Sample records for ultra-violet uv radiation

  1. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  2. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  3. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  4. The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers

    NASA Astrophysics Data System (ADS)

    Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.

    2017-06-01

    Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.

  5. Ultra-violet radiation is responsible for the differences in global epidemiology of chickenpox and the evolution of varicella-zoster virus as man migrated out of Africa.

    PubMed

    Rice, Philip S

    2011-04-23

    Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection. Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity. The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation and quantifying virus survival by plaque forming

  6. Ultra-violet radiation is responsible for the differences in global epidemiology of chickenpox and the evolution of varicella-zoster virus as man migrated out of Africa

    PubMed Central

    2011-01-01

    Background Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection. Presentation of the hypothesis Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity. Testing the Hypothesis The hypothesis is testable by exposing different virus genotypes to ultra-violet

  7. Bias Selectable Dual Band AlGaN Ultra-violet Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Miko, Laddawan; Franz, David; Guan, Bing; Stahle, Carl M.

    2007-01-01

    Bias selectable dual band AlGaN ultra-violet (UV) detectors, which can separate UV-A and UV-B using one detector in the same pixel by bias switching, have been designed, fabricated and characterized. A two-terminal n-p-n photo-transistor-like structure was used. When a forward bias is applied between the top electrode and the bottom electrode, the detectors can successfully detect W-A and reject UV-B. Under reverse bias, they can detect UV-B and reject UV-A. The proof of concept design shows that it is feasible to fabricate high performance dual-band UV detectors based on the current AlGaN material growth and fabrication technologies.

  8. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR

    NASA Astrophysics Data System (ADS)

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K.; Sharma, Ramesh C.

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ˜5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly.

  9. Decontamination of poultry feed from ochratoxin A by UV and sunlight radiations.

    PubMed

    Ameer Sumbal, Gul; Hussain Shar, Zahid; Hussain Sherazi, Syed Tufail; Sirajuddin; Nizamani, Shafi Muhammad; Mahesar, Safaraz Ahmed

    2016-06-01

    Mycotoxin-contaminated feed is very dangerous for the growth and even life of poultry. The objective of the current study was to investigate the efficacy of ultra-violet irradiation for decontamination of ochratoxin A (OTA) in spiked and naturally contaminated poultry feed samples. Spiked and naturally contaminated feed samples were irradiated with ultra-violet light (UV) at distance of 25 cm over the feed samples. In vitro, the effect of UV intensity (0.1 mW cm(-2) at 254 nm UV-C) on different types of poultry feeds contaminated with OTA was evaluated. The same samples were also irradiated with sunlight and analysed for OTA by an indirect enzyme linked immunosorbent assay method. Poultry feed samples containing 500 µg kg(-1) were 100% decontaminated in 180 min with UV radiation while OTA was decreased to 70-95 µg kg(-1) using the same poultry feed samples after 8 h sunlight irradiation. Therefore, UV light was found to be more effective. Only 1 h of UV irradiation was found to be sufficient to bring the OTA level to the maximum regulatory limit suggested for poultry feeds (100 µg kg(-1) ), while 8 h were needed to obtain this level using sunlight radiations. The proposed approach is a viable option to reduce the level of OTA in contaminated poultry feeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.

    PubMed

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K; Sharma, Ramesh C

    2013-08-01

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ~5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Ultra violet disinfection: A 3-year history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tubesing, R.R.; Lindeke, D.R.

    1998-07-01

    The Stillwater Wastewater Treatment Facility is one of nine wastewater treatment facilities operated by the Metropolitan Council Environmental Services in the Minneapolis-St. Paul Metropolitan Area. The facility services the cities of Stillwater, Oak Park Heights, and Bayport. In 1993, an ultra violet disinfection facility began operation to provide the disinfection for the Facility. This presentation discusses the reasons for using ultra violet disinfection in lieu of chlorination/dechlorination facilities, the operating performance, and operating cost factors.

  12. Is ultra-violet radiation the main force shaping molecular evolution of varicella-zoster virus?

    PubMed Central

    2011-01-01

    Background Varicella (chickenpox) exhibits a characteristic epidemiological pattern which is associated with climate. In general, primary infections in tropical regions are comparatively less frequent among children than in temperate regions. This peculiarity regarding varicella-zoster virus (VZV) infection among certain age groups in tropical regions results in increased susceptibility during adulthood in these regions. Moreover, this disease shows a cyclic behavior in which the number of cases increases significantly during winter and spring. This observation further supports the participation of environmental factors in global epidemiology of chickenpox. However, the underlying mechanisms responsible for this distinctive disease behavior are not understood completely. In a recent publication, Philip S. Rice has put forward an interesting hypothesis suggesting that ultra-violet (UV) radiation is the major environmental factor driving the molecular evolution of VZV. Discussion While we welcomed the attempt to explain the mechanisms controlling VZV transmission and distribution, we argue that Rice's hypothesis takes lightly the circulation of the so called "temperate VZV genotypes" in tropical regions and, to certain degree, overlooks the predominance of such lineages in certain non-temperate areas. Here, we further discuss and present new information about the overwhelming dominance of temperate VZV genotypes in Mexico regardless of geographical location and climate. Summary UV radiation does not satisfactorily explain the distribution of VZV genotypes in different tropical and temperate regions of Mexico. Additionally, the cyclic behavior of varicella does not shown significant differences between regions with different climates in the country. More studies should be conducted to identify the factors directly involved in viral spreading. A better understanding of the modes of transmissions exploited by VZV and their effect on viral fitness is likely to facilitate

  13. Evolutionary replacement of UV vision by violet vision in fish.

    PubMed

    Tada, Takashi; Altun, Ahmet; Yokoyama, Shozo

    2009-10-13

    The vertebrate ancestor possessed ultraviolet (UV) vision and many species have retained it during evolution. Many other species switched to violet vision and, then again, some avian species switched back to UV vision. These UV and violet vision are mediated by short wavelength-sensitive (SWS1) pigments that absorb light maximally (lambda(max)) at approximately 360 and 390-440 nm, respectively. It is not well understood why and how these functional changes have occurred. Here, we cloned the pigment of scabbardfish (Lepidopus fitchi) with a lambda(max) of 423 nm, an example of violet-sensitive SWS1 pigment in fish. Mutagenesis experiments and quantum mechanical/molecular mechanical (QM/MM) computations show that the violet-sensitivity was achieved by the deletion of Phe-86 that converted the unprotonated Schiff base-linked 11-cis-retinal to a protonated form. The finding of a violet-sensitive SWS1 pigment in scabbardfish suggests that many other fish also have orthologous violet pigments. The isolation and comparison of such violet and UV pigments in fish living in different ecological habitats will open an unprecedented opportunity to elucidate not only the molecular basis of phenotypic adaptations, but also the genetics of UV and violet vision.

  14. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime.

    PubMed

    Wen, Xin; Han, Yashuai; Bai, Jiandong; He, Jun; Wang, Yanhua; Yang, Baodong; Wang, Junmin

    2014-12-29

    We demonstrate a simple, compact and cost-efficient diode laser pumped frequency doubling system at 795 nm in the low power regime. In two configurations, a bow-tie four-mirror ring enhancement cavity with a PPKTP crystal inside and a semi-monolithic PPKTP enhancement cavity, we obtain 397.5nm ultra-violet coherent radiation of 35mW and 47mW respectively with a mode-matched fundamental power of about 110mW, corresponding to a conversion efficiency of 32% and 41%. The low loss semi-monolithic cavity leads to the better results. The constructed ultra-violet coherent radiation has good power stability and beam quality, and the system has huge potential in quantum optics and cold atom physics.

  15. Activation of KGFR-Akt-mTOR-Nrf2 signaling protects human retinal pigment epithelium cells from Ultra-violet.

    PubMed

    Hu, Haitao; Hao, Lanxiang; Tang, Chunzhou; Zhu, Yunxi; Jiang, Qin; Yao, Jin

    2018-01-15

    Ultra-violet (UV) radiation causes oxidative injuries to human retinal pigment epithelium (RPE) cells. We tested the potential effect of keratinocyte growth factor (KGF) against the process. KGF receptor (KGFR) is expressed in ARPE-19 cells and primary human RPE cells. Pre-treatment with KGF inhibited UV-induced reactive oxygen species (ROS) production and RPE cell death. KGF activated nuclear-factor-E2-related factor 2 (Nrf2) signaling in RPE cells, causing Nrf2 Ser-40 phosphorylation, stabilization and nuclear translocation as well as expression of Nrf2-dependent genes (HO1, NOQ1 and GCLC). Nrf2 knockdown (by targeted shRNAs) or S40T mutation almost reversed KGF-induced RPE cell protection against UV. Further studies demonstrated that KGF activated KGFR-Akt-mTORC1 signaling to mediate downstream Nrf2 activation. KGFR shRNA or Akt-mTORC1 inhibition not only blocked KGF-induced Nrf2 Ser-40 phosphorylation and activation, but also nullified KGF-mediated RPE cell protection against UV. We conclude that KGF-KGFR activates Akt-mTORC1 downstream Nrf2 signaling to protect RPE cells from UV radiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  17. The effect of ultra-violet light curing on the molecular structure and fracture properties of an ultra low-k material

    NASA Astrophysics Data System (ADS)

    Smith, Ryan Scott

    As the gate density increases in microelectronic devices, the interconnect delay or RC response also increases and has become the limiting delay to faster devices. In order to decrease the RC time delay, a new metallization scheme has been chosen by the semiconductor industry. Copper has replaced aluminum as the metal lines and new low-k dielectric materials are being developed to replace silicon dioxide. A promising low-k material is porous organosilicate glass or p-OSG. The p-OSG film is a hybrid material where the silicon dioxide backbone is terminated with methyl or hydrogen, reducing the dielectric constant and creating mechanically weak films that are prone to fracture. A few methods of improving the mechanical properties of p-OSG films have been attempted-- exposing the film to hydrogen plasma, electron beam curing, and ultra-violet light curing. Hydrogen plasma and electron-beam curing suffer from a lack of specificity and can cause charging damage to the gates. Therefore, ultra-violet light curing (UV curing) is preferable. The effect of UV curing on an ultra-low-k, k~2.5, p-OSG film is studied in this dissertation. Changes in the molecular structure were measured with Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The evolution of the molecular structure with UV curing was correlated with material and fracture properties. The material properties were film shrinkage, densification, and an increase in dielectric constant. From the changes in molecular structure and material properties, a set of condensation reactions with UV light are predicted. The connectivity of the film increases with the condensation reactions and, therefore, the fracture toughness should also increase. The effect of UV curing on the critical and sub-critical fracture toughness was also studied. The critical fracture toughness was measured at four different mode-mixes-- zero, 15°, 32°, and 42°. It was found that the critical fracture toughness

  18. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  19. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  20. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation.

    PubMed

    Xie, Laiqing; Cheng, Long; Xu, Guoxu; Zhang, Ji; Ji, Xiaoyan; Song, E

    2017-06-10

    Excessive Ultra violet (UV) radiation induces injuries to retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs), causing retinal degeneration. Cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates UV-induced cell death. In this study, we show that a novel Cyp-D inhibitor compound 19 efficiently protected RPEs and RGCs from UV radiation. Compound 19-mediated cytoprotection requires Cyp-D, as it failed to further protect RPEs/RGCs from UV when Cyp-D was silenced by targeted shRNAs. Compound 19 almost blocked UV-induced p53-Cyp-D mitochondrial association, mPTP opening and subsequent cytochrome C release. Further studies showed that compound 19 inhibited UV-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage. Together, compound 19 protects RPEs and RGCs from UV radiation, possibly via silencing Cyp-D-regulated intrinsic mitochondrial death pathway. Compound 19 could a lead compound for treating UV-associated retinal degeneration diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    PubMed

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  2. The influence of ultra-violet radiation on chicken hatching.

    PubMed

    Veterány, Ladislav; Hluchý, Svätoslav; Veterányová, Anna

    2004-01-01

    The influence of UV-B radiation on embryonic development of chickens Hampshire breed was investigated. The set eggs with the average weight of 60.0 +/- 0.5 g were divided into six groups. The chickens in the control group C were hatched in the darkness. The chicken embryos in experimental groups were, during their incubation, influenced by UV light: in E1 (1 h a day), in E2 (2h a day), in E3 (3 h a day), in E4 (4 h a day), and in E5 (5 h a day). After the experiment, we can state that UV radiation appealing on chickens embryos of shorter time (1-2 h) was reflected in decreasing embryonic mortality in experimental group E1 (1.27 +/- 0.14%), the embryonic development was accelerated and the weight of hatched chickens was increased in group E2 (492.43 +/- 5.02 h and 47.83 +/- 2.62 g, respectively). The negative influence of UV radiation was reflected while it is longer appealing on chickens embryos (for 3-5 h), mainly by increased embryonic mortality in groups E3 (10.27 +/- 1.65%), E4 (58.09 +/- 3.12%), and E5 (100.00 +/- 0.00%). The results obtained are highly significant (p<0.001) in comparison with a control group C, as well as, with the experimental groups E1 and E2.

  3. The Far Ultra-Violet Imager on the Icon Mission

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Frey, H. U.; Rider, K.; Chou, C.; Harris, S. E.; Siegmund, O. H. W.; England, S. L.; Wilkins, C.; Craig, W.; Immel, T. J.; Turin, P.; Darling, N.; Loicq, J.; Blain, P.; Syrstad, E.; Thompson, B.; Burt, R.; Champagne, J.; Sevilla, P.; Ellis, S.

    2017-10-01

    ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of O+ ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny-Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON

  4. Planetary nebulae with UVIT: Far ultra-violet halo around the Bow Tie nebula (NGC 40)

    NASA Astrophysics Data System (ADS)

    Kameswara Rao, N.; Sutaria, F.; Murthy, J.; Krishna, S.; Mohan, R.; Ray, A.

    2018-01-01

    Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high-speed wind from WC8 central star (CS) with the nebula. It shows strong C IV 1550 Å emission that cannot be explained by thermal processes alone. We present here the first map of this nebula in C IV emission using broad band filters on the Ultra-Violet Imaging Telescope (UVIT). Aim. We aim to map the hot C IV-emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions in order to study the shock interaction between the nebula and the ISM. We also aim to illustrate the potential of UVIT for nebular studies. Methods: We carry out a morphological study of images of the nebula obtained at an angular resolution of about 1.3″ in four UVIT filter bands that include C IV 1550 Å and [C II] 2326 Å lines as well as UV continuum. We also make comparisons with X-ray, optical, and IR images from the literature. Results: The [C II] 2326 Å images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extent to that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint far UV (FUV) halo in an FUV filter with λeff of 1608 Å. The UV halo is not present in any other UV filter. The FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, the FUV halo trails predominantly towards the south-east side of the nebular core, opposite to the CS's proper motion direction. Conclusions: Morphological similarity of C IV 1550 Å and X-ray emission in the core suggests that it results mostly from the interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the extensive existence of H2 molecules in the regions even beyond the optical and IR halos. Thus UV studies are important to estimate the amount of H2, which is

  5. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

    PubMed Central

    Cao, Guo-fan; Cao, Cong; Jiang, Qin

    2016-01-01

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753

  6. Climatology of Ultra Violet(UV) Irradiance at the Surface of the Earth as Measured by the Belgian UV Radiation Monitoring Network

    NASA Astrophysics Data System (ADS)

    Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric

    2016-08-01

    In this paper we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiations -UVB, UVA and total solar irradiation (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index, together with the variation of irradiations during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.

  7. Ultra-wide band electromagnetic radiation does not affect UV-induced recombination and mutagenesis in yeast.

    PubMed

    Pakhomova, O N; Belt, M L; Mathur, S P; Lee, J C; Akyel, Y

    1998-01-01

    Cell samples of the yeast Saccharomyces cerevisiae were exposed to 100 J/m2 of 254 nm ultraviolet (UV) radiation followed by a 30 min treatment with ultra-wide band (UWB) electromagnetic pulses. The UWB pulses (101-104 kV/m, 1.0 ns width, 165 ps rise time) were applied at the repetition rates of 0 Hz (sham), 16 Hz, or 600 Hz. The effect of exposures was evaluated from the colony-forming ability of the cells on complete and selective media and the number of aberrant colonies. The experiments established no effect of UWB exposure on the UV-induced reciprocal and non-reciprocal recombination, mutagenesis, or cell survival.

  8. CHARACTERIZATION OF RELATIVE SENSITIVITY OF AMPHIBIANS TO ULTRA VIOLET RADIATION

    EPA Science Inventory

    Different studies have demonstrated that solar ultraviolet (UV) radiation can adversely affect survival and development of embryonic and larval amphibians. However, because of among-laboratory variations in exposure profiles (artificial vs. natural sunlight; natural sunlight at d...

  9. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity ofmore » an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.« less

  10. Measuring SO2 ship emissions with an ultra-violet imaging camera

    NASA Astrophysics Data System (ADS)

    Prata, A. J.

    2013-11-01

    Over the last few years fast-sampling ultra-violet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical fluxes ~1-10 kg s-1) and natural sources (e.g. volcanoes; typical fluxes ~10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and fluxes. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and fluxes of SO2 (typical fluxes ~0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the fluxes and path concentrations can be retrieved in real-time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and fluxes determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (>10 Hz) from a single camera. Typical accuracies ranged from 10-30% in path concentration and 10-40% in flux estimation. Despite the ease of use and ability to determine SO2 fluxes from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes.

  11. Mask fabrication and its applications to extreme ultra-violet diffractive optics

    NASA Astrophysics Data System (ADS)

    Cheng, Yang-Chun

    Short-wavelength radiation around 13nm of wavelength (Extreme Ultra-Violet, EUV) is being considered for patterning microcircuits, and other electronic chips with dimensions in the nanometer range. Interferometric Lithography (IL) uses two beams of radiation to form high-resolution interference fringes, as small as half the wavelength of the radiation used. As a preliminary step toward manufacturing technology, IL can be used to study the imaging properties of materials in a wide spectral range and at nanoscale dimensions. A simple implementation of IL uses two transmission diffraction gratings to form the interference pattern. More complex interference patterns can be created by using different types of transmission gratings. In this thesis, I describe the development of a EUV lithography system that uses diffractive optical elements (DOEs), from simple gratings to holographic structures. The exposure system is setup on a EUV undulator beamline at the Synchrotron Radiation Center, in the Center for NanoTechnology clean room. The setup of the EUV exposure system is relatively simple, while the design and fabrication of the DOE "mask" is complex, and relies on advanced nanofabrication techniques. The EUV interferometric lithography provides reliable EUV exposures of line/space patterns and is ideal for the development of EUV resist technology. In this thesis I explore the fabrication of these DOE for the EUV range, and discuss the processes I have developed for the fabrication of ultra-thin membranes. In addition, I discuss EUV holographic lithography and generalized Talbot imaging techniques to extend the capability of our EUV-IL system to pattern arbitrary shapes, using more coherent sources than the undulator. In a series of experiments, we have demonstrated the use of a soft X-ray (EUV) laser as effective source for EUV lithography. EUV-IL, as implemented at CNTech, is being used by several companies and research organizations to characterize photoresist

  12. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  13. Simultaneous Determination of Six Benzodiazepines in Spiked Soft Drinks by High Performance Liquid Chromatography with Ultra Violet Detection (HPLC-UV)

    PubMed Central

    Soltaninejad, Kambiz; Karimi, Mohammad; Nateghi, Alireza; Daraei, Bahram

    2016-01-01

    A high performance liquid chromatographic method with ultra violet detection for simultaneous analysis of six benzodiazepines (BZDs) (chlordiazepoxide, diazepam, clonazepam, midazolam , flurazpam, and lorazepam) has been developed for forensic screening of adulterated non-alcoholic drinks. Samples were analyzed after a simple procedure for preparation using pH adjustment and filtering. Isocratic elution on a C18 column (250mm × 4.6 mm, 5μm) in the temperature 45ºC with a mobile phase consisting of 15mM phosphate buffer: methanol (50:50 v/v) at a flow rate 1.4 mL/min has been done. The column eluent was monitored with a UV detector at 245 nm. This allowed a rapid detection and identification as well as quantization of the eluting peaks. Calibration curves for all drugs in the range of 0.5- 10 µg/ mL that all the linear regression and has more than 0.996. Recovery rates for the BZDs were in the range 93.7- 108.7%. The limits of detection were calculated between 0.01- 0.02 µg/ mL. Also, the limits of quantification were 0.03- 0.05 µg/mL. Within-day and between -day coefficient of variation for all BZDs at all concentrations in the range of 0.45 - 7.69 % was calculated. The procedure can provide a simple, sensitive and fast method for the screening of six BZDs in adulterated soft drinks in forensic analysis. PMID:27642316

  14. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins.

    PubMed

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-16

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O 3 ) microengineering technique. The UV/O 3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa -1 (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O 3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  15. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins

    NASA Astrophysics Data System (ADS)

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-01

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ˜ -0.101 ± 0.005 kPa-1 (<1 kPa), a fast response/relaxation speed of ˜10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  16. Rapid Quantitative Analysis of Naringenin in the Fruit Bodies of Inonotus vaninii by Two-phase Acid Hydrolysis Followed by Reversed Phase-high Performance Liquid Chromatography-ultra Violet.

    PubMed

    Guohua, Xia; Pan, Ruirong; Bao, Rui; Ge, Yanru; Zhou, Cunshan; Shen, Yuping

    2017-01-01

    Sanghuang is one of mystical traditional Chinese medicines recorded earliest 2000 years ago, that included various fungi of Inonotus genus and was well-known for antitumor effect in modern medicine. Inonotus vaninii is grown in natural forest of Northeastern China merely and used as Sanghuang commercially, but it has no quality control specification until now. This study was to establish a rapid method of two-phase acid hydrolysis followed by reversed phase-high performance liquid chromatography-ultra violet (RP-HPLC-UV) to quantify naringenin in the fruit body of I. vaninii . Sample solution was prepared by pretreatment of raw material in two-phase acid hydrolysis and the hydrolysis technology was optimized. After reconstitution, analysis was performed using RP-HPLC-UV. The method validation was investigated and the naringenin content of sample and comparison were determined. The naringenin was obtained by two-phase acid hydrolysis method, namely, 10.0 g of raw material was hydrolyzed in 200 mL of 1% sulfuric acid aqueous solution (v/v) and 400 mL of chloroform in oil bath at 110°C for 2 h. Good linearity ( r = 0.9992) was achieved between concentration of analyte and peak area. The relative standard deviation (RSD) of precision was 2.47% and the RSD of naringenin contents for repeatability was 3.13%. The accuracy was supported with recoveries at 96.37%, 97.30%, and 99.31%. The sample solution prepared using the proposed method contained higher content of naringenin than conventional method and was stable for 8 h. Due to the high efficiency of sample preparation and high reliability of the HPLC method, it is feasible to use this method for routine analysis of naringenin in the fungus. A convenient two-phase acid hydrolysis was employed to produce naringenin from raw material, and then an efficient and reliable reversed phase-high performance liquid chromatography-ultra violet method was established to monitor naringenin in the fruit bodies of Inonotus vaninii

  17. EXPERIMENT - APOLLO 16 (UV)

    NASA Image and Video Library

    1972-06-06

    S72-40820 (21 April 1972) --- A color enhancement of a photograph taken on ultra-violet light showing the spectrum of the upper atmosphere of Earth and geocorona. The bright horizontal line is far ultra-violet emission (1216 angstrom) of hydrogen extending 10 degrees (40,000 miles) either side of Earth. The knobby vertical line shows several ultra-violet emissions from Earth's sunlit atmosphere, each "lump" being produced by one type gas (oxygen, nitrogen, helium, etc.). The spectral dispersion is about 10 angstrom per millimeter on this enlargement. The UV camera/spectrograph was operated on the lunar surface by astronaut John W. Young, commander of the Apollo 16 lunar landing mission. It was designed and built at the Naval Research Laboratory, Washington, D.C. While astronauts Young and Charles M. Duke Jr., lunar module pilot, descended in the Lunar Module (LM) "Orion" to explore the Descartes highlands region of the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  18. Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products.

    PubMed

    Freitas, Ana; Moldão-Martins, Margarida; Costa, Helena S; Albuquerque, Tânia G; Valente, Ana; Sanches-Silva, Ana

    2015-01-01

    The industrial processing of pineapple generates a high quantity of by-products. To reduce the environmental impact of these by-products and the inherent cost of their treatment, it is important to characterise and valorise these products, converting them into high added value products. Ultra-violet radiation is one of the main sustainable sanitation techniques for fruits. Since this radiation can induce plant stress which can promote the biosynthesis of bioactive compounds, it is important to evaluate its effect in fruits. The amounts of vitamins (C and E) and carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, neoxanthin, violaxanthin and zeaxanthin) in pineapple by-products (core and rind) were analysed before and after treatment with UV radiation. All treated and untreated pineapple by-products contained β-carotene as the main carotenoid (rind, 2537-3225 µg; and core, 960-994 µg 100 g(-1) DW). Pineapple rind also contained lutein (288-297 µg 100 g(-1) DW) and α-carotene (89-126 µg 100 g(-1) DW). The results provide evidence of the potential of pineapple by-products as a source of bioactive compounds with antioxidant activity, which can be used by pharmaceutical, cosmetics and food industries. In addition, UV-C was shown to be a treatment that can add nutritional value to pineapple by-products. © 2014 Society of Chemical Industry.

  19. NASA Ames UV-LED Poster Overview

    NASA Technical Reports Server (NTRS)

    Jaroux, Belgacem Amar

    2015-01-01

    UV-LED is a small satellite technology demonstration payload being flown on the Saudisat-4 spacecraft that is demonstrating non-contacting charge control of an isolated or floating mass using new solid-state ultra-violet light emitting diodes (UV-LEDs). Integrated to the rest of the spacecraft and launched on a Dnepr in June 19, 2014, the project is a collaboration between the NASA Ames Research Center (ARC), Stanford University, and King Abdulaziz City for Science and Technology (KACST). Beginning with its commissioning in December, 2015, the data collected by UV-LED have validated a novel method of charge control that will improve the performance of drag-free spacecraft allowing for concurrent science collection during charge management operations as well as reduce the mass, power and volume required while increasing lifetime and reliability of a charge management subsystem. UV-LED continues to operate, exploring new concepts in non-contacting charge control and collecting data crucial to understanding the lifetime of ultra-violet light emitting diodes in space. These improvements are crucial to the success of ground breaking missions such as LISA and BBO, and demonstrates the ability of low cost small satellite missions to provide technological advances that far exceed mission costs.

  20. Development of an Ultra-Violet Digital Camera for Volcanic Sulfur Dioxide Imaging

    NASA Astrophysics Data System (ADS)

    Bluth, G. J.; Shannon, J. M.; Watson, I. M.; Prata, F. J.; Realmuto, V. J.

    2006-12-01

    In an effort to improve monitoring of passive volcano degassing, we have constructed and tested a digital camera for quantifying the sulfur dioxide (SO2) content of volcanic plumes. The camera utilizes a bandpass filter to collect photons in the ultra-violet (UV) region where SO2 selectively absorbs UV light. SO2 is quantified by imaging calibration cells of known SO2 concentrations. Images of volcanic SO2 plumes were collected at four active volcanoes with persistent passive degassing: Villarrica, located in Chile, and Santiaguito, Fuego, and Pacaya, located in Guatemala. Images were collected from distances ranging between 4 and 28 km away, with crisp detection up to approximately 16 km. Camera set-up time in the field ranges from 5-10 minutes and images can be recorded in as rapidly as 10-second intervals. Variable in-plume concentrations can be observed and accurate plume speeds (or rise rates) can readily be determined by tracing individual portions of the plume within sequential images. Initial fluxes computed from camera images require a correction for the effects of environmental light scattered into the field of view. At Fuego volcano, simultaneous measurements of corrected SO2 fluxes with the camera and a Correlation Spectrometer (COSPEC) agreed within 25 percent. Experiments at the other sites were equally encouraging, and demonstrated the camera's ability to detect SO2 under demanding meteorological conditions. This early work has shown great success in imaging SO2 plumes and offers promise for volcano monitoring due to its rapid deployment and data processing capabilities, relatively low cost, and improved interpretation afforded by synoptic plume coverage from a range of distances.

  1. Air pollution effects field research facility: 3. UV-B exposure and monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEvers, J.A.; Hileman, M.S.; Edwards, N.T.

    1993-03-01

    The Oak Ridge National Laboratory Outdoor UltraViolet-B (UV-B) Exposure and Monitoring Facility was developed in 1980 to provide well-controlled and -monitored exposure of specific terrestrial plant. species to elevated levels of ultraviolet (UV) radiation. The introduction of various anthropogenic agents into the earth`s stratosphere has resulted in a decrease in the volume of ozone (O{sub 3}) present here. The decrease in O{sub 3} has resulted in an increase in the level of UV radiation reaching thee earth`s surface. Of particular interest is the level of UV-B, because it has the most detrimental effect on living tissue. A thorough understanding ofmore » the effects of elevated levels of UV-B on living tissue is critical to the formulation of economic policy regarding production of such agents and alternative strategies. The UV region of interest is referred to as UV-B and corresponds to radiation with a wavelength of 290 to 320 nm. Design, operation, and performance of the automated generation, exposure, and monitoring system are described. The system has proved to be reliable and easy to maintain and operate, and it provides significant flexibility in exposure programs. The system software is described, and detailed listings are provided. The ability to expose plants to controlled set point percentages of UV-B above the ambient level was developed.« less

  2. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    PubMed Central

    Nikafshar, Saeid; Zabihi, Omid; Ahmadi, Mojtaba; Mirmohseni, Abdolreza; Taseidifar, Mojtaba; Naebe, Minoo

    2017-01-01

    Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV) damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR) analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM) imaging. Additionally, the glass transition temperatures (Tg) before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light. PMID:28772538

  3. Integrated Physiological, Proteomic, and Metabolomic Analysis of Ultra Violet (UV) Stress Responses and Adaptation Mechanisms in Pinus radiata*

    PubMed Central

    Pascual, Jesús; Cañal, María Jesús; Escandón, Mónica; Meijón, Mónica; Weckwerth, Wolfram

    2017-01-01

    Globally expected changes in environmental conditions, especially the increase of UV irradiation, necessitate extending our knowledge of the mechanisms mediating tree species adaptation to this stress. This is crucial for designing new strategies to maintain future forest productivity. Studies focused on environmentally realistic dosages of UV irradiation in forest species are scarce. Pinus spp. are commercially relevant trees and not much is known about their adaptation to UV. In this work, UV treatment and recovery of Pinus radiata plants with dosages mimicking future scenarios, based on current models of UV radiation, were performed in a time-dependent manner. The combined metabolome and proteome analysis were complemented with measurements of + physiological parameters and gene expression. Sparse PLS analysis revealed complex molecular interaction networks of molecular and physiological data. Early responses prevented phototoxicity by reducing photosystem activity and the electron transfer chain together with the accumulation of photoprotectors and photorespiration. Apart from the reduction in photosynthesis as consequence of the direct UV damage on the photosystems, the primary metabolism was rearranged to deal with the oxidative stress while minimizing ROS production. New protein kinases and proteases related to signaling, coordination, and regulation of UV stress responses were revealed. All these processes demonstrate a complex molecular interaction network extending the current knowledge on UV-stress adaptation in pine. PMID:28096192

  4. Depth-resolved ultra-violet spectroscopic photo current-voltage measurements for the analysis of AlGaN/GaN high electron mobility transistor epilayer deposited on Si

    NASA Astrophysics Data System (ADS)

    Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo

    2014-10-01

    We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.

  5. UV Lidar Receiver Analysis for Tropospheric Sensing of Ozone

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; DeYoung, Russell J.

    2013-01-01

    A simulation of a ground based Ultra-Violet Differential Absorption Lidar (UV-DIAL) receiver system was performed under realistic daytime conditions to understand how range and lidar performance can be improved for a given UV pulse laser energy. Calculations were also performed for an aerosol channel transmitting at 3 W. The lidar receiver simulation studies were optimized for the purpose of tropospheric ozone measurements. The transmitted lidar UV measurements were from 285 to 295 nm and the aerosol channel was 527-nm. The calculations are based on atmospheric transmission given by the HITRAN database and the Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data. The aerosol attenuation is estimated using both the BACKSCAT 4.0 code as well as data collected during the CALIPSO mission. The lidar performance is estimated for both diffuseirradiance free cases corresponding to nighttime operation as well as the daytime diffuse scattered radiation component based on previously reported experimental data. This analysis presets calculations of the UV-DIAL receiver ozone and aerosol measurement range as a function of sky irradiance, filter bandwidth and laser transmitted UV and 527-nm energy

  6. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOEpatents

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  7. Reaction of photochemical resists used in screen printing under the influence of digitally modulated ultra violet light

    NASA Astrophysics Data System (ADS)

    Gmuender, T.

    2017-02-01

    Different chemical photo-reactive emulsions are used in screen printing for stencil production. Depending on the bandwidth, optical power and depth of field from the optical system, the reaction / exposure speed has a diverse value. In this paper, the emulsions get categorized and validated in a first step. After that a mathematical model gets developed and adapted due to heuristic experience to estimate the exposure speed under the influence of digitally modulated ultra violet (UV) light. The main intention is to use the technical specifications (intended wavelength, exposure time, distance to the stencil, electrical power, stencil configuration) in the emulsion data sheet primary written down with an uncertainty factor for the end user operating with large projector arc lamps and photo films. These five parameters are the inputs for a mathematical formula which gives as an output the exposure speed for the Computer to Screen (CTS) machine calculated for each emulsion / stencil setup. The importance of this work relies in the possibility to rate with just a few boundaries the performance and capacity of an exposure system used in screen printing instead of processing a long test series for each emulsion / stencil configuration.

  8. Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV

    DTIC Science & Technology

    2015-11-20

    AFRL-AFOSR-VA-TR-2015-0388 COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV R Jason Jones ARIZONA UNIV BOARD OF REGENTS TUCSON Final...TITLE AND SUBTITLE COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0563 5c. PROGRAM...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Narrow UV transitions in atomic Hg can be utilized

  9. Studies on the performance of TiO{sub 2} thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malliga, P.; Selvi, B. Karunai; Pandiarajan, J.

    Thin films of TiO{sub 2} were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450°C and 550°C for 1 hour in muffle furnace. The annealed films were characterized by X – Ray diffraction (XRD), UV – Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plantmore » species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO{sub 2}) is a wide band gap semiconductor and efficient light harvester. TiO{sub 2} has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO{sub 2} thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO{sub 2} thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants.« less

  10. Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling

    PubMed Central

    Xu, Qiu-yun; Zhang, Jing; Lin, Meng-ting; Tu, Ying; He, Li; Bi, Zhi-gang; Cheng, Bo

    2016-01-01

    Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) agonist, against UV-induced skin cell damages. We show that gremlin activated VEGFR2 and significantly inhibited UV-induced death and apoptosis of skin keratinocytes and fibroblasts. Pharmacological inhibition or shRNA-mediated knockdown of VEGFR2 almost abolished gremlin-mediated cytoprotection against UV in the skin cells. Further studies showed that gremlin activated VEGFR2 downstream NF-E2-related factor 2 (Nrf2) signaling, which appeared required for subsequent skin cell protection. Nrf2 shRNA knockdown or S40T dominant negative mutation largely inhibited gremlin-mediated skin cell protection against UV. At last, we show that gremlin dramatically inhibited UV-induced ROS production and DNA SSB formation in skin keratinocytes and fibroblasts. We conclude that gremlin protects skin cells from UV damages via activating VEGFR2-Nrf2 signaling. Gremlin could be further tested as a novel anti-UV skin protectant. PMID:27713170

  11. Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling.

    PubMed

    Ji, Chao; Huang, Jin-Wen; Xu, Qiu-Yun; Zhang, Jing; Lin, Meng-Ting; Tu, Ying; He, Li; Bi, Zhi-Gang; Cheng, Bo

    2016-12-20

    Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) agonist, against UV-induced skin cell damages. We show that gremlin activated VEGFR2 and significantly inhibited UV-induced death and apoptosis of skin keratinocytes and fibroblasts. Pharmacological inhibition or shRNA-mediated knockdown of VEGFR2 almost abolished gremlin-mediated cytoprotection against UV in the skin cells. Further studies showed that gremlin activated VEGFR2 downstream NF-E2-related factor 2 (Nrf2) signaling, which appeared required for subsequent skin cell protection. Nrf2 shRNA knockdown or S40T dominant negative mutation largely inhibited gremlin-mediated skin cell protection against UV. At last, we show that gremlin dramatically inhibited UV-induced ROS production and DNA SSB formation in skin keratinocytes and fibroblasts. We conclude that gremlin protects skin cells from UV damages via activating VEGFR2-Nrf2 signaling. Gremlin could be further tested as a novel anti-UV skin protectant.

  12. Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications

    PubMed Central

    Pimentel, Ana; Samouco, Ana; Araújo, Andreia; Martins, Rodrigo; Fortunato, Elvira

    2017-01-01

    In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV)/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces. PMID:29140304

  13. Effect of UV-C Radiation, Ultra-Sonication Electromagnetic Field and Microwaves on Changes in Polyphenolic Compounds in Chokeberry (Aronia melanocarpa).

    PubMed

    Cebulak, Tomasz; Oszmiański, Jan; Kapusta, Ireneusz; Lachowicz, Sabina

    2017-07-12

    Chokeberry fruits are highly valued for their high content of polyphenolic compounds. The use of such abiotic stress factors as UV-C radiation, an electromagnetic field, microwave radiation, and ultrasound, at different operation times, caused differentiation in the contents of anthocyanins, phenolic acids, flavonols, and flavan-3-ols. Samples were analyzed for contents of polyphenolics with ultra-performance liquid chromatography and photodiode detector-quadrupole/time-of-flight mass spectrometry (UPLC-PDA-MS/MS). The analysis showed that after exposure to abiotic stress factors, the concentration of anthocyanins ranged from 3587 to 6316 mg/100 g dry matter (dm) that constituted, on average, 67.6% of all identified polyphenolic compounds. The second investigated group included phenolic acids with the contents ranging between 1480 and 2444 mg/100 g dm (26.5%); then flavonols within the range of 133 to 243 mg/100 g dm (3.7%), and finally flavan-3-ols fluctuated between 191 and 369 mg/100 g dm (2.2%). The use of abiotic stress factors such as UV-C radiation, microwaves and ultrasound field, in most cases contributed to an increase in the content of the particular polyphenolic compounds in black chokeberry. Under the influence of these factors, increases were observed: in anthocyanin content, of 22%; in phenolic acids, of 20%; in flavonols, of 43%; and in flavan-3-ols, of 30%. Only the use of the electromagnetic field caused a decrease in the content of the examined polyphenolic compounds.

  14. Results from the IMP-J violet solar cell experiment and violet cell balloon flights

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1976-01-01

    The IMP-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.

  15. Results from the IMP-J violet solar cell experiment and violet cell balloon flights

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1976-01-01

    The Interplanetary Monitoring Platform-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard-particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.

  16. Warm dark matter via ultra-violet freeze-in: reheating temperature and non-thermal distribution for fermionic Higgs portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, John

    2016-08-17

    Warm dark matter (WDM) of order keV mass may be able to resolve the disagreement between structure formation in cold dark matter simulations and observations. The detailed properties of WDM will depend upon its energy distribution, in particular how it deviates from the thermal distribution usually assumed in WDM simulations. Here we focus on WDM production via the Ultra-Violet (UV) freeze-in mechanism, for the case of fermionic Higgs portal dark matter ψ produced via the portal interaction ψ-barψH{sup †}H/Λ. We introduce a new method to simplify the computation of the non-thermal energy distribution of dark matter from freeze-in. We showmore » that the non-thermal energy distribution from UV freeze-in is hotter than the corresponding thermal distribution and has the form of a Bose-Einstein distribution with a non-thermal normalization. The resulting range of dark matter fermion mass consistent with observations is 5–7 keV. The reheating temperature must satisfy T{sub R}≳120 GeV in order to account for the observed dark matter density when m{sub ψ}≈5 keV, where the lower bound on T{sub R} corresponds to the limit where the fermion mass is entirely due to electroweak symmetry breaking via the portal interaction. The corresponding bound on the interaction scale is Λ≳6.0×10{sup 9} GeV.« less

  17. Up-conversion media on basis single crystals BaY2F8 for UV and VUV solid state lasers

    NASA Astrophysics Data System (ADS)

    Pushkar, A. A.; Ouvarova, T. V.; Molchanov, V. N.

    2007-04-01

    Crystal BaY IIF 8 represents the big interest as the perspective active media for lasers ultra-violet (UV) and vacuumultra- violet (VUV) regions. For the decision of problems with solarization this media and a choice of sources pump it is offered to use up-conversion mechanisms pump with activators from rare-earth elements (RE). We have developed technology of grown of oriented monocrystals BaY IIF 8, have defined influence of orientation on growth rate and quality ofthe received monocrystals.

  18. Directional Degradation of Spectralon Diffuser Under Ionizing Radiation for Calibration of Space-Based Sensors

    NASA Technical Reports Server (NTRS)

    Georgiev, G. T.; Butler, J. J.; Kowalewski, M. G.; Ding, L.

    2012-01-01

    Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensing

  19. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    PubMed

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  20. 3D-printed, sugar cube-size microplasma on a hybrid chip used as a spectral lamp to characterize UV-Vis transmission characteristics of polycarbonate chips for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Devathasan, D.; Trebych, K.; Karanassios, Vassili

    2013-05-01

    A 3d-printed, solar-powered, battery-operated, atmospheric-pressure, self-igniting microplasma the size of a sugar-cube has been used as light source to document the Ultra Violet (UV) and visible transmission characteristics of differentthickness polycarbonate chips that are often used for microfluidic applications. The hybrid microplasma chip was fitted with a quartz plate because quartz is transparent to UV.

  1. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  2. Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs

    DOE PAGES

    Zhang, Yuewei; Allerman, Andrew A.; Krishnamoorthy, Sriram; ...

    2016-04-11

    The efficiency of ultra violet LEDs has been critically limited by the absorption losses in p-type and metal layers. In this work, surface roughening based light extraction structures are combined with tunneling based p-contacts to realize highly efficient top-side light extraction efficiency in UV LEDs. Surface roughening of the top n-type AlGaN contact layer is demonstrated using self-assembled Ni nano-clusters as etch mask. The top surface roughened LEDs were found to enhance external quantum efficiency by over 40% for UV LEDs with a peak emission wavelength of 326 nm. The method described here can enable highly efficient UV LEDs withoutmore » the need for complex manufacturing methods such as flip chip bonding.« less

  3. EXPERIMENT - APOLLO XVI (UV)

    NASA Image and Video Library

    1972-06-06

    S72-40818 (21 April 1972) --- A color enhancement of an ultra-violet photograph of the geocorona, a halo of low density hydrogen around Earth. Sunlight is shining from the left, and the geocorona is brighter on that side. The UV camera was operated by astronaut John W. Young on the Apollo 16 lunar landing mission. It was designed and built at the Naval Research Laboratory, Washington, D.C. While astronauts Young, commander, and Charles M. Duke Jr., lunar module pilot, descended in the Lunar Module (LM) "Orion" to explore the Descartes highlands region of the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  4. Improving UV Resistance of High Strength Fibers Used In Large Scientific Balloons

    NASA Technical Reports Server (NTRS)

    Said, M.; Gupta, A.; Seyam, A.; Mock, G.; Theyson, T.

    2004-01-01

    For the last three decades, NASA has been involved in the development of giant balloons that are capable of lifting heavy payloads of equipment (such as large telescopes and scientific instruments) to the upper atmosphere. While the use of such balloons has led to scientific discoveries, the demand for competitive science payloads and observational programs continues to rise. The NASA Balloon Program Office has entered a new phase of research to develop an Ultra Long Duration Balloon (ULDB) that will lift payloads of up to 3,600 kg to altitudes of up to 40 km. The flight duration is targeted to ranges between 30 to 100 days. Attaining these target durations requires the development of a super-pressure balloon design. The use of textile structures have already been established in these missions in the form of high strength tendons essential for the super pressure pumpkin design. Unfortunately, high strength fibers lose significant strength upon exposure to Ultra Violet (UV) radiation. Such UV degradation poses a serious challenge for the development of the ULDB. To improve the mission performance of the ULDB, new methods for protecting the tendons from the environmental effects need to be developed. NASA and NC State University College of Textiles are undertaking a research program to address these issues. Four tracks have been identified to prepare finishes that are believed to enhance the resistance of high strength fibers to UV. These tracks are: (a) self-polymerizing, (b) diffusion application, (c) polymer-filled with 30-40% UV absorber, and (d) combination of dyeing plus surface application. Four high performance fibers have been selected for this research investigation. These are Vectran (trademark), Spectra (trademark), Kevlar (trademark) and, PBO (Zylon (trademark)). This work will address the current progress of evaluating the performance of the UV finishes. This will be accomplished by comparing the tensile properties (strength, breaking elongation

  5. Solar Extreme UV radiation and quark nugget dark matter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of mattermore » which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.« less

  6. Solar Extreme UV radiation and quark nugget dark matter model

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  7. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.

    PubMed

    van Hazel, Ilke; Sabouhanian, Amir; Day, Lainy; Endler, John A; Chang, Belinda S W

    2013-11-13

    One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type

  8. UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION

    EPA Science Inventory

    Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...

  9. Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus

    NASA Astrophysics Data System (ADS)

    Hosseini, Farshad; Rasuli, Reza; Jafarian, Vahab

    2018-04-01

    We present the antibacterial and photo-catalytic activity of immobilized WO3 nanoparticles on graphene oxide sheets. WO3 nanoparticles were immobilized on graphene oxide using the arc discharge method in arc currents of 5, 20, 40 and 60 A. Tauc plots of the UV-visible spectra show that the band gap of the prepared samples decreases (to ~2.7 eV) with respect to the WO3 nanoparticles. Photo-catalytic activity was examined by the degradation of rhodamine B under ultra-violet irradiation and the results show that the photo-catalytic activity of WO3 nanoparticles is increased by immobilizing them on graphene oxide sheets. In addition, the photo-degradation yield of the samples prepared by the 5 A arc current is 84% in 120 min, which is more than that of the other samples. The antibacterial activity of the prepared samples was studied against Bacillus pumilus (B. pumilus) bacteria, showing high resistance to ultra-violet exposure. Our results show that the bare and immobilized WO3 nanoparticles become more active under UV irradiation and their antibacterial properties are comparable with Ag nanoparticles. Besides this, the results show that although the photo-catalytic activity of the post-annealed samples at 500 °C is less than the as-prepared samples, it is, however, more active against B. pumilus bacteria under UV irradiation.

  10. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    PubMed

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    PubMed

    Rechner, Ole; Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants.

  12. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    PubMed Central

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  13. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    NASA Astrophysics Data System (ADS)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  14. Modeling the survivability of brucella to exposure of Ultraviolet radiation and temperature

    NASA Astrophysics Data System (ADS)

    Howe, R.

    Accumulated summation of daily Ultra Violet-B (UV-B = 290? to 320 ? ) data? from The USDA Ultraviolet Radiation Monitoring Program show good correlation (R^2 = 77%) with daily temperature data during the five month period from February through June, 1998. Exposure of disease organisms, such as brucella to the effects of accumulated UV-B radiation, can be modeled for a 5 month period from February through June, 1998. Estimates of a lethal dosage for brucell of UV-B in the environment is dependent on minimum/maximum temperature and Solar Zenith Angle for the time period. The accumulated increase in temperature over this period also effects the decomposition of an aborted fetus containing brucella. Decomposition begins at some minimum daily temperature at 27 to 30 degrees C and peaks at 39 to 40C. It is useful to view the summation of temperature as a threshold for other bacteria growth, so that accumulated temperature greater than some value causes decomposition through competition with other bacteria and brucella die from the accumulated effects of UV-B, temperature and organism competition. Results of a study (Cook 1998) to determine survivability of brucellosis in the environment through exposure of aborted bovine fetuses show no one cause can be attributed to death of the disease agent. The combination of daily increase in temperature and accumulated UV-B radiation reveal an inverse correlation to survivability data and can be modeled as an indicator of brucella survivability in the environment in arid regions.

  15. UV absorbers for cellulosic apparels: A computational and experimental study

    NASA Astrophysics Data System (ADS)

    Sahar, Anum; Ali, Shaukat; Hussain, Tanveer; Irfan, Muhammad; Eliasson, Bertil; Iqbal, Javed

    2018-01-01

    Two triazine based Ultra Violet (UV) absorbers Sulfuric acid mono-(2-{4-[4-chloro-6-(4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino-phenylamino)-[1,3,5]triazin-2-ylamino]-benzenesulfonyl}-ethyl) ester (1a) and 4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino}-2-[4-chloro-6-(2-sulfooxy-ethanesulfonyl)-[1,3,5]triazin-2-ylamino]-benzenesulfonic acid (2a) with different substituents were designed computationally. The influence of different substituents on the electrochemical properties and UV spectra of the absorbers was investigated. The presence of electron deficient unit in 1a to the molecular core significantly reduces the LUMO levels and energy gap. The designed absorbers were synthesized via condensation reaction and characterized by UV-Vis, FT-IR, MS studies. The performance of synthesized compounds as UV absorbers and their fastness properties were assessed by finishing the cotton fabric through exhaust method at different concentration and results appeared in good range.

  16. Advanced hair damage model from ultra-violet radiation in the presence of copper.

    PubMed

    Marsh, J M; Davis, M G; Flagler, M J; Sun, Y; Chaudhary, T; Mamak, M; McComb, D W; Williams, R E A; Greis, K D; Rubio, L; Coderch, L

    2015-10-01

    Damage to hair from UV exposure has been well reported in the literature and is known to be a highly complex process involving initiation via absorption of UV light followed by formation and propagation of reactive oxygen species (ROS). The objective of this work was to understand these mechanisms, explain the role of copper in accelerating the formation of ROS and identify strategies to reduce the hair damage caused by these reactive species. The location of copper in hair was measured by Transmission electron microscopy-(TEM) X-ray energy dispersive spectroscopy (XEDS) and levels measured by ICP-OES. Protein changes were measured as total protein loss via the Lowry assay, and MALDI ToF was used to identify the biomarker protein fragments. TBARS assay was used to measure lipid peroxide formation. Sensory methods and dry combing friction were used to measure hair damage due to copper and UV exposure and to demonstrate the efficacy of N,N' ethylenediamine disuccinic acid (EDDS) and histidine chelants to reduce this damage. In this work, a biomarker protein fragment formed during UV exposure is identified using mass spectrometry. This fragment originates from the calcium-binding protein S100A3. Also shown is the accelerated formation of this peptide fragment in hair containing low levels of copper absorbed from hair during washing with tap water containing copper ions. Transmission electron microscopy (TEM) X-ray energy dispersive spectroscopy (XEDS) studies indicate copper is located in the sulphur-poor endo-cuticle region, a region where the S100A3 protein is concentrated. A mechanism for formation of this peptide fragment is proposed in addition to the possible role of lipids in UV oxidation. A shampoo and conditioner containing chelants (EDDS in shampoo and histidine in conditioner) is shown to reduce copper uptake from tap water and reduce protein loss and formation of S100A3 protein fragment. In addition, the long-term consequences of UV oxidation and

  17. UV-B Radiation Contributes to Amphibian Population Declines

    NASA Astrophysics Data System (ADS)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  18. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes

    NASA Astrophysics Data System (ADS)

    Blumthaler, M.; Ambach, W.; Rehwald, W.

    1992-03-01

    Daily totals of UV-A and UV-B radiation fluxes and global radiation were measured since 1981 at Jungfraujoch (3576 m) a.s.l.) and in Innsbruck (577 m a.s.l.) in their seasonal course. The altitude effect of annual totals yields 19%/1000 m (UV-B), 11%/1000 m (UV-A) and 9%/1000 m (global radiation) with reference to Innsbruck station. The ratio of the daily totals of UV-B/global radiation shows a significant seasonal course with the maximum in summer, whereas the ratio of the daily totals of UV-A/global radiation shows no significant seasonal variation. The biological effective doses of erythema reaction, delayed tanning and immediate tanning by UV-A and UV-B radiant exposure are reported in the seasonal course at Jungfraujoch and in Innsbruck.

  19. A Hot Companion to a Blue Straggler in NGC 188 as Revealed by the Ultra-Violet Imaging Telescope (UVIT) on ASTROSAT

    NASA Astrophysics Data System (ADS)

    Subramaniam, Annapurni; Sindhu, N.; Tandon, S. N.; Kameswara Rao, N.; Postma, J.; Côté, Patrick; Hutchings, J. B.; Ghosh, S. K.; George, K.; Girish, V.; Mohan, R.; Murthy, J.; Sankarasubramanian, K.; Stalin, C. S.; Sutaria, F.; Mondal, C.; Sahu, S.

    2016-12-01

    We present early results from the Ultra-Violet Imaging Telescope (UVIT) on board the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC 188. Using fluxes measured in four filters in UVIT’s far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX, Ultraviolet Imaging Telescope, Ultraviolet Optical Telescope, SPITZER, WISE, and several ground-based facilities. The resulting SED spans a wavelength range of 0.15 μm to 7.8 μm. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6000 ± 150 K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be ˜1.1-1.2 M ⊙. The hotter component, with an estimated temperature of 17,000 ± 500 K, has a radius of ˜ 0.6 R ⊙ and L ˜30 L ⊙. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.

  20. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less

  1. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    DOE PAGES

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...

    2016-09-19

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less

  2. UV radiation and CH4 gas detection with a single ZnO:Pd nanowire

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Adelung, R.; Postica, V.; Ababii, N.; Chow, L.; Viana, B.; Pauporté, T.

    2017-02-01

    There is an increasing demand for sensors to monitor environmental levels of ultraviolet (UV) radiation and pollutant gases. In this work, an individual nanowire of Pd modified ZnO nanowire (ZnO:Pd NW) was integrated in a nanosensor device for efficient and fast detection of UV light and CH4 gas at room temperature. Crystalline ZnO:Pd nanowire/nanorod arrays were synthesized onto fluorine doped tin oxide (FTO) substrates by electrochemical deposition (ECD) at relative low-temperatures (90 °C) with different concentrations of PdCl2 in electrolyte solution and investigated by SEM and EDX. Nanodevices were fabricated using dual beam focused electron/ion beam (FIB/SEM) system and showed improved UV radiation response compared to pristine ZnO NW, reported previously by our group. The UV response was increased by one order in magnitude (≈ 11) for ZnO:Pd NW. Gas sensing measurements demonstrated a higher gas response and rapidity to methane (CH4 gas, 100 ppm) at room temperature, showing promising results for multifunctional applications. Also, due to miniature size and ultra-low power consumption of these sensors, it is possible to integrate them into portable devices easily, such as smartphones, digital clock, flame detection, missile lunching and other smart devices.

  3. Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV

    NASA Astrophysics Data System (ADS)

    Busacca, Alessandro C.; Santini, Claudia; Oliveri, Luigi; Riva-Sanseverino, Stefano; Parisi, Antonino; Cino, Alfonso C.; Assanto, Gaetano

    2017-11-01

    In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of a photodiode with enhanced response in the UV. Measured conversion efficiency was about 1%W-1cm-2. QPM experiments show good agreement with theory and pave the way for a future implementation of the technique in materials less prone to photorefractive damage and wider transparency in the UV, such as Lithium Tantalate.

  4. Personalized cumulative UV tracking on mobiles & wearables.

    PubMed

    Dey, S; Sahoo, S; Agrawal, H; Mondal, A; Bhowmik, T; Tiwari, V N

    2017-07-01

    Maintaining a balanced Ultra Violet (UV) exposure level is vital for a healthy living as the excess of UV dose can lead to critical diseases such as skin cancer while the absence can cause vitamin D deficiency which has recently been linked to onset of cardiac abnormalities. Here, we propose a personalized cumulative UV dose (CUVD) estimation system for smartwatch and smartphone devices having the following novelty factors; (a) sensor orientation invariant measurement of UV exposure using a bootstrap resampling technique, (b) estimation of UV exposure using only light intensity (lux) sensor (c) optimal UV exposure dose estimation. Our proposed method will eliminate the need for a dedicated UV sensor thus widen the user base of the proposed solution, render it unobtrusive by eliminating the critical requirement of orienting the device in a direction facing the sun. The system is implemented on android mobile platform and validated on 1200 minutes of lux and UV index (UVI) data collected across several days covering morning to evening time frames. The result shows very impressive final UVI estimation accuracy. We believe our proposed solution will enable the future wearable and smartphone users to obtain a seamless personalized UV exposure dose across a day paving a way for simple yet very useful recommendations such as right skin protective measure for reducing risk factors of long term UV exposure related diseases like skin cancer and, cardiac abnormality.

  5. Response of biological uv dosimeters to the simulated extraterrestrial uv radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Rontó, G.; Kerékgyártó, T.; Kovács, G.; Lammer, H.

    In the Laboratory polycrystalline uracil thin layer and bacteriophage T7 detectors have been developed for UV dosimetry on the EarthSs surface. Exponential response of the uracil polycrystal has been detected both by absorption spectroscopy and measurements of the refractive index under the influence of terrestrial solar radiation or using UV-C sources. In UV biological dosimetry the UV dose scale is additive starting at a value of zero according to the definition of CIE (Technical Report TC-6-18). The biological dose can be defined by a measured end-effect. In our dosimeters (phage T7 and uracil dosimeter) exposed to natural (terrestrial) UV radiation the proportion of pyrimidin photoproducts among the total photoproducts is smaller than 0.1 and the linear correlation between the biological and physical dose is higher than 0.9. According to the experimental data this linear relationship is often not valid. We observed that UV radiation did not only induce dimerisation but shorter wavelengths caused monomerisation of pyrimidin dimers. Performing the irradiation in oxygen free environment and using a Deuterium lamp as UV source, we could increase monomerisation against dimerisation thus the DNA-based dosimetrySs additivity rule is not fulfilled in these conditions. In this study we will demonstrate those non-linear experiments which constitute the basis of our biological experiments on the International Space Station.

  6. Cathodoluminescent UV-radiation sources

    NASA Astrophysics Data System (ADS)

    Vereschagina, N. Y.; Danilkin, M. I.; Kazaryan, M. A.; Ozol, D. I.; Sheshin, E. P.; Spassky, D. A.

    2018-04-01

    Mercury-free UV-radiation sources are described. An electron beam similar to cathode-ray tubes (CRT) excites a luminescent material in a vacuum bulb. A high density of excitation requires the cathode and the luminescent material to be resistant for that and provide the extended lifetime of the UV-radiation source. Carbon fibre and nano-carbon based field-emission cathodes produce long lasting stable emission with a high current density (up to 0.3-0.5 A/cm2 ). Li2B4O7:Cu and Li2B4O7:Ag luminescent ceramics survive under high radiation doses and provide UV luminescence bands peaked at 360-370 nm and 270 nm, respectively. The luminescence band at 360-370 nm has a good overlap with the fundamental absorption edge of TiO2, which is known as a photo-catalyst in air and water cleaning systems. The luminescence band at 270 nm overlaps with DNA absorption and provides a direct disinfection effect. We suggest the structure of complex luminescence centres and energy transfer mechanisms. The electron structure of lithium tetraborate and the contribution of impurities are also discussed in paper.

  7. Probing Jupiter's Radiation Environment with Juno-UVS

    NASA Astrophysics Data System (ADS)

    Kammer, J.; Gladstone, R.; Greathouse, T. K.; Hue, V.; Versteeg, M. H.; Davis, M. W.; Santos-Costa, D.; Becker, H. N.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.

    2017-12-01

    While primarily designed to observe photon emission from the Jovian aurora, Juno's Ultraviolet Spectrograph (Juno-UVS) has also measured background count rates associated with penetrating high-energy radiation. These background counts are distinguishable from photon events, as they are generally spread evenly across the entire array of the Juno-UVS detector, and as the spacecraft spins, they set a baseline count rate higher than the sky background rate. During eight perijove passes, this background radiation signature has varied significantly on both short (spin-modulated) timescales, as well as longer timescales ( minutes to hours). We present comparisons of the Juno-UVS data across each of the eight perijove passes, with a focus on the count rate that can be clearly attributed to radiation effects rather than photon events. Once calibrated to determine the relationship between count rate and penetrating high-energy radiation (e.g., using existing GEANT models), these in situ measurements by Juno-UVS will provide additional constraints to radiation belt models close to the planet.

  8. Effects of UV radiation on phytoplankton

    NASA Astrophysics Data System (ADS)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  9. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part I; UV-C radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type C (UV-C) radiation has higher energy than the UV-B radiation and has been less studied because it is completely absorbed by the ozone layer. However, artificial UV-C radiation can generate diverse modifications in the plants. Given that exposure to UV-C for short periods of time increases the antioxidant content, improving the appearance and shelf-life of products, its potential application in postharvest treatments to modify the antioxidant content of medicinal plants, such as damiana (Turnera diffusa), is novel and relevant. To determine the effects of UV-C radiation on enzymatic and non-enzymatic antioxidant defenses, as well as oxidative damage levels, in damiana (Turnera diffusa) plants in vitro. UV-C radiation decreased superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1) activities, the concentration of chlorophylls (a and b), carotenes, vitamin C, and total antioxidant capacity. UV-C radiation increased the phenolic compound levels in damiana. Loss of antioxidant defenses was higher in damiana plants exposed to higher UV-C doses and/or for longer periods. This study suggests that UV-C radiation induces oxidative stress, evidenced as increased protein carbonyls and phenolic compound content, in damiana (T. diffusa). Low dose, short exposure to UV-C stimulates phenolic compound content in damiana. Thus, controlled UV-C treatments could be used as postharvest treatment to increase phenolic compound content in damiana plants. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  10. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  11. Climatology of Ultra Violet (UV) irradiance as measured through the Belgian ground-based monitoring network during the time period of 1995-2014

    NASA Astrophysics Data System (ADS)

    Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric

    2016-04-01

    In this study we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiances -UVB, UVA and total solar irradiance (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index (UVI), together with the variation of irradiances during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.

  12. UV RADIATION EFFECTS ON MICROBES AND MICROBIAL PROCESSES

    EPA Science Inventory

    The ultraviolet (UV) region of solar radiation is defined as wavelengths in the range of 200 to 400 nm. In contrast to visible radiation (400 - 800 nm), which has a well-defined role as the energy source for most of the Earth's primary production, the effects of UV radiation on b...

  13. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world.

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T. N.; Bruhn, D.; Ambus, P.

    2016-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  14. Aluminum Mirror Coatings for UVOIR Telescope Optics Including the Far UV

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatha; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Ayala, Michael; Shaklan, Stuart; Scowen, Paul; Del Hoyo, Javier; Quijada, Manuel

    2015-01-01

    NASA Cosmic Origins (COR) Program identified the development of high reflectivity mirror coatings for large astronomical telescopes particularly for the far ultra violet (FUV) part of the spectrum as a key technology requiring significant materials research and process development. In this paper we describe the challenges and accomplishments in producing stable high reflectance aluminum mirror coatings with conventional evaporation and advanced Atomic Layer Deposition (ALD) techniques. We present the current status of process development with reflectance of approx. 55 to 80% in the FUV achieved with little or no degradation over a year. Keywords: Large telescope optics, Aluminum mirror, far UV astrophysics, ALD, coating technology development.

  15. UV-B affects the immune system and promotes nuclear abnormalities in pigmented and non-pigmented bullfrog tadpoles.

    PubMed

    Franco-Belussi, Lilian; Fanali, Lara Zácari; De Oliveira, Classius

    2018-03-01

    Ultra-Violet (UV) radiation is a stressor of the immune system and causes DNA damage. Leukocytes can change in response to environmental changes in anurans, making them an important biomarker of stressful situations. The initial barrier against UV in ectothermic animals is melanin-containing cells in skin and in their internal organs. Here, we tested the effects of UV exposure on immune cells and DNA integrity in pigmented and non-pigmented tadpoles of Lithobates catesbeianus. We used an inflammation model with lipopolysaccharide (LPS) of Escherichia coli to test synergic effects of UV and LPS. We tested the following hypotheses: 1) DNA damage caused by UV will be more pronounced in non-pigmented than in pigmented animals; 2) LPS increases leukocytes in both pigmented and non-pigmented animals by systemic inflammation; 3) The combined LPS and UV exposure will decrease the number of leukocytes. We found that the frequency of immune cells differed between pigmented and non-pigmented tadpoles. UV exposure increased mast cells and DNA damage in erythrocytes in both pigmented and non-pigmented tadpoles, while leukocytes decreased after UV exposure. Non-pigmented tadpoles experienced DNA damage and a lower lymphocyte count earlier than pigmented tadpoles. UV altered immune cells likely as a consequence of local and systemic inflammation. These alterations were less severe in pigmented than in non-pigmented animals. UV and LPS increased internal melanin in pigmented tadpoles, which were correlated with DNA damage and leukocytes. Here, we described for the first time the effects of UV and LPS in immune cells of pigmented and non-pigmented tadpoles. In addition, we demonstrated that internal melanin in tadpoles help in these defenses, since leukocyte responses were faster in non-pigmented animals, supporting the hypothesis that melanin is involved in the initial innate immune response. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Time Series of SO2 Flux from Popocatépetl Volcano by an Ultra-Violet Camera with a Set of Different Band-Pass Filters

    NASA Astrophysics Data System (ADS)

    Schiavo, B.; Stremme, W.; Grutter, M.; Campion, R.; Rivera, C. I.; Inguaggiato, S.

    2017-12-01

    The measurement of SO2flux from active volcanoes are of great importance, for monitoring and hazard of volcanic activity, environmental impact and flux emissions related to changes of magmatic activity. Sulfur dioxide total flux from Popocatépetl volcano was determinad using a ultra-violet camera (or SO2 camera) with different band-pass filter. The flux is obteined from the product of the gas concentration over integrated the plume cross-section (slant column in molec/cm2 or ppm*m) and wind velocity data. Model of plume altitude and wind speed measurement are used to calculate a wind velocity, but a new method of sequential images is widely used in several years for this calculation. Volcanic plume measurements, for a total of about 60 days from from January to March 2017, were collected and utilized to generate the SO2 time series. The importance of monitoring and the time series of volcanic gas emissions is described and proven by many scientific studies. A time series of the Popocatépetl volcano will allow us to detect the volcanic gas as well as anomalies in volcanic processes and help to estimate the average SO2 flux of the volcano. We present a detailed description of the posterior correction of the dilution effect, which occurs due to a simplification of the radiative transfer equation. The correction scheme is especial applicable for long term monitoring from a permanent observation site. Images of volcanic SO2 plumes from the active Popocatépetl volcano in Mexico are presented, showing persistent passive degassing. The measurment are taken from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 m.a.s.l.), which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks. It is located north of the crater at 11 km distance. The data to calculate SO2 flux (t/d or kg/s) were recorded with the QSI UV camera and processed using Python scripts.

  17. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Ultra-thin plasma panel radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Peter S.

    An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less

  19. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation

  20. Mycosporine and mycosporine-like amino acids: A paramount tool against ultra violet irradiation

    PubMed Central

    Bhatia, Saurabh; Garg, Arun; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P.

    2011-01-01

    Various facts demonstrated that UVB is harmful to organisms. Sunscreen compounds are usually used to prevent the excessive damage caused by UVB. However, certain photosynthetic organisms have evolved mechanisms to counteract the toxicity of ultraviolet radiation by synthesizing UV screening compounds such as mycosporine-like amino acids (MAAs). MAAs provide UV protection to primary and secondary consumers through food chain and to non-biological materials by photostabilizing action. Information related to the ecological consequence of MAAs and their spatial distribution from a wide range of organisms is accumulating. Hence, our studies seek a potent class of natural sun protective compounds to understand their relationship with environment and to develop a protocol for large-scale industrial production of these compounds so that they can find application as UV-protecting cosmetics. PMID:22279371

  1. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  2. GASEOUS SCINTILLATION COUNTER

    DOEpatents

    Eggler, C.; Huddleston, C.M.

    1959-04-28

    A gaseous excitation counter for detecting the presence amd measuring the energy of subatomic particles and electromagnetic radiation is described. The counter includes a gas-tight chamber filled with an elemental gas capable of producing ultra-violet excitation quanta when irradiated with subatomic particles and electromagnetic radiation. The gas has less than one in a thousand parts ultra-violet absorbing contamination. When nuclear radiation ps present the ultra-violet light produced by the gas strikes a fluorescent material within the counter, responsive to produce visible excitation quanta, and photo-sensitive counting means detect the visible emission.

  3. Transmittance measurements of ultra violet and visible wavelength interference filters flown aboard LDEF

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.; Smajkiewicz, Ali

    1991-01-01

    A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.

  4. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property.

    PubMed

    Ren, Guina; Song, Yuanming; Li, Xiangming; Wang, Bo; Zhou, Yanli; Wang, Yuyan; Ge, Bo; Zhu, Xiaotao

    2018-07-15

    Development of an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding by a simple method is highly desirable, yet it remains a challenge that current technologies have been unable to fully address. Herein, the original fabric is immersed into the solution containing ZnO nanoparticle and PDMS (polydimethylsiloxane), and the fiber surfaces are uniformly covered by a ZnO-PDMS layer after thermal treatment at 110 °C for 30 min. Droplets of water and corrosive liquids including strong acid, strong alkali, and saturated salt solution display sphere shape on the ZnO-PDMS coated fabric surface. The stable binding of ZnO-PDMS layer onto the fibers allows for the fabric coating with robust superhydrophobicity, and the coated fabric still displays superhydrophobicity after hand twisting, knife scratching, finger touching, and even cycles of sandpaper abrasion. The ZnO-PDMS coated fabric can also keep its superhydrophobic property when exposed to long term UV illumination, demonstrating its UV resistance. Moreover, the uniformly distribution of ZnO nanoparticles on fibers allows the ZnO-PDMS coated fabric to display UV shielding property. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies.

    PubMed

    McCulloch, Kyle J; Yuan, Furong; Zhen, Ying; Aardema, Matthew L; Smith, Gilbert; Llorente-Bousquets, Jorge; Andolfatto, Peter; Briscoe, Adriana D

    2017-09-01

    Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies. At the same time the violet receptor evolved, Heliconius evolved UV-yellow coloration on their wings, due to the pigment 3-hydroxykynurenine (3-OHK) and the nanostructure architecture of the scale cells. In order to better understand the selective pressures giving rise to the violet receptor, we characterized opsin expression patterns using immunostaining (14 species) and RNA-Seq (18 species), and reconstructed evolutionary histories of visual traits in five major lineages within Heliconius and one species from the genus Eueides. Opsin expression patterns are hyperdiverse within Heliconius. We identified six unique retinal mosaics and three distinct forms of sexual dimorphism based on ommatidial types within the genus Heliconius. Additionally, phylogenetic analysis revealed independent losses of opsin expression, pseudogenization events, and relaxation of selection on UVRh2 in one lineage. Despite this diversity, the newly evolved violet receptor is retained across most species and sexes surveyed. Discriminability modeling of behaviorally preferred 3-OHK yellow wing coloration suggests that the violet receptor may facilitate Heliconius color vision in the context of conspecific recognition. Our observations give insights into the selective pressures underlying the origins of new visual receptors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling.

    PubMed

    Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo

    2017-02-21

    Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling.

  7. Ultra-thin plasma radiation detector

    DOEpatents

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  8. UV Radiation and the Skin

    PubMed Central

    D’Orazio, John; Jarrett, Stuart; Amaro-Ortiz, Alexandra; Scott, Timothy

    2013-01-01

    UV radiation (UV) is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance. PMID:23749111

  9. UV radiation and the skin.

    PubMed

    D'Orazio, John; Jarrett, Stuart; Amaro-Ortiz, Alexandra; Scott, Timothy

    2013-06-07

    UV radiation (UV) is classified as a "complete carcinogen" because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  10. The enhancement of biological ocular UV radiation on beaches compared to the radiation on grass.

    PubMed

    Liu, Guang-Cong; Wang, Fang; Gao, Yan-Yan; Yang, Zheng; Hu, Li-Wen; Gao, Qian; Ri, Jun-Chol; Liu, Yang

    2014-12-01

    The influence of albedo on ocular UV exposure has seldom been reported. This paper aimed to explore the enhancement effect on measured ocular UV radiation due to a sand surface compared to measured ocular UV radiation due to a grass surface. We measured ambient and ocular UV radiation over the beach and grass surface in Sanya City of China (18.4°N, 109.7°E). The experimental apparatus was composed of a manikin and a dual-detector spectrometer. Integration of both UVA and UVB radiation was used to denote UV radiation. Then biologically effective ocular UVB radiation (UVBE) and the ratios of UVBE of two surfaces were calculated. Maximum of ocular UV radiation versus time over the two surfaces is bimodal. UVBE on the beach is significantly larger than UVBE on the sand, and UVBE peaked at different solar elevation angle (SEA) over the two surfaces (about 53° and 40° on the beach and grass, respectively, according to Bayesian regression). The maximum of ocular UVBE ratios is greater than two, which peaked SEA was about 50°. One hour's cumulative radiation under sunny weather exceeds thresholds for photokeratitis, conjunctivitis and lens damage. Higher albedo significantly increased biological ocular UV radiation. Tourists on tropical beaches should take protective measures and avoid facing the sun directly, especially when SEA is around 50°. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Radiation damage of all-silica fibers in the UV region

    NASA Astrophysics Data System (ADS)

    Gombert, Joerg; Ziegler, M.; Assmus, J.; Klein, Karl-Friedrich; Nelson, Gary W.; Clarkin, James P.; Pross, H.; Kiefer, J.

    1999-04-01

    Since several years, UVI-fibers having higher solarization- resistance are well known stimulating new fiber-optic applications in the UV-region below 250 nm. Besides the description of the improved transmission properties of UV- light from different UV-sources, the mechanisms of improvement have been discussed in detail. The UV-defects, mainly the E'- center with the UV-absorption band around 215 nm, were passivated by using hydrogen-doping. Besides DUV-light, ionizing radiation like Gamma-radiation or X-rays can create similar defects in the UV-region. In the past, the radiation- damage in the UV-region was studied on silica bulk samples: again, E'-centers were generated. Up to now, no UV- transmission through a 1 m long fiber during or after Gamma- radiation had been observed. However, the hydrogen in the UVI- fibers behaves the same for Gamma-irradiation, leading to a passivation of the radiation-induced defects and an improved transmission in the UV-C region below 250 nm. On this report, the influence of total dose and fiber diameter on the UV- damage after irradiation will be described and discussed. In addition, we will include annealing studies, with and without UV-light. Based on our results, the standard process of Gamma- sterilization with a total dose of approx. 2 Mrad can be used for UVI-fibers resulting in a good UV-transmission below 320 nm. Excimer-laser light at 308 nm (XeCl) and 248 nm (KrF) and deuterium-lamp light with the full spectrum starting at 200 nm can also be transmitted.

  12. Decontamination Efficacy of Ultraviolet Radiation against Biofilms of Common Nosocomial Bacteria.

    PubMed

    Tingpej, Pholawat; Tiengtip, Rattana; Kondo, Sumalee

    2015-06-01

    Ultraviolet radiation (UV) is commonly used to destroy microorganisms in the health-care environment. However, the efficacy of UV radiation against bacteria growing within biofilms has never been studied. To measure the sterilization effectiveness of UV radiation against common healthcare associated pathogens growing within biofilms. Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Streptococcus epidermidis, Escherichia coli, ESBL-producing E. coli, Pseudomonas aeruginosa and Acinetobacter baumannii were cultivated in the Calgary Biofilm Device. Their biofilms were placed 50 cm from the UV lamp within the Biosafety Cabinet. Viability test, crystal violet assay and a scanning electron microscope were used to evaluate the germicidal efficacy. Within 5 minutes, UV radiation could kill S. aureus, MRSA, S. epidermidis, A. baumannii and ESBL-producing E. coli completely while it required 20 minutes and 30 minutes respectively to kill E. coli and P. aeruginosa. However, the amounts of biomass and the ultrastructure between UV-exposed biofilms and controls were not significantly different. UV radiation is effective in inactivating nosocomial pathogens grown within biofilms, but not removing biofilms and EPS. The biofilm of P. aeruginosa was the most durable.

  13. Exploring Mercury's Surface in UltraViolet from Orbit

    NASA Astrophysics Data System (ADS)

    Izenberg, N.

    2017-12-01

    The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.

  14. Development of UV-B screening compounds in response to variation in ambient levels of UV-B radiation

    NASA Astrophysics Data System (ADS)

    Sullivan, Joe H.; Xu, Chenping; Gao, Wei; Slusser, James R.

    2005-08-01

    The induction of UV-B screening compounds in response to exposure to UV-B radiation is a commonly reported response and is generally considered to be an adaptive response of plants for protection from UVinduced damage. However, a number of questions remain to be answered including the importance of qualitative and localization differences among species in providing protection, indirect consequences of changes in leaf secondary chemistry on ecological processes and the dose response of metabolite accumulation. In this study we utilized UV monitoring data provided on site by the USDA UV-B Monitoring and Research Program to monitor the changes in UV-screening compounds in soybeans under a range of UV-B levels due to natural variation in ambient UV-B radiation. Soybean cultivars Essex, Clark and Clark-magenta, an isoline of Clark that produces minimal levels of flavonols, were grown beneath shelters covered either with polyester to block most UV-B radiation or teflon which is nearly transparent in the UV range and harvested at regular intervals for pigment and protein analysis. Daily levels of weighted UV-B varied from <1 to >7 kJ m-2. Increases in UV-screening compounds showed a positive dose response to UV-B radiation in all cultivars with Essex showing the steepest dose response. UV-A also induced screening compounds in all species The hydroxycinnimates of the magenta isoline showed a steep dose response to UV-A and a rather constant (non dose specific) but small additional increment in response to UV-B. The Clark isoline, which produced primarily the flavonol quercetin, showed a dose response to UV-B intermediate between that of Clark-magenta and Essex. All three cultivars show similar tolerance to UV-B in field conditions indicating that UV-induced pigment production is adequate to protect them from excessive UV-B damage.

  15. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.; Silva, Claudio

    2013-09-30

    For the past three years, a large analysis and visualization effort—funded by the Department of Energy’s Office of Biological and Environmental Research (BER), the National Aeronautics and Space Administration (NASA), and the National Oceanic and Atmospheric Administration (NOAA)—has brought together a wide variety of industry-standard scientific computing libraries and applications to create Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) to serve the global climate simulation and observational research communities. To support interactive analysis and visualization, all components connect through a provenance application–programming interface to capture meaningful history and workflow. Components can be loosely coupled into the framework for fast integrationmore » or tightly coupled for greater system functionality and communication with other components. The overarching goal of UV-CDAT is to provide a new paradigm for access to and analysis of massive, distributed scientific data collections by leveraging distributed data architectures located throughout the world. The UV-CDAT framework addresses challenges in analysis and visualization and incorporates new opportunities, including parallelism for better efficiency, higher speed, and more accurate scientific inferences. Today, it provides more than 600 users access to more analysis and visualization products than any other single source.« less

  16. LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Cook, Amanda; Colaprete, Anthony; Shirley, Mark; Vargo, Kara; Elphic, Richard C.; Hermalyn, Brendan; Stubbs, Timothy John; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of

  17. Plant Responses to Increased UV-B Radiation: A Research Project

    NASA Technical Reports Server (NTRS)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains

  18. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)

    NASA Astrophysics Data System (ADS)

    Feister, U.; Junk, J.; Woldt, M.

    2008-01-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980-1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  19. The effects of welding parameters on ultra-violet light emissions, ozone and CrVI formation in MIG welding.

    PubMed

    Dennis, J H; Mortazavi, S B; French, M J; Hewitt, P J; Redding, C R

    1997-01-01

    This paper describes the relationships between ultra-violet emission, ozone generation and CrVI production in MIG welding which were measured as a function of shield gas flow rate, welding voltage, electrode stick-out and shield gas composition using an automatic welding rig that permitted MIG welding under reproducible conditions. The experimental results are interpreted in terms of the physico-chemical processes occurring in the micro- and macro-environments of the arc as part of research into process modification to reduce occupational exposure to ozone and CrVI production rates in MIG welding. We believe the techniques described here, and in particular the use of what we have termed u.v.-ozone measurements, will prove useful in further study of ozone generation and CrVI formation and may be applied in the investigation of engineering control of occupational exposure in MIG and other welding process such as Manual Metal Arc (MMA) and Tungsten Inert Gas (TIG).

  20. Study of UV radiation dose received by the Spanish population.

    PubMed

    Gurrea, Gonzalo; Cañada, Javier

    2007-01-01

    Excess exposure to UV radiation can affect our health by causing sunburn, skin cancer, etc. It is therefore useful to determine the UV dosage received by people as a way of protecting them from the possible negative effects that this kind of radiation can cause. In this work, the personal outdoor percentage, which shows the time spent in outdoor activities, as well as personal UV doses, has been calculated by means of global UV radiation on a horizontal plane. A database of average daily UVB radiation on the horizontal plane given by the National Institute of Meteorology has been used. In this work we evaluate the standard erythema dose of the Spanish population throughout the year.

  1. Improved Astronomical Instrumentation for the Far Ultra-Violet

    NASA Astrophysics Data System (ADS)

    Witt, Emily M.; Fleming, Brian; Egan, Arika; Tyler, Rachel; Wiley, James

    2018-06-01

    Recent technological advances have opened up new instrument capabilities in the ultraviolet. Of particular interest are advanced deposition processes that have made lithium fluoride (LiF) based mirrors more accessible, achieving greater than 80% broadband reflectivity down into the Lyman UV (100 nm). Traditional MgF2 protected aluminum mirrors cut off at 115 nm, missing crucial tracers of warm gas and molecules. The hygroscopic sensitivity of LiF, which adds mission risk and cost, has also been mitigated with a thin capping layer of a more durable substance, making LiF mirrors accessible without onerous environmental procedures. These advances open up a new paradigm in UV astronomy by enabling multi-reflection systems in the Lyman UV. We present recent progress in the testing of eLiF-based optics, and then discuss the potential scientific avenues this opens up in UV astronomy.

  2. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna.

    PubMed

    Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali

    2017-12-01

    Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by

  3. The Response of Human Skin Commensal Bacteria as a Reflection of UV Radiation: UV-B Decreases Porphyrin Production

    PubMed Central

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L.; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  4. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    PubMed

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  5. Ultra-violet avalanche photodiode based on AlN/GaN periodically-stacked-structure

    NASA Astrophysics Data System (ADS)

    Wu, Xingzhao; Zheng, Jiyuan; Wang, Lai; Brault, Julien; Matta, Samuel; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yianjun; Wang, Jian; Li, Hongtao; Khalfioui, Mohamed A.; Li, Mo; Kang, Jianbin; Li, Qian

    2018-02-01

    The high-gain photomultiplier tube (PMT) is the most popular method to detect weak ultra-violet signals which attenuate quickly in atmosphere, although the vacuum tube makes it fragile and difficult to integrate. To overcome the disadvantage of PMT, an AlN/GaN periodically-stacked-structure (PSS) avalanche photodiode (APD) has been proposed, finally achieving good quality of high gain and low excessive noise. As there is a deep g valley only in the conduction band of both GaN and AlN, the electron transfers suffering less scattering and thus becomes easier to obtain the threshold of ionization impact. Because of unipolar ionization in the PSS APD, it works in linear mode. Four prototype devices of 5-period, 10-period, 15-period, and 20-period were fabricated to verify that the gain of APD increases exponentially with period number. And in 20-period device, a recorded high and stable gain of 104 was achieved under constant bias. In addition, it is proved both experimentally and theoretically, that temperature stability on gain is significantly improved in PSS APD. And it is found that the resonant enhancement in interfacial ionization may bring significant enhancement of electron ionization performance. To make further progress in PSS APD, the device structure is investigated by simulation. Both the gain and temperature stability are optimized alternatively by a proper design of periodical thickness and AlN layer occupancy.

  6. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  7. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  8. MicroRNAs in Skin Response to UV Radiation

    PubMed Central

    Syed, Deeba N.; Khan, Mohammad Imran; Shabbir, Maria; Mukhtar, Hasan

    2014-01-01

    Solar ultraviolet (UV) radiation, an ubiquitous environmental carcinogen, is classified depending on the wave-length, into three regions; short-wave UVC (200–280 nm), mid-wave UVB (280–320 nm), and long-wave UVA (320–400 nm). The human skin, constantly exposed to UV radiation, particularly the UVB and UVA components, is vulnerable to its various deleterious effects such as erythema, photoaging, immunosuppression and cancer. To counteract these and for the maintenance of genomic integrity, cells have developed several protective mechanisms including DNA repair, cell-cycle arrest and apoptosis. The network of damage sensors, signal transducers, mediators, and various effector proteins is regulated through changes in gene expression. MicroRNAs (miRNAs), a group of small non-coding RNAs, act as post-transcriptional regulators through binding to complementary sequences in the 3′-untranslated region of their target genes, resulting in either translational repression or target degradation. Recent studies show that miRNAs add an additional layer of complexity to the intricately controlled cellular responses to UV radiation. This review summarizes our current knowledge of the role of miRNAs in the regulation of the human skin response upon exposure to UV radiation. PMID:23834148

  9. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-07-20

    This report summarizes work carried out by the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Team for the period of January 1, 2011 through June 30, 2011. It discusses highlights, overall progress, period goals, and collaborations and lists papers and presentations. To learn more about our project, please visit our UV-CDAT website (URL: http://uv-cdat.org). This report will be forwarded to the program manager for the Department of Energy (DOE) Office of Biological and Environmental Research (BER), national and international collaborators and stakeholders, and to researchers working on a wide range of other climate model, reanalysis, and observation evaluation activities. Themore » UV-CDAT executive committee consists of Dean N. Williams of Lawrence Livermore National Laboratory (LLNL); Dave Bader and Galen Shipman of Oak Ridge National Laboratory (ORNL); Phil Jones and James Ahrens of Los Alamos National Laboratory (LANL), Claudio Silva of Polytechnic Institute of New York University (NYU-Poly); and Berk Geveci of Kitware, Inc. The UV-CDAT team consists of researchers and scientists with diverse domain knowledge whose home institutions also include the National Aeronautics and Space Administration (NASA) and the University of Utah. All work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Working directly with BER climate science analysis projects, this consortium will develop and deploy data and computational resources useful to a wide variety of stakeholders, including scientists, policymakers, and the general public. Members of this consortium already collaborate with other institutions and universities in researching data discovery, management, visualization, workflow analysis, and provenance. The UV-CDAT team will address the following high-level visualization requirements: (1) Alternative parallel streaming statistics and analysis pipelines

  10. The investigation of O and N2 densities from the OSO-7 extreme UV data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of solar radiation observations in the extreme ultra-violet spectrum from 200 A to 600 A made by the OSO-7 Satellite were studied. The results of the influence of attenuation by the atmosphere in the 250 to 500 km altitude range are presented. Using published molecular absorption cross-sections at 304 A and 256 A, the Jaccia atmospheric model is validated, and shows that a mean exospheric of 1050 K is appropriate for the sunset data.

  11. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  12. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marneffe, J.-F. de, E-mail: marneffe@imec.be; Lukaszewicz, M.; Porter, S. B.

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition,more » the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.« less

  13. Arsenic oxidation by UV radiation combined with hydrogen peroxide.

    PubMed

    Sorlini, S; Gialdini, F; Stefan, M

    2010-01-01

    Arsenic is a widespread contaminant in the environment around the world. The most abundant species of arsenic in groundwater are arsenite [As(III)] and arsenate [As(V)]. Several arsenic removal processes can reach good removal yields only if arsenic is present as As(V). For this reason it is often necessary to proceed with a preliminary oxidation of As(III) to As(V) prior to the removal technology. Several studies have focused on arsenic oxidation with conventional reagents and advanced oxidation processes. In the present study the arsenic oxidation was evaluated using hydrogen peroxide, UV radiation and their combination in distilled and in real groundwater samples. Hydrogen peroxide and UV radiation alone are not effective at the arsenic oxidation. Good arsenic oxidation yields can be reached in presence of hydrogen peroxide combined with a high UV radiation dose (2,000 mJ/cm(2)). The quantum efficiencies for As(III) oxidation were calculated for both the UV photolysis and the UV/H(2)O(2) processes.

  14. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part ii; UV-B radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type B (UV-B) radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. To generate information on the effect of exposure to artificial UV-B radiation at different highdoses in the antioxidant content of damiana plants in an in vitro model. Damiana plantlets (tissue cultures in Murashige- Skoog medium) were irradiated with artificial UV-B at 3 different doses (1) 0.5 ± 0.1 mW cm-2 (high) for 2 h daily, (2) 1 ± 0,1 mW cm-2 (severe) for 2 h daily, or (3) 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids), vitamins (C and E) and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1), as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. Speculations on the consequences to biology of space shuttle-associated increases in global UV-B radiation

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Macelroy, R. D.

    1977-01-01

    Various aspects of the impact of ozone depletion on the biosphere are assessed and discussed. Speculations on the factors which determine the extent and nature of biological damage due to an increased flux of ultra violet light are presented. It is concluded that a complete assessment must consider both direct effects (organisms) as well as indirect effects (ecosystems). The role of computer simulation of ecosystem models as a predictive tool is examined.

  16. MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling

    PubMed Central

    Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo

    2017-01-01

    Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling. PMID:28061443

  17. UV radiation and skin cancer in Norway.

    PubMed

    Medhaug, I; Olseth, J A; Reuder, J

    2009-09-04

    A distinct increase in skin cancer incidences is observed since the registration started in Norway in the 1950s. As UV radiation is assumed to be the main risk factor for skin cancer, hourly values of the UV irradiance were reconstructed for the period 1957-2005 for 17 of the Norwegian counties (58-70 degrees N). For reconstruction, a radiation transfer model is run with total ozone amount and cloud information as meteorological input. Reconstructed hourly erythemally weighted UV irradiances for about 5 years are compared to measurements at four stations, two stations representing the north-south extension of Norway, and two stations at about 60 degrees N representing the eastern inland - Western coastal contrasts. The agreement between reconstructed and measured UV varies between 0% for the northernmost site to 10-15% overestimation for the other locations. For clear sky, a reasonable agreement between reconstructed and measured data was found for all stations, while for overcast, an overestimation of 10-20% was found for all but the northernmost station. Both the cancer incidences and the reconstructed UV values have a distinct north-south increase. The UV increase towards south is mostly due to increasing solar elevation. The west to east increase is much smaller, and differences in UV are due to differences in both cloud optical thickness and total cloud amount. One additional outcome from this work is that long-term UV-data are reconstructed for Norway, data that can be used in further biological and medical studies related to UV effects.

  18. Spectral enhancement of leucocrystal violet treated footwear impression evidence in blood.

    PubMed

    Spence, Lindsay; Asmussen, Gary

    2003-03-27

    The results presented demonstrate the capacity for spectral enhancement to substantially improve the forensic examination of footwear impressions in blood treated with leucocrystal violet (LCV). The UV-Vis absorption spectra were generated of (i) an aqueous solution of leucocrystal violet, (ii) leucocrystal violet in 3% H(2)O(2), (iii) LCV working solution and (iv) whole blood added to LCV working solution. The resultant fluorescence emission spectra were subsequently generated (lambda(ex)=630nm, lambda(em)=661-900nm). The results indicate that the UV-Vis absorption spectra of an unbuffered solution of whole blood with LCV working solution produces a strong absorbance curve with a maxima at 630nm. Subsequent excitation at this wavelength and generation of the emission spectrum in the fluorescence mode indicates that a solution of whole blood added to LCV working solution is an extremely weak fluorophore. Therefore, to enable an adequate and timely enhancement of blood impression evidence treated with LCV utilising either visible fluorescence or infrared luminescence requires (i) selection of the most appropriate excitation wavelength (lambda(ex)) and emission wavelength (lambda(em)) with extremely narrow band pass filters, which in the absence of substrate matrix interference is excitation at 630nm producing the emission maxima at 665nm and (ii) a visual enhancement system such as a CCD colour IR video camera with image integration.

  19. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  1. Luminescence of Tb-doped Ca 3Y 2(Si 3O 9) 2 oxide upon UV and VUV synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Dobrowolska, Anna; Zych, Eugeniusz

    2011-07-01

    Powders of calcium yttrium silicate, Ca 3Y 2(Si 3O 9) 2, containing 0.1-3% Tb 3+ were prepared using a sol-gel method and characterized with XRD, IR, UV-vis and UV-VUV spectroscopies at room temperature and 10 K. Structural analysis revealed pure monoclinic phase of Ca 3Y 2(Si 3O 9) 2 after heat-treatment at 1000 °C. Infrared spectroscopy showed that between 800 and 900 °C a short-range structural organization of the components proceeded, yet without crystallization. A strong emission of Tb 3+ had been observed both in the green part of the spectrum due to the 5D4→ 7FJ transitions and in the blue-violet region owing to the 5D3→ 7FJ radiative relaxation. The color of the light could be tuned from yellowish-green to bluish-white both by means of the dopant content and the temperature of synthesis. Efficient luminescence of Tb 3+-doped Ca 3Y 2(Si 3O 9) 2 phosphors could also be obtained upon stimulation with vacuum ultraviolet synchrotron radiation demonstrating that an energy transfer from the host to the Tb 3+ ions takes place.

  2. On-site comprehensive analysis of explosives using HPLC-UV-PAED

    NASA Astrophysics Data System (ADS)

    Marple, Ronita L.; LaCourse, William R.

    2004-03-01

    High-performance liquid chromatography with ultra violet and photo-assisted electrochemical detection (HPLC-UV-PAED) has been developed for the sensitive and selective detection of explosives in ground water and soil extracts. Fractionation and preconcentration of explosives is accomplished with on-line solid phase extraction (SPE), which minimizes sample pretreatment and enables faster and more accurate on-site assessment of a contaminated site. Detection limits are equivalent or superior (i.e., <1 part-per-trillion for HMX) to those achieved using the Environmental Protection Agency (EPA) Method 8330. This approach is more broadly applicable, as it is capable of determining a wider range of organic nitro compounds. Soil samples are extracted using pressurized fluid extraction (PFE), and this technique is automatable, field-compatible, and environmentally friendly, adding to the overall efficiency of the methodology.

  3. Authentication and Quantitation of Fraud in Extra Virgin Olive Oils Based on HPLC-UV Fingerprinting and Multivariate Calibration

    PubMed Central

    Carranco, Núria; Farrés-Cebrián, Mireia; Saurina, Javier

    2018-01-01

    High performance liquid chromatography method with ultra-violet detection (HPLC-UV) fingerprinting was applied for the analysis and characterization of olive oils, and was performed using a Zorbax Eclipse XDB-C8 reversed-phase column under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase. More than 130 edible oils, including monovarietal extra-virgin olive oils (EVOOs) and other vegetable oils, were analyzed. Principal component analysis results showed a noticeable discrimination between olive oils and other vegetable oils using raw HPLC-UV chromatographic profiles as data descriptors. However, selected HPLC-UV chromatographic time-window segments were necessary to achieve discrimination among monovarietal EVOOs. Partial least square (PLS) regression was employed to tackle olive oil authentication of Arbequina EVOO adulterated with Picual EVOO, a refined olive oil, and sunflower oil. Highly satisfactory results were obtained after PLS analysis, with overall errors in the quantitation of adulteration in the Arbequina EVOO (minimum 2.5% adulterant) below 2.9%. PMID:29561820

  4. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  5. Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-10-31

    An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixturesmore » of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols

  6. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime.

    PubMed

    García-Cela, Maria Esther; Marín, Sonia; Reyes, Monica; Sanchis, Vicent; Ramos, Antonio J

    2016-04-01

    Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia. © 2015 Society of Chemical Industry.

  7. Modeling the photodegradation of emerging contaminants in waters by UV radiation and UV/H2O2 system.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-01-01

    Five emerging contaminants (1-H-Benzotriazole, N,N-diethyl-m-toluamide or DEET, Chlorophene, 3-Methylindole, and Nortriptyline HCl), frequently found in surface waters and wastewaters, were selected to be photooxidized in several water matrices. Previous degradation experiments of these compounds individually dissolved in ultra pure water were performed by using UV radiation at 254 nm and the Fenton's reagent. These oxidation systems allowed the determination of the quantum yields and the rate constants for the radical reaction between each compound and hydroxyl radicals. Later, the simultaneous photodegradation of mixtures of the selected ECs in several types of water (ultrapure water, reservoir water, and two effluents from WWTPs) was carried out and a kinetic study was conducted. A model is proposed for the ECs elimination, and the theoretically calculated concentrations with this model agreed well with the experimental results obtained, which confirmed that it constitutes an excellent tool to predict the elimination of these compounds in waters.

  8. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    NASA Astrophysics Data System (ADS)

    Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong

    2005-05-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  9. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  10. Urinary concentrations of benzophenone-type ultra violet light filters and reproductive parameters in young men.

    PubMed

    Adoamnei, Evdochia; Mendiola, Jaime; Moñino-García, Miriam; Vela-Soria, Fernando; Iribarne-Durán, Luz M; Fernández, Mariana F; Olea, Nicolás; Jørgensen, Niels; Swan, Shanna H; Torres-Cantero, Alberto M

    2018-04-01

    Benzophenone (BP)-type ultraviolet (UV) light filters are chemicals frequently added to personal care products, insect repellents, sunscreens, and beverage and food packaging to diminish the harmful effects of UV sunlight on human skin or foodstuffs. BP-type UV filters have shown negative effects on male reproduction function in in vitro and animal models, but human epidemiologic studies are limited. The goal of this study was to examine associations between urinary concentrations of BP-type UV filters and semen quality and reproductive hormone levels. This is a cross-sectional study with 215 young university students (18-23 years old) recruited between 2010 and 2011 in Southern Spain (Murcia Region). All men provided a urine, blood and semen sample on a single day. Urinary concentrations of 2,4-dihydroxybenzophenone (BP-1); 2,2',4,4'-tetrahydroxybenzophenone (BP-2); 2-hydroxy-4-methoxybenzophenone (BP-3); 2,2'-dihydroxy-4-methoxybenzophenone (BP-8) and 4-hydroxybenzophenone (4OH-BP) were measured by dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography with tandem mass spectrometry detection. Semen quality was evaluated by measuring volume, sperm counts, motility and morphology. Serum samples were analyzed for reproductive hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), inhibin B and estradiol (E2). Associations between urinary concentrations of BP-type UV filters and semen quality parameters and reproductive hormone levels were examined using linear regression, adjusting for potential confounders. Ninety-seven percent of the men had detectable urinary concentrations of at least one of the five BP-type UV filters quantified. After adjustment for important covariates (body mass index, smoking status and time of blood sample collection), there was a significant positive association between urinary BP-1 and BP-3 concentrations and serum FSH levels (β = 0.08, 95%CI: 0.009; 0

  11. Effects of solar UV-B radiation on aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  12. Effects of solar UV-B radiation on aquatic ecosystems.

    PubMed

    Hader, D P

    2000-01-01

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  13. The system of high accuracy UV spectral radiation system

    NASA Astrophysics Data System (ADS)

    Lin, Guan-yu; Yu, Lei; Xu, Dian; Cao, Dian-sheng; Yu, Yu-Xiang

    2016-10-01

    UV spectral radiation detecting and visible observation telescope is designed by the coaxial optical. In order to decrease due to the incident light polarization effect, and improve the detection precision, polarizer need to be used in the light path. Four pieces of quartz of high Precision UV radiation depolarizer retarder stack together is placed in front of Seya namioka dispersion unit. The coherent detection principle of modulation of light signal and the reference signal multiplied processing, increase the phase sensitive detector can be adjustment function, ensure the UV spectral radiation detection stability. A lock-in amplifier is used in the electrical system to advance the accuracy of measurement. To ensure the precision measurement detected, the phase-sensitive detector function can be adjustable. the output value is not more than 10mV before each measurement, so it can be ensured that the stability of the measured radiation spectrum is less than 1 percent.

  14. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  15. Wet chemical synthesis and luminescence in Ca5(PO4)3M:Eu2+ (M = Br, I) phosphors for solid state lighting

    NASA Astrophysics Data System (ADS)

    Mungmode, C. D.; Gahane, D. H.; Moharil, S. V.

    2018-05-01

    A simple wet chemical synthesis of Eu2+ activated Ca5(PO4)3Br and Ca5(PO4)3I phosphors and their photoluminescence is reported. Formation of Ca5(PO4)3Br is confirmed by X-ray diffraction (XRD). Synthesized phosphors are analyzed for photoluminescence (PL) spectrum. A bright blue emission is observed when phosphors are excited by near Ultra Violet (nUV) radiations. Photoluminescence emission spectrum for (Ca0.985Eu0.015)5(PO4)3Br is centered at 457 nm and for (Ca0.985Eu0.015)5(PO4)3 I it peaks at 455 nm when excited by 365 nm near UV radiation. Eu2+ luminescence in Ca5(PO4)3Br is reported for the first time. The phosphors can be efficiently excited by nUV radiations. This shows that phosphors may be used as blue phosphor in pcLED for Solid State Lighting.

  16. Effective UV radiation from model calculations and measurements

    NASA Technical Reports Server (NTRS)

    Feister, Uwe; Grewe, Rolf

    1994-01-01

    Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.

  17. Ultraviolet radiation exposure from UV-transilluminators.

    PubMed

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at < or =25 cm from the UV-transilluminator's filter surface. Daily exposure time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  18. UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less

  19. UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature

    DOE PAGES

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    2017-01-23

    Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less

  20. UV-enhanced CO sensing using Ga2O3-based nanorod arrays at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    2017-01-01

    Monitoring and control of the gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such applications due to the inherent high temperature of the combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found that surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °C by an order of magnitude. Under the 254 nm UV illumination, the CO gas-sensing performance of Ga2O3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125% and the response time reduced by 30% for the La0.8Sr0.2FeO3(LSFO)-decorated sample. The UV-enhanced detection of CO might be due to the increased population of photo-induced electron-hole pairs, whereas for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of the sensitizing effect and photocurrent effect.

  1. FogEye UV Sensor System Performance Characteristics

    DOT National Transportation Integrated Search

    2004-03-01

    The primary objective of the FogEye Evaluation Program is to determine whether coupled ultra-violet sources and detectors may provide enhancements to safety on the airport surface. The results of this effort will be used to complete the evaluation of...

  2. Collagen-based proteinaceous binder-pigment interaction study under UV ageing conditions by MALDI-TOF-MS and principal component analysis.

    PubMed

    Romero-Pastor, Julia; Navas, Natalia; Kuckova, Stepanka; Rodríguez-Navarro, Alejandro; Cardell, Carolina

    2012-03-01

    This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI-TOF-MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. Copyright © 2012 John Wiley & Sons, Ltd.

  3. CMOS Ultra Low Power Radiation Tolerant (CULPRiT) Microelectronics

    NASA Technical Reports Server (NTRS)

    Yeh, Penshu; Maki, Gary

    2007-01-01

    Space Electronics needs Radiation Tolerance or hardness to withstand the harsh space environment: high-energy particles can change the state of the electronics or puncture transistors making them disfunctional. This viewgraph document reviews the use of CMOS Ultra Low Power Radiation Tolerant circuits for NASA's electronic requirements.

  4. Interactive effects of elevated ozone and UV-B radiation on soil nematode diversity.

    PubMed

    Bao, Xuelian; Li, Qi; Hua, Jianfeng; Zhao, Tianhong; Liang, Wenju

    2014-01-01

    Ultraviolet-B (UV-B) radiation and elevated tropospheric ozone may cause reductions in the productivity and quality of important agricultural crops. However, research regarding their interactive effect is still scarce, especially on the belowground processes. Using the open top chambers experimental setup, we monitored the response of soil nematodes to the elevated O3 and UV-B radiation individually as well as in combination. Our results indicated that elevated O3 and UV-B radiation have impact not only on the belowground biomass of plants, but also on the community structure and functional diversity of soil nematodes. The canonical correspondence analysis suggested that soil pH, shoot biomass and microbial biomass C and N were relevant parameters that influencing soil nematode distribution. The interactive effects of elevated O3 and UV-B radiation was only observed on the abundance of bacterivores. UV-B radiation significantly increased the abundance of total nematodes and bacterivores in comparison with the control at pod-filling stage of soybean. Following elevated O3, nematode diversity index decreased and dominance index increased relative to the control at pod-filling stage of soybean. Nematode functional diversity showed response to the effects of elevated O3 and UV-B radiation at pod-bearing stage. Higher enrichment index and lower structure index in the treatment with both elevated O3 and UV-B radiation indicated a stressed soil condition and degraded soil food web. However, the ratios of nematode trophic groups suggested that the negative effects of elevated O3 on soil food web may be weakened by the UV-B radiations.

  5. A Low-Cost Liquid-Chromatography System Using a Spectronic 20-Based Detector.

    ERIC Educational Resources Information Center

    Jezorek, John R.; And Others

    1986-01-01

    Describes the design and evaluation of a Spectronic 20-based detector as well as a simple system for postcolumn derivatization useful for metal-ion chromatographic detection. Both detection and derivatization can be performed in the ultra-violet (UV) mode using a low-cost UV-visible spectrophotometer and UV-region derivatization reagents. (JN)

  6. 3H-1,2-dithiole-3-thione protects retinal pigment epithelium cells against Ultra-violet radiation via activation of Akt-mTORC1-dependent Nrf2-HO-1 signaling.

    PubMed

    Li, Ke-Ran; Yang, Su-Qing; Gong, Yi-Qing; Yang, Hong; Li, Xiu-Miao; Zhao, Yu-Xia; Yao, Jin; Jiang, Qin; Cao, Cong

    2016-05-06

    Excessive UV radiation and reactive oxygen species (ROS) cause retinal pigment epithelium (RPE) cell injuries. Nrf2 regulates transcriptional activation of many anti-oxidant genes. Here, we tested the potential role of 3H-1,2-dithiole-3-thione (D3T) against UV or ROS damages in cultured RPE cells (both primary cells and ARPE-19 line). We showed that D3T significantly inhibited UV-/H2O2-induced RPE cell death and apoptosis. UV-stimulated ROS production was dramatically inhibited by D3T pretreatment. D3T induced Nrf2 phosphorylation in cultured RPE cells, causing Nrf2 disassociation with KEAP1 and its subsequent nuclear accumulation. This led to expression of antioxidant response elements (ARE)-dependent gene heme oxygenase-1 (HO-1). Nrf2-HO-1 activation was required for D3T-mediated cytoprotective effect. Nrf2 shRNA knockdown or S40T dominant negative mutation as well as the HO-1 inhibitor Zinc protoporphyrin (ZnPP) largely inhibited D3T's RPE cytoprotective effects against UV radiation. Yet, exogenous overexpression Nrf2 enhanced D3T's activity in RPE cells. Further studies showed that D3T activated Akt/mTORC1 in cultured RPE cells. Akt-mTORC1 inhibitors, or Akt1 knockdown by shRNA, not only inhibited D3T-induced Nrf2-HO-1 activation, but also abolished the RPE cytoprotective effects. In vivo, D3T intravitreal injection protected from light-induced retinal dysfunctions in mice. Thus, D3T protects RPE cells from UV-induced damages via activation of Akt-mTORC1-Nrf2-HO-1 signaling axis.

  7. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices.

    PubMed

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-12-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  8. Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers

    NASA Technical Reports Server (NTRS)

    Pilgrim, J. S.; Peterson, K. A.

    2001-01-01

    Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.

  9. Growth of a mat-forming photograph in the presence of UV radiation

    NASA Technical Reports Server (NTRS)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  10. Violet LED light enhances the recruitment of a thrip predator in open fields

    PubMed Central

    Ogino, Takumi; Uehara, Takuya; Muraji, Masahiko; Yamaguchi, Terumi; Ichihashi, Takahisa; Suzuki, Takahiro; Kainoh, Yooichi; Shimoda, Masami

    2016-01-01

    The predatory bug Orius sauteri is an indigenous natural enemy of thrips and whiteflies in Asian countries. To put these bugs to practical use in pest management, methods to attract and retain the bugs in agricultural fields are needed. We previously showed that violet light (405 nm) attracts O. sauteri selectively. Many thrips and whiteflies are attracted to UV or green light. In this study, we examined the effect of violet-LED illumination on O. sauteri in pesticide-free eggplant (Solanum melongena L.) cultivation. In three cultivation trials, the density of O. sauteri on eggplant leaves was consistently higher in the illuminated plots; at least twice that of the non-illuminated plots. Simultaneously, the density of thrips declined markedly to less than half that of the non-illuminated plots. We identified three positive effects of violet light including an “immediate-effect” on predator attraction, a “persistent-effect” on predator reproduction, and a “secondary-effect” on the food web structure. Our results showed that illumination with violet light provides a powerful tool for integrated pest management. This is the first report on the use of illumination to manipulate the behavior of natural enemies. PMID:27604315

  11. Violet LED light enhances the recruitment of a thrip predator in open fields.

    PubMed

    Ogino, Takumi; Uehara, Takuya; Muraji, Masahiko; Yamaguchi, Terumi; Ichihashi, Takahisa; Suzuki, Takahiro; Kainoh, Yooichi; Shimoda, Masami

    2016-09-08

    The predatory bug Orius sauteri is an indigenous natural enemy of thrips and whiteflies in Asian countries. To put these bugs to practical use in pest management, methods to attract and retain the bugs in agricultural fields are needed. We previously showed that violet light (405 nm) attracts O. sauteri selectively. Many thrips and whiteflies are attracted to UV or green light. In this study, we examined the effect of violet-LED illumination on O. sauteri in pesticide-free eggplant (Solanum melongena L.) cultivation. In three cultivation trials, the density of O. sauteri on eggplant leaves was consistently higher in the illuminated plots; at least twice that of the non-illuminated plots. Simultaneously, the density of thrips declined markedly to less than half that of the non-illuminated plots. We identified three positive effects of violet light including an "immediate-effect" on predator attraction, a "persistent-effect" on predator reproduction, and a "secondary-effect" on the food web structure. Our results showed that illumination with violet light provides a powerful tool for integrated pest management. This is the first report on the use of illumination to manipulate the behavior of natural enemies.

  12. SOLAR UV RADIATION AND AQUATIC BIOGEOCHEMISTRY

    EPA Science Inventory

    During the past decade significant interest has developed in the influence of solar UV radiation on biogeochemical cycles in surface waters of lakes and the sea. A major portion of this research has focused on photoreactions of the colored component of dissolved organic matter, ...

  13. UV-B Radiation Impacts Shoot Tissue Pigment Composition in Allium fistulosum L. Cultigens

    PubMed Central

    Abney, Kristin R.; Kopsell, Dean A.; Sams, Carl E.; Zivanovic, Svetlana; Kopsell, David E.

    2013-01-01

    Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 μmol·m−2 ·s−2 (2.68 W·m−2)] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β-carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen “Pesoenyj” responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values. PMID:23606817

  14. UV Coatings, Polarization, and Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  15. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    PubMed

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  16. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    DTIC Science & Technology

    2014-09-18

    MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved

  17. Long-term variations of the UV-B radiation over Central Europe since early 1960s, as revealed from the UV observations and reconstructed data

    NASA Astrophysics Data System (ADS)

    Krzyscin, J. W.

    2003-04-01

    A method of reconstruction of the UV variations for periods when UV-B measurements were not carried out is proposed. The reconstruction is based on observations of total (Sun+sky) radiation by a pyranometer, Dobson total ozone, sunshine duriation from the Campbel Stokes heliograph, and atmospheric column water content taken from NCEP/NOAA reanalysis. Modeled all-sky erythemaly weighted daily dose is calculated as a product of the cloud reduction factor (CRF) over UV range and clear-sky dose from a radiative transfer model. CRF over UV range is estimated from measured CRF for total solar radiation and the statistical dependence relating CRF over UV with that over whole solar spectrum. The measured daily UV doses and daily sum of total radiation taken at Belsk, Poland (52N, 21E) for the period 1976-2001 have been used to construct the regressions for various solar zenith angles. The time series of monthly means from the modeled daily UV doses follows the observed monthly means supporting the possibility of reconstruction of the UV time series for other periods. An inspection of the long-term stability of total radiation measurements is necessary to discuss trends in the reconstructed time series. We examine the data homogeneity analyzing the ratio of the observed to modeled total radiation for fully clear sky days that are selected from the daily values of sunshine duration measured by the Campbel-Stokes heliograph. Combining reconstructed and observed monthly means of the UV doses we found a positive trend in the UV radiation in the period 1980-1995 and almost constant UV level for other periods (early 60s up to 1980, and 1995-2001). The trend pattern suggests dominating role of the long-term total ozone forcing on the UV level with a small impact of the long-term changes in the cloud/aerosol properties.

  18. Demonstration of lipofuscin and Nissl bodies in crystal violet stained sections using a fluorescence technique or pyronin Y stain.

    PubMed

    Terr, L I

    1986-09-01

    This paper presents two simple, reliable methods for identification of lipofuscin and Nissl bodies in the same section. One method shows that lipofuscin stained with crystal violet retains its ability to fluoresce and can be observed under the fluorescence microscope after the stain has faded. Fading is accompanied by a gradual increase in the intensity of the fluorescence and is complete in about 5 min. Exciting illumination from this part of the spectrum also substantially fades staining of other autofluorescing tissue elements, such as lipids. Nonfluorescing structures, such as Nissl bodies, remain stained. By changing from transillumination with tungsten light to epifluorescent illumination and vice versa, both types of structures--Nissl bodies and lipofuscin--can be identified in the same section. The second technique uses pyronin Y for staining Nissl bodies in preparations previously stained with crystal violet. Nissl bodies are stained pink but lipofuscin remains violet. Lipofuscin in these sections also remains autofluorescent after the crystal violet stain has faded under violet or near-UV light.

  19. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    PubMed

    Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A

    2016-09-28

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  20. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    PubMed Central

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  1. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    NASA Astrophysics Data System (ADS)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  2. UV-A radiation effects on higher plants: Exploring the known unknown.

    PubMed

    Verdaguer, Dolors; Jansen, Marcel A K; Llorens, Laura; Morales, Luis O; Neugart, Susanne

    2017-02-01

    Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. UV exposure in artificial and natural weathering: A comparative study

    NASA Astrophysics Data System (ADS)

    Heikkilä, A.; Kazadzis, S.; Meinander, O.; Vaskuri, A.; Kärhä, P.; Mylläri, V.; Syrjälä, S.; Koskela, T.

    2017-02-01

    We report on a study focusing on UV exposure conditions in three different types of chambers used for accelerated ageing of materials. The first chamber is equipped with four 300-W UVA/UVB mercury vapour lamps (Ultra-Vitalux/Osram). The second chamber uses four 40-W UVA fluorescent lamps (QUV-340/Q-Lab). The third chamber is Weather-Ometer Ci3000+ from Atlas with a 4500-W xenon arc lamp. UV irradiance prevailing in each chamber was measured using Bentham DM150 double monochromator spectroradiometer. The results were compared to measurements of solar spectral UV irradiance at Jokioinen, Finland, with a Brewer MkIII double monochromator spectrophotometer. The spectral shapes of the exposing UV radiation in the different chambers were found to notably differ from each other and from the solar UV spectrum. Both spatial inhomogeneities and temporal variability caused by various factors, like the ageing of the lamps, were detected. The effects were found to strongly depend on wavelength of the exposing UV radiation. The findings of this study underline the necessity of careful characterization of the UV exposure conditions provided by the facilities used in accelerated testing of materials.

  4. Are the surgeons safe during UV-A radiation exposure in collagen cross-linking procedure?

    PubMed

    Shetty, Rashmi; Shetty, Rohit; Mahendradas, Padmamalini; Shetty, Bhujang K

    2012-02-01

    To quantify the effect of scattered UV-A radiation used in the collagen cross-linking (CXL) procedure and the amount of radiation reaching the surgeon and the surrounding area and to estimate the dampening effect by various protective devices. In this case series, 3 patients [aged 25-30 (±2.5) years] with keratoconus underwent a CXL procedure with UV-A light and riboflavin. Irradiance was measured using a spectrometer (Model USB2000; Ocean Optics, Inc) for various distances from the source, at various angles, and for different durations of radiation. The spectrometer was also used to measure the dampening effect produced by gown, latex gloves, and UV-protective glasses. Maximum UV-A radiation (1.4 × 10(-9) mW/cm(2)) was measured at 2 cm from the limbus, when the probe was held at a 45-degree angle to the floor. UV-A radiation reaching the surgeon's eye and the abdomen was 3.403 × 10(-11) and 2.36 × 10(-11) mW/cm(2), respectively. Gown, latex gloves, and UV-protective glasses showed dampening effects of 99.58%, 95.01%, and 99.73%, respectively. CXL appears to be a safe procedure with respect to UV-A radiation exposure to the surgeon. Further safety can be ensured by UV-protective devices.

  5. Reduction of patulin in apple cider by UV radiation.

    PubMed

    Dong, Qingfang; Manns, David C; Feng, Guoping; Yue, Tianli; Churey, John J; Worobo, Randy W

    2010-01-01

    The presence of the mycotoxin patulin in processed apple juice and cider presents a continual challenge to the food industry as both consumer health and product quality issues. Although several methods for control and/or elimination of patulin have been proposed, no unifying method has been commercially successful for reducing patulin burdens while maintaining product quality. In the present study, exposure to germicidal UV radiation was evaluated as a possible commercially viable alternative for the reduction and possible elimination of the patulin mycotoxin in fresh apple cider. UV exposure of 14.2 to 99.4 mJ/cm(2) resulted in a significant and nearly linear decrease in patulin levels while producing no quantifiable changes in the chemical composition (i.e., pH, Brix, and total acids) or organoleptic properties of the cider. For the range of UV doses tested, patulin levels decreased by 9.4 to 43.4%; the greatest reduction was achieved after less than 15 s of UV exposure. The method of UV radiation (the CiderSure 3500 system) is an easily implemented, high-throughput, and cost-effective method that offers simultaneous UV pasteurization of cider and juice products and reduction and/or elimination of patulin without unwanted alterations in the final product.

  6. Parkin regulates translesion DNA synthesis in response to UV radiation.

    PubMed

    Zhu, Xuefei; Ma, Xiaolu; Tu, Yingfeng; Huang, Min; Liu, Hongmei; Wang, Fengli; Gong, Juanjuan; Wang, Jiuqiang; Li, Xiaoling; Chen, Qian; Shen, Hongyan; Zhu, Shu; Wang, Yun; Liu, Yang; Guo, Caixia; Tang, Tie-Shan

    2017-05-30

    Deficiency of Parkin is a major cause of early-onset Parkinson's disease (PD). Notably, PD patients also exhibit a significantly higher risk in melanoma and other skin tumors, while the mechanism remains largely unknown. In this study, we show that depletion of Parkin causes compromised cell viability and genome stability after ultraviolet (UV) radiation. We demonstrate that Parkin promotes efficient Rad18-dependent proliferating cell nuclear antigen (PCNA) monoubiquitination by facilitating the formation of Replication protein A (RPA)-coated ssDNA upon UV radiation. Furthermore, Parkin is found to physically interact with NBS1 (Nijmegen breakage syndrome 1), and to be required for optimal recruitment of NBS1 and DNA polymerase eta (Polη) to UV-induced damage sites. Consequently, depletion of Parkin leads to increased UV-induced mutagenesis. These findings unveil an important role of Parkin in protecting genome stability through positively regulating translesion DNA synthesis (TLS) upon UV damage, providing a novel mechanistic link between Parkin deficiency and predisposition to skin cancers in PD patients.

  7. UV Radiation: a new first year physics/life sciences laboratory experiment

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.; Siddaway, J. M.

    2010-12-01

    Unfortunately, Australia leads the world in the number of skin cancer cases per capita. Three major factors that contribute to this are: 1) the level of damaging ultraviolet (UV) radiation in Australia is higher than in many other countries. This is caused, among other factors, by the stratospheric ozone depletion and Antarctic ozone hole; 2) many people in Australia are of Irish-Scottish origin and their skin can not repair the damage caused by the UV radiation as effectively as the skin of people of other origins; 3) Australia is one of the world’s leaders in the outdoor activities where people tend to spend more time outside. As our experience has shown, most Australian University students, high school students, and even high school teachers were largely unaware of the UV damage details and effective safety measures. Therefore, a need for new ways to educate people became apparent. The general aim of this new 1st year laboratory experiment, developed and first offered at La Trobe University (Melbourne, Australia) in 2009, is to investigate how UV-B radiation levels change under various solar illumination conditions and how effective different types of protection are. After pre-lab readings on physical concepts and biological effects of UV radiation, and after solving all pre-lab problems, the students go outside and measure the actual change in UV-B and UV-A radiation levels under various conditions. Some of these conditions are: direct sun, shade from a building, shade under the roof, reflection from various surfaces, direct sun through cheap and expensive sunglasses and eyeglasses, direct sun through various types of cloth and hair. The equipment used is the UV-Probe manufactured by sglux SolGel Technologies GmbH. The students’ feedback on this new laboratory experiment was very positive. It was ranked top among all physics experiments offered as part of that subject (Physics for Life Sciences) in 2009 and top among all physics experiments presented for

  8. Raman spectroscopic analysis of the responds of desert cyanobacterium Nostoc sp under UV-B radiation

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Hu, Chunxiang; Liu, Yongding

    Cyanobacteria are renowned for tolerating extremes of desiccation, UV radiation, freezethaw cycles, hypersalinity and oligotrophy, which make them as candidate par excellence for terraforming in extraterrestrial planet. Recently Raman spectrum was applied to study the biochemical information changes in different field of life science. In this study, we investigated the respond of desert cyanobactreium Nostoc sp under UV-B radiation via FT-Raman spectra. It was found that the spectral biomarkers of protectant molecular of UV radiation such as β-carotene and scytonemin were induced by UV-B radiation, but Chlorophyll a content was decreased, and also the photosynthesis activity was inhibited significantly. After light adaptation without UV-B radiation, the Chlorophyll a content and photosynthesis activity returned to high level, butβ-carotene and scytonemin content remained in the cells. Those results indicated that desert Cyanobacteria have good adaptation ability for UV-B radiation and synthesis of protectant molecular may be an effective strategy for its adaptation in evolution.

  9. Radiation resistance and loss of crystal violet binding activity in Yersinia enterocolitica suspended in raw ground pork exposed to gamma radiation and modified atmosphere.

    PubMed

    Bhaduri, Saumya; Sheen, Shiowshuh; Sommers, Christopher H

    2014-05-01

    Virulence of many foodborne pathogens is directly linked to genes carried on self-replicating extra-chromosomal elements, which can transfer genetic material, both vertically and horizontally, between bacteria of the same and different species. Pathogenic Yersinia enterocolitica harbors a 70-kb virulence plasmid (pYV) that encodes genes for low calcium response, crystal violet (CV) binding, Congo red uptake, autoagglutination (AA), hydrophobicity (HP), type III secretion channels, host immune suppression factors, and biofilm formation. Ionizing radiation and modified atmosphere packaging (MAP) are used to control foodborne pathogens and meat spoilage. In this study, the effect of gamma radiation and modified atmosphere (air, 100% N2 , 75% N2 : 25% CO2 , 50% N2 : 50% CO2 , 25% N2 : 75% CO2 , 100% CO2 ) were examined by using the CV binding phenotype, for the presence or absence of pYV in Y. enterocolitica, suspended in raw ground pork. All Y. enterocolitica serovars used (O:3, O:8, and O5,27) were more sensitive to radiation as the CO2 concentration increased above 50%. Crystal violet binding following a radiation dose of 1.0 kGy, which reduced the Y. enterocolitica serovars >5 log, was greatest in the presence of air (ca. 8%), but was not affected by N2 or CO2 concentration (ca. 5%). Following release from modified atmosphere after irradiation, the loss of CV binding rose from 5% to 8% immediately following irradiation to >30% after outgrowth at 25 °C for 24 h. These results, using Y. enterocolitica as a model system, indicate that the risk of foodborne illness could be affected by the loss of virulence factors when postprocess intervention technologies are used. Provides gamma radiation D10 data for inactivation data for Y. enterocolitica irradiated under modified atmosphere and information to risk assessors regarding the difference between pathogen presence versus actual virulence. Published 2014. This article is a U.S. Government work and is in the public

  10. Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Buchalla, R.; Schüttler, C.; Bögl, K. W.

    1995-02-01

    Sterilization by ionizing radiation has become, next to ethylene oxide treament, the most important "cold" sterilization process for medical devices made from plastics. The effects of ionizing radiation on the most important polymer for medical devices, ultra-high molecular-weight polyethylene, are briefly described in this review.

  11. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE PAGES

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; ...

    2016-06-20

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  12. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  13. Interspecific Variability in Sensitivity to UV Radiation and Subsequent Recovery in Selected Isolates of Marine Bacteria†

    PubMed Central

    Arrieta, Jesús María; Weinbauer, Markus G.; Herndl, Gerhard J.

    2000-01-01

    The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters. PMID:10742228

  14. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    PubMed

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  15. FogEye UV Sensor System Evaluation : Phase II Report

    DOT National Transportation Integrated Search

    2003-12-01

    The primary objective of the FogEye Evaluation Program is to determine whether coupled ultra-violet sources and detectors may provide enhancements to safety on the airport surface. The results of this effort will be used to complete the evaluation of...

  16. Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments

    NASA Astrophysics Data System (ADS)

    Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete

    2002-04-01

    New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.

  17. Simultaneous quantification of voriconazole and posaconazole in human plasma by high-performance liquid chromatography with ultra-violet detection.

    PubMed

    Chhun, Stéphanie; Rey, Elisabeth; Tran, Agnes; Lortholary, Olivier; Pons, Gérard; Jullien, Vincent

    2007-06-01

    A sensitive and selective high-performance liquid chromatographic (HPLC) method with ultra-violet detection has been developed and validated for the simultaneous determination of posaconazole and voriconazole, two systemic anti-fungal agents. An internal standard diazepam was added to 100 microL of human plasma followed by 3 mL of hexane-methylene chloride (70:30, v/v). The organic layer was evaporated to dryness and the residue was reconstituted with 100 microL of mobile phase before being injected in the chromatographic system. The compounds were separated on a C8 column using sodium potassium phosphate buffer (0.04 M, pH 6.0): acetonitrile:ultrapure water (45:52.5:2.5, v/v/v) as mobile phase. All compounds were detected at a wavelength of 255 nm. The assay was linear and validated over the range 0.2-10.0 mg/L for voriconazole and 0.05-10.0 mg/L for posaconazole. The biases were comprised between -3 and 5% for voriconazole and -2 and 8% for posaconazole. The intra- and inter-day precisions of the method were lower than 8% for the routine quality control (QC). The mean recovery was 98% for voriconazole and 108% for posaconazole. This method provides a useful tool for therapeutic drug monitoring.

  18. Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits: Urine Darkening

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Edwards, David; Alred, John

    2003-01-01

    Manned spacecraft have historically dumped the crew generated waste water overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet(UV)radiation. Twenty four NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.

  19. Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits- Urine Darkening

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Edwards, David; Alred, John

    2004-01-01

    Manned spacecraft have historically dumped the crew generated waste waster overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet (UV) radiation. Twenty NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.

  20. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    PubMed

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more

  1. Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.

    PubMed

    Martinez, R M; Fattori, V; Saito, P; Melo, C B P; Borghi, S M; Pinto, I C; Bussmann, A J C; Baracat, M M; Georgetti, S R; Verri, W A; Casagrande, R

    2018-04-27

    Lipoxin A4 (LXA 4 ) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA 4 has effect on ultraviolet (UV) radiation-induced skin inflammation. To investigate the effects of systemic administration with LXA 4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm 2 ). Pretreatment with LXA 4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA 4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA 4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP + cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA 4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA 4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA 4 also reduced UV radiation-induced gp91 phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. LXA 4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2. Copyright © 2018. Published by Elsevier B.V.

  2. Development of new UV-I. I. Cerenkov Viewing Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki; Nemoto, Koshichi

    1994-02-01

    The Cerenkov glow images from boiling-water reactors (BWR) and pressurized-water reactors (PWR) irradiated fuel assemblies are generally used for inspections. However, sometimes it is difficult or impossible to identify the image by the conventional Cerenkov Viewing Device (CVD), because of the long cooling time and/or low burnup. Now a new UV-I.I. (Ultra-Violet light Image Intensifier) CVD has been developed, which can detect the very weak Cerenkov glow from spent fuel assemblies. As this new device uses the newly developed proximity focused type UV-I.I., Cerenkov photons are used efficiently, producing better quality Cerenkov glow images. Moreover, since the image is convertedmore » to a video signal, it is easy to improve the signal to noise ratio (S/N) by an image processor. The new CVD was tested at BWR and PWR power plants in Japan, with fuel burnups ranging from 6,200--33,000 MWD/MTU (megawatt days per metric ton of uranium) and cooling times ranging from 370 to 6,200 d. The tests showed that the new CVD is superior to the conventional STA/CRIEPI CVD, and could detect very feeble Cerenkov glow images using an image processor.« less

  3. Exposure to UV filters during summer and winter in Danish kindergarten children.

    PubMed

    Krause, Marianna; Andersson, Anna-Maria; Skakkebaek, Niels E; Frederiksen, Hanne

    2017-02-01

    Ultra violet (UV) filters with known or suspected endocrine disrupting properties are widely used in sunscreens and other personal care products, clothing, food packaging and many other consumer products. Danish kindergarten children have sunscreens applied daily during summer to prevent skin burns. To estimate the assumed contribution of sunscreens to the total exposure to UV filters, we measured the urinary excretion of UV filters during summer and winter in kindergarten children. Spot- and first morning urines were collected during a summer and a winter day in 2013. A total of 266 urine samples were collected from 55 children and were analysed for content of benzophenone (BP), benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), 5-chloro-2-hydroxybenzophenone (BP-7), 4-methyl-benzophenone (4-MBP), 4-hydroxybenzophenone (4-HBP), 3-(4-methylbenzylidene)-camphor (4-MBC), and 3-benzylidene camphor (3-BC) by LC-MS/MS. Of the analysed UV filters, the children excreted predominantly BP-1, BP-3 and 4-HBP. The urine levels were significantly higher in summer samples compared to winter samples, however exposure during winter was still evident. Furthermore, children with the highest concentrations of UV filters in summer urines also tended to be among those with the highest winter levels. Exposures to UV filters during summertime can partly be explained by the intended use of UV filters in sunscreens, which is considered to be beneficial for children during outdoor activities. However, exposure to UV filters all year round together with large inter-individual variation indicate that children's exposure to UV filters also comes from other consumer items, presumably highly influenced by the general lifestyle of an individual child: this is completely unintended, without benefit, and potentially harmful. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Parkin regulates translesion DNA synthesis in response to UV radiation

    PubMed Central

    Huang, Min; Liu, Hongmei; Wang, Fengli; Gong, Juanjuan; Wang, Jiuqiang; Li, Xiaoling; Chen, Qian; Shen, Hongyan; Zhu, Shu; Wang, Yun; Liu, Yang; Guo, Caixia; Tang, Tie-Shan

    2017-01-01

    Deficiency of Parkin is a major cause of early-onset Parkinson's disease (PD). Notably, PD patients also exhibit a significantly higher risk in melanoma and other skin tumors, while the mechanism remains largely unknown. In this study, we show that depletion of Parkin causes compromised cell viability and genome stability after ultraviolet (UV) radiation. We demonstrate that Parkin promotes efficient Rad18-dependent proliferating cell nuclear antigen (PCNA) monoubiquitination by facilitating the formation of Replication protein A (RPA)-coated ssDNA upon UV radiation. Furthermore, Parkin is found to physically interact with NBS1 (Nijmegen breakage syndrome 1), and to be required for optimal recruitment of NBS1 and DNA polymerase eta (Polη) to UV-induced damage sites. Consequently, depletion of Parkin leads to increased UV-induced mutagenesis. These findings unveil an important role of Parkin in protecting genome stability through positively regulating translesion DNA synthesis (TLS) upon UV damage, providing a novel mechanistic link between Parkin deficiency and predisposition to skin cancers in PD patients. PMID:28430587

  5. Ultra thin metallic coatings to control near field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  6. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    NASA Astrophysics Data System (ADS)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result

  7. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation

    NASA Astrophysics Data System (ADS)

    Xu, Juntian; Bach, Lennart T.; Schulz, Kai G.; Zhao, Wenyan; Gao, Kunshan; Riebesell, Ulf

    2016-08-01

    Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400-700 nm) by 7.5 %, that of UV-A (315-400 nm) by 14.1 % and that of UV-B (280-315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.

  8. Simulation of the UV-radiation at the Martian surface

    NASA Astrophysics Data System (ADS)

    Kolb, C.; Stimpfl, P.; Krenn, H.; Lammer, H.; Kargl, G.; Abart, R.; Patel, M. R.

    The UV-radiation at the Martian surface is for several reasons of importance. UV radiation can cause specific damages in the DNA-containing living systems and is involved in the formation of catalytically produced oxidants such as superoxide ions and peroxides. These are capable to oxidize and subsequently destroy organic matter. Lab simulations are necessary to investigate and understand the effects of organic matter removal at the Martian surface. We designed a radiation apparatus which simulates the solar spectrum at the Martian surface between 200 and 700 nm. The system consists of an UV-enhanced xenon arc lamp and special exchangeable filter-sets and mirrors for simulating the effects of the Martian atmospheric column and dust loading. A special collimating system bundles the final parallel beam so that the intensity at the target spot is independent from the distance between the ray source and the sample. The system was calibrated by means of an optical photo-spectrometer to align the ray output with the theoretical target spectrum and to ensure spectral homogeneity. We present preliminary data on calibration and performance of our system, which is integrated in the Austrian Mars simulation facility.

  9. Responses of Crepis japonica induced by supplemental blue light and UV-A radiation.

    PubMed

    Constantino, L F da S; Nascimento, L B Dos S; Casanova, L M; Moreira, N Dos S; Menezes, E A; Esteves, R L; Costa, S S; Tavares, E S

    2017-02-15

    Crepis japonica (L.) D.C. (Asteraceae), a weed with antioxidant, antiallergenic, antiviral and antitumor properties displays both medicinal properties and nutritional value. This study aims to assess the effects of a supplementation of blue light and UV-A radiation on the growth, leaf anatomical structure and phenolic profile of the aerial parts of Crepis japonica. Plants were grown under two light treatments: W (control - white light), W + B (white light supplemented with blue light) and W + UV-A (white light supplemented with UV-A radiation). We recorded the length, width, and weight of fresh and dry leaves, the thickness of the epidermis and mesophyll, and stomata density. The phenolic profiles of the aqueous extracts of the aerial parts were analyzed by HPLC-DAD. There was an increase in the leaf size, stomatal density, and phenolic production, and a thickening of the mesophyll and epidermis. UV-A radiation increased the phenolic production more than blue light. Blue light and UV-A radiation both improved the production of caffeic acid by about 6 and 3 times, respectively, in comparison to control. This compound was first reported as a constituent of the extract from the aerial parts together with caftaric acid. UV-A also promoted the production of chlorogenic acid (about 1.5 times in comparison to the control). We observed that the morphological and chemical parameters of C. japonica are modified in response to blue light and UV-A radiation, which can be used as tools in the cultivation of this species in order to improve its medicinal properties and nutritional value.

  10. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher oasis region, East Antarctica.

    PubMed

    Singh, J; Gautam, S; Bhushan Pant, A

    2012-12-22

    The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations.

  11. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions.

    PubMed

    Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E

    1999-02-01

    The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.

  12. Varicella-Zoster Virus in Perth, Western Australia: Seasonality and Reactivation.

    PubMed

    Korostil, Igor A; Regan, David G

    2016-01-01

    Identification of the factors affecting reactivation of varicella-zoster virus (VZV) largely remains an open question. Exposure to solar ultra violet (UV) radiation is speculated to facilitate reactivation. Should the role of UV in reactivation be significant, VZV reactivation patterns would generally be expected to be synchronous with seasonal UV profiles in temperate climates. We analysed age and gender specific VZV notification time series data from Perth, Western Australia (WA). This city has more daily sunshine hours than any other major Australian city. Using the cosinor and generalized linear models, we tested these data for seasonality and correlation with UV and temperature. We established significant seasonality of varicella notifications and showed that while herpes-zoster (HZ) was not seasonal it had a more stable seasonal component in males over 60 than in any other subpopulation tested. We also detected significant association between HZ notifications and UV for the entire Perth population as well as for females and males separately. In most cases, temperature proved to be a significant factor as well. Our findings suggest that UV radiation may be important for VZV reactivation, under the assumption that notification data represent an acceptably accurate qualitative measure of true VZV incidence.

  13. Theoretical investigation of dielectric corona pre-ionization TEA nitrogen laser based on transmission line method

    NASA Astrophysics Data System (ADS)

    Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl

    2007-07-01

    This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.

  14. Determination of flunixin residues in bovine muscle tissue by liquid chromatography with UV detection.

    PubMed

    Asea, P A; Patterson, J R; Korsrud, G O; Dowling, P M; Boison, J O

    2001-01-01

    A new and sensitive liquid chromatography-ultra violet method with a detection limit of 6 ng/g (ppb) and a limit of quantification of 15 ng/g was developed for the determination of flunixin residues in bovine muscle tissue. Flunixin in homogenized animal tissue was extracted with acetonitrile after enzyme digestion. The tissue digest (extract) was then cleaned up on a solid-phase extraction cartridge and eluted with acidified hexane. After the eluate was evaporated to dryness under nitrogen at 55 degrees C, the residue was reconstituted in 1 mL mobile phase solution and analyzed by reversed-phase gradient chromatography with UV detection at 285 nm. The method was then applied in a survey study of slaughter animals to determine whether flunixin is being used in an off-label manner for veal and beef production in Canada.

  15. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  16. Cresyl Violet Adsorption on Sonicated Graphite Oxide.

    PubMed

    Coello-Fiallos, D; Cazzanelli, E; Tavolaro, A; Tavolaro, P; Arias, M; Caputi, L S

    2018-04-01

    We present a study of adsorption of Cresyl Violet (CV) in aqueous solution on sonicated Graphite Oxide (sGO). For comparison, we also show adsorption results of Methylene Blue (MB) and Acridine Orange (AO) performed in the same conditions. The adsorbent was synthesized by the Tour's method followed by washing in water and ethanol and sonication, without any reduction, and studied by Raman, IR, UV-Vis, SEM and TEM techniques. Our results show that adsorption fits the pseudosecond order model for the three dyes, and that the adsorption quantity for CV is 125.0 mg g-1, while for MB and AO is 123.3 and 94.6 mg g-1 respectively.

  17. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2011-02-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO(2) increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

  18. Effect of elevated CO2, O3, and UV radiation on soils.

    PubMed

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  19. Assessment of the UV camera sulfur dioxide retrieval for point source plumes

    USGS Publications Warehouse

    Dalton, M.P.; Watson, I.M.; Nadeau, P.A.; Werner, C.; Morrow, W.; Shannon, J.M.

    2009-01-01

    Digital cameras, sensitive to specific regions of the ultra-violet (UV) spectrum, have been employed for quantifying sulfur dioxide (SO2) emissions in recent years. The instruments make use of the selective absorption of UV light by SO2 molecules to determine pathlength concentration. Many monitoring advantages are gained by using this technique, but the accuracy and limitations have not been thoroughly investigated. The effect of some user-controlled parameters, including image exposure duration, the diameter of the lens aperture, the frequency of calibration cell imaging, and the use of the single or paired bandpass filters, have not yet been addressed. In order to clarify methodological consequences and quantify accuracy, laboratory and field experiments were conducted. Images were collected of calibration cells under varying observational conditions, and our conclusions provide guidance for enhanced image collection. Results indicate that the calibration cell response is reliably linear below 1500 ppm m, but that the response is significantly affected by changing light conditions. Exposure durations that produced maximum image digital numbers above 32 500 counts can reduce noise in plume images. Sulfur dioxide retrieval results from a coal-fired power plant plume were compared to direct sampling measurements and the results indicate that the accuracy of the UV camera retrieval method is within the range of current spectrometric methods. ?? 2009 Elsevier B.V.

  20. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  1. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  2. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation

    Treesearch

    Yutaka Kataoka; Makoto Kiguchi; R. Sam Williams; Philip D. Evans

    2007-01-01

    The limited penetration of wood by light explains why the weathering of wood exposed outdoors is a surface phenomenon. Wood is rapidly degraded by short-wave-length UV radiation, but the penetration of light into wood is positively correlated with its wavelength. Hence, subsurface degradation is likely to be caused by longer-wavelength light that still has sufficient...

  3. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B.

    PubMed

    Ma, Meng; Wang, Pei; Yang, Runqiang; Gu, Zhenxin

    2018-06-01

    In this study, the effects of UV-B radiation on the isoflavones accumulation, physiological and nutritional quality, water status, and characteristics of proteins in germinated soybeans were investigated. The results showed that isoflavones content in soybeans increased with appropriate intensity and time of UV-B radiation and decreased with excessive treatment. Fresh weight, length, free amino acids, reducing sugar contents and bulk water (T 23 ) in germinated soybeans decreased with increasing radiation time, indicating that UV-B inhibited the growth and nutrients metabolism of soybean during germination. Cell damage was detected in germinated soybeans with excessive UV-B radiation, as shown by the black spots in cotyledons and the increased intercellular water determined by LF-NMR. Germination resulted in an increase in random coil structures, while UV-B radiation induced no obvious changes in FT-IR spectrum and protein conformation of soybeans. Both UV-B radiation and germination caused the increase in soluble proteins, especially in 1.0-75.0 kDa fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Observations of the diffuse UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, Jayant; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1989-01-01

    Spectra are presented for the diffuse UV radiation field between 1250 to 3100 A from eight different regions of the sky, which were obtained with the Johns Hopkins UVX experiment. UVX flew aboard the Space Shuttle Columbia (STS-61C) in January 1986 as part of the Get-Away Special project. The experiment consisted of two 1/4 m Ebert-Fastie spectrometers, covering the spectral range 1250 to 1700 A at 17 A resolution and 1600 to 3100 A at 27 A resolution, respectively, with a field of view of 4 x .25 deg, sufficiently small to pick out regions of the sky with no stars in the line of sight. Values were found for the diffuse cosmic background ranging in intensity from 300 to 900 photons/sq cm/sec/sr/A. The cosmic background is spectrally flat from 1250 to 3100 A, within the uncertainties of each spectrometer. The zodiacal light begins to play a significant role in the diffuse radiation field above 2000 A, and its brightness was determined relative to the solar emission. Observed brightnesses of the zodiacal light in the UV remain almost constant with ecliptic latitude, unlike the declining visible brightnesses, possibly indicating that those (smaller) grains responsible for the UV scattering have a much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering.

  5. UV-C radiation based methods for aqueous metoprolol elimination.

    PubMed

    Rivas, F J; Gimeno, O; Borralho, T; Carbajo, M

    2010-07-15

    The endocrine disruptor metoprolol has been oxidised in aqueous solution by means of the systems UV-C, UV-C/H(2)O(2), UV-C/percarbonate, UV-C/monopersulfate, UV-C/TiO(2), UV-C/H(2)O(2)/TiO(2) and photo-Fenton. From simple photolysis experiments the quantum yield of metoprolol has been calculated (roughly 5x10(-3) mol Einstein(-1) at circumneutral pH). Addition of free radicals promoters significantly enhanced the metoprolol depletion rate. Mineralization degree was negligible when no promoter was added, while low values were achieved in the presence of either inorganic peroxides or titanium dioxide. The combination of radiation, hydrogen peroxide and TiO(2) increased the mineralization level up to values in the proximity of 45-50% under the best conditions investigated. The photo-Fenton process was the best system in terms of total oxidation (mineralization degree 70%) when optimum conditions were applied. 2010 Elsevier B.V. All rights reserved.

  6. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  7. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353*

    PubMed Central

    Cho, Sung Mi; Jeoung, Sae Chae; Song, Ji-Young; Kupriyanova, Elena V.; Pronina, Natalia A.; Lee, Bong-Woo; Jo, Seong-Whan; Park, Beom-Seok; Choi, Sang-Bong; Song, Ji-Joon; Park, Youn-Il

    2015-01-01

    Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found. PMID:26405033

  8. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  9. Effect of Elevated CO2, O3, and UV Radiation on Soils

    PubMed Central

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  10. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  11. Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model

    PubMed Central

    Rakwal, Randeep; Agrawal, Ganesh Kumar; Shibato, Junko; Imanaka, Tetsuji; Fukutani, Satoshi; Tamogami, Shigeru; Endo, Satoru; Sahoo, Sarata Kumar; Masuo, Yoshinori; Kimura, Shinzo

    2009-01-01

    We report molecular changes in leaves of rice plants (Oryza sativa L. - reference crop plant and grass model) exposed to ultra low-dose ionizing radiation, first using contaminated soil from the exclusion zone around Chernobyl reactor site. Results revealed induction of stress-related marker genes (Northern blot) and secondary metabolites (LC-MS/MS) in irradiated leaf segments over appropriate control. Second, employing the same in vitro model system, we replicated results of the first experiment using in-house fabricated sources of ultra low-dose gamma (γ) rays and selected marker genes by RT-PCR. Results suggest the usefulness of the rice model in studying ultra low-dose radiation response/s. PMID:19399245

  12. Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation.

    PubMed

    Yun, Hyejin; Lim, Sunhyung; Kim, Yangmin X; Lee, Yejin; Lee, Seulbi; Lee, Deogbae; Park, Keewoong; Sung, Jwakyung

    2018-03-13

    Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation. Copyright © 2018. Published by Elsevier GmbH.

  13. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhuri, Avijit

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  14. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhurl, Avijit K.

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  15. Two years comparative studies on biological effects of environmental UV radiation

    NASA Astrophysics Data System (ADS)

    Grof, P.; Ronto, Gyorgyi; Gaspar, S.; Berces, A.; Szabo, Laszlo D.

    1994-07-01

    A method has been developed for determination of the biologically effective UV dose based on T7 phage as biosensor. In field experiments clockwork driven telescope has been used for determining doses from direct and global (direct plus diffuse) solar radiation. On fine summer days at mid-latitude this arrangement allowed the following comparisons: measured doses from direct and global radiation obtained at the same time and measuring site reflecting the biological importance of diffuse radiation; direct and global radiation obtained at the same time and measuring site reflecting the biological importance of diffuse radiation; direct and global doses obtained at the same time on different measuring sites (downtown, suburb, outside the town) reflecting the differences caused by air quality; direct and global doses obtained on the same measuring place, in summertime of two different years reflecting the importance of the long-term measurements for estimating the biological risk caused by increased UV-B radiation; measured data and model calculations.

  16. Remote sensing of soil moisture using airborne hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...

  17. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    USDA-ARS?s Scientific Manuscript database

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  18. An action spectrum for UV-B radiation and the rat lens.

    PubMed

    Merriam, J C; Löfgren, S; Michael, R; Söderberg, P; Dillon, J; Zheng, L; Ayala, M

    2000-08-01

    To determine an action spectrum for UV-B radiation and the rat lens and to show the effect of the atmosphere and the cornea on the action spectrum. One eye of young female rats was exposed to 5-nm bandwidths of UV-B radiation (290, 295, 300, 305, 310, and 315 nm). Light scattering of exposed and nonexposed lenses was measured 1 week after irradiation. A quadratic polynomial was fit to the dose-response curve for each wave band. The dose at each wave band that produced a level of light scattering greater than 95% of the nonexposed lenses was defined as the maximum acceptable dose (MAD). Transmittance of the rat cornea was measured with a fiberoptic spectrophotometer. The times to be exposed to the MAD in Stockholm (59.3 degrees N) and La Palma (28 degrees N) were compared. Significant light scattering was detected after UV-B at 295, 300, 305, 310, and 315 nm. The lens was most sensitive to UV-B at 300 nm. Correcting for corneal transmittance showed that the rat lens is at least as sensitive to UV radiation at 295 nm as at 300 nm. The times to be exposed to the MAD at each wave band were greater in Stockholm than in La Palma, and in both locations the theoretical time to be exposed to the MAD was least at 305 nm. After correcting for corneal transmittance, the biological sensitivity of the rat lens to UV-B is at least as great at 295 nm as at 300 nm. After correcting for transmittance by the atmosphere, UV-B at 305 nm is the most likely wave band to injure the rat lens in both Stockholm and La Palma.

  19. Model of radiation transmittance by inorganic fouling on UV reactor lamp sleeves.

    PubMed

    Wait, Isaac W; Blatchley, Ernest R

    2010-11-01

    The efficacy of UV disinfection of water depends on the ability of radiation to pass from UV lamps through the quartz sleeves that encase them; the accumulation of metal-containing foulants on sleeve surfaces inhibits disinfection by absorbing radiation that would otherwise be available for inactivation. In a series of experiments, the composition and quantity of sleeve foulants were studied relative to water chemistry and sleeve transmittance. Findings indicate that iron and calcium dominate fouling, with elevated fouling activity by iron, aluminum, manganese, and zinc. A regression-based modeling approach was used to characterize and quantify the effects of foulant metals on UV absorbance. The molar extinction coefficient for iron was found to be more than 3 times greater than that of calcium. Iron's relatively high activity in fouling reactions, elevated capacity to absorb UV, and reduced solubility under oxidizing conditions makes it a fouling precursor of particular concern, with respect to potential for sleeve fouling in UV reactors.

  20. Quantifying the impact of smoke aerosol on the UV radiation

    NASA Astrophysics Data System (ADS)

    Sokolik, I. N.; Tatarskii, V.; Hall, S. R.; Petropavlovskikh, I. V.

    2017-12-01

    We present an analysis of the impact of smoke on the UV radiation. The analysis is performed for a case study by combining the modeling and measurements. The case study is focusing in wildfires occurred in California in ????. The fires have been affecting the environment in the region, posing a serious threat to the human well - being.The modeling is performed using a fully couple WRF- Chem- SMOKE model. The model uses the FRP MODIS satellite data to generate the smoke emission for an actual event. The smoke aerosol is treated in a size and composition resolved manner. The optical properties are computed online and provided to the TUV model that is incorporated in the WRF - Chem-SMOKE model. The analysis of the impact of smoke on the UV radiation is performed. We assess the impact of smoke on the TOA radiative forcing. Our results show a significant impact of smoke on the radiative regime of the atmosphere.

  1. Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

    NASA Astrophysics Data System (ADS)

    Feister, U.; Junk, J.; Woldt, M.; Bais, A.; Helbig, A.; Janouch, M.; Josefsson, W.; Kazantzidis, A.; Lindfors, A.; den Outer, P. N.; Slaper, H.

    2008-06-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  2. Influence of low ozone episodes on erythemal UV-B radiation in Austria

    NASA Astrophysics Data System (ADS)

    Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.

    2017-06-01

    This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO < -1) led to positive UVI anomalies. Considering only days with strongly positive UVI anomaly (∆UVI > 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.

  3. UV-C radiation increases sterol production in the microalga Pavlova lutheri.

    PubMed

    Ahmed, Faruq; Schenk, Peer M

    2017-07-01

    Plant sterols have become well-known to promote cardiovascular health through the reduction of low density lipoprotein cholesterol in the blood. Plant sterols also have anti-inflammatory, anti-cancer, anti-oxidative and anti-atherogenicity activities. Microalgae have the potential to become a useful alternative source of plant sterols with several species reported to have higher concentrations than current commercial ones. In order to increase phytosterol production and optimise culture conditions, the high sterol producer Pavlova lutheri was treated in different dosages (50-250 mJ m -2 ) of UV-C radiation and several concentrations (1-500 μmol/L) of hydrogen peroxide (H 2 O 2 ) and the sterol contents were quantified for two days after the treatments. The contents of malondialdehyde (MDA) superoxide dismutase (SOD) as indications of cell membrane damage by lipid peroxidation and repair of oxidative stress, respectively, were measured. Higher activities of SOD and MDA were observed in the treated biomass when compared to the controls. Total sterols increased in P. lutheri due to UV-C radiation (at 100 mJ m -2 ) but not in response to H 2 O 2 treatment. Among the nineteen sterol compounds identified in P. lutheri, poriferasterol, epicampesterol, methylergostenol, fungisterol, dihydrochondrillasterol, and chondrillasterol increased due to UV-C radiation. Therefore, UV-C radiation can be a useful tool to boost industrial phytosterol production from P. lutheri. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. UV Raman detection of 2,4-DNT in contact with sand particles

    NASA Astrophysics Data System (ADS)

    Blanco, Alejandro; Pacheco-Londoño, Leonardo C.; Peña-Quevedo, Alvaro J.; Hernández-Rivera, Samuel P.

    2006-05-01

    Deep Ultra Violet Raman Spectroscopy (DUV-RS) is an emerging tool for vibrational spectroscopy analysis and can be used in Point Detection mode to detect explosive components of landmines and Improvised Explosive Devices (IED). Interactions of explosives with different substrates can be measured by using quantitative vibrational signal shift information of scattered Raman light associated with these interactions. In this research, grounds were laid for detection of explosives using UV-Raman Spectroscopy equipped with 244 nm laser excitation line from a 488 nm frequency doubled Coherent FreD laser. In other experiments, samples of 2,4-DNT were allowed to interact with Ottawa Sand and were studied using DUV-RS. Characteristic vibrational signals of energetic compounds were analyzed in the ranges: 400-1200 cm -1, 1200-1800 cm -1, and 2800-3500 cm -1. In addition these Raman spectra were compared with dispersive spectra that were acquired using Raman Microscopy equipped with 514.5 nm (VIS) 785 nm (NIR) and 1064 nm (NIR) excitation lasers.

  5. The effects of near-UV radiation on elasmobranch lens cytoskeletal actin.

    PubMed

    Zigman, S; Rafferty, N S; Scholz, D L; Lowe, K

    1992-08-01

    The role of near-UV radiation as a cytoskeletal actin-damaging agent was investigated. Two procedures were used to analyse fresh smooth dogfish (Mustelus canis) eye lenses that were incubated for up to 22 hr in vitro, with elasmobranch Ringer's medium, and with or without exposure to a near-UV lamp (emission principally at 365 nm; irradiance of 2.5 mW cm-2). These were observed histologically using phalloidin-rhodamine specific staining and by transmission electron microscopy. In addition, solutions of purified polymerized rabbit muscle actin were exposed to the same UV conditions and depolymerization was assayed by ultracentrifugation and high-pressure liquid chromatography. While the two actins studied do differ very slightly in some amino acid sequences, they would react physically nearly identically. The results showed that dogfish lenses developed superficial opacities due to near-UV exposure. Whole mounts of lens epithelium exhibited breakdown of actin filaments in the basal region of the cells within 18 hr of UV exposure. TEM confirmed the breakdown of actin filaments due to UV exposure. SDS-PAGE and immunoblotting positively identified actin in these cells. Direct exposure of purified polymerized muscle actin in polymerizing buffer led to an increase in actin monomer of approximately 25% in the UV-exposed solutions within 3-18 hr, whether assayed by ultracentrifugation or HPLC. The above indicates that elasmobranch lens epithelial cells contain UV-labile actin filaments, and that near-UV radiation, as is present in the sunlit environment, can break down the actin structure in these cells. Furthermore, breakdown of purified polymerized muscle actin does occur due to near-UV light exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  7. Preharvest UV-C radiation influences physiological, biochemical, and transcriptional changes in strawberry cv. Camarosa.

    PubMed

    de Oliveira, Isadora Rubin; Crizel, Giseli Rodrigues; Severo, Joseana; Renard, Catherine M G C; Chaves, Fabio Clasen; Rombaldi, Cesar Valmor

    2016-11-01

    Ultraviolet C (UV-C) radiation is known for preventing fungal decay and enhancing phytochemical content in fruit when applied postharvest. However, limited knowledge is available regarding fruit responses to preharvest application of UV-C radiation. Thus, the effects of UV-C radiation on photosynthetic efficiency, dry matter accumulation and partitioning, fruit yield and decay, phytochemical content, and relative transcript accumulation of genes associated with these metabolic pathways were monitored in strawberry (Fragaria x ananassa Duch.) cv. Camarosa. A reduction in photosynthetic efficiency was followed by a decrease in light harvesting complex LhcIIb-1 mRNA accumulation as well as a decrease in yield per plant. Phenylalanine ammonia lyase activity, phenolic, anthocyanin, and L-ascorbic acid contents were higher in UV-C treated fruit. In addition, preharvest UV-C treatment reduced microorganism incidence in the greenhouse and on the fruit surface, increased the accumulation of β-1,3-Gluc and PR-1 mRNA, and prevented fruit decay. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  9. Penetration of UV Radiation in the Earth's Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Lubin, Dan

    2005-01-01

    This project was a collaboration between SIO/UCSD and NASA/GSFC to develop a global estimation of the penetration of UV light into open ocean waters, and into coastal waters. We determined the ocean UV reflectance spectra seen by satellites above the atmosphere by combining existing sophisticated radiative transfer models with in situ UV Visible data sets to improve coupled radiance estimates both underwater and within the atmosphere. Results included improved estimates of surface spectral irradiance, 0.3-1.0 micron, and estimates of photosynthetic inhibition, DNA mutation, and CO production. Data sets developed under this proposal have been made publicly available via submission to the SeaWiFS Bio-Optical Archive and Storage System. Numerous peer-reviewed publications and conference proceedings and abstracts resulted from the work supported by this research award.

  10. Specific ultra-violet absorbance as an indicator measurement of merucry sources in an Adirondack River basin

    USGS Publications Warehouse

    Burns, Douglas A.; Aiken, George R.; Bradley, Paul M.; Journey, Celeste A.; Schelker, Jakob

    2013-01-01

    The Adirondack region of New York has been identified as a hot spot where high methylmercury concentrations are found in surface waters and biota, yet mercury (Hg) concentrations vary widely in this region. We collected stream and groundwater samples for Hg and organic carbon analyses across the upper Hudson River, a 493 km2 basin in the central Adirondacks to evaluate and model the sources of variation in filtered total Hg (FTHg) concentrations. Variability in FTHg concentrations during the growing seasons (May-Oct) of 2007-2009 in Fishing Brook, a 66-km2 sub-basin, was better explained by specific ultra-violet absorbance at 254 nm (SUVA254), a measure of organic carbon aromaticity, than by dissolved organic carbon (DOC) concentrations, a commonly used Hg indicator. SUVA254 was a stronger predictor of FTHg concentrations during the growing season than during the dormant season. Multiple linear regression models that included SUVA254 values and DOC concentrations could explain 75 % of the variation in FTHg concentrations on an annual basis and 84 % during the growing season. A multiple linear regression landscape modeling approach applied to 27 synoptic sites across the upper Hudson basin found that higher SUVA254 values are associated with gentler slopes, and greater riparian area, and lower SUVA254 values are associated with an increasing influence of open water. We hypothesize that the strong Hg?SUVA254 relation in this basin reflects distinct patterns of FTHg and SUVA254 that are characteristic of source areas that control the mobilization of Hg to surface waters, and that the seasonal influence of these source areas varies in this heterogeneous basin landscape.

  11. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  12. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum.

    PubMed

    Huang, Yijia; Liu, Ling; Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-03

    In this paper, efficient ultra-broadband absorption from ultraviolet (UV) to near infrared (NIR) is achieved using a metamaterial perfect absorber (MPA) with refractory constituents. Both simulated and experimental results indicate that this proposed MPA exhibits an average absorption over 95% at wavelengths ranging from 200 nm to 900 nm. Besides, owing to the ultrathin thickness and symmetrical topology of this device, it exhibits great angular tolerance up to 60° independent of the incident polarizations. Excellent thermal stability is also demonstrated at high operation temperatures. The physical origin of the ultra-broadband characteristics is mainly based on diffraction/interference engineering at short wavelengths and the anti-reflection effect at long wavelengths. We believe that such a device may find potential applications ranging from photodetection and photothermal energy conversion to ultraviolet protection and thermophotovoltaics.

  13. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L.

    PubMed

    Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja

    2017-02-01

    UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The total ozone and UV solar radiation over Stara Zagora, Bulgaria

    NASA Astrophysics Data System (ADS)

    Mendeva, B.; Gogosheva, Ts.; Petkov, B.; Krastev, D.

    Direct ground-based UV measurements and the total ozone content (TOC) over Stara Zagora, Bulgaria are presented. The observations are conducted by a scanning spectrophotometer, which measures the direct solar radiation in the range 290 - 360 nm with 1 nm resolution. For the time period 1998 -- 2003 the TOC data show seasonal variations, typical for the middle latitudes -- maximum in the spring and minimum in the autumn. The comparison of these TOC ground-based data to TOC satellite-borne data from the Global Ozone Monitoring Experiment (GOME) shows a seasonal dependence of the differences between the ground-based and satellite data. The relation between the UV radiation and TOC is investigated. Clear negative relationship is recognized between the total ozone and the irradiance of the wavelength 305 nm. The opposition of the two variables is significant ( r = - 0,62 ± 0,18) at 98 % confidence level. Yet, for 325 nm it is almost independent with the total ozone. The dependence of the UV-B radiation on the solar zenith angle at given TOC is also analyzed. A decrease of all wavelengths intensities with increase of the solar zenith angle is obtained but with different rate for each of them. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval 290-330 nm of the measured UV solar spectrum, weighted with an action spectrum, typical for each effect. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2,3 %.The eye-damaging doses are more influenced by the TOC changes and in this case RAF=-2,7%. The amount of these biological doses is in a direct ratio with the solar altitude over the horizon. This dependence is more markedly expressed at lower total ozone content in the atmosphere.

  15. Effects of terrestrial UV radiation on selected outdoor materials: an interdisciplinary approach

    NASA Astrophysics Data System (ADS)

    Heikkilä, A.; Kazadzis, S.; Tolonen-Kivimäki, O.; Meinander, O.; Lindfors, A.; Lakkala, K.; Koskela, T.; Kaurola, J.; Sormanen, A.; Kärhä, P.; Naula-Iltanen, A.; Syrjälä, S.; Kaunismaa, M.; Juhola, J.; Ture, T.; Feister, U.; Kouremeti, N.; Bais, A.; Vilaplana, J. M.; Rodriguez, J. J.; Guirado, C.; Cuevas, E.; Koskinen, J.

    2009-08-01

    Modern polymeric materials possess an ever increasing potential in a large variety of outdoor objects and structures offering an alternative for many traditional materials. In outdoor applications, however, polymers are subject to a phenomenon called weathering. This is primarily observed as unwanted property changes: yellowing or fading, chalking, blistering, and even severe erosion of the material surface. One of the major weathering factors is UV radiation. In spring 2005, the Finnish Meteorological Institute with its research and industrial partners launched a five-year material research project named UVEMA (UV radiation Effects on MAterials). Within the framework of the project, a weathering network of seven European sites was established. The network extends from the Canary Islands of Spain (latitude 28.5°N) to the Lapland of Finland (latitude 67.4°N), covering a wide range of UV radiation conditions. Since autumn 2005, the sites of the network have been maintaining weathering platforms of specimens of different kinds of polymeric materials. At the same time, the sites have been maintaining their long-term monitoring programmes for spectrally resolved UV radiation. Within UVEMA, these data are used for explaining the differences between the degradation rates of the materials at each site and for correlating the UV conditions in accelerated ageing tests to those under the Sun. We will present the objectives of the UVEMA project aiming at deeper understanding of the ageing of polymers and more reliable assessments for their service life time. Methodologies adopted within the project and the first results of the project will be summarized.

  16. Characterization of the global structure of low methoxyl pectin in solution

    USDA-ARS?s Scientific Manuscript database

    Low methoxyl citrus pectin (LMP) and amidated low methoxyl pectin (LMAP) were characterized by high performance size exclusion chromatography (HPSEC) with online light scattering (LS), intrinsic viscosity ('w), differential refractive index (dRI) and ultra violet detection (UV), by amino acid anal...

  17. Near-infrared photoluminescence in La0.98AlO3: 0.02Ln3+(Ln = Nd/Yb) for sensitization of c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The host matrix LaAlO3 was synthesized by conventional solid state reaction method in which the Nd3+ ions and Yb3+ ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd3+ ion doped LaAlO3 converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb3+ ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La0.98AlO3: 0.02Ln3+(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.

  18. UV radiation impacts body weight, oxygen consumption, and shelter selection in the intertidal vertebrate Girella laevifrons.

    PubMed

    Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela

    2017-02-01

    The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and Vis radiations.

    PubMed

    Doná, Giovanna; Dagostin, João Luiz Andreoti; Takashina, Thiago Atsushi; de Castilhos, Fernanda; Igarashi-Mafra, Luciana

    2018-05-01

    Due to the widespread use of methylparaben (MEP) and its high chemical stability, it can be found in wastewater treatment plants and can act as an endocrine disrupting compound. In this study, the photocatalytic degradation and mineralization of MEP solutions were evaluated under UV-A, UV-C and Vis radiations in the presence of the photocatalyst TiO 2 . In this sense, the effects of the catalyst load, pH and MEP initial concentration were studied. Remarkably higher reaction rates and total photodegradation were achieved in systems assisted by UV-C radiation. The complete degradation was achieved after 60 min of reaction using the MEP concentration of 30 mg L -1 at pH 9 and 500 mg L -1 TiO 2 . The experimental data apparently followed a Langmuir-Hinshelwood kinetic model, which could predict 88-98% of the reaction behavior. For the best photodegradation condition, the model predicted an apparent reaction rate constant (k app ) equal to 0.0505 min -1 and an initial reaction rate of 1.5641 mg (L min) -1 . Mineralization analyses showed high removal for MEP and derived compounds from the initial solution when using UV-C after 90 min of reaction. The lower toxicity was also confirmed by in vivo tests using MEP solutions previously treated by photocatalysis.

  20. Optical properties of γ-irradiated Bombyx mori silk fibroin films

    NASA Astrophysics Data System (ADS)

    Madhukumar, R.; Asha, S.; Lakshmeesha Rao, B.; Sarojini, B. K.; Byrappa, K.; Wang, Youjiang; Sangappa, Y.

    2015-11-01

    In the present work the Bombyx mori silk fibroin (SF) films were prepared by the solution casting method and effects of γ-irradiation on the optical properties and optical constants of the films have been studied by using Ultra Violet-Visible (UV-Vis) spectrophotometer. The recorded UV-Vis absorption and transmission spectra have been used to determine the optical band gap (Eg), refractive index (n), extinction coefficient (k), optical conductivity (σopt) and dielectric constants (ε*) of virgin and γ-irradiated films. Reduction in optical band gap and increase in refractive index with increasing radiation dosage were observed. It is also found that there is an increase in dielectric constants with increasing photon energy. The obtained results reveal that the refractive index of the SF films may be efficiently changed by γ-irradiation.

  1. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures.

    PubMed

    Wu, Hongyan; Gao, Kunshan; Wu, Haiyan

    2009-02-09

    UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.

  2. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  3. From Radio to X-rays--Some 'Real' Electrical Applications.

    ERIC Educational Resources Information Center

    Freeman, J. C.

    1986-01-01

    Describes practical applications related to X-rays, ultra-violet radiation, light radiation, short-wave infra-red radiation, medium-wave infra-red radiation, long-wave infra-red radiation, microwave radiation, and radio frequency radiation. Suggests that these applications be used during instruction on electricity. (JN)

  4. Radiative transfer calculations of ultra-relativistic shock breakout in circumstellar medium: Dependence on the central engine activity

    NASA Astrophysics Data System (ADS)

    Ohtani, Yukari; Suzuki, Akihiro; Shigeyama, Toshikazu

    2015-08-01

    Core collapse supernovae radiate bright X-ray or UV flashes imediately after their explosion, because shock waves emerge on the surfaces of the progenitors. Due to their short duration, a very small number of such events (so called shock breakouts) have been observed, and the maximum shock velocities are likely to be significantly smaller than the speed of light. In principle, we can consider the shocks with ultra-relativistic velocities breakout stellar surfaces and generate gamma-ray photons. A recently popular theory of gamma-ray bursts argues that the thermal radiation produced in the jet may play important roles in the prompt emission. Therefore, for understanding of the relation between jets and the central engine, studying properties of breakouts in the relativistic limit will be interesting. To obtain some information concerning the temporal evolution of the photospheric emission from jets, we make a radiative transfer calculation of ultra-relativistic shock breakout in circumstellar medium by using a Monte Carlo method. We use a self-similar solution constructed by Blandford & McKee (1976), in which the shock Lorentz factor is assumed to follow a simple power law relation determined by the central engine activity. By comparing the calculation results of the accelerating shock and the decelerating shock, we find that influence of the beaming effect and the scattering angular distribution cause two apparent differences in light curves and temporal spectral evolution. One is that the ratio of the time between the onset and the peak to the duration is much smaller in light curves of decelerating shocks. The other one is that the spectral shape does not significantly change with time if the shock accelerates, otherwise the first half of the emerging photons contains much more high energy photons (above 1 MeV) than the second half.

  5. Large enhancement of UV luminescence emission of ZnO nanoparticles by coupling excitons with Ag surface plasmons

    NASA Astrophysics Data System (ADS)

    Kuiri, Probodh K.; Pramanik, Subhamay

    2018-04-01

    For an emitter based on bandgap emission, defect mediated emission has always been considered as the most important loss. Here, a novel approach which can overcome such emission loss is proposed using films of ZnO nanoparticles (NPs) on Ag NPs embedded in silica. The effects of the size of Ag NPs on the enhancement of ultra-violet (UV) photoluminescence (PL) of ZnO NPs for such a system have been studied. For the ZnO NPs without Ag NPs, two emission bands have been seen: one in the UV region and the other one in the visible region. This UV PL emission intensity has been seen to increase significantly with a drastic reduction of the visible PL emission intensity in the case of the sample containing ZnO NPs on silica embedded Ag NPs. A linear increase in UV emission with increase in the size of Ag NPs has been found. For the largest size of Ag NPs (˜10 nm, considered in the present study), the PL emission enhancement becomes about 4 times higher than that of sample without Ag NPs. The observed enhancement of the UV PL emission was caused by coupling between spontaneous emission in ZnO and surface plasmons of Ag. The larger Ag NPs provided a larger scattering cross section in coupling surface plasmons to light leading to an increase in UV emission. Thus, it is possible to convert the useless defect emission to the useful excitonic emission with a large enhancement factor.

  6. Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Ryul; Jeong, Han-Wook; Lee, Kong-Soo; Yi, Junsin; Yoo, Jae-Chern; Cho, Myung-Woo; Cho, Sung-Hak; Choi, Byoungdeog

    2011-01-01

    Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.

  7. INTERACTIONS OF SOLAR UV RADIATION AND DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...

  8. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B.

    PubMed

    Chen, Yi-Ping

    2009-07-01

    To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.

  9. Developmental reprogramming by UV-B radiation in plants.

    PubMed

    Dotto, Marcela; Casati, Paula

    2017-11-01

    Plants are extremely plastic organisms with the ability to adapt and respond to the changing environmental conditions surrounding them. Sunlight is one of the main resources for plants, both as a primary energy source for photosynthesis and as a stimulus that regulates different aspects of their growth and development. UV-B comprises wavelengths that correspond to a high energy region of the solar spectrum capable of reaching the biosphere, influencing plant growth. It is currently believed that plants are able to acclimate when growing under the influence of this radiation and perceive it as a signal, without stress signs. Nonetheless, many UV-B induced changes are elicited after DNA damage occurs as a consequence of exposure. In this review we focus on the influence of UV-B on leaf, flower and root development and emphasize the limited understanding of the molecular mechanisms for most of this developmental processes affected by UV-B documented over the years of research in this area. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Lee, Kyun-Woo; Kim, Min-Jung; Shin, Kyung-Hoon; Lee, Su-Jae; Lee, Young-Mi; Lee, Jae-Seong

    2015-01-01

    Ultraviolet B (UV-B) radiation presents an environmental hazard to aquatic organisms. To understand the molecular responses of the intertidal copepod Tigriopus japonicus to UV-B radiation, we measured the acute toxicity response to 96 h of UV-B radiation, and we also assessed the intracellular reactive oxygen species (ROS) levels, glutathione (GSH) content, and antioxidant enzyme (GST, GR, GPx, and SOD) activities after 24 h of exposure to UV-B with LD50 and half LD50 values. Also, expression patterns of p53 and hsp gene families with phosphorylation of p38 MAPK were investigated in UV-B-exposed copepods. We found that the ROS level, GSH content, and antioxidant enzyme activity levels were increased with the transcriptional upregulation of antioxidant-related genes, indicating that UV-B induces oxidative stress by generating ROS and stimulating antioxidant enzymatic activity as a defense mechanism. Additionally, we found that p53 expression was significantly increased after UV-B irradiation due to increases in the phosphorylation of the stress-responsive p38 MAPK, indicating that UV-B may be responsible for inducing DNA damage in T. japonicus. Of the hsp family genes, transcriptional levels of hsp20, hsp20.7, hsp70, and hsp90 were elevated in response to a low dose of UV-B radiation (9 kJ m(-2)), suggesting that these hsp genes may be involved in cellular protection against UV-B radiation. In this paper, we performed a pathway-oriented mechanistic analysis in response to UV-B radiation, and this analysis provides a better understanding of the effects of UV-B in the intertidal benthic copepod T. japonicus. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Influences of the clearness index on UV solar radiation for two locations in the Tibetan Plateau-Lhasa and Haibei

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Wang, Yuesi; Liu, Guangren

    2008-09-01

    Ultraviolet (UV) solar radiation has a significant influence on human health, the environment and climate. A series of measurements, including UV radiation (290-400 nm) and global solar radiation ( R s), were continuously recorded from August 2004 at the Lhasa and Haibei sites on the Tibetan Plateau. Both observation sites’ altitudes are above 3000 m and have similar meteorological conditions. The data from 2005-2006 was used to identify the varying characteristics of UV radiation. It’s relation to the clearness index K s, the relative optical mass m r, and R s were established. The annual mean values of total daily UV radiation are 0.92 and 0.67 MJ m-2 at Lhasa and Haibei, respectively. The UV radiation in Lhasa represented 4.6% of the global solar radiation while in Haibei this percentage was 4.2%. In the case of clear days ( K s > 0.8), these percentages ranged between 4.0% and 4.5% in Lhasa and between 5.1% and 5.5% in Haibei. In the case of cloudy days ( K s < 0.4), these percentages ranged from 4.4% to 6.8% in Lhasa and from 5.1% to 5.5% in Haibei. The maximum values of UV radiation for each relative optical mass diminished exponentially with m r. Thus, for Lhasa and Haibei, UV=46.25 m {4/-1.29}, and UV=51.76 m {r/-1.42}, respectively. The results of this study can be used to obtain more UV radiation data for the study of UV climate characteristics, the effects of UV on ecological processes and the feedback of the thinning of the stratospheric ozone, from more routine measurements R s data.

  12. Varicella-Zoster Virus in Perth, Western Australia: Seasonality and Reactivation

    PubMed Central

    Korostil, Igor A.; Regan, David G.

    2016-01-01

    Background Identification of the factors affecting reactivation of varicella-zoster virus (VZV) largely remains an open question. Exposure to solar ultra violet (UV) radiation is speculated to facilitate reactivation. Should the role of UV in reactivation be significant, VZV reactivation patterns would generally be expected to be synchronous with seasonal UV profiles in temperate climates. Methods We analysed age and gender specific VZV notification time series data from Perth, Western Australia (WA). This city has more daily sunshine hours than any other major Australian city. Using the cosinor and generalized linear models, we tested these data for seasonality and correlation with UV and temperature. Results We established significant seasonality of varicella notifications and showed that while herpes-zoster (HZ) was not seasonal it had a more stable seasonal component in males over 60 than in any other subpopulation tested. We also detected significant association between HZ notifications and UV for the entire Perth population as well as for females and males separately. In most cases, temperature proved to be a significant factor as well. Conclusions Our findings suggest that UV radiation may be important for VZV reactivation, under the assumption that notification data represent an acceptably accurate qualitative measure of true VZV incidence. PMID:26963841

  13. The effect of UV radiation from oxygen and argon plasma on the adhesion of organosilicon coatings on polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.

    2017-01-01

    The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.

  14. DSMC simulation of two-phase plume flow with UV radiation

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-01

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  15. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    PubMed

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  16. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks

    DOE PAGES

    Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; ...

    2014-11-07

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO 2, whereas the biological pump is the main biological process for CO 2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO 2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less

  17. An Experimental Characterization System for Deep Ultra-Violet (UV) Photoresists

    NASA Astrophysics Data System (ADS)

    Drako, Dean M.; Partlo, William N.; Oldham, William G.; Neureuther, Andrew R.

    1989-08-01

    A versatile system designed specifically for experimental automated photoresist characterization has been constructed utilizing an excimer laser source for exposure at 248nm. The system was assembled, as much as possible, from commercially available components in order to facilitate its replication. The software and hardware are completely documented in a University of California-Berkeley Engineering Research Lab Memo. An IBM PC-AT compatible computer controls an excimer laser, operates a Fourier Transform Infrared (FTIR) Spectrometer, measures and records the energy of each laser pulse (incident, reflected, and transmitted), opens and closes shutters, and operates two linear stages for sample movement. All operations (except FTIR data reduction) are managed by a control program written in the "C" language. The system is capable of measuring total exposure dose, performing bleaching measurements, creating and recording exposure pulse sequences, and generating exposure patterns suitable for multiple channel monitoring of the development. The total exposure energy, energy per pulse, and pulse rate are selectable over a wide range. The system contains an in-situ Fourier Transform Infrared Spectrometer for qualitative and quantitative analysis of the photoresist baking and exposure processes (baking is not done in-situ). FIIR may be performed in transmission or reflection. The FTIR data will form the basis of comprehensive multi-state resist models. The system's versatility facilitates the development of new automated and repeatable experiments. Simple controlling software, utilizing the provided interface sub-routines, can be written to control new experiments and collect data.

  18. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    PubMed

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  19. Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargentini, N.J.; Smith, K.C.

    1983-03-01

    After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slightmore » enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.« less

  20. The changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages.

    PubMed

    Yao, Xiaoqin; Chu, Jianzhou; He, Xueli; Ma, Chunhui; Han, Chao; Shen, Haiyu

    2015-05-01

    The paper mainly reported the changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages. The experiment included two levels of UV-B radiation (ambient UV-B, a 10% increase in ambient UV-B). Elevated UV-B radiation was carried out for 10-days during seedling, vigorous growth, bud and flower stages of Qi chrysanthemum, respectively. Elevated UV-B treatments applied during four development stages did not significantly affect flower yield, the rate of superoxide radical production and malondialdehyde concentration in flowers, while increased free amino acid concentration. The amino acid concentration induced by elevated UV-B radiation applied during bud stage was higher than that during the other stages. Elevated UV-B radiation applied during vigorous growth (except for flavone), bud and flower stages of chrysanthemum significantly increased hydrogen peroxide concentration, phenylalanine ammonia lyase enzyme activity, vitamin C, chlorogenic acid and flavone concentrations in flowers. These results suggested that active and nutritional ingredients in flowers of chrysanthemum could be increased by elevated UV-B radiation applied during the later growth stages of chrysanthemum. The paper supplied a simple and environmental-friendly method to improve quality of medicinal plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [The research of UV-responsive sensitivity enhancement of fluorescent coating films by MgF2 layer].

    PubMed

    Lu, Zhong-Rong; Ni, Zheng-Ji; Tao, Chun-Xian; Hong, Rui-Jin; Zhang, Da-Wei; Huang, Yuan-Shen

    2014-03-01

    A low cost and less complicated expansion approach of wavelength responses with a Lumogen phosphor coating was adopted, as they increased the quantum efficiency of CCD and CMOS detectors in ultra-violet by absorbing UV light and then re emitting visible light. In this paper, the sensitivity enhancement of fluorescence coatings was studied by adding an anti-reflection film or barrier film to reduce the loss of the scattering and reflection on the incident interface. The Lumogen and MgF2/Lumogen film were deposited on quartz glasses by physical vacuum deposition. The surface morphology, transmittance spectrum, reflectance spectrum and fluorescence emission spectrum were obtained by atomic force microscope (AFM), spectrophotometer and fluorescence spectrometer, respectively. The results indicated that MgF2 film had obvious positive effect on reducing scattering and reflection loss in 500-700 nm, and enhancing the absorption of Lumogen coating in ultraviolet spectrum. Meanwhile, the fluorescent emission intensity had a substantial increase by smoothing the film surface and thus reducing the light scattering. At the same time, the MgF2 layer could protect Lumogen coating from damaging and contamination, which give a prolong lifetime of the UV-responsive CCD sensors with fluorescent coatings.

  2. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOEpatents

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  3. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    PubMed

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.

    PubMed

    Joshi, Devika; Mohandass, C; Dhale, Mohan

    2018-01-01

    Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.

  5. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    PubMed

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  6. INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING

    EPA Science Inventory

    This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

  7. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manganese violet is a violet pigment obtained by reacting phosphoric acid, ammonium dihydrogen orthophosphate, and manganese dioxide at temperatures above 450 °F. The pigment is a manganese ammonium...

  8. Impulse powerful UV-radiation source pumped by the sublight ionization waves for the bacteriological disinfection of water

    NASA Astrophysics Data System (ADS)

    Filiouguine, Igor V.; Kostiouchenko, S. V.; Koudryavtsev, N. N.; Vasilyak, Leonid M.; Yakimenko, A. V.

    1993-11-01

    The bacteriological disinfective action of UV-radiation is well known. The pioneer work on UV-radiation used for bacteriological disinfection of waste water was made in 1910. Because of the high cost and low living time of the UV-radiation sources, the alternative technique for waste water purification by chlorine introducing was spread out. During the second stage of the UV purification development, beginning in approximately 1970, the interest for bacteriological cleaning of water, increased again. Two reasons were responsible for this event: first, the significant improvement of technology and design of UV-bacteriological purificators, and second, recognition of the serious danger of chlorine compounds introduced into water under purification because of the toxicity of these compounds. Further investigations gave excellent results in the creation and industrial applications of UV- bacteriological purificators. Now we can see a rapid development of industrial technology in UV-purification of drinking and waste waters.

  9. Environmental cues to UV radiation and personal sun protection in outdoor winter recreation.

    PubMed

    Andersen, Peter A; Buller, David B; Walkosz, Barbara J; Scott, Michael D; Maloy, Julie A; Cutter, Gary R; Dignan, Mark D

    2010-11-01

    To predict the prevalence of UV radiation (hereinafter, UV) at North American ski resorts using temporal, seasonal, altitudinal, and meteorological factors and associate UV with a set of adult sun protection behaviors. Ultraviolet radiation observations and cross-sectional survey of adults on sun protection were collected. Data were collected at 32 high-altitude ski areas located in western North America from 2001 through 2003. The sample consisted of 3937 adult skiers or snowboarders. Measurements of direct, reflected, and diffuse UV were performed at 487 measurement points using handheld meters and combined with self-reported and observed sun protection assessed for adults interviewed on chairlifts. The strongest predictors of UV were temporal proximity to noon, deviation from winter solstice, and clear skies. By contrast, altitude and latitude had more modest associations with UV and temperature had a small positive relationship with UV. Guest sun safety was inconsistently associated with UV: UV was positively related to adults wearing more sunscreen, reapplying it after 2 hours, and wearing protective eyewear, but fewer adults exhibited many of the other sun protection behaviors, such as wearing hats and protective clothing or using lip balm, on days when UV was elevated. Guests took more sun safety precautions on clear-sky days but took steps to maintain body warmth on inclement days. In future sun safety promotions, adults should be encouraged to wear sunscreen on cloudy days because UV is still high and conditions can change rapidly. They need reminders to rely more on season and time of day when judging UV and the need for sun safety.

  10. UV light-induced survival response in a highly radiation-resistant isolate of the Moraxella-acinetobacter group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, L.C.; Thompson, T.L.; Maxcy, R.B.

    1982-02-01

    A highly radiation-resistant member of the Moraxella-Acinetobacter group, isolate 4, obtained from meat, was studied to determine the effect of preexposure to UV radiation on subsequent UV light resistance. Cultures that were preexposed to UV light and incubated for a short time in plate count broth exhibited increased survival of a UV light challenge dose. This response was inhibited in the presence of chloramphenicol. Frequencies of mutation to streptomycin, trimethoprim, and sulfanilamide resistance remained the same after the induction of this survival response and were not altered by treatment with mutagens, with the exception of mutation to streptomycin resistance aftermore » ..gamma..-irradiation or nitrosoguanidine or methyl methane sulfonate treatment. The results indicated that isolate 4 has a UV light-inducible UV light resistance mechanism which is not associated with increased mutagenesis. The characteristics of the radiation resistance response in this organism are similar to those of certain other common food contaminants. Therefore, considered as part of the total microflora of meat, isolate 4 and the other radiation-resistant Moraxella-Acinetobacter isolates should not pose unique problems in a proposed radappertizaton process.« less

  11. ESTIMATION OF UV RADIATION DOSE IN NORTHERN MINNESOTA WETLANDS

    EPA Science Inventory

    The ultraviolet (UV) B wavelength range (280 nm to 320 nm) of solar radiation can be a significant biological stressor, and has been hypothesized to be partially responsible for amphibian declines and malformation. This hypothesis has been difficult to evaluate, in part, because ...

  12. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean.

    PubMed

    Dillon, Francisco M; Chludil, Hugo D; Zavala, Jorge A

    2017-09-01

    Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS 2 . We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  14. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  15. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation.

    PubMed

    Cao, Rui; Huang, Xiao-hua; Zhou, Qing; Cheng, Xiao-ying

    2007-01-01

    The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m2 and high level 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p < 0.05). It restricted uptake and transport of NO3(-), inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.

  16. Light Therapy in Mental Hospitals

    PubMed Central

    Cormac, H. Dove

    1929-01-01

    The position of actinotherapy in Mental Hospitals in this country is reviewed. An investigation of the results of ultra-violet irradiation in mental disorders at Parkside Mental Hospital is described and it is shown that certain types of the psychoses appear to benefit. The physiological action of actinic rays in relation to mental disorders is discussed and their mode of action on the nervous system suggested. Reference is made to substances which sensitize the body tissues to sunlight and ultra-violet radiation. An allusion is made to glass, penetrable by a portion of the actinic rays, and its uses. The need for ultra-violet ray apparatus in every mental hospital is urged both for treatment of mental and physical conditions and for the study of its action. PMID:19986837

  17. Distinct physiological and metabolic reprogramming by highbush blueberry (Vaccinium corymbosum) cultivars revealed during long-term UV-B radiation.

    PubMed

    Luengo Escobar, Ana; Alberdi, Miren; Acevedo, Patricio; Machado, Mariana; Nunes-Nesi, Adriano; Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie

    2017-05-01

    Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-B BE irradiance doses of 0, 0.07 and 0.19 W m -2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy. © 2016 Scandinavian Plant Physiology Society.

  18. Near-infrared photoluminescence in La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{sup 3+}(Ln = Nd/Yb) for sensitization of c-Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawala, N. S., E-mail: nssawala@gmail.com; Koparkar, K. A.; Omanwar, S. K.

    2016-05-06

    The host matrix LaAlO{sub 3} was synthesized by conventional solid state reaction method in which the Nd{sup 3+} ions and Yb{sup 3+} ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd{sup 3+} ion doped LaAlO{sub 3} converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb{sup 3+} ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{supmore » 3+}(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.« less

  19. Global distribution of the He+ column density observed by Extreme Ultra Violet Imager on the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung

    2017-07-01

    The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.

  20. PLANT PROTECTIVE RESPONSE TO ENHANCED UV-B RADIATION UNDER FIELD CONDITIONS: LEAF OPTICAL PROPERTIES AND PHOTOSYNTHESIS

    EPA Science Inventory

    Plants of Vicia faba were grown in the field during early to midsummer while receiving two levels of supplemental UV-B radiation. Light-saturated photosynthesis and stomatal diffusive conductance of intact leaves did not show any indications of UV-radiation damage. Supplemental U...

  1. Effects of UV-B radiation on photosynthesis activity of Wolffia arrhiza as probed by chlorophyll fluorescence transients

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Anken, Ralf H.; Lu, Jinying; Liu, Yongding

    2010-04-01

    The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.

  2. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Muratoglu, Orhun K.

    2007-12-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.

  3. Artificial and Solar UV Radiation Induces Strand Breaks and Cyclobutane Pyrimidine Dimers in Bacillus subtilis Spore DNA

    PubMed Central

    Slieman, Tony A.; Nicholson, Wayne L.

    2000-01-01

    The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the “spore photoproduct” 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221–2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter (“UV-A sunlight”) accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment. PMID:10618224

  4. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.

    PubMed

    Firkala, Tamás; Tálas, Emília; Mihály, Judith; Imre, Tímea; Kristyán, Sándor

    2013-11-15

    The UV-Visible and Surface Enhanced Raman Spectroscopy (SERS) behavior of silver sol (a typical SERS agent) were studied in the presence of different bifunctional thiols such as p-aminothiophenol, p-mercaptobenzoic acid, p-nitrothiophenol, p-aminothiophenol hydrochloride, and 2-mercaptoethylamine hydrochloride in diluted aqueous solution. Our results confirm that the p-aminothiophenol induced aggregation of citrate stabilized silver colloid originates from its electrostatic nature, as well as the azo-bridge formation cannot be the reason of the observed time dependent UV-Visible spectra. Based on our parallel SERS and electrospray ionization mass spectrometry measurements, we have concluded that certain amount of oxidized form of the probe molecule has to be present for the so-called b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Our findings seem to support the idea that the azo-bridge formation is responsible for the b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

    1998-11-01

    The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

  6. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation.

    PubMed

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Plastino, Estela M

    2016-06-01

    The effects of solar UV radiation on mycosporine-like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide. © 2016 Phycological Society of America.

  7. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    PubMed

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Simulation of multi-element multispectral UV radiation source for optical-electronic system of minerals luminescence analysis

    NASA Astrophysics Data System (ADS)

    Peretyagin, Vladimir S.; Korolev, Timofey K.; Chertov, Aleksandr N.

    2017-02-01

    The problems of dressability the solid minerals are attracted attention of specialists, where the extraction of mineral raw materials is a significant sector of the economy. There are a significant amount of mineral ore dressability methods. At the moment the radiometric dressability methods are considered the most promising. One of radiometric methods is method photoluminescence. This method is based on the spectral analysis, amplitude and kinetic parameters luminescence of minerals (under UV radiation), as well as color parameters of radiation. The absence of developed scientific and methodological approaches of analysis irradiation area to UV radiation as well as absence the relevant radiation sources are the factors which hinder development and use of photoluminescence method. The present work is devoted to the development of multi-element UV radiation source designed for the solution problem of analysis and sorting minerals by their selective luminescence. This article is presented a method of theoretical modeling of the radiation devices based on UV LEDs. The models consider such factors as spectral component, the spatial and energy parameters of the LEDs. Also, this article is presented the results of experimental studies of the some samples minerals.

  9. Ultra-Rapid UV Spectroscopy of an Interacting Supernova Discovered by K2

    NASA Astrophysics Data System (ADS)

    Foley, Ryan

    2017-08-01

    The supernova (SN) community is preparing for an extraordinary experiment. For 5 months, the Kepler telescope (K2) will perform a SN survey. Monitoring 20,000 galaxies with a 30-minute cadence, K2 will detect 50 SNe within hours - perhaps even minutes - of explosion. Such data have proven to be a unique window to the details of the SN explosion, progenitor, and circumstellar (CS) environment. We are devoting significant ground-based telescopic resources to search for and follow these SNe.We propose to take advantage of these emergent SNe and exquisite K2 light curves to study 1 SN in detail with HST. For the first few days after a SN explosion, one can potentially see signs of the SN interacting with its CS environment (e.g., a wind, accretion disk, companion star) that are not present later in its evolution. For instance, the large UV flux from a SN shock breakout will ionize CS gas. As the gas recombines over the following days, it produces excess broad-band flux and reveals the CSM (and thus progenitor) composition through emission lines. While early optical data can be illuminating, its utility is limited. However, UV spectra can greatly enhance our understanding of SN progenitor systems, including progenitor composition, CS environment, and the existence of a binary companion. Our program will observe a single K2 SN that shows signs of early interaction.Because of the ephemeral nature of the interaction signatures, this program requires an ultra-rapid ToO. The combination of K2 photometry, ground-based data, and HST UV spectra will be a completely unique and defining data set. As Kepler will soon be retired, this is our only opportunity for such a program.

  10. UV radiation, vitamin D, and cancer: how to measure the vitamin D synthetic capacity of UV sources?

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina; Orlova, Tatiana

    2005-09-01

    UV irradiation is widely used in phototherapy. Regardless of the fact that UV overexposure is liable to cause adverse health effect, in appropriate doses UV radiation initiates synthesis of vitamin D in skin that is absolutely essential for human health. As it proved, most people in northern industrial countries have a level of vitamin D in their bodies that is insufficient for optimum health, especially in winter. These low levels of vitamin D are now known to be associated with a wide spectrum of serious disease much of which leads on to premature death. The diseases associated with D deficiency involve more than a dozen types of cancer including colon, breast and prostate, as well as the classic bone diseases: rickets, osteoporosis and osteomalacia. Irradiation with artificial UV sources can prevent the vitamin D deficiency. However, in view of different irradiation spectra of UV lamps, their ability to initiate vitamin D synthesis is different. The reliable method based on an in vitro model of vitamin D synthesis has been developed for direct measurement in situ of the vitamin D synthetic capacity of artificial UV sources during a phototherapeutic procedure

  11. [Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation].

    PubMed

    Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was

  12. Quantum chemical investigations on the molecular structure, FTIR, UV-Vis and HOMO-LUMO analysis of 15-16-epoxy-7b, 9a dihydroxylabdane 13(16), 14-dien-6-one

    NASA Astrophysics Data System (ADS)

    Uppal, Anshul; Pathania, Kamni; Khajuria, Yugal

    2018-05-01

    The structural, spectroscopic (Fourier Transform Infrared (FT-IR), Ultra-Violet Visible (UV-VIS)) and thermodynamic properties of 15, 16-epoxy-7b, 9a dihydroxylabdane-13(16), 14-dien-6-one were studied by using both experimental techniques and theoretical methods. The FTIR spectrum of the title compound was recorded in the spectral range 4000-400 cm-1. The UV-VIS spectrum was measured in the spectral range 190-800 nm. The quantum chemistry calculations have been performed to compute optimized geometry, molecular parameters, vibrational frequencies along with intensities using Hartree Fock (HF) theory and Density Functional Theory (DFT) with 6-31G basis set. The calculated HOMO-LUMO energies show that the charge transfer occurs within the molecule. The temperature dependence of the thermodynamic properties like heat capacity, entropy and enthalpy of the optimized structure were obtained. Finally, a comparison between the experimental data and the calculated results presented a good agreement.

  13. Enhanced photocatalytic performance of CeO2-TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent

    NASA Astrophysics Data System (ADS)

    Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.

    2018-03-01

    This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.

  14. The Martian and extraterrestrial UV radiation environment--1. Biological and closed-loop ecosystem considerations.

    PubMed

    Cockell, C S; Andrady, A L

    1999-01-01

    The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.

  15. Evolution of organic molecules under Mars-like UV radiation conditions in space and laboratory

    NASA Astrophysics Data System (ADS)

    Rouquette, L.; Stalport, F.; Cottin, H.; Coll, P.; Szopa, C.; Saiagh, K.; Poch, O.; Khalaf, D.; Chaput, D.; Grira, K.; Dequaire, T.

    2017-09-01

    The detection and identification of organic molecules at Mars are of prime importance, as some of these molecules are life precursors and components. While in situ planetary missions are searching for them, it is essential to understand how organic molecules evolve and are preserved at the surface of Mars. Indeed the harsh conditions of the environment of Mars such as ultraviolet (UV) radiation or oxidative processes could explain the low abundance and diversity of organic molecules detected by now [1]. In order to get a better understanding of the evolution of organic matter at the surface of Mars, we exposed organic molecules under a Mars-like UV radiation environment. Similar organic samples were exposed to the Sun radiation, outside the International Space Station (ISS), and under a UV lamp (martian pressure and temperature conditions) in the laboratory. In both experiments, organic molecules tend to photodegrade under Mars-like UV radiation. Minerals, depending on their nature, can protect or accelerate the degradation of organic molecules. For some molecules, new products, possibly photoresistant, seem to be produced. Finally, experimenting in space allow us to get close to in situ conditions and to validate our laboratory experiment while the laboratory experiment is essential to study the evolution of a large amount and diversity of organic molecules.

  16. Study of long term effect of Solar UV and X-ray radiation on the VLF signals

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Sanki, Dipak

    2016-07-01

    Very Low Frequency (VLF) is one of the bands of Radio waves having frequencies lying between 3-30 KHz, with wavelengths 100-10 Km. It propagates through the Earth-ionosphere wave-guide which is formed by lower part of the ionosphere and upper part of Earth's surface. Ionosphere is the ionized component of upper atmosphere. In the present work, we have studied the long term effect of the high energy solar UV and X-ray radiation on the VLF signals. We have analyzed the VLF signal transmitted at 24 KHz from NAA (Cutler, Maine) and received at Moore Observatory in Brownsboro, Kentucky. Also we have collected X-ray and UV data to study the long term effect of UV and X-ray radiation on the VLF signal. We have analyzed the VLF signal for 2007 to 2015. We calculate the average diurnal peak amplitude of the VLF signal for each day and compare it with the UV and X-ray solar radiation. We found that the correlation coefficient of diurnal peak VLF signal amplitude with both solar X-ray and UV radiation is 0.7 indicating a strong correlation between these two phenomena.

  17. Spectral downshifting in MBO3:Nd3+ (M=Y, La) phosphor

    NASA Astrophysics Data System (ADS)

    Omanwar, S. K.; Sawala, N. S.

    2017-11-01

    The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd3+ doped YBO3 and LaBO3 phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd3+ doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology.

  18. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    PubMed

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  19. Possible impacts of changes in UV-B radiation on North American trees and forests.

    PubMed

    Sullivan, Joe H

    2005-10-01

    Approximately 35 species representing 14 tree genera have been evaluated for responses to UV-B radiation in North America. The best representation has been in the conifers where some 20 species representing three genera have been studied. Overall, about 1/3 of these have demonstrated some deleterious response to UV-B. However, most negative impacts have been observed under controlled environment conditions where sensitivity may be enhanced. Therefore, it seems unlikely that expected levels of ozone depletion will result in direct losses in productivity. However, the role that ambient or enhanced levels of UV-B may play in forest ecosystem processes is more difficult to access. One possible indirect response of forests to changes in UV-B radiation levels could be via alterations in plant secondary metabolites. Increases in phenolics and flavonoids that enhance epidermal UV-screening effectiveness may also influence leaf development, water relations or ecosystem processes such as plant-herbivore interactions or decomposition.

  20. Pulsed UV laser light on Escherichia coli and Saccharomyces cerevisiae suspended in non-alcoholic beer

    PubMed Central

    Hosseini, SM; Azar-Daryany, MK; Massudi, R; Elikaei, A

    2011-01-01

    Background The aim of this study was to investigate the effect of pulsed ultra-violet (UV) irradiation on inactivation of beer spoilage microorganisms. UV irradiation is nowadays cost effective enough to compete with traditional biological, physical, and chemical treatment technologies and has become an alternative to such methods. Material and Methods Photoinactivation effects of pulsed UV laser with the wavelengths of 355 and 266 nm, which inactivate typical prokaryotic (Escherichia coli) and eukaryotic (Saccharomyces cerevisiae) microorganisms, were examined with different doses and exposure times. Results A dose of 100 J/cm2 of the 355 nm pulsed UV laser was able to reduce about 1 to 2 log (88.75%) of E.coli with the population of 1.6×108 colony-forming units (CFU/ml), and 97% of 3.2×107, 3×106, 5.5×105, and 9×104 CFU/ml. In the case of 266 nm, more than 99% reduction in E. coli serial dilutions was inactivated, using 10 J/cm2 with exception of 7×104 CFU/ml which was not detected any bacterial growth using 5 J/cm2. In addition, 50, 40, and 20 J/cm2 energy were used successfully to inactivate S. cerevisiae at the populations of 5.4×106, 7×105, 5×104 and 4×103 CFU/ml, respectively. As a result, pulsed UV Laser with 266 nm was strong enough to inactivate a high titer of bacterial and yeast indicator standards suspended in non-alcoholic beer in comparison with 355nm doses. Conclusion Results indicate that pulsed UV technology, in principle, is an attractive alternative to conventional methods for the inactivation of indicator microorganisms and has potential in irradiation of unpasteurized beer. PMID:22347580

  1. Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar Styraciflua (Hamamelidaceae)-effects of UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.

    1995-07-01

    In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation.more » Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum. 44 refs., 6 figs.« less

  2. Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochevar, I.E.

    1985-07-01

    Photosensitivity associated with lupus erythematosus (LE) is well established. The photobiologic basis for this abnormal response to ultraviolet radiation, however, has not been determined. This paper summarizes the criteria for elucidating possible photobiologic mechanisms and reviews the literature relevant to the mechanism of photosensitivity in LE. In patients with LE, photosensitivity to wavelengths shorter than 320 nm has been demonstrated; wavelengths longer than 320 nm have not been adequately evaluated. DNA is a possible chromophore for photosensitivity below 320 nm. UV irradiation of skin produces thymine photodimers in DNA. UV-irradiated DNA is more antigenic than native DNA and the antigenicitymore » of UV-irradiated DNA has been proposed, but not proven, to be involved in the development of clinical lesions. UV irradiation of mice previously injected with anti-UV-DNA antibodies produces Ig deposition and complement fixation that appears to be similar to the changes seen in lupus lesions. Antibodies to UV-irradiated DNA occur in the serum of LE patients although a correlation between antibody titers and photosensitivity was not observed. Defective repair of UV-induced DNA damage does not appear to be a mechanism for the photosensitivity in LE. Other mechanisms must also be considered. The chromophore for photosensitivity induced by wavelengths longer than 320 nm has not been investigated in vivo. In vitro studies indicate that 360-400 nm radiation activates a photosensitizing compound in the lymphocytes and serum of LE patients and causes chromosomal aberrations and cell death. The mechanism appears to involve superoxide anion.« less

  3. Monitoring of environmental UV radiation by biological dosimeters

    NASA Astrophysics Data System (ADS)

    Rontó, Gy.; Bérces, A.; Gróf, P.; Fekete, A.; Kerékgyártó, T.; Gáspár, S.; Stick, C.

    As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.

  4. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I

    2013-12-01

    The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L.

    PubMed

    Sakalauskaitė, Jurga; Viskelis, Pranas; Dambrauskienė, Edita; Sakalauskienė, Sandra; Samuolienė, Giedrė; Brazaitytė, Aušra; Duchovskis, Pavelas; Urbonavičienė, Dalia

    2013-04-01

    The effects of short-term ultraviolet B (UV-B) irradiation on sweet basil (Ocimum basilicum L. cv. Cinnamon) plants at the 3-4 leaf pair and flowering stages were examined in controlled environment growth chambers. Plants were exposed to 0 (reference), 2 and 4 kJ UV-B m(-2) day(-1) over 7 days. Exposure of basil plants to supplementary UV-B light resulted in increased assimilating leaf area, fresh biomass and dry biomass. Stimulation of physiological functions in young basil plants under either applied UV-B dose resulted in increased total chlorophyll content but no marked variation in carotenoid content. At the flowering stage the chlorophyll and carotenoid contents of basil were affected by supplementary UV-B radiation, decreasing with enhanced UV-B exposure. Both total antioxidant activity (2,2-diphenyl-1-picrylhydrazyl free radical assay) and total phenolic compound content were increased by UV-B light supplementation. Young and mature basil plants differed in their ascorbic acid content, which was dependent on UV-B dose and plant age. UV-B radiation resulted in decreased nitrate content in young basil plants (3-4 leaf pair stage). These results indicate that the application of short-exposure UV-B radiation beneficially influenced both growth parameters and biochemical constituents in young and mature basil plants. © 2012 Society of Chemical Industry.

  6. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, P.S.; Hevelone, J.; Dwarakanath, V.

    1989-06-01

    Radioimmunoassays were used to monitor the removal of antibody-binding sites associated with the two major UV radiation-induced DNA photoproducts (cyclobutane dimers and (6-4) photoproducts). Unlike with cultured human cells, where (6-4) photoproducts are removed more rapidly than cyclobutane dimers, the kinetics of repair were similar for both lesions. Repair capacity in wild type diminished throughout development. The radioimmunoassays were also employed to confirm the absence of photoreactivation in C. elegans. In addition, three radiation-sensitive mutants (rad-1, rad-2, rad-7) displayed normal repair capacities. An excision defect was much more pronounced in larvae than embryos in the fourth mutant tested (rad-3). Thismore » correlates with the hypersensitivity pattern of this mutant and suggests that DNA repair may be developmentally regulated in C. elegans. The mechanism of DNA repair in C. elegans as well as the relationship between the repair of specific photoproducts and UV radiation sensitivity during development are discussed.« less

  7. Impact of UV-B radiation on the digestive enzymes and immune system of larvae of Indian major carp Catla catla.

    PubMed

    Sharma, Jaigopal; Rao, Y Vasudeva; Kumar, S; Chakrabarti, Rina

    2010-03-01

    Ultraviolet radiation is a potent threat to the aquatic animals. Exposure to such stressor affects metabolic and immunological processes. The present investigation aims to study the effect of UV-B radiation on digestive enzymes and immunity of larvae of Catla catla. Larvae were exposed to ultraviolet-B (UV-B, 280-320 nm) radiation (145 microW/cm(2)) for three different exposure times of 5, 10 and 15 min on every other day. After 55 days, important digestive enzymes were assayed. For immunological study, lysozyme, glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels were measured. Then the fish were kept for one month without radiation and lysozyme level was measured. Protein concentration varied directly with the duration of exposure and was highest among fish that had received the 15 min UV-B irradiation. Significantly higher amylase, protease, trypsin and chymotrypsin activities were found in 5 min exposed fish compared to others. Lysozyme level was significantly higher in control group compared to the UV-B treated fish. The lysozyme level decreased with the increasing duration of UV-B radiation. When fish were kept without UV-B radiation for one month, lysozyme level was brought to the normal level in all treatments, except 15 min exposed fish. The GOT and GPT levels were significantly higher in the 15 min exposed group than others. The effects of UV-B radiation on the digestive physiology and immune system of catla have been clearly observed in the present study. The decreased enzyme activities in UV-B radiated fish results into improper digestion and poor growth.

  8. [Effects of silicon supply on rice growth and methane emission from paddy soil under elevated UV-B radiation].

    PubMed

    Meng, Yan; Lou, Yun-sheng; Wu, Lei; Cui, He-yang; Wang, Wei-qing

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon supply on rice growth and methane (CH4) emission in paddy field under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B (ambient, A) and elevated UV-B radiation (elevated by 20%, E) ; with four silicon supply levels, i.e., Si0 (control, without silicon), Si2 (as sodium silicate, 100 kg SiO2 . hm-2), Si2 (as sodium silicate, 200 kg SiO2 hm-2) and Si3 (as slag fertilizer, 200 kg SiO2 . hm-2). The results indicated that, silicon supply obviously alleviated the depressive effect of elevated UV-B radiation on rice growth, and increased the tiller numbers, chlorophyll content, and shoot and root dry masses. Silicon supply promoted rice growth, which increased with the silicon supply level (sodium silicate). Slag fertilizer was better than*sodium silicate in promoting rice growth. CH4 flux and accumulated CH4emission were obviously increased by elevated UV-B radiation, but significantly decreased by silicon application. CH4 emission was reduced with increasing the silicon supply level. Under the same silicon supply level, slag fertilizer was better than sodium silicate in inhibiting CH4 flux and accumulated CH4 emission. This research suggested that fertilizing slag in rice production was helpful not only in utilizing industrial wastes, but also in significantly mitigating CH4 emissions in rice paddy under elevated UV-B radiation.

  9. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L.

    PubMed

    Sankari, M; Hridya, H; Sneha, P; George Priya Doss, C; Ramamoorthy, Siva

    2017-11-01

    The current study was undertaken to analyse the effect of short-term UV-B and UV-C radiations in provoking carotenoid biosynthesis in Bixa orellana. Seeds of B. orellana were germinated and exposed to the short term UV pre-treatment under controlled environmental condition for 5days. The UV treated young seedlings response in pigment contents; antioxidant enzyme activity and mRNA gene expression level were analysed. The pigment content such as chlorophyll was increased in both UV-B and UV-C treated seedlings, but the total carotenoid level was decreased when compared to the control seedlings this can be attributed to the plant adaptability to survive in a stressed condition. The β-carotene level was increased in UV-B, and UV-C treated young seedlings. No significant changes have occurred in the secondary pigment such as bixin and ABA. The activity of the antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase was significantly increased in UV-B treated seedlings when compared to the UV-C treated seedlings and control. The mRNA expression of the genes involved in bixin biosynthesis pathways such as DXS, PSY, PDS, LCY-β, LCY-ε, CMT, LCD, ADH and CCD genes showed different expression pattern in UV-B and UV-C treated young seedlings. Further we analysed the gene co-expression network to identify the genes which are mainly involved in carotenoid/bixin biosynthesis pathway. Form our findings the CCD, LCY, PDS, ZDS and PSY showed a close interaction. The result of our study shows that the short term UV-B and UV-C radiations induce pigment content, antioxidant enzyme activity and different gene expression pattern allowing the plant to survive in the oxidative stress condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    PubMed

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  11. Integration and scaling of UV-B radiation effects on plants: from molecular interactions to whole plant responses.

    PubMed

    Suchar, Vasile Alexandru; Robberecht, Ronald

    2016-07-01

    A process based model integrating the effects of UV-B radiation to molecular level processes and their consequences to whole plant growth and development was developed from key parameters in the published literature. Model simulations showed that UV-B radiation induced changes in plant metabolic and/or photosynthesis rates can result in plant growth inhibitions. The costs of effective epidermal UV-B radiation absorptive compounds did not result in any significant changes in plant growth, but any associated metabolic costs effectively reduced the potential plant biomass. The model showed significant interactions between UV-B radiation effects and temperature and any factor leading to inhibition of photosynthetic production or plant growth during the midday, but the effects were not cumulative for all factors. Vegetative growth were significantly delayed in species that do not exhibit reproductive cycles during a growing season, but vegetative growth and reproductive yield in species completing their life cycle in one growing season did not appear to be delayed more than 2-5 days, probably within the natural variability of the life cycles for many species. This is the first model to integrate the effects of increased UV-B radiation through molecular level processes and their consequences to whole plant growth and development.

  12. The effects of enhanced UV-B radiation on growth, stomata, flavonoid, and ABA content in cucumber leaves

    NASA Astrophysics Data System (ADS)

    An, Lizhe; Wang, Jianhui; Liu, Yanhong; Chen, Tuo; Xu, Shijian; Feng, Huyuan; Wang, Xunling

    2003-06-01

    Cucumber plants (Cucumis sativus L. cv. Jinchun No 3) grown in a greenhouse were treated with three different biologically effective ultraviolet-B (UV-B) radiation levels: 1.28 kJ. m-2 (CK), 8.82kJ.m-2 (T1) and 12.6 kJ. m-2 (T2). Irradiances corresponded to 8% and 21% reduction in stratospheric ozone in Lanzhou. Plants at three-leaf stage were irradiated 7 h daily for 25 days. The growth, stomata, flavonoid and ABA content in cucumber leaves exposed to 3 levels of UV-B radiation were determined in this paper. The results indicated that, compared with the control after 25 days UV-B radiation, RI of cucumber under T1 treatment is -18.0% and RI under T2 treatment is -48% mostly because of the reduce of leave area and dry weight accompanying with the increase of SLW; the rate of stomata closure under the treatments of T1 and T2 on the 6th day was up to respectively 70% and 89%, and amounted to 90% and 100% on the 18th day, and the guard cells in some stomata apparatus became permanent pores and lost their function at the same time; with the duration of UV-B radiation, the rise of the absorbance to ultraviolet light (305nm) showed the content increase of flavonoid; Abscisic acid (ABA) was determined by means of ELISA which showed that under the T1 treatment, the content of ABA was up to maximum to 510% higher than that of the control on the 21st day, meanwhile, under the treatment of T2, it was the highest on the 18th day to 680% of the control, and then had a decrease tendency on 21st day. The result still indicated that ABA accumulation could be induced by enhanced UV-B the radiation. The bigger was the dose of radiation, the higher was the accumulation of ABA. When intensity of UV-B radiation went beyond the degree of endurance of cucumber plants, ABA content descended then. Cucumber plants resist enhanced UV-B radiation by means of improving the contents of ABA and flavonoid. The increase of ABA content in cucumber leaves could lead to the stomata closure. Therefore

  13. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  14. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  15. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  16. Hope and challenge: the importance of ultraviolet (UV) radiation for cutaneous vitamin D synthesis and skin cancer.

    PubMed

    Reichrath, Jörg; Reichrath, Sandra

    2012-01-01

    Abstract Solar ultraviolet (UV)-radiation is the most important environmental risk factor for the development of non-melanoma skin cancer (most importantly basal and squamous cell carcinomas), that represent the most common malignancies in Caucasian populations. To prevent these malignancies, public health campaigns were developed to improve the awareness of the general population of the role of UV-radiation. The requirements of vitamin D is mainly achieved by UV-B-induced cutaneous photosynthesis, and the vitamin D-mediated positive effects of UV-radiation were not always adequately considered in these campaigns; a strict "no sun policy" might lead to vitamin D-deficiency. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases has been convincingly demonstrated. It is crucial that guidelines for UV-exposure (e.g. in skin cancer prevention campaigns) consider these facts and give recommendations how to prevent vitamin D-deficiency. In this review, we analyze the present literature to help developing well-balanced guidelines on UV-protection that ensure an adequate vitamin D-status without increasing the risk to develop UV-induced skin cancer.

  17. Fate of Earth Microbes on Mars: UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  18. Fate of Earth Microbes on Mars -- UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  19. Report on the Stanford/KACST/AMES UVLED small satellite mission to demonstrate charge management of an electrically isolated proof mass for drag-free operation

    NASA Astrophysics Data System (ADS)

    Saraf, Shailendhar

    A spacecraft demonstration of ultra-violet (UV) LEDs and UV LED charge management based on research done at Stanford University is being developed jointly by the King Abdulaziz City for Science and Technology (KACST) Saudi Arabia and NASA Ames Research Center, with an expected launch date of June 2014. This paper will report on the payload design and testing, mission preparation, satellite launch and payload bring -up in space. Mission lifetime is expected to be at least one month, during which time the ability for the UV LEDs to mitigate actual space-based charging and the effects of radiation on the UV LED device performance will be studied. Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. The mission will demonstrate that AlGaN UV LEDs operating at 255 nm are an effective low-cost, low-power and compact substitute for Mercury vapor lamps used in previous missions. The goal of the mission is to increase the UV LED device to TRL-9 and the charge management system to TRL-7.

  20. The influence of UV radiation on protistan evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1999-01-01

    Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.

  1. LEAF UV OPTICAL PROPERTIES OF 'RUMEX PATIENTIA' L. AND 'RUMEX OBTUSIFOLIUS L. IN REGARD TO A PROTECTIVE MECHANISM AGAINST SOLAR UV-B RADIATION INJURY

    EPA Science Inventory

    Effective UV attenuation in the outer leaf layers may represent an important protective mechanism against potentially damaging solar UV-B radiation. Epidermal optical properties for Rumex patientia and Rumex obtusifolius were examined on field collected and greenhouse grown plant...

  2. Synthesis of Zn1-xCdxO Nanoparticles by Co-Precipitation: Structural, Optical and Photodetection Analysis

    NASA Astrophysics Data System (ADS)

    Jacob, Anju Anna; Balakrishnan, L.; Meher, S. R.; Shambavi, K.; Alex, Z. C.

    Zinc oxide (ZnO) is a wide bandgap semiconductor with excellent photoresponse in ultra-violet (UV) regime. Tuning the bandgap of ZnO by alloying with cadmium can shift its absorption cutoff wavelength from UV to visible (Vis) region. Our work aims at synthesis of Zn1-xCdxO nanoparticles by co-precipitation method for the fabrication of photodetector. The properties of nanoparticles were analyzed using X-ray diffractometer, UV-Vis spectrometer, scanning electron microscope and energy dispersive spectrometer. The incorporation of cadmium without altering the wurtzite structure resulted in the red shift in the absorption edge of ZnO. Further, the photoresponse characteristics of Zn1-xCdxO nanopowders were investigated by fabricating photodetectors. It has been found that with Cd alloying the photosensitivity was increased in the UVA-violet as well in the blue region.

  3. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Manganese violet. 73.2775 Section 73.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive...

  4. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  5. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  6. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  7. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  8. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  9. Enhanced resistance of the Pamirs high-mountain strain of Cryptococcus albidus to UV radiation of an ecological range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y.

    The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.

  10. Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation.

    PubMed

    Yao, Xiaoqin; Chu, Jian-Zhou; Ma, Chun-Hui; Si, Chao; Li, Ji-Gang; Shi, Xiao-Fei; Liu, Chao-Nan

    2015-08-01

    The article studied UV-B effects on biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum. The experiment about UV-B effects on biochemical traits in flowers included six levels of UV-B treatments (0 (UV0), 50 (UV50), 200 (UV200), 400 (UV400), 600 (UV600) and 800 (UV800) μWcm(-2)). UV400, UV600 and UV800 treatments significantly increased the contents of hydrogen peroxide, malondialdehyde and UV-B absorbing compounds, and the activity of phenylalanine ammonia lyase enzyme over the control. The contents of chlorogenic acid and flavone in flowers were significantly increased by UV-B treatments (except for UV50 and UV800). Two-dimensional gel electrophoresis was utilized to analyze proteomic changes in flowers with or without UV-B radiation. Results indicated that 43 protein spots (>1.5-fold difference in volume) were detected, including 19 spots with a decreasing trend and 24 spots with an increasing trend, and 19 differentially expressed protein spots were successfully indentified by MALDI-TOF MS. The indentified proteins were classified based on functions, the most of which were involved in photosynthesis, respiration, protein biosynthesis and degradation and defence. An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 21 CFR 589.1000 - Gentian violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentian violet. 589.1000 Section 589.1000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Substances Prohibited From Use in Animal Food or Feed § 589.1000 Gentian violet. The Food and Drug...

  12. Uranium plasma emission coefficient in the visible and near UV.

    NASA Technical Reports Server (NTRS)

    Mack, J. M., Jr.; Usher, J. L.; Schneider, R. T.; Campbell, H. D.

    1971-01-01

    Measurements of the specific emission coefficient in the near ultra-violet and visible region of a uranium arc plasma are reported. Spatial unfolding of the intensity profile is used to determine the emission coefficient in the spectral range of 2000 A to 6000 A. The uranium partial pressure is estimated to range between .001 and .01 atmosphere, and the corresponding temperature range is 5000 - 10,000 K.

  13. Colour change evaluation on UV radiation exposure for Păun-Repedea calcareous geomaterial

    NASA Astrophysics Data System (ADS)

    Pelin, V.; Sandu, I.; Munteanu, M.; Iurcovschi, C. T.; Gurlui, S.; Sandu, AV; Vasilache, V.; Brȃnzilă, M.; Sandu, I. G.

    2016-06-01

    When talking about the preservation treatments that can be applied to natural stones used in different constructions, the surface hydrophobization plays an important part, especially when referring to porous surfaces like the calcareous oolithic stones specific to Repedea area, Iasi County, Romania. The present paper presents a method that evaluates the hydrophobization efficiency of two types of pellicles, involving UV artificial ageing and colorimetric analysis of the treated surfaces. The evaluation was done through continuous colorimetric monitoring and by comparing the evolution of the chromatic modifications of the two treated surfaces with the original colorimetric values and with the witness area, which was exposed to UV radiations under the same conditions, but left chemical untreated. The techniques used during this experiment were: CIE L*a*b* colorimetry, OM, SEM-EDX, UV radiation exposure and Spectrum Irradiance Measurement.

  14. Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis

    NASA Astrophysics Data System (ADS)

    Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi

    2017-05-01

    Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.

  15. The role of solar UV radiation in the ecology of alpine lakes.

    PubMed

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  16. The formation of ozone and UV radiation from high-power pulsed electric discharges

    NASA Astrophysics Data System (ADS)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  17. The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.

    2015-01-01

    The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

  18. The Use of Ultra-Violet (UV) Light Emitting Diodes (LEDS) in an Advanced Oxidation Process (AOP) with Brilliant Blue FCF as an Indicator

    DTIC Science & Technology

    2015-03-26

    by low, direct current voltage, which are consistent with portable power sources such as batteries or photovoltaic cells (Crystal IS 2013...of Methylene Blue Adsorption on Power Output .................23 vii UV LED Quartz Lens Adsorption Experiment...29 Effect of Methylene Blue Adsorption on Power Output ............................................29 Figure 5 - Percent reduction of

  19. Long-term variability and impact on human health of biologically active UV radiation in Moscow

    NASA Astrophysics Data System (ADS)

    Zhdanova, Ekaterina; Chubarova, Natalia

    2014-05-01

    Measurements of erythemally weighted UV irradiance (Qer) have been performed at the Meteorological Observatory of Moscow State University since 1999 with the UVB-1 YES pyranometers. These types of devices are broadband with a spectral sensitivity curve close to the action spectrum of erythema. Main uncertainties of UVB-1 YES measurements include the difference in spectral curves of the instrument and the action spectrum of erythema, as well as the deviation from the cosine law. These uncertainties were taken into account in the database of Qer measurements (Chubarova, 2008. Additional corrections of UVB-1 measurements at low ambient temperatures have been made. We analyze interannual, seasonal and diurnal Qer changes over the time period 1999-2012. In addition, the comparisons with the results of UV reconstruction model (Chubarova, 2008) are made. This model allows us to evaluate relative changes in Qer due to variations in total ozone, effective cloud amount transmission, aerosol and cloud optical thickness since 1968. It is important to note that the main reason for UV irradiance monitoring development is the strong influence of UV irradiance on the biosphere and especially on human health mainly on human skin (CIE, 1993, CIE, 2006) and eyes (Oriowo, M. et al., 2001). Based on the detailed studies we have shown the possibility of utilizing UVB-1 pyranometers for measuring the eye-damage UV radiation. Parallel measurements by the Bentham DTM-300 spectrometer and the UVB-1 YES pyranometer at the Innsbruck Medical University (Austria) have provided us the calibration factor in eye-damage units for this broadband instrument. Influence of main geophysical factors on different types of UV irradiance is estimated by means the RAF ideology (Booth, Madronich, 1994). We discuss the responses of different types of biologically active UV radiation to the impact of various atmospheric factors. The UV conditions (deficiency, optimum, excess for human) are analyzed according to

  20. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa.

    PubMed

    Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D

    2011-08-01

    Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.

  1. Motility and gravitactic orientation of the flagellate, Euglena gracilis, impaired by artificial and solar UV-B radiation.

    PubMed

    Hader, D P; Liu, S M

    1990-09-01

    The effects of ultraviolet radiation on the gravitactic orientation of the freshwater flagellate, Euglena gracilis, were determined by a real time image analysis system. Both artificial UV radiation and solar radiation in a temperature-controlled growth chamber were employed. Histograms of gravitaxis showed that the degree of orientation decreased with increasing exposure time; this can be quantified using the Rayleigh test and upper quadrant summation. The effects of artificial UV radiation on the orientation are considerably stronger than those of solar radiation, probably because the radiation source emits higher fluence rates below 300 nm than found in solar radiation. The effects of monochromatic ultraviolet radiation on motility have been determined, and an action spectrum has been calculated.

  2. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    PubMed

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P < 0.05). UV radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P < 0.05) in reconstituted infant formula. Significant effects of UV radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  3. Simultaneous Liquid Chromatographic Determination of 10 Ultra-Violet Filters in Sunscreens.

    PubMed

    Wharton, Mary; Geary, Michael; O'Connor, Niamh; Curtin, Laura; Ketcher, Krystal

    2015-09-01

    A rapid HPLC method was developed for the simultaneous determination of 10 UV filters found in sunscreen. The following UV filters were analyzed in this method; 2-phenylbenzimidazole-5-sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl dimethyl 4-aminobenzoic acid, ethylhexyl methoxycinnamate, butyl methoxydibenzoylmethane, ethylhexyl salicylate and homosalate. The method was developed on two columns; a Thermo Hypersil C18 BDS, 3 µm column (4.6 × 100 mm) and a Chromolith RP-18e Monolithic column (4.6 × 100 mm). The same mobile phase of ethanol and 1% acetic acid (70:30, v/v) was employed for both columns. The separation of the 10 UV filters was carried out successfully on both columns; the optimal resolution was obtained on the Thermo Scientific Hypersil column in a time frame of 7 min. An isocratic elution utilizing ethanol and acetic acid (70:30, v/v) at a temperature of 35°C was employed. The method was applied to a number of commercial samples of sunscreen and lotions and was validated according to International Conference on Harmonisation guidelines for selectivity, linearity, accuracy, precision and robustness. A comparison of the performances of both columns was also carried out. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Impact of shortwave ultraviolet (UV-C) radiation on the antioxidant activity of thyme (Thymus vulgaris L.).

    PubMed

    Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew

    2014-08-15

    Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Free-Free Radiation Cannot Make the UV/Soft-X-Ray Excess in AGN

    NASA Astrophysics Data System (ADS)

    Kriss, G. A.

    1994-05-01

    Thermal gas always has associated atomic spectral features either in absorption or in emission. In optically thin gas the emission spectrum is dominated by line radiation and recombination continua. An example of radiation from optically thin material in accreting systems is the emission-line-dominated spectrum of a cataclysmic variable in its low state. Barvainis (1993, ApJ, 412, 513) and others have proposed that the UV/soft-X-ray excess prominent in the spectra of many AGN is due to free-free emission from gas at temperatures of 10(5) - 10(6) K. Simple arguments using only atomic data show that the recombination radiation from emission lines would produce UV, optical, and soft X-ray spectral features orders of magnitude stronger than observed. Collisional excitation produces even more line radiation under most physical conditions. As a particular example I take the Astro-1 observations of the Seyfert 1 galaxy Mrk 335 by HUT and BBXRT. Depending on the ionization state of the gas (which may be photoionized by the central source), the emission measure of the free-free radiation necessary to produce the UV continuum (3 times 10(68) cm(-3) at 8.2 times 10(5) K for H_o = 75 km s(-1) Mpc(-1) ) implies line emission from O VI, O VII, or O VIII more than a factor of 10 stronger than any features observed by HUT or BBXRT.

  6. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  7. Quantitative absorption data from thermally induced wavefront distortions on UV, Vis, and NIR optics

    NASA Astrophysics Data System (ADS)

    Mann, Klaus; Schäfer, Bernd; Leinhos, Uwe; Lübbecke, Maik

    2017-11-01

    A photothermal absorption measurement system was set up, deploying a Hartmann-Shack wavefront sensor with extreme sensitivity to accomplish spatially resolved monitoring of thermally induced wavefront distortions. Photothermal absorption measurements in the near-infrared and deep ultra-violet spectral range are performed for the characterization of optical materials, utilizing a Yb fiber laser (λ = 1070 nm) and an excimer laser (193nm, 248nm) to induce thermal load. Wavefront deformations as low as 50pm (rms) can be registered, allowing for a rapid assessment of material quality. Absolute calibration of the absorption data is achieved by comparison with a thermal calculation. The method accomplishes not only to measure absorptances of plane optical elements, but also wavefront deformations and focal shifts in lenses as well as in complex optical systems, such as e.g. F-Theta objectives used in industrial high power laser applications. Along with a description of the technique we present results from absorption measurements on coated and uncoated optics at various laser wavelengths ranging from deep UV to near IR.

  8. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    NASA Astrophysics Data System (ADS)

    Kujanpää, J.; Kalakoski, N.

    2015-05-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. The input total ozone product is generated by the German Aerospace Center (DLR) also within the O3M SAF framework. Polar orbiting satellites provide global coverage but infrequent sampling of the diurnal cloud cover. The diurnal variation of the surface UV radiation is extremely strong due to modulation by solar elevation and rapidly changing cloud cover. At the minimum, one sample of the cloud cover in the morning and another in the afternoon are needed to derive daily maximum and daily integrated surface UV radiation quantities. This is achieved by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit (daytime descending node around 09:30 LT) and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit (daytime ascending node around 14:30 LT). In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast) using commercial telecommunication satellites for broadcasting the data to the user community. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated UVB and UVA radiation, solar noon UV Index and daily maximum photolysis

  9. UV light induced insulator-metal transition in ultra-thin ZnO/TiOx stacked layer grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Saha, D.; Misra, P.; Joshi, M. P.; Kukreja, L. M.

    2016-08-01

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1-7) of ZnO/TiOx layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O2 and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ˜ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent

  10. How do environmental and behavioral factors impact ultraviolet radiation effects on health: the RISC-UV Project

    NASA Astrophysics Data System (ADS)

    Correa, M. P.; Godin-Beekmann, S.; Haeffelin, M.; Saiag, P.; Mahe, E.; Brogniez, C.; Dupont, J. C.; Pazmiño, A.; Auriol, F.; Bonnel, B.

    2009-04-01

    Introduction: RISC-UV is a research project on "Impact of climate change on ultraviolet radiation and risks for health", a research project in which physicists, meteorologists and physicians work together to assess the relative role played by environmental and behavioral factors in the UV-related diseases as skin cancer and vitamin D deficiency. Environmental factors are related to the role played by the alteration in intensity of UV radiation at the Earth's surface resulting from variation in several factors affected by climate change and human activities: stratospheric ozone, cloud cover, aerosols and the reflectivity of the surface. On the other hand, behavioral factors are related to the sun over/underexposure and the correct use of sun-protection (hats, caps, sunglasses, sunscreen lotion, etc.). RISC-UV is organized around three main areas: 1) Organization of a workshop, scheduled for January 2009, which aims to describe the state of the art in the subject within each community and define the requirements of pathologists for epidemiological studies; 2) A pilot study intended to evaluate the consistency between UV measurements delivered simultaneously by satellite-based instruments, ground instruments, radiometers and individual dosimeters. This study is based on measurements campaigns and an analysis of the long-term consistency of data series relating to UV radiation and associated parameters; and 3) Analysis of the weights of medical, behavioral and environmental parameters involved in skin carcinogenesis. A detailed description of these areas can be found in http://www.gisclimat.fr/Doc/GB/D_projects/RISC-UV_GB.html. This presentation focuses on the first results of the UV experimental measurements performed between September 8th and October 8th 2008 in Palaiseau, France (48.7˚ N; 2.2˚ E; 170m - Haeffelin et al., 2005). A second campaign is foreseen for the spring of 2009. The purpose of these campaigns is to obtain, analyze and quantitatively link the

  11. Blue light and solar UV radiation accelerate spring and autumn phenology in temperate deciduous tree species.

    NASA Astrophysics Data System (ADS)

    Brelsford, C.; Robson, T. M.

    2017-12-01

    Trees utilise multiple cues to time their bud-burst and leaf out in spring so that they can exploit favorable conditions for photosynthesis but minimize the risk of damage, and time their leaf senescence come autumn to extend the period of carbon assimilation and remobilize nutrients as efficiently as possible. Whilst the effects of temperature and photoperiod on phenology have been well studied, the effect of light quality is not often considered. The amount and proportion of blue light (BL 400-500nm), UV-A (325-400nm), and UV-B (290-320nm) reaching the ground changes with latitude, day length and the time of year, and yet little is known about how this affects the phenology of plants. We hypothesize that these compositional changes can be exploited by temperate deciduous tree species as cues for bud-burst and leaf senescence via blue and UV photoreceptors. To test this hypothesis, we measured the days until bud-burst of dormant branches from trees of Alnus glutinosa, Betula pendula, and Quercus robur when grown under a broad spectrum, either including or without BL, but of equivalent PAR. We also monitored the spring and autumn leaf phenology of Acer platanoides seedlings growing under forest canopies in southern Finland, under filter treatments attenuating UV-A radiation, UV-A + UV-B radiation or BL and UV-A and UV-B radiation, and a transparent control filter. In controlled conditions, BL advanced bud-burst by 3.3 days in branches of B.pendula, 6 days in A.glutinosa, and 6.3 days in Q.robur. In the field experiment, BL promoted bud burst of A.platanoides seedlings by 3 days. Leaf senescence was promoted by up to 16 days with BL, and by at least 3 days by UV-A and UV-B. The effect of BL in reducing the number of days until bud burst was greatest in later successional species. Furthermore, both blue light and UV advanced leaf senescence in autumn. Further research is needed to identify the photoreceptor mechanisms that underpin these physiological processes, and

  12. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  13. Scintillation properties of Nd 3+, Tm 3+, and Er 3+ doped LuF 3 scintillators in the vacuum ultra violet region

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fukuda, Kentaro; Kurosawa, Shunsuke; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Taniue, Kojiro; Sekiya, Hiroyuki; Kubo, Hidetoshi; Yoshikawa, Akira; Tanimori, Toru

    2011-12-01

    In order to develop novel vacuum ultra violet (VUV) emitting scintillators, we grew Nd 0.5%, Tm 0.5%, and Er 0.5% doped LuF3 scintillators by the μ-pulling down method, because LuF3 has a very wide band gap and Nd3+, Tm3+, and Er3+ luminescence centers show fast and intense 5d-4f emission in VUV region. Transmittance and X-ray induced radioluminescence were studied in these three samples using our original spectrometer made by Bunkou-Keiki company. In the VUV region, transmittance of 20-60% was achieved for all the samples. The emission peaks appeared at approximately 180, 165, and 164 nm for Nd3+, Tm3+, and Er3+ doped LuF3, respectively. Using PMT R8778 (Hamamatsu), we measured their light yields under 241Am α-ray excitation. Compared with Nd:LaF3 scintillator, which has 33 photoelectrons/5.5 MeV α, Nd:LuF3 and Tm:LuF3 showed 900±90 and 170±20 ph/5.5 MeV-α, respectively. Only for the Nd doped one, we can detect 137Cs 662 keV γ-ray photoabsorption peak and the light yield of 1200±120 ph/MeV was measured. We also investigated their decay time profiles by picosecond pulse X-ray equipped streak camera, and the main decay component of Nd:LuF3 turned out to be 7.63 ns.

  14. Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.

    PubMed

    Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong

    2018-05-01

    In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  16. Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Han, Yashuai; Wang, Junmin

    2016-04-01

    A continuous-wave Ti:sapphire laser at 795 nm is frequency doubled in a bow-tie type enhancement four-mirror ring cavity with LiB3O5 (LBO), BiB3O6 (BiBO), and periodically polled KTiOPO4 (PPKTP) crystals, respectively. The properties of 397.5 nm ultra-violet (UV) output power, beam quality, stability for these different nonlinear crystals are investigated and compared. For PPKTP crystal, the highest doubling efficiency of 58.1% is achieved from 191 mW of 795 nm mode-matched fundamental power to 111 mW of 397.5 nm UV output. For LBO crystal, with 1.34 W of mode-matched 795 nm power, 770 mW of 397.5 nm UV output is achieved, implying a doubling efficiency of 57.4%. For BiBO crystal, with 323 mW of mode-matched 795 nm power, 116 mW of 397.5 nm UV output is achieved, leading to a doubling efficiency of 35.9%. The generated UV radiation has potential applications in the fields of quantum physics.

  17. Seasonal and spatial variation of topside He+ column density obtained from Extreme Ultra Violet Imager onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Y.; Saito, A.; Murakami, G.; Yamazaki, A.; Yoshikawa, I.

    2016-12-01

    The seasonal, longitudinal and latitudinal variations of He+ distribution in the topside ionosphere in 2013 are elucidated with data of He+ resonant scattering obtained by Extreme Ultra Violet Imager (EUVI) onboard the International Space Station (ISS). EUVI provides a data set of the column density of He+ above the ISS orbit altitude. The data set provides a unique opportunity to study He+ distribution in the topside ionosphere from a different perspective of past studies using in-situ measurement data. During the solstice seasons, an enhancement of He+ column density in the winter hemisphere is observed. The magnitude of this hemispheric asymmetry shows a longitudinal variability. Around the June solstice, the hemispheric asymmetry was greater in the longitude sector where the geomagnetic declination angle is negative and smaller in the longitude sector where the geomagnetic declination angle is positive. Around the December solstice, on the other hand, this longitudinal variation of the asymmetry magnitude had opposite tendency. The hemispheric asymmetry of the effective neutral wind well explains this behavior of He+. The field-aligned component of neutral wind in the F-region is varied in longitude under the presence of finite geomagnetic declination angle and large zonal wind. In the equinox seasons, two longitudinal maxima were observed at around 140ºE and 30ºE. The longitudinal variation of the effective neutral wind is a candidate of these two maxima of He+ concentration. These results suggest that the transport of ions in the topside ionosphere is strongly affected by the F-region neutral wind.

  18. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.

    PubMed

    Catola, Stefano; Castagna, Antonella; Santin, Marco; Calvenzani, Valentina; Petroni, Katia; Mazzucato, Andrea; Ranieri, Annamaria

    2017-08-01

    The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects

  19. UV Radiation in an Urban Canyon in Southeast Queensland

    NASA Astrophysics Data System (ADS)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  20. Observations of the diffuse near-UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1990-01-01

    The diffuse radiation field from 1650-3100 A has been observed by spectrometer aboard the Space Shuttle, and the contributions of the zodiacal light an the diffuse cosmic background to the signal have been derived. Colors ranging from 0.65 to 1.2 are found for the zodiacal light with an almost linear increase in the color with ecliptic latitude. This rise in color is due to UV brightness remaining almost constant while the visible brightnesses drop by almost a factor of two. This is interpreted as evidence that the grains responsible for the UV scattering have much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering. Intensities for the cosmic diffuse background ranging from 300 units to 900 units are found which are not consistent with either a correlation with N(H I) or with spatial isotropy.

  1. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2602 D&C Violet No. 2. (a) Identity and specifications. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of § 74.1602(a)(1) and (b). (b) Uses and restrictions. The color additive D&C Violet No. 2 may be...

  2. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2602 D&C Violet No. 2. (a) Identity and specifications. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of § 74.1602(a)(1) and (b). (b) Uses and restrictions. The color additive D&C Violet No. 2 may be...

  3. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2602 D&C Violet No. 2. (a) Identity and specifications. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of § 74.1602(a)(1) and (b). (b) Uses and restrictions. The color additive D&C Violet No. 2 may be...

  4. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2602 D&C Violet No. 2. (a) Identity and specifications. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of § 74.1602(a)(1) and (b). (b) Uses and restrictions. The color additive D&C Violet No. 2 may be...

  5. The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.).

    PubMed

    Topcu, Yasin; Dogan, Adem; Kasimoglu, Zehra; Sahin-Nadeem, Hilal; Polat, Ersin; Erkan, Mustafa

    2015-08-01

    In this study, the effects of supplementary UV radiation during the vegetative period on antioxidant compounds, antioxidant activity and postharvest quality of broccoli heads during long term storage was studied. The broccolis were grown under three different doses of supplementary UV radiation (2.2, 8.8 and 16.4 kJ/m(2)/day) in a soilless system in a glasshouse. Harvested broccoli heads were stored at 0 °C in modified atmosphere packaging for 60 days. The supplementary UV radiation (280-315 nm) during the vegetative period significantly decreased total carotenoid, the chlorophyll a and chlorophyll b content but increased the ascorbic acid, total phenolic and flavonoid contents of broccolis. All supplementary UV treatments slightly reduced the antioxidant activity of the broccolis, however, no remarkable change was observed between 2.2 and 8.8 kJ/m(2) radiation levels. The sinigrin and glucotropaeolin contents of the broccolis were substantially increased by UV treatments. The prolonged storage period resulted in decreased ascorbic acid, total phenolic and flavonoid contents, as well as antioxidant activity. Discoloration of the heads, due to decreased chlorophyll and carotenoid contents, was also observed with prolonged storage duration. Glucosinolates levels showed an increasing tendency till the 45th day of storage, and then their levels started to decline. The weight loss of broccoli heads during storage progressively increased with storage time in all treatments. Total soluble solids, solids content and titratable acidity decreased continuously during storage. Titratable acidity was not affected by UV radiation doses during the storage time whereas soluble solids and solids content (dry matter) were significantly affected by UV doses. Supplementary UV radiation increased the lightness (L*) and chroma (C*) values of the broccoli heads. Pre-harvest UV radiation during vegetative period seems to be a promising tool for increasing the beneficial health components

  6. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  7. (E)-5-[2-(methoxycarbonyl)ethenyl]cytidine as a chemical actinometer for germicidal UV radiation.

    PubMed

    Shen, Chengyue; Fang, Shiyue; Bergstrom, Donald E; Blatchley, Ernest R

    2005-05-15

    (E)-5-[2-(Methoxycarbonyl)ethenyl]cytidine (S) was examined for use as a chemical actinometer for germicidal UV radiation. Its photoproduct, 3-beta-D-ribofuranosyl-2,7-dioxopyrido[2,3-d]pyrimidine (P), is strongly fluorescent with excitation and emission maxima at 330 and 385 nm, respectively. Experiments were conducted to characterize the dynamic behavior of aqueous solutions of S and P when subjected to UV radiation. UV sources used for these experiments included a low-pressure mercury lamp, a XeBr excimer lamp, and a KrCI excimer lamp; all three sources were mounted in collimating devices to provide incident beams that could be easily and accurately characterized by radiometry. These three sources each yielded essentially monochromatic outputwith characteristic wavelengths of 254, 282, and 222 nm, respectively. At practical concentrations, it was found that the absorbance of the actinometer solution was neither high enough to make the actinometer solutions optically opaque nor low enough to be optically transparent to UV. In addition, the photoproduct displayed a molar absorption coefficient that was similar in magnitude to that of the parent compound, thereby resulting in competitive absorption of UV energy between Sand Pduring irradiation. For purposes of evaluation of the results of irradiation, a mathematical model was developed to accountforthe nonideal optical characteristics of the system. The model is based on a description of local photochemical kinetics; predictions of overall reactor performance were developed by spatial and temporal integration of model results. The model was used to analyze the dynamic behavior of actinometer solutions during UV irradiation and to estimate the quantum yield for photoproduction of Pfrom S. This modeling approach is potentially applicable to other photochemical processes in which multiple compounds are present that absorb photoactive radiation; however, general application of this modeling approach to photochemical

  8. Refuge quality to cope with UV radiation affects energy allocation in an intertidal fish.

    PubMed

    Vargas, Juan; Duarte, Cristian; Galban-Malagón, Cristóbal; Roberto García-Huidobro, M; Aldana, Marcela; Pulgar, José

    2018-05-01

    Ultraviolet (UV) radiation is a primary environmental stressor for marine species inhabiting intertidal pools. Thus, the use of microhabitats as refuges is key to protect organisms against this stressor. In this study, we compared the quality of rocky and algae as refuges for the intertidal fish Girella laevifrons exposed to UV radiation. Refuge quality was studied by evaluating oxygen consumption and weight gain in control and UV-exposed fish. Rocky-refuge fish consumed less oxygen and gained significantly more weight than algal-refuge fish. The obtained results support the importance of refuge quality on energetic balance of intertidal organisms, where energy can be differentially allocated towards key life processes such as protection/repair or growth. Energy trade-offs need to be considered in research concerning animals inhabiting stressful habitats. Copyright © 2018. Published by Elsevier Ltd.

  9. Response and Defense Mechanisms of Taxus chinensis Leaves Under UV-A Radiation are Revealed Using Comparative Proteomics and Metabolomics Analyses.

    PubMed

    Zheng, Wen; Komatsu, Setsuko; Zhu, Wei; Zhang, Lin; Li, Ximin; Cui, Lei; Tian, Jingkui

    2016-09-01

    Taxus chinensis var. mairei is a species endemic to south-eastern China and one of the natural sources for the anticancer medicine paclitaxel. To investigate the molecular response and defense mechanisms of T. chinensis leaves to enhanced ultraviolet-A (UV-A) radiation, gel-free/label-free and gel-based proteomics and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The transmission electron microscopy results indicated damage to the chloroplast under UV-A radiation. Proteomics analyses in leaves and chloroplasts showed that photosynthesis-, glycolysis-, secondary metabolism-, stress-, and protein synthesis-, degradation- and activation-related systems were mainly changed under UV-A radiation. Forty-seven PSII proteins and six PSI proteins were identified as being changed in leaves and chloroplasts under UV-A treatment. This indicated that PSII was more sensitive to UV-A than PSI as the target of UV-A light. Enhanced glycolysis, with four glycolysis-related key enzymes increased, provided precursors for secondary metabolism. The 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase were identified as being significantly increased during UV-A radiation, which resulted in paclitaxel enhancement. Additionally, mRNA expression levels of genes involved in the paclitaxel biosynthetic pathway indicated a down-regulation under UV-A irradiation and up-regulation in dark incubation. These results reveal that a short-term high dose of UV-A radiation could stimulate the plant stress defense system and paclitaxel production. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Analysis of violet-excited fluorochromes by flow cytometry using a violet laser diode.

    PubMed

    Telford, William G; Hawley, Teresa S; Hawley, Robert G

    2003-07-01

    Low power violet laser diodes (VLDs) have been evaluated as potential replacements for water-cooled argon-ion and krypton-ion ultraviolet and violet lasers for DNA content analysis using the Hoechst dyes and 4,6-diamidino-2-phenylindole (Shapiro HMN, Perlmutter NG: Cytometry 44:133-136, 2001). In this study, we used a VLD to excite a variety of violet-excited fluorescent molecules important in biomedical analysis, including the fluorochromes Cascade Blue and Pacific Blue, the expressible fluorescent protein cyan fluorescent protein (CFP), and the fluorogenic alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazoline (ELF-97; for endogenous AP detection and cell surface labeling with AP-conjugated antibodies). Comparisons were made between VLD excitation and a krypton-ion laser emitting at 407 nm (both at higher power levels and with the beam attenuated at levels approximating the VLD) on the same FACSVantage SE stream-in-air flow cytometer. We evaluated a Power Technology 408-nm VLD (30 mW) equipped with circularization optics (18 mW maximum output, set to 15 mW) and a Coherent I-302C krypton-ion laser emitting at power levels ranging from 15 to 75 mW. Cascade Blue, Pacific Blue, and CFP showed comparable signal-to-noise ratios and levels of sensitivity with VLD excitation versus the krypton-ion laser at high and VLD-matched power outputs. Multicolor fluorescent protein analysis with 488-nm excitation of green fluorescent protein and DsRed and VLD excitation of CFP was therefore feasible and was demonstrated. Similar levels of excitation efficiency between krypton-ion and VLD sources also were observed for ELF-97 detection. These evaluations confirmed that VLDs may be cost- and maintenance-effective replacements for water-cooled gas lasers for applications requiring violet excitation in addition to DNA binding dyes. Published 2003 Wiley-Liss, Inc.

  11. Kinetics of UV laser radiation defects in high performance glasses

    NASA Astrophysics Data System (ADS)

    Natura, U.; Feurer, T.; Ehrt, D.

    2000-05-01

    High purity fluoride phosphate glasses are attractive candidates as UV transmitting materials. The calculated values for the ultraviolet resonance wavelength are comparable with those of pure silica glass or fluoride single crystal CaF2. The formation of radiation-induced defect centers leads to additional absorption bands in the VUV-UV-vis range. The damage and the healing behavior by lamps and lasers are investigated in dependence on phosphate content and the content of impurities, mainly transition metals. Experiments were carried out using pulsed lasers with a duration of femto- and nanoseconds at a wavelength of 248 nm. The initial slope of the induced absorption shows a nonlinear dependence on the pulse energy density. Resonant and non-resonant two-photon mechanisms were observed. Two-photon-absorption coefficients at 248 nm for samples with different phosphate contents were measured. Models of the kinetics of the radiation-induced defects were developed. The inclusion of energy transfer was necessary to explain the difference in the damage behavior for nanosecond (248 nm, 193 nm) and femtosecond (248 nm) laser pulses.

  12. Electromagnetic Radiation: Final Range Environmental Assessment, Revision 1

    DTIC Science & Technology

    2009-12-03

    scanning, research, and medical treatment and surgical procedures. There are many different types of lasing materials as identified below ( Indiana ...vapor (red) 0.627 Xenon chloride (Excimer-UV) 0.308 Helium neon (red) 0.633 Xenon fluoride (Excimer-UV) 0.351 Krypton (red) 0.647 Helium cadmium (UV...0.325 Rhodamine 6G dye (tunable) 0.570-0.650 Nitrogen (UV) 0.337 Ruby (CrAlO3) (red) 0.694 Helium cadmium (violet) 0.441 Gallium arsenide (diode

  13. GROWTH RESPONSE OF SYMBODINIUM SPP. TO COMBINED TEMPERATURE AND UV RADIATION

    EPA Science Inventory

    Rogers, J.E. and D. Marcovich. In press. Growth Response of a Coral Symbiont, Symbiodinium sp., to Combined Temperature and UV Radiation Exposure (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 June 2004, Savann...

  14. ATTENUATION OF SOLAR UV RADIATION BY AEROSOLS DURING AIR POLLUTION EPISODES

    EPA Science Inventory

    Increase in the amount of solar UV radiation reaching the surface due to decrease in stratospheric ozone continues to be a major concern (WMO, 1998). However, recent studies show that absorption and smattering by aerosols during air pollution episode decreases the amount of radi...

  15. Urban forest influences on exposure to UV radiation and potential consequences for human health

    Treesearch

    Gordon M. Heisler

    2010-01-01

    This chapter explores the literature on ultraviolet (UV) irradiance in urban ecosystems with respect to the likely effects on human health. The focus was the question of whether the health effects of UV radiation should be included in the planning of landscape elements such as trees and shading structures, especially for high use pedestrian areas and school play...

  16. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  17. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  18. Photodegradation of Acid Violet 7 with AgBr-ZnO under highly alkaline conditions.

    PubMed

    Krishnakumar, B; Swaminathan, M

    2012-12-01

    The photocatalytic activity of AgBr-ZnO was investigated for the degradation of Acid Violet 7 (AV 7) in aqueous solution using UV-A light. AgBr-ZnO is found to be more efficient than commercial ZnO and prepared ZnO at pH 12 for the mineralization of AV 7. The effects of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo mineralization have been analyzed. Expect oxone, other oxidants decrease the degradation efficiency. Addition of metal ions and anions decrease the degradation efficiency of AgBr-ZnO significantly. The mineralization of AV 7 has also been confirmed by COD measurements. The mechanism of degradation by AgBr-ZnO is proposed to explain its higher activity under UV light. The catalyst is found to be reusable. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. UV exposure in cars.

    PubMed

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  20. HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Labbé, Ivo; Bouwens, Rychard J.; Brammer, Gabriel B.; Oesch, Pascal; Franx, Marijn; Fynbo, Johan P. U.; Milvang-Jensen, Bo; Muzzin, Adam; Illingworth, Garth D.; Le Fèvre, Olivier; Caputi, Karina I.; Holwerda, Benne W.; McCracken, Henry J.; Smit, Renske; Magee, Dan

    2017-12-01

    We report on the discovery of three especially bright candidate {z}{phot}≳ 8 galaxies. Five sources were targeted for follow-up with the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3), selected from a larger sample of 16 bright (24.8≲ H≲ 25.5 mag) candidate z≳ 8 Lyman break galaxies (LBGs) identified over 1.6 degrees2 of the COSMOS/UltraVISTA field. These were selected as Y and J dropouts by leveraging the deep (Y-to-{K}{{S}}∼ 25.3{--}24.8 mag, 5σ ) NIR data from the UltraVISTA DR3 release, deep ground-based optical imaging from the CFHTLS and Suprime-Cam programs, and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprimeCam g-, r-, i-, z-, and Y-band data, we confirm that 3/5 galaxies have robust {z}{phot}∼ 8.0{--}8.7, consistent with the initial selection. The remaining 2/5 galaxies have a nominal {z}{phot}∼ 2. However, with HST data alone, these objects have increased probability of being at z∼ 9. We measure mean UV continuum slopes β =-1.74+/- 0.35 for the three z∼ 8{--}9 galaxies, marginally bluer than similarly luminous z∼ 4{--}6 in CANDELS but consistent with previous measurements of similarly luminous galaxies at z∼ 7. The circularized effective radius for our brightest source is 0.9 ± 0.3 kpc, similar to previous measurements for a bright z∼ 11 galaxy and bright z∼ 7 galaxies. Finally, enlarging our sample to include the six brightest z∼ 8 LBGs identified over UltraVISTA (i.e., including three other sources from Labbé et al.) we estimate for the first time the volume density of galaxies at the extreme bright end ({M}{UV}∼ -22 mag) of the z∼ 8 UV luminosity function. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double-power-law form.

  1. Recent studies on UV radiation in Brazil

    NASA Astrophysics Data System (ADS)

    Correa, M. P.; Ceballos, J. C.; Moregula, A.; Okuno, E.; Fausto, A.; Mol, A.; Santos, J. C.

    2009-04-01

    This presentation shows a summary of UV index measurements performed in the last years in Southeastern (SE) and Northeastern (NE) Brazilian regions. Brazil has an area of 8.5 million km2 distributed between latitudes 5˚ N and 35˚ S and longitudes 5˚ W and 75˚ W. SE is the most important economic pole of South America and the NE coast is an important tourist region. This large area has a great diversity of climatic, atmospheric and geographical conditions in addition to very diverse social and cultural habits. Non-melanoma skin cancer (NMSC) is an epidemiological health problem with more than 120,000 new cases each year. The most of these cases are found in the South and Southeast regions, with about 70 new NMSC per 100,000 inhabitants. Solar Light UV501 biometers are installed in the SE cities of São Paulo (23.6˚ S, 46.7˚ W, 865 m ASL), Itajubá/Minas Gerais (22.4˚ S; 45.5˚ W, 846 m ASL) and the NE city of Ilhéus/Bahia (14.8˚ S; 39.3˚ W; 54 m ASL). First measurements began in 2005 in São Paulo city, while Itajubá and Ilhéus have regular measurements from the beginning of 2008. Other studies related to the UV radiation modeling and interactions with atmosphere components, as ozone, aerosols and clouds, have also been performed. For example: a) UVI modelling calculations performed by a multiple-scattering spectral models; b) studies on the aerosol radiative properties based on satellite (MODIS/Terra-Aqua) and ground-based (Aeronet) observation; c) ozone content variability from satellite (OMI/Aura) and ground-based (Microtops ozonometer) measurements; d) behavioral profile of the population, as regarding habits of solar exposure and sun protection measures. Results show that more than 75% of the measurements conducted in the summer (outside noon) can be classified as upper than high UVI according to World Health Organization (WHO) recommended categories: Low (UVI < 2), Medium (3 ? UVI < 6), High (6 ? UVI < 8), Very High (8 ? UVI

  2. Cómo calcular el índice UV

    EPA Pesticide Factsheets

    Información sobre cómo calcular el Índice ultravioleta (UV) a través de un modelo numérico que relaciona la intensidad de la radiación solar ultra violeta (UV) en la superficie terrestre con la concentración pronosticada de ozono estratosférico.

  3. Influence of UV radiation and nitrosamines on the induction of mycotoxins synthesis by nontoxigenic moulds isolated from feed samples.

    PubMed

    Aziz, Nagy H; Smyk, B

    2002-04-01

    The effects of UV radiation and nitrosamines on the induction of mycotoxin biosynthesis by some nontoxigenic moulds isolated from feed samples collected from Egypt and Poland was investigated. Nontoxigenic strains of Aspergillus flavus P-63, A. niger EN-200 and A. ochraceus P-157 synthesized mycotoxins (aflatoxins and ochratoxin, A) after exposure to near UV radiation for 120-210 min. Nitrosamines (DMNA and DENA) at 30 up to 1000 ppm induced the synthesis of aflatoxins by nontoxigenic species of A. flavus ES-255 and P-63 and A. niger EN 200. Near-UV radiation and nitrosamines had no influence on the induction of mycotoxin synthesis by Penicillium and Fusarium isolates. All nontoxigenic strains of Aspergilli which synthesized aflatoxins in the presence of 1000 ppm nitrosamines, also synthesized continuously aflatoxins during the next fifteen generations. Near-UV radiation and nitrosamines had a mutagenic effect on the induction of mycotoxins synthesis by nontoxigenic moulds.

  4. Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2.

    PubMed

    Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E

    2011-01-01

    The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.

  5. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    PubMed

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.

  6. Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.

    PubMed

    Telford, William G

    2004-09-01

    Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.

  7. Can UV radiation-blocking soft contact lenses attenuate UV radiation to safe levels during summer months in the southern United States?

    PubMed

    Walsh, James E; Bergmanson, Jan P G; Saldana, Gerardo; Gaume, Amber

    2003-01-01

    Peak solar UV radiation (UVR) intensities are typically experienced in summer months. People living in the southern states of the United States, where the UVR frequently exceeds the recommended minimum erythema dose (MED), are at particular risk, especially outdoor workers. The present study analyzed summertime MED readings in Houston, TX, to assess the frequency of intensities regarded as unhealthy. The study also sought to assess whether UV-blocking hydrogel contact lenses provide ocular protection from these high doses. Readings, taken at midday using a UVR biometer, were analyzed to assess the potential UVR risk. The spectral response of the meter, modified by the spectral transmission curves of the contact lenses, allowed us to mathematically assess the ocular protection provided. In addition, ambient UVR measurements were taken at midday, using a portable UVR radiometer. The detector was adapted so that a standard diameter hydrogel contact lens could be placed over it to quantify the UV-blocking capabilities of the lens. The MED readings showed that the recommended safety standards were exceeded approximately at local midday 90% of the time. Model calculations and empirical data demonstrated that contact lenses attenuated the MED readings by up to 90%, bringing them well within the recommended Environmental Protection Agency safety standards. The efficacy of the model used in this study was verified through direct comparison of the modeled and measured data. UV-blocking hydrogel soft contact lenses reduce the MED to the human eye and therefore limit the lifetime ocular dose. These lenses are highly recommended to prevent the development of UVR-related ocular pathologic conditions.

  8. Hornet peak flight activity is correlated with solar UV radiation: a multi-annual survey.

    PubMed

    Ishay, Jacob S; Pertsis, Vitaly

    2002-01-01

    This study deals with the effect which solar irradiation of short wavelength, particularly ultraviolet (UV), exerts on the activities of hornets. The findings are based on multi-annual observations carried out during the years 1985, 1989 and 1998 on hornet nests in the field. At the peak of UV radiation, which occurs at noon, hornet activity is greater by 1-2 orders of magnitude than that during the morning or evening hours. The main visible hornet activity appears to be the removal of soil particles from the nest so as to enlarge its volume, enable the building of additional combs and also increase the size of existing combs. Hornet flight during peak insolation hours is characterized by its briefness (5-20 seconds only) and brevity (to distances of 5-10 meters only) as compared to flights at other hours of the day. These prolonged, multi-annual observations lead to the conclusion that hornets are capable of converting the energy of UV radiation into a form amenable to metabolic usage. In this respect the hornet cuticle behaves as a thermophotovoltaic device, i.e., a semiconductor diode that converts photons radiating from the sunlight into electrical energy.

  9. Atmospheric scattering of middle uv radiation from an internal source.

    PubMed

    Meier, R R; Lee, J S; Anderson, D E

    1978-10-15

    A Monte Carlo model has been developed which simulates the multiple-scattering of middle-uv radiation in the lower atmosphere. The source of radiation is assumed to be monochromatic and located at a point. The physical effects taken into account in the model are Rayleigh and Mie scattering, pure absorption by particulates and trace atmospheric gases, and ground albedo. The model output consists of the multiply scattered radiance as a function of look-angle of a detector located within the atmosphere. Several examples are discussed, and comparisons are made with direct-source and single-scattered contributions to the signal received by the detector.

  10. Multiple UV reflectance peaks in the iridescent neck feathers of pigeons

    NASA Astrophysics Data System (ADS)

    McGraw, Kevin J.

    Recent studies of colorful plumage signals in birds have been aided by the finding that birds can see ultraviolet (UV) light and thus may communicate using colors invisible to humans. Some of the pioneering and more pivotal work on avian color vision was performed with domestic pigeons (Columba livia), yet surprisingly there have been few detailed reports of the UV-reflecting properties of pigeon feathers. Here, I use UV-VIS fiber-optic spectrometry to document the full-spectrum reflectance characteristics of iridescent purple and green neck plumage in pigeons. Neck feathers that appear purple to the human eye exhibit four reflectance peaks-two in the UV and one in the blue and red regions-and thus exhibit a UV-purple hue. Neck feathers that appear green to the human eye are characterized by five spectral peaks: two in the UV (UVA and UVB), a predominant green peak, and secondary violet and red peaks, conferring a UV-purple-green color. Such elaborate UV coloration suggests that birds may use an even more complex and `hidden' UV signaling system than previously thought.

  11. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  12. Martian atmospheric O3 retrieval development for the NOMAD-UVIS spectrometer

    NASA Astrophysics Data System (ADS)

    Hewson, W.; Mason, J. P.; Leese, M.; Hathi, B.; Holmes, J.; Lewis, S. R.; Iriwin, P. G. J.; Patel, M. R.

    2017-09-01

    The composition of atmospheric trace gases and aerosols is a highly variable and poorly constrained component of the martian atmosphere, and by affecting martian climate and UV surface dose, represents a key parameter in the assessment of suitability for martian habitability. The ExoMars Trace Gas Orbiter (TGO) carries the Open University (OU) designed Ultraviolet and VIsible Spectrometer (UVIS) instrument as part of the Belgian-led Nadir and Occultation for MArs Discovery (NOMAD) spectrometer suite. NOMAD will begin transmitting science observations of martian surface and atmosphere back-scattered UltraViolet (UV) and visible radiation in Spring 2018, which will be processed to derive spatially and temporally averaged atmospheric trace gas and aerosol concentrations, intended to provide a better understanding of martian atmospheric photo-chemistry and dynamics, and will also improve models of martian atmospheric chemistry, climate and habitability. Work presented here illustrates initial development and testing of the OU's new retrieval algorithm for determining O3 and aerosol concentrations from the UVIS instrument.

  13. Two dimensional imaging of photoluminescence from rice for quick and non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Katsumata, T.; Suzuki, T.; Aizawa, H.; Matashige, E.

    2005-05-01

    The visible PL with broad peak at wavelength of λ=462 nm are observed from polished rice, flour and corn starch under illumination of ultra-violet (UV) light. PL peaking at λ=462 nm is excited effectively with UV light at λ=365 nm. Peak intensity is found to vary with the source and the breed of the rice specimens. PL images from rice also reveal the uniformity of the rice products. Two-dimensional images of PL, which reavealed the uniformity of rice under UV irradiation, are potentially useful for the evaluation and the quality control of the rice products.

  14. [Knowledge about UV-radiation and sun protection: survey of adolescents and young adults in Bavaria].

    PubMed

    Eichhorn, C; Seibold, C; Loss, J; Steinmann, A; Nagel, E

    2008-10-01

    Identifying deficits in sun protection knowledge and behavior can serve as a starting point for primary prevention interventions. The aim of this study was to investigate knowledge and behavior related to ultraviolet radiation in the population between 14 and 45 years of age in Bavaria, as well as effects of the awareness campaign "Sensible in the Sun". In two Bavarian districts, 545 individuals of the target population completed a telephone survey about risks of UV-radiation, sun protection knowledge and behavior, and effects of the campaign. Sunburn and skin cancer as adverse effects of ultraviolet radiation were named by almost every participant. When asked about protective interventions, 91% mentioned sunscreen and 45-54% clothing, limited stay in the sun and seeking shade at noon. Women were better informed than men, adults better than adolescents. 10.6% were aware of the campaign. In this group, 37.9% had been motivated to consider their sun protective behavior; 13.8% (especially women >30 years) stated they had changed their behavior because of the campaign. There were deficits in knowledge, especially about eye damage and the importance of getting slowly used to UV radiation. Physician advice, but also broadcast and print media, has an effect on UV-related knowledge.

  15. The effects of UV-B radiation intensity on biochemical parameters and active ingredients in flowers of Qi chrysanthemum and Huai chrysanthemum.

    PubMed

    Yao, Xiao-Qin; Chu, Jian-Zhou; He, Xue-Li; Si, Chao

    2014-01-01

    The article studied UV-B effects on biochemical parameters and active ingredients in flowers of Qi chrysanthemum and Huai chrysanthemum during the bud stage. The experiment included four UV-B radiation levels (CK, ambient UV-B; T1, T2 and T3 indicated a 5%, 10% and 15% increase in ambient UV-BBE, respectively) to determine the optimal UV-B radiation intensity in regulating active ingredients level in flowers of two chrysanthemum varieties. Flower dry weight of two cultivars was not affected by UV-B radiation under experimental conditions reported here. UV-B treatments significantly increased the rate of superoxide radical production, hydrogen peroxide (H2O2) (except for T1) and malondialdehyde concentration in flowers of Huai chrysanthemum and H2O2 concentration in flowers of Qi chrysanthemum. T2 and T3 treatments induced a significant increase in phenylalanine ammonia lyase enzyme (PAL) activity, anthocyanins, proline, ascorbic acid, chlorogenic acid and flavone content in flowers of two chrysanthemum varieties, and there were no significant differences in PAL activity, ascorbic acid, flavone and chlorogenic acid content between the two treatments. These results indicated that appropriate UV-B radiation intensity did not result in the decrease in flower yield, and could regulate PAL activity and increase active ingredients content in flowers of two chrysanthemum varieties. © 2014 The American Society of Photobiology.

  16. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomès, E; Aguirreolea, J; Pascual, I

    2015-03-01

    This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66kJm(-2)day(-1)) and two water regimes (well watered and water deficit), in a factorial design, from fruit-set to maturity under glasshouse-controlled conditions. UV-B induced a transient decrease in net photosynthesis (Anet), actual and maximum potential efficiency of photosystem II, particularly on well watered plants. Methanol extractable UV-B absorbing compounds (MEUVAC) concentration and superoxide dismutase activity increased with UV-B. Water deficit effected decrease in Anet and stomatal conductance, and did not change non-photochemical quenching and the de-epoxidation state of xanthophylls, dark respiration and photorespiration being alternative ways to dissipate the excess of energy. Little interactive effects between UV-B and drought were detected on photosynthesis performance, where the impact of UV-B was overshadowed by the effects of water deficit. Grape berry ripening was strongly delayed when UV-B and water deficit were applied in combination. In summary, deficit irrigation did not modify the adaptive response of grapevine to UV-B, through the accumulation of MEUVAC. However, combined treatments caused additive effects on berry ripening. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N.

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seedmore » number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.« less

  18. Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters

    NASA Astrophysics Data System (ADS)

    Brault, J.; Rosales, D.; Damilano, B.; Leroux, M.; Courville, A.; Korytov, M.; Chenot, S.; Vennéguès, P.; Vinter, B.; De Mierry, P.; Kahouli, A.; Massies, J.; Bretagnon, T.; Gil, B.

    2014-06-01

    AlxGa1-xN-based ultra-violet (UV) light emitting diodes (LEDs) are seen as the best solution for the replacement of traditional mercury lamp technology. By adjusting the Al concentration, a large emission spectrum range from 360 nm (GaN) down to 200 nm (AlN) can be covered. Owing to the large density of defects typically present in AlxGa1-xN materials usually grown on sapphire substrates, LED efficiencies still need to be improved. Taking advantage of the 3D carrier confinement, quantum dots (QDs) are among the solutions currently under investigation to improve the performances of UV LEDs. The objectives of this work are to present and discuss the morphological and optical properties of GaN nanostructures grown by molecular beam epitaxy on the (0 0 0 1) and the (11-22) orientations of Al0.5Ga0.5N. In particular, the dependence of the morphological properties of the nanostructures on the growth conditions and the surface orientation will be presented. The optical characteristics as a function of the nanostructure design (size, shape and dimensionality) will also be shown and discussed. The electroluminescence characteristics of a first series of QD-based GaN/Al0.5Ga0.5N LEDs grown on the polar (0 0 0 1) plane will be investigated.

  19. The Nature of the UV/X-ray Absorber In PG 2302+029

    NASA Technical Reports Server (NTRS)

    Sabra, Bassem M.; Hamann, Fred; Jannuzi, Buell T.; George, Ian M.; Shields, Joseph C.

    2003-01-01

    We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029. This quasar has a rare system of ultra-high velocity (-56,000 km s(exp -1) UV absorption lines that form in an outflow from the active nucleus. The Chandra data indicate that soft X-ray absorption is also present. We perform a joint UV and X-ray analysis, using photoionization calculations, to determine the nature of the absorbing gas. The UV and X-ray datasets were not obtained simultaneously. Nonetheless, our analysis suggests that the X-ray absorption occurs at high velocities in the same general region as the UV absorber. There are not enough constraints to rule out multi-zone models. In fact, the distinct broad and narrow UV line profiles clearly indicate that multiple zones are present. Our preferred estimates of the ionization and total column density in the X-ray absorber (logU = 1.6, N(sub eta) = 10(exp 22.4) cm (exp -2) over predict the O VI lambda lambda1032,1038 absorption unless the X-ray absorber is also outflowing at approximately 56,000 km s(exp-l), but they over predict the Ne VIII lambda lambda 770,780 absorption at all velocities. If we assume that the X-ray absorbing gas is outflowing at the same velocity of the UV-absorbing wind and that the wind is radiatively accelerated, then the outflow must be launched at a radius of less than or equal to 10(exp 15) cm from the central continuum source. The smallness of this radius casts doubts on the assumption of radiative acceleration.

  20. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  1. Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5

    PubMed Central

    Bheemaraddi, Mallikarjun C.; Shivannavar, Channappa T.; Gaddad, Subhashchandra M.

    2014-01-01

    A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L) within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v). UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2. PMID:24883397

  2. The effects of UV radiation A and B on diurnal variation in photosynthesis in three taxonomically and ecologically diverse microbial mats

    NASA Technical Reports Server (NTRS)

    Cockell, C. S.; Rothschild, L. J.

    1999-01-01

    Photosynthetic primary production, the basis of most global food chains, is inhibited by UV radiation. Evaluating UV inhibition is therefore important for assessing the role of natural levels of UV radiation in regulating ecosystem behavior as well as the potential impact of stratospheric ozone depletion on global ecosystems. As both photosynthesis and UV fluxes are subject to diurnal variations, we examined the diurnal variability of the effect of UV radiation on photosynthesis in three diverse algal mats. In one of the mats (Cyanidium caldarium) a small mean decrease in primary productivity over the whole day occurred when both UVA and UVB were screened out. In two of the mats (Lyngbya aestuarii and Zygogonium sp.) we found a mean increase in the total primary productivity over the day when UVB alone was screened and a further increase when UVA and UVB were both screened out. Variations in the effects of UV radiation were found at different times of the day. This diurnal variability may be because even under the same solar radiation flux, there are different factors that may control photosynthetic rate, including nutritional status and other physiological processes in the cell. The results show the importance of assessing the complete diurnal productivity. For some of the time points the increase in the mean was still within the standard deviations in primary productivity, illustrating the difficulty in dissecting UV effects from other natural variations.

  3. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-06-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  4. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-02-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  5. RESPONSE OF OXIDATIVE STRESS DEFENSE SYSTEMS IN RICE (ORYZA SATIVA) LEAVES WITH SUPPLEMENTAL UV-B RADIATION

    EPA Science Inventory

    The impact of elevated ultraviolet-B radiation (UV-B, 280-320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings ...

  6. Phenomenon of period-doubling in holographic periodic structures exposed to UV radiation

    NASA Astrophysics Data System (ADS)

    Gulyaev, Sergey N.; Isaev, Igor V.

    2001-02-01

    This paper presents the experimental study of the period- doubling phenomenon occurring during the multi-cycle processing procedure incorporating the exposure of Ag halide photoemulsion with the primary recorded holographic structure to the short-wave UV radiation, washing and drying. It is suggested that the simultaneous presence of two contrary photochemical processes -- photodecomposition and radiation hardening in the gelatin results in instability of the primary holographic structure and in the formation of the spatial subharmonic of the surface relief. The phenomenon may be considered as a process of the self-organization initiated by instability of the macrostructure on a rearrangement of the microstructure on the molecule level. The period-doubling phenomenon has been found to occur in the experiments with the UV sources of a various spectral composition -- the mercury- vapor lamp and the excimer lamps operating on the mixtures of Xe+Cl2 and Kr+Cl2.

  7. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  8. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  9. Ultra Low Outgassing silicone performance in a simulated space ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Velderrain, M.; Malave, V.; Taylor, E. W.

    2010-09-01

    The improvement of silicone-based materials used in space and aerospace environments has garnered much attention for several decades. Most recently, an Ultra Low Outgassing™ silicone incorporating innovative reinforcing and functional fillers has shown that silicone elastomers with unique and specific properties can be developed to meet applications requiring stringent outgassing requirements. This paper will report on the next crucial step in qualifying these materials for spacecraft applications requiring chemical and physical stability in the presence of ionizing radiation. As a first step in this process, selected materials were irradiated with Co-60 gamma-rays to simulate the total dose received in near- Earth orbits. The paper will present pre-and post-irradiation response data of Ultra Low Outgassing silicone samples exposed under ambient air environment coupled with measurements of collected volatile condensable material (CVCM) and total mass loss (TML) per the standard conditions in ASTM E 595. The data will show an insignificant effect on the CVCMs and TMLs after exposure to various dosages of gamma radiation. This data may favorably impact new applications for these silicone materials for use as an improved sealant for space solar cell systems, space structures, satellite systems and aerospace systems.

  10. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  11. Effect of UV radiation on habitat selection by Girella laevifrons and Graus nigra (Kyphosidae).

    PubMed

    Pulgar, J; Lagos, P; Maturana, D; Valdés, M; Aldana, M; Pulgar, V M

    2015-02-01

    The effect of UV radiation on habitat use of two species of intertidal fishes that inhabit the same pools but exhibit different activity levels and diets was measured: the highly active omnivorous Girella laevifrons and the cryptic carnivorous Graus nigra. Individuals of each species were acclimated to a tank divided in three sections with different illumination; no light (NL), ultraviolet light (UV) and white light (WL), and the time spent and number of visits to each section were recorded. Although both species preferred the NL section, G. laevifrons spent more time in UV and less time in WL compared with G. nigra; G. laevifrons also displayed higher number of visits to UV, suggesting a different tendency in space use in response to UV exposure in intertidal fishes. © 2015 The Fisheries Society of the British Isles.

  12. Intrinsic radiation tolerance of ultra-thin GaAs solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirst, L. C.; Yakes, M. K.; Warner, J. H.

    2016-07-18

    Radiation tolerance is a critical performance criterion of photovoltaic devices for space power applications. In this paper we demonstrate the intrinsic radiation tolerance of an ultra-thin solar cell geometry. Device characteristics of GaAs solar cells with absorber layer thicknesses 80 nm and 800 nm were compared before and after 3 MeV proton irradiation. Both cells showed a similar degradation in V{sub oc} with increasing fluence; however, the 80 nm cell showed no degradation in I{sub sc} for fluences up to 10{sup 14 }p{sup +} cm{sup −2}. For the same exposure, the I{sub sc} of the 800 nm cell had severely degraded leaving a remaining factor ofmore » 0.26.« less

  13. A derivatization-enhanced detection strategy in mass spectrometry: analysis of 4-hydroxybenzoates and their metabolites after keratinocytes are exposed to UV radiation

    PubMed Central

    Lee, Yi-Hsuan; Lin, Ying-Chi; Feng, Chia-Hsien; Tseng, Wei-Lung; Lu, Chi-Yu

    2017-01-01

    4-Hydroxybenzoate is a phenolic derivative of alkyl benzoates and is a widely used preservative in cosmetic and pharmaceutical products. The presence of 4-hydroxybenzoates in the human body may result from the use of pharmaceutical and personal care products. These compounds are also known to exhibit estrogenic and genotoxic activities. The potential adverse effects of these compounds include endocrine disruption, oxidative and DNA damage, contact dermatitis, and allergic reactions. This study used two mass spectrometry methods that are applicable when using a derivatization-enhanced detection strategy (DEDS) to screen 4-hydroxybenzoates and their metabolites. Chemical derivatization was used to enhance the detection of these compounds. To evaluate the metabolic process triggered by UV radiation, human keratinocyte HaCaT cells treated with these 4-hydroxybenzoates were further exposed to UVA, UVB and UVC radiation. Metabolites transformed by human keratinocytes in the chemical derivatization procedure were identified by a nano ultra-performance liquid chromatographic system (nanoUPLC) coupled with LTQ Orbitrap. The experiments confirmed the feasibility of this method for identifying 4-hydroxybenzoate metabolites and for high-throughput screening of 4-hydroxybenzoate in commercial products (50 samples) by the DEDS. PMID:28057923

  14. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp.

    PubMed

    Myasnik, M; Manasherob, R; Ben-Dov, E; Zaritsky, A; Margalith, Y; Barak, Z

    2001-08-01

    Susceptibility of Bacillus thuringiensis spores and toxins to the UV-B range (280--330 nm) of the solar spectrum reaching Earth's surface may be responsible for its inactivation and low persistence in nature. Spores of the mosquito larvicidal B. thuringiensis subsp. israelensis were significantly more resistant to UV-B than spores of the lepidopteran-active subsp. kurstaki. Spores of subsp. israelensis were as resistant to UV-B as spores of B. subtilis and more resistant than spores of the closely related B. cereus and another mosquito larvicidal species B. sphaericus. Sensitivity of B. thuringiensis subsp. israelensis spores to UV-B radiation depended upon their culture age; 24-h cultures, approaching maximal larvicidal activity, were still sensitive. Maximal resistance to UV-B was achieved only at 48 h.

  15. Sensing and Responding to UV-A in Cyanobacteria

    PubMed Central

    Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho

    2012-01-01

    Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372

  16. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.

    PubMed

    Nandakumar, Kanavillil; Keeler, Werden; Schraft, Heidi; Leung, Kam T

    2006-07-05

    The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms. (c) 2006 Wiley Periodicals, Inc.

  17. UV filters for lighting of plants

    NASA Astrophysics Data System (ADS)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-03-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  18. UV filters for lighting of plants

    NASA Technical Reports Server (NTRS)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-01-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  19. 75 FR 14468 - Carbazole Violet Pigment 23 From China and India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ...)] Carbazole Violet Pigment 23 From China and India AGENCY: United States International Trade Commission... violet pigment 23 from India and the antidumping duty orders on carbazole violet pigment 23 from China and India. SUMMARY: The Commission hereby gives notice of the scheduling of expedited reviews pursuant...

  20. Nonequilibrium radiation behind a strong shock wave in CO 2-N 2

    NASA Astrophysics Data System (ADS)

    Rond, C.; Boubert, P.; Félio, J.-M.; Chikhaoui, A.

    2007-11-01

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO 2-N 2-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO 2, showing the way towards a better description of the chemistry of the mixture.

  1. Modeling of urban trees' effects on reducing human exposure to UV radiation in Seoul, Korea

    Treesearch

    Hang Ryeol Na; Gordon M. Heisler; David J. Nowak; Richard H. Grant

    2014-01-01

    A mathematical model isconstructed for quantifying urban trees’ effects on mitigating the intensity of ultraviolet (UV) radiation on the ground within different landuse types across a city. The model is based upon local field data, meteorological data and equations designed to predict the reduced UV fraction due to trees at the ground level. Trees in Seoul, Korea (2010...

  2. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings.

    PubMed

    Turtola, Satu; Sallas, Leena; Holopainen, Jarmo K; Julkunen-Tiitto, Riitta; Kainulainen, Pirjo

    2006-11-01

    The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.

  3. Characterisation of the ester-substituted products of the reaction of p-t-butyl calix[4]arene and ethyl bromoacetate using LC-UV-MS and LC-DAD.

    PubMed

    McMahon, Gillian; Wall, Rachel; Nolan, Kieran; Diamond, Dermot

    2002-07-19

    A series of derivatisation reactions between p-t-butyl calix[4]arene and ethyl bromoacetate were carried out in order to prepare 1,3 diester substituted calix[4]arene. Mass spectral data, obtained from direct injection of samples, indicated that the reactions were rich in the desired product. Since the ultra violet (UV) spectra of the desired product and possible impurities are very similar, liquid chromatography (LC) chromatographic data seemed to corroborate these results. However, when on-line LC-UV-MS was carried out and each LC peak subjected to MS analysis as it eluted, a very different picture emerged. It was found that many of these reactions actually contained high levels of the monoester product which, having less affinity for sodium in the MS, is therefore seriously underestimated in any direct injection assay. LC-diode array detection (DAD) methods were also used to help successfully identify and characterise the compounds being formed in these complex reactions. The overall results obtained in this paper allowed the optimal reaction conditions to be determined for this reaction. LC-MS analysis of the chromatographic peaks also identified the presence of two isomers of the diester substituted calix[4]arene (1,3 and 1,2 diesters). The combination of LC and UV/MS detection is required for accurate analysis of the products of such reactions.

  4. Oxidative damage in response to natural levels of UV-B radiation in larvae of the tropical sea urchin Tripneustes gratilla.

    PubMed

    Lister, Kathryn Naomi; Lamare, Miles D; Burritt, David J

    2010-01-01

    To assess the effects of UV radiation (280-400nm) on development, oxidative damage and antioxidant defence in larvae of the tropical sea urchin Tripneustes gratilla, a field experiment was conducted at two depths in Aitutaki, Cook Islands (18.85°S, 159.75°E) in May 2008. Compared with field controls (larvae shielded from UV-R but exposed to VIS-radiation), UV-B exposure resulted in developmental abnormality and increases in oxidative damage to proteins (but not lipids) in embryos of T. gratilla held at 1m depth. Results also indicated that larvae had the capacity to increase the activities of protective antioxidant enzymes when exposed to UV-B. The same trends in oxidative damage and antioxidant defence were observed for embryos held at 4m, although the differences were smaller and more variable. In contrast to UV-B exposure, larvae exposed to UV-A only showed no significant increases in abnormality or oxidative damage to lipids and proteins compared with field controls. This was true at both experimental depths. Furthermore, exposure to UV-A did not cause a significant increase in the activities of antioxidants. This study indicates that oxidative stress is an important response of tropical sea urchin larvae to exposure to UV radiation. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  5. Ablation of dentin by irradiation of violet diode laser

    NASA Astrophysics Data System (ADS)

    Hatayama, H.; Kato, J.; Akashi, G.; Hirai, Y.; Inoue, A.

    2006-02-01

    Several lasers have been used for clinical treatment in dentistry. Among them, diode lasers are attractive because of their compactness compared with other laser sources. Near-infrared diode lasers have been practically used for cutting soft tissues. Because they penetrate deep to soft tissues, they cause sufficiently thick coagulation layer. However, they aren't suitable for removal of carious dentin because absorption by components in dentin is low. Recently, a violet diode laser with a wavelength of 405nm has been developed. It will be effective for cavity preparation because dentin contains about 20% of collagen whose absorption coefficient at a violet wavelength is larger than that at a near-infrared wavelength. In this paper, we examined cutting performance of the violet diode laser for dentin. To our knowledge, there have been no previous reports on application of a violet laser to dentin ablation. Bovine teeth were irradiated by continuous wave violet diode laser with output powers in a range from 0.4W to 2.4W. The beam diameter on the sample was about 270μm and an irradiation time was one second. We obtained the crater ablated at more than an output power of 0.8W. The depth of crater ranged from 20μm at 0.8W to 90μm at 2.4W. Furthermore, the beam spot with an output power of 1.7W was scanned at a speed of 1mm/second corresponding to movement of a dentist's hand in clinical treatment. Grooves with the depth of more than 50μm were also obtained. From these findings, the violet diode laser has good potential for cavity preparation. Therefore, the violet diode laser may become an effective tool for cavity preparation.

  6. The effectiveness of UV-C radiation for facility-wide environmental disinfection to reduce health care-acquired infections.

    PubMed

    Napolitano, Nathanael A; Mahapatra, Tanmay; Tang, Weiming

    2015-12-01

    Health care-acquired infections (HAIs) constitute an increasing threat for patients worldwide. Potential contributors of HAIs include environmental surfaces in health care settings, where ultraviolet-C radiation (UV-C) is commonly used for disinfection. This UV-C intervention-based pilot study was conducted in a hospital setting to identify any change in the incidence of HAIs before and after UV-C intervention, and to determine the effectiveness of UV-C in reducing pathogens. In a hospital in Culver City, CA, during 2012-2013, bactericidal doses of UV-C radiation (254 nm) were delivered through a UV-C-based mobile environmental decontamination unit. The UV-C dosing technology and expertise of the specifically trained personnel were provided together as a dedicated service model by a contracted company. The incidence of HAIs before and after the intervention period were determined and compared. The dedicated service model dramatically reduced HAIs (incidence difference, 1.3/1000 patient-days, a 34.2% reduction). Reductions in the total number and incidence proportions (28.8%) of HAIs were observed after increasing and maintaining the coverage of UV-C treatments. The dedicated service model was found to be effective in decreasing the incidence of HAIs, which could reduce disease morbidity and mortality in hospitalized patients. This model provides a continuously monitored and frequently UV-C-treated patient environment. This approach to UV-C disinfection was associated with a decreased incidence of HAIs. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    PubMed

    Václavík, Tomáš; Beckmann, Michael; Cord, Anna F; Bindewald, Anja M

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar

  8. Influence of the dark/light rhythm on the effects of UV radiation in the eyestalk of the crab Neohelice granulata.

    PubMed

    Vargas, Marcelo Alves; Geish, Marcio Alberto; Maciel, Fabio Everton; Cruz, Bruno Pinto; Filgueira, Daza de Moraes Vaz Batista; Ferreira, Gabrielle de Jesus; Nery, Luiz Eduardo Maia; Allodi, Silvana

    2010-04-01

    Crustaceans are interesting models to study the effects of ultraviolet (UV) radiation, and many species may be used as biomarkers for aquatic contamination of UV radiation reaching the surface of the Earth. Here, we investigated cell damage in the visual system of crabs Neohelice granulata that were acclimated to either 12L:12D, constant light, or constant dark, and were exposed to UVA or UVB at 12:00h (noon). The production of reactive oxygen species (ROS), antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO) damage, catalase activity, and pigment dispersion in the eye were evaluated. No significant differences from the three groups of controls (animals acclimated to 12L:12D, or in constant light, or not exposed to UV radiation) were observed in animals acclimated to 12L:12D, however, crabs acclimated to constant light and exposed to UV radiation for 30min showed a significant increase in ROS concentration, catalase activity, and LPO damage, but a decrease in ACAP compared with the controls. Crabs acclimated to constant darkness and exposed to UV for 30min showed a significantly increased ROS concentration and LPO damage, but the ACAP and catalase activity did not differ from the controls (animals kept in the dark while the experimental group was being exposed to UV radiation). Pigment dispersion in the pigment cells of eyes of animals acclimated to constant light was also observed. The results indicate that UVA and UVB alter specific oxidative parameters; however, the cell damage is more evident in animals deviated from the normal dark/light rhythm.

  9. The TROPOMI surface UV algorithm

    NASA Astrophysics Data System (ADS)

    Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna

    2018-02-01

    The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.

  10. Variations of metabolites and proteome in Lonicera japonica Thunb. buds and flowers under UV radiation.

    PubMed

    Zhu, Wei; Zheng, Wen; Hu, Xingjiang; Xu, Xiaobao; Zhang, Lin; Tian, Jingkui

    2017-04-01

    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light.

    PubMed

    Gomez, Grace F; Huang, Ruijie; MacPherson, Meoghan; Ferreira Zandona, Andrea G; Gregory, Richard L

    2016-09-01

    Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries.

  12. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    PubMed

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  13. Removal of micrometer size morphological defects and enhancement of ultraviolet emission by thermal treatment of Ga-doped ZnO nanostructures.

    PubMed

    Manzoor, Umair; Kim, Do K; Islam, Mohammad; Bhatti, Arshad S

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures.

  14. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  15. Evolution of ultraviolet vision in the largest avian radiation - the passerines.

    PubMed

    Ödeen, Anders; Håstad, Olle; Alström, Per

    2011-10-24

    Interspecific variation in avian colour vision falls into two discrete classes: violet sensitive (VS) and ultraviolet sensitive (UVS). They are characterised by the spectral sensitivity of the most shortwave sensitive of the four single cones, the SWS1, which is seemingly under direct control of as little as one amino acid substitution in the cone opsin protein. Changes in spectral sensitivity of the SWS1 are ecologically important, as they affect the abilities of birds to accurately assess potential mates, find food and minimise visibility of social signals to predators. Still, available data have indicated that shifts between classes are rare, with only four to five independent acquisitions of UV sensitivity in avian evolution. We have classified a large sample of passeriform species as VS or UVS from genomic DNA and mapped the evolution of this character on a passerine phylogeny inferred from published molecular sequence data. Sequencing a small gene fragment has allowed us to trace the trait changing from one stable state to another through the radiation of the passeriform birds. Their ancestor is hypothesised to be UVS. In the subsequent radiation, colour vision changed between UVS and VS at least eight times. The phylogenetic distribution of SWS1 cone opsin types in Passeriformes reveals a much higher degree of complexity in avian colour vision evolution than what was previously indicated from the limited data available. Clades with variation in the colour vision system are nested among clades with a seemingly stable VS or UVS state, providing a rare opportunity to understand how an ecologically important trait under simple genetic control may co-evolve with, and be stabilised by, associated traits in a character complex.

  16. OH megamasers: dense gas & the infrared radiation field

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}<10L_{⊙}, OH kMs), OH absorbers and OH non-detections (non-OH MM). Through comparative analysis on their infrared emission, CO and HCN luminosities (good tracers for the low-density gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  17. Solar UV Radiation and the Origin of Life On Earth

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Lanz, T.; Hubeny, I.; Gaidos, E.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield and energy source for life. Here, we give a progress report on the first phase of this program to establish the UV radiation from the early Sun. We have obtained ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun We are making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. Once validated, these models will allow us to extrapolate our theoretical spectra to other metallicities and to unobserved spectral regions.

  18. Divergence in DNA photorepair efficiency among genotypes from contrasting UV radiation environments in nature.

    PubMed

    Miner, Brooks E; Kulling, Paige M; Beer, Karlyn D; Kerr, Benjamin

    2015-12-01

    Populations of organisms routinely face abiotic selection pressures, and a central goal of evolutionary biology is to understand the mechanistic underpinnings of adaptive phenotypes. Ultraviolet radiation (UVR) is one of earth's most pervasive environmental stressors, potentially damaging DNA in any organism exposed to solar radiation. We explored mechanisms underlying differential survival following UVR exposure in genotypes of the water flea Daphnia melanica derived from natural ponds of differing UVR intensity. The UVR tolerance of a D. melanica genotype from a high-UVR habitat depended on the presence of visible and UV-A light wavelengths necessary for photoenzymatic repair of DNA damage, a repair pathway widely shared across the tree of life. We then measured the acquisition and repair of cyclobutane pyrimidine dimers, the primary form of UVR-caused DNA damage, in D. melanica DNA following experimental UVR exposure. We demonstrate that genotypes from high-UVR habitats repair DNA damage faster than genotypes from low-UVR habitats in the presence of visible and UV-A radiation necessary for photoenzymatic repair, but not in dark treatments. Because differences in repair rate only occurred in the presence of visible and UV-A radiation, we conclude that differing rates of DNA repair, and therefore differential UVR tolerance, are a consequence of variation in photoenzymatic repair efficiency. We then rule out a simple gene expression hypothesis for the molecular basis of differing repair efficiency, as expression of the CPD photolyase gene photorepair did not differ among D. melanica lineages, in both the presence and absence of UVR. © 2015 John Wiley & Sons Ltd.

  19. SU-F-J-45: Sparing Normal Tissue with Ultra-High Dose Rate in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y

    Purpose: To spare normal tissue by reducing the location uncertainty of a moving target, we proposed an ultra-high dose rate system and evaluated. Methods: High energy electrons generated with a linear accelerator were injected into a storage ring to be accumulated. The number of the electrons in the ring was determined based on the prescribed radiation dose. The dose was delivered within a millisecond, when an online imaging system found that the target was in the position that was consistent with that in a treatment plan. In such a short time period, the displacement of the target was negligible. Themore » margin added to the clinical target volume (CTV) could be reduced that was evaluated by comparing of volumes between CTV and ITV in 14 cases of lung stereotactic body radiation therapy (SBRT) treatments. A design of the ultra-high dose rate system was evaluated based clinical needs and the recent developments of low energy (a few MeV) electron storage ring. Results: This design of ultra-high dose rate system was feasible based on the techniques currently available. The reduction of a target volume was significant by reducing the margin that accounted the motion of the target. ∼50% volume reduction of the internal target volume (ITV) could be achieved in lung SBRT treatments. Conclusion: With this innovation of ultra-high dose rate system, the margin of target is able to be significantly reduced. It will reduce treatment time of gating and allow precisely specified gating window to improve the accuracy of dose delivering.« less

  20. The MESSIER surveyor: unveiling the ultra-low surface brightness universe

    NASA Astrophysics Data System (ADS)

    Valls-Gabaud, David; MESSIER Collaboration

    2017-03-01

    The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.

  1. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  2. An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; ONeal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor

  3. Determination of Organic Impurities in Anthraquinone Color Additives D&C Violet No. 2 and D&C Green No. 6 by Ultra-High Performance Liquid Chromatography.

    PubMed

    Yang, H H Wendy

    2017-01-01

    A new practical and time-saving ultra-high performance liquid chromatography (UHPLC) method has been developed for determining the organic impurities in the anthraquinone color additives D&C Violet No. 2 and D&C Green No. 6. The impurities determined are p-toluidine, 1-hydroxyanthraquinone, 1,4-dihydroxyanthraquinone, and two subsidiary colors. The newly developed UHPLC method uses a 1.7-μ particle size C-18 column, 0.1 M ammonium acetate and acetonitrile as eluents, and photodiode array detection. For the quantification of the impurities, six-point calibration curves were used with correlation coefficients that ranged from 0.9974 to 0.9998. Recoveries of impurities ranged from 99 to 104%. Relative standard deviations ranged from 0.81 to 4.29%. The limits of detection for the impurities ranged from 0.0067% to 0.216%. Samples from sixteen batches of each color additive were analyzed, and the results favorably compared with the results obtained by gravity-elution column chromatography, thin-layer chromatography, and isooctane extraction. Unlike with those other methods, use of the UHPLC method permits all of the impurities to be determined in a single analysis, while also reducing the amount of organic waste and saving time and labor. The method is expected to be implemented by the U.S. Food and Drug Administration for analysis of color additive samples submitted for batch certification.

  4. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

    PubMed

    Qiu, Zong-Bo; Zhu, Xin-Jun; Li, Fang-Min; Liu, Xiao; Yue, Ming

    2007-07-01

    Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

  5. Seasonal Variation in Solar Ultra Violet Radiation and Early Mortality in Extremely Preterm Infants.

    PubMed

    Salas, Ariel A; Smith, Kelly A; Rodgers, Mackenzie D; Phillips, Vivien; Ambalavanan, Namasivayam

    2015-11-01

    Vitamin D production during pregnancy promotes fetal lung development, a major determinant of infant survival after preterm birth. Because vitamin D synthesis in humans is regulated by solar ultraviolet B (UVB) radiation, we hypothesized that seasonal variation in solar UVB doses during fetal development would be associated with variation in neonatal mortality rates. This cohort study included infants born alive with gestational age (GA) between 23 and 28 weeks gestation admitted to a neonatal unit between 1996 and 2010. Three infant cohort groups were defined according to increasing intensities of solar UVB doses at 17 and 22 weeks gestation. The primary outcome was death during the first 28 days after birth. Outcome data of 2,319 infants were analyzed. Mean birth weight was 830 ± 230 g and median gestational age was 26 weeks. Mortality rates were significantly different across groups (p = 0.04). High-intensity solar UVB doses were associated with lower mortality when compared with normal intensity solar UVB doses (hazard ratio: 0.70; 95% confidence interval: 0.54-0.91; p = 0.01). High-intensity solar UVB doses during fetal development seem to be associated with risk reduction of early mortality in preterm infants. Prospective studies are needed to validate these preliminary findings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. The effects of gamma radiation, UV and visible light on ATP levels in yeast cells depend on cellular melanization.

    PubMed

    Bryan, Ruth; Jiang, Zewei; Friedman, Matthew; Dadachova, Ekaterina

    2011-10-01

    Previously we have shown that growth of melanized fungi is stimulated by low levels of gamma radiation. The goal of this study was to examine the effects of visible light, UV light, and gamma radiation on the energy level (ATP concentration) in melanized Cryptococcus neoformans cells. Melanized C. neoformans cells as well as non-melanized controls were subjected to visible, UV or gamma radiation, and ATP was quantified by measuring the amount of light emitted by the ATP-dependent reaction of luciferase with luciferin. We found that all three forms of radiation led to a reduction in the ATP levels in melanized C. neoformans cells. This points to a universal melanin-related mechanism underlying observation of ATP decrease in irradiated melanized cells. In contrast, in non-melanized cells visible light led to increase in ATP levels; gamma radiation did not cause any changes while UV exposure resulted in some ATP decrease, however, much less pronounced than in melanized cells. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. The optimal UV exposure time for vitamin D3 synthesis and erythema estimated by UV observations in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2016-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) from spectral UV measurements during 2006-2010. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied to the broadband UV measured by UV-Biometer at 6 sites in Korea Thus, the optimal UV exposure time for vitamin D3 synthesis and erythema was estimated for diurnal, seasonal, and annual scales over Korea. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice

  8. Increasing UV-B radiation at the earth's surface and potential effects on aqueous mercury cycling and toxicity.

    PubMed

    Bonzongo, Jean Claude J; Donkor, Augustine K

    2003-09-01

    In the past two decades, a great deal of attention has been paid to the environmental fate of mercury (Hg), and this is exemplified by the growing number of international conferences devoted uniquely to Hg cycling and its impacts on ecosystem functions and life. This interest in the biogeochemistry of Hg has resulted in a significant improvement of our understanding of its impact on the environment and human health. However, both past and current research, have been primarily oriented toward the study of direct impact of anthropogenic activities on Hg cycling. Besides a few indirect effects such as the increase in Hg methylation observed in acid-rain impacted aquatic systems or the reported enhanced Hg bioaccumulation in newly flooded water reservoirs; changes in Hg transformations/fluxes that may be related to global change have received little attention. A case in point is the depletion of stratospheric ozone and the resulting increase in solar UV-radiation reaching the Earth. This review and critical discussion suggest that increasing UV-B radiation at earth's surface could have a significant and complex impact on Hg cycling including effects on Hg volatilization (photo-reduction), solubilization (photo-oxidation), methyl-Hg demethylation, and Hg methylation. Therefore, this paper is written to provoke discussions, and more importantly, to stimulate research on potential impacts of incoming solar UV-radiation on global Hg fluxes and any toxicity aspects of Hg that may become exacerbated by UV-radiation.

  9. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA

    PubMed Central

    Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S.

    2015-01-01

    Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts. PMID:25931105

  10. UV actinometer film

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.; Gupta, A.; Pitts, J.

    1980-01-01

    Cumulative UV radiation can be measured by low-cost polymer film that is unaffacted by visible light. Useful for virtually any surface, film can help paint and plastics manufacturers determine how well their products stand up against UV radiation. Actinometer film uses photochemically sensitive compound that changes its chemical composition in response to solar radiation. Extent of chemical conversion depends on length exposure and can be measured by examining film sample with spectrophotometer. Film can be exposed from several seconds up to month.

  11. Direct-to-diffuse UV Solar Irradiance Ratio for a UV rotating Shadowband Spectroradiometer and a UV Multi-filter Rotating Shadowband Radiometer

    NASA Astrophysics Data System (ADS)

    Lantz, K.; Kiedron, P.; Petropavlovskikh, I.; Michalsky, J.; Slusser, J.

    2008-12-01

    . Two spectroradiometers reside that measure direct and diffuse UV solar irradiance are located at the Table Mountain Test Facility, 8 km north of Boulder, CO. The UV- Rotating Shadowband Spectrograph (UV-RSS) measures diffuse and direct solar irradiance from 290 - 400 nm. The UV Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) measures diffuse and direct solar irradiance in seven 2-nm wide bands, i.e. 300, 305, 311, 317, 325, and 368 nm. The purpose of the work is to compare radiative transfer model calculations (TUV) with the results from the UV-Rotating Shadowband Spectroradiometer (UV-RSS) and the UV-MFRSR to estimate direct-to-diffuse solar irradiance ratios (DDR) that are used to evaluate the possibility of retrieving aerosol single scattering albedo (SSA) under a variety of atmospheric conditions: large and small aerosol loading, large and small surface albedo. For the radiative transfer calculations, total ozone measurements are obtained from a collocated Brewer spectrophotometer.

  12. Repression of Growth Regulating Factors by the MicroRNA396 Inhibits Cell Proliferation by UV-B Radiation in Arabidopsis Leaves[C][W

    PubMed Central

    Casadevall, Romina; Rodriguez, Ramiro E.; Debernardi, Juan M.; Palatnik, Javier F.; Casati, Paula

    2013-01-01

    Because of their sessile lifestyle, plants are continuously exposed to solar UV-B radiation. Inhibition of leaf growth is one of the most consistent responses of plants upon exposure to UV-B radiation. In this work, we investigated the role of GROWTH-REGULATING FACTORs (GRFs) and of microRNA miR396 in UV-B–mediated inhibition of leaf growth in Arabidopsis thaliana plants. We demonstrate that miRNA396 is upregulated by UV-B radiation in proliferating tissues and that this induction is correlated with a decrease in GRF1, GRF2, and GRF3 transcripts. Induction of miR396 results in inhibition of cell proliferation, and this outcome is independent of the UV-B photoreceptor UV resistance locus 8, as well as ATM AND RAD3–RELATED and the mitogen-activated protein kinase MPK6, but is dependent on MPK3. Transgenic plants expressing an artificial target mimic directed against miR396 (MIM396) with a decrease in the endogenous microRNA activity or plants expressing miR396-resistant copies of several GRFs are less sensitive to this inhibition. Consequently, at intensities that can induce DNA damage in Arabidopsis plants, UV-B radiation limits leaf growth by inhibiting cell division in proliferating tissues, a process mediated by miR396 and GRFs. PMID:24076976

  13. Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean.

    PubMed

    Dillon, Francisco M; Tejedor, M Daniela; Ilina, Natalia; Chludil, Hugo D; Mithöfer, Axel; Pagano, Eduardo A; Zavala, Jorge A

    2018-02-01

    Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone. © 2017 John Wiley & Sons Ltd.

  14. Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix

    PubMed Central

    Li, Kai; Li, Yuanyuan; Tao, Jing; Liu, Lu; Wang, Lili; Hou, Hongwei; Tong, Aijun

    2015-01-01

    Crystal violet lactone (CVL) is a classic halochromic dye which has been widely used as chromogenic reagent in thermochromic and piezochromic systems. In this work, a very first example of CVL-based reversible photochromic compound was developed, which showed distinct color change upon UV-visible light irradiation both in solution and in solid matrix. Moreover, metal complex of CVL salicylaldehyde hydrozone was facilely synthesized, exhibiting reversible photochromic properties with good fatigue resistance. It was served as promising solid material for photo-patterning. PMID:26412101

  15. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  16. Effect of UV radiation on the expulsion of Symbiodinium from the coral Pocillopora damicornis.

    PubMed

    Zhou, Jie; Huang, Hui; Beardall, John; Gao, Kunshan

    2017-01-01

    The variation in density of the symbiotic dinoflagellate Symbiodinum in coral is a basic indicator of coral bleaching, i.e. loss of the symbiotic algae or their photosynthetic pigments. However, in the field corals constantly release their symbiotic algae to surrounding water. To explore the underlying mechanism, the rate of expulsion of zooxanthellae from the coral Pocillopora damicornis was studied over a three-day period under ultraviolet radiation (UVR, 280-400nm) stress. The results showed that the algal expulsion rate appeared 10-20% higher under exposure to UV-A (320-395nm) or UV-B (295-320nm), though the differences were not statistically significant. When corals were exposed to UV-A and UV-B radiation, the maximum expulsion of zooxanthellae occurred at noon (10:00-13:00), and this timing was 1h earlier than in the control without UVR. UVR stress led to obvious decreases in the concentrations of chl a and carotenoids in the coral nubbins after a three-day exposure. Therefore, our results suggested that although the UVR effect on algal expulsion rate was a chronic stress and was not significant within a time frame of only three days, the reduction in chl a and carotenoids may potentially enhance the possibility of coral bleaching over a longer period. Copyright © 2016. Published by Elsevier B.V.

  17. Comparison of the effect of UV laser radiation and of a radiomimetic substance on chromatin

    NASA Astrophysics Data System (ADS)

    Radulescu, Irina; Radu, Liliana; Serbanescu, Ruxandra; Nelea, V. D.; Martin, C.; Mihailescu, Ion N.

    1998-07-01

    The damages of the complex of deoxyribonucleic acid (DNA) and proteins from chromatin, produced by the UV laser radiation and/or by treatment with a radiomimetic substance, bleomycin, were compared. The laser radiation and bleomycin effects on chromatin structure were determined by the static and dynamic fluorimetry of chromatin complexes with the DNA specific ligand-- proflavine and by the analysis of tryptophan chromatin intrinsic fluorescence. Time resolved spectroscopy is a sensitive technique which allows to determine the excited state lifetimes of chromatin--proflavine complexes. Also, the percentage contributions to the fluorescence of proflavine, bound and unbound to chromatin DNA, were evaluated. The damages produced by the UV laser radiation on chromatin are similar with those of radiomimetic substance action and consists in DNA and proteins destruction. The DNA damage degree has been determined. The obtained results may constitute some indications in the laser utilization in radiochimiotherapy.

  18. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  19. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    PubMed Central

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-01-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs. PMID:27387274

  20. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-07-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.

  1. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation.

    PubMed

    Zhang, Xinxin; Tang, Xuexi; Wang, Ming; Zhang, Wei; Zhou, Bin; Wang, You

    2017-08-01

    UV-B ray has been addressed to trigger common metabolic responses on marine microalgae, however, the upstream events responsible for these changes in marine microalgae are poorly understood. In the present study, a species of marine green microalgae Dunaliella salina was exposed to a series of enhanced UV-B radiation ranging from 0.25 to 1.00 KJ·m -2 per day. The role of ROS and calcium signaling in the D. salina responses to UV-B was discussed. Results showed that enhanced UV-B radiation markedly decreased the cell density in a dose-dependent manner, but the contents of protein and glycerol that were essential for cell growth increased. It suggested that it was cell division instead of cell growth that UV-B exerted negative effects on. The subcellular damages on nuclei and plasmalemma further evidenced the hypothesis. The nutrient absorption was affected with UV-B exposure, and the inhibition on PO 4 3- uptake was more serious compared to NO 3 - uptake. UV-B radiation promoted reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) contents, decreased the redox status and altered the antioxidant enzyme activities. The addition of the ROS scavenger and the glutathione biosynthesis precursor N-acetyl-l-cysteine (NAC) alleviated the stress degree, implying ROS-mediated pathway was involved in the stress response to UV-B radiation. Transient increase in Ca 2+ -ATPase was triggered simultaneously with UV-B exposure. Meanwhile, the addition of an intracellular free calcium chelator aggravated the damage of cell division, but exogenous calcium and ion channel blocker applications did not, inferring that endogenously initiated calcium signaling played roles in response to UV-B. Cross-talk analysis showed a relatively clear relationship between ROS inhibition and Ca 2+ -ATPase suppression, and a relation between Ca 2+ inhibition and GPx activity change was also observed. It was thus presumed that ROS-coupled calcium signaling via the

  2. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and

  3. Study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Guarnieri, R.; Padilha, L.; Guarnieri, F.; Echer, E.; Makita, K.; Pinheiro, D.; Schuch, A.; Boeira, L.; Schuch, N.

    Ultraviolet radiation type B (UV-B 280-315nm) is well known by its damage to life on Earth, including the possibility of causing skin cancer in humans. However, the atmo- spheric ozone has absorption bands in this spectral radiation, reducing its incidence on Earth's surface. Therefore, the ozone amount is one of the parameters, besides clouds, aerosols, solar zenith angles, altitude, albedo, that determine the UV-B radia- tion intensity reaching the Earth's surface. The total ozone column, in Dobson Units, determined by TOMS spectrometer on board of a NASA satellite, and UV-B radiation measurements obtained by a UV-B radiometer model MS-210W (Eko Instruments) were correlated. The measurements were obtained at the Observatório Espacial do Sul - Instituto Nacional de Pesquisas Espaciais (OES/CRSPE/INPE-MCT) coordinates: Lat. 29.44oS, Long. 53.82oW. The correlations were made using UV-B measurements in fixed solar zenith angles and only days with clear sky were selected in a period from July 1999 to December 2001. Moreover, the mathematic behavior of correlation in dif- ferent angles was observed, and correlation coefficients were determined by linear and first order exponential fits. In both fits, high correlation coefficients values were ob- tained, and the difference between linear and exponential fit can be considered small.

  4. Validation of an ultra-fast UPLC-UV method for the separation of antituberculosis tablets.

    PubMed

    Nguyen, Dao T-T; Guillarme, Davy; Rudaz, Serge; Veuthey, Jean-Luc

    2008-04-01

    A simple method using ultra performance LC (UPLC) coupled with UV detection was developed and validated for the determination of antituberculosis drugs in combined dosage form, i. e. isoniazid (ISN), pyrazinamide (PYR) and rifampicin (RIF). Drugs were separated on a short column (2.1 mm x 50 mm) packed with 1.7 mum particles, using an elution gradient procedure. At 30 degrees C, less than 2 min was necessary for the complete separation of the three antituberculosis drugs, while the original USP method was performed in 15 min. Further improvements were obtained with the combination of UPLC and high temperature (up to 90 degrees C), namely HT-UPLC, which allows the application of higher mobile phase flow rates. Therefore, the separation of ISN, PYR and RIF was performed in less than 1 min. After validation (selectivity, trueness, precision and accuracy), both methods (UPLC and HT-UPLC) have proven suitable for the routine quality control analysis of antituberculosis drugs in combined dosage form. Additionally, a large number of samples per day can be analysed due to the short analysis times.

  5. A UV-B-specific signaling component orchestrates plant UV protection

    PubMed Central

    Brown, Bobby A.; Cloix, Catherine; Jiang, Guang Huai; Kaiserli, Eirini; Herzyk, Pawel; Kliebenstein, Daniel J.; Jenkins, Gareth I.

    2005-01-01

    UV-B radiation in sunlight has diverse effects on humans, animals, plants, and microorganisms. UV-B can cause damage to molecules and cells, and consequently organisms need to protect against and repair UV damage to survive in sunlight. In plants, low nondamaging levels of UV-B stimulate transcription of genes involved in UV-protective responses. However, remarkably little is known about the underlying mechanisms of UV-B perception and signal transduction. Here we report that Arabidopsis UV RESISTANCE LOCUS 8 (UVR8) is a UV-B-specific signaling component that orchestrates expression of a range of genes with vital UV-protective functions. Moreover, we show that UVR8 regulates expression of the transcription factor HY5 specifically when the plant is exposed to UV-B. We demonstrate that HY5 is a key effector of the UVR8 pathway, and that it is required for survival under UV-B radiation. UVR8 has sequence similarity to the eukaryotic guanine nucleotide exchange factor RCC1, but we found that it has little exchange activity. However, UVR8, like RCC1, is located principally in the nucleus and associates with chromatin via histones. Chromatin immunoprecipitation showed that UVR8 associates with chromatin in the HY5 promoter region, providing a mechanistic basis for its involvement in regulating transcription. We conclude that UVR8 defines a UV-B-specific signaling pathway in plants that orchestrates the protective gene expression responses to UV-B required for plant survival in sunlight. PMID:16330762

  6. Improved contact lens disinfection by exposure to violet radiation.

    PubMed

    Hoenes, Katharina; Stangl, Felix; Gross, Andrej; Hessling, Martin

    2016-01-01

    Conventional procedures for contact lens disinfection, based on solutions with aggressive chemical ingredients, not only affect microorganisms but operate likewise damaging towards the epithelial eye surface. The aim of this study was to evaluate the applicability of an alternative or complementary disinfection procedure for contact lenses based on irradiation within the visible wavelength range. Suspensions of S. auricularis, B. subtilis and E. coli were exposed to 405 nm irradiation, for determining the disinfection efficacy. Surviving rates were analyzed by membrane filtration as well as a semi-quantitative analysis using DipSlides. A significant antibacterial effect of the 405 nm irradiation is verifiable for all probed bacteria. Using S. auricularis, there has been no colony forming after an irradiation exposure of 2 hours. The hitherto existing results give reason for the assumption that violet LEDs integrated in contact lens cases will provide a subsidiary disinfection activity and maybe even offer the reduction of chemical ingredients in lens cleaning solutions to become gentler to the eye. In addition the danger of a rerise of the germ concentration after the completion of the disinfection procedure will be reduced.

  7. AMBIENT SOLAR UV RADIATION CAUSES MORTALITY IN LARVAE OF THREE SPECIES OF RANA

    EPA Science Inventory

    Recent reports concerning the lethal effects of solar ultraviolet-B (UV-B) radiation on amphibians suggest that this stressor has the potential to impact some amphibian populations. In this study embryos and larvae of three anuran species, Rana pipiens, R. clamitans, and R. septe...

  8. Effects of solar UV radiation on alkaloid production in Erythroxylum novogranatense var. novogranatense

    USDA-ARS?s Scientific Manuscript database

    Cocaine-producing species of Erythroxylum have been cultivated in South America for centuries, yet little is know of environmental effects on alkaloid production in these species. Given the high incidence of UV radiation in the equatorial and high altitude environments in which cocaine-producing sp...

  9. Identification of Native Bacteria of the Candelaria and Tatacoa Semiarid Zone, Capable of Withstanding a Mars UV Radiation Simulation

    NASA Astrophysics Data System (ADS)

    Mendez, Y.; Vives, M.

    2017-07-01

    This work is the first study to describe native bacteria from the semi-arid areas in Candelaria and Tatacoa in Colombia, able to withstand a simulation of UV radiation, in order to draw an analogy with microbial growth on the surface of Mars. Sampling was carried out in the areas mentioned taking 50 samples of sediment divided into 25 samples of surface and 25 deep samples. As soon as the samples were transferred, they were subjected to a test of UV radiation in an atmospheric simulation chamber designed for the experiment, for periods of 1, 6 and 12 hours of exposure. Microbiological analysis as a method of plate dilution and isolation were performed using the modified AIS growth medium, macroscopic and microscopic description of morphotypes, biochemical identification of the morphotypes found, extraction of the feasible mycelium, DNA extraction and amplification of the gene 16 S by PCR. 13 morphotypes of bacteria resistant to UV radiation were found, mostly compatible with the gender of Streptomyces. One of the morphotypes found resisted 12 hours exposure. Molecular analyzes did not produce any results, because it was not possible to amplify the 16S by PCR, this may be due to that the exposure to UV radiation can degrade the DNA in existence, a affecting the results. The finding of native bacteria capable of withstanding conditions UV radiation can give us an approximation of microbial growth, mechanisms of resistance and survival under extreme conditions such as those found on Mars, in order to develop biotechnological applications and establish planetary analogues to understand the origin and evolution of the universe.

  10. Near-Field Cosmology with Low-Mass Galaxies: Constraining the Escape of Radiation from the UV-slopes of Local Galaxies

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Rosenberg, Jessica L.; Salzer, John Joseph; Gronke, Max; Cannon, John M.; Miller, Christopher J.; Dijkstra, Mark

    2018-06-01

    Low-mass galaxies are thought to play a large role in reionizing the Universe at redshifts, z > 6. However, due to limited UV data on low-mass galaxies, the models used to estimate the escape of radiation are poorly constrained. Using theoretical models of radiation transport in dusty galaxies with clumpy gas media, we translate measurements of the UV slopes of a sample of low-mass low-z KISSR galaxies to their escape fraction values in Ly-alpha radiation, fesc (LyA), and in the Ly-continuum, fesc (LyC). These low-mass starforming systems have potentially steep UV slopes, and could provide a much-needed relation between easily measured spectral properties such as UV slope or LyA line properties, and the escape of LyA/LyC radiation. Such a relation could advance studies of primordial star clusters and the underlying physical conditions characterizing early galaxies, one of the target observation goals of the soon to-be-launched James Webb Space Telescope. This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  11. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae).

    PubMed

    Ali, Arif; Rashid, Muhammad Adnan; Huang, Qiu Ying; Lei, Chao-Liang

    2016-09-01

    The ultraviolet light (UV-A) range of 320-400 nm is widely used as light trap for insect pests. Present investigation was aimed to determine the effect of UV light-A radiation on development, adult longevity, reproduction, and development of F1 generation of Mythimna separata. Our results revealed that the mortality of the second instar larvae was higher than the third and fourth instar larvae after UV-A radiation. As the time of UV-A irradiation for pupae prolonged, the rate of adult emergence reduced. Along with the extension of radiation time decreased the longevity of adult females and males. However, the radiation exposure of 1 and 4 h/day increased fecundity of female adults, and a significant difference was observed in a 1 h/day group. The oviposition rates of female adults in all the treatments were significantly higher than the control. In addition, UV-A radiation treatments resulted in declined cumulative survival of F1 immature stages (eggs, larvae, and pupae). After exposure time of 4 and 7 h/day, the developmental periods of F1 larvae increased significantly, but no significant effects on F1 pupal period were recorded.

  12. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    PubMed

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Modeling the Impenetrable Barrier to Inward Transport of Ultra-relativistic Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Tu, W.; Cunningham, G.; Chen, Y.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2014-12-01

    It has long been considered that the inner edge of the Earth's outer radiation belt is closely correlated with the minimum plasmapause location. However, recent discoveries by Baker et al. [1] show that it is not the case for ultra-relativistic electrons (2-10 MeV) in the radiation belt. Based on almost two years of Van Allen Probes/REPT data, they find that the inner edge of highly relativistic electrons is rarely collocated with the plasmapause; and more interestingly, there is a clear, persistent, and nearly impenetrable barrier to inward transport of high energy electrons, observed to locate at L~2.8. The presence of such an impenetrable barrier at this very specific location poses a significant puzzle. Using our DREAM3D diffusion model, which includes radial, pitch angle, and momentum diffusion, we are able to simulate the observed impenetrable barrier of ultra-relativistic electrons. The simulation demonstrates that during strong geomagnetic storms the plasmapause can be compressed to very low L region (sometimes as low as L~3), then strong chorus waves just outside the plasmapause can locally accelerate electrons up to multiple-MeV; when storm recovers, plasmapause moves back to large L, while the highly-relativistic electrons generated at low L continue to diffuse inward and slow decay by pitch angle diffusion from plasmaspheric hiss. The delicate balance between slow inward radial diffusion and weak pitch angle scattering creates a fixed inner boundary or barrier for ultra-relativistic electrons. The barrier is found to locate at a fixed L location, independent of the initial penetration depth of electrons that is correlated with the plasmapause location. Our simulation results quantitatively reproduce the evolution of the flux versus L profile, the L location of the barrier, and the decay rate of highly energetic electrons right outside the barrier. 1Baker, D. N., et al. (2014), Nearly Impenetrable Barrier to Inward Ultra-relativistic Magnetospheric

  14. In situ measurement of VUV/UV radiation from low-pressure microwave-produced plasma in Ar/O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Iglesias, E. J.; Mitschker, F.; Fiebrandt, M.; Bibinov, N.; Awakowicz, P.

    2017-08-01

    Ultraviolet (UV) and vacuum ultraviolet (VUV) spectral irradiance is determined in low-pressure microwave-produced plasma, which is regularly used for polymer surface treatment. The re-emitted fluorescence in the UV/VIS spectral range from a sodium salicylate layer is measured. This fluorescence is related to VUV/UV radiation in different spectral bands based on cut-off filters. The background produced by direct emitted radiation in the fluorescence spectral region is quantified using a specific background filter, thus enabling the use of the whole fluorescence spectral range. A novel procedure is applied to determine the absolute value of the VUV/UV irradiance on a substrate. For that, an independent measurement of the absolute spectral emissivity of the plasma in the UV is performed. The measured irradiances on a substrate from a 25 Pa Ar/O2-produced plasma are in the range of 1015-1016 (photon~ s-1 cm-2). These values include the contribution from impurities present in the discharge.

  15. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    NASA Astrophysics Data System (ADS)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on

  16. Leaf chemical changes induced in Populus trichocarpa by enhanced UV-B radiation and concomitant effects on herbivory by Chrysomela scripta (Coleoptera: Chrysomelidae).

    PubMed

    Warren, Jeffrey M; Bassman, John H; Eigenbrode, Sanford

    2002-11-01

    To assess the potential impact of enhanced ultraviolet-B (UV-B) radiation over two trophic levels, we monitored key leaf chemical constituents and related changes in their concentration to dietary preference and performance of a specialist insect herbivore. Ramets of Populus trichocarpa Torr. & Gray (black cottonwood) were subjected to near zero (0X), ambient (1X) or twice ambient (2X) doses of biologically effective UV-B radiation (UV-B(BE)) in a randomized block design using either a square-wave (greenhouse) or a modulated (field) lamp system. After a 3-month treatment period, apparent photosynthesis was determined in situ and plants were harvested for biomass determination. Leaf subsamples were analyzed for nitrogen, sulfur, chlorophylls, UV-absorbing compounds and protein-precipitable tannins. Effects of changes in these constituents on feeding by Chrysomela scripta Fab. (cottonwood leaf beetle) were determined by (1) adult feeding preference trials and (2) larval growth rate trials. Enhanced UV-B(BE) radiation had minimal effects on photosynthesis, growth, leaf area and biomass distribution. In the greenhouse study, concentrations of foliar nitrogen and chlorophylls increased, but tannins decreased slightly in young leaves exposed to enhanced UV-B(BE) radiation. There were no significant effects on these parameters in the field study. The concentration of methanol-extractable foliar phenolics increased in plants grown with enhanced UV-B(BE) radiation in both the greenhouse and field studies. In feeding preference trials, adult C. scripta chose 2X-treated tissue almost twice as often as 1X-treated tissue in both greenhouse and field studies, but differences were not statistically significant (P = 0.12). In the field study, first instar larvae grown to adult eclosion on 2X-treated leaves had a significant (P < 0.001) reduction in consumption efficiency compared with larvae grown on 1X-treated leaves. We conclude that effects of enhanced UV-B(BE) radiation at the

  17. 30 CFR 50.20-6 - Criteria-MSHA Form 7000-1, Section C.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daughters, non-medical, non-therapeutic X-rays, radium); effects of nonionizing radiation (welding flash, ultra-violet rays, micro-waves, sunburn). (vi) Code 26—Disorders Associated with Repeated Trauma...). Examples: Poisoning by lead, mercury, cadmium, arsenic, or other metals, poisoning by carbon monoxide...

  18. Optimal initiation of electronic excited state mediated intramolecular H-transfer in malonaldehyde by UV-laser pulses

    NASA Astrophysics Data System (ADS)

    Nandipati, K. R.; Singh, H.; Nagaprasad Reddy, S.; Kumar, K. A.; Mahapatra, S.

    2014-12-01

    Optimally controlled initiation of intramolecular H-transfer in malonaldehyde is accomplished by designing a sequence of ultrashort (~80 fs) down-chirped pump-dump ultra violet (UV)-laser pulses through an optically bright electronic excited [ S 2 ( π π ∗)] state as a mediator. The sequence of such laser pulses is theoretically synthesized within the framework of optimal control theory (OCT) and employing the well-known pump-dump scheme of Tannor and Rice [D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)]. In the OCT, the control task is framed as the maximization of cost functional defined in terms of an objective function along with the constraints on the field intensity and system dynamics. The latter is monitored by solving the time-dependent Schrödinger equation. The initial guess, laser driven dynamics and the optimized pulse structure (i.e., the spectral content and temporal profile) followed by associated mechanism involved in fulfilling the control task are examined in detail and discussed. A comparative account of the dynamical outcomes within the Condon approximation for the transition dipole moment versus its more realistic value calculated ab initio is also presented.

  19. Induction of wound-periderm-like tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels

    PubMed Central

    Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz

    2015-01-01

    Background and Aims UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Methods Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d–1). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Key Results Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. Conclusions This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. PMID:26346722

  20. Development of a low cost UV index datalogger and comparison between UV index sensors

    NASA Astrophysics Data System (ADS)

    Gomes, L. M.; Ventura, L.

    2018-02-01

    Ultraviolet radiation (UVR) is the part of radiation emitted by the Sun, with range between 280 nm and 400 nm, and that reaches the Earth's surface. The UV rays are essential to the human because it stimulates the production of vitamin D but this radiation may be related to several health problems, including skin cancer and ocular diseases like pterygium, photokeratitis, cataract and more. To inform people about UV radiation, it is adopted the Ultraviolet Index (UVI). This UVI consists in a measure of solar UV radiation level, which contributes to cause sunburn on skin, also known as Erythema, and is indicated as an integer number between 1 and 14, associated to categories from low to extreme respectively. The aim of this work was to develop a low cost UVI datalogger capable of measuring three different UVI sensors simultaneously, record their data with timestamp and serve the measures online through a dedicated server, so general public can access their data and see the current UV radiation conditions. We also compared three different UVI sensors (SGlux UV cosine, Skye SKU440 and SiLabs SI1145) between them and with meteorological models during a period of months to verify their compliance. With five months data, we could verify the sensors working characteristics and decide which among them are the most suitable for research purposes.