Sample records for ultra-weak photon emission

  1. Ultra-weak photon emission of hands in aging prediction.

    PubMed

    Zhao, Xin; van Wijk, Eduard; Yan, Yu; van Wijk, Roeland; Yang, Huanming; Zhang, Yan; Wang, Jian

    2016-09-01

    Aging has been one of the several topics intensely investigated during recent decades. More scientists have been scrutinizing mechanisms behind the human aging process. Ultra-weak photon emission is known as one type of spontaneous photon emission that can be detected with a highly sensitive single photon counting photomultiplier tube (PMT) from the surface of human bodies. It may reflect the body's oxidative damage. Our aim was to examine whether ultra-weak photon emission from a human hand is able to predict one's chronological age. Sixty subjects were recruited and grouped by age. We examined four areas of each hand: palm side of fingers, palm side of hand, dorsum side of fingers, and dorsum side of hand. Left and right hand were measured synchronously with two independent PMTs. Mean strength and Fano factor values of photon counts were utilized to compare the UPE patterns of males and females of different age groups. Subsequently, we utilized UPE data from the most sensitive PMT to develop an age prediction model. We randomly picked 49 subjects to construct the model, whereas the remaining 11 subjects were utilized for validation. The results demonstrated that the model was a good regression compared to the observed values (Pearson's r=0.6, adjusted R square=0.4, p=9.4E-7, accuracy=49/60). Further analysis revealed that the average difference between the chronological age and predicted age was only 7.6±0.8years. It was concluded that this fast and non-invasive photon technology is sufficiently promising to be developed for the estimation of biological aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    PubMed Central

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  3. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand.

    PubMed

    Rastogi, Anshu; Pospísil, Pavel

    2010-08-01

    All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.

  4. Ultra-weak photon emission in healthy subjects and patients with type 2 diabetes: evidence for a non-invasive diagnostic tool.

    PubMed

    Yang, Meina; Ding, Wenyu; Liu, Yanli; Fan, Hua; Bajpai, Rajendra P; Fu, Jialei; Pang, Jingxiang; Zhao, Xiaolei; Han, Jinxiang

    2017-05-17

    Spontaneous ultra-weak photon emission (UPE) is a common phenomenon in biological systems and has been linked to pathological states. Researchers have always considered ultra-weak photon emission a potential non-invasive diagnostic tool, but its application in the medical field is stagnant due to the lack of relevant data for pathological states. Ultra-weak photon signals from five body sites (forehead, neck, heart, stomach, and navel) in fifty patients with type 2 diabetes and sixty age-matched healthy subjects were measured using a moveable whole-body biophoton detection system. Photon signal is measured for 10 min and detected in bins of 50 ms by a photomultiplier with a range of 290-630 nm. Each signal is a time series of 12 000 elements. Various parameters including photon intensity, Q value, squeezed state parameters (|α|, θ, ø, r) and SSI were analyzed. we found significant differences in the abovementioned parameters between groups, and all subjects could be clustered into two groups according to the results obtained by principal component analysis. Methods and results from this study could be useful for constructing a UPE database for a range of diseases, which would promote the application of UPE in clinical diagnosis in the future.

  5. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells

    NASA Astrophysics Data System (ADS)

    Červinková, Kateřina; Nerudová, Michaela; Hašek, Jiří; Cifra, Michal

    2015-01-01

    The ultra-weak photon emission (UPE) is a universal phenomenon common to all cells with active oxidative metabolism. Generally accepted mechanism of the origin of the ultra-weak photon emission considers reactions of radical or nonradical reactive oxygen species (ROS) with biomolecules such as lipids and proteins which lead to the formation of electron excited species. During the transition to the ground state the excess energy is released as a photon with a wavelength in the visible range of the electromagnetic spectrum. Since the intensity of the light is very low it is possible to be measured only by highly sensitive devices. We used Hamamatsu Photonics PMT module H7360-01 mounted into a light-tight chamber for the purposes of this work. The goal of our research is to delineate an origin of UPE from two model organisms; differentiated HL-60 cells (human promyelocytic leukemia) and yeast cells Saccharomyces cerevisiae. While the UPE from the yeast cells arises spontaneously during the growth without any external stimuli, UPE from HL-60 is induced by phorbol 12-myristate, 13-acetate (PMA). It is possible to modulate the UPE production by certain antioxidants which scavenge ROS formed during the metabolism (yeast cells) or respiratory burst (HL-60 cells). The experiments are focused on the description of effects caused by antioxidants. Several kinds of antioxidants (ascorbic acid, mannitol, glutathione) with different concentration were used and we studied the changes in the UPE intensities of and the temporal developments of the optical signal.

  6. Optical spectral analysis of ultra-weak photon emission from tissue culture and yeast cells

    NASA Astrophysics Data System (ADS)

    Nerudová, Michaela; Červinková, Kateřina; Hašek, Jiří; Cifra, Michal

    2015-01-01

    Optical spectral analysis of the ultra-weak photon emission (UPE) could be utilized for non-invasive diagnostic of state of biological systems and for elucidation of underlying mechanisms of UPE generation. Optical spectra of UPE from differentiated HL-60 cells and yeast cells (Saccharomyces cerevisiae) were investigated. Induced photon emission of neutrophil-like cells and spontaneous photon emission of yeast cells were measured using highly sensitive photomultiplier module Hamamatsu H7360-01 in a thermally regulated light-tight chamber. The respiratory burst of neutrophil-like HL-60 cells was induced with the PMA (phorbol 12-myristate, 13-acetate). PMA activates an assembly of NADPH oxidase, which induces a rapid formation of reactive oxygen species (ROS). Long-pass edge filters (wavelength 350, from 400 to 600 with 25 nm resolution and 650 nm) were used for optical spectral analysis. Propagation of error of indirect measurements and standard deviation were used to assess reliability of the measured spectra. Results indicate that the photon emission from both cell cultures is detectable in the six from eight examined wavelength ranges with different percentage distribution of cell suspensions, particularly 450-475, 475-500, 500-525, 525-550, 550-575 and 575-600 nm. The wavelength range of spectra from 450 to 550 nm coincides with the range of photon emission from triplet excited carbonyls (350-550 nm). The both cells cultures emitted photons in wavelength range from 550 to 600 nm but this range does not correspond with any known emitter. To summarize, we have demonstrated a clear difference in the UPE spectra between two organisms using rigorous methodology and error analysis.

  7. Polychromatic spectral pattern analysis of ultra-weak photon emissions from a human body.

    PubMed

    Kobayashi, Masaki; Iwasa, Torai; Tada, Mika

    2016-06-01

    Ultra-weak photon emission (UPE), often designated as biophoton emission, is generally observed in a wide range of living organisms, including human beings. This phenomenon is closely associated with reactive oxygen species (ROS) generated during normal metabolic processes and pathological states induced by oxidative stress. Application of UPE extracting the pathophysiological information has long been anticipated because of its potential non-invasiveness, facilitating its diagnostic use. Nevertheless, its weak intensity and UPE mechanism complexity hinder its use for practical applications. Spectroscopy is crucially important for UPE analysis. However, filter-type spectroscopy technique, used as a conventional method for UPE analysis, intrinsically limits its performance because of its monochromatic scheme. To overcome the shortcomings of conventional methods, the authors developed a polychromatic spectroscopy system for UPE spectral pattern analysis. It is based on a highly efficient lens systems and a transmission-type diffraction grating with a highly sensitive, cooled, charge-coupled-device (CCD) camera. Spectral pattern analysis of the human body was done for a fingertip using the developed system. The UPE spectrum covers the spectral range of 450-750nm, with a dominant emission region of 570-670nm. The primary peak is located in the 600-650nm region. Furthermore, application of UPE source exploration was demonstrated with the chemiluminescence spectrum of melanin and coexistence with oxidized linoleic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantum squeezed state analysis of spontaneous ultra weak light photon emission of practitioners of meditation and control subjects.

    PubMed

    Van Wijk, Eduard P A; Van Wijk, Roeland; Bajpai, Rajendra P

    2008-05-01

    Research on human ultra-weak photon emission (UPE) has suggested a typical human emission anatomic percentage distribution pattern. It was demonstrated that emission intensities are lower in long-term practitioners of meditation as compared to control subjects. The percent contribution of emission from different anatomic locations was not significantly different for meditation practitioners and control subjects. Recently, a procedure was developed to analyze the fluctuations in the signals by measuring probabilities of detecting different numbers of photons in a bin and correct these for background noise. The procedure was tested utilizing the signal from three different body locations of a single subject, demonstrating that probabilities have non-classical features and are well described by the signal in a coherent state from the three body sites. The values indicate that the quantum state of photon emitted by the subject could be a coherent state in the subject being investigated. The objective in the present study was to systematically quantify, in subjects with long-term meditation experience and subjects without this experience, the photon count distribution of 12 different locations. Data show a variation in quantum state parameters within each individual subject as well as variation in quantum state parameters between the groups.

  9. Measuring the Human Ultra-Weak Photon Emission Distribution Using an Electron-Multiplying, Charge-Coupled Device as a Sensor.

    PubMed

    Ortega-Ojeda, Fernando; Calcerrada, Matías; Ferrero, Alejandro; Campos, Joaquín; Garcia-Ruiz, Carmen

    2018-04-10

    Ultra-weak photon emission (UPE) is the spontaneous emission from living systems mainly attributed to oxidation reactions, in which reactive oxygen species (ROS) may play a major role. Given the capability of the next-generation electron-multiplying CCD (EMCCD) sensors and the easy use of liquid crystal tunable filters (LCTF), the aim of this work was to explore the potential of a simple UPE spectrometer to measure the UPE from a human hand. Thus, an easy setup was configured based on a dark box for inserting the subject's hand prior to LCTF as a monochromator and an EMCCD sensor working in the full vertical binning mode (FVB) as a spectra detector. Under controlled conditions, both dark signals and left hand UPE were acquired by registering the UPE intensity at different selected wavelengths (400, 450, 500, 550, 600, 650, and 700 nm) during a period of 10 min each. Then, spurious signals were filtered out by ignoring the pixels whose values were clearly outside of the Gaussian distribution, and the dark signal was subtracted from the subject hand signal. The stepped spectrum with a peak of approximately 880 photons at 500 nm had a shape that agreed somewhat with previous reports, and agrees with previous UPE research that reported UPE from 420 to 570 nm, or 260 to 800 nm, with a range from 1 to 1000 photons s -1 cm -2 . Obtaining the spectral distribution instead of the total intensity of the UPE represents a step forward in this field, as it may provide extra information about a subject's personal states and relationship with ROS. A new generation of CCD sensors with lower dark signals, and spectrographs with a more uniform spectral transmittance, will open up new possibilities for configuring measuring systems in portable formats.

  10. Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: a review.

    PubMed

    Van Wijk, Roeland; Van Wijk, Eduard P A; van Wietmarschen, Herman A; van der Greef, Jan

    2014-10-05

    For decades, the relationship between ultra-weak photon emission (UPE) and the health state of the body is being studied. With the advent of systems biology, attention shifted from the association between UPE and reactive oxygen species towards UPE as a reflection of changed metabolic networks. Essential for this shift in thinking is the development of novel photon count statistical methods that more reflect the dynamics of the systems organization. Additionally, efforts to combine and correlate UPE data with other types of measurements such as metabolomics be key to understand the complexity of the human body. This review describes the history and developments in the area of human UPE research from a technical - methodological perspective, an experimental perspective and a theoretical perspective. There is ample evidence that human UPE research will allow a better understanding of the body as a complex dynamical system. The future lies in the further development of an integrated UPE and metabolomics platform for a personalized monitoring of changes of the system towards health or disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cellular glutathione levels in HL-60 cells during respiratory burst are not correlated with ultra-weak photon emission.

    PubMed

    Burgos, Rosilene Cristina Rossetto; Zhang, Wei; van Wijk, Eduard P A; Hankemeier, Thomas; Ramautar, Rawi; van der Greef, Jan

    2017-10-01

    Recently, ultra-weak photon emission (UPE) was developed as a novel tool for measuring oxidative metabolic processes, as its generation is related to reactive oxygen species (ROS). Both an imbalance in ROS or the uncontrolled production of ROS can lead to oxidative stress, which is commonly associated with many diseases. In addition to playing several biological functions, the thiol amino acid glutathione has an important antioxidant function in the body's defense against ROS. Specifically, glutathione is an important endogenous antioxidant that helps maintain oxidant levels. At the cellular level, glutathione is present in its reduced form (GSH) at relatively high concentrations (in the millimolar range) and in its oxidized form (GSSG) at low concentrations (in the micromolar range). Thus, the GSH/GSSG ratio is often used as an indicator of cellular redox state. Here, we used the HL-60 cell line as a model system in order to determine whether UPE is correlated with intracellular GSH and GSSG levels. HL-60 cells were differentiated into neutrophil-like cells and then stimulated to undergo respiratory burst. We then recorded UPE in real time for 9000 seconds and used capillary electrophoresis coupled to mass spectrometry to measure GSH and GSSG levels in cell extracts. We found that although respiratory burst significantly decreased the GSH/GSSG ratio, this change was not significantly correlated with the UPE profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis.

    PubMed

    He, Min; van Wijk, Eduard; van Wietmarschen, Herman; Wang, Mei; Sun, Mengmeng; Koval, Slavik; van Wijk, Roeland; Hankemeier, Thomas; van der Greef, Jan

    2017-03-01

    The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Revisiting the mitogenetic effect of ultra-weak photon emission

    PubMed Central

    Volodyaev, Ilya; Beloussov, Lev V.

    2015-01-01

    This paper reviews the 90 years long controversial history of the so-called “mitogenetic radiation,” the first case of non-chemical distant interactions, reported by Gurwitsch (1923). It was soon described as ultraweak UV, emitted by a number of biological systems, and stimulating mitosis in “competent” (in this sense) cells. In the following 20 years this phenomenon attracted enormous interest of the scientific community, and gave rise to more than 700 publications around the world. Yet, this wave of research vanished after several ostensibly disproving works in late 1930-s, and was not resumed later, regardless of quite serious grounds for that. The authors discuss separately two aspects of the problem: (1) do living organisms emit ultraweak radiation in the UV range (irrespective of whether it has any biological role), and (2) are there any real effects of this ultraweak photon emission (UPE) upon cell division and/or other biological functions? Analysis of the available data permits to conclude, that UV fraction of UPE should be regarded real, while its biological effects are difficult to reproduce. This causes a paradox. A number of presently known qualities of UPE were initially discovered (predicted?) by the “early workers” on the basis of biological effects. Yet the qualities they discovered were proved later (the UV component of UPE, the sources of UPE among biological systems, etc…), while the biological effect they used for UPE “detection” remains questionable. Importance of this area for basic biology and medicine, and potential usefulness of UPE as a non-invasive research method, invite scientists to attack this problem again, applying powerful research facilities of modern science. Yet, because of complexity and uncertainty of the problem, further progress in this area demands comprehensive examination of both positive and negative works, with particular attention to their methodical details. PMID:26441668

  14. Bio-Photonic Detection of Various Cellular Cultures

    NASA Astrophysics Data System (ADS)

    Hann, Patrick; Garzon, Maria; Pfeiffer, Erik; Lofland, Samuel; Knoesel, Ernst

    2008-03-01

    Since it is non-invasive, there has been increased research in the field of bio-optics. Many biological systems display an unusual phenomenon, delayed luminescence, produced by what is known as bio-photons. We present an apparatus and procedure for the detection of these ultra-weak photonic emissions using a single photon detection device. The results of bread yeast, saccramyces, and algae will be presented and compared to other reports in the literature

  15. Photon emission and quantum signalling in biological systems

    NASA Astrophysics Data System (ADS)

    Mayburov, S. N.

    2015-05-01

    Ultra-weak, non-termal photon emission is universal feature of living organisms and plants. In our experiment the fine structure of optical radiation emitted by the loach fish eggs is studied. It was shown earlier that such radiation performs the signaling between the distant fish egg samples, which result in significant correlations of their growth. The optical radiation of biological sample was measured by the cooled photomultiplier in photocurrent regime, it was found that the main bulk of radiation is produced in form of short-time quasi-periodic bursts. The analysis of radiation temporal structure indicates that the information about egg age and growth is encoded via the values of time intervals between neighbor bursts with the height higher than some fixed level. The applications of such biological radiation in medical diagnostics and biotechnology are considered.

  16. Ultra-weak sector, Higgs boson mass, and the dilaton

    DOE PAGES

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet fieldmore » $$\\sigma$$ which has a very large VEV $$f \\gg m_\\text{Higgs}$$. This requires a sector of "ultra-weak" couplings $$\\zeta_i$$, where $$\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $$\\sigma$$ in the $$\\zeta_i \\rightarrow 0$$ limit. The singlet field $$\\sigma$$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.« less

  17. Bio-Photons of Various Cellular Cultures and Tissues

    NASA Astrophysics Data System (ADS)

    Hann, Patrick; Knoesel, Ernst; Garzon, Maria; Lofland, Samuel; Pfieffer, Erik

    2008-04-01

    Since it is non-invasive, there has been increased research in the field of bio-optics. Many biological systems display an unusual phenomenon, delayed luminescence, produced by what is known as bio-photons. We present an apparatus and procedure for the detection of these ultra-weak photonic emissions using a single photon detection device. The results of bread yeast, saccramyces, and algae will be presented and compared to other reports in the literature.

  18. Blazar 3C 66A: Another extragalactic source of ultra-high-energy gamma-ray photons

    NASA Astrophysics Data System (ADS)

    Neshpor, Yu. I.; Stepanyan, A. A.; Kalekin, O. P.; Fomin, V. P.; Chalenko, N. N.; Shitov, V. G.

    1998-03-01

    he observations of the object 3C 66A which were carried out with the GT-48 gamma-ray telescope at the Crimean Astrophysical Observatory in November-December 1996 revealed a flux of ultra-high-energy (>10^12 eV) gamma-ray photons from this blazar. According to preliminary estimates, the photon flux is (31) 10^11 photons cm^-2 s^-1. The blazar 3C 66A is the third extragalactic object from which a flux of ultra- high-energy gamma-ray photons was detected. Fluxes of gamma-ray photons were previously detected from the galaxies Mk 421 and Mk 501 at the Whipple observatory. This result provides further evidence that active processes proceed in blazars which are accompanied by the generation of cosmic rays responsible for the emission of gamma-ray photons.

  19. Using multifractal analysis of ultra-weak photon emission from germinating wheat seedlings to differentiate between two grades of intoxication with potassium dichromate

    NASA Astrophysics Data System (ADS)

    Scholkmann, Felix; Cifra, Michal; Alexandre Moraes, Thiago; de Mello Gallep, Cristiano

    2011-12-01

    The aim of the present study was to test whether the multifractal properties of ultra-weak photon emission (UPE) from germinating wheat seedlings (Triticum aestivum) change when the seedlings are treated with different concentrations of the toxin potassium dichromate (PD). To this end, UPE was measured (50 seedlings in one Petri dish, duration: approx. 16.6- 28 h) from samples of three groups: (i) control (group C, N = 9), (ii) treated with 25 ppm of PD (group G25, N = 32), and (iii) treated with 150 ppm of PD (group G150, N = 23). For the multifractal analysis, the following steps where performed: (i) each UPE time series was trimmed to a final length of 1000 min; (ii) each UPE time series was filtered, linear detrended and normalized; (iii) the multifractal spectrum (f(α)) was calculated for every UPE time series using the backward multifractal detrended moving average (MFDMA) method; (iv) each multifractal spectrum was characterized by calculating the mode (αmode) of the spectrum and the degree of multifractality (Δα) (v) for every UPE time series its mean, skewness and kurtosis were also calculated; finally (vi) all obtained parameters where analyzed to determine their ability to differentiate between the three groups. This was based on Fisher's discriminant ratio (FDR), which was calculated for each parameter combination. Additionally, a non-parametric test was used to test whether the parameter values are significantly different or not. The analysis showed that when comparing all the three groups, FDR had the highest values for the multifractal parameters (αmode, Δα). Furthermore, the differences in these parameters between the groups were statistically significant (p < 0.05). The classical parameters (mean, skewness and kurtosis) had lower FDR values than the multifractal parameters in all cases and showed no significant difference between the groups (except for the skewness between group C and G150). In conclusion, multifractal analysis enables

  20. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  1. Spin polarized photons from an axially charged plasma at weak coupling: Complete leading order

    DOE PAGES

    Mamo, Kiminad A.; Yee, Ho-Ung

    2016-03-24

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this “P-odd photon emission rate” in a weak coupling regime at a high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of the P-odd emission rate at leading order consists of three parts: (1) Comptonmore » and pair annihilation processes with hard momentum exchange, (2) soft t- and u-channel contributions with hard thermal loop resummation, (3) Landau-Pomeranchuk-Migdal resummation of collinear bremsstrahlung and pair annihilation. In conclusion, we present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.« less

  2. Coherent properties of ultraweak photon emission from biological system and its application in medicine

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu; Guo, Zhouyi

    2001-10-01

    In the paper the research status and viewpoints about the coherent of the ultra-weak photon emission from biological system (UPE) were simply introduced. For proving the biophotons indeed have coherent from another side, an experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300nm to 1060nm has been got. These test results show that UPE of living biological system exists in wide spectra region from UV-visible to infrared. Using the test data, we also can obtain the important conclusion of UPE has coherence. In the end of this paper, the UPE's application in medicine was discussed.

  3. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling.

    PubMed

    Xing, Qiong; Huang, Peng; Yang, Ju; Sun, Jian-Qiang; Gong, Zhou; Dong, Xu; Guo, Da-Chuan; Chen, Shao-Min; Yang, Yu-Hong; Wang, Yan; Yang, Ming-Hui; Yi, Ming; Ding, Yi-Ming; Liu, Mai-Li; Zhang, Wei-Ping; Tang, Chun

    2014-10-20

    Proteins interact with each other to fulfill their functions. The importance of weak protein-protein interactions has been increasingly recognized. However, owing to technical difficulties, ultra-weak interactions remain to be characterized. Phosphorylation can take place via a K(D)≈25 mM interaction between two bacterial enzymes. Using paramagnetic NMR spectroscopy and with the introduction of a novel Gd(III)-based probe, we determined the structure of the resulting complex to atomic resolution. The structure accounts for the mechanism of phosphoryl transfer between the two enzymes and demonstrates the physical basis for their ultra-weak interaction. Further, molecular dynamics (MD) simulations suggest that the complex has a lifetime in the micro- to millisecond regimen. Hence such interaction is termed a fleeting interaction. From mathematical modeling, we propose that an ultra-weak fleeting interaction enables rapid flux of phosphoryl signal, providing a high effective protein concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Search for Ultra-High Energy Photons with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homola, Piotr

    One of key scientific objectives of the Pierre Auger Observatory is the search for ultra-high energy photons. Such photons could originate either in the interactions of energetic cosmic-ray nuclei with the cosmic microwave background (so-called cosmogenic photons) or in the exotic scenarios, e.g. those assuming a production and decay of some hypothetical super-massive particles. The latter category of models would imply relatively large fluxes of photons with ultra-high energies at Earth, while the former, involving interactions of cosmic-ray nuclei with the microwave background - just the contrary: very small fractions. The investigations on the data collected so far in themore » Pierre Auger Observatory led to placing very stringent limits to ultra-high energy photon fluxes: below the predictions of the most of the exotic models and nearing the predicted fluxes of the cosmogenic photons. In this paper the status of these investigations and perspectives for further studies are summarized.« less

  5. Interference of Photons from a Weak Laser and a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Ritchie, David; Bennett, Anthony; Patel, Raj; Nicoll, Christine; Shields, Andrew

    2010-03-01

    We demonstrate two-photon interference from two unsynchronized sources operating via different physical processes [1]. One source is spontaneous emission from the X^- state of an electrically-driven InAs/GaAs single quantum dot with μeV linewidth, the other stimulated emission from a laser with a neV linewidth. We mix the emission from these sources on a balanced non-polarising beam splitter and measure correlations in the photons that exit using Si-avalanche photodiodes and a time-correlated counting card. By periodically switching the polarisation state of the weak laser we simultaneously measure the correlation for parallel and orthogonally polarised sources, corresponding to maximum and minimum degrees of interference. When the two sources have the same intensity, a reduction in the correlation function at time zero for the case of parallel photon sources clearly indicates this interference effect. To quantify the degree of interference, we develop a theory that predicts the correlation function. Data and experiment are then compared for a range of intensity ratios. Based on this analysis we infer a wave-function overlap of 91%, which is remarkable given the fundamental differences between the two sources. [1] Bennett A. J et al Nature Physics, 5, 715--717 (2009).

  6. A System for Photon-Counting Spectrophotometry of Prompt Optical Emission from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Albright, K.; Casperson, D.; Fenimore, E.; Ho, C.; Priedhorsky, W.; White, R.; Wren, J.

    2003-04-01

    With the launch of HETE-2 and the coming launch of the Swift satellite, there will be many new opportunities to study the physics of the prompt optical emission with robotic ground-based telescopes. Time-resolved spectrophotometry of the rapidly varying optical emission is likely to be a rich area for discovery. We describe a program to apply state-of-the-art photon-counting imaging technology to the study of prompt optical emission from gamma-ray bursts. The Remote Ultra-Low Light Imaging (RULLI) project at Los Alamos National Laboratory has developed an imaging sensor which employs stacked microchannel plates and a crossed delay line readout with 200 picosecond photon timing to measure the time of arrival and positions for individual optical photons. RULLI detectors, when coupled with a transmission grating having 300 grooves/mm, can make photon-counting spectroscopic observations with spectral resolution that is an order of magnitude greater and temporal resolution three orders of magnitude greater than the most capable photon-counting imaging detectors that have been used for optical astronomy.

  7. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  8. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Matthias, E-mail: m.paul@ihfg.uni-stuttgart.de; Kettler, Jan; Zeuner, Katharina

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  9. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Scott, A. E.

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars,more » i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.« less

  10. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing.

    PubMed

    Sun, Fujun; Fu, Zhongyuan; Wang, Chunhong; Ding, Zhaoxiang; Wang, Chao; Tian, Huiping

    2017-05-20

    We propose and investigate an ultra-compact air-mode photonic crystal nanobeam cavity (PCNC) with an ultra-high quality factor-to-mode volume ratio (Q/V) by quadratically tapering the lattice space of the rectangular holes from the center to both ends while other parameters remain unchanged. By using the three-dimensional finite-difference time-domain method, an optimized geometry yields a Q of 7.2×10 6 and a V∼1.095(λ/n Si ) 3 in simulations, resulting in an ultra-high Q/V ratio of about 6.5×10 6 (λ/n Si ) -3 . When the number of holes on either side is 8, the cavity possesses a high sensitivity of 252 nm/RIU (refractive index unit), a high calculated Q-factor of 1.27×10 5 , and an ultra-small effective V of ∼0.758(λ/n Si ) 3 at the fundamental resonant wavelength of 1521.74 nm. Particularly, the footprint is only about 8×0.7  μm 2 . However, inevitably our proposed PCNC has several higher-order resonant modes in the transmission spectrum, which makes the PCNC difficult to be used for multiplexed sensing. Thus, a well-designed bandstop filter with weak sidelobes and broad bandwidth based on a photonic crystal nanobeam waveguide is created to connect with the PCNC to filter out the high-order modes. Therefore, the integrated structure presented in this work is promising for building ultra-compact lab-on-chip sensor arrays with high density and parallel-multiplexing capability.

  11. Coincidence of biophoton emission by wheat seedlings during simultaneous, transcontinental germination tests.

    PubMed

    Gallep, Cristiano M; Moraes, Thiago A; Dos Santos, Samuel R; Barlow, Peter W

    2013-06-01

    Measurements of spontaneous ultra-weak light (biophoton) emission from native Brazilian and German wheat seedlings in three simultaneous series of germination tests are presented, two run in Germany and one in Brazil. Seedlings in both countries presented semi-circadian rhythms of emission that were in accordance with the local lunisolar gravimetric tidal acceleration, as did seeds which had been transported from Brazil to Germany. The simultaneity of the photon emission patterns in all tests argues for the lunisolar tide and its rhythmic variations as regulators of the natural rhythm of photon emission. However, seedlings from seed samples transported from Brazil to Germany showed, in addition, a temporary disturbance within the emission periodicity which may indicate a possible short-term acclimatization to the new location.

  12. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber.

    PubMed

    Guo, Huiyong; Liu, Fang; Yuan, Yinquan; Yu, Haihu; Yang, Minghong

    2015-02-23

    For the online writing of ultra-weak fiber Bragg gratings (FBGs) in the drawing optical fibers, the effects of the intensity profile, pulse fluctuation and pulse width of the excimer laser, as well as the transverse and longitudinal vibrations of the optical fiber have been investigated. Firstly, using Lorentz-Loren equation, Gladstone-Dale mixing rule and continuity equation, we have derived the refractive index (RI) fluctuation along the optical fiber and the RI distribution in the FBG, they are linear with the gradient of longitudinal vibration velocity. Then, we have prepared huge amounts of ultra-weak FBGs in the non-moving optical fiber and obtained their reflection spectra, the measured reflection spectra shows that the intensity profile and pulse fluctuation of the excimer laser, as well as the transverse vibration of the optical fiber are little responsible for the inconsistency of ultra-weak FBGs. Finally, the effect of the longitudinal vibration of the optical fiber on the inconsistency of ultra-weak FBGs has been discussed, and the vibration equations of the drawing optical fiber are given in the appendix.

  13. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    PubMed

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  14. Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Bauters, Jared F.

    The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.

  15. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  16. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  17. Thermodynamic Laws of Neutrino and Photon Emission.

    ERIC Educational Resources Information Center

    Walsh, P. J.; Gallo, C. F.

    1980-01-01

    Compares neutrino and photon emissions, develops the thermodynamic blackbody laws of neutrino emission analogous to laws governing photon emission, points out that combined radiation from a "true blackbody" consists of both photon and neutrino emissions of comparable magnitude, and speculates upon the existence of blackbody neutrino…

  18. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  19. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantlymore » absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.« less

  20. Revisiting Weak Emission-line Quasars with a Simple Approach to Deduce their Nature and the Tracers of X-ray Weakness

    NASA Astrophysics Data System (ADS)

    Ni, Qingling

    2018-01-01

    We present an X-ray and multi-wavelength study of 17 “bridge” weak emission-line quasars (WLQs) and 16 “extreme” WLQs naturally divided by their C IV rest equivalent widths (REWs), which constitute our clean WLQ sample together. New Chandra 3.1-4.8 ks observations were obtained for 14 objects while the other 19 have archival X-ray observations. 4 of the 17 bridge WLQs appear to be X-ray weak, while 9 of the 16 extreme WLQs appear to be X-ray weak. The X-ray weak fraction in the bridge sample (23.5%) is lower than in the extreme sample(56.3%), indicating the fraction of X-ray weak objects along with rising C IV REWs.X-ray stacking analysis is performed for the X-ray weak WLQs in the clean sample. We measured a relatively hard (Γeff=1.37) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption due to shielding material inside the broad emission-line region (BELR). We proposed a geometrically and optically thick inner accretion disk as the natural shield, which could also explain the behavior of the X-ray weak fraction along with C IV REW.Futhermore, we ran Peto-Prentice tests to assess if the distributions of optical-UV spectral properties are different between X-ray weak WLQs and X-ray normal WLQs. We also examined correlations between △αOX and optical-UV spectral properties. The C IV REW, C IV blueshift, C IV FWHM, REWs of the Si IV, λ1900, Fe II, and Mg II emission features, and the relative SDSS color △(g - i) are examined in our study. △(g - i) turned out to be the most effective tracer of X-ray weakness.

  1. Laser-ultraviolet-A-induced ultraweak photon emission in mammalian cells.

    PubMed

    Niggli, Hugo J; Tudisco, Salvatore; Privitera, Giuseppe; Applegate, Lee Ann; Scordino, Agata; Musumeci, Franco

    2005-01-01

    Photobiological research in the last 30 yr has shown the existence of ultraweak photon emission in biological tissue, which can be detected with sophisticated photomultiplier systems. Although the emission of this ultraweak radiation, often termed biophotons, is extremely low in mammalian cells, it can be efficiently increased by ultraviolet light. Most recently it was shown that UV-A (330 to 380 nm) releases such very weak cell radiation in differentiated human skin fibroblasts. Based on these findings, a new and powerful tool in the form of UV-A-laser-induced biophotonic emission of cultured cells was developed with the intention to detect biophysical changes between carcinogenic and normal cells. With suspension densities ranging from 1 to 8 x 10(6) cells/mL, it was evident that an increase of the UV-A-laser-light induced photon emission intensity could be observed in normal as well as melanoma cells. Using this new detection procedure of ultraweak light emission, photons in cell suspensions as low as 100 microL could be determined, which is a factor of 100 lower compared to previous procedures. Moreover, the detection procedure has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of 150 ms, as reported in previous procedures. This improvement leads to measurements of light bursts up 10(7) photons/s instead of several hundred as found with classical designs. Overall, we find decreasing induction ratings between normal and melanoma cells as well as cancer-prone and melanoma cells. Therefore, it turns out that this highly sensitive and noninvasive device enables us to detect high levels of ultraweak photon emission following UV-A-laser-induced light stimulation within the cells, which enables future development of new biophysical strategies in cell research. Copyright 2005 Society of Photo

  2. Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2012-05-09

    REPORT Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of...including the development of a large-alphabet quantum key distribution protocol that uses measurements in mutually unbiased bases. 1. REPORT DATE (DD-MM... quantum information, integrated optics, photonic integrated chip Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory

  3. Double core-hole emissivity of transient aluminum plasmas produced in the interaction with ultra-intense x-ray laser pulse

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2015-11-01

    Emissivity of single core-hole (SCH) and double core-hole (DCH) states of aluminum plasmas produced in the interaction with ultra-intense x-ray laser pulse interaction are investigated systematically by solving the time-dependent rate equation implemented in the detailed level accounting approximation. We first demonstrated the plasma density effects on level populations and charge state distribution. Compared with recent experiments, it is shown that the plasma density effects play important roles in the evolution dynamics. Then we systematically investigated the emissivity of the transient aluminum plasmas produced by the x-ray laser pulses with a few photon energies above the threshold photon energy to create DCH states. For the laser photon energy where there are resonant absorptions (RA), 1s-np transitions with both full 1s and SCH 1s states play important roles in time evolution of the population and DCH emission spectroscopy. The significant RA effects are illustrated in detail for x-ray pulses, which creates the 1s-2p resonant absorption from the SCH states of Al VII. With the increase of the photon energy, the emissions from lower charge states become larger.

  4. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide

    NASA Astrophysics Data System (ADS)

    Moraes, Thiago A.; Barlow, Peter W.; Klingelé, Emile; Gallep, Cristiano M.

    2012-06-01

    Semi-circadian rhythms of spontaneous photon emission from wheat seedlings germinated and grown in a constant environment (darkened chamber) were found to be synchronized with the rhythm of the local gravimetric (lunisolar) tidal acceleration. Time courses of the photon-count curves were also found to match the growth velocity profile of the seedlings. Pair-wise analyses of the data—growth, photon count, and tidal—by local tracking correlation always revealed significant coefficients ( P > 0.7) for more than 80% of any of the time periods considered. Using fast Fourier transform, the photon-count data revealed periodic components similar to those of the gravimetric tide. Time courses of biophoton emissions would appear to be an additional, useful, and innovative tool in both chronobiological and biophysical studies.

  5. Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: First Annual Report

    DTIC Science & Technology

    2011-08-24

    REPORT Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: First Annual Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The...goal of this program is to establish a fundamental information-theoretic understand of quantum secure communication and to devise a practical...scalable implementation of quantum key distribution protocols in an integrated photonic architecture. We report our progress on experimental and

  6. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Liu, Jin-Jin; Yin, Yan; Zhu, Xing-Long; Capdessus, Remi; Pegoraro, Francesco; Sheng, Zheng-Ming; McKenna, Paul; Shao, Fu-Qiu

    2017-12-11

    Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~10 24  Wcm -2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 10 22-23  Wcm -2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~10 25 photons/s/mm 2 /mrad 2 /0.1%BW at 15 MeV and intensity of 5 × 10 23  Wcm -2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 10 22 cm -3 and flux of 1.6 × 10 10 /shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.

  7. Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Ryou, Albert; Rosser, David; Saxena, Abhi; Fryett, Taylor; Majumdar, Arka

    2018-06-01

    A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for both fundamental physics and technological applications, but its realization has proved extremely challenging. Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence function. We identify several mechanisms for photon antibunching under different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics from a coherent state into a regime of strong antibunching with second-order coherence function g(2 )(0 ) ˜10-3 , opening a possible route to scalable, on-chip quantum simulations with correlated photons.

  8. Photonic Crystals-Inhibited Spontaneous Emission: Optical Antennas-Enhanced Spontaneous Emission

    NASA Astrophysics Data System (ADS)

    Yablonovitch, Eli

    Photonic crystals are also part of everyday technological life in opto-electronic telecommunication devices that provide us with internet, cloud storage, and email. But photonic crystals have also been identified in nature, in the coloration of peacocks, parrots, chameleons, butterflies and many other species.In spite of its broad applicability, the original motivation of photonic crystals was to create a ``bandgap'' in which the spontaneous emission of light would be inhibited. Conversely, the opposite is now possible. The ``optical antenna'' can accelerate spontaneous emission. Over 100 years after the radio antenna, we finally have tiny ``optical antennas'' which can act on molecules and quantum dots. Employing optical antennas, spontaneous light emission can become faster than stimulated emission.

  9. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.

    PubMed

    D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry

    2014-05-19

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.

  10. Regulatory aspects of low intensity photon emission.

    PubMed

    Van Wijk, R; Schamhart, D H

    1988-07-15

    Photon emission from unicellular and multicellular organisms has been a subject of study for many decennia. In contrast to the well-known phenomenon of bioluminescence originating in luciferin-luciferase reactions, low intensity emission in the visible region of the electromagnetic spectrum has been found in almost every species studied so far. At present, the nomenclature of this phenomenon has not crystallized and it is referred to by a variety of names, such as mitogenetic radiation 29, dark luminescence 7, low-level chemiluminescence 20,36, and biophotons 57. Particular attention has been focussed on the relationship between photon emission and the regulation of various aspects of cellular metabolism, although in many cases quantitative data are still lacking. Throughout the history of this field of research the question of a functional biological role of the low intensity emission has been repeatedly raised; this is reflected, for instance, in the heterogeneity of the terms used to describe it. The discussion concerns the possible participation of photons of low intensity in intra- and intercellular communication. This paper reviews literature on the metabolic regulation of low intensity emission, as well as the regulation of photon emission initiated by external light. Furthermore, recent data are discussed with respect to a possible biocommunicative function of low intensity photon emission.

  11. Engineering ultra-flattened normal dispersion photonic crystal fiber with silica material

    NASA Astrophysics Data System (ADS)

    Ferhat, Mohamed Lamine; Cherbi, Lynda; Bahloul, Lies; Hariz, Abdelhafid

    2017-05-01

    The tailoring of the group velocity dispersion (GVD) of an optical fiber is critical in many applications, influence on the bandwidth of information transmission in optical communication systems, successful utilization of nonlinear optical properties in applications such as supercontinuum generation, wavelength conversion and harmonic generation via stimulated Raman scattering ...In this work, we propose a design of ultra-flattened photonic crystal fiber by changing the diameter of the air holes of the cladding rings. The geometry is composed of only four rings, hexagonal structure of air holes and silica as background of the solid core. As a result, we present structures with broadband flat normal dispersion on many wavelengths bands useful for several applications. We obtain flat normal dispersion over 1000 nm broadband flat normal dispersion below -7 [ps/nm.km], and ultra-flat near zero normal dispersion below -0.2 [ps/nm.km] over 150 nm. The modeled photonic crystal fiber would be valuable for the fabrication of ultra-flattened-dispersion fibers, and have potential applications in wide-band high-speed optical communication systems, supercontinuum generation and many other applications.

  12. Ultra-wideband microwave photonic link based on single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu

    2017-10-01

    Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.

  13. Photon emission from massive projectile impacts on solids.

    PubMed

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  14. Photon emission from massive projectile impacts on solids

    PubMed Central

    Fernandez-Lima, F. A.; Pinnick, V. T.; Della-Negra, S.; Schweikert, E. A.

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Aun+q (1 ≤ n ≤ 400; q = 1–4) projectiles with impact energies in the range of 28–136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact. PMID:21603128

  15. Generalized emission functions for photon emission from quark-gluon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanarayana, S. V.

    The Landau-Pomeranchuk-Migdal effects on photon emission from the quark-gluon plasma have been studied as a function of photon mass, at a fixed temperature of the plasma. The integral equations for the transverse vector function [f-tilde)(p-tilde){sub (perpendicular)})] and the longitudinal function [g-tilde)(p-tilde){sub (perpendicular)})] consisting of multiple scattering effects are solved by the self-consistent iterations method and also by the variational method for the variable set {l_brace}p{sub 0},q{sub 0},Q{sup 2}{r_brace}. We considered the bremsstrahlung and the off shell annihilation (aws) processes. We define two new dynamical scaling variables, x{sub T},x{sub L}, for bremsstrahlung and aws processes which are functions of variables p{submore » 0},q{sub 0},Q{sup 2}. We define four new emission functions for massive photon emission represented by g{sub T}{sup b},g{sub T}{sup a},g{sub L}{sup b},g{sub L}{sup a} and we constructed these using the exact numerical solutions of the integral equations. These four emission functions have been parametrized by suitable simple empirical fits. Using the empirical emission functions, we calculated the imaginary part of the photon polarization tensor as a function of photon mass and energy.« less

  16. Attributes characterizing spontaneous ultra-weak photon signals of human subjects.

    PubMed

    Bajpai, Rajendra P; Van Wijk, Eduard P A; Van Wijk, Roeland; van der Greef, Jan

    2013-12-05

    Sixty visible range photon signals spontaneously emitted from the dorsal side of both hands of fifteen human subjects are analyzed with the aim of finding their attributes. The signals are of 30 min duration and detected in bins of 50 ms by two synchronized photo multipliers sensitive in the range (290-630 nm). Each signal is a time series of 36,000 elements. The attributes of its signal are determined from the statistical properties of time series. The mean and variance of time series determine the attributes signal strength and intercept (p₀) and slope (p₁) of the Fano Factor curve. The photon count distribution of the time series determines squeezed state parameters |α|, r, θ and ϕ, squeezed state index (SSI), and sum of the squares of residue (SSR). The correlation between simultaneously detected signals determines intercept (c₀) and slope (c₁) of their correlation curve. The variability of attributes is studied by calculating them in smaller intervals covering the entire signal. The profile of attribute at 12 sites in a subject is more informative and biologically relevant. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    PubMed

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  18. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    NASA Astrophysics Data System (ADS)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  19. Nebular emission and the Lyman continuum photon escape fraction in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Papaderos, P.; Gomes, J. M.; Vílchez, J. M.; Kehrig, C.; Lehnert, M. D.; Ziegler, B.; Sánchez, S. F.; Husemann, B.; Monreal-Ibero, A.; García-Benito, R.; Bland-Hawthorn, J.; Cortijo-Ferrero, C.; de Lorenzo-Cáceres, A.; del Olmo, A.; Falcón-Barroso, J.; Galbany, L.; Iglesias-Páramo, J.; López-Sánchez, Á. R.; Marquez, I.; Mollá, M.; Mast, D.; van de Ven, G.; Wisotzki, L.

    2013-07-01

    We use deep integral field spectroscopy data from the CALIFA survey to study the warm interstellar medium (wim) over the entire extent and optical spectral range of 32 nearby early-type galaxies (ETGs). We find that faint nebular emission is extended in all cases, and its surface brightness decreases roughly as ∝ r-α. The large standard deviation in the derived α (1.09 ± 0.67) argues against a universal power-law index for the radial drop-off of nebular emission in ETGs. Judging from the properties of their extranuclear component, our sample ETGs span a broad, continuous sequence with respect to their α, Hα equivalent width (EW) and Lyman continuum (Lyc) photon leakage fraction (plf). We propose a tentative subdivision into two groups: Type i ETGs are characterized by rather steep Hα profiles (α ≃ 1.4), comparatively large (≳1 Å), nearly radially constant EWs, and plf ≃ 0. Photoionization by post-AGB stars appears to be the main driver of extended nebular emission in these systems, with nonthermal sources being potentially important only in their nuclei. Typical properties of type II ETGs are shallower Hα profiles (α ≃ 0.8), very low (≲0.5 Å) EWs with positive radial gradients, and a mean plf ≳ 0.7, rising to ≳0.9 in their centers. Such properties point to a low, and inwardly decreasing wim density and/or volume filling factor. We argue that, because of extensive Lyc photon leakage, emission-line luminosities and EWs are reduced in type II ETG nuclei by at least one order of magnitude. Consequently, the line weakness of these ETGs is by itself no compelling evidence for their containing merely "weak"(sub-Eddington accreting) active galactic nuclei (AGN). In fact, Lyc photon escape, which has heretofore not been considered, may constitute a key element in understanding why many ETGs with prominent signatures of AGN activity in radio continuum and/or X-ray wavelengths show only faint emission lines and weak signatures of AGN activity in

  20. Weak Value Amplification of a Post-Selected Single Photon

    NASA Astrophysics Data System (ADS)

    Hallaji, Matin

    Weak value amplification (WVA) is a measurement technique in which the effect of a pre- and post-selected system on a weakly interacting probe is magnified. In this thesis, I present the first experimental observation of WVA of a single photon. We observed that a signal photon --- sent through a polarization interferometer and post-selected by photodetection in the almost-dark port --- can act like eight photons. The effect of this single photon is measured as a nonlinear phase shift on a separate laser beam. The interaction between the two is mediated by a sample of laser- cooled 85Rb atoms. Electromagnetically induced transparency (EIT) is used to enhance the nonlinearity and overcome resonant absorption. I believe this work to be the first demonstration of WVA where a deterministic interaction is used to entangle two distinct optical systems. In WVA, the amplification is contingent on discarding a large portion of the original data set. While amplification increases measurement sensitivity, discarding data worsens it. Questioning whether these competing effects conspire to improve or diminish measurement accuracy has resulted recently in controversy. I address this question by calculating the maximum amount of information achievable with the WVA technique. By comparing this information to that achievable by the standard technique, where no post-selection is employed, I show that the WVA technique can be advantageous under a certain class of noise models. Finally, I propose a way to optimally apply the WVA technique.

  1. Improved Photon-Emission-Microscope System

    NASA Technical Reports Server (NTRS)

    Vu, Duc

    2006-01-01

    An improved photon-emission-microscope (PEM) instrumentation system has been developed for use in diagnosing failure conditions in semiconductor devices, including complex integrated circuits. This system is designed primarily to image areas that emit photons, at wavelengths from 400 to 1,100 nm, associated with device failures caused by leakage of electric current through SiO2 and other dielectric materials used in multilayer semiconductor structures. In addition, the system is sensitive enough to image areas that emit photons during normal operation.

  2. Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements

    PubMed Central

    Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun

    2014-01-01

    Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications. PMID:25487043

  3. Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs

    NASA Astrophysics Data System (ADS)

    Rieländer, Daniel; Lenhard, Andreas; Jime`nez Farìas, Osvaldo; Máttar, Alejandro; Cavalcanti, Daniel; Mazzera, Margherita; Acín, Antonio; de Riedmatten, Hugues

    2018-01-01

    We demonstrate frequency-bin entanglement between ultra-narrowband photons generated by cavity enhanced spontaneous parametric down conversion. Our source generates photon pairs in widely non-degenerate discrete frequency modes, with one photon resonant with a quantum memory material based on praseodymium doped crystals and the other photon at telecom wavelengths. Correlations between the frequency modes are analyzed using phase modulators and narrowband filters before detection. We show high-visibility two photon interference between the frequency modes, allowing us to infer a coherent superposition of the modes. We develop a model describing the state that we create and use it to estimate optimal measurements to achieve a violation of the Clauser-Horne (CH) Bell inequality under realistic assumptions. With these settings we perform a Bell test and show a significant violation of the CH inequality, thus proving the entanglement of the photons. Finally we demonstrate the compatibility with a quantum memory material by using a spectral hole in the praseodymium (Pr) doped crystal as spectral filter for measuring high-visibility two-photon interference. This demonstrates the feasibility of combining frequency-bin entangled photon pairs with Pr-based solid state quantum memories.

  4. Virtual photon emission from a quark-gluon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanarayana, S. V.

    We present phenomenological formulas for virtual photon emission rates from a thermalized quark-gluon plasma (QGP) that include bremsstrahlung and annihilation with scattering (AWS) mechanisms along with the Landau-Pomeranchuk-Migdal (LPM) effects. For this purpose we follow the approach of generalized emission functions (GEF) for virtual photon emission, we showed earlier for a fixed temperature and strong coupling constant. In the present work, we extend the LPM calculations for several temperatures and strong coupling strengths, photon energies (q{sub 0}), photon mass (Q{sup 2}), and quark energies (p{sub 0}). We generalize the dynamical scaling variables, x{sub T},x{sub L}, for bremsstrahlung and AWS processesmore » that are now functions of variables p{sub 0},q{sub 0},Q{sup 2},T,{alpha}{sub s}. The GEF introduced earlier, g{sub T}{sup b},g{sub T}{sup a},g{sub L}{sup b},g{sub L}{sup a}, are also generalized for any temperatures and coupling strengths. From this, the imaginary part of the photon polarization tensor as a function of photon mass and energy has been calculated as a one-dimensional integral over these GEF and parton distribution functions in the plasma. By fitting these polarization tensors obtained from GEF method, we obtained a phenomenological formula for virtual photon emission rates as a function of (q{sub 0},Q{sup 2},T,{alpha}{sub s}) that includes bremsstrahlung and AWS mechanisms with LPM effects.« less

  5. Detecting technology of biophotons

    NASA Astrophysics Data System (ADS)

    Ma, Junfu; Zhu, Zhaohui; Zhu, Yanbin

    2002-03-01

    A key technique of detecting the ultra-weak photon emission from biological system (UPE) is to change the light signal of an extremely weak level into electric signal of a considerable level when the photo-electric detecting system were be applied. This paper analyzed the difficult for detecting the ultra-weak photon emission from biological system (UPE) mainly is in the absence of high sensitivity detector in UV-visible-infra spectra region. An experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300 nm to 1060 nm has were tested. The test result show the UPE of living biological system exists in wide spectra region from UV- visible to infrared.

  6. An ultra-weak sector, the strong CP problem and the pseudo-Goldstone dilaton

    DOE PAGES

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-12-29

    In the context of a Coleman–Weinberg mechanism for the Higgs boson mass, we address the strong CP problem. We show that a DFSZ-like invisible axion model with a gauge-singlet complex scalar field S, whose couplings to the Standard Model are naturally ultra-weak, can solve the strong CP problem and simultaneously generate acceptable electroweak symmetry breaking. The ultra-weak couplings of the singlet S are associated with underlying approximate shift symmetries that act as custodial symmetries and maintain technical naturalness. The model also contains a very light pseudo-Goldstone dilaton that is consistent with cosmological Polonyi bounds, and the axion can be themore » dark matter of the universe. As a result, we further outline how a SUSY version of this model, which may be required in the context of Grand Unification, can avoid introducing a hierarchy problem.« less

  7. An ultra-weak sector, the strong CP problem and the pseudo-Goldstone dilaton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    In the context of a Coleman–Weinberg mechanism for the Higgs boson mass, we address the strong CP problem. We show that a DFSZ-like invisible axion model with a gauge-singlet complex scalar field S, whose couplings to the Standard Model are naturally ultra-weak, can solve the strong CP problem and simultaneously generate acceptable electroweak symmetry breaking. The ultra-weak couplings of the singlet S are associated with underlying approximate shift symmetries that act as custodial symmetries and maintain technical naturalness. The model also contains a very light pseudo-Goldstone dilaton that is consistent with cosmological Polonyi bounds, and the axion can be themore » dark matter of the universe. As a result, we further outline how a SUSY version of this model, which may be required in the context of Grand Unification, can avoid introducing a hierarchy problem.« less

  8. Photon enhanced thermionic emission

    DOEpatents

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  9. Modeling Photodisintegration-induced TeV Photon Emission from Low-luminosity Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Wu, Xue-Feng; Lu, Tan

    2012-05-01

    Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like γ-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.

  10. Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination.

    PubMed

    Chu, Kengyeh K; Lim, Daryl; Mertz, Jerome

    2007-10-01

    We describe a technique to enhance both the weak-signal relative sensitivity and the dynamic range of a laser scanning optical microscope. The technique is based on maintaining a fixed detection power by fast feedback control of the illumination power, thereby transferring high measurement resolution to weak signals while virtually eliminating the possibility of image saturation. We analyze and demonstrate the benefits of adaptive illumination in two-photon fluorescence microscopy.

  11. Ultra-flat and ultra-broadband supercontinuum generation in photonic crystal fiber pumped by noise-like pulses

    NASA Astrophysics Data System (ADS)

    Chen, Yewang; Ruan, Shuangchen; Wu, Xu; Guo, Chunyu; Liu, Weiqi; Yu, Jun; Luo, Ruoheng; Ren, Xikui; Zhu, Yihuai

    2017-02-01

    An ultra-flat and ultra-broadband supercontinuum (SC) is demonstrated in a 4-m photonic crystal fiber (PCF) pumped by an Yb-doped all-fiber noise-like pulses (NLP) laser. The Yb-doped fiber laser is seeded by a SESAM mode-locked fiber laser, and amplified by cascaded fiber amplifiers, with its center wavelength, repetition frequency and the average noise-like bunch duration of 1064.52 nm, 50.18 MHz, 9.14 ps, respectively. Pumped by this NLP laser, the SC source has a 3 dB bandwidth and a 7 dB bandwidth (ignore the pump residue) of 1440 nm and 1790 nm at the maximum average output power of 6.94 W. To the best of our knowledge, this flatness is significantly prominent for the performance of PCF-based SC sources.

  12. Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiß, M.; Kapfinger, S.; Wixforth, A.

    2016-07-18

    A coupled quantum dot–nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a f{sub SAW} ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g{sup (2)}. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g{sup (2)}, demonstrating high fidelity regulation of the stream of single photonsmore » emitted by the system.« less

  13. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode.

    PubMed

    Yan, Zhizhong; Hamel, Deny R; Heinrichs, Aimee K; Jiang, Xudong; Itzler, Mark A; Jennewein, Thomas

    2012-07-01

    It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009); X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011); M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010)], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (∼100 counts per second (CPS)), good time jitter (∼30 ps), and good DE (∼10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10(-18) W Hz(-1/2), more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free-running operation is required, and some afterpulsing

  14. Interferometric weak measurement of photon polarization

    NASA Astrophysics Data System (ADS)

    Iinuma, Masataka; Suzuki, Yutaro; Taguchi, Gen; Kadoya, Yutaka; Hofmann, Holger F.

    2011-10-01

    We realize a minimum back-action quantum non-demolition measurement of variable strength on photon polarization in the diagonal(PM) basis by two-mode path interference. This method uses the phase difference between the positive (P) and negative (M) superpositions in the interference between the horizontal (H) and vertical (V) polarized paths in the input beam. Although the interference can not occur when the H and V polarizations are distinguishable, a well-controlled amount of interference is induced by erasing the H and V information using a coherent rotation of polarization toward a common diagonal polarization. This method is particularly suitable for the realization of weak measurements, where the control of the back-action is essential.

  15. Absorption and emission properties of photonic crystals and metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Lili

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  16. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  17. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.

    PubMed

    Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin

    2018-03-25

    Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Stimulated photon emission and two-photon Raman scattering in a coupled-cavity QED system

    PubMed Central

    Li, C.; Song, Z.

    2016-01-01

    We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photon collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction. PMID:26877252

  19. Two-Photon Emission of a Hydrogenlike Atom with Photon Polarization and Electron Spin States Taken into Account

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2017-02-01

    The process of two-photon emission ( Ze)* → ( Ze) + 2 γ of a hydrogenlike atom is considered with spin states of the electron and polarization of the photons taken into account, which had not been done before. A general expression for the probability of the process per unit time has been obtained for different polarization states of the photons with a formulation of hard and soft selection rules for the quantum numbers m and l. It is shown that by virtue of the established specifics of the properties of the two-photon emission process (absence of a Zeeman effect and dependence of the probability on the polarization states of the photons), it can in principle be identified against the background of single-photon emission ( Ze)* → ( Ze) + γ, despite the presence of additional small factors: 1) α = e 2/ ћc ≈ 1/137 of the perturbation theory in e, and 2) the square of the atomic expansion parameter ( Zα)2 in the expression for the probability.

  20. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  1. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode

    NASA Astrophysics Data System (ADS)

    Yan, Zhizhong; Hamel, Deny R.; Heinrichs, Aimee K.; Jiang, Xudong; Itzler, Mark A.; Jennewein, Thomas

    2012-07-01

    It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009), 10.1117/12.814669; X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011), 10.1117/12.883543; M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010), 10.1117/12.843588], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (˜100 counts per second (CPS)), good time jitter (˜30 ps), and good DE (˜10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10-18 W Hz-1/2, more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free

  2. Signatures of photon-scalar interaction in astrophysical situations

    NASA Astrophysics Data System (ADS)

    Ganguly, Avijit K.; Jaiswal, Manoj K.

    2018-01-01

    Dimension-5 photon ( γ) scalar ( ϕ) interaction term usually appear in the Lagrangians of bosonic sector of unified theories of electromagnetism and gravity. This interaction makes the medium dichoric and induces optical activity. Considering a toy model of an ultra-cold magnetized compact star (white dwarf (WD) or neutron star (NS)), we have modeled the propagation of very low energy photons with such interaction, in the environment of these stars. Assuming synchro-curvature process as the dominant mechanism of emission in such environments, we have tried to understand the polarimetric implications of photon-scalar coupling on the produced spectrum of the same. Further more assuming the `emission-energy vs emission-altitude' relation, that is believed to hold in such ( i.e., cold magnetized WD or NS) environments, we have tried to point out the possible modifications to the radiation spectrum when the same is incorporated along with dimension-5 photon-scalar mixing operator.

  3. Magneto-acupuncture stimuli effects on ultraweak photon emission from hands of healthy persons.

    PubMed

    Park, Sang-Hyun; Kim, Jungdae; Koo, Tae-Hoi

    2009-03-01

    We investigated ultraweak photon emissions from the hands of 45 healthy persons before and after magneto-acupuncture stimuli. Photon emissions were measured by using two photomultiplier tubes in the spectral range of UV and visible. Several statistical quantities such as the average intensity, the standard deviation, the delta-value, and the degree of asymmetry were calculated from the measurements of photon emissions before and after the magneto-acupuncture stimuli. The distributions of the quantities from the measurements with the magneto-acupuncture stimuli were more differentiable than those of the groups without any stimuli and with the sham magnets. We also analyzed the magneto-acupuncture stimuli effects on the photon emissions through a year-long measurement for two subjects. The individualities of the subjects increased the differences of photon emissions compared to the above group study before and after magnetic stimuli. The changes on the ultraweak photon emission rates of hand for the magnet group were detected conclusively in the quantities of the averages and standard deviations.

  4. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities.

    PubMed

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F; Machiya, Hidenori; Htoon, Han; Doorn, Stephen K; Kato, Yuichiro K

    2018-06-13

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 10 7 Hz.

  5. Ultra-wideband microwave photonic frequency downconverter based on carrier-suppressed single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu

    2018-03-01

    An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.

  6. Photon-enhanced thermionic emission for solar concentrator systems.

    PubMed

    Schwede, Jared W; Bargatin, Igor; Riley, Daniel C; Hardin, Brian E; Rosenthal, Samuel J; Sun, Yun; Schmitt, Felix; Pianetta, Piero; Howe, Roger T; Shen, Zhi-Xun; Melosh, Nicholas A

    2010-09-01

    Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%.

  7. Relaxation dynamics of light-induced photon emission by mammalian cells and nuclei

    NASA Astrophysics Data System (ADS)

    Van Wijk, R.; Van Aken, J. M.; Laerdal, H. E.; Souren, J. E. M.

    1995-12-01

    Photon emission from mammalian cells has been the subject of study for many years. Throughout the history of this field of research the question of a functional biological role of the low intensity emission has been repeatedly raised. The discussion concerns the possible participation of biophotons in intra- and intercellular communication. In this paper we consider the significance of the studies on light-induced photon emission of isolated mammalian cells. Furthermore we report on the source of this light-induced photon emission.

  8. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    PubMed

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  9. Thermodynamics of photon-enhanced thermionic emission solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reck, Kasper, E-mail: kasper.reck@nanotech.dtu.dk; Hansen, Ole, E-mail: ole.hansen@nanotech.dtu.dk; CINF Center for Individual Nanoparticle Functionality, Technical University of Denmark, Kgs. Lyngby 2800

    2014-01-13

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures.

  10. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  11. Frequency dependence of coherently amplified two-photon emission from hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Hara, Hideaki; Miyamoto, Yuki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2017-12-01

    We investigate how the efficiency of coherently amplified two-photon emission depends on the frequency of one of the two emitted photons, namely the signal photon. This is done over the wavelength range of 5.048-10.21 μ m by using the vibrational transition of parahydrogen. The efficiency increases with the frequency of the signal photon. Considering experimental errors, our results are consistent with the theoretical prediction for the present experimental conditions. This study is an experimental demonstration of the frequency dependence of coherently amplified two-photon emission, and also presents its potential as a light source.

  12. Manipulation of spontaneous emission in a tapered photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Myers, S. J.; Fussell, D. P.; Dawes, J. M.; Mägi, E.; McPhedran, R. C.; Eggleton, B. J.; de Sterke, C. Martijn

    2006-12-01

    We characterize the spontaneous emission of dye that is introduced into the central core of a tapered photonic crystal fiber. Since the photonic crystal period in the fibre cladding varies along the taper, the transmission and spontaneous emission spectra over a wide range of relative frequencies can be observed. The spontaneous emission spectra of the fibre transverse to the fiber axis show suppression due to partial band-gaps of the structure, and also enhancement of spontaneous emission near the band edges. We associate these with van Hove features, as well as finite cluster size effects.

  13. Experimental joint weak measurement on a photon pair as a probe of Hardy's paradox.

    PubMed

    Lundeen, J S; Steinberg, A M

    2009-01-16

    It has been proposed that the ability to perform joint weak measurements on postselected systems would allow us to study quantum paradoxes. These measurements can investigate the history of those particles that contribute to the paradoxical outcome. Here we experimentally perform weak measurements of joint (i.e., nonlocal) observables. In an implementation of Hardy's paradox, we weakly measure the locations of two photons, the subject of the conflicting statements behind the paradox. Remarkably, the resulting weak probabilities verify all of these statements but, at the same time, resolve the paradox.

  14. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less

  15. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities

    DOE PAGES

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.; ...

    2018-05-21

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less

  16. Single-Photon Emitters in Boron Nitride Nanococoons.

    PubMed

    Ziegler, Joshua; Blaikie, Andrew; Fathalizadeh, Aidin; Miller, David; Yasin, Fehmi S; Williams, Kerisha; Mohrhardt, Jordan; McMorran, Benjamin J; Zettl, Alex; Alemán, Benjamín

    2018-04-11

    Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are attractive for a variety of quantum and photonic technologies because they combine ultra-bright, room-temperature single-photon emission with an atomically thin crystal. However, the emitter's prominence is hindered by large, strain-induced wavelength shifts. We report the discovery of a visible-wavelength, single-photon emitter (SPE) in a zero-dimensional boron nitride allotrope (the boron nitride nanococoon, BNNC) that retains the excellent optical characteristics of few-layer hBN while possessing an emission line variation that is lower by a factor of 5 than the hBN emitter. We determined the emission source to be the nanometer-size BNNC through the cross-correlation of optical confocal microscopy with high-resolution scanning and transmission electron microscopy. Altogether, this discovery enlivens color centers in BN materials and, because of the BN nanococoon's size, opens new and exciting opportunities in nanophotonics, quantum information, biological imaging, and nanoscale sensing.

  17. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  18. Photonic spin Hall effect enabled refractive index sensor using weak measurements.

    PubMed

    Zhou, Xinxing; Sheng, Lijuan; Ling, Xiaohui

    2018-01-19

    In this work, we theoretically propose an optical biosensor (consists of a BK7 glass, a metal film, and a graphene sheet) based on photonic spin Hall effect (SHE). We establish a quantitative relationship between the spin-dependent shift in photonic SHE and the refractive index of sensing medium. It is found that, by considering the surface plasmon resonance effect, the refractive index variations owing to the adsorption of biomolecules in sensing medium can effectively change the spin-dependent displacements. Remarkably, using the weak measurement method, this tiny spin-dependent shifts can be detected with a desirable accuracy so that the corresponding biomolecules concentration can be determined.

  19. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong

    2017-04-01

    A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.

  20. Analysis of a photon assisted field emission device

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Lau, Y. Y.; McGregor, D. S.

    2000-07-01

    A field emitter array held at the threshold of emission by a dc gate potential from which current pulses are triggered by the application of a laser pulse on the backside of the semiconductor may produce electron bunches ("density modulation") at gigahertz frequencies. We develop an analytical model of such optically controlled emission from a silicon tip using a modified Wentzel-Kramers-Brillouin and Airy function approach to solving Schrödinger's equation. Band bending and an approximation to the exchange-correlation effects on the image charge potential are included for an array of hyperbolic emitters with a distribution in tip radii and work function. For a simple relationship between the incident photon flux and the resultant electron density at the emission site, an estimation of the tunneling current is made. An example of the operation and design of such a photon-assisted field emission device is given.

  1. Multi-photon excited coherent random laser emission in ZnO powders

    NASA Astrophysics Data System (ADS)

    Tolentino Dominguez, Christian; Gomes, Maria De A.; Macedo, Zélia S.; de Araújo, Cid B.; Gomes, Anderson S. L.

    2014-11-01

    We report the observation and analysis of anti-Stokes coherent random laser (RL) emission from zinc oxide (ZnO) powders excited by one-, two- or three-photon femtosecond laser radiation. The ZnO powders were produced via a novel proteic sol-gel, low-cost and environmentally friendly route using coconut water in the polymerization step of the metal precursor. One- and two-photon excitation at 354 nm and 710 nm, respectively, generated single-band emissions centred at about 387 nm. For three-photon excitation, the emission spectra showed a strong ultraviolet (UV) band (380-396 nm) attributed to direct three-photon absorption from the valence band to the conduction band. The presence of an intensity threshold and a bandwidth narrowing of the UV band from about 20 to 4 nm are clear evidence of RL action. The observation of multiple sub-nanometre narrow peaks in the emission spectra for excitation above the RL threshold is consistent with random lasing by coherent feedback.

  2. Generation of single photons with highly tunable wave shape from a cold atomic ensemble

    PubMed Central

    Farrera, Pau; Heinze, Georg; Albrecht, Boris; Ho, Melvyn; Chávez, Matías; Teo, Colin; Sangouard, Nicolas; de Riedmatten, Hugues

    2016-01-01

    The generation of ultra-narrowband, pure and storable single photons with widely tunable wave shape is an enabling step toward hybrid quantum networks requiring interconnection of remote disparate quantum systems. It allows interaction of quantum light with several material systems, including photonic quantum memories, single trapped ions and opto-mechanical systems. Previous approaches have offered a limited tuning range of the photon duration of at most one order of magnitude. Here we report on a heralded single photon source with controllable emission time based on a cold atomic ensemble, which can generate photons with temporal durations varying over three orders of magnitude up to 10 μs without a significant change of the readout efficiency. We prove the nonclassicality of the emitted photons, show that they are emitted in a pure state, and demonstrate that ultra-long photons with nonstandard wave shape can be generated, which are ideally suited for several quantum information tasks. PMID:27886166

  3. Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range.

    PubMed

    Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei

    2013-05-06

    A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.

  4. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    PubMed

    Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi

    2009-07-16

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  5. Weak light emission of soft tissues induced by heating

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; Durando, Giovanni; Boschi, Federico

    2018-04-01

    The main goal of this work is to show that soft tissue interaction with high-intensity focused ultrasound (HIFU) or direct heating leads to a weak light emission detectable using a small animal optical imaging system. Our results show that the luminescence signal is detectable after 30 min of heating, resembling the time scale of delayed luminescence. The imaging of a soft tissue after heating it using an HIFU field shows that the luminescence pattern closely matches the shape of the cone typical of the HIFU beam. We conclude that heating a soft tissue using two different sources leads to the emission of a weak luminescence signal from the heated region with a decay half-life of a few minutes (4 to 6 min). The origin of such light emission needs to be further investigated.

  6. Signatures of single-photon interaction between two quantum dots located in different cavities of a weakly coupled double microdisk structure

    NASA Astrophysics Data System (ADS)

    Seyfferle, S.; Hargart, F.; Jetter, M.; Hu, E.; Michler, P.

    2018-01-01

    We report on the radiative interaction of two single quantum dots (QDs) each in a separate InP/GaInP-based microdisk cavity via resonant whispering gallery modes. The investigations are based on as-fabricated coupled disk modes. We apply optical spectroscopy involving a 4 f setup, as well as mode-selective real-space imaging and photoluminescence mapping to discern single QDs coupled to a resonant microdisk mode. Excitation of one disk of the double cavity structure and detecting photoluminescence from the other yields proof of single-photon emission of a QD excited by incoherent energy transfer from one disk to the other via a mode in the weak-coupling regime. Finally, we present evidence of photons emitted by a QD in one disk that are transferred to the other disk by a resonant mode and are subsequently resonantly scattered by another QD.

  7. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    NASA Astrophysics Data System (ADS)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  8. Modification of emission photon statistics from single quantum dots using metal/SiO2 core/shell nanostructures.

    PubMed

    Naiki, Hiroyuki; Oikawa, Hidetoshi; Masuo, Sadahiro

    2017-04-12

    Emission photon statistics, i.e., single-photon and multi-photon emissions, of isolated QDs is required for tailoring optoelectronic applications. In this article, we demonstrate that the emission photon statistics can be modified by the control of the spectral overlap of the QDs with the localized surface plasmon resonance (LSPR) of the metal nanoparticle (metal NP) and by the distance between the QD and the metal NP. Moreover, the contribution to the modification of the emission photon statistics, which is the excitation and emission enhancements and the quenching generated by the spectral overlap and the distance, is elucidated. By fabricating well-defined SiO 2 -coated AgNPs and AuNPs (metal/SiO 2 ), the spectral overlap originated from the metal species of Ag and Au and the distance constituted by the thickness of the SiO 2 shell are controlled. The probability of single-photon emission of single QD was increased by the enhancement of the excitation rate via adjusting the distance using Ag/SiO 2 while the single-photon emission was converted to multi-photon emission by the effect of exciton quenching at a short distance and a small spectral overlap. By contrast, the probability of multi-photon emission was increased by enhancement of the multi-photon emission rate and the quenching via the spectral overlap using Au/SiO 2 . These results indicated the fundamental finding to control emission photon statistics in single QDs by controlling the spectral overlap and the distance, and understand the interaction of plasmonic nanostructures and single QD systems.

  9. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells.

    PubMed

    Le, M; Mothersill, C E; Seymour, C B; Ahmad, S B; Armstrong, A; Rainbow, A J; McNeill, F E

    2015-08-21

    The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  10. Holographic photon production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-04-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N = 4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.

  11. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

    PubMed

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-05

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  12. Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Mrowiński, P.; Emmerling, M.; Schneider, C.; Reithmaier, J. P.; Misiewicz, J.; Höfling, S.; Sek, G.

    2018-04-01

    In this work, we discuss a method to control the polarization anisotropy of spontaneous emission from neutral excitons confined in quantum-dot-like nanostructures, namely single epitaxial InAs quantum dashes emitting at telecom wavelengths. The nanostructures are embedded inside lithographically defined, in-plane asymmetric photonic mesa structures, which generate polarization-dependent photonic confinement. First, we study the influence of the photonic confinement on the polarization anisotropy of the emission by photoluminescence spectroscopy, and we find evidence of different contributions to a degree of linear polarization (DOLP), i.e., from the quantum dash and the photonic mesa, in total giving rise to DOLP =0.85 . Then, we perform finite-difference time-domain simulations of photonic confinement, and we calculate the DOLP in a dipole approximation showing well-matched results for the established model. Furthermore, by using numerical calculations, we demonstrate several types of photonic confinements where highly linearly polarized emission with DOLP of about 0.9 is possible by controlling the position of a quantum emitter inside the photonic structure. Then, we elaborate on anisotropic quantum emitters allowing for exceeding DOLP =0.95 in an optimized case, and we discuss the ways towards efficient linearly polarized single photon source at telecom bands.

  13. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  14. Ultra-broadband photonic internet

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  15. Photon emission from quark-gluon plasma out of equilibrium

    NASA Astrophysics Data System (ADS)

    Hauksson, Sigtryggur; Jeon, Sangyong; Gale, Charles

    2018-01-01

    The photon emission from a nonequilibrium quark-gluon plasma is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants, which capture the nonequilibrium nature of the medium.

  16. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  17. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    PubMed Central

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-01

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851

  18. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  19. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.

    PubMed

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  20. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE PAGES

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  1. Dynamics of Single-Photon Emission from Electrically Pumped Color Centers

    NASA Astrophysics Data System (ADS)

    Khramtsov, Igor A.; Agio, Mario; Fedyanin, Dmitry Yu.

    2017-08-01

    Low-power, high-speed, and bright electrically driven true single-photon sources, which are able to operate at room temperature, are vital for the practical realization of quantum-communication networks and optical quantum computations. Color centers in semiconductors are currently the best candidates; however, in spite of their intensive study in the past decade, the behavior of color centers in electrically controlled systems is poorly understood. Here we present a physical model and establish a theoretical approach to address single-photon emission dynamics of electrically pumped color centers, which interprets experimental results. We support our analysis with self-consistent numerical simulations of a single-photon emitting diode based on a single nitrogen-vacancy center in diamond and predict the second-order autocorrelation function and other emission characteristics. Our theoretical findings demonstrate remarkable agreement with the experimental results and pave the way to the understanding of single-electron and single-photon processes in semiconductors.

  2. A general strategy to fabricate photonic crystal heterostructure with Programmed photonic stopband.

    PubMed

    Zhang, Lijing; Liu, Bofan; Wang, Jie; Tao, Shengyang; Yan, Qingfeng

    2018-01-01

    In this paper, we present a general fabrication strategy to achieve the structure control and the flexible photonic stop band regulation of (2+1) D photonic crystal heterostructures (PCHs) by layer-by-layer depositing the annealed colloidal crystal monolayers of different sphere size. The optical properties of the resulting (2+1) DPCHs with different lattice constants were systematically studied and a universal photonic stopband variation rule was proposed, which makes it possible to program any kind of stopband structure as required, such as dual- or multi-stopbands PCH and ultra-wide stopband PCH. Furthermore, PCH with dual-stopbands overlapping the excitation wavelength (E) and emission wavelength(F) of Ru complex was fabricated by finely manipulating the spheres' diameter of colloidal monolayers. And an additional 2-fold fluorescence enhancement in comparison to that on the single stopband sample was achieved. This strategy affords new opportunities for delicate engineering the photonic behaviour of PCH, and also is of great significance for the practical application based on their bandgap property. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Controlling spontaneous emission with the local density of states of honeycomb photonic crystals

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Chih; Lin, Chien-Fan; Chang, Jui-Wen

    2009-05-01

    We calculated the local density of state for various positions in a photonic crystal of honeycomb lattice to study how the spontaneous emission rate of a radiating dipole is altered in the presence of the photonic crystal. The local density of states is found to be position-sensitive and its value can be enhanced or depressed relative to the density of states, depending on the location of the dipole. Our study shows that the density of states tends to underestimate the effect of a photonic crystal on the prohibition of light propagation, while on the contrary tends to overestimate the effect on the enhancement of light emission. The calculations also indicate that it is possible to tailor the spontaneous emission of an active medium by careful selecting its location in the photonic crystal. The results are helpful in determining the insertion location of the active medium and in evaluating the efficiency of active photonic crystal devices such as light-emitting diodes or lasers.

  4. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  5. Single photons from a gain medium below threshold

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjib; Liew, Timothy C. H.

    2018-06-01

    The emission from a nonlinear photonic mode coupled weakly to a gain medium operating below threshold is predicted to exhibit antibunching. In the steady state regime, analytical solutions for the relevant observable quantities are found in accurate agreement with exact numerical results. Under pulsed excitation, the unequal time second-order correlation function demonstrates the triggered probabilistic generation of single photons well separated in time.

  6. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generatormore » based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)« less

  7. Synergistic damage effects of vacuum ultraviolet photons and O2 in SiCOH ultra-low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Graves, D. B.

    2010-10-01

    Damage incurred during plasma processing, leading to increases in dielectric constant k, is a persistent problem with porous ultra-low-k dielectric films, such as SiCOH. Although most of the proposed mechanisms of plasma-induced damage focus on the role of ion bombardment and radical attack, we show that plasma-generated vacuum ultraviolet (VUV) photons can play a role in creating damage leading to increases in the dielectric constant of this material. Using a vacuum beam apparatus with a calibrated VUV lamp, we show that 147 nm VUV photons impacting SiCOH results in post-exposure adsorption and reaction with water vapour from the atmosphere to form silanol bonds, thereby raising the dielectric constant. Furthermore, the level of damage increases synergistically under simultaneous exposure to VUV photons and O2. The vacuum beam photon fluences are representative of typical plasma processes, as measured in a separate plasma tool. Fourier-transform infrared (FTIR) spectroscopy (ex situ) and mass spectrometry (in situ) imply that O2 reacts with methyl radicals formed from scissioned Si-C bonds to create CO2 and H2O, the latter combining with Si dangling bonds to generate more SiOH groups than with photon exposure alone. In addition, sample near-surface diffusivity, manipulated through ion bombardment and sample heating, can be seen to affect this process. These results demonstrate that VUV photo-generated surface reactions can be potent contributors to ultra-low-k dielectric SiCOH film plasma-induced damage, and suggest that they could play analogous roles in other plasma-surface interactions.

  8. Modeling particulate matter emissions during mineral loading process under weak wind simulation.

    PubMed

    Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen

    2013-04-01

    The quantification of particulate matter emissions from mineral handling is an important problem for the quantification of global emissions on industrial sites. Mineral particulate matter emissions could adversely impact environmental quality in mining regions, transport regions, and even on a global scale. Mineral loading is an important process contributing to mineral particulate matter emissions, especially under weak wind conditions. Mathematical models are effective ways to evaluate particulate matter emissions during the mineral loading process. The currently used empirical models based on the form of a power function do not predict particulate matter emissions accurately under weak wind conditions. At low particulate matter emissions, the models overestimated, and at high particulate matter emissions, the models underestimated emission factors. We conducted wind tunnel experiments to evaluate the particulate matter emission factors for the mineral loading process. A new approach based on the mathematical form of a logistical function was developed and tested. It provided a realistic depiction of the particulate matter emissions during the mineral loading process, accounting for fractions of fine mineral particles, dropping height, and wind velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals.

    PubMed

    Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M

    2016-08-10

    The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors.

  10. Heating up the Galaxy with hidden photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubovsky, Sergei; Hernández-Chifflet, Guzmán, E-mail: dubovsky@nyu.edu, E-mail: ghc236@nyu.edu

    2015-12-01

    We elaborate on the dynamics of ionized interstellar medium in the presence of hidden photon dark matter. Our main focus is the ultra-light regime, where the hidden photon mass is smaller than the plasma frequency in the Milky Way. We point out that as a result of the Galactic plasma shielding direct detection of ultra-light photons in this mass range is especially challenging. However, we demonstrate that ultra-light hidden photon dark matter provides a powerful heating source for the ionized interstellar medium. This results in a strong bound on the kinetic mixing between hidden and regular photons all the waymore » down to the hidden photon masses of order 10{sup −20} eV.« less

  11. Heating up the Galaxy with hidden photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubovsky, Sergei; Hernández-Chifflet, Guzmán; Instituto de Física, Facultad de Ingeniería, Universidad de la República,Montevideo, 11300

    2015-12-29

    We elaborate on the dynamics of ionized interstellar medium in the presence of hidden photon dark matter. Our main focus is the ultra-light regime, where the hidden photon mass is smaller than the plasma frequency in the Milky Way. We point out that as a result of the Galactic plasma shielding direct detection of ultra-light photons in this mass range is especially challenging. However, we demonstrate that ultra-light hidden photon dark matter provides a powerful heating source for the ionized interstellar medium. This results in a strong bound on the kinetic mixing between hidden and regular photons all the waymore » down to the hidden photon masses of order 10{sup −20} eV.« less

  12. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  13. Ultra-long-period grating as a novel tool for multi-wavelength ultrafast photonics

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Yang, Wen-Lei

    2017-10-01

    Here, we demonstrate the six-wavelength mode-locking and hybrid mode-locking operation in an erbium-doped fiber laser (EDFL) with an ultra-long-period grating (ULPG) by properly adjusting the pump power and the cavity parameters. The ULPG is fabricated by using the fused biconical method with a GPX-3000 glass processing system. Study found that, the ULPG exhibits dual-function, that is, mode-locker and multiwavelength filter. Our finding implies that apart from its fantastic sensing application, the ULPG may also possess attractive nonlinear optical property for ultrafast photonics.

  14. Single-Photon Emission of a Hydrogenlike Atom

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2016-11-01

    Implementing a previously obtained, original solution of the Dirac equation for an electron in the field of a nucleus ( Ze) expressed in terms of the wave function of the corresponding Schrödinger equation and its derivatives in spherical coordinates and the spin projection operator Σ3 associated with the eigenfunction, taking into account in each component of the spinor the leading term of the expansion in the small parameter ( Zα), α = e 2 / ħc ≈ 1 / 137, the partial probabilities W of emission of a photon ( Zα)* → ( Zα) + γ have been calculated. Here two orthogonal states of the linear polarization of the photon, and also the spin states of the electron, which previously had not been taken into consideration, have been taken into account in the transverse gauge. It turns out that the probabilities W of emission of a photon per unit time for any allowed transitions are proportional to (Zα)4, as was previously accepted, and the selection rules for the quantum number m have the usual form Δ m = 0,±1. It was found that a spin flip does not take place during emission. In contrast to the customary situation with the selection rules for the quantum number l being of the form Δ l = ±1, for Δ m = ±1 there also exist integrals over dcosθ which are not equal to zero for undetermined odd values of Δ l. In this, and also in a fundamentally different dependence of the amplitude on the quantum numbers consist the differences from the traditional approach to the problem. Necessary conditions are formulated, under the fulfillment of which the selection rules for l are not changed, having values Δ l = ±1 for arbitrary Δ m, but it was not possible, however, to give a complete proof of these rules.

  15. Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter.

    PubMed

    Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei

    2012-05-20

    We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.

  16. Quantifying Weak Nonthermal Solar Radio Emission at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Sharma, Rohit; Oberoi, Divya; Arjunwadkar, Mihir

    2018-01-01

    The recent availability of fine-grained high-sensitivity data from the new generation of low radio frequency instruments such as the Murchison Widefield Array (MWA) has opened up opportunities for using novel techniques for characterizing the nature of solar emission at these frequencies. Here we use this opportunity to look for evidence for the presence of weak nonthermal emissions in the 100–240 MHz band, at levels weaker than have been probed so far. The presence of such features is believed to be a necessary consequence of nanoflare-based coronal and chromospheric heating theories. We separate the calibrated MWA solar dynamic spectra into a slowly varying and an impulsive, and hence nonthermal, component. We demonstrate that Gaussian mixture modeling can be used to robustly model the latter, and we estimate the flux density distribution as well as the prevalence of impulsive nonthermal emission in the frequency-time plane. Evidence for the presence of nonthermal emission at levels down to ∼0.2 SFU (1 SFU = 104 Jy) is reported, making them the weakest reported emissions of this nature. Our work shows the fractional occupancy of the nonthermal impulsive emission to lie in the 17%–45% range during a period of medium solar activity. We also find that the flux density radiated in the impulsive nonthermal emission is very similar in strength to that of the slowly varying component, which is dominated by thermal bremsstrahlung. Such significant prevalence and strength of the weak impulsive nonthermal emission has not been appreciated before.

  17. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from themore » photonic crystal structure.« less

  18. Super-light baryo-photons, weak gravity conjecture and exotic instantons in neutron-antineutron transitions

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2018-05-01

    In companion papers (A. Addazi, Nuovo Cim. C, 38(1): 21 (2015); A. Addazi, Z. Berezhiani, and Y. Kamyshkov, arXiv:1607.00348), we have discussed current bounds on a new super-light baryo-photon, associated with a U(1) B-L gauge, from current neutron-antineutron data, which are competitive with Eötvös-type experiments. Here, we discuss the implications of possible baryo-photon detection in string theory and quantum gravity. The discovery of a very light gauge boson should imply violation of the weak gravity conjecture, carrying deep consequences for our understanding of holography, quantum gravity and black holes. We also show how the detection of a baryo-photon would exclude the generation of all B–L violating operators from exotic stringy instantons. We will argue against the common statement in the literature that neutron-antineutron data may indirectly test at least the 300–1000 TeV scale. Searches for baryo-photons can provide indirect information on the Planck (or string) scale (quantum black holes, holography and non-perturbative stringy effects). This strongly motivates new neutron-antineutron experiments with adjustable magnetic fields dedicated to the detection of super-light baryo-photons.

  19. Antibunched emission of photon pairs via quantum Zeno blockade.

    PubMed

    Huang, Yu-Ping; Kumar, Prem

    2012-01-20

    We propose a new methodology, namely, the "quantum Zeno blockade," for managing light scattering at a few-photon level in general nonlinear-optical media, such as crystals, fibers, silicon microrings, and atomic vapors. Using this tool, antibunched emission of photon pairs can be achieved, leading to potent quantum-optics applications such as deterministic entanglement generation without the need for heralding. In a practical implementation using an on-chip toroidal microcavity immersed in rubidium vapor, we estimate that high-fidelity entangled photons can be produced on-demand at MHz rates or higher, corresponding to an improvement of ≳10(7) times from the state-of-the-art. © 2012 American Physical Society

  20. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    NASA Astrophysics Data System (ADS)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  1. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    PubMed

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  2. Dirac directional emission in anisotropic zero refractive index photonic crystals

    PubMed Central

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-01-01

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal. PMID:26271208

  3. Single-molecule photon emission statistics for systems with explicit time dependence: Generating function approach

    NASA Astrophysics Data System (ADS)

    Peng, Yonggang; Xie, Shijie; Zheng, Yujun; Brown, Frank L. H.

    2009-12-01

    Generating function calculations are extended to allow for laser pulse envelopes of arbitrary shape in numerical applications. We investigate photon emission statistics for two-level and V- and Λ-type three-level systems under time-dependent excitation. Applications relevant to electromagnetically induced transparency and photon emission from single quantum dots are presented.

  4. Ultra-flattened nearly-zero dispersion and ultrahigh nonlinear slot silicon photonic crystal fibers with ultrahigh birefringence

    NASA Astrophysics Data System (ADS)

    Liao, Jianfei; Xie, Yingmao; Wang, Xinghua; Li, Dongbo; Huang, Tianye

    2017-07-01

    A slot silicon photonic crystal fiber (PCF) is proposed to simultaneously achieve ultrahigh birefringence, large nonlinearity and ultra-flattened nearly-zero dispersion over a wide wavelength range. By taking advantage on the slot effect, ultrahigh birefringence up to 0.0736 and ultrahigh nonlinear coefficient up to 211.48 W-1 m-1 for quasi-TE mode can be obtained at the wavelength of 1.55 μm. Moreover, ultra-flattened dispersion of 0.49 ps/(nm km) for quasi-TE mode can be achieved over a 180 nm wavelength range with low dispersion slope of 1.85 × 10-3 ps/(nm2 km) at 1.55 μm. Leveraging on these advantages, the proposed slot PCF has great potential for efficient all-optical signal processing applications.

  5. A new generation of ultra-dense optical I/O for silicon photonics

    NASA Astrophysics Data System (ADS)

    Wlodawski, Mitchell S.; Kopp, Victor I.; Park, Jongchul; Singer, Jonathan; Hubner, Eric E.; Neugroschl, Daniel; Chao, Norman; Genack, Azriel Z.

    2014-03-01

    In response to the optical packaging needs of a rapidly growing silicon photonics market, Chiral Photonics, Inc. (CPI) has developed a new generation of ultra-dense-channel, bi-directional, all-optical, input/output (I/O) couplers that bridge the data transport gap between standard optical fibers and photonic integrated circuits. These couplers, called Pitch Reducing Optical Fiber Arrays (PROFAs), provide a means to simultaneously match both the mode field and channel spacing (i.e. pitch) between an optical fiber array and a photonic integrated circuit (PIC). Both primary methods for optically interfacing with PICs, via vertical grating couplers (VGCs) and edge couplers, can be addressed with PROFAs. PROFAs bring the signal-carrying cores, either multimode or singlemode, of many optical fibers into close proximity within an all-glass device that can provide low loss coupling to on-chip components, including waveguides, gratings, detectors and emitters. Two-dimensional (2D) PROFAs offer more than an order of magnitude enhancement in channel density compared to conventional one-dimensional (1D) fiber arrays. PROFAs can also be used with low vertical profile solutions that simplify optoelectronic packaging while reducing PIC I/O real estate usage requirements. PROFA technology is based on a scalable production process for microforming glass preform assemblies as they are pulled through a small oven. An innovative fiber design, called the "vanishing core," enables tailoring the mode field along the length of the PROFA to meet the coupling needs of disparate waveguide technologies, such as fiber and onchip. Examples of single- and multi-channel couplers fabricated using this technology will be presented.

  6. Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics.

    PubMed

    Xu, Caixia; Zhang, Jingwen; Zou, Yingyin K; Zhao, Hua

    2016-03-21

    The enhancement of green upconverted emission from the Er3+/Yb3+ co-doped (Pb,La)(Zr,Ti)O3 ceramic powder under a pumping light with a wavelength of 1480 nm was observed to be greater than 30 times that from the bulk of the same sample. Weak localization of light supported by the spatial profile of scattered light facilitated the three-photon process contributing to stronger green upconverted emission. Significant backward light amplification was also observed and studied in detail. Additionally, the distribution of the localization zones in the sample was investigated using a probing laser beam with a wavelength of 532 nm. The findings in this work could be used in improving the solar cell efficiency, modulating color, and designing smart devices.

  7. Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.

    PubMed

    Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro

    2016-01-01

    At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics.

  8. Stimulated emission from ladder-type two-photon coherent atomic ensemble.

    PubMed

    Park, Jiho; Moon, Han Seb

    2018-05-28

    We investigated the stimulated emission from a ladder-type two-photon coherent atomic ensemble, for the 5S 1/2 - 5P 3/2 - 5D 5/2 transition of 87 Rb atoms. Under the ladder-type two-photon resonance condition obtained using pump and coupling lasers, we observed broad four-wave mixing (FWM) light stimulated from two-photon coherence induced by the seed laser coupled between the ground state of 5S 1/2 and the first excited state of 5P 3/2 . A dip in the FWM spectrum was obtained for three-photon resonance due to V-type two-photon coherence using the pump and seed lasers. From the FWM spectra obtained for varying frequency detuning and seed-laser power, we determined that the seed laser acts as a stimulator for FWM generation, but also acts as a disturber of FWM due to V-type two-photon coherence.

  9. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America

  10. Atlas of solar hidden photon emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redondo, Javier, E-mail: redondo@mpp.mpg.de

    2015-07-01

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations,more » which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.« less

  11. Atlas of solar hidden photon emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redondo, Javier; Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,Föhringer Ring 6, 80805 München

    2015-07-20

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations,more » which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.« less

  12. Plasmonic Structures for CMOS Photonics and Control of Spontaneous Emission

    DTIC Science & Technology

    2013-04-01

    structures; v) developed CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vi) also engaged in a partnership with...CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vii. exploring approaches to enhance spontaneous emission in...size and bandwidth, we are exploring phase-change materials and, in particular, vanadium dioxide. VO2 undergoes an insulator-to-metal phase transition

  13. Study of Photon Emission with the Fission Event Generator FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2017-09-01

    The event-by-event fission model FREYA is employed to study photon observables. The model has been expanded beyond the simple statistical photon emission reported previously to include the discrete RIPL-3 lines. We update these prior results and discuss the sensitivity of the results to the FREYA input parameters sensitive to photon observables. The work of R.V. was performed under the auspices of the U.S. DOE by LLNL Contract DE-AC52-07NA27344, that of J.R. by LBNL Contract DE-AC02-05CH11231. The authors thank NNSA Defense Nuclear Nonproliferation R&D for support.

  14. Selective two-photon absorption in carbon dots: a piece of the photoluminescence emission puzzle.

    PubMed

    Santos, Carla I M; Mariz, Inês F A; Pinto, Sandra N; Gonçalves, Gil; Bdikin, Igor; Marques, Paula A A P; Neves, Maria Graça P M S; Martinho, José M G; Maçôas, Ermelinda M S

    2018-06-22

    Carbon nanodots (Cdots) are now emerging as promising nonlinear fluorophores for applications in biological environments. A thorough and systematic approach to the two-photon induced emission of Cdots that could provide design guidelines to control their nonlinear emission properties is still missing. In this work, we address the nonlinear optical spectroscopy of Cdots prepared by controlled chemical cutting of graphene oxide (GO). The two-photon absorption in the 700-1000 nm region and the corresponding emission spectrum are carefully investigated. The highest two-photon absorption cross-section estimated was 130 GM at 720 nm. This value is comparable with the one reported for graphene nanoribbons with push-pull architecture. The emission spectrum depends on the excitation mode. At the same excitation energy, nonlinear excitation results in excitation-wavelength independent emission, while upon linear excitation the emission is excitation-wavelength dependent. The biphotonic interaction seems to be selective towards sp2 clusters bearing electron donor and acceptor groups found in push-pull architectures. Both linear and nonlinear emission can be understood based on the existence of isolated sp2 clusters involved in π-π stacking interactions with clusters in adjacent layers.

  15. Two-photon excited fluorescence emission from hemoglobin

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  16. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  17. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  18. Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers.

    PubMed

    Barclay, Paul E; Fu, Kai-Mei; Santori, Charles; Beausoleil, Raymond G

    2009-06-08

    A design for an ultra-high Q photonic crystal nanocavity engineered to interact with nitrogen-vacancy (NV) centers located near the surface of a single crystal diamond sample is presented. The structure is based upon a nanowire photonic crystal geometry, and consists of a patterned high refractive index thin film, such as gallium phosphide (GaP), supported by a diamond substrate. The nanocavity supports a mode with quality factor Q > 1.5 x 10(6) and mode volume V < 0.52(lambda/nGaP)(3), and promises to allow Purcell enhanced collection of spontaneous emission from an NV located more than 50 nm below the diamond surface. The nanowire photonic crystal waveguide can be used to efficiently couple light into and out of the cavity, or as an efficient broadband collector of NV phonon sideband emission. The proposed structures can be fabricated using existing materials and processing techniques.

  19. Enhancement of ultraweak photon emission with 3 MHz ultrasonic irradiation on transplanted tumor tissues of mice.

    PubMed

    Kim, Hongbae; Ahn, Saeyoung; Kim, Jungdae; Soh, Kwang-Sup

    2008-07-01

    We investigated photon emissions of various bio-samples which were induced by ultrasonic stimulation. It has been reported that ultrasonic stimulations induced the thermal excitation of the bio-tissues. After ultrasonic stimulation, any measurement of photon radiation in the visible spectral range has not been carried out yet. The instruments consisted of electronic devices for an ultrasonic generator of the frequency 3 MHz and a photomultiplier tube (PMT) system counting photons from bio-tissues. The transplanted tumor tissues of mice were prepared for the experiments and their liver and spleen tissues were also used for the controls. It was found that the continuous ultrasonic stimulations with the electrical power 2300 mW induced ultraweak photon emissions from the tumor tissues. The number of induced photon was dependent of the type of the tissues and the stimulation time intervals. The level of photon emission was increased from the mouse tumor exposed to the ultrasonic stimulations, and the changes were discriminated from those of the spleens and livers.

  20. Simulation of ultra-high energy photon propagation in the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Homola, P.; Góra, D.; Heck, D.; Klages, H.; PeĶala, J.; Risse, M.; Wilczyńska, B.; Wilczyński, H.

    2005-12-01

    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. UHE photons can initiate particle cascades in the geomagnetic field, which leads to significant changes in the subsequent atmospheric shower development. We present a Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented. Catalogue identifier:ADWG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG Program obtainable: CPC Program Library, Quen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested:Intel-Pentium based PC Operating system:Linux, DEC-Unix Programming language used:C, FORTRAN 77 Memory required to execute with typical data:<100 kB No. of bits in a word:32 Has the code been vectorized?:no Number of lines in distributed program, including test data, etc.:2567 Number of bytes in distributed program, including test data, etc.:25 690 Distribution format:tar.gz Other procedures used in PRESHOWER:IGRF [N.A. Tsyganenko, National Space Science Data Center, NASA GSFC, Greenbelt, MD 20771, USA, http://nssdc.gsfc.nasa.gov/space/model/magnetos/data-based/geopack.html], bessik

  1. Novel planar field emission of ultra-thin individual carbon nanotubes.

    PubMed

    Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng

    2009-10-07

    In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.

  2. Solar energy conversion with photon-enhanced thermionic emission

    NASA Astrophysics Data System (ADS)

    Kribus, Abraham; Segev, Gideon

    2016-07-01

    Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been examined as candidates for radiation absorbers and electron emitters, with no conclusion yet on the best set of materials to achieve high efficiency. Analyses have shown the complexity of the energy conversion and transport processes, and the significance of several loss mechanisms, requiring careful control of material properties and optimization of the device structure. Here we survey current research on PETE modeling, materials, and device configurations, outline the advances made, and stress the open issues and future research needed. Based on the substantial progress already made in this young topic, and the potential of high conversion efficiency based on theoretical performance limits, continued research in this direction is very promising and may yield a competitive technology for solar electricity generation.

  3. Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides.

    PubMed

    Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard

    2015-06-01

    Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.

  4. Reassignment of scattered emission photons in multifocal multiphoton microscopy.

    PubMed

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T C

    2014-06-05

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image.

  5. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  6. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity.

    PubMed

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-07-18

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.

  7. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity

    PubMed Central

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-01-01

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767

  8. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes

    DOE PAGES

    He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan; ...

    2017-07-31

    Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less

  9. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan

    Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less

  10. Photon and radiowave emission from peeling pressure sensitive adhesives in air

    NASA Technical Reports Server (NTRS)

    Donaldson, E. E.; Shen, X. A.; Dickinson, J. T.

    1985-01-01

    During separation of an adhesive from a polymer substrate in air, intense bursts of photons ('phE', for photon emission) and long wavelength electromagnetic radiation ('RE', for radiowave emission), similar to those reported earlier by Deryagin, et al. (1978) have been observed. In this paper, careful measurements of the phE time distributions, as well as time correlations between bursts of phE and RE, are reported. These results support the view that patches of electrical charge produced by charge separation between dissimilar materials lead to microdischarges in and near the crack tip. The role of these discharges in producing sustained phE after the discharge has been extinguished is also discussed.

  11. Multi-site recording and spectral analysis of spontaneous photon emission from human body.

    PubMed

    Wijk, Eduard P A Van; Wijk, Roeland Van

    2005-04-01

    In the past years, research on ultraweak photon emission (UPE) from human body has increased for isolated cells and tissues. However, there are only limited data on UPE from the whole body, in particular from the hands. To describe a protocol for the management of subjects that (1) avoids interference with light-induced longterm delayed luminescence, and (2) includes the time slots for recording photon emission. The protocol was utilised for multi-site recording of 4 subjects at different times of the day and different seasons, and for one subject to complete spectral analysis of emission from different body locations. An especially selected low-noise end-window photomultiplier was utilised for the detection of ultraviolet / visible light (200-650 nm) photon emission. For multi-site recording it was manipulated in three directions in a darkroom with a very low count rate. A series of cut-off filters was used for spectral analysis of UPE. 29 body sites were selected such that the distribution in UPE could be studied as right-left symmetry, dorsal-ventral symmetry, and the ratio between the central body part and extremities. Generally, the fluctuation in photon counts over the body was lower in the morning than in the afternoon. The thorax-abdomen region emitted lowest and most constantly. The upper extremities and the head region emitted most and increasingly over the day. Spectral analysis of low, intermediate and high emission from the superior frontal part of the right leg, the forehead and the palms in the sensitivity range of the photomultiplier showed the major spontaneous emission at 470-570 nm. The central palm area of hand emission showed a larger contribution of the 420-470 nm range in the spectrum of spontaneous emission from the hand in autumn/winter. The spectrum of delayed luminescence from the hand showed major emission in the same range as spontaneous emission. Examples of multi-site UPE recordings and spectral analysis revealed individual patterns

  12. 174Yb 3P1 level relaxation found via weak magnetic field dependence of collision-induced stimulated photon echo

    NASA Astrophysics Data System (ADS)

    Rubtsova, N. N.; Gol’dort, V. G.; Khvorostov, E. B.; Kochubei, S. A.; Reshetov, V. A.

    2018-06-01

    Collision-induced stimulated photon echo generated at transition was analyzed theoretically and investigated experimentally in the gaseous mixture of ytterbium vapour diluted with a large amount of buffer gas xenon in the presence of a weak longitudinal magnetic field. The inter-combination transition of 174Yb (6s2) 1S(6s6p) 3P1 was used; all experimental parameters were carefully controlled for their correspondence to the broad spectral line conditions. The curve representing the collision-induced stimulated photon echo variations versus a weak magnetic field strength showed very good agreement with the corresponding theoretical curve; this agreement permitted getting the decay rates for 174Yb level 3P1 orientation and alignment in collisions with Xe.

  13. Measurements of wavelength-dependent double photoelectron emission from single photons in VUV-sensitive photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Faham, C. H.; Gehman, V. M.; Currie, A.; Dobi, A.; Sorensen, P.; Gaitskell, R. J.

    2015-09-01

    Measurements of double photoelectron emission (DPE) probabilities as a function of wavelength are reported for Hamamatsu R8778, R8520, and R11410 VUV-sensitive photomultiplier tubes (PMTs). In DPE, a single photon strikes the PMT photocathode and produces two photoelectrons instead of a single one. It was found that the fraction of detected photons that result in DPE emission is a function of the incident photon wavelength, and manifests itself below ~250 nm. For the xenon scintillation wavelength of 175 nm, a DPE probability of 18-24% was measured depending on the tube and measurement method. This wavelength-dependent single photon response has implications for the energy calibration and photon counting of current and future liquid xenon detectors such as LUX, LZ, XENON100/1T, Panda-X and XMASS.

  14. Bright and ultra-fast scintillation from a semiconductor?

    PubMed Central

    Derenzo, Stephen E.; Bourret-Courshesne, Edith; Bizarri, Gregory; Canning, Andrew

    2015-01-01

    Semiconductor scintillators are worth studying because they include both the highest luminosities and shortest decay times of all known scintillators. Moreover, many semiconductors have the heaviest stable elements (Tl, Hg, Pb, Bi) as a major constituent and a high ion pair yield that is proportional to the energy deposited. We review the scintillation properties of semiconductors activated by native defects, isoelectronic impurities, donors and acceptors with special emphasis on those that have exceptionally high luminosities (e.g. ZnO:Zn, ZnS:Ag,Cl, CdS:Ag,Cl) and those that have ultra-fast decay times (e.g. ZnO:Ga; CdS:In). We discuss underlying mechanisms that are consistent with these properties and the possibilities for achieving (1) 200,000 photons/MeV and 1% fwhm energy resolution for 662 keV gamma rays, (2) ultra-fast (ns) decay times and coincident resolving times of 30 ps fwhm for time-of-flight positron emission tomography, and (3) both a high luminosity and an ultra-fast decay time from the same scintillator at cryogenic temperatures. PMID:26855462

  15. Search for ultra high energy astrophysical neutrinos with the ANITA experiment

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew

    2010-12-01

    This work describes a search for cosmogenic neutrinos at energies above 1018 eV with the Antarctic Impulsive Transient Antenna (ANITA). ANITA is a balloon-borne radio interferometer designed to measure radio impulsive emission from particle showers produced in the Antarctic ice-sheet by ultra-high energy neutrinos (UHEnu). Flying at 37 km altitude the ANITA detector is sensitive to 1M km3 of ice and is expected to produce the highest exposure to ultra high energy neutrinos to date. The design, flight performance, and analysis of the first flight of ANITA in 2006 are the subject of this dissertation. Due to sparse anthropogenic backgrounds throughout the Antarctic continent, the ANITA analysis depends on high resolution directional reconstruction. An interferometric method was developed that not only provides high resolution but is also sensitive to very weak radio emissions. The results of ANITA provide the strongest constraints on current ultra-high energy neutrino models. In addition there was a serendipitous observation of ultra-high energy cosmic ray geosynchrotron emissions that are of distinct character from the expected neutrino signal. This thesis includes a study of the radio Cherenkov emission from ultra-high energy electromagnetic showers in ice in the time-domain. All previous simulations computed the radio pulse frequency spectrum. I developed a purely time-domain algorithm for computing radiation using the vector potentials of charged particle tracks. The results are fully consistent with previous frequency domain calculations and shed new light into the properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly related to the depth development of the excess charge in the shower and its width to the observation angle with respect to the Cherenkov direction. This information can be of great practical importance for interpreting actual data.

  16. New test of weak equivalence principle using polarized light from astrophysical events

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Feng; Wei, Jun-Jie; Lan, Mi-Xiang; Gao, He; Dai, Zi-Gao; Mészáros, Peter

    2017-05-01

    Einstein's weak equivalence principle (WEP) states that any freely falling, uncharged test particle follows the same identical trajectory independent of its internal structure and composition. Since the polarization of a photon is considered to be part of its internal structure, we propose that polarized photons from astrophysical transients, such as gamma-ray bursts (GRBs) and fast radio bursts (FRBs), can be used to constrain the accuracy of the WEP through the Shapiro time delay effect. Assuming that the arrival time delays of photons with different polarizations are mainly attributed to the gravitational potential of the Laniakea supercluster of galaxies, we show that a strict upper limit on the differences of the parametrized post-Newtonian parameter γ value for the polarized optical emission of GRB 120308A is Δ γ <1.2 ×10-10 , for the polarized gamma-ray emission of GRB 100826A is Δ γ <1.2 ×10-10 , and for the polarized radio emission of FRB 150807 is Δ γ <2.2 ×10-16 . These are the first direct verifications of the WEP for multiband photons with different polarizations. In particular, the result from FRB 150807 provides the most stringent limit to date on a deviation from the WEP, improving by one order of magnitude the previous best result based on Crab pulsar photons with different energies.

  17. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.

    2017-12-01

    A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.

  18. Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow

    NASA Astrophysics Data System (ADS)

    Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi

    2017-11-01

    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.

  19. Collective Evidence for Inverse Compton Emission from External Photons in High-Power Blazars

    NASA Technical Reports Server (NTRS)

    Meyer, Eileen T.; Fossati, Giovanni; Georganopoulos, Markos; Lister, Matthew L.

    2012-01-01

    We present the first collective evidence that Fermi-detected jets of high kinetic power (L(sub kin)) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L(sub kin) > 10(exp 45.5) erg/s) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self Compton (SSC) emission. For the lowest power jets (L(sub kin) < 10(exp 43.5) erg /s), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.

  20. Comparison of HORACE and PHOTOS Algorithms for Multi-Photon Emission in the Context of the W Boson Mass Measurement

    DOE PAGES

    Kotwal, Ashutosh V.; Jayatilaka, Bodhitha

    2016-01-01

    W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fitsmore » are performed using a simulation of the CDF II detector.« less

  1. New two-photon excitation chromophores for cellular imaging

    NASA Astrophysics Data System (ADS)

    D'Alfonso, Laura; Chirico, Giuseppe; Collini, Maddalena; Baldini, Giancarlo; Diaspro, Alberto; Ramoino, Paola; Abbotto, Alessandro; Beverina, Luca; Pagani, Giorgio A.

    2003-10-01

    The one photon and two photon excitation spectral properties (absorption, emission spectra, singlet lifetime) of a very efficient two photon absorber, dimethyl-pepep, have been measured in solution. The one photon excitation peak lye near 525 nm and the emission falls at 600 nm, where autofluorescence of cells is weak. The value of the singlet-triplet conversion rate, obtained by two-photon excitation fluorescence correlation spectroscopy, has a quadratic dependence on the excitation power and is comparable to that shown by the dye rhodamine. Preliminary results on stained cells from yeast Saccaromices cerevisiae and Paramecium primaurelia show that the dye preferentially stains DNA in the cell. A direct comparison with a DNA stainer, Dapi, is also performed. Some measurements of the dye functionalized to react with lysine and n-terminal residues of protein are presented. Moreover, this dye can be employed in order to follow in detail some cellular processes such as nuclei division. In vitro fluorescence titration of dimethyl-pepep with calf thymus DNA allowed to estimate the values of the dye-DNA association constant versus ionic strength, and an affinity close to that of ethidium bromide is found.

  2. Two Photon Absorption in II-VI Semiconductors: The Influence of Dimensionality and Size.

    PubMed

    Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol; Antanovich, Artsiom; Christodoulou, Sotirios; Moreels, Iwan; Artemyev, Mikhail; Woggon, Ulrike

    2015-08-12

    We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.

  3. Spontaneous emission near the edge of a photonic band gap

    NASA Astrophysics Data System (ADS)

    John, Sajeev; Quang, Tran

    1994-08-01

    The spectral and dynamical features of spontaneous emission from two and three-level atoms in which one transition frequency lay near the edge of a photonic band gap (PBG) were derived. These features included temporal oscillations, fractionalized steady-state atomic population on the excited state, spectral splitting and subnatural bandwidth. The effect of N-1 unexcited atoms were also taken into account. The direct consequences of photon localization as embodied in the photon-atom bound state were observed. One feasible experimental accomplishment of these effects may ensue from laser-cooled atoms in the void regions of a PBG medium. Another option is the application of an organic impurity molecule such as pentacene. Such molecules were known to show extremely narrow linewidths when placed in fitting solid hosts.

  4. A look at some systemic properties of self-bioluminescent emission

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2008-08-01

    Self-bioluminescent emission (SBE) is a type of biological chemiluminescence where photons are emitted as part of chemical reactions occurring during metabolic processes. This emission is also known as biophoton emission, ultraweak photon emission and ultraweak bioluminescence. This paper outlines research over the past century on some systemic properties of SBE as measured with biological detectors, photomultiplier detectors and ultra-sensitive imaging arrays. There is an apparent consensus in the literature that emission in the deep blue and ultraviolet (150-450nm) is related to DNA / RNA processes while emission in the red and near infrared (600-1000nm) is related to mitochondria and oxidative metabolisms involving reactive oxygen species, singlet oxygen and free radicals in plant, animal and human cells along with chlorophyll fluorescent decay in plants. Additionally, there are trends showing that healthy, unstressed and uninjured samples have less emission than samples that are unhealthy, stressed or injured. Mechanisms producing this emission can be narrowed down by isolating the wavelength region of interest and waiting for short-term fluorescence to decay leaving the ultraweak long-term metabolic emission. Examples of imaging this emission in healthy versus unhealthy, stressed versus unstressed, and injured versus uninjured plant parts are shown. Further discussion poses questions still to be answered related to properties such as coherence, photon statistics, and methodological means of isolating mechanisms.

  5. Photonic Molecule Lasers Revisited

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  6. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin

    Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less

  7. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride

    DOE PAGES

    Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin; ...

    2017-09-26

    Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less

  8. Ultraweak photon emission in the brain.

    PubMed

    Salari, V; Valian, H; Bassereh, H; Bókkon, I; Barkhordari, A

    2015-09-01

    Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.

  9. Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling

    NASA Astrophysics Data System (ADS)

    Elbadawi, Christopher; Tran, Trong Toan; Shimoni, Olga; Totonjian, Daniel; Lobo, Charlene J.; Grosso, Gabriele; Moon, Hyowan; Englund, Dirk R.; Ford, Michael J.; Aharonovich, Igor; Toth, Milos

    2016-12-01

    Bio-imaging requires robust ultra-bright probes without causing any toxicity to the cellular environment, maintain their stability and are chemically inert. In this work we present hexagonal boron nitride (hBN) nanoflakes which exhibit narrowband ultra-bright single photon emitters1. The emitters are optically stable at room temperature and under ambient environment. hBN has also been noted to be noncytotoxic and seen significant advances in functionalization with biomolecules2,3. We further demonstrate two methods of engineering this new range of extremely robust multicolour emitters across the visible and near infrared spectral ranges for large scale sensing and biolabeling applications.

  10. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  11. Ultra-wideband microwave photonic filter with a high Q-factor using a semiconductor optical amplifier.

    PubMed

    Chen, Han

    2017-04-01

    An ultra-wideband microwave photonic filter (MPF) with a high quality (Q)-factor based on the birefringence effects in a semiconductor optical amplifier (SOA) is presented, and the theoretical fundamentals of the design are explained. The proposed MPF along orthogonal polarization in an active loop operates at up to a Ku-band and provides a tunable free spectral range from 15.44 to 19.44 GHz by controlling the SOA injection current. A prototype of the equivalent second-order infinite impulse response filter with a Q-factor over 6300 and a rejection ration exceeding 41 dB is experimentally demonstrated.

  12. Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation

    NASA Astrophysics Data System (ADS)

    Klinger, Antje; Krapf, Lisa; Orzekowsky-Schroeder, Regina; Koop, Norbert; Vogel, Alfred; Hüttmann, Gereon

    2015-11-01

    Ultra-broadband excitation with ultrashort pulses may enable simultaneous excitation of multiple endogenous fluorophores in vital tissue. Imaging living gut mucosa by autofluorescence 2-photon microscopy with more than 150 nm broad excitation at an 800-nm central wavelength from a sub-10 fs titanium-sapphire (Ti:sapphire) laser with a dielectric mirror based prechirp was compared to the excitation with 220 fs pulses of a tunable Ti:sapphire laser at 730 and 800 nm wavelengths. Excitation efficiency, image quality, and photochemical damage were evaluated. At similar excitation fluxes, the same image brightness was achieved with both lasers. As expected, with ultra-broadband pulses, fluorescence from NAD(P)H, flavines, and lipoproteins was observed simultaneously. However, nonlinear photodamage apparent as hyperfluorescence with functional and structural alterations of the tissue occurred earlier when the laser power was adjusted to the same image brightness. After only a few minutes, the immigration of polymorphonuclear leucocytes into the epithelium and degranulation of these cells, a sign of inflammation, was observed. Photodamage is promoted by the higher peak irradiances and/or by nonoptimal excitation of autofluorescence at the longer wavelength. We conclude that excitation with a tunable narrow bandwidth laser is preferable to ultra-broadband excitation for autofluorescence-based 2-photon microscopy, unless the spectral phase can be controlled to optimize excitation conditions.

  13. Ag@Aggregation-induced emission dye core/shell nanostructures with enhanced one- and two-photon fluorescence

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang

    2017-10-01

    Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.

  14. Brain single-photon emission CT physics principles.

    PubMed

    Accorsi, R

    2008-08-01

    The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.

  15. A tale of tails: Photon rates and flow in ultra-relativistic heavy ion collisions

    DOE PAGES

    McLerran, Larry; Schenke, Björn

    2016-02-01

    We consider the possibility that quark and gluon distributions in the medium created in high energy heavy ion collisions may be modified by a power law tail at energies much higher than the temperature. We parametrize such a tail by Tsallis distributions with an exponent motivated by phenomenology. These distributions are characterized by an effective temperature scale that we assume to evolve in time like the temperature for thermal distributions. We find that including such a tail increases the rates for photon production and significantly delays the emission times for photons of a fixed energy. Finally, we argue that thesemore » effects should modify photon yields and flow patterns in a way that will help the agreement of theoretical calculations with data from LHC and RHIC experiments.« less

  16. Spectral and angular distribution of photons via radiative damping in extreme ultra-intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko

    2012-10-01

    Spectral and angular distribution of photons produced in the interaction of extremely intense laser (> 10^22,/cm^2) with dense plasma are studied with a help of a collisional particle-in-cell simulation, PICLS. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. We had developed numerical models of these processes in PICLS and study the spectrum and the angular distribution of γ-rays produced in the relativistic laser regime. Such relativistic γ-rays have wide range of frequencies and the angular distribution depends on the hot electron source. From the power loss calculation in PICLS we found that the Bremsstrahlung will get saturated at I > 10^22,/cm^2 while the radiative damping will continuously increase. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and how to catch the signature of the radiative damping in future experiments.

  17. On-demand transfer of trapped photons on a chip.

    PubMed

    Konoike, Ryotaro; Nakagawa, Haruyuki; Nakadai, Masahiro; Asano, Takashi; Tanaka, Yoshinori; Noda, Susumu

    2016-05-01

    Photonic crystal nanocavities, which have modal volumes of the order of a cubic wavelength in the material, are of great interest as flexible platforms for manipulating photons. Recent developments in ultra-high quality factor nanocavities with long photon lifetimes have encouraged us to develop an ultra-compact and flexible photon manipulation technology where photons are trapped in networks of such nanocavities. The most fundamental requirement is the on-demand transfer of photons to and from the trapped states of arbitrary nanocavities. We experimentally demonstrate photon transfer between two nearly resonant nanocavities at arbitrary positions on a chip, triggered by the irradiation of a third nonresonant nanocavity using an optical control pulse. We obtain a high transfer efficiency of ~90% with a photon lifetime of ~200 ps.

  18. Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, A.; Uda, T.; Kato, Y. K.

    2017-11-01

    Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.

  19. Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes

    NASA Astrophysics Data System (ADS)

    Cansizoglu, Hilal; Gao, Yang; Perez, Cesar Bartolo; Ghandiparsi, Soroush; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Photodetectors (PDs) in datacom and computer networks where the link length is up to 300 m, need to handle higher than typical input power used in other communication links. Also, to reduce power consumption due to equalization at high speed (>25Gb/s), the datacom links will use PAM-4 signaling instead of NRZ with stringent receiver linearity requirements. Si PDs with photon-trapping micro/nanostructures are shown to have high linearity in output current verses input optical power. Though there is less silicon material due to the holes, the micro-/nanostructured holes collectively reradiate the light to an in-plane direction of the PD surface and can avoid current crowding in the PD. Consequently, the photocurrent per unit volume remains at a low level contributing to high linearity in the photocurrent. We present the effect of design and lattice patterns of micro/nanostructures on the linearity of ultra-fast silicon PDs designed for high speed multi gigabit data networks.

  20. A novel ultra-broadband single polarization single mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Linghong; Zheng, Yi; Hou, Lantian; Zheng, Kai; Peng, Jiying; Zhao, Xingtao

    2017-08-01

    The concept of employing a central hole infiltrated with nematic liquid crystal (NLC) and two additional air holes in the core region is exploited to obtain an ultra-broadband single polarization single mode photonic crystal fiber (SPSM-PCF). The effects of structural parameters on the SPSM operation are studied using the full-vectorial finite element method. Numerical results show that the proposed structure can attain the SPSM operation bandwidth of 1610 nm (from 1.51 to 3.12 μm) with confinement loss lower than 0.01 dB/km. The SPSM operation range can also be widely tuned to shorter wavelengths by adjusting the structure parameters. And meanwhile, a broad dispersion-flattened SPSM PCF is also obtained around the communication wavelength. Moreover, the dual-core SPSM PCF has also been investigated, enabling potential applications in the wavelength splitter of 1.31 and 1.55 μm bands at a short fiber length of 1.629 mm with SPSM operation.

  1. Cascaded emission of single photons from the biexciton in monolayered WSe2

    PubMed Central

    He, Yu-Ming; Iff, Oliver; Lundt, Nils; Baumann, Vasilij; Davanco, Marcelo; Srinivasan, Kartik; Höfling, Sven; Schneider, Christian

    2016-01-01

    Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe2, sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe2, which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors. PMID:27830703

  2. Photon correlation study of background suppressed single InGaN nanocolumns

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takatoshi; Maekawa, Michiru; Imanishi, Yusuke; Ishizawa, Shunsuke; Nakaoka, Toshihiro; Kishino, Katsumi

    2016-04-01

    We report on a linearly polarized non-classical light emission from a single InGaN/GaN nanocolumn, which is a site-controlled nanostructure allowing for pixel-like large-scale integration. We have developed a shadow mask technique to reduce background emissions arising from nitride deposits around single nanocolumns and defect states of GaN. The signal to background ratio is improved from 0.5:1 to 10:1, which allows for detailed polarization-dependent measurement and photon-correlation measurements. Polarization-dependent measurements show that linearly polarized emissions arise from excitonic recombination involving a heavy-hole-like electronic state, corresponding to the bulk exciton of an in-plane polarized A exciton. The second-order coherence function at time zero g (2)(0) is 0.52 at 20 K without background correction. This value is explained in terms of a statistical mixture of a single-photon emission with residual weak background emissions, as well as efficient carrier injection from other localized states.

  3. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2014-11-01

    We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.

  4. Analysis of photon emission induced by light and heavy ions in time-of-flight medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Lohmann, S.; Sortica, M. A.; Paneta, V.; Primetzhofer, D.

    2018-02-01

    We present a systematic analysis of the photon emission observed due to impact of pulsed keV ion beams in time-of-flight medium energy ion scattering (ToF-MEIS) experiments. Hereby, hydrogen, helium and neon ions served as projectiles and thin gold and titanium nitride films on different substrates were employed as target materials. The present experimental evidence indicates that a significant fraction of the photons has energies of around 10 eV, i.e. on the order of typical valence and conduction band transitions in solids. Furthermore, the scaling properties of the photon emission with respect to several experimental parameters were studied. A dependence of the photon yield on the projectile velocity was observed in all experiments. The photon yield exhibits a dependence on the film thickness and the scattering angle, which can be explained by photon production along the path of the incident ion through the material. Additionally, a strong dependence on the projectile type was found with the photon emission being higher for heavier projectiles. This difference is larger than the respective difference in electronic stopping cross section. The photon yield shows a strong material dependence, and according to a comparison of SiO2 and Si seems to be subject to matrix effects.

  5. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  6. Extremely weak linear electron-phonon coupling in iron-free hemeproteins studied by phase-modulated photon echo

    NASA Astrophysics Data System (ADS)

    Lin, J. W.-I.; Tada, T.; Saikan, S.; Kushida, T.; Tani, T.

    1991-10-01

    The femtosecond accumulated photon echoes in iron-free myoglobin and iron-free cytochrome-C reveal that the linear electron-phonon coupling is extremely weak in these materials. This feature also manifests itself in the absence of the Stokes shift in the fluorescence spectrum over a wide range of temperatures from liquid-helium temperatures to near room temperatures. The origin of the weak coupling is attributed to the close packing of the porphyrin chromophores into a hydrophobic environment, which is constructed out of the polypeptide chain of the protein. The present results hint at the so-called hydrophobic compartmentalization of the chromophores as one of the important factors in reducing markedly the electron-phonon coupling in dye-polymer systems.

  7. Self-Assembled Nanocrystals of Polycyclic Aromatic Hydrocarbons Show Photostable Single-Photon Emission.

    PubMed

    Pazzagli, Sofia; Lombardi, Pietro; Martella, Daniele; Colautti, Maja; Tiribilli, Bruno; Cataliotti, Francesco Saverio; Toninelli, Costanza

    2018-05-22

    Quantum technologies could largely benefit from the control of quantum emitters in sub-micrometric size crystals. These are naturally prone to integration in hybrid devices, including heterostructures and complex photonic devices. Currently available quantum emitters in nanocrystals suffer from spectral instability, preventing their use as single-photon sources for most quantum optics operations. In this work we report on the performances of single-photon emission from organic nanocrystals (average size of hundreds of nm), made of anthracene (Ac) and doped with dibenzoterrylene (DBT) molecules. The source has hours-long photostability with respect to frequency and intensity, both at room and at cryogenic temperature. When cooled to 3 K, the 00-zero phonon line shows linewidth values (50 MHz) close to the lifetime limit. Such optical properties in a nanocrystalline environment recommend the proposed organic nanocrystals as single-photon sources for integrated photonic quantum technologies.

  8. Characterizing the radial content of orbital-angular-momentum photonic states impaired by weak-to-strong atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2016-08-22

    The changes in the radial content of orbital-angular-momentum (OAM) photonic states described by Laguerre-Gaussian (LG) modes with a radial index of zero, suffering from turbulence-induced distortions, are explored by numerical simulations. For a single-photon field with a given LG mode propagating through weak-to-strong atmospheric turbulence, both the average LG and OAM mode densities are dependent only on two nondimensional parameters, i.e., the Fresnel ratio and coherence-width-to-beam-radius (CWBR) ratio. It is found that atmospheric turbulence causes the radially-adjacent-mode mixing, besides the azimuthally-adjacent-mode mixing, in the propagated photonic states; the former is relatively slighter than the latter. With the same Fresnel ratio, the probabilities that a photon can be found in the zero-index radial mode of intended OAM states in terms of the relative turbulence strength behave very similarly; a smaller Fresnel ratio leads to a slower decrease in the probabilities as the relative turbulence strength increases. A photon can be found in various radial modes with approximately equal probability when the relative turbulence strength turns great enough. The use of a single-mode fiber in OAM measurements can result in photon loss and hence alter the observed transition probability between various OAM states. The bit error probability in OAM-based free-space optical communication systems that transmit photonic modes belonging to the same orthogonal LG basis may depend on what digit is sent.

  9. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control.

    PubMed

    Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V

    2014-05-19

    We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.

  10. Widened photonic functionality of asymmetric high-index contrast/photonic crystal gratings

    NASA Astrophysics Data System (ADS)

    Nguyen, Hai Son; Dubois, Florian; Letartre, Xavier; Leclercq, Jean-Louis; Seassal, Christian; Viktorovitch, Pierre

    2016-03-01

    In this presentation we emphasize that, within the variety of parameters usable for the design of HCGs, the transverse (vertical) symmetry properties of HCGs provide a power-full joystick for the dispersion engineering of guided mode resonances. We concentrate on asymmetric HCGs designed to accommodate guided mode resonances with ultra-flat zero-curvature dispersion characteristics (or photons with ultra-heavy effective mass), as well as with Dirac cone shaped linear dispersion characteristics. Examples of the great potential of this family of asymmetric HCGs will include the development of a platform for polaritonic devices and the production of micro-lasers particularly suited for hybrid III-V / silicon heterogeneous photonic integration, along CMOS compatible technological schemes.

  11. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    PubMed

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.

  12. Direct-Photon Spectra and Anisotropic Flow in Heavy Ion Collisions from Holography

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-03-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated by using holographic models for QCD in the Veneziano limit (V-QCD). These emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in the quark gluon plasma (QGP) including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N = 4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological model mimicking the strongly coupled QGP (sQGP) are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at intermediate and high momenta, which improve the agreements with data. Moreover, by using IP-glassma initial states, both the elliptic flow and triangular flow of direct photons are amplified at high momenta (pT > 2.5 GeV) for V-QCD, while they are suppressed at low momenta compared to wQGP. The distinct results in holography stem from the blue-shift of emission rates in strong coupling. In addition, the spectra and flow in small collision systems were evaluated for future comparisons. It is found that thermal photons from the deconfined phase are substantial to reconcile the spectra and flow at high momenta.

  13. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

    PubMed Central

    Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin

    2017-01-01

    Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies. PMID:28256599

  14. Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots.

    PubMed

    Wang, T; Puchtler, T J; Zhu, T; Jarman, J C; Nuttall, L P; Oliver, R A; Taylor, R A

    2017-07-13

    Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g (2) (0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems.

  15. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    PubMed

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

  16. Microcavity enhanced single photon emission from two-dimensional WSe2

    NASA Astrophysics Data System (ADS)

    Flatten, L. C.; Weng, L.; Branny, A.; Johnson, S.; Dolan, P. R.; Trichet, A. A. P.; Gerardot, B. D.; Smith, J. M.

    2018-05-01

    Atomically flat semiconducting materials such as monolayer WSe2 hold great promise for novel optoelectronic devices. Recently, quantum light emission has been observed from bound excitons in exfoliated WSe2. As part of developing optoelectronic devices, the control of the radiative properties of such emitters is an important step. Here, we report the coupling of a bound exciton in WSe2 to open microcavities. We use a range of radii of curvature in the plano-concave cavity geometry with mode volumes in the λ3 regime, giving Purcell factors of up to 8 while increasing the photon flux five-fold. Additionally, we determine the quantum efficiency of the single photon emitter to be η=0.46 ±0.03 . Our findings pave the way to cavity-enhanced monolayer based single photon sources for a wide range of applications in nanophotonics and quantum information technologies.

  17. Optical Emissions of Sprite Streamers in Weak Electric Fields

    NASA Astrophysics Data System (ADS)

    Liu, N.; Pasko, V. P.

    2004-12-01

    Sprites commonly consist of large numbers of needle-shaped filaments of ionization [e.g., Gerken and Inan, JASTP, 65, 567, 2003] and typically initiate at altitudes 70-75 km in a form of upward and downward propagating streamers [Stanley et al., GRL, 26, 3201, 1999; Stenbaek-Nielsen et al., GRL, 27, 3829, 2000; McHarg et al., JGR, 107, 1364, 2002; Moudry et al., JASTP, 65, 509, 2003]. The strong electric fields E exceeding the conventional breakdown threshold field Ek are needed for initiation of sprite streamers from single electron avalanches and recent modeling studies indicate that streamers propagating in fields E>Ek experience strong acceleration and expansion in good agreement with the above cited observations [Liu and Pasko, JGR, 109, A04301, 2004]. The initiated streamers are capable of propagating in fields substantially lower than Ek [Allen and Ghaffar, J. Phys. D: Appl. Phys., 28, 331, 1995] and it is expected that a significant part of sprite optical output comes from regions with Eemission bands arising from the excited electronic states of neutral and ionized molecular nitrogen have been extensively discussed in the existing literature [e.g., Armstrong et al., GRL, 27, 653, 2000; Takahashi et al., Adv. Space Res., 26, 1205, 2000; Morrill et al., GRL, 29, 100, 2002; Pasko and George, 107, 1458, 2002; Chern et al., JASTP, 65, 647, 2003; Miyasato et al., JASTP, 65, 573, 2003] and understanding of optical emissions produced by streamers propagating in weak electric fields represents an important component of related studies needed for correct interpretation of the existing experimental data. In this talk we will report results on application of time dependent optical emission model developed in [Liu and Pasko, 2004] to studies of sprite streamers in weak electric fields (E

  18. Free radicals and low-level photon emission in human pathogenesis: state of the art.

    PubMed

    Van Wijk, Roeland; Van Wijk, Eduard P A; Wiegant, Fred A C; Ives, John

    2008-05-01

    Convincing evidence supports a role for oxidative stress in the pathogenesis of many chronic diseases. The model includes the formation of radical oxygen species (ROS) and the misassembly and aggregation of proteins when three tiers of cellular defence are insufficient: (a) direct antioxidative systems, (b) molecular damage repairing systems, and (c) compensatory chaperone synthesis. The aim of the present overview is to introduce (a) the basics of free radical and antioxidant metabolism, (b) the role of the protein quality control system in protecting cells from free radical damage and its relation to chronic diseases, (c) the basics of the ultraweak luminescence as marker of the oxidant status of biological systems, and (d) the research in human photon emission as a non-invasive marker of oxidant status in relation to chronic diseases. In considering the role of free radicals in disease, both their generation and their control by the antioxidant system are part of the story. Excessive free radical production leads to the production of heat shock proteins and chaperone proteins as a second line of protection against damage. Chaperones at the molecular level facilitate stress regulation vis-à-vis protein quali y control mechanisms. The manifestation of misfolded proteins and aggregates is a hallmark of a range of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amylotrophic lateral sclerosis, polyglutamine (polyQ) diseases, diabetes and many others. Each of these disorders exhibits aging-dependent onset and a progressive, usually fatal clinical course. The second part reviews the current status of human photon emission techniques and protocols for recording the human oxidative status. Sensitive photomultiplier tubes may provide a tool for non-invasive and continuous monitoring of oxidative metabolism. In that respect, recording ultraweak luminescence has been favored compared to other indirect assays. Several biological models have

  19. Ultraweak photon emission and proteomics analyses in soybean under abiotic stress.

    PubMed

    Komatsu, Setsuko; Kamal, Abu Hena Mostafa; Makino, Takahiro; Hossain, Zahed

    2014-07-01

    Biophotons are ultraweak photon emissions that are closely related to various biological activities and processes. In mammals, biophoton emissions originate from oxidative bursts in immunocytes during immunological responses. Biophotons emitted from plant organs provide novel information about the physiological state of plant under in vivo condition. In this review, the principles and recent advances in the measurement of biophoton emissions in plants are described. Furthermore, examples of biophoton emission and proteomics in soybean under abiotic stress are reviewed and discussed. Finally, this review suggests that the application of proteomics should provide a better interpretation of plant response to biophoton emission and allow the identification of genes that will allow the screening of crops able to produce maximal yields, even in stressful environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. 32-channel single photon counting module for ultrasensitive detection of DNA sequences

    NASA Astrophysics Data System (ADS)

    Gudkov, Georgiy; Dhulla, Vinit; Borodin, Anatoly; Gavrilov, Dmitri; Stepukhovich, Andrey; Tsupryk, Andrey; Gorbovitski, Boris; Gorfinkel, Vera

    2006-10-01

    We continue our work on the design and implementation of multi-channel single photon detection systems for highly sensitive detection of ultra-weak fluorescence signals, for high-performance, multi-lane DNA sequencing instruments. A fiberized, 32-channel single photon detection (SPD) module based on single photon avalanche diode (SPAD), model C30902S-DTC, from Perkin Elmer Optoelectronics (PKI) has been designed and implemented. Unavailability of high performance, large area SPAD arrays and our desire to design high performance photon counting systems drives us to use individual diodes. Slight modifications in our quenching circuit has doubled the linear range of our system from 1MHz to 2MHz, which is the upper limit for these devices and the maximum saturation count rate has increased to 14 MHz. The detector module comprises of a single board computer PC-104 that enables data visualization, recording, processing, and transfer. Very low dark count (300-1000 counts/s), robust, efficient, simple data collection and processing, ease of connectivity to any other application demanding similar requirements and similar performance results to the best commercially available single photon counting module (SPCM from PKI) are some of the features of this system.

  1. Double Photon Emission Coincidence Imaging using GAGG-SiPM pixel detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Uenomachi, M.; Mizumachi, Y.; Takahashi, H.; Masao, Y.; Shoji, Y.; Kamada, K.; Yoshikawa, A.

    2017-12-01

    Single photon emission computed tomography(SPECT) is a useful medical imaging modality using single photon detection from radioactive tracers, such as 99Tc and 111In, however further development of increasing the contrast in the image is still under investigation. A novel method (Double Photon Emission CT / DPECT) using a coincidence detection of two cascade gamma-rays from 111In is proposed and characterized in this study. 111In, which is well-known and commonly used as a SPECT tracer, emits two cascade photons of 171 keV and 245 keV with a short delay of approximately 85 ns. The coincidence detection of two gamma-rays theoretically determines the position in a single point compared with a line in single photon detection and increases the signal to noise ratio drastically. A fabricated pixel detector for this purpose consists of 8 × 8 array of high-resolution type 1.5 mm thickness Ce:GAGG (3.9% @ 662 keV, 6.63g/cm3, C&A Co. Ce:Gd3Ga2.7Al2.3O12 2.5 × 2.5 × 1.5 mm3) crystals coupled a 3 mm pixel SiPM array (Hamamatsu MPPC S13361-2050NS-08). The signal from each pixel is processed and readout using time over threshold (TOT) based parallel processing circuit to extract the energy and timing information. The coincidence was detected by FPGA with the frequency of 400 MHz. Two pixel detectors coupled to parallel-hole collimators are located at the degree of 90 to determine the position and coincidence events (time window =1 μs) are detected and used for making back-projection image. The basic principle of DPECT is characterized including the detection efficiency and timing resolution.

  2. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therkelsen, Peter; Cheng, Robert; Sholes, Darren

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draftmore » combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.« less

  3. Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ota, Y.; Tajiri, T.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.

    2017-11-01

    The modification of a circularly polarized vacuum field in three-dimensional chiral photonic crystals was measured by spontaneous emission from quantum dots in the structures. Due to the circularly polarized eigenmodes along the helical axis in the GaAs-based mirror-asymmetric structures we studied, we observed highly circularly polarized emission from the quantum dots. Both spectroscopic and time-resolved measurements confirmed that the obtained circularly polarized light was influenced by a large difference in the photonic density of states between the orthogonal components of the circular polarization in the vacuum field.

  4. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Gil, J. M.; Rodríguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Mínguez, E.; Sauvan, P.; Angelo, P.; Schott, R.; Dalimier, E.; Mancini, R.

    2008-10-01

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph (λ/Δλ≈6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Lyα, Heβ, Heγ, Lyβ and Lyγ line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  5. Single photon emission computed tomography in motor neuron disease with dementia.

    PubMed

    Sawada, H; Udaka, F; Kishi, Y; Seriu, N; Mezaki, T; Kameyama, M; Honda, M; Tomonobu, M

    1988-01-01

    Single photon emission computed tomography with [123 I] isopropylamphetamine was carried out on a patient with motor neuron disease with dementia. [123 I] uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.

  6. High-performance imaging of stem cells using single-photon emissions

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.

    2011-10-01

    Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.

  7. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jian; Wang, Xiaowei; Paiella, Roberto

    2016-06-13

    Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.

  8. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  9. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  10. A review of ultra-short pulse lasers for military remote sensing and rangefinding

    NASA Astrophysics Data System (ADS)

    Lamb, Robert A.

    2009-09-01

    Advances in ultra-short pulse laser technology have resulted in commercially available laser systems capable of generating high peak powers >1GW in tabletop systems. This opens the prospect of generating very wide spectral emissions with a combination of non-linear optical effects in photonic crystal fibres to produce supercontinuua in systems that are readily accessible to military applications. However, military remote sensing rarely requires bandwidths spanning two octaves and it is clear that efficient systems require controlled spectral emission in relevant bands. Furthermore, the limited spectral responsivity of focal plane arrays may impose further restriction on the usable spectrum. A recent innovation which temporally encodes a spectrum using group velocity dispersion allows detection with a photodiode, opening the prospect for high speed hyperspectral sensing and imaging. At the opposite end of the power spectrum, ultra-low power remote sensing using time-correlated single photon counting (SPC) has reduced the laser power requirement and demonstrated remote sensing over 5km during daylight with repetition rates of ~10MHz with ps pulses. Recent research has addressed uncorrelated SPC and waveform transmission to increase data rates for absolute rangefinding whilst avoiding range aliasing. This achievement opens the prospect of combining SPC with high repetition rate temporal encoding of supercontinuua to realise practical hyperspectral remote sensing lidar. The talk will present an overview of these technologies and present a concept which combines them into a single system for high-speed hyperspectral imaging and remote sensing.

  11. Spontaneous emission from radiative chiral nematic liquid crystals at the photonic band-gap edge: an investigation into the role of the density of photon states near resonance.

    PubMed

    Mavrogordatos, Th K; Morris, S M; Wood, S M; Coles, H J; Wilkinson, T D

    2013-06-01

    In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.

  12. Photonic Microresonators from Charge Transfer in Polymer Particles: Toward Enhanced and Tunable Two-Photon Emission.

    PubMed

    Vattikunta, Radhika; Venkatakrishnarao, Dasari; Sahoo, Chakradhar; Naraharisetty, Sri Ram Gopal; Narayana Rao, Desai; Müllen, Klaus; Chandrasekar, Rajadurai

    2018-05-16

    Novel photonic microresonators with enhanced nonlinear optical (NLO) intensity are fabricated from polymer particles. As an additional advantage, they offer band gap tunability from the visible to near-infrared regions. A special protocol including (i) copolymerization of 4-(1-pyrenyl)-styrene, styrene, and 1,4-divinylbenzene, (ii) extraction of a dispersible and partly dissolvable, lightly cross-linked polymer network (PN), and (iii) treatment of the blue-emitting PN with electron acceptor (A) molecules such as 1,2,4,5-tetracyanobenzene (TCNB) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) furnishes orange- and red-emitting D-A charge-transfer (CT) complexes with the pendant pyrene units. These complexes, here named PN-TCNB and PN-TCNQ, respectively, precipitate as microparticles upon the addition of water and subsequent ultrasonication. Upon electronic excitation, these spherical microparticles act as whispering-gallery-mode resonators by displaying optical resonances in the photoluminescence (PL) spectra because of light confinement. Further, the trapped incident light increases the light-matter interaction and thereby enhances the PL intensity, including the two-photon luminescence. The described protocol for polymer-based CT microresonators with tunable NLO emissions holds promise for a myriad of photonic applications.

  13. Photonic polarization gears for ultra-sensitive angular measurements

    PubMed Central

    D'Ambrosio, Vincenzo; Spagnolo, Nicolò; Del Re, Lorenzo; Slussarenko, Sergei; Li, Ying; Kwek, Leong Chuan; Marrucci, Lorenzo; Walborn, Stephen P.; Aolita, Leandro; Sciarrino, Fabio

    2013-01-01

    Quantum metrology bears a great promise in enhancing measurement precision, but is unlikely to become practical in the near future. Its concepts can nevertheless inspire classical or hybrid methods of immediate value. Here we demonstrate NOON-like photonic states of m quanta of angular momentum up to m=100, in a setup that acts as a ‘photonic gear’, converting, for each photon, a mechanical rotation of an angle θ into an amplified rotation of the optical polarization by mθ, corresponding to a ‘super-resolving’ Malus’ law. We show that this effect leads to single-photon angular measurements with the same precision of polarization-only quantum strategies with m photons, but robust to photon losses. Moreover, we combine the gear effect with the quantum enhancement due to entanglement, thus exploiting the advantages of both approaches. The high ‘gear ratio’ m boosts the current state of the art of optical non-contact angular measurements by almost two orders of magnitude. PMID:24045270

  14. Two-photon coincident emission from thick targets for 70-keV incident electrons

    NASA Astrophysics Data System (ADS)

    Liu, J.; Kahler, D. L.; Quarles, C. A.

    1993-04-01

    Two-photon coincidence yields have been measured in thick targets of C, Al, Ag, and Ta for 70 keV incident electrons and photons radiated at +/-45° to the incident beam. A theoretical model, which is more rigorous, has been developed to simulate the two-photon processes of coherent thick-target double bremsstrahlung (TTDB) and the incoherent emission of two single-bremsstrahlung (SBSB) photons in a thick-target environment. The model is based on an integration of the thin-target cross sections over the target thickness taking into account electron energy loss, electron backscattering, and photon attenuation. It predicts a yield that is much lower than that of the previous model. The prediction of the model fits the present experimental data well by adjusting the relative weight of the two competing processes, and we find that TTDB dominates at low Z and incoherent SBSB dominates at higher Z.

  15. Precise Two-Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation-Induced Emission Characteristics.

    PubMed

    Gu, Bobo; Wu, Wenbo; Xu, Gaixia; Feng, Guangxue; Yin, Feng; Chong, Peter Han Joo; Qu, Junle; Yong, Ken-Tye; Liu, Bin

    2017-07-01

    Two-photon photodynamic therapy (PDT) is able to offer precise 3D manipulation of treatment volumes, providing a target level that is unattainable with current therapeutic techniques. The advancement of this technique is greatly hampered by the availability of photosensitizers with large two-photon absorption (TPA) cross section, high reactive-oxygen-species (ROS) generation efficiency, and bright two-photon fluorescence. Here, an effective photosensitizer with aggregation-induced emission (AIE) characteristics is synthesized, characterized, and encapsulated into an amphiphilic block copolymer to form organic dots for two-photon PDT applications. The AIE dots possess large TPA cross section, high ROS generation efficiency, and excellent photostability and biocompatibility, which overcomes the limitations of many conventional two-photon photosensitizers. Outstanding therapeutic performance of the AIE dots in two-photon PDT is demonstrated using in vitro cancer cell ablation and in vivo brain-blood-vessel closure as examples. This shows therapy precision up to 5 µm under two-photon excitation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  17. Chalcogenide glass-on-graphene photonics

    NASA Astrophysics Data System (ADS)

    Lin, Hongtao; Song, Yi; Huang, Yizhong; Kita, Derek; Deckoff-Jones, Skylar; Wang, Kaiqi; Li, Lan; Li, Junying; Zheng, Hanyu; Luo, Zhengqian; Wang, Haozhe; Novak, Spencer; Yadav, Anupama; Huang, Chung-Che; Shiue, Ren-Jye; Englund, Dirk; Gu, Tian; Hewak, Daniel; Richardson, Kathleen; Kong, Jing; Hu, Juejun

    2017-12-01

    Two-dimensional (2D) materials are of tremendous interest to integrated photonics, given their singular optical characteristics spanning light emission, modulation, saturable absorption and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. Here, we present a new route for 2D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material that can be directly deposited and patterned on a wide variety of 2D materials and can simultaneously function as the light-guiding medium, a gate dielectric and a passivation layer for 2D materials. Besides achieving improved fabrication yield and throughput compared with the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared waveguide-integrated photodetectors and modulators.

  18. Weak deflection gravitational lensing for photons coupled to Weyl tensor in a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Cao, Wei-Guang; Xie, Yi

    2018-03-01

    Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.

  19. Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation.

    PubMed

    Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2013-11-18

    A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

  20. Ultra compact spectrometer apparatus and method using photonic crystals

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  1. Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering.

    PubMed

    Liu, Qiang; Ouyang, Zhengbiao; Albin, Sacharia

    2011-02-28

    We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 
1.254×10⁸ and modal volume as small as 0.03 μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power~17.7 nW and 2.58 nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.

  2. Detection of a weak maser emission pedestal associated with the SiO maser. [in variable late stars

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Dickinson, D. F.; Brown, L. W.; Buhl, D.

    1978-01-01

    Results are reported for high-spectral-resolution observations of the v = 1, J = 1-0 SiO maser sources at 43,122.027 MHz (6.95 mm wavelength) associated with the variable stars Omega Cet, NML Tau, VY CMa, R Leo, W Hya, VX Sgr, NML Cyg, and R Cas. A weak underlying maser emission pedestal is clearly observed in the spectra of all but NML Cyg and R Cas. The data indicate that the underlying pedestal of SiO emission appears to originate in a shell-like region around the star, has a thermal appearance even though it must be due to weak maser emission, and appears to be part of the spectral signature of SiO maser emission from late-type stars. It is found that the center velocities of the pedestals may be used to determine stellar radial velocities. Observations of large-scale time variations in the intensity of the Ori A SiO maser and the detection of weak maser pedestals associated with each of the two strong emission-feature groups in Orion are also discussed. It is suggested that the Orion molecular cloud might contain two late-type long-period variable stars that may be semiregular variables.

  3. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry

    PubMed Central

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko

    2017-01-01

    In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter–photon problems. We analyze model systems in optical cavities, where the matter–photon interaction is considered from the weak- to the strong-coupling limit and for individual photon modes as well as for the multimode case. We identify fundamental changes in Born–Oppenheimer surfaces, spectroscopic quantities, conical intersections, and efficiency for quantum control. We conclude by applying our recently developed quantum-electrodynamical density-functional theory to spontaneous emission and show how a straightforward approximation accurately describes the correlated electron–photon dynamics. This work paves the way to describe matter–photon interactions from first principles and addresses the emergence of new states of matter in chemistry and material science. PMID:28275094

  4. Photon emissions from rice cells elicited by N-acetylchitooligosaccharide are generated through phospholipid signaling in close association with the production of reactive oxygen species.

    PubMed

    Kageyama, C; Kato, K; Iyozumi, H; Inagaki, H; Yamaguchi, A; Furuse, K; Baba, K

    2006-01-01

    Biophotons are ultraweak light emissions from biochemical reactions in a living body. They increase in suspension-cultured rice (Oryza sativa L.) cells when elicited by N-acetylchitooligosaccharide. Biochemical analyses were undertaken to investigate the relationship between disease response and biophotons in order to clarify the emission mechanism of biophotons caused by this elicitor. Photon emissions induced by N-acetylchitohexaose were suppressed when cells were pretreated with the reactive oxygen species (ROS)-generating inhibitors: pyrocatechol-3,5-disulfonic acid disodium salt (Tiron); diphenylene iodonium (DPI); and salicylhydroxamic acid (SHAM). Conversely, exogenously applied ROS (superoxide and hydrogen peroxide) were able to induce photon emissions. The effects of protein phosphorylation (K-252a) and the Ca(2+) signaling inhibitors, ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and LaCl(3), caused photon emissions to decrease. It is clear that photon emissions from rice cells elicited by N-acetylchitohexaose are closely associated with the ROS-generating system, and are regulated by Ca(2+) signaling and protein phosphorylation. Exogenously applied phosphatidic acid (PA), the second messenger in the signal transduction of disease response, raised photon emissions in rice cells. Comparisons of photon emissions from PA and N-acetylchitohexaose regarding time courses, spectral compositions, and the inhibition ratios of several inhibitors, as well as a loss- and gain-of-function assay using the protein synthesis inhibitor cycloheximide (CHX) and PA, showed the possibility that photon emissions from rice cells elicited by N-acetylchitooligosaccharide were generated through PA, an intermediate of phospholipid signaling.

  5. Collimator-free photon tomography

    DOEpatents

    Dilmanian, F. Avraham; Barbour, Randall L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  6. Collimator-free photon tomography

    DOEpatents

    Dilmanian, F.A.; Barbour, R.L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

  7. LETTER TO THE EDITOR: Green emission and bandgap narrowing due to two-photon excitation in thin film CdS formed by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Schroeder, R.

    2001-08-01

    Thin (10 µm) film CdS on Pyrex® formed by spray pyrolysis is excited below the gap at 804 nm with 200 fs laser pulses at room temperature. Excitation intensities up to 250 GW cm-2 evoke green bandgap emission due to two-photon transitions. This two-photon photoluminescence does not show a red emission contribution in contrast to the single-photon excited emission, which is dominated by broad emission in the red spectral range. It is demonstrated that two-photon excitation causes photo-induced bandgap narrowing due to Debye screening. At 250 GW cm-2 bandgap narrowing of 47 meV is observed, which corresponds to an excited electron density of 1.6×1018 cm-3.

  8. Plasmon-photon conversion to near-infrared emission from Yb(3+): (Au/Ag-nanoparticles) in tungsten-tellurite glasses.

    PubMed

    Rivera, V A G; Ledemi, Yannick; Pereira-da-Silva, Marcelo A; Messaddeq, Younes; Marega, Euclydes

    2016-01-04

    This manuscript reports on the interaction between (2)F5/2→(2)F7/2 radiative transition from Yb(3+) ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb(3+) emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb(3+) ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb(3+) ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity's quality factor (Q) and the coupling (g) between the nanoparticles and the Yb(3+) ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb(3+) ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance.

  9. Plasmon-photon conversion to near-infrared emission from Yb3+: (Au/Ag-nanoparticles) in tungsten-tellurite glasses

    PubMed Central

    Rivera, V. A. G.; Ledemi, Yannick; Pereira-da-Silva, Marcelo A.; Messaddeq, Younes; Marega Jr, Euclydes

    2016-01-01

    This manuscript reports on the interaction between 2F5/2→2F7/2 radiative transition from Yb3+ ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb3+ emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb3+ ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb3+ ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity’s quality factor (Q) and the coupling (g) between the nanoparticles and the Yb3+ ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb3+ ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance. PMID:26725938

  10. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  11. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    PubMed

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  12. Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection

    NASA Astrophysics Data System (ADS)

    Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li

    2016-07-01

    We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).

  13. COMPACT NON-CONTACT TOTAL EMISSION DETECTION FOR IN-VIVO MULTI-PHOTON EXCITATION MICROSCOPY

    PubMed Central

    Glancy, Brian; Karamzadeh, Nader S.; Gandjbakhche, Amir H.; Redford, Glen; Kilborn, Karl; Knutson, Jay R.; Balaban, Robert S.

    2014-01-01

    Summary We describe a compact, non-contact design for a Total Emission Detection (c-TED) system for intra-vital multi-photon imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), while murine skeletal muscle and rat kidney showed gains of over two and just under two-fold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a two-fold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers (enabled by greater light collection efficiency) yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multi-photon imaging methods is discussed. PMID:24251437

  14. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; ...

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  15. Surface photonic crystal structures for LED emission modification

    NASA Astrophysics Data System (ADS)

    Uherek, Frantisek; Škriniarová, Jaroslava; Kuzma, Anton; Šušlik, Łuboš; Lettrichova, Ivana; Wang, Dong; Schaaf, Peter

    2017-12-01

    Application of photonic crystal structures (PhC) can be attractive for overall and local enhancement of light from patterned areas of the light emitting diode (LED) surface. We used interference and near-field scanning optical microscope lithography for patterning of the surface of GaAs/AlGaAs based LEDs emitted at 840 nm. Also new approach with patterned polydimethylsiloxane (PDMS) membrane applied directly on the surface of red emitting LED was investigated. The overall emission properties of prepared LED with patterned structure show enhanced light extraction efficiency, what was documented from near- and far-field measurements.

  16. Bright Two-Photon Emission and Ultra-Fast Relaxation Dynamics in a DNA-Templated Nanocluster Investigated by Ultra-Fast Spectroscopy

    DTIC Science & Technology

    2012-01-01

    Michigan 3003 S. State St Ann Arbor, MI 48109 -1274 REPORT DOCUMENTATION PAGE b . ABSTRACT UU c. THIS PAGE UU 2. REPORT TYPE New Reprint 17. LIMITATION OF...Figure 1: Steady state absorption for Au25 Au55, Au140, Au2406 and Mie theory calculation using parameter similar to Au25.7 B . Emission Mechanism of...short-lived (hundreds of fs), and it is most likely to be associated with the metal core (State B ).7,17 The near-infrared emission is related to the

  17. Bright up-conversion white light emission from Er3+ doped lithium fluoro zinc borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Rao, K. Srinivasa; Hwang, Pyung

    2018-03-01

    Various concentrations of Er3+ (0.3, 0.5, 1.0 and 1.5 mol %) doped lithium fluoro zinc borate glasses were synthesized by a traditional melt quenching method. XRD, FTIR and FESEM have been employed to analyze the structural, compositional and morphological analysis respectively. Judd-Ofelt theory has been employed to analyze the intensity parameters (Ωλ, λ = 2, 4 and 6) which can be used to estimate the radiative properties of fluorescent levels of Er3+. We have been observed a strong NIR emission peak at 1.53 μm (4I13/2 → 4I15/2) under the excitation of 980 nm from Er3+: LBZ glasses. Nevertheless, the NIR emission is remarkably enhanced by increasing the Er3+ ions concentration until the optimized concentration of 0.5 mol%. The lifetime of the excited level of 4I13/2 in the NIR emission transition is evaluated and it is found to be1.22 ms from the decay analysis of 0.5 mol% Er3+: LBZ glass. Apart from the NIR emission, a bright up-conversion green emission is observed at 544 nm (4S3/2 → 4I15/2) along with an intense red emission at 659 nm (4F9/2 → 4I15/2) and a weak blue emission (2H9/2 → 4I15/2) under the excitation of 980 nm. Up-conversion emission features were significantly enhanced with increasing the Er3+ concentration up to 1.0 mol%. The combination of the obtained up-conversion emission colors of green, red and blue could generate white light emission. The cool white-light emission from the optimized glass sample has been confirmed from the Commission International de I'Echairage (CIE) 1931 chromaticity diagram analysis and their correlated color temperature (CCT) values. Based on the NIR and up-conversion emission features, Er3+: LBZ glasses could be suggested as promising candidates for optical amplifiers, optical telecommunication windows and white light photonic applications.

  18. Applications of quantum measurement techniques: Counterfactual quantum computation, spin hall effect of light, and atomic-vapor-based photon detectors

    NASA Astrophysics Data System (ADS)

    Hosten, Onur

    This dissertation investigates several physical phenomena in atomic and optical physics, and quantum information science, by utilizing various types and techniques of quantum measurements. It is the deeper concepts of these measurements, and the way they are integrated into the seemingly unrelated topics investigated, which binds together the research presented here. The research comprises three different topics: Counterfactual quantum computation, the spin Hall effect of light, and ultra-high-efficiency photon detectors based on atomic vapors. Counterfactual computation entails obtaining answers from a quantum computer without actually running it, and is accomplished by preparing the computer as a whole into a superposition of being activated and not activated. The first experimental demonstration is presented, including the best performing implementation of Grover's quantum search algorithm to date. In addition, we develop new counterfactual computation protocols that enable unconditional and completely deterministic operation. These methods stimulated a debate in the literature, on the meaning of counterfactuality in quantum processes, which we also discuss. The spin Hall effect of light entails tiny spin-dependent displacements, unsuspected until 2004, of a beam of light when it changes propagation direction. The first experimental demonstration of the effect during refraction at an air-glass interface is presented, together with a novel enabling metrological tool relying on the concepts of quantum weak measurements. Extensions of the effect to smoothly varying media are also presented, along with utilization of a time-varying version of the weak measurement techniques. Our approach to ultra-high-efficiency photon detection develops and extends a recent novel non-solid-state scheme for photo-detection based on atomic vapors. This approach is in principle capable of resolving the number of photons in a pulse, can be extended to non-destructive detection of

  19. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    PubMed

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  20. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasolamprou, Anna C.; Zhang, Lei; Kafesaki, Maria

    2015-05-19

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. Furthermore, the angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  1. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  2. Ultra-High Rate Measurements of Spent Fuel Gamma-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Douglas; Vandevender, Brent; Wood, Lynn; Glasgow, Brian; Taubman, Matthew; Wright, Michael; Dion, Michael; Pitts, Karl; Runkle, Robert; Campbell, Luke; Fast, James

    2014-03-01

    Presently there are over 200,000 irradiated spent nuclear fuel (SNF) assemblies in the world, each containing a concerning amount of weapons-usable material. Both facility operators and safeguards inspectors want to improve composition determination. Current measurements are expensive and difficult so new methods are developed through models. Passive measurements are limited since a few specific decay products and the associated down-scatter overwhelm the gamma rays of interest. Active interrogation methods produce gamma rays beyond 3 MeV, minimizing the impact of the passive emissions that drop off sharply above this energy. New devices like the Ultra-High Rate Germanium (UHRGe) detector are being developed to advance these novel measurement methods. Designed for reasonable resolution at 106 s-1 output rates (compared to ~ 1 - 10 e 3 s-1 standards), SNF samples were directly measured using UHRGe and compared to models. Model verification further enables using Los Alamos National Laboratory SNF assembly models, developed under the Next Generation Safeguards Initiative, to determine emission and signal expectations. Measurement results and future application requirements for UHRGe will be discussed.

  3. Spectroscopic and polarimetric study of radio-quiet weak emission line quasars

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna; Srianand, Raghunathan; Stalin, Chelliah Subramonian; Petitjean, Patrick

    2018-04-01

    A small subset of optically selected radio-quiet QSOs with weak or no emission lines may turn out to be the elusive radio-quiet BL Lac objects, or simply be radio-quiet QSOs with an infant/shielded broad line region (BLR). High polarisation (p > 3-4%), a hallmark of BL Lacs, can be used to test whether some optically selected ‘radio-quiet weak emission line QSOs’ (RQWLQs) show a fractional polarisation high enough to qualify as radio-quiet analogues of BL Lac objects. To check this possibility, we have made optical spectral and polarisation measurements of a sample of 19 RQWLQs. Out of these, only 9 sources show a non-significant proper motion (hence very likely extragalactic) and only two of them are found to have p > 1%. For these two RQWLQs, namely J142505.59+035336.2 and J154515.77+003235.2, we found the highest polarization to be 1.59±0.53%, which is again too low to classify them as (radio-quiet) BL Lacs, although one may recall that even genuine BL Lacs sometimes appear weakly polarised. We also present a statistical comparison of the optical spectral index, for a sample of 45 RQWLQs with redshift-luminosity matched control samples of 900 QSOs and an equivalent sample of 120 blazars, assembled from the literature. The spectral index distribution of RQWLQs is found to differ, at a high significance level, from that of blazars. This, too, is consistent with the common view that the mechanism of the central engine in RQWLQs, as a population, is close to that operating in normal QSOs and the primary difference between them is related to the BLR.

  4. Born in weak fields: below-threshold photoelectron dynamics

    NASA Astrophysics Data System (ADS)

    Williams, J. B.; Saalmann, U.; Trinter, F.; Schöffler, M. S.; Weller, M.; Burzynski, P.; Goihl, C.; Henrichs, K.; Janke, C.; Griffin, B.; Kastirke, G.; Neff, J.; Pitzer, M.; Waitz, M.; Yang, Y.; Schiwietz, G.; Zeller, S.; Jahnke, T.; Dörner, R.

    2017-02-01

    We investigate the dynamics of ultra-low kinetic energy photoelectrons. Many experimental techniques employed for the detection of photoelectrons require the presence of (more or less) weak electric extraction fields in order to perform the measurement. Our studies show that ultra-low energy photoelectrons exhibit a characteristic shift in their apparent measured momentum when the target system is exposed to such static electric fields. Already fields as weak as 1 V cm-1 have an observable influence on the detected electron momentum. This apparent shift is demonstrated by an experiment on zero energy photoelectrons emitted from He and explained through theoretical model calculations.

  5. Two-photon spectroscopy of excitons with entangled photons.

    PubMed

    Schlawin, Frank; Mukamel, Shaul

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  6. Two-photon spectroscopy of excitons with entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlawin, Frank, E-mail: Frank.Schlawin@physik.uni-freiburg.de; Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79108 Freiburg; Mukamel, Shaul, E-mail: smukamel@uci.edu

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  7. STM-induced light emission enhanced by weakly coupled organic ad-layers

    NASA Astrophysics Data System (ADS)

    Cottin, M. C.; Ekici, E.; Bobisch, C. A.

    2018-03-01

    We analyze the light emission induced by the tunneling current flowing in a scanning tunneling microscopy experiment. In particular, we study the influence of organic ad-layers on the light emission on the initial monolayer of bismuth (Bi) on Cu(111) in comparison to the well-known case of organic ad-layers on Ag(111). On the Bi/Cu(111)-surface, we find that the scanning tunneling microscopy-induced light emission is considerably enhanced if an organic layer, e.g., the fullerene C60 or the perylene derivate perylene-tetracarboxylic-dianhydride, is introduced into the tip-sample junction. The enhancement can be correlated with a peculiarly weak interaction between the adsorbed molecules and the underlying Bi/Cu(111) substrate as compared to the Ag(111) substrate. This allows us to efficiently enhance and tune the coupling of the tunneling current to localized excitations of the tip-sample junction, which in turn couple to radiative decay channels.

  8. Photonic generation of ultra-wide-band doublet pulse through monolithic integration of tapered directional coupler and quantum well waveguide.

    PubMed

    Kuo, Yu-Zheng; Wu, Jui-Pin; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2012-10-22

    We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530 nm photonic UWB doublet optical pulse with 75-ps pulse width, below -41.3 dBm power, 125% fractional bandwidth, and 7.5 GHz of -10 dB bandwidth has been demonstrated, fitted into FCC requirement (3.1 GHz~10.6 GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25 Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.

  9. Single photon emission from charged excitons in CdTe/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Belyaev, K. G.; Rakhlin, M. V.; Sorokin, S. V.; Klimko, G. V.; Gronin, S. V.; Sedova, I. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.

    2017-11-01

    We report on micro-photoluminescence studies of individual self-organized CdTe/ZnTe quantum dots intended for single-photon-source applications in a visible spectral range. The quantum dots surface density below 1010 per cm2 was achieved by using a thermally activated regime of molecular beam epitaxy that allowed fabrication of etched mesa-structures containing only a few emitting quantum dots. The single photon emission with the autocorrelation function g(2)(0)<0.2 was detected and identified as recombination of charged excitons in the individual quantum dot.

  10. NIAC Phase I Study Final Report on Large Ultra-Lightweight Photonic Muscle Space Structures

    NASA Technical Reports Server (NTRS)

    Ritter, Joe

    2016-01-01

    way to make large inexpensive deployable mirrors where the cost is measured in millions, not billions like current efforts. For example we seek an interim goal within 10 years of a Hubble size (2.4m) primary mirror weighing 1 pound at a cost of 10K in materials. Described here is a technology using thin ultra lightweight materials where shape can be controlled simply with a beam of light, allowing imaging with incredibly low mass yet precisely shaped mirrors. These " Photonic Muscle" substrates will eventually make precision control of giant s p a c e apertures (mirrors) possible. OCCAM substrates make precision control of giant ultra light-weight mirror apertures possible. This technology is posed to create a revolution in remote sensing by making large ultra lightweight space telescopes a fiscal and material reality over the next decade.

  11. Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Purnawirman, Purnawirman; Magden, E. Salih; Singh, Gurpreet; Singh, Neetesh; Baldycheva, Anna; Hosseini, Ehsan S.; Sun, Jie; Moresco, Michele; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Bradley, Jonathan D. B.; Watts, Michael R.

    2018-02-01

    We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 +/- 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 +/- 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.

  12. Adiabatic passage in photon-echo quantum memories

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2013-11-01

    Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.

  13. PET and Single-Photon Emission Computed Tomography in Brain Concussion.

    PubMed

    Raji, Cyrus A; Henderson, Theodore A

    2018-02-01

    This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Unexpected weak interaction

    NASA Astrophysics Data System (ADS)

    2013-08-01

    Stéphane Coen and Miro Erkintalo from the University of Auckland in New Zealand talk to Nature Photonics about their surprising findings regarding a weak long-range interaction they serendipitously stumbled upon while researching temporal cavity solitons.

  15. Engineering photonic and plasmonic light emission enhancement

    NASA Astrophysics Data System (ADS)

    Lawrence, Nathaniel

    Semiconductor photonic devices are a rapidly maturing technology which currently occupy multi-billion dollar markets in the areas of LED lighting and optical data communication. LEDs currently demonstrate the highest luminous efficiency of any light source for general lighting. Long-haul optical data communication currently forms the backbone of the global communication network. Proper design of light management is required for photonic devices, which can increase the overall efficiency or add new device functionality. In this thesis, novel methods for the control of light propagation and confinement are developed for the use in integrated photonic devices. The first part of this work focuses on the engineering of field confinement within deep subwavelength plasmonic resonators for the enhancement of light-matter interaction. In this section, plasmonic ring nanocavities are shown to form gap plasmon modes confined to the dielectric region between two metal layers. The scattering properties, near-field enhancement and photonic density of states of nanocavity devices are studied using analytic theory and 3D finite difference time domain simulations. Plasmonic ring nanocavities are fabricated and characterized using photoluminescence intensity and decay rate measurements. A 25 times increase in the radiative decay rate of Er:Si02 is demonstrated in nanocavities where light is confined to volumes as small as 0.01( ln )3. The potential to achieve lasing, due to the enhancement of stimulated emission rate in ring nanocavities, is studied as a route to Si-compatible plasmon-enhanced nanolasers. The second part of this work focuses on the manipulation of light generated in planar semiconductor devices using arrays of dielectric nanopillars. In particular, aperiodic arrays of nanopillars are engineered for omnidirectional light extraction enhancement. Arrays of Er:SiNx, nanopillars are fabricated and a ten times increase in light extraction is experimentally demonstrated

  16. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  17. Photonics for microwave systems and ultra-wideband signal processing

    NASA Astrophysics Data System (ADS)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  18. Simulation of ultra-high energy photon propagation with PRESHOWER 2.0

    NASA Astrophysics Data System (ADS)

    Homola, P.; Engel, R.; Pysz, A.; Wilczyński, H.

    2013-05-01

    In this paper we describe a new release of the PRESHOWER program, a tool for Monte Carlo simulation of propagation of ultra-high energy photons in the magnetic field of the Earth. The PRESHOWER program is designed to calculate magnetic pair production and bremsstrahlung and should be used together with other programs to simulate extensive air showers induced by photons. The main new features of the PRESHOWER code include a much faster algorithm applied in the procedures of simulating the processes of gamma conversion and bremsstrahlung, update of the geomagnetic field model, and a minor correction. The new simulation procedure increases the flexibility of the code so that it can also be applied to other magnetic field configurations such as, for example, encountered in the vicinity of the sun or neutron stars. Program summaryProgram title: PRESHOWER 2.0 Catalog identifier: ADWG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3968 No. of bytes in distributed program, including test data, etc.: 37198 Distribution format: tar.gz Programming language: C, FORTRAN 77. Computer: Intel-Pentium based PC. Operating system: Linux or Unix. RAM:< 100 kB Classification: 1.1. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADWG_v1_0 Journal reference of previous version: Comput. Phys. Comm. 173 (2005) 71 Nature of problem: Simulation of a cascade of particles initiated by UHE photon in magnetic field. Solution method: The primary photon is tracked until its conversion into an e+ e- pair. If conversion occurs each individual particle in the resultant preshower is checked for either bremsstrahlung radiation (electrons) or secondary gamma conversion (photons). Reasons for

  19. A photon recycling approach to the denoising of ultra-low dose X-ray sequences.

    PubMed

    Hariharan, Sai Gokul; Strobel, Norbert; Kaethner, Christian; Kowarschik, Markus; Demirci, Stefanie; Albarqouni, Shadi; Fahrig, Rebecca; Navab, Nassir

    2018-06-01

    Clinical procedures that make use of fluoroscopy may expose patients as well as the clinical staff (throughout their career) to non-negligible doses of radiation. The potential consequences of such exposures fall under two categories, namely stochastic (mostly cancer) and deterministic risks (skin injury). According to the "as low as reasonably achievable" principle, the radiation dose can be lowered only if the necessary image quality can be maintained. Our work improves upon the existing patch-based denoising algorithms by utilizing a more sophisticated noise model to exploit non-local self-similarity better and this in turn improves the performance of low-rank approximation. The novelty of the proposed approach lies in its properly designed and parameterized noise model and the elimination of initial estimates. This reduces the computational cost significantly. The algorithm has been evaluated on 500 clinical images (7 patients, 20 sequences, 3 clinical sites), taken at ultra-low dose levels, i.e. 50% of the standard low dose level, during electrophysiology procedures. An average improvement in the contrast-to-noise ratio (CNR) by a factor of around 3.5 has been found. This is associated with an image quality achieved at around 12 (square of 3.5) times the ultra-low dose level. Qualitative evaluation by X-ray image quality experts suggests that the method produces denoised images that comply with the required image quality criteria. The results are consistent with the number of patches used, and they demonstrate that it is possible to use motion estimation techniques and "recycle" photons from previous frames to improve the image quality of the current frame. Our results are comparable in terms of CNR to Video Block Matching 3D-a state-of-the-art denoising method. But qualitative analysis by experts confirms that the denoised ultra-low dose X-ray images obtained using our method are more realistic with respect to appearance.

  20. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  1. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.

    PubMed

    Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank

    2012-02-27

    We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

  2. Weak measurements and quantum weak values for NOON states

    NASA Astrophysics Data System (ADS)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  3. Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals

    NASA Astrophysics Data System (ADS)

    Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.

    2018-02-01

    Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.

  4. Integrated nanoplasmonic quantum interfaces for room-temperature single-photon sources

    NASA Astrophysics Data System (ADS)

    Peyskens, Frédéric; Englund, Dirk; Chang, Darrick

    2017-12-01

    We describe a general analytical framework of a nanoplasmonic cavity-emitter system interacting with a dielectric photonic waveguide. Taking into account emitter quenching and dephasing, our model directly reveals the single-photon extraction efficiency η as well as the indistinguishability I of photons coupled into the waveguide mode. Rather than minimizing the cavity modal volume, our analysis predicts an optimum modal volume to maximize η that balances waveguide coupling and spontaneous emission rate enhancement. Surprisingly, our model predicts that near-unity indistinguishability is possible, but this requires a much smaller modal volume, implying a fundamental performance trade-off between high η and I at room temperature. Finally, we show that maximizing η I requires that the system has to be driven in the weak coupling regime because quenching effects and decreased waveguide coupling drastically reduce η in the strong coupling regime.

  5. Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn

    2014-06-28

    By adopting an ultra-thin non-doped orange emission layer sandwiched between two blue emission layers, high efficiency white organic light-emitting diodes (WOLEDs) with reduced efficiency roll-off were fabricated. The optimized devices show a balanced white emission with Internationale de L'Eclairage of (0.41, 0.44) at the luminance of 1000 cd/m{sup 2}, and the maximum power efficiency, current efficiency (CE), and external quantum efficiency reach 63.2 lm/W, 59.3 cd/A, and 23.1%, which slightly shift to 53.4 lm/W, 57.1 cd/A, and 22.2% at 1000 cd/m{sup 2}, respectively, showing low efficiency roll-off. Detailed investigations on the recombination zone and the transient electroluminescence (EL) clearly reveal the EL processes of the ultra-thinmore » non-doped orange emission layer in WOLEDs.« less

  6. Novel ultra-wideband (UWB) photonic generation through photodetection and cross-absorption modulation in a single electroabsorption modulator.

    PubMed

    Wu, Tsu-Hsiu; Wu, Jui-pin; Chiu, Yi-Jen

    2010-02-15

    We propose and demonstrate, by proof of concept, a novel method of ultra-wide band (UWB) photonic generation using photodetection and cross-absorption modulation (XAM) of multiple quantum wells (MQW) in a single short-terminated electroabsorption modulator (SEAM). As an optical pump pulse excite the MQWs of SEAM waveguide, the probe light pulse with the same polarity can be generated through XAM, simultaneously creating photocurrent pulse propagating along the waveguide. Using the short termination of SEAM accompanied by the delayed microwave line, the photocurrent pulse can be reversed in polarity and re-modulated the waveguide, forming a monocycle UWB optical pulse. An 89 ps cycle of monocycle pulse with 114% fractional bandwidth is obtained, where the electrical power spectrum centered at 4 GHz of frequency ranges from 0.1 GHz to 8 GHz for -10 dB drops. Meanwhile, the generation processing is also confirmed by observing the same cycle of monocycle electrical pulse from the photodetection of SEAM. The whole optical processing is performed inside a compact semiconductor device, suggesting the optoelectronic integration template has a potential for the application of UWB photonic generation.

  7. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.

    PubMed

    Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min

    2017-06-11

    The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.

  8. Plasmon enhanced terahertz emission from single layer graphene.

    PubMed

    Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M

    2014-09-23

    We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

  9. A bioaccumulative cyclometalated platinum(II) complex with two-photon-induced emission for live cell imaging.

    PubMed

    Koo, Chi-Kin; Wong, Ka-Leung; Man, Cornelia Wing-Yin; Lam, Yun-Wah; So, Leo King-Yan; Tam, Hoi-Lam; Tsao, Sai-Wah; Cheah, Kok-Wai; Lau, Kai-Chung; Yang, Yang-Yi; Chen, Jin-Can; Lam, Michael Hon-Wah

    2009-02-02

    The cyclometalated platinum(II) complex [Pt(L)Cl], where HL is a new cyclometalating ligand 2-phenyl-6-(1H-pyrazol-3-yl)pyridine containing C(phenyl), N(pyridyl), and N(pyrazolyl) donor moieties, was found to possess two-photon-induced luminescent properties. The two-photon-absorption cross section of the complex in N,N-dimethylformamide at room temperature was measured to be 20.8 GM. Upon two-photon excitation at 730 nm from a Ti:sapphire laser, bright-green emission was observed. Besides its two-photon-induced luminescent properties, [Pt(L)Cl] was able to be rapidly accumulated in live HeLa and NIH3T3 cells. The two-photon-induced luminescence of the complex was retained after live cell internalization and can be observed by two-photon confocal microscopy. Its bioaccumulation properties enabled time-lapse imaging of the internalization process of the dye into living cells. Cytotoxicity of [Pt(L)Cl] to both tested cell lines was low, according to MTT assays, even at loadings as high as 20 times the dose concentration for imaging for 6 h.

  10. A dynamic system with digital lock-in-photon-counting for pharmacokinetic diffuse fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.

  11. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.

    PubMed

    Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  12. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  13. Radiative transfer calculations of ultra-relativistic shock breakout in circumstellar medium: Dependence on the central engine activity

    NASA Astrophysics Data System (ADS)

    Ohtani, Yukari; Suzuki, Akihiro; Shigeyama, Toshikazu

    2015-08-01

    Core collapse supernovae radiate bright X-ray or UV flashes imediately after their explosion, because shock waves emerge on the surfaces of the progenitors. Due to their short duration, a very small number of such events (so called shock breakouts) have been observed, and the maximum shock velocities are likely to be significantly smaller than the speed of light. In principle, we can consider the shocks with ultra-relativistic velocities breakout stellar surfaces and generate gamma-ray photons. A recently popular theory of gamma-ray bursts argues that the thermal radiation produced in the jet may play important roles in the prompt emission. Therefore, for understanding of the relation between jets and the central engine, studying properties of breakouts in the relativistic limit will be interesting. To obtain some information concerning the temporal evolution of the photospheric emission from jets, we make a radiative transfer calculation of ultra-relativistic shock breakout in circumstellar medium by using a Monte Carlo method. We use a self-similar solution constructed by Blandford & McKee (1976), in which the shock Lorentz factor is assumed to follow a simple power law relation determined by the central engine activity. By comparing the calculation results of the accelerating shock and the decelerating shock, we find that influence of the beaming effect and the scattering angular distribution cause two apparent differences in light curves and temporal spectral evolution. One is that the ratio of the time between the onset and the peak to the duration is much smaller in light curves of decelerating shocks. The other one is that the spectral shape does not significantly change with time if the shock accelerates, otherwise the first half of the emerging photons contains much more high energy photons (above 1 MeV) than the second half.

  14. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    PubMed

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles.

  15. Information-reality complementarity in photonic weak measurements

    NASA Astrophysics Data System (ADS)

    Mancino, Luca; Sbroscia, Marco; Roccia, Emanuele; Gianani, Ilaria; Cimini, Valeria; Paternostro, Mauro; Barbieri, Marco

    2018-06-01

    The emergence of realistic properties is a key problem in understanding the quantum-to-classical transition. In this respect, measurements represent a way to interface quantum systems with the macroscopic world: these can be driven in the weak regime, where a reduced back-action can be imparted by choosing meter states able to extract different amounts of information. Here we explore the implications of such weak measurement for the variation of realistic properties of two-level quantum systems pre- and postmeasurement, and extend our investigations to the case of open systems implementing the measurements.

  16. All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    PubMed Central

    Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C.R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.

    2016-01-01

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. PMID:27257122

  17. Single photon emission computed tomography and oth selected computer topics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, G.D.

    1981-07-01

    This book, the proceedings of a meeting in January 1980, contains 21 papers. Thirteen are devoted to aspects of emission tomography, four to nuclear cardiology, and five to other topics. The initial set of papers consists of reviews of the single photon emission tomography process. These include transverse axial tomography using scintillation cameras and other devices, longitudinal section tomography, and pin-hole and slant-hole systems. These reviews are generally well done, but as might be expected, lack any coherence from paper to paper. The papers on nuclear cardiology include several of Fourier analysis in nuclear cardiology and one on shunt quantification.more » Other clinical papers are on quantifying Tc-99m glucoheptonate uptake in the brain and on iron-59 retention studies. A general criticism of the book is the poor quality of photographic reproductions.« less

  18. Nursing benefits of using an automated injection system for ictal brain single photon emission computed tomography.

    PubMed

    Vonhofen, Geraldine; Evangelista, Tonya; Lordeon, Patricia

    2012-04-01

    The traditional method of administering radioactive isotopes to pediatric patients undergoing ictal brain single photon emission computed tomography testing has been by manual injections. This method presents certain challenges for nursing, including time requirements and safety risks. This quality improvement project discusses the implementation of an automated injection system for isotope administration and its impact on staffing, safety, and nursing satisfaction. It was conducted in an epilepsy monitoring unit at a large urban pediatric facility. Results of this project showed a decrease in the number of nurses exposed to radiation and improved nursing satisfaction with the use of the automated injection system. In addition, there was a decrease in the number of nursing hours required during ictal brain single photon emission computed tomography testing.

  19. Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, L.; Bourn, G.; Callahan, T.

    The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used tomore » develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.« less

  20. Far-infrared rotational emission by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.

    1982-01-01

    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines for an H2 molecule content of at least 10,000/cu cm, temperature in the range 100-3000 K, and J not more than 60 under the assumption that the lines are optically thin. An approximate analytic expression for the emissivities which is valid in this region is obtained. Population inversions in the lower rotational levels occur for densities of molecular H2 around 1000-100,000/cu cm and temperatures T not more than about 50 K provided photon trapping is unimportant. Interstellar shocks observed edge-on are a potential source of weak millimeter-wave CO maser emission.

  1. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire.

    PubMed

    Deshpande, Saniya; Heo, Junseok; Das, Ayan; Bhattacharya, Pallab

    2013-01-01

    In a classical light source, such as a laser, the photon number follows a Poissonian distribution. For quantum information processing and metrology applications, a non-classical emitter of single photons is required. A single quantum dot is an ideal source of single photons and such single-photon sources in the visible spectral range have been demonstrated with III-nitride and II-VI-based single quantum dots. It has been suggested that short-wavelength blue single-photon emitters would be useful for free-space quantum cryptography, with the availability of high-speed single-photon detectors in this spectral region. Here we demonstrate blue single-photon emission with electrical injection from an In0.25Ga0.75N quantum dot in a single nanowire. The emitted single photons are linearly polarized along the c axis of the nanowire with a degree of linear polarization of ~70%.

  2. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light.

    PubMed

    Rivas, David; Muñoz-Matutano, Guillermo; Canet-Ferrer, Josep; García-Calzada, Raúl; Trevisi, Giovanna; Seravalli, Luca; Frigeri, Paola; Martínez-Pastor, Juan P

    2014-02-12

    In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.

  3. Photonic crystal light source

    DOEpatents

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  4. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    PubMed

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  5. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling

    PubMed Central

    Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min

    2017-01-01

    The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610

  6. Method for taking into account hard-photon emission in four-fermion processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksejevs, A. G., E-mail: aaleksejevs@swgc.mun.ca; Barkanova, S. G., E-mail: svetlana.barkanova@acadiau.ca; Zykunov, V. A., E-mail: vladimir.zykunov@cern.ch

    2016-01-15

    A method for taking into account hard-photon emission in four-fermion processes proceeding in the s channel is described. The application of this method is exemplified by numerically estimating one-loop electroweak corrections to observables (cross sections and asymmetries) of the reaction e{sup −}e{sup +} → μ{sup −}μ{sup +}(γ) involving longitudinally polarized electrons and proceeding at energies below the Z-resonance energy.

  7. Measuring SO2 ship emissions with an ultra-violet imaging camera

    NASA Astrophysics Data System (ADS)

    Prata, A. J.

    2013-11-01

    Over the last few years fast-sampling ultra-violet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical fluxes ~1-10 kg s-1) and natural sources (e.g. volcanoes; typical fluxes ~10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and fluxes. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and fluxes of SO2 (typical fluxes ~0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the fluxes and path concentrations can be retrieved in real-time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and fluxes determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (>10 Hz) from a single camera. Typical accuracies ranged from 10-30% in path concentration and 10-40% in flux estimation. Despite the ease of use and ability to determine SO2 fluxes from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes.

  8. Si photonics technology for future optical interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Krishnamoorthy, Ashok V.

    2011-12-01

    Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.

  9. Bridging ultrahigh-Q devices and photonic circuits

    NASA Astrophysics Data System (ADS)

    Yang, Ki Youl; Oh, Dong Yoon; Lee, Seung Hoon; Yang, Qi-Fan; Yi, Xu; Shen, Boqiang; Wang, Heming; Vahala, Kerry

    2018-05-01

    Optical microresonators are essential to a broad range of technologies and scientific disciplines. However, many of their applications rely on discrete devices to attain challenging combinations of ultra-low-loss performance (ultrahigh Q) and resonator design requirements. This prevents access to scalable fabrication methods for photonic integration and lithographic feature control. Indeed, finding a microfabrication bridge that connects ultrahigh-Q device functions with photonic circuits is a priority of the microcavity field. Here, an integrated resonator having a record Q factor over 200 million is presented. Its ultra-low-loss and flexible cavity design brings performance to integrated systems that has been the exclusive domain of discrete silica and crystalline microcavity devices. Two distinctly different devices are demonstrated: soliton sources with electronic repetition rates and high-coherence/low-threshold Brillouin lasers. This multi-device capability and performance from a single integrated cavity platform represents a critical advance for future photonic circuits and systems.

  10. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    NASA Astrophysics Data System (ADS)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  11. Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Galisteo-López, Juan F.

    2017-02-01

    Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.

  12. Intense ionizing radiation from laser-induced processes in ultra-dense deuterium D(-1)

    NASA Astrophysics Data System (ADS)

    Olofson, Frans; Holmlid, Leif

    2014-09-01

    Nuclear fusion in ultra-dense deuterium D(-1) has been reported from our laboratory in a few studies using pulsed lasers with energy < 0.2 J. The direct observation of massive particles with energy 1-20 MeV u-1 is conclusive proof for fusion processes, either as a cause or as a result. Continuing the step-wise approach necessary for untangling a complex problem, the high-energy photons from the laser-induced plasma are now studied. The focus is here on the photoelectrons formed. The photons penetrating a copper foil have energy > 80 keV. The total charge created is up to 2 μC or 1 × 1013 photoelectrons per laser shot at 0.13 J pulse energy, assuming isotropic photon emission. The variation of the photoelectron current with laser intensity is faster than linear for some systems, which indicates rapid approach to volume ignition. On a permanent magnet at approximately 1 T, a laser pulse-energy threshold exists for the laser-induced processes probably due to the floating of most clusters of D(-1) in the magnetic field. This Meissner effect was reported previously.

  13. Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions

    NASA Astrophysics Data System (ADS)

    Cheung, N. H.; Ng, C. W.; Ho, W. F.; Yeung, E. S.

    1998-05-01

    Spectrochemical analysis of liquids and suspensions using laser-induced plasma emissions was investigated. Nd:YAG pulsed-laser (532-nm) ablation of aqueous samples produced plasmas that were hot (few eV) and extensively ionized, with electron density in the 10 18 cm -3 range. Analyte line signals were initially masked by intense plasma continuum emissions, and would only emerge briefly above the background when the plume temperature dropped below 1 eV during the course of its very rapid cooling. In contrast, 193-nm laser ablation at similar fluence generated plasmas of much lower (<1 eV) temperature but comparable electron density. The plasma continuum emissions were relatively weak and the signal-to-background ratio was a thousand times better. This `cold' plasma was ideal for sampling trace amounts of biologically important elements such as sodium and potassium. By ablating hydrodynamically focused jets in a sheath-flow, and with acoustic normalization for improved precision, the single-shot detection limits of sodium and potassium were 8 and 50 fg, respectively. Using the sheath-flow arrangement, the amounts of sodium and potassium inside single human red blood cells were simultaneously determined for the first time. The intracellular contents for a given blood donor were found to vary significantly, with only very weak correlation between the amounts of sodium and potassium in individual cells.

  14. Emitters of N-photon bundles

    PubMed Central

    Muñoz, C. Sánchez; del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J.J.; Laussy, F.P.

    2014-01-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or “bundles” of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  15. Super-resolution from single photon emission: toward biological application

    NASA Astrophysics Data System (ADS)

    Moreva, E.; Traina, P.; Forneris, J.; Ditalia Tchernij, S.; Guarina, L.; Franchino, C.; Picollo, F.; Ruo Berchera, I.; Brida, G.; Degiovanni, I. P.; Carabelli, V.; Olivero, P.; Genovese, M.

    2017-08-01

    Properties of quantum light represent a tool for overcoming limits of classical optics. Several experiments have demonstrated this advantage ranging from quantum enhanced imaging to quantum illumination. In this work, experimental demonstration of quantum-enhanced resolution in confocal fluorescence microscopy will be presented. This is achieved by exploiting the non-classical photon statistics of fluorescence emission of single nitrogen-vacancy (NV) color centers in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers. Finally, possible applications of NV-based fluorescent nanodiamonds in biosensing and future developments will be presented.

  16. Soft-photon emission effects and radiative corrections for electromagnetic processes at very high energies

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1979-01-01

    Higher-order electromagnetic processes involving particles at ultrahigh energies are discussed, with particular attention given to Compton scattering with the emission of an additional photon (double Compton scattering). Double Compton scattering may have significance in the interaction of a high-energy electron with the cosmic blackbody photon gas. At high energies the cross section for double Compton scattering is large, though this effect is largely canceled by the effects of radiative corrections to ordinary Compton scattering. A similar cancellation takes place for radiative pair production and the associated radiative corrections to the radiationless process. This cancellation is related to the well-known cancellation of the infrared divergence in electrodynamics.

  17. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber.

    PubMed

    Jain, D; Sidharthan, R; Moselund, P M; Yoo, S; Ho, D; Bang, O

    2016-11-14

    We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date.

  18. Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission

    NASA Astrophysics Data System (ADS)

    Lee, Y.-J.; Talghader, J. J.

    2018-01-01

    For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships are developed for systems with any number of modes and couplings to an observing space. The results are shown to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime where the current theory of thermal emission fluctuations and background noise, which was developed decades ago for free-space or single-mode cavities, has no derived solutions.

  19. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    NASA Astrophysics Data System (ADS)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  20. Design and demonstration of ultra-fast W-band photonic transmitter-mixer and detectors for 25 Gbits/sec error-free wireless linking.

    PubMed

    Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E

    2012-09-10

    A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

  1. Optical, photonic and optoelectronic properties of graphene, h-NB and their hybrid materials

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Ma, Fengcai; Liang, Wenjie; Wang, Rongming; Sun, Mengtao

    2017-06-01

    Because of the linear dispersion relation and the unique structure of graphene's Dirac electrons, which can be tuned the ultra-wide band, this enables more applications in photonics, electronics and plasma optics. As a substrate, hexagonal boron nitride (h-BN) has an atomic level flat surface without dangling bonds, a weak doping effect and a response in the far ultraviolet area. So the graphene/h-BN heterostructure is very attractive due to its unique optical electronics characteristics. Graphene and h-BN which are stacked in different ways could open the band gap of graphene, and form a moiré pattern for graphene on h-BN and the superlattice in the Brillouin zone, which makes it possible to build photoelectric devices.

  2. Modulation and multiplexing in ultra-broadband photonic internet: Part II

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  3. Modulation and multiplexing in ultra-broadband photonic internet: Part I

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  4. Shifting wavelengths of ultraweak photon emissions from dying melanoma cells: their chemical enhancement and blocking are predicted by Cosic's theory of resonant recognition model for macromolecules.

    PubMed

    Dotta, Blake T; Murugan, Nirosha J; Karbowski, Lukasz M; Lafrenie, Robert M; Persinger, Michael A

    2014-02-01

    During the first 24 h after removal from incubation, melanoma cells in culture displayed reliable increases in emissions of photons of specific wavelengths during discrete portions of this interval. Applications of specific filters revealed marked and protracted increases in infrared (950 nm) photons about 7 h after removal followed 3 h later by marked and protracted increases in near ultraviolet (370 nm) photon emissions. Specific wavelengths within the visible (400 to 800 nm) peaked 12 to 24 h later. Specific activators or inhibitors for specific wavelengths based upon Cosic's resonant recognition model elicited either enhancement or diminishment of photons at the specific wavelength as predicted. Inhibitors or activators predicted for other wavelengths, even within 10 nm, were less or not effective. There is now evidence for quantitative coupling between the wavelength of photon emissions and intrinsic cellular chemistry. The results are consistent with initial activation of signaling molecules associated with infrared followed about 3 h later by growth and protein-structural factors associated with ultraviolet. The greater-than-expected photon counts compared with raw measures through the various filters, which also function as reflective material to other photons, suggest that photons of different wavelengths might be self-stimulatory and could play a significant role in cell-to-cell communication.

  5. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  6. Study of photon emission by electron capture during solar nuclei acceleration. 3: Photon production evaluations

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Gallegos, A.

    1985-01-01

    Lower limits of photon fluxes were evaluated from electron capture during acceleration in solar flares, because the arbitrary q sub c asterisk assumed in this work evolves very slow with velocity, probably much more slowly than the physical actual situation: in fact, more emission is expected toward the IR region. Nevertheless the authors claim to show that the factibility of sounding acceleration processes, charge evolution processes and physical parameters of the source itself, by the observational analysis of this kind of emissions. For instance, it would be interesting to search observationally, for the predicted flux and energy drift of F sub e ions interacting with the atomic 0 and F sub e of the source matter, or, even more feasible for the X-ray lines at 4.2 keV and 2.624 + 0.003 KeV from Fe and S ions in ionized Fe at T = 10 to the 7th power K respectively, the 418 + or - 2 eV and 20 + or - 4 eV lines of Fe and S in ionized Fe at 5 x 10 to the 6th power K, which are predicted from Fermi acceleration.

  7. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  8. Spontaneous ultraweak photon emission from biological systems and the endogenous light field.

    PubMed

    Schwabl, Herbert; Klima, Herbert

    2005-04-01

    Still one of the most astonishing biological electromagnetic phenomena is the ultraweak photon emission (UPE) from living systems. Organisms and tissues spontaneously emit measurable intensities of light, i.e. photons in the visible part of the electromagnetic spectrum (380-780 nm), in the range from 1 to 1,000 photons x s-1 x cm-2, depending on their condition and vitality. It is important not to confuse UPE from living systems with other biogenic light emitting processes such as bioluminescence or chemiluminescence. This article examines with basic considerations from physics on the quantum nature of photons the empirical phenomenon of UPE. This leads to the description of the non-thermal origin of this radiation. This is in good correspondence with the modern understanding of life phenomena as dissipative processes far from thermodynamic equilibrium. UPE also supports the understanding of life sustaining processes as basically driven by electromagnetic fields. The basic features of UPE, like intensity and spectral distribution, are known in principle for many experimental situations. The UPE of human leukocytes contributes to an endogenous light field of about 1011 photons x s-1 which can be influenced by certain factors. Further research is needed to reveal the statistical properties of UPE and in consequence to answer questions about the underlying mechanics of the biological system. In principle, statistical properties of UPE allow to reconstruct phase-space dynamics of the light emitting structures. Many open questions remain until a proper understanding of the electromagnetic interaction of the human organism can be achieved: which structures act as receptors and emitters for electromagnetic radiation? How is electromagnetic information received and processed within cells?

  9. High-efficiency AlxGa1-xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters

    NASA Astrophysics Data System (ADS)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng

    2018-04-01

    A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.

  10. Instrument for all-fiber structure measurement of ultra-low turbidity by using single photon detection technique

    NASA Astrophysics Data System (ADS)

    Qin, Feihu; Hu, Juntao; Wang, Huanqin; Gui, Huaqiao; Liu, Jianguo; Lü, Liang; Kong, Deyi; Zhang, Jian; Han, Xia; Wang, Tianli

    2017-10-01

    An all-fiber structure detection system based on single photon detection technique(SPDT) has been developed to measure the ultra-low turbidity ofliquids. To assure the measurement accuracy,the total intensity of transmission light has been detected and quantified as number of photons by avalanche photodiode (APD) which has the advantage of high sensitivity.A fresh all-fiber structure optical fiber probe based on SPDT is applied in the system to reduce the volume and fluctuation of traditional transmission-light measurement system,in which the all-fiber structure probe is used to delivery and collection of transmission light.On the basis of Beer-Lambert (B-L) transmission law,a test system has been established and carried out a series of experiments.By combining B-Llaw with the principle of SPDT,a novel model for detecting turbidity has been proposed to explain the experimental results.The results have shown a well exponential relationship over the range of 0.01-1NTU (Nephelometric Turbidity Units).It also has showna good linear relationship with a resolution as high as 0.01NTUin the range of 0.01-0.09 NTU.When it is 1 secondofthe sampling time,the mean error of measurement result can be controlled within 5% of full scale.In addition,the new detection structure proposed in this paper, which makes the system more compact and more suitable in the small special space.

  11. Review on Dark Photon

    NASA Astrophysics Data System (ADS)

    Curciarello, Francesca

    2016-04-01

    e+e- collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ɛ2 between the photon and the dark photon by e+e- collider experiments.

  12. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    DOE PAGES

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; ...

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less

  13. Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis

    NASA Astrophysics Data System (ADS)

    Begum, Feroza; Namihira, Yoshinori; Kinjo, Tatsuya; Kaijage, Shubi

    2011-02-01

    This paper presents a simple index-guiding square photonic crystal fiber (SPCF) where the core is surrounded by air holes with two different diameters. The proposed design is simulated through an efficient full-vector modal solver based on the finite difference method with anisotropic perfectly matched layers absorbing boundary condition. The nearly zero ultra-flattened dispersion SPCF with low confinement loss, small effective area as well as broadband supercontinuum (SC) spectra is targeted. Numerical results show that the designed SPCF has been achieved at a nearly zero ultra-flattened dispersion of 0 ± 0.25 ps/(nm·km) in a wavelength range of 1.38 μm to 1.89 μm (510 nm band) which covers E, S, C, L and U communication bands, a low confinement loss of less than 10 -7 dB/m in a wavelength range of 1.3 μm to 2.0 μm and a wide SC spectrum (FWHM = 450 nm) by using picosecond pulses at a center wavelength of 1.55 μm. We then analyze the sensitivity of chromatic dispersion to small variations from the optimum value of specific structural parameters. The proposed index-guiding SPCF can be applicable in supercontinuum generation (SCG) covering such diverse fields as spectroscopy applications and telecommunication dense wavelength division multiplexing (DWDM) sources.

  14. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband.

    PubMed

    Tang, Haitao; Yu, Yuan; Wang, Ziwei; Xu, Lu; Zhang, Xinliang

    2018-05-15

    A novel wideband tunable optoelectronic oscillator based on a microwave photonic filter (MPF) with an ultra-narrow passband is proposed and experimentally demonstrated. The single-passband MPF is realized by cascading an MPF based on stimulated Brillouin scattering and an infinite impulse response (IIR) MPF based on an active fiber recirculating delay loop. The measured full width at half-maximum bandwidth of the cascaded MPFs is 150 kHz. To the best of my knowledge, this is the first time realizing such a narrow passband in single-passband MPF. The oscillation frequency of the OEO can be tuned from 0 to 40 GHz owing to the wideband tunability of the MPF. Thanks to the ultrahigh mode selectivity of the IIR filter, the mode hopping is successfully suppressed. A stable microwave signal at 8.18 GHz is obtained with a phase noise of -113  dBc/Hz at 10 kHz, and the side mode noise is below -95  dBc/Hz. The signal-to-noise ratio exceeds 50 dB during the tuning process.

  15. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    NASA Technical Reports Server (NTRS)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  16. Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory.

    PubMed

    Woon, Kai L; O'Neill, Mary; Richards, Gary J; Aldred, Matthew P; Kelly, Stephen M

    2005-04-01

    The helical structure of uniformly aligned chiral nematic liquid crystals results in a photonic stopband for only one sense of circular polarization. The spectroscopic Stokes polarimeter is used to analyze spontaneous emission in the stopband. Highly polarized photoluminescence is found and the polarization properties vary with the excitation wavelength. Spontaneous emission is enhanced at the stopband edge and this Purcell effect is greater on excitation at wavelengths where the absorption coefficient is low. This is interpreted as greater overlap between the excited molecules and the electrical modal field of the resonant modes at the stopband edge. Photoluminescence detected from the excitation face of the liquid crystal cell is less polarized because of photon tunneling. Fermi's golden rule in conjunction with Stokes vectors is used to model the polarization of emission taking multiple reflections at the interfaces of the cell into account. The discrepancy between the experiment and the theoretical model is interpreted as direct experimental evidence that virtual photons, which originate from zero point fluctuations of quantum space, are randomly polarized.

  17. Applications of high-dimensional photonic entaglement

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.

    This thesis presents the results of four experiments related to applications of higher dimensional photonic entanglement. (1) We use energy-time entangled biphotons from spontaneous parametric down-conversion (SPDC) to implement a large-alphabet quantum key distribution (QKD) system which securely transmits up to 10 bits of the random key per photon. An advantage over binary alphabet QKD is demonstrated for quantum channels with a single-photon transmission-rate ceiling. The security of the QKD system is based on the measurable reduction of entanglement in the presence of eavesdropping. (2) We demonstrate the preservation of energy-time entanglement in a tunable slow-light medium. The fine-structure resonances of a hot Rubidium vapor are used to slow one photon from an energy-time entangled biphoton generated with non-degenerate SPDC. The slow-light medium is placed in one arm of a Franson interferometer. The observed Franson fringes witness the presence of entanglement and quantify a delay of 1.3 biphoton correlation lengths. (3) We utilize holograms to discriminate between two spatially-coherent single-photon images. Heralded single photons are created with degenerate SPDC and sent through one of two transmission masks to make single-photon images with no spatial overlap. The single-photon images are sent through a previously prepared holographic filter. The filter discriminates the single-photon images with an average confidence level of 95%. (4) We employ polarization entangled biphotons generated from non-collinear SPDC to violate a generalized Leggett-Garg inequality with non-local weak measurements. The weak measurement is implemented with Fresnel reflection of a microscope coverslip on one member of the entangled biphoton. Projective measurement with computer-controlled polarizers on the entangled state after the weak measurement yields a joint probability with three degrees of freedom. Contextual values are then used to determine statistical averages of

  18. Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation.

    PubMed

    Russier-Antoine, Isabelle; Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Dugourd, Philippe; Sanader, Željka; Bonačić-Koutecký, Vlasta; Brevet, Pierre-François; Antoine, Rodolphe

    2016-02-07

    We demonstrate that the tuning of the light emission from red to blue in dihydrolipoic acid (DHLA) capped Ag29 nanoclusters can be trigged with one and two photon excitations. The cluster stoichiometry was determined with mass spectrometry and found to be Ag29(DHLA)12. In a detailed optical investigation, we show that these silver nanoclusters exhibit a strong red photoluminescence visible to the naked eye and characterized by a quantum yield of nearly ∼2% upon one-photon excitation. In the nonlinear optical (NLO) study of the properties of the clusters, the two-photon excited fluorescence spectra were recorded and their first hyperpolarizability obtained. The two-photon absorption cross-section at ∼800 nm for Ag29(DHLA)12 is higher than 10(4) GM and the hyperpolarizability is 106 × 10(-30) esu at the same excitation wavelength. The two-photon excited fluorescence spectrum appears strongly blue-shifted as compared to the one-photon excited spectrum, displaying a broad band between 400 and 700 nm. The density functional theory (DFT) provides insight into the structural and electronic properties of Ag29(DHLA)12 as well as into interplay between metallic subunit or core and ligands which is responsible for unique optical properties.

  19. Chem/bio sensing with non-classical light and integrated photonics.

    PubMed

    Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B

    2018-01-29

    Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.

  20. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    PubMed

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.

  1. Photon sieve telescope

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Tullson, Drew

    2006-06-01

    In designing next-generation, ultra-large (>20m) apertures for space, many current concepts involve compactable, curved membrane reflectors. Here we present the idea of using a flat diffractive element that requires no out-of-plane deformation and so is much simpler to deploy. The primary is a photon sieve - a diffractive element consisting of a large number of precisely positioned holes distributed according to an underlying Fresnel Zone Plate (FZP) geometry. The advantage of the photon sieve over the FZP is that all the regions are connected, so the membrane substrate under simple tension can avoid buckling. Also, the hole distribution can be varied to generate any conic or apodization for specialized telescope requirements such as exo-solar planet detection. We have designed and tested numerous photon sieves as telescope primaries. Some of these have over 10 million holes in a 0.1 m diameter aperture and all of them give diffraction limited imaging. While photon sieves are diffractive elements and thus suffer from dispersion, we will present two successful solutions to this problem.

  2. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.

    PubMed

    Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard

    2017-10-11

    Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.

  3. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  4. The spurious response of microwave photonic mixer

    NASA Astrophysics Data System (ADS)

    Xiao, Yongchuan; Zhong, Guoshun; Qu, Pengfei; Sun, Lijun

    2018-02-01

    Microwave photonic mixer is a potential solution for wideband information systems due to the ultra-wide operating bandwidth, high LO-to-RF isolation, the intrinsic immunity to electromagnetic interference, and the compatibility with exsiting microwave photonic transmission systems. The spurious response of microwave photonic mixer cascading in series a pair of Mach-Zehnder interferometric intensity modulators has been simulated and analyzed in this paper. The low order spurious products caused by the nonlinearity of modulators are non-negligible, and the proper IF frequency and accurate bias-controlling are of great importance to mitigate the impact of spurious products.

  5. Time-resolved measurement of photon emission during fast crack propagation in three-point bending fracture of silica glass and soda lime glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi

    2014-03-10

    Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645–655 nm) was observed during the entire crack propagation process, whereas intense PE (430–490 nm and 500–600 nm) was observed during the initial stages of propagation. In contrast, onlymore » weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.« less

  6. Silicon-graphene photonic devices

    NASA Astrophysics Data System (ADS)

    Yin, Yanlong; Li, Jiang; Xu, Yang; Tsang, Hon Ki; Dai, Daoxin

    2018-06-01

    Silicon photonics has attracted much attention because of the advantages of CMOS (complementary-metal-oxide-semiconductor) compatibility, ultra-high integrated density, etc. Great progress has been achieved in the past decades. However, it is still not easy to realize active silicon photonic devices and circuits by utilizing the material system of pure silicon due to the limitation of the intrinsic properties of silicon. Graphene has been regarded as a promising material for optoelectronics due to its unique properties and thus provides a potential option for realizing active photonic integrated devices on silicon. In this paper, we present a review on recent progress of some silicon-graphene photonic devices for photodetection, all-optical modulation, as well as thermal-tuning. Project supported by the National Major Research and Development Program (No. 2016YFB0402502), the National Natural Science Foundation of China (Nos. 11374263, 61422510, 61431166001, 61474099, 61674127), and the National Key Research and Development Program (No. 2016YFA0200200).

  7. The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Paalvast, Mieke; Boogaard, Leindert; Maseda, Michael; Bacon, Roland; Blaizot, Jérémy; Brinchmann, Jarle; Epinat, Benoît; Feltre, Anna; Marino, Raffaella Anna; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Verhamme, Anne; Weilbacher, Peter M.; Wisotzki, Lutz

    2017-11-01

    Non-resonant Fe II* (λ2365, λ2396, λ2612, λ2626) emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3.15' × 3.15' mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 Fe II* emitters and 50 MgIII (λλ2796,2803) emitters from a sample of 271 [O II]λλ3726,3729 emitters with reliable redshifts from z = 0.85-1.50 down to 2 × 10-18 (3σ) ergs s-1 cm-2 (for [O II]), covering the M⋆ range from 108-1011 M⊙. The Fe II* and Mg II emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 109 M⊙ and star formation rates (SFRs) of ≲ 1 M⊙ yr-1 have MgIII emission without accompanying Fe II* emission, whereas galaxies with masses above 1010 M⊙ and SFRs ≳ 10 M⊙ yr-1 have Fe II* emission without accompanying MgIII emission. Between these two regimes, galaxies have both MgIII and Fe II* emission, typically with MgIII P Cygni profiles. Indeed, the MgIII profile shows a progression along the main sequence from pure emission to P Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgIII emission profiles have lower SFR surface densities than those with either MgIII P Cygni profiles or Fe II* emission. These spectral signatures produced through continuum scattering and fluorescence, MgIII P Cygni profiles and Fe II* emission, are better candidates for tracing galactic outflows than pure MgIII emission, which may originate from HIII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeIII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.

  8. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    PubMed

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  9. A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.

    2009-06-01

    In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.

  10. Photonic Bandgaps in Photonic Molecules

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  11. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  12. Single photon emission computed tomography (SPECT) in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promotedmore » as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.« less

  13. Photonic band edge assisted spontaneous emission enhancement from all Er3+ 1-D photonic band gap structure

    NASA Astrophysics Data System (ADS)

    Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.

    2018-06-01

    All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.

  14. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    PubMed

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  15. AURORA on MEGSAT 1: a photon counting observatory for the Earth UV night-sky background and Aurora emission

    NASA Astrophysics Data System (ADS)

    Monfardini, A.; Trampus, P.; Stalio, R.; Mahne, N.; Battiston, R.; Menichelli, M.; Mazzinghi, P.

    2001-08-01

    A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed ``Notte'' and the Aurora emission with ``Alba''. AURORA, this is the name of the experiment, will determine, with the ``Notte'' channel, the overall night-side photon background in the 300-400nm spectral range, together with a particular 2+N2 line (λc=337nm). The ``Alba'' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6nm) centered on: 367nm (continuum evaluation), 391nm (1-N+2), 535nm (continuum evaluation), 560nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 ``Satan'' rocket. The satellite orbit is nearly circular (hapogee=648km, /e=0.0022), and the inclination of the orbital plane is 64.56°. An overview of the techniques adopted is given in this paper.

  16. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.

    PubMed

    Le, Khai Q; John, Sajeev

    2014-01-13

    We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.

  17. Extracting joint weak values with local, single-particle measurements.

    PubMed

    Resch, K J; Steinberg, A M

    2004-04-02

    Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of particles. Unfortunately, such nonlocal or joint observables often prove difficult to measure directly in practice (for instance, in optics-a common testing ground for this technique-strong photon-photon interactions would be needed to implement an appropriate von Neumann interaction). Here we derive a general, experimentally feasible, method for extracting these joint weak values from correlations between single-particle observables.

  18. Study of Ultra-High Energy Cosmic Rays from Extensive Air Showers Radio Emission

    NASA Astrophysics Data System (ADS)

    Petrov, Igor; Kozlov, Vladimir; Petrov, Zim; Knurenko, Stanislav; Pravdin, Mikhail

    The study of cosmic rays with the help of radio detection from extensive air showers may be an alternative to traditional detecting methods, which use a large area array installed with hundreds and thousands of scintillation detectors for charged particles, or the detectors of measuring the emission produced by relativistic particles of EAS in the optical wavelengths. Processes that lead to the emission of electromagnetic radiation are well known and calculations show that the air shower radio emission depends on the processes of development of the electromagnetic cascade, i.e. related with the longitudinal development of the shower, with the magnetic field near sea level etc. In this regard, there is a question to establish the correlation between characteristics of EAS both longitudinal and lateral development and radio emission parameters observed when air shower particles pass through the atmosphere. For this purpose, in Yakutsk, radio array for detecting air shower radio emission was established. The array consists of the antenna field on which crossed antennas are installed; antennas oriented E - W and N - S. Radio emission measurements are conducted at frequency 32 MHz, free from industrial noise. In 2008 - 2013 years, Yakutsk array has measured several seasons of registration of EAS events, including showers with energies above 10 (19) eV. In the course of the data analysis the following results were obtained: a) lateral distribution of the radio signal plotted as a function of distance from the shower axis ; b) a correlation between the amplitude of the radio signal with the energy of the shower, which is determined by measuring the fluxes of charged particles , muons and EAS Cerenkov radiation (energy balance method); c) we made evaluation of the depth of maximum development of the shower using form of radio emission LDF measured in ultra-high energy showers; g) a comparison of the Yakutsk array data with data from other arrays.

  19. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    PubMed

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  20. Microwave photonics with superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco

    2017-11-01

    In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

  1. Possibility of using salivary ultra-weak chemiluminescence as a biomarker for feelings of anxiety in hospital settings.

    PubMed

    Hiramatsu, Mitsuo; Chida, Kingo; Hashimoto, Dai; Takamoto, Hisayoshi; Honzawa, Katsu; Okada, Hiroyuki; Nakamura, Kimitsugu; Takagi, Kuniaki

    2016-11-01

    The aim of this study was to assess whether a particular value of noninvasive salivary ultra-weak chemiluminescence (UCL) could be used as a biomarker of psychological stress. Our study covered two groups. Group 1 comprised six healthy volunteers who stayed in a hospital for one night and group 2 comprised 15 patients with lung cancer and 24 patients with respiratory diseases other than lung cancer who were in hospital for an extended stay. First, we evaluated the UCL of saliva from six healthy volunteers before and after one night in hospital. Immunoglobulin A (IgA) concentrations were also measured. The integrated intensity value of UCL was correlated with the IgA concentration (correlation coefficient 0.90). Second, in the case of a long hospital stay, we found that the maximum salivary UCL intensities were higher in patients with lung cancer than in those with respiratory diseases other than lung cancer or in 28 healthy controls. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Ultra-high-Q three-dimensional photonic crystal nano-resonators.

    PubMed

    Tang, Lingling; Yoshie, Tomoyuki

    2007-12-10

    Two nano-resonator modes are designed in a woodpile three-dimensional photonic crystal by the modulation of unit cell size along a low-loss optical waveguide. One is a dipole mode with 2.88 cubic half-wavelengths mode volume. The other is a quadrupole mode with 8.3 cubic half-wavelengths mode volume. Light is three-dimensionally confined by a complete photonic band gap so that, in the analyzed range, the quality factor exponentially increases as the increase in the number of unit cells used for confinement of light.

  3. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  4. Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving.

    PubMed

    Yin, Tai-Shuang; Lü, Xin-You; Wan, Liang-Liang; Bin, Shang-Wu; Wu, Ying

    2018-05-01

    We propose a scheme to significantly enhance the cross-Kerr (CK) nonlinearity between photons and phonons in a quadratically coupled optomechanical system (OMS) with two-photon driving. This CK nonlinear enhancement originates from the parametric-driving-induced squeezing and the underlying nonlinear optomechanical interaction. Moreover, the noise of the squeezed mode can be suppressed completely by introducing a squeezed vacuum reservoir. As a result of this dramatic nonlinear enhancement and the suppressed noise, we demonstrate the feasibility of the quantum nondemolition measurement of the phonon number in an originally weak coupled OMS. In addition, the photon-phonon blockade phenomenon is also investigated in this regime, which allows for performing manipulations between photons and phonons. This Letter offers a promising route towards the potential application for the OMS in quantum information processing and quantum networks.

  5. Photon emission from melanoma cells during brief stimulation by patterned magnetic fields: is the source coupled to rotational diffusion within the membrane?

    PubMed

    Dotta, Blake T; Lafrenie, Robert M; Karbowski, Lukasz M; Persinger, Michael A

    2014-01-01

    If parameters for lateral diffusion of lipids within membranes are macroscopic metaphors of the angular magnetic moment of the Bohr magneton then the energy emission should be within the visible wavelength for applied ~1 µT magnetic fields. Single or paired digital photomultiplier tubes (PMTs) were placed near dishes of ~1 million B16 mouse melanoma cells that had been removed from incubation. In very dark conditions (10(-11) W/m(2)) different averaged (RMS) intensities between 5 nT and 3.5 µT were applied randomly in 4 min increments. Numbers of photons were recorded directly over or beside the cell dishes by PMTs placed in pairs within various planes. Spectral analyses were completed for photon power density. The peak photon emissions occurred around 1 µT as predicted by the equation. Spectra analyses showed reliable discrete peaks between 0.9 and 1.8 µT but not for lesser or greater intensities; these peak frequencies corresponded to the energy difference of the orbital-spin magnetic moment of the electron within the applied range of magnetic field intensities and the standard solution for Rydberg atoms. Numbers of photons from cooling cells can be modified by applying specific intensities of temporally patterned magnetic fields. There may be a type of "cellular" magnetic moment that, when stimulated by intensity-tuned magnetic fields, results in photon emissions whose peak frequencies reflect predicted energies for fundamental orbital/spin properties of the electron and atomic aggregates with large principal quantum numbers.

  6. Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion

    NASA Astrophysics Data System (ADS)

    Yanez, Ciceron

    2009-12-01

    Two-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that 2PA enables has been used to induce photochemical and photophysical events in increasingly smaller volumes and allowed nonlinear, 2PA-based, technologies to reach sub-diffraction limit resolutions. The primary focus of this dissertation is the development of novel, efficient 2PA, fluorene-based molecules to be used either as photoacid generators (PAGs) or fluorophores. A second aim is to develop more effective methods of synthesizing these compounds. As a third and final objective, the new molecules were used to develop a write-once-read many (WORM) optical data storage system, and stimulated emission depletion probes for bioimaging. In Chapter I, the microwave-assisted synthesis of triarylsulfonium salt photoacid generators (PAGs) from their diphenyliodonium counterparts is reported. The microwave-assisted synthesis of these novel sulfonium salts afforded reaction times 90 to 420 times faster than conventional thermal conditions, with photoacid quantum yields of new sulfonium PAGs ranging from 0.01 to 0.4. These PAGs were used to develop a fluorescence readout-based, nonlinear three-dimensional (3D) optical data storage system (Chapter II). In this system, writing was achieved by acid generation upon two-photon absorption (2PA) of a PAG (at 710 or 730 nm). Readout was then performed by interrogating two-photon absorbing dyes, after protonation, at 860 nm. Two-photon recording and readout of voxels was demonstrated in five and eight consecutive, crosstalk-free layers within a

  7. On Using a Space Telescope to Detect Weak-lensing Shear

    NASA Astrophysics Data System (ADS)

    Tung, Nathan; Wright, Edward

    2017-11-01

    Ignoring redshift dependence, the statistical performance of a weak-lensing survey is set by two numbers: the effective shape noise of the sources, which includes the intrinsic ellipticity dispersion and the measurement noise, and the density of sources that are useful for weak-lensing measurements. In this paper, we provide some general guidance for weak-lensing shear measurements from a “generic” space telescope by looking for the optimum wavelength bands to maximize the galaxy flux signal-to-noise ratio (S/N) and minimize ellipticity measurement error. We also calculate an effective galaxy number per square degree across different wavelength bands, taking into account the density of sources that are useful for weak-lensing measurements and the effective shape noise of sources. Galaxy data collected from the ultra-deep UltraVISTA Ks-selected and R-selected photometric catalogs (Muzzin et al. 2013) are fitted to radially symmetric Sérsic galaxy light profiles. The Sérsic galaxy profiles are then stretched to impose an artificial weak-lensing shear, and then convolved with a pure Airy Disk PSF to simulate imaging of weak gravitationally lensed galaxies from a hypothetical diffraction-limited space telescope. For our model calculations and sets of galaxies, our results show that the peak in the average galaxy flux S/N, the minimum average ellipticity measurement error, and the highest effective galaxy number counts all lie around the K-band near 2.2 μm.

  8. Design of ultra compact polarization splitter based on complete photonic band gap

    NASA Astrophysics Data System (ADS)

    Sinha, R. K.; Nagpal, Yogita

    2005-11-01

    Certain select structures in photonic crystals (PhCs) exhibit complete photonic band gap i.e. a frequency region where the photonic band gaps for both polarizations (i.e. transverse electric and transverse magnetic modes) exist and overlap. One of the most fundamental applications of the photonic band gap structures is the design of photonic crystal waveguides, which can be made by inserting linear defects in the photonic crystal structures. By setting closely two parallel 2D PhC waveguides, a directional waveguide coupler can be designed, which can be used to design a polarization splitter. In this paper we design a polarization splitter in a photonic crystal structure composed of two dimensional honeycomb pattern of dielectric rods in air. This photonic crystal structure exhibits a complete photonic band gap that extends from λ = 1.49 μm to λ = 1.61 μm, where lambda is the wavelength in free space, providing a large bandwidth of 120 nm. A polarization splitter can be made by designing a polarization selective coupler. The coupling lengths at various wavelengths for both polarizations have been calculated using the Finite Difference Time Domain method. It has been shown that the coupling length, for TE polarization is much smaller as compared to that for the TM polarization. This principle is used to design a polarization splitter of length 32 μm at λ = 1.55 μm. Further, the spectral response of the extinction ratios for both polarizations in the two waveguides at propagation distance of 32 μm has been studied.

  9. A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band

    NASA Astrophysics Data System (ADS)

    Zeuner, Katharina D.; Paul, Matthias; Lettner, Thomas; Reuterskiöld Hedlund, Carl; Schweickert, Lucas; Steinhauer, Stephan; Yang, Lily; Zichi, Julien; Hammar, Mattias; Jöns, Klaus D.; Zwiller, Val

    2018-04-01

    The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 μm with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths.

  10. An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg

    Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokesmore » shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.« less

  11. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  12. Photonic generation of background-free millimeter-wave ultra-wideband pulses based on a single dual-drive Mach-Zehnder modulator.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua

    2014-03-01

    We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach-Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.

  13. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dusanowski, Ł., E-mail: lukasz.dusanowski@pwr.edu.pl; Syperek, M.; Misiewicz, J.

    2016-04-18

    We report on single photon emission from a self-assembled InAs/InGaAlAs/InP quantum dash emitting at 1.55 μm at the elevated temperatures. The photon auto-correlation histograms of the emission from a charged exciton indicate clear antibunching dips with as-measured g{sup (2)}(0) values significantly below 0.5 recorded at temperatures up to 80 K. It proves that the charged exciton complex in a single quantum dash of the mature InP-based material system can act as a true single photon source up to at least liquid nitrogen temperature. This demonstrates the huge potential of InAs on InP nanostructures as the non-classical light emitters for long-distance fiber-based securemore » communication technologies.« less

  14. Photon-detections via probing the switching current shifts of Josephson junctions

    NASA Astrophysics Data System (ADS)

    Wang, Yiwen; Zhou, Pinjia; Wei, Lianfu; Zhang, Beihong; Wei, Qiang; Zhai, Jiquan; Xu, Weiwei; Cao, Chunhai

    2015-08-01

    Phenomenally, Cooper pairs can be broken up by external energy and thus the Cooper-pair density in the superconducting electrodes of a Josephson junction (JJ) under radiation can be lowered accordingly. Therefore, by probing the shift of the switching current through the junction, the radiation power absorbed by the superconductors can be detected. Here, we experimentally demonstrate weak optical detections in two types of JJs: Al/AlOx/Al junction (Al-J) and Nb/AlOx/Nb junction (Nb-J), with the superconducting transition temperatures Tc ≈ 1.2K and 6.8 K respectively. The photon-induced switching current shifts are measured at ultra-low temperature (T ≈ 16mK) in order to significantly suppress thermal noises. It is observed that the Al-J has a higher sensitivity than the Nb-J, which is expected since Al has a smaller superconducting gap energy than Nb. The minimum detectable optical powers (at 1550 nm) with the present Al-J and Nb-J are measured as 8 pW and 2 nW respectively, and the noise equivalent power (NEP) are estimated to be 7 ×10-11W /√{ Hz } (for Nb-J) and 3 ×10-12W /√{ Hz } (for Al-J). We also find that the observed switching current responses are dominated by the photon-induced thermal effects. Several methods are proposed to further improve the device sensitivity, so that the JJ based devices can be applicable in photon detections.

  15. Novel carbazole derivatives with quinoline ring: synthesis, electronic transition, and two-photon absorption three-dimensional optical data storage.

    PubMed

    Li, Liang; Wang, Ping; Hu, Yanlei; Lin, Geng; Wu, Yiqun; Huang, Wenhao; Zhao, Quanzhong

    2015-03-15

    We designed carbazole unit with an extended π conjugation by employing Vilsmeier formylation reaction and Knoevenagel condensation to facilitate the functional groups of quinoline from 3- or 3,6-position of carbazole. Two compounds doped with poly(methyl methacrylate) (PMMA) films were prepared. To explore the electronic transition properties of these compounds, one-photon absorption properties were experimentally measured and theoretically calculated by using the time-dependent density functional theory. We surveyed these films by using an 800 nm Ti:sapphire 120-fs laser with two-photon absorption (TPA) fluorescence emission properties and TPA coefficients to obtain the TPA cross sections. A three-dimensional optical data storage experiment was conducted by using a TPA photoreaction with an 800 nm-fs laser on the film to obtain a seven-layer optical data storage. The experiment proves that these carbazole derivatives are well suited for two-photon 3D optical storage, thus laying the foundation for the research of multilayer high-density and ultra-high-density optical information storage materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zong, Z.

    2017-04-01

    A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1-2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km-2 sr-1 yr-1 are derived at 95% C.L. for energy thresholds of 1, 2, 3, 5 and 10 EeV. These limits bound the fractions of photons in the all-particle integral flux below 0.1%, 0.15%, 0.33%, 0.85% and 2.7%. For the first time the photon fraction at EeV energies is constrained at the sub-percent level. The improved limits are below the flux of diffuse photons predicted by some astrophysical scenarios for cosmogenic photon production. The new results rule-out the early top-down models - in which ultra-high energy cosmic rays are produced by, e.g., the decay of super-massive particles - and challenge the most recent super-heavy dark matter models.

  17. Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Liao, Tianjun; Zhang, Yanchao

    2016-01-28

    A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gapmore » length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.« less

  18. The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-feng

    2012-05-01

    The mechanism and properties of bio-photon emission and absorption in bio-tissues were studied using Pang's theory of bio-energy transport, in which the energy spectra of protein molecules are obtained from the discrete dynamic equation. From the energy spectra, it was determined that the protein molecules could both radiate and absorb bio-photons with wavelengths of <3 μm and 5-7 μm, consistent with the energy level transitions of the excitons. These results were consistent with the experimental data; this consisted of infrared absorption data from collagen, bovine serum albumin, the protein-like molecule acetanilide, plasma, and a person's finger, and the laser-Raman spectra of acidity I-type collagen in the lungs of a mouse, and metabolically active Escherichia coli. We further elucidated the mechanism responsible for the non-thermal biological effects produced by the infrared light absorbed by the bio-tissues, using the above results. No temperature rise was observed; instead, the absorbed infrared light promoted the vibrations of amides as well the transport of the bio-energy from one place to other in the protein molecules, which changed their conformations. These experimental results, therefore, not only confirmed the validity of the mechanism of bio-photon emission, and the newly developed theory of bio-energy transport mentioned above, but also explained the mechanism and properties of the non-thermal biological effects produced by the absorption of infrared light by the living systems.

  19. Photon Statistics of Propagating Thermal Microwaves.

    PubMed

    Goetz, J; Pogorzalek, S; Deppe, F; Fedorov, K G; Eder, P; Fischer, M; Wulschner, F; Xie, E; Marx, A; Gross, R

    2017-03-10

    In experiments with superconducting quantum circuits, characterizing the photon statistics of propagating microwave fields is a fundamental task. We quantify the n^{2}+n photon number variance of thermal microwave photons emitted from a blackbody radiator for mean photon numbers, 0.05≲n≲1.5. We probe the fields using either correlation measurements or a transmon qubit coupled to a microwave resonator. Our experiments provide a precise quantitative characterization of weak microwave states and information on the noise emitted by a Josephson parametric amplifier.

  20. Photon Statistics of Propagating Thermal Microwaves

    NASA Astrophysics Data System (ADS)

    Goetz, J.; Pogorzalek, S.; Deppe, F.; Fedorov, K. G.; Eder, P.; Fischer, M.; Wulschner, F.; Xie, E.; Marx, A.; Gross, R.

    2017-03-01

    In experiments with superconducting quantum circuits, characterizing the photon statistics of propagating microwave fields is a fundamental task. We quantify the n2+n photon number variance of thermal microwave photons emitted from a blackbody radiator for mean photon numbers, 0.05 ≲n ≲1.5 . We probe the fields using either correlation measurements or a transmon qubit coupled to a microwave resonator. Our experiments provide a precise quantitative characterization of weak microwave states and information on the noise emitted by a Josephson parametric amplifier.

  1. Absolute Two-Photon Absorption Coefficients in UltraViolet Window Materials

    DTIC Science & Technology

    1977-12-01

    fvtt* tld » II ntctHB,-y md Idtnlll’ by block number; The absolute two-photon absorption coefficiehts of u. v. transmitting materials have been...measured using well-calibrated single picosecond pulses, at the third and fourth harmonic of a mode locked Nd:YAG laser systems. Twc photon...30, 1977. Work in the area of laser induced breakdown and multiphoton absorption in ultraviolet and infrared laser window materials was carried

  2. Enhanced emission of quantum dots embedded within the high-index dielectric regions of photonic crystal slabs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Gloria G.; Naughton, Matt S.; Kenis, Paul J. A.

    2016-04-25

    We demonstrate a method for combining sputtered TiO{sub 2} deposition with liquid phase dip-coating of a quantum dot (QD) layer that enables precise depth placement of QD emitters within a high-index dielectric film, using a photonic crystal (PC) slab resonator to demonstrate enhanced emission from the QDs when they are located at a specific depth within the film. The depth of the QDs within the PC is found to modulate the resonant wavelength of the PC as well as the emission enhancement efficiency, as the semiconducting material embedded within the dielectric changes its spatial overlap with the resonant mode.

  3. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

    NASA Astrophysics Data System (ADS)

    Zopf, Michael; Keil, Robert; Chen, Yan; HöFer, Bianca; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G.

    Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (< 1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum repeater - among many other key enabling quantum photonic elements - can be practically implemented with this new material. Financially supported by BMBF Q.Com-H (16KIS0106) and the Euro- pean Union Seventh Framework Programme 209 (FP7/2007-2013) under Grant Agreement No. 601126 210 (HANAS).

  4. Numerical demonstration of neuromorphic computing with photonic crystal cavities.

    PubMed

    Laporte, Floris; Katumba, Andrew; Dambre, Joni; Bienstman, Peter

    2018-04-02

    We propose a new design for a passive photonic reservoir computer on a silicon photonics chip which can be used in the context of optical communication applications, and study it through detailed numerical simulations. The design consists of a photonic crystal cavity with a quarter-stadium shape, which is known to foster interesting mixing dynamics. These mixing properties turn out to be very useful for memory-dependent optical signal processing tasks, such as header recognition. The proposed, ultra-compact photonic crystal cavity exhibits a memory of up to 6 bits, while simultaneously accepting bitrates in a wide region of operation. Moreover, because of the inherent low losses in a high-Q photonic crystal cavity, the proposed design is very power efficient.

  5. Recent advances and progress in photonic crystal-based gas sensors

    NASA Astrophysics Data System (ADS)

    Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan

    2017-05-01

    This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.

  6. Novel High Cooperativity Photon-Magnon Cavity QED

    NASA Astrophysics Data System (ADS)

    Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel

    Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.

  7. A semiconductor photon-sorter

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2016-10-01

    Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.

  8. Particulate Emissions from a Stationary Engine Fueled with Ultra-Low-Sulfur Diesel and Waste-Cooking-Oil-Derived Biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. [Box: see text].

  9. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  10. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, U.; Rao, B. S.; Arora, V.

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  11. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpeggiani, Filippo, E-mail: filippo.alpeggiani01@ateneopv.it; Andreani, Lucio Claudio; Gerace, Dario

    2015-12-28

    We introduce a confinement mechanism in photonic crystal slab cavities, which relies on the superposition of two incommensurate one-dimensional lattices in a line-defect waveguide. It is shown that the resulting photonic profile realizes an effective quasi-periodic bichromatic potential for the electromagnetic field confinement yielding extremely high quality (Q) factor nanocavities, while simultaneously keeping the mode volume close to the diffraction limit. We apply these concepts to pillar- and hole-based photonic crystal slab cavities, respectively, and a Q-factor improvement by over an order of magnitude is shown over existing designs, especially in pillar-based structures. Thanks to the generality and easy adaptationmore » of such confinement mechanism to a broad class of cavity designs and photonic lattices, this work opens interesting routes for applications where enhanced light–matter interaction in photonic crystal structures is required.« less

  12. Increasing power and amplified spontaneous emission suppression for weak signal amplification in pulsed fiber amplifier

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Zhang, Hanwei; Wang, Xiaolin; Su, Rongtao; Ma, Pengfei; Zhou, Pu; Jiang, Zongfu

    2017-10-01

    In the pulsed fiber amplifiers with repetition frequency of several tens kHz, amplified spontaneous emission (ASE) is easy to build up because of the low repetition frequency and weak pulse signal. The ASE rises the difficulty to amplify the weak pulse signal effectively. We have demonstrated an all-fiber preamplifier stage structure to amplify a 40 kHz, 10 ns bandwidth (FWHM) weak pulse signal (299 μW) with center wavelength of 1062 nm. Compared synchronous pulse pump with continuous wave(CW) pump, the results indicate that synchronous pulse pump shows the better capability of increasing the output power than CW pump. In the condition of the same pump power, the output power of synchronous pulse pump is twice as high as CW pump. In order to suppress ASE, a longer gain fiber is utilized to reabsorb the ASE in which the wavelength is shorter than 1062nm. We amplified weak pulse signal via 0.8 m and 2.1 m gain fiber in synchronous pulse pump experiments respectively, and more ASE in the output spectra are observed in the 0.8 m gain fiber system. Due to the weaker ASE and consequent capability of higher pump power, the 2.1 m gain fiber is capable to achieve higher output power than shorter fiber. The output power of 2.1 m gain fiber case is limited by pump power.

  13. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  14. The High Energy Photons Emission from Solar Flares Observed by SZ2-XD

    NASA Astrophysics Data System (ADS)

    Wang, Huanyu; Li, Xinqiao; Ma, Yuqian; Zhang, Chengmo; Xu, Yupeng; Wang, Jingzhou; Chen, Guoming

    The spectra and light curve of near a hundred Solar X-ray Flare events, which were observed by SZ2/XD in the energy band of 10-800 keV during 2001, have been investigated. The events covered from C to X-class flares, which are shown different characters of high energy photons emission. The results will be presented in this paper. The discussions will be made especially for 3 of the brightest X-class solar flares SF010402(X20),SF010406(X5.6) and SF010415 (X14.4, a GLE event).

  15. Representation of photon limited data in emission tomography using origin ensembles

    NASA Astrophysics Data System (ADS)

    Sitek, A.

    2008-06-01

    Representation and reconstruction of data obtained by emission tomography scanners are challenging due to high noise levels in the data. Typically, images obtained using tomographic measurements are represented using grids. In this work, we define images as sets of origins of events detected during tomographic measurements; we call these origin ensembles (OEs). A state in the ensemble is characterized by a vector of 3N parameters Y, where the parameters are the coordinates of origins of detected events in a three-dimensional space and N is the number of detected events. The 3N-dimensional probability density function (PDF) for that ensemble is derived, and we present an algorithm for OE image estimation from tomographic measurements. A displayable image (e.g. grid based image) is derived from the OE formulation by calculating ensemble expectations based on the PDF using the Markov chain Monte Carlo method. The approach was applied to computer-simulated 3D list-mode positron emission tomography data. The reconstruction errors for a 10 000 000 event acquisition for simulated ranged from 0.1 to 34.8%, depending on object size and sampling density. The method was also applied to experimental data and the results of the OE method were consistent with those obtained by a standard maximum-likelihood approach. The method is a new approach to representation and reconstruction of data obtained by photon-limited emission tomography measurements.

  16. Measuring Incompatible Observables by Exploiting Sequential Weak Values.

    PubMed

    Piacentini, F; Avella, A; Levi, M P; Gramegna, M; Brida, G; Degiovanni, I P; Cohen, E; Lussana, R; Villa, F; Tosi, A; Zappa, F; Genovese, M

    2016-10-21

    One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.

  17. Measuring Incompatible Observables by Exploiting Sequential Weak Values

    NASA Astrophysics Data System (ADS)

    Piacentini, F.; Avella, A.; Levi, M. P.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Cohen, E.; Lussana, R.; Villa, F.; Tosi, A.; Zappa, F.; Genovese, M.

    2016-10-01

    One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.

  18. Increased photon emission from the head while imagining light in the dark is correlated with changes in electroencephalographic power: support for Bókkon's biophoton hypothesis.

    PubMed

    Dotta, B T; Saroka, K S; Persinger, M A

    2012-04-04

    Bókkon's hypothesis that photons released from chemical processes within the brain produce biophysical pictures during visual imagery has been supported experimentally. In the present study measurements by a photomultiplier tube also demonstrated significant increases in ultraweak photon emissions (UPEs) or biophotons equivalent to about 5×10(-11)W/m(2) from the right sides of volunteer's heads when they imagined light in a very dark environment compared to when they did not. Simultaneous variations in regional quantitative electroencephalographic spectral power (μV(2)/Hz) and total energy in the range of ∼10(-12)J from concurrent biophoton emissions were strongly correlated (r=0.95). The calculated energy was equivalent to that associated with action potentials from about 10(7) cerebral cortical neurons. We suggest these results support Bókkon's hypothesis that specific visual imagery is strongly correlated with ultraweak photon emission coupled to brain activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Ye, Lihua; Wang, Yan; Feng, Yangyang; Liu, Bo; Gu, Bing; Cui, Yiping; Lu, Yanqing

    2018-03-01

    By changing the doping concentration of the chiral agent to adjust the relative position of the reflection band of cholesteric liquid crystals and the fluorescence emission spectrum of the dye, photonic band-edge and random lasing were observed, respectively. The reflection band of the cholesteric phase liquid crystal can also be controlled by adjusting the temperature: the reflection band is blue-shifted with increasing temperature, and a reversible switch from photonic band-edge to random lasing is obtained. Furthermore, the laser line width can be thermally adjusted from 1.1 nm (at 27 °C) to 4.6 nm (at 32.1 °C). A thermally tunable polarization state of a random laser from dual cells was observed, broadening the field of application liquid crystal random lasers.

  20. Search for photons with energies above 10 18 eV using the hybrid detector of the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2017-04-06

    A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1 - 2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 kmmore » $$^{-2}$$ sr$$^{-1}$$ yr$$^{-1}$$ are derived at 95% C.L. for energy thresholds of 1, 2, 3, 5 and 10 EeV. These limits bound the fractions of photons in the all-particle integral flux below 0.1%, 0.15%, 0.33%, 0.85% and 2.7%. For the first time the photon fraction at EeV energies is constrained at the sub-percent level. The improved limits are below the flux of diffuse photons predicted by some astrophysical scenarios for cosmogenic photon production. Here, the new results rule-out the early top-down models $-$ in which ultra-high energy cosmic rays are produced by, e.g., the decay of super-massive particles $-$ and challenge the most recent super-heavy dark matter models.« less

  1. Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics

    NASA Astrophysics Data System (ADS)

    Shalaginov, Mikhail Y.

    Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.

  2. Weak Emission-line Quasars in the Context of a Modified Baldwin Effect

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2016-01-01

    Based on spectroscopic data for a sample of high-redshift quasars, I will show that the anti-correlation between the rest-frame equivalent width (EW) of the C IV λ1549 broad-emission line and the Hβ-based Eddington ratio extends across the widest possible ranges of redshift (0 < z < 3.5) and bolometric luminosity(~1044 < L < ~1048 erg s-1). Given this anti-correlation, hereby referred to as a modified Baldwin effect (MBE), weak emission line quasars (WLQs), typically showing EW(C IV) < ~10 Å, are expected to have extremely high Eddington ratios (L/LEdd > ~4). I will present new near-infrared spectroscopy of the broad Hβ line, as well as complementary EW(C IV) information, for all WLQs for which such information is currently available, nine sources in total. I will show that while four of these WLQs can be accommodated by the MBE, the otherfive deviate significantly from this relation, at the > ~3σ level, by exhibiting C IV lines much weaker than predicted from their Hβ-based Eddington ratios. Assuming the supermassive black hole masses in all quasars can be determined reliably using the single-epoch Hβ-method, these results indicate that EW(C IV)cannot depend solely on the Eddington ratio. I will briefly discuss a strategy for further investigation into the roles that basic physical properties play in controlling the relative strengths of broad-emission lines in quasars.

  3. Fano resonance in anodic aluminum oxide based photonic crystals.

    PubMed

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  4. Parametric Amplification For Detecting Weak Optical Signals

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  5. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    NASA Astrophysics Data System (ADS)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  6. Photonic crystal active and passive device components in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Sabarinathan, Jayshri

    Photonic crystals (PC's) are emerging as potentially important candidates in propelling the development in planar photonic integrated circuits, high capacity optical fibers and nanoscopic lasers. Photonic crystals are expected to play a role analogous to that played by crystalline semiconductors in the development of electronic circuits. What makes these photonic crystals more interesting is that introducing "defects"---a missing period or phase slip, in the PC lattice introduces defect modes that lie within the bandgap of the PC. In this investigation, both two dimensional and three dimensional photonic crystals have been fabricated and studied using III-V compound semiconductors which are presently the most useful material systems for integrating with existing optoelectronic technology. A novel single step epitaxial technique to fabricate GaAs-based 3D photonic crystals with sub-micron feature size has been developed employing MBE growth on patterned substrates, ebeam and optical lithography, and lateral wet oxidation of AlGaAs. Transmission characteristics of the fabricated 3D PCs have been measured revealing a 10dB stopband centered at 1 mum for the smallest feature sizes. Electrically injected 2D photonic crystal defect microcavities were designed and fabricated to realize low threshold vertically emitting light sources. The electroluminescent devices were fabricated with GaAs- and InP-based quantum wells heterostructures with emission wavelengths at 0.94mum and 1.55 mum respectively. The light-current, spectral, near- and far-field characteristics of these devices have been studied in detail. The processing and high-aspect ratio etch techniques were carefully developed to create the 2D PCs embedded in the electrically injected apertures. Quantum dots with emission wavelength of 1.04 mum were incorporated into electrically injected 2D PC microcavities to study the electrical and optical confinement simultaneously provided in this configuration. Weak

  7. 1.3 μm single-photon emission from strain-coupled bilayer of InAs/GaAs quantum dots at the temperature up to 120 K

    NASA Astrophysics Data System (ADS)

    Xue, Yongzhou; Chen, Zesheng; Ni, Haiqiao; Niu, Zhichuan; Jiang, Desheng; Dou, Xiuming; Sun, Baoquan

    2017-10-01

    We report on 1.3 μm single-photon emission based on a self-assembled strain-coupled bilayer of InAs quantum dots (QDs) embedded in a micropillar Bragg cavity at temperature of liquid nitrogen or even as high as 120 K. The obtained single-photon flux into the first lens of the collection optics is 4.2 × 106 and 3.3 × 106/s at 82 and 120 K, respectively, corresponding to a second-order correlation function at zero delay times of 0.27(2) and 0.28(3). This work reports on the significant effect of the micropillar cavity-related enhancement of QD emission and demonstrates an opportunity to employ telecom band single-photon emitters at liquid nitrogen or even higher temperature.

  8. VLBI observations of 6 GHz OH masers in three ultra-compact H Ii regions

    NASA Astrophysics Data System (ADS)

    Desmurs, J. F.; Baudry, A.

    1998-12-01

    Following our successful analysis of VLBI observations of the (2) Pi_ {3/ 2}, J={5/ 2}, F=3-3 and F=2-2 excited OH emission at 6035 and 6031 MHz in W3(OH), we have analyzed the same transitions in three other ultra-compact HII regions, M17, ON1, and W51. The restoring beams were in the range 6 to 30 milliarc sec. The F=3-3 and 2-2 hyperfine transitions of OH were both mapped in ON1. Seven 6035 MHz LCP or RCP maser components were identified in ON1. They are distributed over a region whose diameter is similar to that of the compact HII region, namely ~ 0.4 - 0.5 arc sec. In contrast with the F=3-3 line emission, the F=2-2 transition at 6031 MHz is nearly an order of magnitude weaker than the peak 6035 MHz emission. In M17, we observed fringes only in the 6035 MHz line. The detected OH components appear to be projected on to the compact HII region. We report also on weak VLBI detection of the 6035 MHz emission from W51. This emission seems to be located between two active ultra-compact HII regions in a complex area which deserves further investigation. The 5 cm OH minimum brightness temperatures range from about 3 10(7) K in W51 to 8 10(9) K in ON1. Variability of the 6035 or 6031 MHz emission is well established and suggests that the 5 cm OH masers are not fully saturated. The high spectral and spatial resolutions achieved in this work allowed us to identify Zeeman pairs and hence to derive the magnetic field strength. In ON1 and W51 the field lies in the range 4 to 6 mG with a trend for higher field at 6031 MHz than at 6035 MHz in ON1. In M17 no Zeeman splitting was observed and the magnetic field appears to be weaker than 1 mG.

  9. Properties of biophotons and their theoretical implications.

    PubMed

    Popp, Fritz-Albert

    2003-05-01

    The word "biophotons" is used to denote a permanent spontaneous photon emission from all living systems. It displays a few up to some hundred photons/(s x cm2) within the spectral range from at least 260 to 800 nm. It is closely linked to delayed luminescence (DL) of biological tissues which describes the long term and ultra weak reemission of photons after exposure to light illumination. During relaxation DL turns continuously into the steady state biophoton emission, where both, DL and biophoton emission exhibit mode coupling over the entire spectrum and a Poissonian photo count distribution. DL is representing excited states of the biophoton field. The physical properties indicate that biophotons originate from fully coherent and sometimes even squeezed states. The physical analysis provides thermodynamic and quantum optical interpretation, in order to understand the biological impacts of biophotons. Biological phenomena like intracellular and intercellular communication, cell growth and differentiation, interactions among biological systems (like "Gestaltbildung" or swarming), and microbial infections can be understood in terms of biophotons. "Biophotonics", the corresponding field of applications, provide a new powerful tool for assessing the quality of food (like freshness and shelf life), microbial infections, environmental influences and for substantiating medical diagnosis and therapy.

  10. Emission characteristics of holmium ions in fluoro-phosphate glasses for photonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, S.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com

    2016-05-23

    Optical properties of Ho{sup 3+} doped different fluorophosphate (FP) glasses have been synthesized and discussed. Thermal properties have been studied through differential scanning calorimetry (DSC).The Judd-Ofelt (J-O) intensity parameters Ω{sub λ} (λ= 2, 4, 6) from absorption spectra have been evaluated. Various radiative parameters have been obtained for the different excited states using J-O theory. From the emission spectra, different laser properties have been studied and discussed. The nature of decay curve analysis was performed for the {sup 5}F{sub 4}({sup 5}S{sub 2}) level. These glasses are expected to give interesting application in the field of photonic applications.

  11. High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Li, Zhengying; Xiang, Na; Bao, Xiaoyi

    2018-06-01

    A high speed quasi-distributed demodulation method based on the microwave photonics and the chromatic dispersion effect is designed and implemented for weak fiber Bragg gratings (FBGs). Due to the effect of dispersion compensation fiber (DCF), FBG wavelength shift leads to the change of the difference frequency signal at the mixer. With the way of crossing microwave sweep cycle, all wavelengths of cascade FBGs can be high speed obtained by measuring the frequencies change. Moreover, through the introduction of Chirp-Z and Hanning window algorithm, the analysis of difference frequency signal is achieved very well. By adopting the single-peak filter as a reference, the length disturbance of DCF caused by temperature can be also eliminated. Therefore, the accuracy of this novel method is greatly improved, and high speed demodulation of FBGs can easily realize. The feasibility and performance are experimentally demonstrated using 105 FBGs with 0.1% reflectivity, 1 m spatial interval. Results show that each grating can be distinguished well, and the demodulation rate is as high as 40 kHz, the accuracy is about 8 pm.

  12. Two-photon pumped amplified spontaneous emission based on all-inorganic perovskite nanocrystals embedded with gold nanorods

    NASA Astrophysics Data System (ADS)

    Liu, Shaoying; Fang, Xiaohui; Wang, Yimeng; Zhang, Xinping

    2018-07-01

    CsPbBr3 nanocrystals have attracted great interest owing to their high fluorescence quantum efficiency, adjustable photoluminescence wavelength, and good stability. We report a device that consists of disordered gold nanorods underneath a film of CsPbBr3 nanocrystals. Two-photon pumping using femtosecond laser pulses at 800 nm enables amplified spontaneous emission (ASE) at about 523 nm. In this work, a narrow peak with linewidth of 5 nm is observed when the pump fluence reaches a low threshold of 0.65 mJ/cm2. The results show that plasmonic resonance of gold nanorods improves the emission transition rate and enables low threshold ASE.

  13. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    NASA Astrophysics Data System (ADS)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  14. Fuel Effective Photonic Propulsion

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  15. Search for photons with energies above 10{sup 18} eV using the hybrid detector of the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Andringa, S.

    2017-04-01

    A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1–2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km{sup −2} sr{sup −1}more » yr{sup −1} are derived at 95% C.L. for energy thresholds of 1, 2, 3, 5 and 10 EeV. These limits bound the fractions of photons in the all-particle integral flux below 0.1%, 0.15%, 0.33%, 0.85% and 2.7%. For the first time the photon fraction at EeV energies is constrained at the sub-percent level. The improved limits are below the flux of diffuse photons predicted by some astrophysical scenarios for cosmogenic photon production. The new results rule-out the early top-down models − in which ultra-high energy cosmic rays are produced by, e.g., the decay of super-massive particles − and challenge the most recent super-heavy dark matter models.« less

  16. Polarization control of quantum dot emission by chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey V.; Weiss, Thomas; Gippius, Nikolay A.; Tikhodeev, Sergei G.; Kulakovskii, Vladimir D.; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized quantum dots normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed quantum dots, and can be close to 100% for some single quantum dots.

  17. Polarization control of quantum dot emission by chiral photonic crystal slabs.

    PubMed

    Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.

  18. Generation and transfer of single photons on a photonic crystal chip.

    PubMed

    Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena

    2007-04-30

    We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.

  19. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaodan; Yang, Yibiao; Chen, Zhihui; Wang, Yuncai; Fei, Hongming; Deng, Xiao

    2017-02-01

    By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. Project supported by the National Natural Science Foundation of China (Nos. 61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

  20. Weak bump quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, B. J.; Mcdowell, J.

    1994-01-01

    Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.

  1. Leaf wound induced ultraweak photon emission is suppressed under anoxic stress: Observations of Spathiphyllum under aerobic and anaerobic conditions using novel in vivo methodology.

    PubMed

    Oros, Carl L; Alves, Fabio

    2018-01-01

    Plants have evolved a variety of means to energetically sense and respond to abiotic and biotic environmental stress. Two typical photochemical signaling responses involve the emission of volatile organic compounds and light. The emission of certain leaf wound volatiles and light are mutually dependent upon oxygen which is subsequently required for the wound-induced lipoxygenase reactions that trigger the formation of fatty acids and hydroperoxides; ultimately leading to photon emission by chlorophyll molecules. A low noise photomultiplier with sensitivity in the visible spectrum (300-720 nm) is used to continuously measure long duration ultraweak photon emission of dark-adapting whole Spathiphyllum leaves (in vivo). Leaves were mechanically wounded after two hours of dark adaptation in aerobic and anaerobic conditions. It was found that (1) nitrogen incubation did not affect the pre-wound basal photocounts; (2) wound induced leaf biophoton emission was significantly suppressed when under anoxic stress; and (3) the aerobic wound induced emission spectra observed was > 650 nm, implicating chlorophyll as the likely emitter. Limitations of the PMT photocathode's radiant sensitivity, however, prevented accurate analysis from 700-720 nm. Further examination of leaf wounding profile photon counts revealed that the pre-wounding basal state (aerobic and anoxic), the anoxic wounding state, and the post-wounding aerobic state statistics all approximate a Poisson distribution. It is additionally observed that aerobic wounding induces two distinct exponential decay events. These observations contribute to the body of plant wound-induced luminescence research and provide a novel methodology to measure this phenomenon in vivo.

  2. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  3. Diagnostics of pre-breakdown light emission in a helium coplanar barrier discharge: the presence of neutral bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Morávek, Tomáš; Ráheľ, Jozef; Čech, Jan; Lalinský, Ondřej; Trunec, David

    2017-05-01

    Weak light emission (˜10-3 of active discharge signal; average count rate ˜ 1 photon s-1 nm-1) associated with surface charge relaxation during the dark phase of a helium diffuse coplanar barrier discharge was studied by optical emission spectroscopy, using a technique of phase-resolved single photon counting. The optical emission spectra of the dark phase contained luminescent bands of the dielectrics used (Al2O3, AlN) and spectral lines from the gas constituents (OH*, {{{N}}}2* , {{{N}}}2+* , He*, He{}2* , O*). During the charge relaxation event, a broad continuum appeared in the optical emission spectra, consisting of bremsstrahlung radiation and amplified luminescence of the dielectric barrier. The analysis presented suggests that the bremsstrahlung radiation originated from slow electrons colliding with neutral helium atoms. The fitting procedure we developed reproduced well the observed shape of the continuum. Moreover, it provided a method for the determination of electric field strength in the discharge during this particular phase. The electric field reached 1 kV cm-1 during the charge relaxation event.

  4. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to 'internal photons' inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350-700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation.

  5. Ultra-high spatial resolution multi-energy CT using photon counting detector technology

    NASA Astrophysics Data System (ADS)

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-03-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  6. Photonic quantum technologies (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeremy L.

    2015-09-01

    The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.

  7. The State-of-Play of Anomalous Microwave Emission (AME) research

    NASA Astrophysics Data System (ADS)

    Dickinson, Clive; Ali-Haïmoud, Y.; Barr, A.; Battistelli, E. S.; Bell, A.; Bernstein, L.; Casassus, S.; Cleary, K.; Draine, B. T.; Génova-Santos, R.; Harper, S. E.; Hensley, B.; Hill-Valler, J.; Hoang, Thiem; Israel, F. P.; Jew, L.; Lazarian, A.; Leahy, J. P.; Leech, J.; López-Caraballo, C. H.; McDonald, I.; Murphy, E. J.; Onaka, T.; Paladini, R.; Peel, M. W.; Perrott, Y.; Poidevin, F.; Readhead, A. C. S.; Rubiño-Martín, J.-A.; Taylor, A. C.; Tibbs, C. T.; Todorović, M.; Vidal, Matias

    2018-02-01

    Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range ≈ 10-60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free-free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains ("spinning dust"), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.

  8. Single-Photon Routing for a L-Shaped Channel

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Hou, Jiao-Jiao; Wu, Chun

    2018-02-01

    We have investigated the transport properties of a single photon scattered by a two-level atom embedded in a L-shaped waveguide, which is made of two one-dimensional (1D) semi-infinite coupled-resonator waveguides (CRWs). Single photons can be directed from one CRW to the other due to spontaneous emission of the atom. The result shows that the spontaneous emission of the TLS still routes single photon from one CRW to the other; the boundary existing makes the probability of finding single photon in a CRW could reach one. Our the scheme is helpful to construct a ring quantum networks.

  9. Brain single photon emission computed tomography in neonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans.more » In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.« less

  10. All-fiber mode-locked laser via short single-wall carbon nanotubes interacting with evanescent wave in photonic crystal fiber.

    PubMed

    Li, Yujia; Gao, Lei; Huang, Wei; Gao, Cong; Liu, Min; Zhu, Tao

    2016-10-03

    We report an all-fiber passively mode-locked laser based on a saturable absorber fabricated by filling short single-wall carbon nanotubes into cladding holes of grapefruit-type photonic crystal fiber. The single-wall carbon nanotube is insensitive to polarization of light for its one-dimensional structure, which suppresses the polarization dependence loss. Carbon nanotubes interact with photonic crystal fiber with ultra-weak evanescent field, which enhances the damage threshold of the saturable absorber and improves the operating stability. In our experiment, conventional soliton with a pulse duration of 1.003 ps and center wavelength of 1566.36 nm under a pump power of 240 mW is generated in a compact erbium-doped fiber laser cavity with net anomalous dispersion of -0.4102 ps2. The signal to noise ratio of the fundamental frequency component is ~80 dB. The maximum average output power of the mode-locked laser reaches 9.56 mW under a pump power of 360 mW. The output power can be further improved by a higher pump power.

  11. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Taghipour, Fahimeh

    2011-02-01

    Photonic crystal fibers (PCFs) are highly suitable transmission media for wavelength-division-multiplexing (WDM) systems, in which low and ultra-flattened dispersion of PCFs is extremely desirable. It is also required to concurrently achieve both a low confinement loss as well as a large effective area in a wide range of wavelengths. Relatively low dispersion with negligible variation has become feasible in the wavelength range of 1.1 to 1.8μm through the proposed design in this paper. According to a new structure of PCF presented in this study, the dispersion slope is 6.8×10-4ps/km.nm2 and the confinement loss reaches below 10-6 dB/km in this range, while at the same time an effective area of more than 50μm2 has been attained. For the analysis of this PCF, finite-difference time-domain (FDTD) method with the perfectly matched layers (PML) boundary conditions has been used.

  12. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  13. Shear viscosities of photons in strongly coupled plasmas

    DOE PAGES

    Yang, Di-Lun; Müller, Berndt

    2016-07-18

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N=4 super Yang–Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  14. A first constraint on the average mass of ultra-diffuse galaxies from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Herbonnet, Ricardo

    2018-01-01

    The recent discovery of thousands of ultra-diffuse galaxies (UDGs) in nearby galaxy clusters has opened a new window into the process of galaxy formation and evolution. Several scenarios have been proposed to explain the formation history of UDGs, and their ability to survive in the harsh cluster environments. A key requirement to distinguish between these scenarios is a measurement of their halo masses which, due to their low surface brightnesses, has proven difficult if one relies on stellar tracers of the potential. We exploit weak gravitational lensing, a technique that does not depend on these baryonic tracers, to measure the average subhalo mass of 784 UDGs selected in 18 clusters at z ≤ 0.09. Our sample of UDGs has a median stellar mass 〈m⋆〉 = 2 × 108 M⊙ and a median effective radius 〈reff〉 = 2.8 kpc. We constrain the average mass of subhaloes within 30 kpc to log mUDG(r < 30 kpc)/M⊙ ≤ 10.99 at 95 per cent credibility, implying an effective virial mass log m200/M⊙ ≤ 11.80, and a lower limit on the stellar mass fraction within 10 kpc of 1.0 per cent. Such mass is consistent with a simple extrapolation of the subhalo-to-stellar mass relation of typical satellite galaxies in massive clusters. However, our analysis is not sensitive to scatter about this mean mass; the possibility remains that extreme UDGs reside in haloes as massive as the Milky Way.

  15. Tuning the Photon Statistics of a Strongly Coupled Nanophotonic System

    NASA Astrophysics Data System (ADS)

    Dory, C.; Fischer, K. A.; Müller, K.; Lagoudakis, K. G.; Sarmiento, T.; Rundquist, A.; Zhang, J. L.; Kelaita, Y.; Sapra, N. V.; Vučković, J.

    Strongly coupled quantum-dot-photonic-crystal cavity systems provide a nonlinear ladder of hybridized light-matter states, which are a promising platform for non-classical light generation. The transmission of light through such systems enables light generation with tunable photon counting statistics. By detuning the frequencies of quantum emitter and cavity, we can tune the transmission of light to strongly enhance either single- or two-photon emission processes. However, these nanophotonic systems show a strongly dissipative nature and classical light obscures any quantum character of the emission. In this work, we utilize a self-homodyne interference technique combined with frequency-filtering to overcome this obstacle. This allows us to generate emission with a strong two-photon component in the multi-photon regime, where we measure a second-order coherence value of g (2) [ 0 ] = 1 . 490 +/- 0 . 034 . We propose rate equation models that capture the dominant processes of emission both in the single- and multi-photon regimes and support them by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system. Finally, we simulate a third-order coherence value of g (3) [ 0 ] = 0 . 872 +/- 0 . 021 . Army Research Office (ARO) (W911NF1310309), National Science Foundation (1503759), Stanford Graduate Fellowship.

  16. Integrated nonlinear photonics. Emerging applications and ongoing challenges - A mini review

    DOE PAGES

    Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.; ...

    2014-11-26

    In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.

  17. One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Nataliya N.; Dadoenkova, Yuliya S.; Panyaev, Ivan S.; Sannikov, Dmitry G.; Lyubchanskii, Igor L.

    2018-01-01

    We investigate the transmittivity spectra, fields, and energy distribution of the electromagnetic eigenwaves propagating in a one-dimensional (1D) dielectric photonic crystal [(TiO2/SiO2)NAl2O3]M with two periods formed by unit cells TiO2/SiO2 and (TiO2/SiO2)NAl2O3. Spectra of TE- and TM-modes depend on the geometric parameters of the structure and undergo modifications with the change in the period numbers, layer thicknesses, and incidence angle. Special attention is paid to the applicability of the hybrid effective medium approximation comprising the long-wave approximation and two-dimensional (2 × 2) transfer matrix method. We demonstrate spectral peculiarities of the bi-periodic structure and also show the differences between the band gap spectra of the bi-periodic and ternary 1D dielectric photonic crystals. The presented photonic crystal structure can find its applications in optoelectronics and nanophotonics areas as omnidirectional reflectors, optical ultra-narrow bandpass filters, and antireflection coatings.

  18. Control of the spontaneous emission from a single quantum dash using a slow-light mode in a two-dimensional photonic crystal on a Bragg reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvin, N.; Fiore, A.; Nedel, P.

    2009-07-15

    We demonstrate the coupling of a single InAs/InP quantum, emitting around 1.55 {mu}m, to a slow-light mode in a two-dimensional photonic crystal on Bragg reflector. These surface addressable 2.5D photonic crystal band-edge modes present the advantages of a vertical emission and the mode area and localization may be controlled, leading to a less critical spatial alignment with the emitter. An increase in the spontaneous emission rate by a factor of 1.5-2 is measured at low temperature and is compared to the Purcell factor predicted by three-dimensional time-domain electromagnetic simulations.

  19. Tuning the photon statistics of a strongly coupled nanophotonic system

    NASA Astrophysics Data System (ADS)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Sapra, Neil V.; Vučković, Jelena

    2017-02-01

    We investigate the dynamics of single- and multiphoton emission from detuned strongly coupled systems based on the quantum-dot-photonic-crystal resonator platform. Transmitting light through such systems can generate a range of nonclassical states of light with tunable photon counting statistics due to the nonlinear ladder of hybridized light-matter states. By controlling the detuning between emitter and resonator, the transmission can be tuned to strongly enhance either single- or two-photon emission processes. Despite the strongly dissipative nature of these systems, we find that by utilizing a self-homodyne interference technique combined with frequency filtering we are able to find a strong two-photon component of the emission in the multiphoton regime. In order to explain our correlation measurements, we propose rate equation models that capture the dominant processes of emission in both the single- and multiphoton regimes. These models are then supported by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system.

  20. Counterfactual quantum cryptography based on weak coherent states

    NASA Astrophysics Data System (ADS)

    Yin, Zhen-Qiang; Li, Hong-Wei; Yao, Yao; Zhang, Chun-Mei; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2012-08-01

    In the “counterfactual quantum cryptography” scheme [T.-G. Noh, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.230501 103, 230501 (2009)], two legitimate distant peers may share secret-key bits even when the information carriers do not travel in the quantum channel. The security of this protocol with an ideal single-photon source has been proved by Yin [Z.-Q. Yin, H. W. Li, W. Chen, Z. F. Han, and G. C. Guo, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.042335 82, 042335 (2010)]. In this paper, we prove the security of the counterfactual-quantum-cryptography scheme based on a commonly used weak-coherent-laser source by considering a general collective attack. The basic assumption of this proof is that the efficiency and dark-counting rate of a single-photon detector are consistent for any n-photon Fock states. Then through randomizing the phases of the encoding weak coherent states, Eve's ancilla will be transformed into a classical mixture. Finally, the lower bound of the secret-key-bit rate and a performance analysis for the practical implementation are both given.

  1. Emission turn-on and solubility turn-off in conjugated polymers: one- and two-photon-induced removal of fluorescence-quenching solubilizing groups.

    PubMed

    Schelkle, Korwin M; Becht, Steffy; Faraji, Shirin; Petzoldt, Martin; Müllen, Klaus; Buckup, Tiago; Dreuw, Andreas; Motzkus, Marcus; Hamburger, Manuel

    2015-01-01

    The synthesis of highly efficient two-photon uncaging groups and their potential use in functional conjugated polymers for post-polymerization modification are reported. Careful structural design of the employed nitrophenethyl caging groups allows to efficiently induce bond scission by a two-photon process through a combination of exceptionally high two-photon absorption cross-sections and high reaction quantum yields. Furthermore, π-conjugated polyfluorenes are functionalized with these photocleavable side groups and it is possible to alter their emission properties and solubility behavior by simple light irradiation. Cleavage of side groups leads to a turn-on of the fluorescence while solubility of the π-conjugated materials is drastically reduced. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters

    NASA Astrophysics Data System (ADS)

    Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-01

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  3. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters.

    PubMed

    Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-29

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  4. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging.

    PubMed

    Prasad, Ankush; Pospíšil, Pavel

    2012-08-01

    Solar radiation that reaches Earth's surface can have severe negative consequences for organisms. Both visible light and ultraviolet A (UVA) radiation are known to initiate the formation of reactive oxygen species (ROS) in human skin by photosensitization reactions (types I and II). In the present study, we investigated the role of visible light and UVA radiation in the generation of ROS on the dorsal and the palmar side of a hand. The ROS are known to oxidize biomolecules such as lipids, proteins, and nucleic acids to form electronically excited species, finally leading to ultraweak photon emission. We have employed a highly sensitive charge coupled device camera and a low-noise photomultiplier tube for detection of two-dimensional and one-dimensional ultraweak photon emission, respectively. Our experimental results show that oxidative stress is generated by the exposure of human skin to visible light and UVA radiation. The oxidative stress generated by UVA radiation is claimed to be significantly higher than that by visible light. Two-dimensional photon imaging can serve as a potential tool for monitoring the oxidative stress in the human skin induced by various stress factors irrespective of its physical or chemical nature.

  5. Determination of photon emission probability for the main gamma ray and half-life measurements of 64Cu.

    PubMed

    Pibida, L; Zimmerman, B; Bergeron, D E; Fitzgerald, R; Cessna, J T; King, L

    2017-11-01

    The National Institute of Standards and Technology (NIST) performed new standardization measurements for 64 Cu. As part of this work the photon emission probability for the main gamma-ray line and the half-life were determined using several high-purity germanium (HPGe) detectors. Half-life determinations were also carried out with a NaI(Tl) well counter and two pressurized ionization chambers. Published by Elsevier Ltd.

  6. Transition metals in coarse, fine, very fine and ultra-fine particles from an interstate highway transect near Detroit

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Lawton, Jonathan A.; Miller, Roger; Spada, Nicholas; Willis, Robert D.; Kimbrough, Sue

    2016-11-01

    As one component of a study investigating the impact of vehicle emissions on near-road air quality, human exposures, and potential health effects, particles were measured from September 21 to October 30, 2010 on both sides of a major roadway (Interstate-96) in Detroit. Traffic moved freely on this 12 lane freeway with a mean velocity of 69 mi/hr. with little braking and acceleration. The UC Davis DELTA Group rotating drum (DRUM) impactors were used to collect particles in 8 size ranges at sites nominally 100 m south, 10 m north, 100 m north, and 300 m north of the highway. Ultra-fine particles were continuously collected at the 10 m north and 100 m north sites. Samples were analyzed every 3 h for mass (soft beta ray transmission), 42 elements (synchrotron-induced x-ray fluorescence) and optical attenuation (350-800 nm spectroscopy). A three day period of steady southerly winds along the array allowed direct measurement of freeway emission rates for coarse (10 > Dp > 1.0 μm), PM2.5, very fine (0.26 > Dp > 0.09 μm), and ultra-fine (Dp < 0.09 μm) particles. The PM2.5 mass concentrations were modeled using literature emission rates during the south to north wind periods, and averaged 1.6 ± 0.5 μg/m3, versus the measured value of 2.0 ± 0.7 μg/m3. Using European freeway emission rates from 2010, and modeling them at the I-96 site, we would predict roughly 3.1 μg/m3 of PM2.5 particles, corrected from the 4.9 PM10 value by their measured road dust contributions. Using California car and truck emission rates of 1973, this value would have been about 16 μg/m3, corrected down from the 19 μg/m3 PM5.0 using measured roadway dust contributions. This would have included 2.7 μg/m3 of lead, versus the 0.0033 μg/m3 measured. Very fine particles were distributed across the array with a relatively weak falloff versus distance. For the ultra-fine particles, emissions of soot and metals seen in vehicular braking studies correlated with traffic at the 10 m site, but only the

  7. Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.

    PubMed

    Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M

    2017-04-04

    Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.

  8. Entangled, guided photon generation in (1+1)-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciscione, L.; Centini, M.; Sibilia, C.

    A scheme based on photonic crystal technology is proposed as an ultrabright source of entangled photons on a miniaturized scale. The geometry consists of a multilayer microcavity, excited by a resonant pump frequency, such that the emitted photons are guided transversally to the direction of the incident pump. The entanglement occurs in direction, frequency, and polarization, and the bandwidth of the emitted photons is of the order of 1 nm. We propose a feasible design based on Al{sub 0.3}Ga{sub 0.7}As/Al{sub 2}O{sub 3} structures and predict an emission rate 10{sup 5} pairs per second with 100 mW pump power. These resultsmore » are promising for realization of chip and future quantum computer applications.« less

  9. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    PubMed

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  10. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    NASA Astrophysics Data System (ADS)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  11. Search for chameleon particles via photon regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron S.; /CCPP, New York U.

    2008-09-01

    We report the first results from the GammeV search for chameleon particles, which may be created via photon-photon interactions within a strong magnetic field. The chameleons are assumed to have matter effects sufficiently strong that they reflect from all solid surfaces of the apparatus, thus evading detection in our previous search for weakly-interacting axion-like particles. We implement a novel technique to create and trap the reflective particles within a jar and to detect them later via their afterglow as they slowly convert back into photons. These measurements provide the first experimental constraints on the couplings of chameleons to photons.

  12. Bose-Einstein condensation of photons from the thermodynamic limit to small photon numbers

    NASA Astrophysics Data System (ADS)

    Nyman, Robert A.; Walker, Benjamin T.

    2018-03-01

    Photons can come to thermal equilibrium at room temperature by scattering multiple times from a fluorescent dye. By confining the light and dye in a microcavity, a minimum energy is set and the photons can then show Bose-Einstein condensation. We present here the physical principles underlying photon thermalization and condensation, and review the literature on the subject. We then explore the 'small' regime where very few photons are needed for condensation. We compare thermal equilibrium results to a rate-equation model of microlasers, which includes spontaneous emission into the cavity, and we note that small systems result in ambiguity in the definition of threshold.

  13. Thermal Emissions Spanning the Prompt and the Afterglow Phases of the Ultra-long GRB 130925A

    NASA Astrophysics Data System (ADS)

    Basak, Rupal; Rao, A. R.

    2015-07-01

    GRB 130925A is an ultra-long gamma-ray burst (GRB), and it shows clear evidence for thermal emission in the soft X-ray data of the Swift/X-ray Telescope (XRT; ∼0.5 keV), lasting until the X-ray afterglow phase. Due to the long duration of the GRB, the burst could be studied in hard X-rays with high-resolution focusing detectors (NuSTAR). The blackbody temperature, as measured by the Swift/XRT, shows a decreasing trend until the late phase (Piro et al.) whereas the high-energy data reveal a significant blackbody component during the late epochs at an order of magnitude higher temperature (∼5 keV) compared to contemporaneous low energy data (Bellm et al.). We resolve this apparent contradiction by demonstrating that a model with two black bodies and a power law (2BBPL) is consistent with the data right from the late prompt emission to the afterglow phase. Both blackbodies show a similar cooling behavior up to late times. We invoke a structured jet, having a fast spine and a slower sheath layer, to identify the location of these blackbodies. Independent of the physical interpretation, we propose that the 2BBPL model is a generic feature of the prompt emission of all long GRBs, and the thermal emission found in the afterglow phase of different GRBs reflects the lingering thermal component of the prompt emission with different timescales. We strengthen this proposal by pointing out a close similarity between the spectral evolutions of this GRB and GRB 090618, a source with significant wide band data during the early afterglow phase.

  14. Multiple photon emission in heavy particle decays

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Burnett, T. H.; Cherry, M. L.; Christl, M. J.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1994-01-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b yields u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel.

  15. Monte Carlo simulations of relativistic radiation-mediated shocks - I. Photon-rich regime

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Levinson, Amir; Stern, Boris E.; Nagataki, Shigehiro

    2018-02-01

    We explore the physics of relativistic radiation-mediated shocks (RRMSs) in the regime where photon advection dominates over photon generation. For this purpose, a novel iterative method for deriving a self-consistent steady-state structure of RRMS is developed, based on a Monte Carlo code that solves the transfer of photons subject to Compton scattering and pair production/annihilation. Systematic study is performed by imposing various upstream conditions which are characterized by the following three parameters: the photon-to-baryon inertia ratio ξu*, the photon-to-baryon number ratio \\tilde{n}, and the shock Lorentz factor γu. We find that the properties of RRMSs vary considerably with these parameters. In particular, while a smooth decline in the velocity, accompanied by a gradual temperature increase is seen for ξu* ≫ 1, an efficient bulk Comptonization, that leads to a heating precursor, is found for ξu* ≲ 1. As a consequence, although particle acceleration is highly inefficient in these shocks, a broad non-thermal spectrum is produced in the latter case. The generation of high-energy photons through bulk Comptonization leads, in certain cases, to a copious production of pairs that provide the dominant opacity for Compton scattering. We also find that for certain upstream conditions a weak subshock appears within the flow. For a choice of parameters suitable to gamma-ray bursts, the radiation spectrum within the shock is found to be compatible with that of the prompt emission, suggesting that subphotospheric shocks may give rise to the observed non-thermal features despite the absence of accelerated particles.

  16. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  17. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    PubMed Central

    Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger

    2011-01-01

    With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640

  18. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.

    2017-12-01

    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.

  19. Evaluation of Ultra Clean Fuels from Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Abbott; Edward Casey; Etop Esen

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  20. Ligand-core NLO-phores: a combined experimental and theoretical approach to the two-photon absorption and two-photon excited emission properties of small-ligated silver nanoclusters.

    PubMed

    Russier-Antoine, Isabelle; Bertorelle, Franck; Calin, Nathalie; Sanader, Željka; Krstić, Marjan; Comby-Zerbino, Clothilde; Dugourd, Philippe; Brevet, Pierre-François; Bonačić-Koutecký, Vlasta; Antoine, Rodolphe

    2017-01-19

    We report a combined experimental and theoretical study of the two-photon absorption and excited emission properties of monodisperse ligand stabilized Ag 11 , Ag 15 and Ag 31 nanoclusters in aqueous solutions. The nanoclusters were synthesized using a cyclic reduction under oxidative conditions and separated by vertical gel electrophoresis. The two-photon absorption cross-sections of these protected noble metal nanoclusters measured within the biologically attractive 750-900 nm window are several orders of magnitude larger than that reported for commercially available standard organic dyes. The two-photon excited fluorescence spectra are also presented for excitation wavelengths within the same excitation spectral window. They exhibit size-tunability. Because the fundamental photophysical mechanisms underlying these multiphoton processes in ligand protected clusters with only a few metal atoms are not fully understood yet, a theoretical model is proposed to identify the key driving elements. Elements that regulate the dipole moments and the nonlinear optical properties are the nanocluster size, its structure and the charge distribution on both the metal core and the bound ligands. We coined this new class of NLO materials as "Ligand-Core" NLO-phores.

  1. Application of the stochastic resonance algorithm to the simultaneous quantitative determination of multiple weak peaks of ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry.

    PubMed

    Deng, Haishan; Shang, Erxin; Xiang, Bingren; Xie, Shaofei; Tang, Yuping; Duan, Jin-ao; Zhan, Ying; Chi, Yumei; Tan, Defei

    2011-03-15

    The stochastic resonance algorithm (SRA) has been developed as a potential tool for amplifying and determining weak chromatographic peaks in recent years. However, the conventional SRA cannot be applied directly to ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS). The obstacle lies in the fact that the narrow peaks generated by UPLC contain high-frequency components which fall beyond the restrictions of the theory of stochastic resonance. Although there already exists an algorithm that allows a high-frequency weak signal to be detected, the sampling frequency of TOFMS is not fast enough to meet the requirement of the algorithm. Another problem is the depression of the weak peak of the compound with low concentration or weak detection response, which prevents the simultaneous determination of multi-component UPLC/TOFMS peaks. In order to lower the frequencies of the peaks, an interpolation and re-scaling frequency stochastic resonance (IRSR) is proposed, which re-scales the peak frequencies via linear interpolating sample points numerically. The re-scaled UPLC/TOFMS peaks could then be amplified significantly. By introducing an external energy field upon the UPLC/TOFMS signals, the method of energy gain was developed to simultaneously amplify and determine weak peaks from multi-components. Subsequently, a multi-component stochastic resonance algorithm was constructed for the simultaneous quantitative determination of multiple weak UPLC/TOFMS peaks based on the two methods. The optimization of parameters was discussed in detail with simulated data sets, and the applicability of the algorithm was evaluated by quantitative analysis of three alkaloids in human plasma using UPLC/TOFMS. The new algorithm behaved well in the improvement of signal-to-noise (S/N) compared to several normally used peak enhancement methods, including the Savitzky-Golay filter, Whittaker-Eilers smoother and matched filtration. Copyright © 2011 John Wiley

  2. Photon Beaming in External Compton models

    NASA Astrophysics Data System (ADS)

    Hutter, Anne; Spanier, Felix

    In attempt to model blazar emission spectra, External Compton models have been employed to fit the observed data. In these models photons from the accretion disk or the CMB are upscat-tered via the Compton effect by the electrons and contribute to the emission. In previous works the resulting scattered photon angular distribution has been calculated for ultrarelativistic elec-trons. This work aims to extend the result to the case of mildly relativistic electrons. Hence, the beaming pattern produced by a relativistic moving blob consisting of isotropic distributed electrons, which scatter photons of an isotropic external radiation is calculated numerically. The isotropic photon density distribution in the blob frame is Lorentz-transformed into the rest frame of the electron and results in an anisotropic distribution with a preferred direction where it is upscattered by the electrons. The photon density distribution is determined and transformed back into the blob frame. As the photons in the rest frame of the electrons are dis-tributed anisotropically the scattering does not reproduce this anisotropic distribution. When transforming back into the blob frame the resulting photon distribution won't be isotropic. Approximations have shown that the resulting photon distribution is boosted more strongly than a distribution assumed to be isotropic in the rest frame of the electrons. Hence, in order to obtain the beaming caused by external Compton it is of particular interest to derive a more exact approximation of the resulting photon angular distribution.

  3. Investigating the Effects of the Interaction Intensity in a Weak Measurement.

    PubMed

    Piacentini, Fabrizio; Avella, Alessio; Gramegna, Marco; Lussana, Rudi; Villa, Federica; Tosi, Alberto; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco

    2018-05-03

    Measurements are crucial in quantum mechanics, for fundamental research as well as for applicative fields like quantum metrology, quantum-enhanced measurements and other quantum technologies. In the recent years, weak-interaction-based protocols like Weak Measurements and Protective Measurements have been experimentally realized, showing peculiar features leading to surprising advantages in several different applications. In this work we analyze the validity range for such measurement protocols, that is, how the interaction strength affects the weak value extraction, by measuring different polarization weak values on heralded single photons. We show that, even in the weak interaction regime, the coupling intensity limits the range of weak values achievable, setting a threshold on the signal amplification effect exploited in many weak measurement based experiments.

  4. Photosynthetic photon flux, photoperiod, and temperature effects on emissions of (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate from lettuce

    NASA Technical Reports Server (NTRS)

    Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.

    1996-01-01

    To investigate the effects of environment on plant volatile emissions, 'Waldmann's Green' leaf lettuce was cultivated under different levels of photosynthetic photon flux (PPF), photoperiod, and temperature. A modified growth chamber was used to sample plant volatile emissions nondestructively, over time, and under controlled conditions. Total volatile emission rates were significantly higher from lettuce cultivated under PPF of 360 or 200 micromoles m-2 s-1 compared to 105 micromoles m-2 s-1, and significantly higher under a 16-h photoperiod than an 8-h photoperiod. No differences were detected among emission rates from different temperature treatments. In controlled environments, emissions could be regulated by adjusting environmental conditions accordingly.

  5. Determination of photon emission probabilities for the main gamma-rays of ²²³Ra in equilibrium with its progeny.

    PubMed

    Pibida, L; Zimmerman, B; Fitzgerald, R; King, L; Cessna, J T; Bergeron, D E

    2015-07-01

    The currently published (223)Ra gamma-ray emission probabilities display a wide variation in the values depending on the source of the data. The National Institute of Standards and Technology performed activity measurements on a (223)Ra solution that was used to prepare several sources that were used to determine the photon emission probabilities for the main gamma-rays of (223)Ra in equilibrium with its progeny. Several high purity germanium (HPGe) detectors were used to perform the gamma-ray spectrometry measurements. Published by Elsevier Ltd.

  6. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  7. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  8. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  9. Single photon emission tomography using 99mTc-HM-PAO in the investigation of dementia.

    PubMed Central

    Neary, D; Snowden, J S; Shields, R A; Burjan, A W; Northen, B; MacDermott, N; Prescott, M C; Testa, H J

    1987-01-01

    Single photon emission tomographic imaging of the brain using 99mTc HM-PAO was carried out in patients with a clinical diagnosis of Alzheimer's disease, non-Alzheimer frontal-lobe dementia, and progressive supranuclear palsy. Independent assessment of reductions in uptake revealed posterior hemisphere abnormalities in the majority of the Alzheimer group, and selective anterior hemisphere abnormalities in both other groups. The findings were consistent with observed patterns of mental impairment. The imaging technique has potential value in the differential diagnosis of primary cerebral atrophy. Images PMID:3499484

  10. Temperature dependence of photon-enhanced thermionic emission from GaAs surface with nonequilibrium Cs overlayers

    NASA Astrophysics Data System (ADS)

    Zhuravlev, A. G.; Alperovich, V. L.

    2017-02-01

    The temperature influence on the Cs/GaAs surface electronic properties, which determine the photon-enhanced thermionic emission (PETE), is studied. It was found that heating to moderate temperatures of about 100 °С leads to substantial changes in the magnitude and shape of Cs coverage dependences of photoemission current and surface band bending, along with the changes of relaxation kinetics after Cs deposition. A spectral proof of the PETE process is obtained under thermal cycling of the Cs/GaAs surface with 0.45 monolayer (ML) of Cs.

  11. QUANTUM CRYPTOGRAPHY: Single Photons.

    PubMed

    Benjamin, S

    2000-12-22

    Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.

  12. Newly discovered Wolf-Rayet and weak emission-line central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    DePew, K.; Parker, Q. A.; Miszalski, B.; De Marco, O.; Frew, D. J.; Acker, A.; Kovacevic, A. V.; Sharp, R. G.

    2011-07-01

    We present the spectra of 32 previously unpublished confirmed and candidate Wolf-Rayet ([WR]) and weak emission-line (WELS) central stars of planetary nebulae (CSPNe). 18 stars have been discovered in the Macquarie/AAO/Strasbourg Hα (MASH) PN survey sample, and we have also uncovered 14 confirmed and candidate [WR]s and WELS among the CSPNe of previously known PNe. Spectral classifications have been undertaken using both Acker & Neiner and Crowther, De Marco & Barlow schemes. 22 members in this sample are identified as probable [WR]s; the remaining 10 appear to be WELS. Observations undertaken as part of the MASH spectroscopic survey have now increased the number of known [WR]s by ˜30 per cent. This will permit a better analysis of [WR] subclass distribution, metallicity effects and evolutionary sequences in these uncommon objects.

  13. Active photonic lattices: is greater than blackbody intensity possible?

    DOE PAGES

    Chow, W. W.; Waldmueller, I.

    2006-11-10

    In this paper, the emission from a radiating source embedded in a photonic lattice is investigated. The photonic lattice spectrum was found to deviate from the blackbody distribution, with intracavity emission suppressed at certain frequencies and significantly enhanced at others. For rapid population relaxation, where the photonic lattice and blackbody populations are described by the same thermal distribution, it was found that the enhancement does not result in output intensities exceeding those of the blackbody. Finally, however, for slow population relaxation, the photonic lattice population has a greater tendency to deviate from thermal equilibrium, resulting in output intensities exceeding thosemore » of the blackbody.« less

  14. A bright triggered twin-photon source in the solid state

    PubMed Central

    Heindel, T.; Thoma, A.; von Helversen, M.; Schmidt, M.; Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J. -H.; Strittmatter, A.; Beyer, J.; Rodt, S.; Carmele, A.; Knorr, A.; Reitzenstein, S.

    2017-01-01

    A non-classical light source emitting pairs of identical photons represents a versatile resource of interdisciplinary importance with applications in quantum optics and quantum biology. To date, photon twins have mostly been generated using parametric downconversion sources, relying on Poissonian number distributions, or atoms, exhibiting low emission rates. Here we propose and experimentally demonstrate the efficient, triggered generation of photon twins using the energy-degenerate biexciton–exciton radiative cascade of a single semiconductor quantum dot. Deterministically integrated within a microlens, this nanostructure emits highly correlated photon pairs, degenerate in energy and polarization, at a rate of up to (234±4) kHz. Furthermore, we verify a significant degree of photon indistinguishability and directly observe twin-photon emission by employing photon-number-resolving detectors, which enables the reconstruction of the emitted photon number distribution. Our work represents an important step towards the realization of efficient sources of twin-photon states on a fully scalable technology platform. PMID:28367950

  15. Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Kien, Fam; Hakuta, K.

    2010-02-15

    We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finessemore » is moderate, the cavity is long, and the probe field is weak.« less

  16. Cerebral perfusion imaging in Alzheimer's disease. Use of single photon emission computed tomography and iofetamine hydrochloride I 123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.A.; Mueller, S.T.; Walshe, T.M.

    1987-02-01

    We used single photon emission computed tomography (SPECT) to study 15 patients with Alzheimer's disease and nine controls. Iofetamine hydrochloride I 123 uptake data were recorded from the entire brain using a rotating gamma camera. Activity ratios were measured for the frontal, posterior parietal, posterior, medial, and lateral cortical temporal regions and striate cortex and were normalized by the activity in the cerebellum. Abnormalities in iofetamine hydrochloride I 123 activity were similar to the abnormalities in glucose metabolism observed with positron emission tomography. Cortical tracer activity was globally depressed in patients with Alzheimer's disease, with the greatest reduction in themore » posterior parietal cortex.« less

  17. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    NASA Astrophysics Data System (ADS)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  18. Single colloidal quantum dots as sources of single photons for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pisanello, Ferruccio; Qualtieri, Antonio; Leménager, Godefroy; Martiradonna, Luigi; Stomeo, Tiziana; Cingolani, Roberto; Bramati, Alberto; De Vittorio, Massimo

    2011-02-01

    Colloidal nanocrystals, i.e. quantum dots synthesized trough wet-chemistry approaches, are promising nanoparticles for photonic applications and, remarkably, their quantum nature makes them very promising for single photon emission at room temperature. In this work we describe two approaches to engineer the emission properties of these nanoemitters in terms of radiative lifetime and photon polarization, drawing a viable strategy for their exploitation as room-temperature single photon sources for quantum information and quantum telecommunications.

  19. [Analysis of single-photon emission computed tomography in patients with hypertensive encephalopathy complicated with previous hypertensive crisis].

    PubMed

    Kustkova, H S

    2012-01-01

    In cerebrovascular diseases pefuzionnaya single photon emission computed tomography with lipophilic amines used for the diagnosis of functional disorders of cerebral blood flow. Quantitative calculations helps clarify the nature of vascular disease and clarify the adequacy and effectiveness of the treatment. In this modern program for SPECT ensure conduct not only as to the calculation of blood flow, but also make it possible to compute also the absolute values of cerebral blood flow.

  20. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  1. Enhanced photon indistinguishability in pulse-driven quantum emitters

    NASA Astrophysics Data System (ADS)

    Fotso, Herbert F.

    2017-04-01

    Photon indistinguishability is an essential ingredient for the realization of scalable quantum networks. For quantum bits in the solid state, this is hindered by spectral diffusion, the uncontrolled random drift of the emission/absorption spectrum as a result of fluctuations in the emitter's environment. We study optical properties of a quantum emitter in the solid state when it is driven by a periodic sequence of optical pulses with finite detuning with respect to the emitter. We find that a pulse sequence can effectively mitigate spectral diffusion and enhance photon indistinguishability. The bulk of the emission occurs at a set target frequency; Photon indistinguishability is enhanced and is restored to its optimal value after every even pulse. Also, for moderate values of the sequence period and of the detuning, both the emission spectrum and the absorption spectrum have lineshapes with little dependence on the detuning. We describe the solution and the evolution of the emission/absorption spectrum as a function time.

  2. One-zone synchrotron self-Compton model for the core emission of Centaurus A revisited

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Lefa, E.; Dimitrakoudis, S.; Mastichiadis, A.

    2014-02-01

    Aims: We investigate the role of the second synchrotron self-Compton (SSC) photon generation to the multiwavelength emission from the compact regions of sources that are characterized as misaligned blazars. For this, we focus on the nearest high-energy emitting radio galaxy Centaurus A and we revisit the one-zone SSC model for its core emission. Methods: We have calculated analytically the peak luminosities of the first and second SSC components by first deriving the steady-state electron distribution in the presence of synchrotron and SSC cooling, and then by using appropriate expressions for the positions of the spectral peaks. We have also tested our analytical results against those derived from a numerical code where the full emissivities and cross-sections were used. Results: We show that the one-zone SSC model cannot account for the core emission of Centaurus A above a few GeV, where the peak of the second SSC component appears. We thus propose an alternative explanation for the origin of the high-energy (≳0.4 GeV) and TeV emission, where these are attributed to the radiation emitted by a relativistic proton component through photohadronic interactions with the photons produced by the primary leptonic component. We show that the required proton luminosities are not extremely high, i.e. ~1043 erg/s, provided that the injection spectra are modelled by a power law with a high value of the lower energy cutoff. Finally, we find that the contribution of the core emitting region of Cen A to the observed neutrino and ultra-high-energy cosmic-ray fluxes is negligible.

  3. Ultra-compact laser beam steering device using holographically formed two dimensional photonic crystal.

    PubMed

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T

    2010-03-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results showed a beam steering angle of 10 degree for 30 nm wavelength variation.

  4. Study of ultra-high energy emission from Cygnus X-3 and Hercules X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingus, B.L.

    1988-11-01

    The CYGNUS experiment, consisting of an extensive air shower detector and a muon detector, was built at Los Alamos, New Mexico (latitude 36 N, longitude 107W, altitude 2310 meters), to search for point sources of ultra-high energy (>10/sup 14/ eV) particles. These particles must be long-lived neutral particles because of the long source distances and the presence of the intragalactic magnetic field. Gamma rays are the most likely candidates because of the short neutron lifetime and the small neutrino cross section. Therefore, the muon content of the source showers is examined to determine if these events are muon poor asmore » is expected for gamma-initiated showers. The data set from April 1986 to July 1987 is searched for continual emission from Cygnus X-3 and Hercules X-1, and an upper bound to flux is determined for both sources. The flux limit for Cygnus X-3, 2.0 /times/ 10/sup /minus/13/ cm/sup /minus/2/ sec/sup /minus/1/ above 50 TeV, is lower than previous ultra-high energy observations. Hercules X-1 has never been observed continually at ultra-high energies. Cygnus X-3 is observed for a shorter interval of time, beginning on 17 April 1986 and ending 1 June 1986. There is one chance in 300 that the observation is due to a random fluctuation. The signal is correlated with the 4.8 hour orbital period, and the muon content of the showers in the signal is inconsistent with the conventional prediction of gamma- initiated showers. An episodic signal is also reported for Hercules X-1, and it consists of two bursts of less than one hour duration on 24 July 1986. The probability is one chance in 12,000 that this observation is not associated with Hercules X-1. The signal is pulsed at frequency near, but significantly different from, the x-ray pulsar frequency. The muon content of the signal showers is also anomalous, assuming the showers are initiated by gamma rays. 62 refs., 60 figs.« less

  5. Exploration of multiphoton entangled states by using weak nonlinearities

    PubMed Central

    He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting

    2016-01-01

    We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and weak nonlinearities. Compared with the previous schemes the present method is more feasible because there are only small phase shifts instead of a series of related functions of photon numbers in the process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error probabilities induced by homodyne measurement and show that the maximal error probability can be made small enough even when the number of photons is large. This implies that the present scheme is quite tractable and it is possible to produce entangled states involving a large number of photons. PMID:26751044

  6. Study on ultra-fast single photon counting spectrometer based on PCI

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-feng

    2010-10-01

    The time-correlated single photon counting spectrometer developed uses PCI bus technology. We developed the ultrafast data acquisition card based on PCI, replace multi-channel analyzer primary. The system theory and design of the spectrometer are presented in detail, and the process of operation is introduced with the integration of the system. Many standard samples have been measured and the data have been analyzed and contrasted. Experimental results show that the spectrometer, s sensitive is single photon counting, and fluorescence life-span and time resolution is picosecond level. And the instrument could measure time-resolved spectroscopy.

  7. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractivemore » indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.« less

  8. Measurements of relative photon emission intensities and nuclear decay data evaluation of 113Sn.

    PubMed

    Luca, Aurelian; Lépy, Marie-Christine

    2012-09-01

    In the frame of a co-operation between CEA-LIST/LNE-LNHB (France) and IFIN-HH (Romania), the relative intensities of the photon emissions following the (113)Sn decay were accurately determined at the LNHB using high resolution X- and γ-ray spectrometers, characterized by excellent quality efficiency calibrations. Two series of measurements were carried out. The intensity of the 255 keV γ-ray relative to that of the 392 keV γ-ray was determined with an uncertainty lower than 1%. A new (113)Sn nuclear decay data evaluation was accomplished. The main results obtained are presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Optomechanical detection of weak microwave signals with the assistance of a plasmonic wave

    NASA Astrophysics Data System (ADS)

    Nejad, A. Asghari; Askari, H. R.; Baghshahi, H. R.

    2018-05-01

    Entanglement between optical fields and microwave signals can be used as a quantum optical sensing technique to detect received microwave signals from a low-reflecting object which is encompassed by a bright thermal environment. Here, we introduce and analyze an optomechanical system for detecting weak reflected microwave signals from an object of low reflectivity. In our system, coupling and consequently entanglement between microwave and optical photons are achieved by means of a plasmonic wave. The main problem that can be moderated in the field of quantum optical sensing of weak microwave signals is suppressing the destructive effect of high temperatures on the entanglement between microwave signals and optical photons. For this purpose, we will show that our system can perform at high temperatures as well as low ones. It will be shown that the presence of the plasmonic wave can reduce the destructive effect of the thermal noises on the entanglement between microwave and optical photons. Also, we will show that the optomechanical interaction is vital to create an appropriate entanglement between microwave and optical photons.

  10. Pure single-photon emission from In(Ga)As QDs in a tunable fiber-based external mirror microcavity

    NASA Astrophysics Data System (ADS)

    Herzog, T.; Sartison, M.; Kolatschek, S.; Hepp, S.; Bommer, A.; Pauly, C.; Mücklich, F.; Becher, C.; Jetter, M.; Portalupi, S. L.; Michler, P.

    2018-07-01

    Cavity quantum electrodynamics is widely used in many solid-state systems for improving quantum emitter performances or accessing specific physical regimes. For these purposes it is fundamental that the non-classical emitter, like a quantum dot or an NV center, matches the cavity mode, both spatially and spectrally. In the present work, we couple single photons stemming from In(Ga)As quantum dots into an open fiber-based Fabry–Pérot cavity. Such a system allows for reaching an optimal spatial and spectral matching for every present emitter and every optical transition, by precisely tuning the cavity geometry. In addition to that, the capability of deterministically and repeatedly locating a single quantum dot enables to compare the behavior of the quantum emitter inside the cavity with respect to before it is placed inside. The presented open-cavity system shows full flexibility by precisely tuning in resonance different QD transitions, namely excitons, biexcitons and trions. A measured Purcell enhancement of 4.4 ± 0.5 is obtained with a cavity finesse of about 140, while still demonstrating a single-photon source with vanishing multi-photon emission probability.

  11. Photon theory hypothesis about photon tunneling microscope's subwavelength resolution

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu

    1995-09-01

    The foundation for the invention of the photon scanning tunneling microscope (PSTM) are the near field scanning optical microscope, the optical fiber technique, the total internal reflection, high sensitive opto-electronic detecting technique and computer technique etc. Recent research results show the subwavelength resolution of 1 - 3 nm is obtained. How to explain the PSTM has got such high subwavelength resolution? What value is the PSTM's limiting of subwavelength resolution? For resolving these problems this paper presented a photon theory hypothesis about PSTM that is based on the following two basic laws: (1) Photon is not only a carrier bringing energy and optical information, but also is a particle occupied fixed space size. (2) When a photon happened reflection, refraction, scattering, etc., only changed its energy and optical information carried, its particle size doesn't change. g (DOT) pphoton equals constant. Using these two basic laws to PSTM, the `evanescent field' is practically a weak photon distribution field and the detecting fiber tip diameter is practically a `gate' which size controlled the photon numbers into fiber tip. Passing through some calculation and inference, the following three conclusions can be given: (1) Under the PSTM's detection system sensitivity is high enough, the diameter D of detecting fiber tip and the near field detecting distance Z are the two most important factors to decide the subwavelength resolution of PSTM. (2) The limiting of PSTM's resolution will be given upon the conditions of D equals pphoton and Z equals pphoton, where pphoton is one photon size. (2) The final resolution limit R of PSTM will be lim R equals pphoton, D yields pphoton, Z yields pphoton.

  12. Reconfigurable ultra-wideband waveform generation with simple photonic devices

    NASA Astrophysics Data System (ADS)

    Dastmalchi, Mansour; Abtahi, Mohammad; Lemus, David; Rusch, Leslie A.; LaRochelle, Sophie

    2012-08-01

    We propose and experimentally demonstrate a low cost, low power consumption technique for ultra-wideband pulse shaping. Our approach is based on thermal apodization of two identical linearly chirped fiber Bragg gratings (LCFBG) placed in both arms of a balanced photodetector. Resistive heating elements with low electrical power consumption are used to tune the LCFBG spectral responses. Using a standard gain switched distributed feedback laser as a pulsed optical source and a simple energy detector receiver, we measured a bit error rate of 1.5×10-4 at a data rate of 1 Gb/s after RF transmission over a 1-m link.

  13. Ultra-large field-of-view two-photon microscopy.

    PubMed

    Tsai, Philbert S; Mateo, Celine; Field, Jeffrey J; Schaffer, Chris B; Anderson, Matthew E; Kleinfeld, David

    2015-06-01

    We present a two-photon microscope that images the full extent of murine cortex with an objective-limited spatial resolution across an 8 mm by 10 mm field. The lateral resolution is approximately 1 µm and the maximum scan speed is 5 mm/ms. The scan pathway employs large diameter compound lenses to minimize aberrations and performs near theoretical limits. We demonstrate the special utility of the microscope by recording resting-state vasomotion across both hemispheres of the murine brain through a transcranial window and by imaging histological sections without the need to stitch.

  14. Terahertz wireless communications based on photonics technologies.

    PubMed

    Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki

    2013-10-07

    There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.

  15. THE COVERING FACTOR OF WARM DUST IN WEAK EMISSION-LINE ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xudong; Liu, Yuan, E-mail: zhangxd@ihep.ac.cn, E-mail: liuyuan@ihep.ac.cn

    2016-10-20

    Weak emission-line active galactic nuclei (WLAGNs) are radio-quiet active galactic nuclei (AGNs) that have nearly featureless optical spectra. We investigate the ultraviolet to mid-infrared spectral energy distributions of 73 WLAGNs (0.4 < z < 3) and find that most of them are similar to normal AGNs. We also calculate the covering factor of warm dust of these 73 WLAGNs. No significant difference is indicated by a KS test between the covering factor of WLAGNs and normal AGNs in the common range of bolometric luminosity. The implication for several models of WLAGNs is discussed. The super-Eddington accretion is unlikely to bemore » the dominant reason for the featureless spectrum of a WLAGN. The present results are still consistent with the evolution scenario, i.e., WLAGNs are in a special stage of AGNs.« less

  16. Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes

    NASA Astrophysics Data System (ADS)

    Yuan, Jin-Hui; Sang, Xin-Zhu; Yu, Chong-Xiu; Xin, Xiang-Jun; Shen, Xiang-Wei; Zhang, Jin-Long; Zhou, Gui-Yao; Li, Shu-Guang; Hou, Lan-Tian

    2011-05-01

    By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.

  17. Silicon-nitride/oxynitride wavelength demultiplexer and resonators for quantum photonics

    NASA Astrophysics Data System (ADS)

    Lim, Soon Thor; Gandhi, Alagappan; Ong, Jun Rong; Ang, Thomas; Png, Ching Eng; Lu, Ding; Ang, Norman Soo Seng; Teo, Ee Jin; Teng, Jinghua

    2018-02-01

    SiOxNy shows promises for bright emitters of single photons. We successfully fabricated ultra-low-loss SiOxNy waveguide and AWG with low insertion loss <1dB and <3dB total loss (<2dB on-chip loss and <1dB coupling loss) at 1310nm.

  18. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    NASA Astrophysics Data System (ADS)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  19. Generating single microwave photons in a circuit.

    PubMed

    Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-20

    Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.

  20. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com; Kumar, Narendra; Thapa, Khem B.

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractivemore » index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.« less