In order to elucidate the nonlinear optical behaviour of the prepared nanomaterial, open aperture z-scan technique is used. From the fitted z-scan curves nonlinear absorption coefficient and the saturation intensity are determined. The magnetic characterization of the samples is performed at room temperature using vibrating sample magnetometer measurements. The M-H curves obtained are fitted using theoretical equation and the different components of magnetization are determined. Nanoparticles with high saturation magnetization are obtained for MgFe2O4 and ZnFe2O4 prepared under solvothermal reaction. The magnetic hyperfine parameters and the cation distribution of the prepared materials are determined using room temperature Mössbauer spectroscopy. The fitted spectra reveal the difference in the magnetic hyperfine parameters owing to the change in size and morphology.

  2. Regio- and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferrite-nickel nanoparticles (Fe(3)O(4)-Ni) by using glycerol as a hydrogen source.

    PubMed

    Gawande, Manoj B; Rathi, Anuj K; Branco, Paula S; Nogueira, Isabel D; Velhinho, Alexandre; Shrikhande, Janhavi J; Indulkar, Utkarsha U; Jayaram, Radha V; Ghumman, C Amjad A; Bundaleski, Nenad; Teodoro, Orlando M N D

    2012-10-01

    Reduction by magnetic nano-Fe(3)O(4)-Ni: a facile, simple and environmentally friendly hydrogen-transfer reaction that takes place over recyclable ferrite-nickel magnetic nanoparticles (Fe(3)O(4)-Ni) by using glycerol as hydrogen source allows aromatic amines and alcohols to be synthesized from the precursor nitroarenes and carbonyl compounds. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β-Fe 2O 3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed M.; Jamal, A.; Khan, Sher Bahadar; Faisal, M.

    2011-10-01

    Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nano-crystalline β-Fe 2O 3 was characterized using XRD techniques. β-Fe 2O 3 nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response ( I- V technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe 2O 3 NPs thin-film on GCE. The calibration plot was linear ( R = 0.9785) over the large range of 12.0 μM to 12.0 mM. The sensitivity was calculated as 2.1792 μA cm -2 mM -1 with a detection limit of 4.4 ± 0.10 μM in short response time (10.0 s).

  4. Tuning exchange bias in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles: Impacts of interface and surface spins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khurshid, Hafsa, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Phan, Manh-Huong, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Mukherjee, Pritish

    A comparative study has been performed of the exchange bias (EB) effect in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles with the same thickness of the γ-Fe{sub 2}O{sub 3} shell (∼2 nm) and the diameter of the Fe core varying from 4 nm to 11 nm. Transmission electron microscopy (TEM) and high-resolution TEM confirmed the high quality of the core-shell nanostructures. A systematic analysis of magnetization versus magnetic field measurements under zero-field-cooled and field-cooled regimes using the Meiklejohn-Bean model and deconvoluting superparamagnetic and paramagnetic contribution to the total magnetic moment Langevin function shows that there exists a critical particle size (∼10 nm), above which the spinsmore » at the interface between Fe and γ-Fe{sub 2}O{sub 3} contribute primarily to the EB, but below which the surface spin effect is dominant. Our finding yields deeper insight into the collective contributions of interface and surface spins to the EB in core-shell nanoparticle systems, knowledge of which is the key to manipulating EB in magnetic nanostructures for spintronics applications.« less

  5. Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnOx and Pd-Pt alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xiangyu; Liu, Yuxi; Deng, Jiguang; Xie, Shaohua; Zhao, Xingtian; Zhang, Yang; Zhang, Kunfeng; Arandiyan, Hamidreza; Guo, Guangsheng; Dai, Hongxing

    2017-05-01

    Three-dimensionally ordered macroporous (3DOM) CoFe2O4, zMnOx/3DOM CoFe2O4 (z = 4.99-12.30 wt%), and yPd-Pt/6.70 wt% MnOx/3DOM CoFe2O4 (y = 0.44-1.81 wt%; Pd/Pt molar ratio = 2.1-2.2) have been prepared using the polymethyl methacrylate microspheres-templating, incipient wetness impregnation, and bubble-assisted polyvinyl alcohol-protected reduction strategies, respectively. All of the samples were characterized by means of various techniques. Catalytic performance of the samples was measured for methane combustion. It is shown that the as-prepared samples exhibited a high-quality 3DOM structure (103 ± 20 nm in pore size) and a surface area of 19-28 m2/g, and the noble metal or alloy nanoparticles (NPs) with a size of 2.2-3.0 nm were uniformly dispersed on the macropore wall surface of 3DOM CoFe2O4. The loading of MnOx on CoFe2O4 gave rise to a slight increase in activity, however, the dispersion of Pd-Pt NPs on 6.70MnOx/3DOM CoFe2O4 significantly enhanced the catalytic performance, with the 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 sample showing the highest activity (T10% = 255 °C, T50% = 301 °C, and T90% = 372 °C at a space velocity of 20,000 mL/(g h)). We believe that the excellent catalytic activity of 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 was related to its well-dispersed Pd-Pt alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between MnOx or Pd-Pt NPs and 3DOM CoFe2O4.

  6. High-throughput multipesticides residue analysis in earthworms by the improvement of purification method: Development and application of magnetic Fe3 O4 -SiO2 nanoparticles based dispersive solid-phase extraction.

    PubMed

    Sun, Yuhan; Qi, Peipei; Cang, Tao; Wang, Zhiwei; Wang, Xiangyun; Yang, Xuewei; Wang, Lidong; Xu, Xiahong; Wang, Qiang; Wang, Xinquan; Zhao, Changshan

    2018-06-01

    As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high-throughput multipesticides residue analytical method for earthworms using solid-liquid extraction with acetonitrile as the solvent and magnetic material-based dispersive solid-phase extraction for purification. Magnetic Fe 3 O 4 nanoparticles were modified with a thin silica layer to form Fe 3 O 4 -SiO 2 nanoparticles, which were fully characterized by field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The Fe 3 O 4 -SiO 2 nanoparticles were used as the separation media in dispersive solid-phase extraction with primary secondary amine and ZrO 2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic quenching of photonic activity in Fe3O4-elastomer composite

    NASA Astrophysics Data System (ADS)

    Ma, Danhao; Hess, Dustin T.; Shetty, Pralav P.; Adu, Kofi W.; Bell, Richard C.; Terrones, Mauricio

    2016-01-01

    We report a quenching phenomenon within the visible region of the electromagnetic spectrum in the photonic response of a passive Fe3O4-silicone elastomer composite film due to magnetically aligned Fe3O4 nanoparticles. We performed systematic studies of the polarization dependence, the effect of particle size, and an in- and out-of-plane particle alignment on the optical response of the Fe3O4-silicone elastomer composites using a UV/vis/NIR spectrometer. We observed systematic redshifts in the response of the out-of-plane composite films with increasing particle alignment and weight that are attributed to dipole-induced effects. There were no observable shifts in the spectra of the in-plane films, suggesting the orientation of the magnetic dipole and the induced electric dipole play a crucial role in the optical response. A dramatic suppression to near quenching of the photonic response occurred in films containing moderate concentrations of the aligned nanoparticles. This is attributed to the interplay between the intra- and the interparticle dipoles. This occurred even when low magnetic fields were used during the curing process, suggesting that particle alignment and particle size limitation are critical in the manipulation of the photonic properties. A dipole approximation model is used to explain the quenching phenomenon. An active system of such a composite has a potential application in magneto-optic switches.

  8. Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar.

    PubMed

    Reguyal, Febelyn; Sarmah, Ajit K

    2018-02-01

    Magnetisation of carbonaceous adsorbents using iron oxides has been found to be one of the potential solutions for easy recovery of adsorbent after use. We evaluated the effects of Fe 3 O 4 nanoparticle addition on the physico-chemical properties of biochar and its sorption properties. Five adsorbents with varying amount of Fe 3 O 4 per mass of adsorbent (0%, 25%, 50%, 75% and 100%) were used to adsorb sulfamethoxazole (SMX), an emerging micropollutant. Five isotherm models were used to evaluate the sorption behaviour of SMX onto the adsorbents where Redlich-Peterson model was found to best describe the data. Based on this model, the approximate site energy distribution for each adsorbent was determined. Surface area and sorption capacity had strong negative linear relationship with the amount of Fe 3 O 4 per mass of adsorbent while the pore volume and saturation magnetisation of the adsorbent increased with increasing percentage of Fe 3 O 4 . The results of the approximate site energy distribution analysis showed that the addition of Fe 3 O 4 on biochar reduced the area under the frequency distribution curve of sorption site energies leading to the lowering of the sorption sites available for SMX. This could be attributed to the blockage of the hydrophobic surface of biochar reducing the hydrophobic interaction between SMX and biochar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    PubMed

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  10. Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

    1990-01-01

    As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

  11. Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications.

    PubMed

    Kohara, Kaori; Yamamoto, Shinpei; Seinberg, Liis; Murakami, Tatsuya; Tsujimoto, Masahiko; Ogawa, Tetsuya; Kurata, Hiroki; Kageyama, Hiroshi; Takano, Mikio

    2013-03-28

    Carboxylated SiO2-coated α-Fe nanoparticles have been successfully prepared via CaH2-mediated reduction of SiO2-coated Fe3O4 nanoparticles followed by surface carboxylation. These α-Fe-based nanoparticles, which are characterized by ease of coating with additional functional groups, a large magnetization of 154 emu per g-Fe, enhanced corrosion resistivity, excellent aqueous dispersibility, and low cytotoxicity, have potential to be a versatile platform in biomedical applications.

  12. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance.

    PubMed

    Hou, Bao-Hua; Wang, Ying-Ying; Guo, Jin-Zhi; Zhang, Yu; Ning, Qiu-Li; Yang, Yang; Li, Wen-Hao; Zhang, Jing-Ping; Wang, Xin-Long; Wu, Xing-Long

    2018-01-31

    A novel core-shell Fe 3 O 4 @FeS composed of Fe 3 O 4 core and FeS shell with the morphology of regular octahedra has been prepared via a facile and scalable strategy via employing commercial Fe 3 O 4 as the precursor. When used as anode material for sodium-ion batteries (SIBs), the prepared Fe 3 O 4 @FeS combines the merits of FeS and Fe 3 O 4 with high Na-storage capacity and superior cycling stability, respectively. The optimized Fe 3 O 4 @FeS electrode shows ultralong cycle life and outstanding rate capability. For instance, it remains a capacity retention of 90.8% with a reversible capacity of 169 mAh g -1 after 750 cycles at 0.2 A g -1 and 151 mAh g -1 at a high current density of 2 A g -1 , which is about 7.5 times in comparison to the Na-storage capacity of commercial Fe 3 O 4 . More importantly, the prepared Fe 3 O 4 @FeS also exhibits excellent full-cell performance. The assembled Fe 3 O 4 @FeS//Na 3 V 2 (PO 4 ) 2 O 2 F sodium-ion full battery gives a reversible capacity of 157 mAh g -1 after 50 cycles at 0.5 A g -1 with a capacity retention of 92.3% and the Coulombic efficiency of around 100%, demonstrating its applicability for sodium-ion full batteries as a promising anode. Furthermore, it is also disclosed that such superior electrochemical properties can be attributed to the pseudocapacitive behavior of FeS shell as demonstrated by the kinetics studies as well as the core-shell structure. In view of the large-scale availability of commercial precursor and ease of preparation, this study provide a scalable strategy to develop advanced anode materials for SIBs.

  13. Fe2O3/Reduced Graphene Oxide/Fe3O4 Composite in Situ Grown on Fe Foil for High-Performance Supercapacitors.

    PubMed

    Zhao, Chongjun; Shao, Xiaoxiao; Zhang, Yuxiao; Qian, Xiuzhen

    2016-11-09

    A Fe 2 O 3 /reduced graphene oxide (RGO)/Fe 3 O 4 nanocomposite in situ grown on Fe foil was synthesized via a simple one-step hydrothermal growth process, where the iron foil served as support, reductant of graphene oxide, Fe source of Fe 3 O 4 , and also the current collector of the electrode. When it directly acted as the electrode of a supercapacitor, as-synthesized Fe 2 O 3 /RGO/Fe 3 O 4 @Fe exhibited excellent electrochemical performance with a high capability of 337.5 mF/cm 2 at 20 mA/cm 2 and a superior cyclability with 2.3% capacity loss from the 600th to the 2000th cycle.

  14. Synthesis of Fe3O4/Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline.

    PubMed

    Liu, Qing; Zhong, Lu-Bin; Zhao, Quan-Bao; Frear, Craig; Zheng, Yu-Ming

    2015-07-15

    Novel Fe3O4/polyacrylonitrile (PAN) composite nanofibers (NFs) were prepared by a simple two-step process, an electrospinning and solvothermal method. Characterization by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) demonstrated formation of a uniform nanoparticles coating (about 20 nm in thickness) on the PAN nanofiber backbone. The coating was constructed by well-crystallized cubic phase Fe3O4 nanoparticles as examined by X-ray diffraction spectroscopy (XRD). The coating doubled the specific surface area of NFs, from 8.4 to 17.8 m2 g(-1), as confirmed by nitrogen sorption isotherm analysis. To evaluate the feasibility of Fe3O4/PAN composite NFs as a potential adsorbent for antibiotic removal, batch adsorption experiments were conducted using tetracycline (TC) as the model antibiotic molecule. The results showed that Fe3O4/PAN composite NFs were effective in removing TC with no impactful loss of Fe in the pH regime of environmental interest (5-8). The adsorption of TC onto Fe3O4/PAN composite NFs better fitted the pseudo-second-order kinetics model, and the maximum adsorption capacity calculated from Langmuir isotherm model was 257.07 mg g(-1) at pH 6. The composite NFs also exhibited good regenerability over repeated adsorption/desorption cycles. Surface complexation between TC and the composite NFs contributed most to the adsorption as elucidated by X-ray photoelectron spectroscopy (XPS). This highly effective and novel adsorbent can be easily modularized and separated, promising its huge potential in drinking and wastewater treatment for antibiotic removal.

  15. Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications

    NASA Astrophysics Data System (ADS)

    Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.

    2015-03-01

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI

  16. Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography.

    PubMed

    He, Huan; Yuan, Danhua; Gao, Zhanqi; Xiao, Deli; He, Hua; Dai, Hao; Peng, Jun; Li, Nan

    2014-01-10

    A novel magnetic solid-phase extraction (MSPE) method based on mixed hemimicelles of room temperature ionic liquids (RTILs) coated Fe3O4/SiO2 nanoparticles (NPs) was developed for simultaneous extraction of trace amounts of flavonoids in bio-matrix samples. A comparative study on the use of RTILs (C16mimBr) and CTAB-coated Fe3O4/SiO2 NPs as sorbents was presented. Owing to bigger adsorption amounts for analytes, RTILs-coated Fe3O4/SiO2 NPs was selected as MSPE materials and three analytes luteolin, quercetin and kaempferol can be quantitatively extracted and simultaneously determined coupled with high performance liquid chromatography (HPLC) in urine samples. No interferences were caused by proteins or endogenous compounds. Good linearity (R(2)>0.9993) for all calibration curves was obtained, and the limits of detection (LOD) for luteolin, quercetin and kaempferol were 0.10 ng/mL, 0.50 ng/mL and 0.20 ng/mL in urine samples, respectively. Satisfactory recoveries (93.5-97.6%, 90.1-95.4% and 93.3-96.6% for luteolin, quercetin and kaempferol) in biological matrices were achieved. It was notable that while using a small amount of Fe3O4/SiO2 NPs (4.0 mg) and C16mimBr (1.0 mg), satisfactory preconcentration factors and extraction recoveries for the three flavonoids were obtained. To the best of our knowledge, this is the first time a mixed hemimicelles MSPE method based on RTILs and Fe3O4/SiO2 NPs magnetic separation has ever been used for pretreatment of complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar

    2018-05-01

    This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.

  18. 56Co-labelled radioactive Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines

    NASA Astrophysics Data System (ADS)

    Marmorato, P.; Simonelli, F.; Abbas, K.; Kozempel, J.; Holzwarth, U.; Franchini, F.; Ponti, J.; Gibson, N.; Rossi, F.

    2011-12-01

    Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantification of Fe3O4 NPs in biological systems. Particular attention has been focused on the size distribution (in the range of 100 nm) and the surface charge of the NPs characterizing them before and after the irradiation process in order to verify if these essential properties would be preserved during irradiation. Moreover, X-ray diffraction studies have been performed on radioactive and non-radioactive NPs, to assess if major changes in NPs structure might occur due to thermal and/or radiation effects. The radiation emitted from the radiolabels has been used to quantify the cellular uptake of the NPs in in vitro studies. As for the biological applications two cell lines have been selected: immortalized mouse fibroblast cell line (Balb/3T3) and human epithelial colorectal adenocarcinoma cell line (Caco-2). The cell uptake has been quantified by radioactivity measurements of the 56Co radioisotope performed with high resolution γ-ray spectrometry equipment. This study has showed that, under well-established irradiation conditions, Fe3O4 NPs do not undergo significant structural modifications and thus the obtained results are in line with the uptake studies carried out with the same non-radioactive nanomaterials (NMs). Therefore, the radiolabelling method can be fruitfully applied to uptake studies because of the low-level exposure where higher sensitivity is required.

  19. Acetic Acid Ketonization over Fe3O4/SiO2 for Pyrolysis Bio-Oil Upgrading.

    PubMed

    Bennett, James A; Parlett, Christopher M A; Isaacs, Mark A; Durndell, Lee J; Olivi, Luca; Lee, Adam F; Wilson, Karen

    2017-05-10

    A family of silica-supported, magnetite nanoparticle catalysts was synthesised and investigated for continuous-flow acetic acid ketonisation as a model pyrolysis bio-oil upgrading reaction. The physico-chemical properties of Fe 3 O 4 /SiO 2 catalysts were characterised by using high-resolution transmission electron microscopy, X-ray absorption spectroscopy, X-ray photo-electron spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and porosimetry. The acid site densities were inversely proportional to the Fe 3 O 4 particle size, although the acid strength and Lewis character were size-invariant, and correlated with the specific activity for the vapour-phase acetic ketonisation to acetone. A constant activation energy (∼110 kJ mol -1 ), turnover frequency (∼13 h -1 ) and selectivity to acetone of 60 % were observed for ketonisation across the catalyst series, which implies that Fe 3 O 4 is the principal active component of Red Mud waste.

  20. Ultra-wide detectable concentration range of GMR biosensors using Fe3O4 microspheres

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Li, Qiang; Zong, Weihua; Zhang, Yongcheng; Li, Shandong

    2016-11-01

    Exchange-biased GMR sensors were employed for biodetection using a DC in-plane measuring method and a magnetic label of Fe3O4 microspheres. It was revealed that an ultra-wide concentration span covering five orders from 10 ng/mL to 1000 μg/mL was achieved in a home-made biodetection device. The concentration x dependence of output voltage difference |ΔV| between with and without magnetic labels, exhibits nonlinear futures, which undergoes two functions depending on the concentration region. For the low concentration region from 10 ng/mL to 10 μg/mL, a logarithmic relation of |ΔV|=26.3lgx+91.4 fits well, while for the high concentration region, a negative exponential function of |ΔV|=3113(1-e-x/250) describes the |ΔV|~x relation better. For the former, the "coffee ring" effect, formed during the solvent evaporation, was considered as the main reason for the nonlinear relation. While for the latter with high concentration, the overlap among the particles and the enhanced interaction of the magnetic dipole were responsible for the nonlinear |ΔV|~x relationship. Moreover, the calculated detectable concentration limit is agreed well with the experimental data.

  1. Synthesis of cytocompatible Fe3O4@ZSM-5 nanocomposite as magnetic resonance imaging contrast agent

    NASA Astrophysics Data System (ADS)

    Atashi, Zahra; Divband, Baharak; Keshtkar, Ahmad; Khatamian, Maasoumeh; Farahmand-Zahed, Farzane; Nazarlo, Ali Kiani; Gharehaghaji, Nahideh

    2017-09-01

    In this study, ZSM-5 nano zeolite was used as a support material for iron oxide nanoparticles and the potential ability of the nanocomposite for magnetic resonance imaging (MRI) contrast agent was investigated. The nanocomposite was synthesized by hydrothermal method and characterized using X-ray diffraction and scanning electron microscopy. MRI was carried out by use of a 1.5 Tesla clinical scanner. The T2 weighted images were prepared and the r2 relaxivity was calculated. The sizes of Fe3O4 nanoparticles and related nanocomposite were 13-24 nm and 80-150 nm, respectively. Results of MTT assay confirmed that the prepared nanocomposite is cytocompatible. The r2 relaxivity of the Fe3O4@ZSM-5 nanocomposite was 457.1 mM-1 s-1. This study suggests that the Fe3O4@ZSM-5 nanocomposite has potential to use as an MRI T2 contrast agent.

  2. A novel DNA nanosensor based on CdSe/ZnS quantum dots and synthesized Fe3O4 magnetic nanoparticles.

    PubMed

    Hushiarian, Roozbeh; Yusof, Nor Azah; Abdullah, Abdul Halim; Ahmad, Shahrul Ainliah Alang; Dutse, Sabo Wada

    2014-04-09

    Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4) nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.

  3. Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium (VI) removal.

    PubMed

    Lv, Xiaoshu; Jiang, Guangming; Xue, Xiaoqin; Wu, Donglei; Sheng, Tiantian; Sun, Chen; Xu, Xinhua

    2013-11-15

    In this study, Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol (PVA)/sodium alginate (SA) beads were synthesized, which exhibited an excellent physical properties and catalytic reactivity, and a robust performance of post-separation (complete separation using a simple grille) and reusability (efficiency of 69.8% after four runs) in Cr(VI) removal. 5.0 wt% PVA with 1.5 wt% SA was the optimal proportion for beads molding, and the followed acidification and reduction treatments were critical to ensure high mechanical strength and high Cr(VI) removal ability of beads. Effects of Fe(0) and Fe3O4 mass fraction, initial pH and Cr(VI) concentration on final removal efficiency were also evaluated. Merely 0.075 wt% Fe(0) together with 0.30 wt% Fe3O4 was sufficient to deal with 20 mg L(-1) Cr(VI) solution. The efficiency decreased from 100 to 79.5% as initial Cr(VI) increased from 5 to 40 mg L(-1), while from 99.3 to 76.3% with increasing pH from 3.0 to 11.0. This work provides a practical and high-efficient method for heavy metal removal from water body, and simultaneously solves the problems in stabilization, separation and regeneration of Fe(0) nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto

    2010-10-01

    A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.

  5. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst

    NASA Astrophysics Data System (ADS)

    Khoobi, Mehdi; Delshad, Tayebeh Modiri; Vosooghi, Mohsen; Alipour, Masoumeh; Hamadi, Hosein; Alipour, Eskandar; Hamedani, Majid Pirali; Sadat ebrahimi, Seyed Esmaeil; Safaei, Zahra; Foroumadi, Alireza; Shafiee, Abbas

    2015-02-01

    A novel magnetically separable catalyst was prepared based on surface modification of Fe3O4 magnetic nanoparticle (MNPs) with polyethyleneimine (PEI) via covalent bonding. [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane (EPO) was used as cross linker to bond PEI on the surface of MNPs with permanent stability in contrast to PEI coating via electrostatic interactions. The synthesized catalyst was characterized by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The catalyst show high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives via multi-component reaction (MCR). This procedure offers the advantages of green reaction media, high yield, short reaction time, easy purification of the products and simple recovery and reuse of the catalyst by simple magnetic decantation without significant loss of catalytic activity.

  6. Identification of ε-Fe2O3 nano-phase in borate glasses doped with Fe and Gd

    NASA Astrophysics Data System (ADS)

    Ivanova, O. S.; Ivantsov, R. D.; Edelman, I. S.; Petrakovskaja, E. A.; Velikanov, D. A.; Zubavichus, Y. V.; Zaikovskii, V. I.; Stepanov, S. A.

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe2O3, γ-Fe2O3, or Fe3O4 nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe2O3. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles' nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics.

  7. Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis

    PubMed Central

    Liu, Jia; Xu, Jie; Zhou, Jun; Zhang, Yu; Guo, Dajing; Wang, Zhigang

    2017-01-01

    Thrombotic disease is a great threat to human health, and early detection is particularly important. Magnetic resonance (MR) molecular imaging provides noninvasive imaging with the potential for early disease diagnosis. In this study, we developed Fe3O4-based poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) surface-modified with a cyclic Arg-Gly-Asp (cRGD) peptide as an MR contrast agent for the detection of thrombosis. The physical and chemical characteristics, biological toxicity, ability to target thrombi, and biodistribution of the NPs were studied. The Fe3O4-PLGA-cRGD NPs were constructed successfully, and hematologic and pathologic assays indicated no in vivo toxicity of the NPs. In a rat model of FeCl3-induced abdominal aorta thrombosis, the NPs readily and selectively accumulated on the surface of the thrombosis and under vascular endothelial cells ex vivo and in vivo. In the in vivo experiment, the biodistribution of the NPs suggested that the NPs might be internalized by the macrophages of the reticuloendothelial system in the liver and the spleen. The T2 signal decreased at the mural thrombus 10 min after injection and then gradually increased until 50 min. These results suggest that the NPs are suitable for in vivo molecular imaging of thrombosis under high shear stress conditions and represent a very promising MR contrast agent for sensitive and specific detection of thrombosis. PMID:28223802

  8. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shofiah, Siti, E-mail: esuharyadi@ugm.ac.id; Muflihatun,; Suharyadi, Edi

    2016-04-19

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles comparable sizes have been studied in detail. NiFe{sub 2}O{sub 4} were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe{sub 2}O{sub 4} was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe{sub 2}O{sub 4}more » as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe{sub 2}O{sub 4} became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe{sub 2}O{sub 3} phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe{sub 2}O{sub 4} nanoparticles.« less

  9. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  10. 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles-A study of surface area and spinel inversion influence

    NASA Astrophysics Data System (ADS)

    Zampiva, Rúbia Young Sun; Kaufmann Junior, Claudir Gabriel; Pinto, Juliano Schorne; Panta, Priscila Chaves; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2017-11-01

    The MgFe2O4 spinel exhibits remarkable magnetic properties that open up numerous applications in biomedicine, the environment and catalysis. MgFe2O4 nanoparticles are excellent catalyst for carbon nanotube (CNT) production. In this work, we proposed to use MgFe2O4 nanopowder as a catalyst in the production of 3D macroscopic structures based on CNTs. The creation of these nanoengineered 3D architectures remains one of the most important challenges in nanotechnology. These systems have high potential as supercapacitors, catalytic electrodes, artificial muscles and in environmental applications. 3D macrostructures are formed due to an elevated density of CNTs. The quantity and quality of the CNTs are directly related to the catalyst properties. A heat treatment study was performed to produce the most effective catalyst. Factors such as superficial area, spinel inversion, crystallite size, degree of agglomeration and its correlation with van der Waals forces were examined. As result, the ideal catalyst properties for CNT production were determined and high-density 3D CNT macrostructures were produced successfully.

  11. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

    PubMed Central

    Buruiana, Tinca; Melinte, Violeta; Buruiana, Emil C

    2017-01-01

    Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si–O–Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization of nanoparticles and hybrid polymeric composites with 10 wt % NPs (S1–S4) was realized through XRD, TEM and FTIR analyses. The mean size (10–30 nm) and the crystallinity of the NPs varied as a function of the inorganic constituent. The catalytic activity of these hybrid films was tested for the photodegradation of phenol, hydroquinone and dopamine in aqueous solution under UV or visible-light irradiation. The best results were obtained for the films with TiO2/Fe2O3 or TiO2/SiO2/Fe2O3 NPs. The degradation of the mentioned model pollutants varied between 71% and 100% (after 250 min of irradiation) depending on the composition of the hybrid film tested and the light applied (UV–visible light). Also, it was established that such hybrid films can be reused at least for five cycles, without losing too much of the photocatalytic efficiency (ca. 7%). These findings could have implications in the development of new nanocatalysts. PMID:28243566

  12. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate.

    PubMed

    Tan, Chaoqun; Gao, Naiyun; Deng, Yang; Deng, Jing; Zhou, Shiqing; Li, Jun; Xin, Xiaoyan

    2014-07-15

    Magnetic nano-scaled particles Fe3O4 were studied for the activation of peroxymonosulfate (PMS) to generate active radicals for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for removal of APAP, and the reactions well followed a pseudo-first-order kinetics pattern (R(2)>0.95). Within 120min, approximately 75% of 10ppm APAP was accomplished by 0.2mM PMS in the presence of 0.8g/L Fe3O4 MNPs with little Fe(3+) leaching (<4μg/L). Higher Fe3O4 MNP dose, lower initial APAP concentration, neutral pH, and higher reaction temperature favored the APAP degradation. The production of sulfate radicals and hydroxyl radicals was validated through two ways: (1) indirectly from the scavenging tests with scavenging agents, tert-butyl alcohol (TBA) and ethanol (EtOH); (2) directly from the electron paramagnetic resonance (ESR) tests with 0.1M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 MNP activation of PMS are proposed based on the results of radical identification tests and XPS analysis. It appeared that Fe(2+)Fe(3+) on the catalyst surface was responsible for the radical generation. The results demonstrated that Fe3O4 MNPs activated PMS is a promising technology for water pollution caused by contaminants such as pharmaceuticals. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dispersive admicelle solid-phase extraction based on sodium dodecyl sulfate coated Fe3 O4 nanoparticles for the selective adsorption of three alkaloids in Gegen-Qinlian oral liquid before high-performance liquid chromatography.

    PubMed

    Shi, Zhihong; Xu, Dan; Zhao, Xuan; Li, Xinghong; Shen, Huimin; Yang, Bing; Zhang, Hongyi

    2017-12-01

    A novel dispersive admicelle solid-phase extraction method based on sodium dodecyl sulfate-coated Fe 3 O 4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen-Qinlian oral liquid before high-performance liquid chromatography. Fe 3 O 4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe 3 O 4 nanoparticles was coated with sodium dodecyl sulfate to form a nano-sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte-adsorbed nanoparticles from the sample solution was performed by using Nd-Fe-B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe 3 O 4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9-120.3%, relative standard deviations for intra- and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen-Qinlian oral liquids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A new method for the preparation of a Fe{sub 3}O{sub 4}/graphene hybrid material and its applications in electromagnetic wave absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tsung-Yung; Lu, Kai-Tai; Peng, Cheng-Hsiung

    2015-10-15

    Graphical abstract: A microwave-assisted solvothermal process was used to prepare Fe{sub 3}O{sub 4} nanoparticles/graphene hybrids, which could be applied as an electromagnetic (EM) radiation absorbent. The absorber, composed of 20 wt% Fe{sub 3}O{sub 4}/graphene–epoxy, exhibited a dual-frequency reflection characteristic covering the C and Ku bands with maximum reflection losses of less than −20 dB at thicknesses of 4 and 5 mm. - Highlights: • Fe{sub 3}O{sub 4}/graphene composites were prepared by a microwave-assisted solvothermal route. • Uniform loading of Fe{sub 3}O{sub 4} nanoparticles on graphene was obtained. • The products as-synthesized show great promise as a microwave absorption material. •more » Synergistic effects of Fe{sub 3}O{sub 4} and graphene caused improved absorption efficiency. • The Fe{sub 3}O{sub 4}/graphene product possessed a dual-frequency reflection characteristic. - Abstract: A rapid, simple, and inexpensive process combining a microwave-assisted technique and a solvothermal method has been developed using graphene sheets and FeCl{sub 3}·6H{sub 2}O as the reactant to prepare graphene/Fe{sub 3}O{sub 4} nanoparticle hybrids, which can be applied as an electromagnetic radiation absorbent. The experimental factors (i.e., composition ratio, microwave power, and irradiation time) on the products’ characteristics were examined. Under optimal conditions, the morphological analysis revealed that the graphene sheet was homogeneously covered with Fe{sub 3}O{sub 4} nanoparticles (∼50 nm). The electromagnetic parameters of the composites made from 20 wt% Fe{sub 3}O{sub 4}/graphene–epoxy were measured by a vector network analyzer. It was found that the 4- and 5 mm-thick composites could attain a reflection loss below −20 dB in the dual-ranges of 4–8 and 12–18 GHz.« less

  15. Enhancement of crystallinity and magnetization in Fe3O4 nanoferrites induced by a high synthesized magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Xinxiu; Zhang, Zhanxian; Chen, Shijie; Lei, Wei; Xu, Yan; Lin, Jia; Luo, Xiaojing; Liu, Yongsheng

    2018-05-01

    A one-step hydrothermal method in different dc magnetic fields was used to prepare the Fe3O4 nanoparticles. Under the magnetic field, the average particle size decreased from 72.9 to 41.6 nm, meanwhile, the particle crystallinity is greatly improved. The magnetic field enhances its saturation magnetization and coercivity. The high magnetic field induce another magnetic structure. At room temperature, these nanoparticles exhibit superparamagnetism whose critical size (D sp) is about 26 nm. The Verwey transition is observed in the vicinity of 120 K of Fe3O4 nanoparticles. The effective magnetic anisotropy decreases with the increase of the test temperature because of the H c decreased.

  16. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Fenfen; Zhi, Debo; Luo, Yufeng; Zhang, Jiqian; Nan, Xiang; Zhang, Yunjiao; Zhou, Wei; Qiu, Bensheng; Wen, Longping; Liang, Gaolin

    2016-06-01

    T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future.T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes

  17. Enhanced photoelectrochemical response of plasmonic Au embedded BiVO4/Fe2O3 heterojunction.

    PubMed

    Verma, Anuradha; Srivastav, Anupam; Khan, Saif A; Rani Satsangi, Vibha; Shrivastav, Rohit; Kumar Avasthi, Devesh; Dass, Sahab

    2017-06-14

    The effect of embedding Au nanoparticles (NPs) in a BiVO 4 /Fe 2 O 3 heterojunction for photoelectrochemical water splitting is studied here for the first time. The present nanostructured heterojunction offers three major advantages over pristine BiVO 4 and Fe 2 O 3 : (i) the formation of a heterojunction between BiVO 4 and Fe 2 O 3 enhances the charge carrier separation and transfer, (ii) the layer of Fe 2 O 3 provides protection to BiVO 4 from photocorrosion and, (iii) the Au NPs possessing surface plasmon resonance (SPR) enhance the photoelectrochemical response by transferring energy to metal oxides by hot electron transfer (HET) and plasmon resonant energy transfer (PRET). The present study reveals that the heterojunction ITO/BiVO 4 /Fe 2 O 3 (with 32% v/v Au solution in both layers) gives the best performance and mitigates the limitations of both pristine Fe 2 O 3 and BiVO 4 . A thirteen-fold increment in applied bias photon-to-current conversion efficiency (ABPE) was observed at 1.24 V vs. RHE under the condition of 1 Sun illumination. Monochromatic incident photon-to-current conversion efficiency (IPCE) measurements indicated that an Au embedded heterojunction is more effective in harvesting visible light in comparison to a heterojunction without Au NPs.

  18. Interparticle interaction effects on magnetic behaviors of hematite (α-Fe2O3) nanoparticles

    NASA Astrophysics Data System (ADS)

    Can, Musa Mutlu; Fırat, Tezer; Özcan, Şadan

    2011-07-01

    The interparticle magnetic interactions of hematite (α-Fe2O3) nanoparticles were investigated by temperature and magnetic field dependent magnetization curves. The synthesis were done in two steps; milling metallic iron (Fe) powders in pure water (H2O), known as mechanical milling technique, and annealing at 600 °C. The crystal and molecular structure of prepared samples were determined by X-ray powder diffraction (XRD) spectra and Fourier transform infrared (FTIR) spectra results. The average particle sizes and the size distributions were figured out using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The magnetic behaviors of α-Fe2O3 nanoparticles were analyzed with a vibrating sample magnetometer (VSM). As a result of the analysis, it was observed that the prepared α-Fe2O3 nanoparticles did not perform a sharp Morin transition (the characteristic transition of α-Fe2O3) due to lack of unique particle size distribution. However, the transition can be observed in the wide temperature range as “a continuously transition”. Additionally, the effect of interparticle interaction on magnetic behavior was determined from the magnetization versus applied field (σ(M)) curves for 26±2 nm particles, dispersed in sodium oxalate matrix under ratios of 200:1, 300:1, 500:1 and 1000:1. The interparticle interaction fields, recorded at 5 K to avoid the thermal interactions, were found as ∼1082 Oe for 26±2 nm particles.

  19. Multifunctional PMMA@Fe3O4@DR Magnetic Materials for Efficient Adsorption of Dyes

    PubMed Central

    Yu, Bing; He, Liang; Wang, Yifan

    2017-01-01

    Magnetic porous microspheres are widely used in modern wastewater treatment technology due to their simple and quick dye adsorption and separation functions. In this article, we prepared porous polymethylmethacrylate (PMMA) microspheres by the seed-swelling method, followed by in situ formation of iron oxide (Fe3O4) nanoparticles within the pore. Then, we used diazo-resin (DR) to encapsulate the porous magnetic microspheres and achieve PMMA@Fe3O4@DR magnetic material. We studied the different properties of magnetic microspheres by different dye adsorption experiments before and after the encapsulation and demonstrated that the PMMA@Fe3O4@DR microspheres can be successfully used as a reusable absorbent for fast and easy removal of anionic and aromatic dyes from wastewater and can maintain excellent magnetic and adsorption properties in harsh environments. PMID:29077025

  20. Preparation of a nanosized as(2)o(3)/mn(0.5)zn(0.5)fe(2)o(4) complex and its anti-tumor effect on hepatocellular carcinoma cells.

    PubMed

    Zhang, Jia; Zhang, Dongsheng

    2009-01-01

    Manganese-zinc-ferrite nanoparticles (Mn(0.5)Zn(0.5)Fe(2)O(4), MZF-NPs) prepared by an improved co-precipitation method and were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). Then thermodynamic testing of various doses of MZF-NPs was performed in vitro. The cytotoxicity of the Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles in vitro was tested by the MTT assay. A nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex was made by an impregnation process. The complex's shape, component, envelop rate and release rate of As(2)O(3) were measured by SEM, EDS and atom fluorescence spectrometry, respectively. The therapeutic effect of nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex combined with magnetic fluid hyperthermia (MFH) on human hepatocelluar cells were evaluated in vitro by an MTT assay and flow cytometry. The results indicated that Mn(0.5)Zn(0.5)Fe(2)O(4) and nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex were both prepared successfully. The Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles had powerful absorption capabilities in a high-frequency alternating electromagnetic field, and had strong magnetic responsiveness. Moreover, Mn(0.5)Zn(0.5)Fe(2)O(4) didn't show cytotoxicity in vitro. The therapeutic result reveals that the nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex can significantly inhibit the growth of hepatoma carcinoma cells.

  1. Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wengert, Simon; Albrecht, Joachim; Ruoss, Stephen; Stahl, Claudia; Schütz, Gisela; Schäfer, Ronald

    2017-12-01

    MIL-53(Fe) linked to superparamagnetic γ-Fe2O3 nanoparticles was created using time-efficient microwave synthesis. Intermediates as well as the final product have been characterized by Dynamic Light Scattering (DLS), Infrared Spectroscopy (FTIR) and Thermal Gravimetric Analysis (TGA). It is found that this route allows the production of Fe nanoparticles with typical sizes of about 80 nm that are embedded inside the metal-organic structures. Detailed magnetization measurements using SQUID magnetometry revealed a nearly reversible magnetization loop indicating essentially superparamagnetic behavior.

  2. Apoptosis induction activity and molecular docking studies of survivin siRNA carried by Fe3O4-PEG-LAC-chitosan-PEI nanoparticles in MCF-7 human breast cancer cells.

    PubMed

    Arami, Sanam; Mahdavi, Majid; Rashidi, Mohammad-Reza; Yekta, Reza; Rahnamay, Mohammad; Molavi, Leila; Hejazi, Mohammad-Saeid; Samadi, Nasser

    2017-08-05

    Delivery of small interfering RNAs (siRNAs) into cells still remains a challenge in gene delivery studies. Here, we investigated the ability of synthesized Fe 3 O 4 -PEG-LAC-chitosan-PEI nanoparticles for siRNA delivery of survivin as the model gene into cells. The cellular uptake of survivin siRNA carried by synthesized nanoparticles into MCF-7 breast cancer cell line was evaluated by florescent microscopy and flowcytometry, both proving the efficacy of nanoparticles in delivery of up to 64.7% in comparison with lipofectamine 2000. Furthermore, the delivery of survivin siRNA by the nanoparticles (nanoplex) induced apoptosis that was assessed through DAPI staining and Annexin V/PI assays. In addition, we evaluated the efficacy of treatment with nanoplexes in the presence of mitoxantrone, as a chemotherapeutic agent. Our data indicated that inhibition of survivin expression increased the cell sensitivity to mitoxantrone. Real-time PCR and western blotting analysis revealed a significant reduction in mRNA and protein levels of survivin upon delivery of siRNA. Molecular docking studies showed that nanoparticles can bind to centeral BIR domain of survivin, exactly above zinc ion location with high affinity (ΔG: -10.3Kcal/mol). Also, thermodynamic studies proved the experimental results theoretically, revealing that the siRNA-loaded nanoparticles have a suppressing effect on survivin mRNA. Therefore, delivery of survivin siRNA into MCF-7 cells using Fe 3 O 4 -PEG-LAC-chitosan-PEI nanoparticles as a carrier enhances the cell death. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods

    NASA Astrophysics Data System (ADS)

    Li, Yana; Wu, Tong; Jin, Keying; Qian, Yao; Qian, Naxin; Jiang, Kedan; Wu, Wenhua; Tong, Guoxiu

    2016-11-01

    We developed a coordinated self-assembly/precipitate transfer/sintering method that allows the controllable synthesis of Fe3O4/NiFe2O4/Ni heterostructure porous rods (HPRs). A series of characterizations confirms that changing [Ni2+] can effectively control the crystal size, internal strain, composition, textural characteristics, and properties of HPRs. Molar percentages of Ni and NiFe2O4 in HPRs increase with [Ni2+] in various Boltzmann function modes. Saturation magnetization Ms and coercivity Hc show U-shaped change trends because of crystal size, composition, and interface magnetic coupling. High magnetic loss is maintained after decorating NiFe2O4 and Ni on the surface of Fe3O4 PRs. Controlling the NiFe2O4 interface layers and Ni content can improve impedance matching and dielectric losses, thereby leading to lighter weight, stronger absorption, and broader absorption band of Fe3O4/NiFe2O4/Ni HPRs than Fe3O4 PRs. An optimum EM wave absorbing property was exhibited by Fe3O4/NiFe2O4/Ni HPRs formed at [Ni2+] = 0.05 M. The maximum reflection loss (RL) reaches -58.4 dB at 13.68 GHz, which corresponds to a 2.1 mm matching thickness. The absorbing bandwidth (RL ≤ -20 dB) reaches 14.4 GHz with the sample thickness at 1.6-2.4 and 2.8-10.0 mm. These excellent properties verify that Fe3O4/NiFe2O4/Ni HPRs are promising candidates for new and effective absorptive materials.

  4. Battery Relevant Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 : Contrasting Contributions from the Redox Chemistries of Ag + and Fe 3+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.

    Ag 7Fe 3(P 2O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag +) forms metallic silver nanoparticles external to the crystals of Ag 7Fe 3(P 2O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7Fe 3(P 2O 7 ) 4 is employed asmore » cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7Fe 3(P 2O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7Fe 3(P 2O 7 ) 4. Ag 7Fe 3(P 2O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less

  5. Battery Relevant Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 : Contrasting Contributions from the Redox Chemistries of Ag + and Fe 3+

    DOE PAGES

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...

    2016-10-12

    Ag 7Fe 3(P 2O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag +) forms metallic silver nanoparticles external to the crystals of Ag 7Fe 3(P 2O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7Fe 3(P 2O 7 ) 4 is employed asmore » cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7Fe 3(P 2O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7Fe 3(P 2O 7 ) 4. Ag 7Fe 3(P 2O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less

  6. Immobilization of pectinase onto Fe3O4@SiO2-NH2 and its activity and stability.

    PubMed

    Fang, Gang; Chen, Honggao; Zhang, Yunpeng; Chen, Anqing

    2016-07-01

    Fe3O4 magnetic nanometer particles (MNPS) with a diameter of 30-40nm and coated by ammoniated silicon dioxides were developed by sol-gel method. The X-ray diffraction (XRD) pattern indicates that the Fe3O4 is wrapped in the amorphous SiO2, and the Fourier-transform infrared spectroscopy (FT-IR) analysis confirmed the NH2 group had been successfully introduced onto the surface of Fe3O4@SiO2 nanoparticles. The main factors related to the immobilization process of pectinase onto the magnetic support were optimized by multi-factor orthogonal experiments, and the recommended combination is that 3% glutaraldehyde (coupling agent), pH=8.0, 50°C, and cross-linking time 8h. Scanning electron microscope (SEM) and FT-IR analyses confirmed that the pectinase had been immobilized onto the surface of the amino modified nanoparticles. The storage stability and reusability of the pectinase were enhanced by the immobilization that 64.4% of the total starting activity was retrieved after 7 recycling batches and only about 21.1% of the total activity was lost after 30-day storage. For the application of the immobilized pectinase, the optimal pH and temperature were 8.5 and 55°C, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Efficient removal of arsenic by strategically designed and layer-by-layer assembled PS@+rGO@GO@Fe3O4 composites.

    PubMed

    Kang, Bong Kyun; Lim, Byeong Seok; Yoon, Yeojoon; Kwag, Sung Hoon; Park, Won Kyu; Song, Young Hyun; Yang, Woo Seok; Ahn, Yong-Tae; Kang, Joon-Wun; Yoon, Dae Ho

    2017-10-01

    The PS@+rGO@GO@Fe 3 O 4 (PG-Fe 3 O 4 ) hybrid composites for Arsenic removal were successfully fabricated and well dispersed using layer-by-layer assembly and a hydrothermal method. The PG-Fe 3 O 4 hybrid composites were composed of uniformly coated Fe 3 O 4 nanoparticles on graphene oxide layers with water flow space between 3D structures providing many contact area and adsorption sites for Arsenic adsorption. The PG-Fe 3 O 4 hybrid composite has large surface adsorption sites and exhibits high adsorption capacities of 104 mg/g for As (III) and 68 mg/g for As (V) at 25 °C and pH 7 comparison with pure Fe 3 O 4 and P-Fe 3 O 4 samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Studies of the Magnetic Properties and Specific Absorption of Mn0.3Zn0.7Fe2O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Phong, Pham Thanh; Nam, P. H.; Manh, Do Hung; Tung, D. K.; Lee, In-Ja; Phuc, N. X.

    2015-01-01

    Nanosized mixed ferrite Mn0.3Zn0.7Fe2O4 was prepared by a hydrothermal method at pH 11 and 180°C. XRD analysis showed that the material had the characteristic spinel structure with average particle size 14 nm. The real part of the AC susceptibility clearly proved the ferrite had spin glass like behavior. Magnetic inductive heating studies were performed at 236 kHz with magnetic field amplitude 50-80 Oe. The specific absorption (SA) was investigated by use of linear response theory. The experimental results were in good agreement with theoretical predictions. Moreover, the intrinsic loss power (ILP) was calculated from SA values. It is believed that Mn0.3Zn0.7Fe2O4 nanoparticles with a high ILP will be useful for in situ hyperthermia treatment of cancer.

  9. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  10. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dyemore » loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.« less

  11. Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization

    NASA Astrophysics Data System (ADS)

    Rashid, Zahra; Soleimani, Masoud; Ghahremanzadeh, Ramin; Vossoughi, Manouchehr; Esmaeili, Elaheh

    2017-12-01

    The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic nanoparticles can efficiently conjugate to a monoclonal antibody, specific to PSMA, which was confirmed by enzyme-linked immune sorbent assay (ELISA). Thus, this kind of functionalized magnetic nanoparticles is promising to be utilized in the improvement of ELISA-based biosensors and also will be effective in a variety of biomedical applications such as cell separation, diagnosis, and monitoring of human diseases.

  12. Band-gap tuning and magnetic properties of heterovalent ions (Ba, Sr and Ca) substituted BiFeO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Sunil, E-mail: sunilchauhanjiit@gmail.com; Kumar, Manoj; Katyal, S. C.

    2016-05-23

    A Comparative study of heterovalent Ba, Sr and Ca ions substitution on the structural, vibrational, optical and magnetic properties of BiFeO{sub 3} nanoparticles was carried out. The distorted rhombohedral structure was confirmed from both X-ray diffraction and Raman spectroscopy techniques in pure BiFeO{sub 3} and Bi{sub 0.85}A{sub 0.15}FeO{sub 3} (A= Ba, Sr and Ca) samples. UV-Visible spectroscopy results show that the band-gap of BiFeO{sub 3} nanoparticles can be tuned by heterovalent ions substitution from 2.12 eV for BiFeO{sub 3} to 2.10, 2.06 and 2.03 eV for Ca, Sr and Ba substituted BiFeO{sub 3} nanoparticles respectively. The magnetic measurements indicate enhancementmore » in magnetization for heterovalent A{sup 2+} substituted BiFeO{sub 3} samples and the magnetization increases with increase of ionic radius of the substituted ions.« less

  13. Preparation and thermal stability of the spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Niu, Yongan; Li, Yang

    2014-03-15

    The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles (NPs) are prepared via hydrothermal synthesis and modified Stöber method. During these processes, shell thicknesses could be easily adjusted by the amount of tetraethylorthosilicate (TEOS), and the formation of core-free SiO{sub 2} could be effectively avoided. The structures and compositions of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–vis) absorption spectroscopy. These results reveal that the α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs with certain sizes are monodisperse and homogeneous. To estimate the thermal stability, the α-Fe{sub 2}O{submore » 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are annealed at 600, 800 and 1000 °C for 1 h under air atmosphere, respectively. Furthermore, the stabilities of these NPs are confirmed by thermal analysis methods. The structure and shape stabilities of these as-prepared α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by XRD and scanning electron microscope (SEM). -- Graphical abstract: Schematic of preparation of the monodisperse spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs). Highlights: • The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs) are successfully prepared by hydrothermal synthesis and modified Stöber method. • Optical properties are estimated and calculated by UV vis absorption spectrum. • Thermal stability of the α-Fe{sub 2}O{sub 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are compared and analyzed by the SEM technique. • The structural changes of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are measured by XRD measurement.« less

  14. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy.

    PubMed

    Jin, Qiutong; Zhu, Wenjun; Jiang, Dawei; Zhang, Rui; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Peng; Cai, Weibo; Liu, Zhuang; Cheng, Liang

    2017-08-31

    Cancer nanotechnology has become the hot topic nowadays. While various kinds of nanomaterials have been widely explored for innovative cancer imaging and therapy applications, safe multifunctional nano-agents without long-term retention and toxicity are still demanded. Herein, iron-gallic acid coordination nanoparticles (Fe-GA CPNs) with ultra-small sizes are successfully synthesized by a simple method for multimodal imaging-guided cancer therapy. After surface modification with polyethylene glycol (PEG), the synthesized Fe-GA-PEG CPNs show high stability in various physiological solutions. Taking advantage of high near-infrared (NIR) absorbance as well as the T 1 -MR contrasting ability of Fe-GA-PEG CPNs, in vivo photoacoustic tomography (PAT) and magnetic resonance (MR) bimodal imaging are carried out, revealing the efficient passive tumor targeting of these ultra-small CPNs after intravenous (i.v.) injection. Interestingly, such Fe-GA-PEG CPNs could be labeled with the 64 Cu isotope via a chelator-free method for in vivo PET imaging, which also illustrates the high tumor uptake of Fe-GA CPNs. We further utilize Fe-GA-PEG CPNs for in vivo photothermal therapy and achieve highly effective tumor destruction after i.v. injection of Fe-GA-PEG CPNs and the following NIR laser irradiation of the tumors, without observing any apparent toxicity of such CPNs to the treated animals. Our work highlights the promise of ultra-small iron coordination nanoparticles for imaging-guided cancer therapy.

  15. A facile solvothermal synthesis of octahedral Fe 3O 4 nanoparticles

    DOE PAGES

    DuChene, Joseph S.; Qiu, Jingjing; Graham, Jeremy O.; ...

    2015-01-26

    Anisotropic Fe 3O 4 octahedrons are obtained via a simple solvothermal synthesis with appropriate sizes for various technological applications. Here, a complete suite of materials characterization methods confirms the magnetite phase for these structures, which exhibit substantial saturation magnetization and intriguing morphologies for a wide range of applications.

  16. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  17. A soft chemical route to the synthesis of BiFeO{sub 3} nanoparticles with enhanced magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Mehedi, E-mail: mhrizvi@gce.buet.ac.bd; Islam, Md. Fakhrul, E-mail: fislam@gce.buet.ac.bd; Mahbub, Rubayyat, E-mail: rubayyatm@gce.buet.ac.bd

    2016-01-15

    Highlights: • Pure BiFeO{sub 3} nanoparticles have been synthesized at relatively low temperature. • Decomposition behavior of BiFeO{sub 3} precursor gel is investigated. • Particle size dependent magnetic properties have been confirmed. • Greatly improved magnetization is observed for BiFeO{sub 3} nanostructure. - Abstract: Utilization of BiFeO{sub 3} (BFO) into modern device applications is restricted by its very low magnetic moments and high leakage current. Enhancement in magnetization is a real challenge for multiferroic BFO in the context of device miniaturization and high density information storage system. In this study a significant improvement in magnetization has been recorded for BFOmore » nanoparticles, exploiting the beneficial effect of size confinement. BFO nanoparticles with different size in the range of 21–68 nm are synthesized via modified Pechini sol–gel approach followed by leaching with acetic acid. X-ray diffraction result confirms pure and well crystallized BFO annealed at temperature lower than 600 °C, compared to more than 800 °C for the traditional solid-state sintering process. A strong size-dependent magnetization which increases with decreasing particle size is confirmed with a value of 1.4 emu/g for 40 nm particles in contrast to 7.5 emu/g for 21 nm particles.« less

  18. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma

    PubMed Central

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Objective To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Methods Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. Results The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. Conclusion The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo. PMID:29652919

  19. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma.

    PubMed

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo.

  20. Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Huang, Jun; Wang, Chao; Li, Dapeng; Ding, Liyun; Han, Yun

    2011-04-01

    Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.

  1. Synthesis, characterizations and catalytic activities of CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Divya; Sharma, Vikash; Parmar, Sarita; Okram, Gunadhor Singh; Jain, Shubha

    2018-05-01

    We report the synthesis of CoFe2O4 nanoparticles (NPs) through a novel one-step coprecipitation method. These NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR), and Raman spectroscopy. These nano ferrites were successfully used for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and thiones. They can be easily recovered by simple filtration and their catalytic activity remains nearly unaltered even after 4 consecutive cycles, making them ecofriendly and widely applicable due to their efficiency, ease of handling, and cost effectiveness.

  2. Apoptotic effect of α-Fe2O3 and SiO2 nanoparticles in human rhabdomyosarcoma cell line

    NASA Astrophysics Data System (ADS)

    Fatima, Mahvish; Fakhar-e-Alam, Muhammad; Atif, M.; Nadeem Shakoor, Muhammad; Afzal, Muhammad; Waseem, Muhammad; Hammad Aziz, Muhammad

    2014-12-01

    Nanotechnology provides the opportunity for the development of new materials in the nanometer size range, with many potential applications in biological sciences and clinical medicine. It has been reported that RD (muscle cancer cell line) is the most common soft tissue sarcoma in children originating from immature cells, comprising 2.9% of all malignancies in patients younger than 20 years old, with 350 cases diagnosed annually in the United States. Soft tissue is the most common target organ for nanoparticles after they gain significant entry into the target site through any of the possible routes. RD cell lines have been used as an experimental biological model in this article. A suitable environment was provided until 75% of RD cell confluence was reached. Prior to determination of toxicity of hematite (α-Fe2O3) and SiO2 nanoparticles, the sizes and shapes were confirmed using scanning electron microscopy (SEM), and the sizes were about 66 and 250 nm respectively. Moreover, 10-80 μg ml-1 of α-Fe2O3 and SiO2 nanoparticles dispersed in solution were labeled for each row of 96 well plates. The present study evaluates the suppression factor of the said particles, which leads to cell killing phenomena. After successful measurements in the above mentioned experiment, the author will be able to give the actual cause of cell killing effects. The given study has provided valuable insights into a feasible mechanism of apoptosis caused by α-Fe2O3 and SiO2 nanoparticles. An underlying promising mechanism of apoptosis due to α-Fe2O3 and SiO2 nanoparticle exposure should be further investigated at the in vivo level.

  3. Co7Fe3 and Co7Fe3@SiO2 Nanospheres with Tunable Diameters for High-Performance Electromagnetic Wave Absorption.

    PubMed

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yuan, Yong; Gong, Yuan-Xun; Zhen, Liang

    2017-07-05

    Ferromagnetic metal/alloy nanoparticles have attracted extensive interest for electromagnetic wave-absorbing applications. However, ferromagnetic nanoparticles are prone to oxidization and producing eddy currents, leading to the deterioration of electromagnetic properties. In this work, a simple and scalable liquid-phase reduction method was employed to synthesize uniform Co 7 Fe 3 nanospheres with diameters ranging from 350 to 650 nm for high-performance microwave absorption application. Co 7 Fe 3 @SiO 2 core-shell nanospheres with SiO 2 shell thicknesses of 30 nm were then fabricated via a modified Stöber method. When tested as microwave absorbers, bare Co 7 Fe 3 nanospheres with a diameter of 350 nm have a maximum reflection loss (RL) of 78.4 dB and an effective absorption with RL > 10 dB from 10 to 16.7 GHz at a small thickness of 1.59 mm. Co 7 Fe 3 @SiO 2 nanospheres showed a significantly enhanced microwave absorption capability for an effective absorption bandwidth and a shift toward a lower frequency, which is ascribed to the protection of the SiO 2 shell from direct contact among Co 7 Fe 3 nanospheres, as well as improved crystallinity and decreased defects upon annealing. This work illustrates a simple and effective method to fabricate Co 7 Fe 3 and Co 7 Fe 3 @SiO 2 nanospheres as promising microwave absorbers, and the design concept can also be extended to other ferromagnetic alloy particles.

  4. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters

    NASA Astrophysics Data System (ADS)

    Xu, Huan-Yan; Wang, Yuan; Shi, Tian-Nuo; Zhao, Hang; Tan, Qu; Zhao, Bo-Chao; He, Xiu-Lan; Qi, Shu-Yan

    2018-03-01

    Multi-walled carbon nanotubes (MWCNTs) can act not only as a support for Fe3O4 nanoparticles (NPs) but also as a coworker with synergistic effect, accordingly improving the heterogeneous Fenton-like efficiency of Fe3O4 NPs. In this study, Fe3O4 NPs were in situ anchored onto MWCNTs by a moderate co-precipitation method and the as-prepared Fe3O4/MWCNTs nanocomposites were employed as the highly efficient Fenton-like catalysts. The analyses of XRD, FTIR, Raman, FESEM, TEM and HRTEM results indicated the formation of Fe3O4 crystals in Fe3O4/MWCNTs nanocomposites prepared at different conditions and the interaction between Fe3O4 NPs and MWCNTs. Over a wide pH range, the surface of modified MWCNTs possessed negative charges. Based on these results, the possible combination mechanism between Fe3O4 NPs and MWCNTs was discussed and proposed. Moreover, the effects of preparation and catalytic conditions on the Fenton-like catalytic efficiency were investigated in order to gain further insight into the heterogeneous Fenton-like reaction catalyzed by Fe3O4/MWCNTs nanocomposites.

  5. Room temperature ferromagnetism in Fe-doped CeO2 nanoparticles.

    PubMed

    Maensiri, Santi; Phokha, Sumalin; Laokul, Paveena; Seraphin, Supapan

    2009-11-01

    RT ferromagnetism was observed in nanoparticles of Fe-doped CeO2 (i.e., Ce(0.97)Fe(0.03)O2) synthesized by a sol-gel method. The undoped and Fe-doped CeO2 were characterized by XRD, Raman spectroscopy, TEM, and VSM. The undoped samples and Ce(0.97)Fe(0.03)O2 precursor exhibit a diamagnetic behavior. The 673 K-calcined Ce(0.97)Fe(0.03)O2 sample is paramagnetic whereas 773 and 873 K-calcined Ce(0.97)Fe(0.03)O2 samples are ferromagnetism having the magnetizations of 4.65 x 10(-3) emu/g and 6.20 x 10(-3) emu/g at 10 kOe, respectively. Our results indicate that the ferromagnetic property is intrinsic to the Fe-doped CeO2 system and is not a result of any secondary magnetic phase or cluster formation.

  6. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-09-26

    Monodisperse Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres are prepared via a surfactant-free solvothermal combined with precursor thermal transformation method. The as-prepared Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres have a relatively high specific surface area of 122.3 and 138.6 m(2)/g, respectively. The Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres are explored as the anode materials for lithium-ion batteries, and they have a high initial discharge capacity of 1307 and 1453 mA h/g, respectively, and a good reversible performance (450 mA h/g for Fe(3)O(4) and 697 mA h/g for γ-Fe(2)O(3) after 110 cycles) at the current density of 0.2C.

  7. A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Liu, Jian; Yuan, Kunjie; Zhang, Zhengguo; Zhang, Xiaowen; Fang, Xiaoming

    2017-10-01

    Herein a novel multi-controlled drug release system for doxorubicin (DOX) was developed, in which monodisperse mesoporous Fe3O4 nanoparticles were combined with a phase change material (PCM) and polyethylene glycol 2000 (PEG2000). It is found that the PCM/PEG/DOX mixture containing 20% PEG could be dissolved into water at 42 °C. The mesoporous Fe3O4 nanoparticles prepared by the solvothermal method had sizes of around 25 nm and exhibited a mesoporous microstructure. A simple solvent evaporation process was employed to load the PCM/PEG/DOX mixture on the mesoporous Fe3O4 nanoparticles completely. In the Fe3O4@PCM/PEG/DOX system, the pores of the Fe3O4 nanoparticles were observed to be filled with the mixture of PCM/PEG/DOX. The Fe3O4@PCM/PEG/DOX system showed a saturation magnetization value of 50.0 emu g-1, lower than 71.1 emu g-1 of the mesoporous Fe3O4 nanoparticles, but it was still high enough for magnetic targeting and hyperthermia application. The evaluation on drug release performance indicated that the Fe3O4@PCM/PEG/DOX system achieved nearly zero release of DOX in vitro in body temperature, while around 80% of DOX could be released within 1.5 h at the therapeutic threshold of 42 °C or under the NIR laser irradiation for about 4 h. And a very rapid release of DOX was achieved by this system when applying an alternating magnetic field. By comparing the systems with and without PEG2000, it is revealed that the presence of PEG2000 makes DOX easy to be released from 1-tetradecanol to water, owing to its functions of increasing the solubility of DOX in 1-tetradecanol as well as decreasing the surface tension between water and 1-tetradecanol. The novel drug release system shows great potential for the development of thermo-chemotherapy of cancer treatment.

  8. High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach

    PubMed Central

    Cao, Derang; Li, Hao; Pan, Lining; Li, Jianan; Wang, Xicheng; Jing, Panpan; Cheng, Xiaohong; Wang, Wenjie; Wang, Jianbo; Liu, Qingfang

    2016-01-01

    We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity. PMID:27581732

  9. Small polarons and point defects in LaFeO3

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.

    The proton-conductive perovskite-type LaFeO3 is a promising negative-electrode material for Ni/metal-hydride (Ni-MH) batteries. It has a discharge capacity up to 530 mAhg-1 at 333 K, which is significantly higher than commercialized AB5-type alloys. To elucidate the underlying mechanism of this performance, we have investigated the structural and electronic properties of bulk LaFeO3, as well as the effect of point defects, using hybrid density functional methods. LaFeO3 is antiferromagnetic in the ground state with a band gap of 3.54 eV. Small hole and electron polarons can form through self- or point-defect-assisted trapping. We find that La vacancies and Sr substitutional on La sites are shallow acceptors with the induced holes trapped as small polarons, while O and Fe vacancies are deep defect centers. Hydrogen interstitials behave like shallow donors, with the donor electrons localized on nearby iron sites as electron polarons. With a large trapping energy, these polarons can act as electron or hole traps and affect the electrical performance of LaFeO3 as the negative electrode for Ni-MH batteries. We acknowledge DOE for financial support.

  10. Enhanced room temperature multiferroic characteristics in hexagonal LuFe1-xNixO3 (x = 0 - 0.3) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Vijaya Laxmi, K.; Anil Kumar, P. S.

    2018-02-01

    Single phase polycrystalline LuFe1-xNixO3 (x = 0 - 0.3) (LFNO) nanoparticles are synthesized using the sol-gel method. X-ray diffraction measurements revealed that the crystal structure of Ni-doped samples is isomorphic to hexagonal LuFeO3 (LFO). The phase pure hexagonal P63cm symmetry exists for 0 ≤ x ≤ 0.3, and the secondary phases appear for x ≥ 0.4. Raman spectra show a shift in the mode frequency corresponding to the changes in Lu-O and Fe-O bond lengths with Ni doping. An enhancement in the magnetization is observed for LFNO throughout the temperature range (400-5 K) compared to LFO. The antiferromagnetic state of LFO becomes ferrimagnetic at low temperatures, and a net magnetization is observed at room temperature with Ni doping. As Ni concentration increases, a systematic increment in the ferroelectric polarization is observed. This enhancement in polarization is believed to be due to the distortion in FeO5 cage, while the improvement in magnetic properties is due to the induced magnetic interactions, caused by the Fe-Ni interactions on the triangular lattice with Ni doping in LuFeO3.

  11. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Rajabi, S. K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-12-01

    Magnetic Fe3O4@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe3O4@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe3O4 core and a CuO shell. The Fe3O4@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe3O4-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent.

  12. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  13. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid.

    PubMed

    Tian, Xike; Wang, Weiwei; Tian, Na; Zhou, Chaoxin; Yang, Chao; Komarneni, Sridhar

    2016-05-15

    In this work, a novel "Dumbbell-like" magnetic Fe3O4/Halloysite nanohybrid (Fe3O4/HNTs@C) with oxygen-containing organic group grafting on the surface of natural halloysite nanotubes (HNTs) and homogeneous Fe3O4 nanospheres selectively aggregating at the tips of modified halloysite nanotubes was successfully synthesized. XRD, TEM, IR spectroscopy, XPS and VSM were used to characterize this newly halloysite nanohybrid and its formation mechanism was discussed. Cr(VI) ions adsorption experiments showed that the Fe3O4/halloysite nanohybrid exhibited higher adsorption ability with a maximum adsorption capacity of 132 mg/L at 303K, which is about 100 times higher than that of unmodified halloysite nanotubes. More importantly, with the reduction of Fe3O4 and electron-donor effect of oxygen-containing organic groups, Cr(VI) ions were easily reduced into low toxicity Cr(III) and then adsorbed onto the surface of halloysite nanohybrid. In addition, appreciable magnetization was observed due to the aggregation of magnetite nanoparticles, which make adsorbent facility separated from aqueous solutions after Cr pollution adsorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells

    NASA Astrophysics Data System (ADS)

    Grumezescu, Alexandru Mihai; Cotar, Ani Ioana; Andronescu, Ecaterina; Ficai, Anton; Ghitulica, Cristina Daniela; Grumezescu, Valentina; Vasile, Bogdan Stefan; Chifiriuc, Mariana Carmen

    2013-07-01

    A new water-dispersible nanostructure based on magnetite (Fe3O4) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe3O4@UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcus aureus ( S. aureus), Enterococcus faecalis ( E. faecalis) and Gram-negative Escherichia coli ( E. coli), Pseudomonas aeruginosa (P. aeruginosa) reference strains. Concerning the influence of Fe3O4@UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E. faecalis and E. coli, as compared with the Fe3O4 control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S. aureus and E. faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E. coli biofilm development, only at high concentrations, while for P. aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe3O4@UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains.

  15. One-step solvothermal synthesis of magnetic Fe3O4-graphite composite for Fenton-like degradation of levofloxacin.

    PubMed

    Wang, Long; Zhao, Qi; Hou, Juan; Yan, Jin; Zhang, Fengshuang; Zhao, Jiahui; Ding, Hong; Li, Yi; Ding, Lan

    2016-01-01

    A novel Fe3O4-graphite composite was prepared, characterized, and investigated as a heterogeneous Fenton-like catalyst for the degradation of levofloxacin (LEV) in an aqueous solution. The results revealed that the Fe3O4-graphite composite exhibited excellent properties for the degradation and mineralization of LEV, achieving a nearly complete degradation of 50 mg L(-1) LEV in 15 min and 48% of total organic carbon removal in 60 min under optimal conditions. A large electronic conjugation structure exists in graphite, which may lead to the fast production of •OH radical species because of the easy reduction of Fe(III) to Fe(II). In addition, we observed that the graphite can degrade LEV in the presence of H2O2. Therefore, the synergistic results of the graphite structure and Fe3O4 magnetic nanoparticles (MNPs) may contribute to the high catalytic activity of the Fe3O4-graphite composite. Compared with pure Fe3O4 MNPs, lesser iron leaching of the Fe3O4-graphite composite was observed during the degradation of LEV. The degradation efficiency of LEV remained approximately 80% at the fifth recycling run, which indicates that the Fe3O4-graphite composite has potential applications in water treatment for removing organic pollutants.

  16. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs

    NASA Astrophysics Data System (ADS)

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-01

    A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.

  17. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs.

    PubMed

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-05

    A magnetic fluorescent probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was prepared using CdTe QDs and Fe 3 O 4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe 3 O 4 @MIPs were spherical with average diameter around 53nm, and a core-shell structure was well-shaped with several Fe 3 O 4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe 3 O 4 @MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λ em 598nm. The fluorescence of CdTe QDs/nano-Fe 3 O 4 @MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5μmolL -1 . The detection limit was 0.014μmolL -1 . The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe 3 O 4 @MIPs could be used as a probe to the detection of trace MG in fish samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Magnetic adsorbent constructed from the loading of amino functionalized Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates nanoparticle and its tetracycline adsorption removal property study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Jinzhao; Mei, Mingliang; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn

    2016-06-15

    A magnetic polyoxometalates based adsorbent has been synthesized successfully through the loading of amino functionalized Fe{sub 3}O{sub 4} (NH{sub 2}-Fe{sub 3}O{sub 4}) on nanoparticle of a coordination complex modified polyoxometalates (CC/POMNP). FTIR illustrate there exist intense hydrogen bonds between NH{sub 2}-Fe{sub 3}O{sub 4} and CC/POMNP, which keep the stability of this adsorbent. At room temperature, this adsorbent exhibits ferromagnetic character with saturation magnetization of 8.19 emu g{sup −1}, which provides prerequisite for fast magnetic separation. Water treatment experiment illustrates this POM based magnetic adsorbent exhibits high adsorption capacity on tetracycline. The adsorption process can be described well with Temkin model,more » which illustrates the interaction between adsorbent and tetracycline plays the dominated role in tetracycline removal. The rapid, high efficient tetracycline adsorption ability suggests this POM based magnetic adsorbent exhibits promising prospect in medical and agriculture waste water purification. A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates - Graphical abstract: A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalate. Display Omitted - Highlights: • A POM based magnetic adsorbent was fabricated through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on POM nanoparticle. • This adsorbent possesses excellent tetracycline adsorption property. • Saturation magnetization value of this adsorbent is 8.19 emug−1, which is enough for magnetic separation.« less

  19. Electrostatic self-assembly of Fe3O4/GO nanocomposites and their application as an efficient Fenton-like catalyst for degradation of rhodamine B

    NASA Astrophysics Data System (ADS)

    Wang, Wenxia; He, Qi; Xiao, Kaijun; Zhu, Liang

    2018-03-01

    In the study, a two-major step involving a hydrothermal method and an electrostatic self-assembly method was adopted to synthesis Fe3O4/GO nanocomposites. The Fe3O4 nanoparticles were successfully modified with the 3-aminopropyltrimethoxy-silane and homogeneously deposited onto the surface of GO. They were used as Fenton-like catalyst to degrade Rhodamine B and displayed a higher activity compared with the pristine Fe3O4 nanoparticles, H2O2, Fe3O4/GO nanocomposite and Fe3O4/H2O2 system, demonstrating the synergistic effect between the superior adsorption properties of GO and the excellent catalytic activity of Fe3O4/H2O2 system. Besides, the possible catalytic mechanism and degradation pathway for RhB molecules by Fe3O4/GO nanocomposites and H2O2 was proposed based on the liquid chromatography-mass spectrometry (LC-MS) analysis. The result reveals that the •OH radicals should be the main actives species during catalytic degradation of RhB by the Fe3O4/GO/H2O2 system. In addition, the catalyst is reusable and shows efficiency up to 5 cycles. We believe the strategy in our work can provide insight into designing the novel catalysts for large-scale degradation of organic pollutants in the wastewater.

  20. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  1. Significant enhancement in photocatalytic performance of Ni doped BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, M.; Khan, Wasi; Khan, Shakeel; Shoeb, Mohd; Husain, Shahid; Mobin, Mohammad

    2018-06-01

    In the present work, we have investigated the effect of Ni doping on the microstructure and photocatalytic properties of BiFeO3 samples. All the compositions of BiFe1‑xNixO3 (0 ≤ x ≤ 0.07) have been synthesized via cost effective ethylene glycol based sol-gel method. The Rietveld refinement of the XRD data revealed rhombohedral crystal structure with R3c space group. The FTIR spectroscopy confirms the formation of BiFeO3 compound. UV–visible DRS result affirmed that the band gap of the samples can be tuned towards visible range by the Ni substitution. The photoluminescence spectra indicate lower intensity with the Ni content, signify reduction in recombination rate of the electron-hole pairs. The photocatalytic response of the nanoparticles was examined for the degradation of methylene blue (MB) dye under visible light irradiation and the highest photocatalytic response was observed for 7% Ni doped sample. Therefore, the observed results suggest potential application of the synthesized nanoparticles for wastewater treatment purpose.

  2. Mesoporous Silica Matrix as a Tool for Minimizing Dipolar Interactions in NiFe2O4 and ZnFe2O4 Nanoparticles

    PubMed Central

    Virumbrales, Maider; Saez-Puche, Regino; Torralvo, María José; Blanco-Gutierrez, Veronica

    2017-01-01

    NiFe2O4 and ZnFe2O4 nanoparticles have been prepared encased in the MCM (Mobile Composition of Matter) type matrix. Their magnetic behavior has been studied and compared with that corresponding to particles of the same composition and of a similar size (prepared and embedded in amorphous silica or as bare particles). This study has allowed elucidation of the role exerted by the matrix and interparticle interactions in the magnetic behavior of each ferrite system. Thus, very different superparamagnetic behavior has been found in ferrite particles of similar size depending on the surrounding media. Also, the obtained results clearly provide evidence of the vastly different magnetic behavior for each ferrite system. PMID:28640197

  3. Polyetherimide-grafted Fe3O4@SiO2 nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging

    PubMed Central

    Li, Tingting; Shen, Xue; Chen, Yin; Zhang, Chengchen; Yan, Jie; Yang, Hong; Wu, Chunhui; Zeng, Hongjun; Liu, Yiyao

    2015-01-01

    Engineering a safe and high-efficiency delivery system for efficient RNA interference is critical for successful gene therapy. In this study, we designed a novel nanocarrier system of polyethyleneimine (PEI)-modified Fe3O4@SiO2, which allows high efficient loading of VEGF small hairpin (sh)RNA to form Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites for VEGF gene silencing as well as magnetic resonance (MR) imaging. The size, morphology, particle stability, magnetic properties, and gene-binding capacity and protection were determined. Low cytotoxicity and hemolyticity against human red blood cells showed the excellent biocompatibility of the multifunctional nanocomposites, and also no significant coagulation was observed. The nanocomposites maintain their superparamagnetic property at room temperature and no appreciable change in magnetism, even after PEI modification. The qualitative and quantitative analysis of cellular internalization into MCF-7 human breast cancer cells by Prussian blue staining and inductively coupled plasma atomic emission spectroscopy analysis, respectively, demonstrated that the Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could be easily internalized by MCF-7 cells, and they exhibited significant inhibition of VEGF gene expression. Furthermore, the MR cellular images showed that the superparamagnetic iron oxide core of our Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could also act as a T2-weighted contrast agent for cancer MR imaging. Our data highlight multifunctional Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites as a potential platform for simultaneous gene delivery and MR cell imaging, which are promising as theranostic agents for cancer treatment and diagnosis in the future. PMID:26170664

  4. Room temperature magnetic ordering, enhanced magnetization and exchange bias of GdMnO3 nanoparticles in (GdMnO3)0.70(CoFe2O4)0.30

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Mahapatra, A. S.; Mallick, A.; Chakrabarti, P. K.

    2017-02-01

    Nanoparticles of GdMnO3 (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe2O4 (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below 100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations.

  5. Synthesis of Bifunctional Fe3O4@SiO2-Ag Magnetic-Plasmonic Nanoparticles by an Ultrasound Assisted Chemical Method

    NASA Astrophysics Data System (ADS)

    Chu, Dung Tien; Sai, Doanh Cong; Luu, Quynh Manh; Tran, Hong Thi; Quach, Truong Duy; Kim, Dong Hyun; Nguyen, Nam Hoang

    2017-06-01

    Bifunctional magnetic-plasmonic nanoparticles (NPs)—Fe3O4@SiO2-Ag were successfully synthesized by an ultrasound assisted chemical method. Silver ions were absorbed and then reduced by sodium borohydride on the surface of 3-aminopropyltriethoxysilane (APTES) functionalized silica-coated magnetic NPs, then they were reduced under the influence of a 200 W ultrasonic wave for 60 min. When the amount of precursor silver ions increased, the relative intensity of diffraction peaks of silver crystals in all samples increased with the atomic ratio of silver/iron increasing from 0.208 to 0.455 and saturation magnetization ( M s) decreasing from 44.68 emu/g to 34.74 emu/g. The NPs have superparamagnetic properties and strong surface plasmon absorption at 420 nm, which make these particles promising for biomedical applications.

  6. Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles.

    PubMed

    Oh, Yunok; Moorthy, Madhappan Santha; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Oh, Junghwan

    2017-02-01

    Magnetic iron oxide nanoparticles (MNPs) have been extensively utilized in a wide range of biomedical applications including magnetic hyperthermia agent. To improve the efficiency of the MNPs in therapeutic applications, in this study, we have synthesized CoFe 2 O 4 nanoparticles and its surface was further functionalized with meso-2,3-dimercaptosuccinic acid (DMSA). The anticancer agent, Doxorubucin (DOX) was conjugated with CoFe 2 O 4 @DMSA nanoparticle to evaluate the combined effects of thermotherapy and chemotherapy. The drug delivery efficiency of the DOX loaded CoFe 2 O 4 @DMSA nanoparticles were examined based on magnetically triggered delivery of DOX into the subcellular level of cancer cells by using MDA-MB-231 cell line. The amine part of the DOX molecules were effectively attached through an electrostatic interactions and/or hydrogen bonding interactions with the carboxylic acid groups of the DMSA functionalities present onto the surface of the CoFe 2 O 4 nanoparticles. The DOX loaded CoFe 2 O 4 @DMSA nanoparticles can effectively uptake with cancer cells via typical endocytosis process. After endocytosis, DOX release from CoFe 2 O 4 nanoparticles was triggered by intracellular endosomal/lysosomal acidic environments and the localized heat can be generated under an alternating magnetic field (AMF). In the presence of AMF, the released DOX molecules were accumulated with high concentrations into the subcellular level at a desired sites and exhibited a synergistic effect of an enhanced cell cytotoxicity by the combined effects of thermal-chemotherapy. Importantly, pH- and thermal-responsive Dox-loaded CoFe 2 O 4 nanoparticles induced significant cellular apoptosis more efficiently mediated by active mitochondrial membrane and ROS generation than the free Dox. Thus, the Dox-loaded CoFe 2 O 4 @DMSA nanoparticles can be used as a potential therapeutic agent in cancer therapy by combining the thermo-chemotherapy techniques. Copyright © 2016. Published by

  7. Multifunctional nanocomposites of Fe3O4-graphene-Au for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol in water

    NASA Astrophysics Data System (ADS)

    Chen, Fenghua; Wang, Yongwei; Chen, Qingtao; Han, Lifeng; Chen, Zhijun; Fang, Shaoming

    2014-12-01

    This work is directed towards the synthesis of a ternary nanocomposite of Fe3O4-graphene-Au, i.e. Fe3O4 nanoparticles (˜300 nm in size) and Au nanoparticles (˜50 nm in size) loaded on the carbon basal planes of reduced graphene oxide, aimed for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol (4-NP) in water, and also for recovering the useful reduction product of 4-aminophenol (4-AP). The results indicate that the amount of 4-NP and 4-AP absorbed to the prepared Fe3O4-graphene-Au nanocomposite can reach 170 mg g-1 and 447 mg g-1, respectively. The reduction reaction of 4-NP to 4-AP by NaBH4 with the Fe3O4-graphene-Au nanocomposite as a catalyst follows first-order kinetics with a rate constant (k) of about 0.4964 min-1, remarkably superior to the 0.1199 min-1 for the reduction reaction with the bare Au nanoparticles under the same conditions. In addition, in situ SERS can also be carried out to detect 4-NP and to monitor the reduction reaction with Fe3O4-graphene-Au as the substrate. Recycling of the composite can be achieved by simply applying an external magnetic field and the results demonstrate that it can be reused at least eight times with almost unaffected catalytic efficiency.

  8. Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays observed by Lorentz microscopy and electron holography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo; Hogg, Charles R.; Yamamuro, Saeki; Hirayama, Tsukasa; Majetich, Sara A.

    2011-02-01

    Dipolar ferromagnetism formed in Fe3O4 nanoparticle arrays is revealed by Fresnel Lorentz microscopy and electron holography. Dipolar domain walls do not lie preferentially along macrograin boundaries but depend on the overall shape of the assembly, meaning magnetostatic energy dominates. The domain structures are imaged at different temperatures for both monolayer and bilayer arrays. The domain wall contrast in the monolayer region is visible until 575 °C, and the magnetic order parameter steeply drops toward the temperature. In the bilayer region, finer and more complicated domains are formed.

  9. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions.

    PubMed

    Padil, Vinod Vellora Thekkae; Černík, Miroslav

    2015-04-28

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV-vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt>Au>Ag>CuO>Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Particle size dependence of heating power in MgFe2O4 nanoparticles for hyperthermia therapy application

    NASA Astrophysics Data System (ADS)

    Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori

    2014-05-01

    Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.

  11. Abnormal variation of band gap in Zn doped Bi{sub 0.9}La{sub 0.1}FeO{sub 3} nanoparticles: Role of Fe-O-Fe bond angle and Fe-O bond anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xunling; Liu, Weifang, E-mail: wfliu@tju.edu.cn, E-mail: shouyu.wang@yahoo.com; Wu, Ping

    2015-07-27

    Bi{sub 0.9}La{sub 0.1}FeO{sub 3} (BLFO) and Bi{sub 0.9}La{sub 0.1}Fe{sub 0.99}Zn{sub 0.01}O{sub 3} (BLFZO) nanoparticles were prepared via a sol-gel method. The oxygen vacancies and holes increase with Zn doping analyzed through X-ray photoelectron spectroscopy, which could contribute to the increase of leakage current density. However, with the increase of the defects (oxygen vacancies and holes), the band gap of BLFZO also is increased. To explain the abnormal phenomenon, the bandwidth of occupied and unoccupied bands was analyzed based on the structural symmetry driven by the Fe-O-Fe bond angle and Fe-O bond anisotropy.

  12. Complementary approaches for the evaluation of biocompatibility of 90Y-labeled superparamagnetic citric acid (Fe,Er)3O4 coated nanoparticles.

    PubMed

    Antic, Bratislav; Boskovic, Marko; Nikodinovic-Runic, Jasmina; Ming, Yue; Zhang, Hongguo; Bozin, Emil S; Janković, Drina; Spasojevic, Vojislav; Vranjes-Djuric, Sanja

    2017-06-01

    Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric acid coated (Fe,Er) 3 O 4 nanoparticles and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90K. Reduction in saturation magnetization due to incorporation of 1.7% Er 3+ into the Fe 3 O 4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er) 3 O 4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that 90 Y-labeled MNPs were predominantly found in liver (75.33% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric acid coated (Fe,Er) 3 O 4 MNPs could be

  13. Complementary approaches for the evaluation of biocompatibility of 90Y-labeled superparamagnetic citric acid (Fe,Er) 3O 4 coated nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antic, Bratislav; Boskovic, Marko; Nikodinovic-Runic, Jasmina

    Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in themore » MNPs with Er. Here, we report on the development of citric acid coated (Fe,Er) 3O 4 nanoparticles and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6–7 nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90 K. Reduction in saturation magnetization due to incorporation of 1.7% Er 3+ into the Fe 3O 4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er) 3O 4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish ( Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that 90Y-labeled MNPs were predominantly found in liver (75.33% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric acid coated (Fe,Er) 3O 4 MNPs could

  14. Complementary approaches for the evaluation of biocompatibility of 90Y-labeled superparamagnetic citric acid (Fe,Er) 3O 4 coated nanoparticles

    DOE PAGES

    Antic, Bratislav; Boskovic, Marko; Nikodinovic-Runic, Jasmina; ...

    2017-02-10

    Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in themore » MNPs with Er. Here, we report on the development of citric acid coated (Fe,Er) 3O 4 nanoparticles and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6–7 nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90 K. Reduction in saturation magnetization due to incorporation of 1.7% Er 3+ into the Fe 3O 4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er) 3O 4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish ( Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that 90Y-labeled MNPs were predominantly found in liver (75.33% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric acid coated (Fe,Er) 3O 4 MNPs could

  15. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    PubMed

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. Published by Elsevier B.V.

  16. Facile synthesis of CuFe2O4-Fe2O3 composite for high-performance supercapacitor electrode applications

    NASA Astrophysics Data System (ADS)

    Khan, Rashid; Habib, Muhammad; Gondal, Mohammed A.; Khalil, Adnan; Rehman, Zia Ur; Muhammad, Zahir; Haleem, Yasir A.; Wang, Changda; Wu, Chuan Qiang; Song, Li

    2017-10-01

    We report the synthesis of CuFe2O4-Fe2O3 composite material for efficient and highly stable supercapacitor electrode by using eco-friendly low-temperature co-precipitation method. The CuFe2O4-Fe2O3 composite demonstrated the highest specific capacitance of 638.24 F g-1 and excellent stability up to 2000 charge/discharge cycles. The achieved capacitance value is 16 times higher than that of pure CuFe2O4. The results revealed the extraordinary performance of CuFe2O4-Fe2O3 composite as supercapacitor electrode with excellent retention in comparison to CuFe2O4. The enhanced electrochemical activity of CuFe2O4-Fe2O3 composite is attributed to the synergistic effect which is responsible for redox coupling between Cu2+ and Fe3+ that has never been achieved by single component before.

  17. Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuong, Nguyen Duc, E-mail: nguyenduccuong@hueuni.edu.vn; Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City; Khieu, Dinh Quang

    2015-08-15

    Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealedmore » that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.« less

  18. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang

    2015-02-01

    A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode

  19. Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness

    NASA Astrophysics Data System (ADS)

    Wee, Sung-Bok; Oh, Hyeon-Cheol; Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl

    2017-04-01

    We developed a simple and novel approach for the synthesis of Fe3O4@SiO2 nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe3O4@SiO2 controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.

  20. Bottom-up meets top-down: tailored raspberry-like Fe 3 O 4 –Pt nanocrystal superlattices

    DOE PAGES

    Qiu, Fen; Vervuurt, René H. J.; Verheijen, Marcel A.; ...

    2018-01-01

    Bottom up colloidal synthesis is combined with top down atomic layer deposition to achieve raspberry-like Pt-decorated Fe 3 O 4 nanoparticle superlattices with good metal–oxide–metal contact for photoelectrocatalysis.

  1. Bottom-up meets top-down: tailored raspberry-like Fe 3 O 4 –Pt nanocrystal superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Fen; Vervuurt, René H. J.; Verheijen, Marcel A.

    Bottom up colloidal synthesis is combined with top down atomic layer deposition to achieve raspberry-like Pt-decorated Fe 3 O 4 nanoparticle superlattices with good metal–oxide–metal contact for photoelectrocatalysis.

  2. A facile thermal decomposition route to synthesise CoFe2O4 nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    2014-01-01

    The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.

  3. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery

    NASA Astrophysics Data System (ADS)

    Dehaini, Diana; Fang, Ronnie H.; Luk, Brian T.; Pang, Zhiqing; Hu, Che-Ming J.; Kroll, Ashley V.; Yu, Chun Lai; Gao, Weiwei; Zhang, Liangfang

    2016-07-01

    Lipid-polymer hybrid nanoparticles, consisting of a polymeric core coated by a layer of lipids, are a class of highly scalable, biodegradable nanocarriers that have shown great promise in drug delivery applications. Here, we demonstrate the facile synthesis of ultra-small, sub-25 nm lipid-polymer hybrid nanoparticles using an adapted nanoprecipitation approach and explore their utility for targeted delivery of a model chemotherapeutic. The fabrication process is first optimized to produce a monodisperse population of particles that are stable under physiological conditions. It is shown that these ultra-small hybrid nanoparticles can be functionalized with a targeting ligand on the surface and loaded with drug inside the polymeric matrix. Further, the in vivo fate of the nanoparticles after intravenous injection is characterized by examining the blood circulation and biodistribution. In a final proof-of-concept study, targeted ultra-small hybrid nanoparticles loaded with the cancer drug docetaxel are used to treat a mouse tumor model and demonstrate improved efficacy compared to a clinically available formulation of the drug. The ability to synthesize a significantly smaller version of the established lipid-polymer hybrid platform can ultimately enhance its applicability across a wider range of applications.

  4. Magnetism mediated by a majority of [Fe³⁺ + VO²⁻] complexes in Fe-doped CeO₂ nanoparticles.

    PubMed

    Paidi, V K; Ferreira, N S; Goltz, D; van Lierop, J

    2015-08-26

    We examine the role of Fe(3+) and vacancies (V(O)) on the magnetism of Fe-doped CeO2 nanoparticles. Magnetic nanoparticles of Ce(100-x)Fe(x)O2 (x  =  0, 0.26, 1.82, 2.64, 5.26, 6.91, and 7.22) were prepared by a co-precipitation method, and their structural, compositional and magnetic properties were investigated. The CeO2 nanoparticles had a mixed valance of Ce(4+) and Ce(3+) ions, and doping introduced Fe(3+) ions. The decrease in Ce(3+) and increase in Fe(3+) concentrations indicated the presence of more [Fe(3+) + V(O)(2-)] complexes with Fe loading in the particles. Charge neutralization, Fe(3+) + V(O)(2-) + 2Ce(4+) ↔ 2Ce(3+) + Fe(3+), identified the impact of V(O) on the magnetism, where our results suggest that the Fe-doped CeO2 nanoparticle magnetism is mediated by a majority of [Fe(3+) + V(O)(2-)]-Ce(3+) -[Fe(3+) + V(O)(2-)] complexes.

  5. Defluoridation technology for drinking water and tea by green synthesized Fe3O4/Al2O3 nanoparticles coated polyurethane foams for rural communities.

    PubMed

    Kumari, Sonu; Khan, Suphiya

    2017-08-14

    Fluoride (F) contaminated ground water poses a serious public health concern to rural population with unaffordable purification technologies. Therefore, development of a cost-effective, portable, environment and user-friendly defluoridation technique is imperative. In the present study, we report on the development of a green and cost-effective method that utilizes Fe 3 O 4 and Al 2 O 3 nanoparticles (NPs) that were synthesized using jojoba defatted meal. These NPs were impregnated on to polyurethane foam (PUF) and made into tea infusion bags. The Al 2 O 3 NPs-PUF displayed a higher water defluoridation capacity of 43.47 mg g -1 of F as compared to 34.48 mg g -1 of F with Fe 3 O 4 NPs-PUF. The synthesized Al 2 O 3 -PUF infusion bags removed the F that was under the permissible limit of 1.5 mg L -1 . The sorption experiments were conducted to verify the effect of different parameters such as pH, contact time, size of PUF and initial F concentration. The different properties of adsorbent were characterized using a combination of FESEM, EDX, XRD and FTIR techniques, respectively. The calculated total cost per NPs-PUF pouch developed is as low as US $0.05, which makes the technology most suitable for rural communities. This paper will be beneficial for researchers working toward further improvement in water purification technologies.

  6. Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva.

    PubMed

    Chen, Wei-Yu; Chen, Yu-Chie

    2010-11-01

    Saliva contains various proteins, particularly abundant are phosphoproteins, that may be related to disease occurrences and that play significant roles in a biological system. Thus, medical diagnostics will benefit tremendously if disease-related protein biomarkers are discovered from saliva. In this paper, we propose and demonstrate an approach using functional zinc oxide coated iron oxide magnetic nanoparticles (Fe(3)O(4)@ZnO MNPs) as affinity probes to selectively enrich phosphoproteins from complex saliva samples and as microwave absorbers to assist the enrichment and subsequent tryptic digestion of trapped proteins under microwave heating. The target species trapped by MNPs were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) combined with protein database search. Entire analysis time was shortened to less than 20 min. The detection limit of this approach for a monophosphopeptide was as low as 250 pM (10 μL).

  7. Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection

    PubMed Central

    Dai, Qing-Qing; Ren, Jun-Li; Peng, Feng; Chen, Xiao-Feng; Gao, Cun-Dian; Sun, Run-Cang

    2016-01-01

    Acylated xylan-based magnetic Fe3O4 nanocomposite hydrogels (ACX-MNP-gels) were prepared by fabricating Fe3O4 nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX) with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe3O4 fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C). The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt %) presented excellent catalytic activity and provided a sensitive response to H2O2 detection even at a concentration level of 5 × 10−6 mol·L−1. This approach to preparing magnetic hydrogels loaded with Fe3O4 nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry. PMID:28773811

  8. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells.

    PubMed

    Chen, Bao-an; Mao, Pei-pei; Cheng, Jian; Gao, Feng; Xia, Guo-hua; Xu, Wen-lin; Shen, Hui-lin; Ding, Jia-hua; Gao, Chong; Sun, Qian; Chen, Wen-ji; Chen, Ning-na; Liu, Li-jie; Li, Xiao-mao; Wang, Xue-mei

    2010-08-09

    In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe(3)O(4) nanoparticle [MNP (Fe(3)O(4))] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of "classical" MDR by short hairpin RNA (shRNA) aiming directly at the target sequence (3491-3509, 1539-1557, and 3103-3121 nucleotide) of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1-1, PGY1-2, and PGY1-3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe(3)O(4)) for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM). PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1-2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR) and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe(3)O(4)) or PGY1-2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe(3)O(4)) and PGY1-2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe(3)O(4)) and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia.

  9. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Lee, Shu Chin; Lintang, Hendrik O; Yuliati, Leny

    2017-01-01

    Two series of Fe 2 O 3 /TiO 2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe 2 O 3 /TiO 2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV light irradiation was examined. The Fe 2 O 3 /TiO 2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO 2 , mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe 2 O 3 /TiO 2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO 2 . Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe 2 O 3 (0.5)/TiO 2 . The improved activity of TiO 2 after photodeposition of Fe 2 O 3 was contributed to the formation of a heterojunction between the Fe 2 O 3 and TiO 2 nanoparticles that improved charge transfer and suppressed electron-hole recombination. A further investigation on the role of the active species on Fe 2 O 3 /TiO 2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe 2 O 3 (0.5)/TiO 2 sample also showed good stability and reusability, suggesting its potential for water purification applications.

  10. Preparation of Porous γ-Fe2O3@mWO3 Multifunctional Nanoparticles for Drug Loading and Controlled Release.

    PubMed

    Peng, Hongxia; Huang, Qin; Wu, Tengyan; Wen, Jin; He, Hengping

    2018-02-14

    The use of chemotherapy drug is hindered by relatively low selectivity toward cancer cells and severe side effects from uptake by noncancerous cells and tissue. Thus, targeted drug delivery systems are preferred to increase the efficiency of drug delivery to specific tissues as well as to decrease its side effects. The aims of this paper are develop microwave-triggered controlled-release drug delivery systems using porous γ-Fe2O3@mWO3 multifunctional core-shell nanoparticles. We also studied its magnetic- microwave to heat responsive properties and large specific surface area. We chose ibuprofen (IBU) as a model drug to evaluate the loading and release function of the γ- Fe2O3@mWO3 nanoparticles. We used a direct precipitation method and thermal decomposition of CTAB template method to synthesize core-shell structured γ-Fe2O3@mWO3 nanoparticles. The specific surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. The load drug and controlled release of the γ-Fe2O3@mWO3 triggered by microwave was determined with ultraviolet-visible spectroscopic analysis. The γ-Fe2O3@mWO3 nanoparticles possesses high surface area of 100.09 m2/g, provides large accessible pore diameter of 6.0 nm for adsorption of drug molecules, high magnetization saturation value of 43.6 emu/g for drug targeting under foreign magnetic fields, quickly convert electromagnetic energy into thermal energy for controlled release by microwave-triggered which was caused by mWO3 shell. The IBU release of over 78% under microwave discontinuous irradiation out classes the 0.15% within 20s only stirring release. This multifunctional material shows good performance for targeting delivery and mWO3 microwave controlled release of anticancer drugs based on all the properties they possess. The porous shell and the introduction of absorbing material not only increased the drug loading efficiency of the nanoparticles but also realized the microwave-stimulated anticancer drug controlled release

  11. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Bhosale, S. V.; Ekambe, P. S.; Bhoraskar, S. V.; Mathe, V. L.

    2018-05-01

    The present work reports the role of surface properties of NiFe2O4 nanoparticles on the antimicrobial activity. The NiFe2O4 nanoparticles were synthesized by gas phase condensation and chemical co-precipitation route. These nanoparticles were extensively investigated using X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electro-kinetic property measurements. The HRTEM was used to analyze surface morphology of nickel ferrite nanoparticles obtained by two different routes. Electro-kinetic properties of the nanoparticles under investigation were recorded, analyzed and correlated with the antimicrobial properties. It was observed that nickel ferrite nanoparticles synthesized by thermal plasma route (NFOTP) formed highly stable colloidal solution as compared to chemically synthesized (NFOCP), as the later tends to agglomerate due to low surface charge. The antimicrobial activity of NiFe2O4 nanoparticles were investigated on two Gram positive bacteria Staphylococcus aureus and Streptococcus pyogenes, two Gram negative bacteria Escherichia coli and Salmonella typhimurium and one fungal species Candida albicans. It was noted that the surface properties of NiFe2O4 particles have revealing effect on the antimicrobial activity. The NFOTP nanoparticles showed significant activity for gram negative E. coli bacteria however no activity was observed for other bacteria's and fungi under study. Moreover NFOCP particles did not show any significant activity for both bacteria's and fungi. Further, antimicrobial activity of nickel ferrite nanoparticles were studied even for different concentration to obtain the minimum inhibition concentration (MIC).

  12. Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Shisode, M. V.; Kharat, Prashant B.; Bhoyar, Dhananjay N.; Vinayak, Vithal; Babrekar, M. K.; Jadhav, K. M.

    2018-05-01

    Ba2+ doped Bismuth ferrite nanoparticles having general formula Bi1-xBaxFeO3 (where, x = 0.00 and 0.20) were successfully synthesized by sol gel method, using nitrates as a starting material. Ethylene glycol was used as a solvent. The synthesized powder was sintered at 650°C for 4 hours to obtain pure phase BFO. Leaching with dilute nitric acid (HNO3) and distilled water (H2O) is done to remove the impurities. The structural, morphological, magnetic and ferroelectric properties were systematically investigated using standard characterization techniques like X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and room temperature magnetic behavior of the samples was studied using pulse field hysteresis loop tracer technique showing increase in saturation magnetizaion. P-E loop confirms the ferroelectric behavior of prepared nanoparticles. The coexistence of ferromagnetic and ferroelectric hysteresis loops in BFO and Bi0.8Ba0.2FeO3 nanoparticles samples at room temperature; it indicates that the samples are potential candidates for information storage and spintronics devices. The increase in magnetic properties may be important for practical application at room temperature.

  13. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  14. The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP.

    PubMed

    Zhou, Hankun; Gan, Ning; Li, Tianhua; Cao, Yuting; Zeng, Saolin; Zheng, Lei; Guo, Zhiyong

    2012-10-09

    A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of α-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe(3)O(4)-Au nanoparticles, which was first employed to capture AFP antigens to form Fe(3)O(4)-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe(3)O(4)-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe(3)O(4)-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL(-1) with a detection limit of 0.2 pg mL(-1). The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the amplification of the signal tag, the immunosensor is highly sensitive, which can offer great promise for rapid, simple, selective and cost-effective detection of effective biomonitoring for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.

    2018-05-01

    The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.

  16. Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber

    NASA Astrophysics Data System (ADS)

    Olad, Ali; Shakoori, Sahar

    2018-07-01

    An increase in the electromagnetic wave pollution generated from wireless telecommunication devices has devoted to a great request for exploiting microwave absorbing materials for themselves. The combination of inherently conducting polymers such as polypyrrole (PPy) with metal oxides has led to design ideal microwave absorbing materials which benefit both advantage effects of ICPs and metal oxide nanoparticles. Herein, the quaternary nanocomposite of Epoxy-PPy/Fe3O4-ZnO was prepared and tested for the absorption of X-band microwaves. Simultaneous application of metal oxides and conducting polypyrrole in the epoxy matrix was evaluated in order to increase the absorption intensity and broadness of microwaves in X-band region. The morphology, microstructure, and phase structure of Fe3O4, ZnO, and PPy, as well as quaternary nanocomposite were characterized and studied using FTIR, XRD, FESEM and TEM techniques. The presence of nanoparticles in the quaternary nanocomposite was confirmed by EDS. The magnetization of iron oxide was studied by VSM. The synergetic effect of iron oxide and zinc oxide nanoparticles in different weight ratios (Fe3O4/ZnO) on the electromagnetic wave absorption was evaluated. The electromagnetic parameters have been evaluated by the vector network analyzer in the frequency range of 8.2-12.4 GHz which is named as X-band region and is adequate for radar applications. The electromagnetic wave absorbing outcomes indicated that Epoxy-PPy/Fe3O4-ZnO quaternary nanocomposite has wide absorption area and high attenuation, which is believed to be due to dielectric loss properties related to the polypyrrole, magnetic loss factor of Fe3O4, and synergetic effects of components. The maximum reflection loss reached to -32.53 dB at 9.96 GHz with a nanocomposite thickness of 2 mm which is dedicated to the Epoxy-PPy/Fe3O4-ZnO with iron oxide to zinc oxide ratio of 2:1. The absorption bandwidth with the reflection loss lower than -10 dB (90% attenuation) was up to

  17. Dual-pH/Magnetic-Field-Controlled Drug Delivery Systems Based on Fe3 O4 @SiO2 -Incorporated Salecan Graft Copolymer Composite Hydrogels.

    PubMed

    Hu, Xinyu; Wang, Yongmei; Zhang, Liangliang; Xu, Man; Zhang, Jianfa; Dong, Wei

    2017-10-09

    Salecan is a water-soluble extracellular β-glucan and has excellent physicochemical and biological properties for hydrogel preparation. In this study, a new pH/magnetic field dual-responsive hydrogel was prepared by the graft copolymerization of salecan with 4-pentenoic acid (PA) and N-hydroxyethylacrylamide (HEAA) in the presence of Fe 3 O 4 @SiO 2 nanoparticles for doxorubicin hydrochloride (DOX) release. Integration of Fe 3 O 4 @SiO 2 nanoparticles in salecan-g-poly(PA-co-HEAA) copolymers afforded magnetic sensitivity to the original material. DOX-loaded hydrogels exhibited a clear capacity for pH/magnetic field dual-responsive controlled drug release. Lowering the pH to acidic conditions or introducing an external magnetic field caused an enhancement in DOX release. This salecan-g-poly(PA-co-HEAA)/Fe 3 O 4 @SiO 2 composite hydrogel is a promising drug carrier for magnetically targeted drug delivery with enhanced DOX cytotoxicity against A549 cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  19. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    PubMed Central

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-01-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209

  20. Innovative methodology for the synthesis of Ba-M hexaferrite BaFe{sub 12}O{sub 19} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.A., E-mail: moala@47hotmail.com; Helmy, N.; El-Dek, S.I.

    2013-09-01

    Graphical abstract: Transmission electron microscope images for the BaFe12O19. - Highlights: • BaFe{sub 12}O{sub 19}nanoparticles were prepared in single-phase from organometallic precursors. • BaFe{sub 12}O{sub 19} possesses small size 65 nm, H{sub C} = 3695 Oe and M{sub s} = 58 emu/g. • This method of preparation could be extended in the synthesis of other metal oxide nanoparticles. - Abstract: In this piece of work, high quality and homogeneity, barium hexaferrite (BaM) BaFe{sub 12}O{sub 19} nanoparticles were prepared from organometallic precursors for the 1st time. This method is based on the formation of supramolecular crystal structure of Ba[Fe(H{sub 3}NCH{sub 2}CH{submore » 2}NH{sub 3})]Cl{sub 7}·8H{sub 2}O. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} at two different annealing temperatures namely 1000 °C and 1200 °C were investigated using X-ray diffraction, transmission electron microscope TEM and vibrating sample magnetometry (VSM). The results show that monophasic nanoparticles of hexaferrites were obtained. Nanoparticles of crystallite size 40–50 nm distinguished by narrow distribution and excellent homogeneity were obtained with superior magnetic properties which suggested single-domain particles of Ba-M hexaferrite.« less

  1. Magnetism and Mössbauer study of formation of multi-core γ -Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamali, Saeed; Bringas, Eugenio; Hah, Hien-Yoong; Bates, Brian; Johnson, Jacqueline A.; Johnson, Charles E.; Stroeve, Pieter

    2018-04-01

    A systematic investigation of magnetic nanoparticles and the formation of a core-shell structure, consisting of multiple maghemite (γ -Fe2O3) nanoparticles as the core and silica as the shell, has been performed using various techniques. High-resolution transmission electron microscopy clearly shows isolated maghemite nanoparticles with an average diameter of 13 nm and the formation of a core-shell structure. Low temperature Mössbauer spectroscopy reveals the presence of pure maghemite nanoparticles with all vacancies at the B-sites. Isothermal magnetization and zero-field-cooled and field-cooled measurements are used for investigating the magnetic properties of the nanoparticles. The magnetization results are in good accordance with the contents of the magnetic core and the non-magnetic shell. The multiple-core γ -Fe2O3 nanoparticles show similar behavior to isolated particles of the same size.

  2. Prediction on electronic structure of CH3NH3PbI3/Fe3O4 interfaces

    NASA Astrophysics Data System (ADS)

    Hou, Xueyao; Wang, Xiaocha; Mi, Wenbo; Du, Zunfeng

    2018-01-01

    The interfacial electronic structures of CH3NH3PbI3(MAPbI3)/Fe3O4 heterostructures are predicted by density functional theory. Four models (MAI/FeBO, PbI2/FeBO, MAI/FeA and PbI2/FeA) are included. Especially, a half-metal to semiconductor transition of Fe3O4 appears in PbI2/FeA model. A series of electric field is added to PbI2/FeA model, and a direct-indirect bandgap transition of Fe3O4 appears at a 500-kV/cm field. The electric field can control the bandgap of Fe3O4 in PbI2/FeA model by modulating the hybridization. The prediction of spin-related bandgap characteristic in MAPbI3/Fe3O4 is meaningful for further study.

  3. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    PubMed

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  4. Synthesis, Characterization and Cytotoxicity of Novel Multifunctional Fe3O4@SiO2@GdVO4:Dy3+ Core-Shell Nanocomposite as a Drug Carrier

    PubMed Central

    Li, Bo; Fan, Huitao; Zhao, Qiang; Wang, Congcong

    2016-01-01

    In this study, multifunctional Fe3O4@SiO2@GdVO4:Dy3+ nanocomposites were successfully synthesized via a two-step method. Their structure, luminescence and magnetic properties were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The results indicated that the as-prepared multifunctional composites displayed a well-defined core-shell structure. The composites show spherical morphology with a size distribution of around 360 nm. Additionally, the composites exhibit high saturation magnetization (20.40 emu/g) and excellent luminescence properties. The inner Fe3O4 cores and the outer GdVO4:Dy3+ layers endow the composites with good responsive magnetic properties and strong fluorescent properties, which endow the nanoparticles with great potential applications in drug delivery, magnetic resonance imaging, and marking and separating of cells in vitro. PMID:28773275

  5. A resumable two-photon fluorescent probe for Cu2+ and S2- based on magnetic silica core-shell Fe3O4@SiO2 nanoparticles and its application in bioimaging.

    PubMed

    Jiang, Huie; Liu, Yan; Luo, Weifang; Wang, Yujiao; Tang, Xiaoliang; Dou, Wei; Cui, Yumei; Liu, Weisheng

    2018-07-19

    A two-photon fluorescent probe for Cu 2+ and S 2- has been strategically prepared with naphthalimide derivative platform (NPE) covalently grafted onto the surface of magnetic core-shell Fe 3 O 4 @SiO 2 nanoparticles. The probe (NPE-Fe 3 O 4 @SiO 2 ) exhibits selective response to Cu 2+ with enhanced fluorescence and efficient separation of Cu 2+ with external magnetic field. The consequent product NPE-Fe 3 O 4 @SiO 2 -Cu of NPE-Fe 3 O 4 @SiO 2 and Cu 2+ can work as an excellent sensor for S 2- by removing Cu 2+ from the complex with fluorescence decreased, recovering the fluorescence of the probe. Therefore, the constituted Off-On-Off type fluorescence monitoring system means the probe is resumable. Moreover, the probe has been used to quantitatively detect Cu 2+ and S 2- with low detection limits, which are 0.28 μM and 0.12 μM, respectively. Furthermore, the probe shows low cytotoxicity and excellent membrane permeability, which has been successfully applied for monitoring Cu 2+ and S 2- in living cells and imaging Cu 2+ in deep-tissue with two-photon excited fluorescence. Copyright © 2018. Published by Elsevier B.V.

  6. Thermodynamics of Fe(II)Fe(III) oxide systems I. Hydrothermal Fe3O4

    USGS Publications Warehouse

    Bartel, J.J.; Westrum, E.F.; Haas, J.L.

    1976-01-01

    The heat capacity of a hydrothermally-prepared polycrystalline sample of Fe3O4 was measured from 53 to 350 K, primarily to study the thermophysics of the Verwey transitions. Although the bifurcation of the transition was confirmed, the sample was found to contain traces of manganese. The observed transition temperatures of 117.0 and 123.0 K are 3.7 and 4.2 K higher respectively than those found in pure Fe3O4. Ancillary analytical results are consistent and indicate a stoichiometry of Mn0.008Fe2.992O4 for this material. Characteristics in the transition region are ascribed to dopant effects. ?? 1976.

  7. Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon-Fe3O4 Nanocomposite Based Supercapacitors: Turning Wastes into Value-Added Materials.

    PubMed

    Vadiyar, Madagonda M; Liu, Xudong; Ye, Zhibin

    2018-05-14

    In the present work, we demonstrate the synthesis of porous activated carbon (specific surface area, 1,883 m2 g-1), Fe3O4 nanoparticles, and carbon-Fe3O4 nanocomposites using local waste thermocol sheets and rusted iron wires. The resulting carbon, Fe3O4 nanoparticles, and carbon-Fe3O4 composites are used as electrode materials for supercapacitor application. In particular, C-Fe3O4 composite electrodes exhibit a high specific capacitance of 1,375 F g-1 at 1 A g-1 and longer cyclic stability with 98 % of capacitance retention over 10,000 cycles. Subsequently, asymmetric supercapacitor, i. e., C-Fe3O4//Ni(OH)2/CNT device exhibits a high energy density of 91.1 Wh kg-1 and a remarkable cyclic stability, showing 98% of capacitance retention over 10,000 cycles. Thus, this work has important implications not only for the fabrication of low-cost electrodes for high-performance supercapacitors but also for the recycling of waste thermocol sheets and rust iron wires for value-added reuse. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Facile method to synthesize dopamine-capped mixed ferrite nanoparticles and their peroxidase-like activity

    NASA Astrophysics Data System (ADS)

    Mumtaz, Shazia; Wang, Li-Sheng; Abdullah, Muhammad; Zajif Hussain, Syed; Iqbal, Zafar; Rotello, Vincent M.; Hussain, Irshad

    2017-03-01

    A facile single-step strategy to prepare stable and water-dispersible dopamine-functionalized ultra-small mixed ferrite nanoparticles MFe2O4-DOPA (where M is a bivalent metal atom i.e. Fe, Co Cu, Mn and Ni) at room temperature is described. The nanoparticles formed have narrow size distribution as indicated by their characterization using transmission electron microscopy (TEM) and dynamic light scattering. The surface chemistry of these nanoparticles was probed by FTIR spectroscopy indicating their successful capping with dopamine ligands, which was further confirmed using zetapotential measurements and thermogravimetric analysis. The comparative horseradish peroxidase (HRP)—like activity of these cationic mixed ferrites nanoparticles was studied at pH 4.6 using a negatively-charged 2, 2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) as a chromogenic substrate in the presence of hydrogen peroxide. A time-dependent relative peroxidase-like activity follows the following order CoFe2O4-DOPA  >  MnFe2O4-DOPA  >  CuFe2O4-DOPA  >  NiFe2O4-DOPA  >  Fe3O4-DOPA. This diversity in HRP-like activity may be attributed to the different redox properties of ferrite nanoparticles when doped with M (Fe, Co Cu, Mn and Ni).

  9. Potential of SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in achieving integrated magneto-optical isolators

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi; Hocini, Abdesselam

    2017-05-01

    We have investigated the potential of the SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in order to overcome the problem of integration of the magneto-optical isolators (MOIs). In this way, we have performed a theoretical study for the case of designing perfect and adjustable MOIs based on magnetophotonic crystals (MPCs) containing SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles as a magnetic medium. Despite the existence the attenuation coefficient for SiO2/ZrO2 matrix at wavelength 1550 nm that leads to a non-perfect transmittance, we could introduce an MPC structure having no reflectance; therefore, an ideal MOI for eliminating unwanted back-reflection could be achieved.

  10. Synthesis of multifunctional clustered nano-Fe3O4 chitosan nanocomposite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Villamin, Maria Emma; Kitamoto, Yoshitaka

    2018-01-01

    Clustered iron oxide nanoparticles covered with chitosan hydrogel (FeOx/Ch NC) have multiple potential functionalities in biomedical applications such as pH-controlled drug release, magnetic hyperthermia, and magnetic non-contact pH sensing. In the present study, the synthesis and characterization of FeOx/Ch NC are demonstrated. Moreover, the heating capability of the nanocomposites is also explored for the potential magnetic hyperthermia application by measuring the temperature curves under different AC frequencies (900 kHz to 2500 kHz). Monodispersed FeOx NPs are first synthesized via thermal decomposition. Then, dried FeOx NPs are combined with chitosan using a homogenizer to form the clustered composites. Synthesized composites are then characterized using XRD, TEM, and FTIR. Temperature curves are measured via a custom-built hyperthermia setup. Results show successful synthesis of clustered Fe3O4-chitosan nanocomposite with XRD peaks corresponding to magnetite (Fe3O4) structure. FTIR results show the presence of functional groups of chitosan (N-H, C-O) and FeOx NPs (Fe-O). These confirms the successful fabrication of FeOx/Ch NC. The temperature curves show maximum temperature changes of about 2°C to 22°C depending on the AC frequency. The heating rate is found to increase with the frequency, which suggests that the resonance frequency is higher than 2500 kHz.

  11. Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4-carbon black/poly(vinyl alcohol) composites.

    PubMed

    Datt, Gopal; Kotabage, Chetan; Abhyankar, A C

    2017-08-09

    The effect of cationic disorder and particle morphology on the ferromagnetic resonance (FMR) of NiCoFe 2 O 4 nanoparticles (NPs) and the electromagnetic shielding effectiveness of flexible composites (wherein the nanoparticles are used as fillers) has been presented. Upon annealing at 1000 °C, spherical, ∼25 nm, single crystalline (as-prepared) NPs are transformed into octahedral, ∼200 nm, polycrystalline (annealed) NPs and change the cationic distribution significantly. The effect of shape, size and cationic distribution on the resonance properties has been discussed using the randomly-oriented anisotropic-axis model. The temperature dependent evolution of FMR spectra has been found to be consistent with a Bloch spin-relaxation model. Analysis of the FMR spectra reveals that NiCoFe 2 O 4 nanoparticles have a large internal magnetic field along with broad FMR linewidths of ∼2-3 kOe, signifying high magnetic losses that are essential for the absorption of electromagnetic (EM) waves. Next, NiCoFe 2 O 4 -carbon black (NCF-CB) hybrids grafted in a PVA matrix, as flexible composite films with a thickness of ∼1.5 mm, are assessed for EM wave absorption properties in the range of 8-18 GHz. As compared to annealed-NCF-CB/PVA (21 dB, ∼99.5%), the as-prepared-NCF-CB/PVA composite film exhibits significantly large SE of 27 dB (∼99.9% attenuation of the EM wave), with a dominant contribution from absorption (SE A ∼ 21 dB). The electrical conductivity, the electric modulus, and Cole-Cole plots reveal that the dielectric losses in the as-prepared-NCF-CB/PVA have significant contributions from cationic disorder and particle size, as compared to the annealed-NCF-CB/PVA composites. Cationic disorder increases the d-d electron transition probability between adjacent ionic pairs such as Co 2+ /Fe 3+ and a reduced particle size creates large interfacial polarization in the as-prepared NCF/CB hybrids. Considerably large values of the Landes g-factor, magnetic anisotropy

  12. Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation

    NASA Astrophysics Data System (ADS)

    Li, Chao; Sun, Jun-Jie; Chen, Duo; Han, Guang-Bing; Yu, Shu-Yun; Kang, Shi-Shou; Mei, Liang-Mo

    2016-08-01

    A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites. This method involves coating Fe2O3 nanorods with a uniform silica layer, reduction in 10% H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4, and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods. The fabricated nanocomposites are further characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectroscopy. The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B (RhB) at room temperature, and maintain superior catalytic activity even after six cycles. In addition, these samples could be easily separated from the catalytic system by an external magnet and reused, which shows great potential applications in treating waste water. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11174183), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  13. Photochemical Decoration of Silver Nanocrystals on Magnetic MnFe2O4 Nanoparticles and Their Applications in Antibacterial Agents and SERS-Based Detection

    NASA Astrophysics Data System (ADS)

    Huy, Le Thanh; Tam, Le Thi; Van Son, Tran; Cuong, Nguyen Duy; Nam, Man Hoai; Vinh, Le Khanh; Huy, Tran Quang; Ngo, Duc-The; Phan, Vu Ngoc; Le, Anh-Tuan

    2017-06-01

    In this study, multifunctional nanocomposites consisting of silver nanoparticles and manganese ferrite nanoparticles (Ag-MnFe2O4) were successfully synthesized using a two-step chemical process. The formation of Ag-MnFe2O4 nanocomposites were analyzed by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy measurements. Noticeable antibacterial activity of the Ag-MnFe2O4 nanocomposites was demonstrated against two Gram-negative bacteria, Salmonella enteritidis and Klebsiella pneumoniae. A direct-drop diffusion method can be an effective way to investigate the antibacterial effects of nanocomposite samples. Interestingly, we also demonstrated the use of Ag-MnFe2O4 nanocomposites as a surface-enhanced Raman scattering (SERS) platform to detect and quantify trace amounts of organic dye in water solutions. The combination of Ag and MnFe2O4 nanoparticles opens opportunities for creating advantages such as targeted bactericidal delivery, recyclable capability, and sensitive SERS-based detection for advanced biomedicine and environmental monitoring applications.

  14. Experimental heat capacities, excess entropies, and magnetic properties of bulk and nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions

    NASA Astrophysics Data System (ADS)

    Schliesser, Jacob M.; Huang, Baiyu; Sahu, Sulata K.; Asplund, Megan; Navrotsky, Alexandra; Woodfield, Brian F.

    2018-03-01

    We have measured the heat capacities of several well-characterized bulk and nanophase Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solution samples from which magnetic properties of transitions and third-law entropies have been determined. The magnetic transitions show several features common to effects of particle and magnetic domain sizes. From the standard molar entropies, excess entropies of mixing have been generated for these solid solutions and compared with configurational entropies determined previously by assuming appropriate cation and valence distributions. The vibrational and magnetic excess entropies for bulk materials are comparable in magnitude to the respective configurational entropies indicating that excess entropies of mixing must be included when analyzing entropies of mixing. The excess entropies for nanophase materials are even larger than the configurational entropies. Changes in valence, cation distribution, bonding and microstructure between the mixing ions are the likely sources of the positive excess entropies of mixing.

  15. Ultrasonic activated efficient synthesis of chromenes using amino-silane modified Fe3O4 nanoparticles: A versatile integration of high catalytic activity and facile recovery

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Zarnegar, Zohre

    2014-08-01

    An efficient synthesis of 2-amino-4H-chromenes is achieved by one pot three component coupling reaction of aldehyde, malononitrile, and resorcinol using amino-silane modified Fe3O4 nanoparticles (MNPs-NH2) heterogeneous nanocatalyst under sonic condition. The attractive advantages of the present process are mild reaction conditions, short reaction times, easy isolation of products, good yields and simple operational procedures. Combination of the advantages of ultrasonic irradiation and magnetic nanoparticles provides important methodology to carry out catalytic transformations.

  16. A Resumable Fluorescent Probe BHN-Fe3O4@SiO2 Hybrid Nanostructure for Fe3+ and its Application in Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Xi; Wang, Yujiao; Peng, Qi; Liu, Weisheng

    2017-12-01

    A multifunctional fluorescent probe BHN-Fe3O4@SiO2 nanostructure for Fe3+ was designed and developed. It has a good selective response to Fe3+ with fluorescence quenching and can be recycled using an external magnetic field. With adding EDTA (2.5 × 10-5 M) to the consequent product Fe3+-BHN-Fe3O4@SiO2, Fe3+ can be removed from the complex, and its fluorescence probing ability recovers, which means that this constituted on-off type fluorescence probe could be reversed and reused. At the same time, the probe has been successfully applied for quantitatively detecting Fe3+ in a linear mode with a low limit of detection 1.25 × 10-8 M. Furthermore, the BHN-Fe3O4@SiO2 nanostructure probe is successfully used to detect Fe3+ in living HeLa cells, which shows its great potential in bioimaging detection.

  17. Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Dhavale, Vishal M.; Singh, Santosh K.; Nadeema, Ayasha; Gaikwad, Sachin S.; Kurungot, Sreekumar

    2015-11-01

    The size-controlled growth of nanocrystalline Fe-Fe2O3 particles (2-3 nm) and their concomitant dispersion on N-doped graphene (Fe-Fe2O3/NGr) could be attained when the mutually assisted redox reaction between NGr and Fe3+ ions could be controlled within the aqueous droplets of a water-in-oil emulsion. The synergistic interaction existing between Fe-Fe2O3 and NGr helped the system to narrow down the overpotential for the oxygen reduction reaction (ORR) by bringing a significant positive shift to the reduction onset potential, which is just 15 mV higher than its Pt-counterpart. In addition, the half-wave potential (E1/2) of Fe-Fe2O3/NGr is found to be improved by a considerable amount of 135 mV in comparison to the system formed by dispersing Fe-Fe2O3 nanoparticles on reduced graphene oxide (Fe-Fe2O3/RGO), which indicates the presence of a higher number of active sites in Fe-Fe2O3/NGr. Despite this, the ORR kinetics of Fe-Fe2O3/NGr are found to be shifted significantly to the preferred 4-electron-transfer pathway compared to NGr and Fe-Fe2O3/RGO. Consequently, the H2O2% was found to be reduced by 78.3% for Fe-Fe2O3/NGr (13.0%) in comparison to Fe-Fe2O3/RGO (51.2%) and NGr (41.0%) at -0.30 V (vs. Hg/HgO). This difference in the yield of H2O2 formed between the systems along with the improvements observed in terms of the oxygen reduction onset and E1/2 in the case of Fe-Fe2O3/NGr reveals the activity modulation achieved for the latter is due to the coexistence of factors such as the presence of the mixed valancies of iron nanoparticles, small size and homogeneous distribution of Fe-Fe2O3 nanoparticles and the electronic modifications induced by the doped nitrogen in NGr. A controlled interplay of these factors looks like worked favorably in the case of Fe-Fe2O3/NGr. As a realistic system level validation, Fe-Fe2O3/NGr was employed as the cathode electrode of a single cell in a solid alkaline electrolyte membrane fuel cell (AEMFC). The system could display an open

  18. Enhancement of simultaneous algicidal and denitrification of immobilized Acinetobacter sp. J25 with magnetic Fe3O4 nanoparticles.

    PubMed

    Su, Jun Feng; Liang, Dong Hui; Huang, Ting Lin; Wei, Li; Ma, Min; Lu, Jinsuo

    2017-07-01

    In this study, immobilization technique was employed to improve simultaneous algicidal and denitrification of immobilized Acinetobacter sp. J25 with magnetic Fe 3 O 4 in eutrophic landscape water. After 7 days of operation, the maximum superoxide dismutase (SOD) activity (54.43 U mg -1 ), nitrate removal efficiency (100% (0.2127 mg L -1  h -1 )), and chlorophyll-a removal efficiency (89.71%) were obtained from the immobilized J25 with magnetic Fe 3 O 4 . The results suggest that immobilized J25 with magnetic Fe 3 O 4 had better nitrogen removal efficiency and algicidal activity in eutrophic landscape water. High-throughput sequencing data profiled the strain J25 that was immobilized with magnetic Fe 3 O 4 which changed the composition of the microbial community. The results indicated a novel concept of enhancing the algicidal and denitrification property of immobilized bacteria with magnetic Fe 3 O 4 in eutrophic landscape water.

  19. Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature

    NASA Astrophysics Data System (ADS)

    Parishani, Marziye; Nadafan, Marzieh; Dehghani, Zahra; Malekfar, Rasoul; Khorrami, G. H. H.

    In this research, NiFe2O4 nanoparticles was prepared via the simple sol-gel route, using different sintering temperature. This nanoparticle was characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), and FTIR spectra. The XRD patterns show by increasing the synthesized temperature, the intensity, and broadening of peaks are decreased so the results are more crystallization and raising the size of nanoparticles. The size distribution in the histogram of the NiFe2O4 nanoparticles is 42, 96, and 315 nm at 750 °C, 850 °C, and 950 °C, respectively. The FTIR spectra were evaluated using Kramers-Kronig method. Results approved the existing of certain relations between sintering temperatures and grain size of nanoparticles. By raising the temperature from 750 °C to 950 °C, the grain size was increased from 70 nm to 300 nm and the optical constants of nanoparticles were strongly related to synthesizing temperature as well. Since by increasing temperature, both real/imaginary parts of the refractive index and dielectric function were decreased. Consequently, the transversal (TO) and longitudinal (LO) phonon frequencies are detected. The TO and LO frequencies have shifted to red frequencies by increasing reaction temperature.

  20. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Lee, Nohyun; Kang, Hyun Wook; Oh, Junghwan

    2016-03-01

    Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.