Sample records for ultra-wideband radio transmitters

  1. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  2. Distance bounded energy detecting ultra-wideband impulse radio secure protocol.

    PubMed

    Hedin, Daniel S; Kollmann, Daniel T; Gibson, Paul L; Riehle, Timothy H; Seifert, Gregory J

    2014-01-01

    We present a demonstration of a novel protocol for secure transmissions on a Ultra-wideband impulse radio that includes distance bounding. Distance bounding requires radios to be within a certain radius to communicate. This new protocol can be used in body area networks for medical devices where security is imperative. Many current wireless medical devices were not designed with security as a priority including devices that can be life threatening if controlled by a hacker. This protocol provides multiple levels of security including encryption and a distance bounding test to prevent long distance attacks.

  3. Ultra-Wideband Angle-of-Arrival Tracking Systems

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Gross, Julia; Ni, Jianjun; Dusl, John

    2010-01-01

    Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference.

  4. Ultra-wideband radios for time-of-flight-ranging and network position estimation

    DOEpatents

    Hertzog, Claudia A [Houston, TX; Dowla, Farid U [Castro Valley, CA; Dallum, Gregory E [Livermore, CA; Romero, Carlos E [Livermore, CA

    2011-06-14

    This invention provides a novel high-accuracy indoor ranging device that uses ultra-wideband (UWB) RF pulsing with low-power and low-cost electronics. A unique of the present invention is that it exploits multiple measurements in time and space for very accurate ranging. The wideband radio signals utilized herein are particularly suited to ranging in harsh RF environments because they allow signal reconstruction in spite of multipath propagation distortion. Furthermore, the ranging and positioning techniques discussed herein directly address many of the known technical challenges encountered in UWB localization regarding synchronization and sampling. In the method developed, noisy, corrupted signals can be recovered by repeating range measurements across a channel, and the distance measurements are combined from many locations surrounding the target in a way that minimizes the range biases associated to indirect flight paths and through-wall propagation delays.

  5. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    PubMed

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-01-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.

  6. Experimental implant communication of high data rate video using an ultra wideband radio link.

    PubMed

    Chávez-Santiago, Raúl; Balasingham, Ilangko; Bergsland, Jacob; Zahid, Wasim; Takizawa, Kenichi; Miura, Ryu; Li, Huan-Bang

    2013-01-01

    Ultra wideband (UWB) is one of the radio technologies adopted by the IEEE 802.15.6™-2012 standard for on-body communication in body area networks (BANs). However, a number of simulation-based studies suggest the feasibility of using UWB for high data rate implant communication too. This paper presents an experimental verification of said predictions. We carried out radio transmissions of H.264/1280×720 pixels video at 80 Mbps through a UWB multiband orthogonal frequency division multiplexing (MB-OFDM) interface in a porcine chirurgical model. The results demonstrated successful transmission up to a maximum depth of 30 mm in the abdomen and 33 mm in the thorax within the 4.2-4.8 GHz frequency band.

  7. Optimal waveforms design for ultra-wideband impulse radio sensors.

    PubMed

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations.

  8. Ultra-wideband microwave photonic link based on single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu

    2017-10-01

    Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.

  9. Optimal Waveforms Design for Ultra-Wideband Impulse Radio Sensors

    PubMed Central

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations. PMID:22163511

  10. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  11. BioRadioTransmitter: a self-powered wireless glucose-sensing system.

    PubMed

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    2011-09-01

    Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.

  12. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks.

    PubMed

    Chow, C W; Kuo, F M; Shi, J W; Yeh, C H; Wu, Y F; Wang, C H; Li, Y T; Pan, C L

    2010-01-18

    Fiber-to-the-antenna (FTTA) system can be a cost-effective technique for distributing high frequency signals from the head-end office to a number of remote antenna units via passive optical splitter and propagating through low-loss and low-cost optical fibers. Here, we experimentally demonstrate an optical ultra-wideband (UWB) - impulse radio (IR) FTTA system for in-building and in-home applications. The optical UWB-IR wireless link is operated in the W-band (75 GHz - 110 GHz) using our developed near-ballistic unitraveling-carrier photodiode based photonic transmitter (PT) and a 10 GHz mode-locked laser. 2.5 Gb/s UWB-IR FTTA systems with 1,024 high split-ratio and transmission over 300 m optical fiber are demonstrated using direct PT modulation.

  13. 4 Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi mode fiber with 4 meters wireless transmission.

    PubMed

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero, Antonio; Yu, Xianbin; Gibbon, Timothy Braidwood; Monroy, Idelfonso Tafur

    2009-09-14

    We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting laser (VCSEL) was used for the generation of the optical signal. 8 m at 2.5 Gbps corresponds to a bit rate--distance product of 20; the highest yet reported for wireless IR-UWB transmission.

  14. Monostatic ultra-wideband GPR antenna for through wall detection

    NASA Astrophysics Data System (ADS)

    Ali, Jawad; Abdullah, Noorsaliza; Yahya, Roshayati; Naeem, Taimoor

    2017-11-01

    The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB) printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR) technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS) method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  15. Wideband spectrum analysis of ultra-high frequency radio-wave signals due to advanced one-phonon non-collinear anomalous light scattering.

    PubMed

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-04-20

    We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52  GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.

  16. Ultra-wideband short-pulse radar with range accuracy for short range detection

    DOEpatents

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  17. Free space optical ultra-wideband communications over atmospheric turbulence channels.

    PubMed

    Davaslioğlu, Kemal; Cağiral, Erman; Koca, Mutlu

    2010-08-02

    A hybrid impulse radio ultra-wideband (IR-UWB) communication system in which UWB pulses are transmitted over long distances through free space optical (FSO) links is proposed. FSO channels are characterized by random fluctuations in the received light intensity mainly due to the atmospheric turbulence. For this reason, theoretical detection error probability analysis is presented for the proposed system for a time-hopping pulse-position modulated (TH-PPM) UWB signal model under weak, moderate and strong turbulence conditions. For the optical system output distributed over radio frequency UWB channels, composite error analysis is also presented. The theoretical derivations are verified via simulation results, which indicate a computationally and spectrally efficient UWB-over-FSO system.

  18. Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter.

    PubMed

    Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei

    2012-05-20

    We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.

  19. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, J.P.; Mast, J.E.

    1998-11-10

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 11 figs.

  20. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, John P.; Mast, Jeffrey E.

    1998-01-01

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  1. Time-Reversal Based Range Extension Technique for Ultra-wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2008-04-16

    Zhen (Edward) Hu Peng (Peter) Zhang Yu Song Amanpreet Singh Saini Corey Cooke April 16, 2006 Department of Electrical and Computer Engineering Center...and RF frequency agility is the most challenging issue for spectrum sensing. The radio under development is an ultra-wideband software -defined radio...PC USB programming cable and accom- panying PC software as well as download test vectors to the waveform memory module, as shown in Figure 3.25,3I

  2. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  3. Ultra-wideband microwave photonic frequency downconverter based on carrier-suppressed single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu

    2018-03-01

    An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.

  4. Ultra-wideband surface plasmonic Y-splitter.

    PubMed

    Gao, Xi; Zhou, Liang; Yu, Xing Yang; Cao, Wei Ping; Li, Hai Ou; Ma, Hui Feng; Cui, Tie Jun

    2015-09-07

    We present an ultra-wideband Y-splitter based on planar THz plasmonic metamaterials, which consists of a straight waveguide with composite H-shaped structure and two branch waveguides with H-shaped structure. The spoof surface plasmonic polaritons (SSPPs) supported by the straight waveguide occupy the similar dispersion relation and mode characteristic to the ones confined by the branch waveguides. Attributing to these features, the two branch waveguides can equally separate the SSPPs wave propagating along the straight plasmonic waveguide to form a 3dB power divider in an ultra-wideband frequency range. To verify the functionality and performance of the proposed Y-splitter, we scaled down the working frequency to microwave and implemented microwave experiments. The tested device performances have clearly validated the functionality of our designs. It is believed to be applicable for future plasmonic circuit in microwave and THz ranges.

  5. Ultra-wideband radar sensors and networks

    DOEpatents

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  6. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1994-09-06

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.

  7. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1996-06-04

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.

  8. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  9. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  10. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    PubMed

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  11. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

    PubMed Central

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-01-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084

  12. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8225 ● NOV 2017 US Army Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques 5a. CONTRACT NUMBER

  13. Radio-Frequency and Wideband Modulation Arraying

    NASA Technical Reports Server (NTRS)

    Brockman, M. H.

    1984-01-01

    Summing network receives coherent signals from all receivers in array. Method sums narrow-band radio-frequency (RF) carrier powers and wide-band spectrum powers of array of separate antenna/receiver systems designed for phase-locked-loop or suppressed-carrier operation.

  14. Feasibility of ultra-wideband SAW RFID tags meeting FCC rules.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Li, Xianyi; Hartogh, Paul

    2009-04-01

    We discuss the feasibility of surface acoustic wave (SAW) radio-frequency identification (RFID) tags that rely on ultra-wideband (UWB) technology. We propose a design of a UWB SAW tag, carry out numerical experiments on the device performance, and study signal processing in the system. We also present experimental results for the proposed device and estimate the potentially achievable reading distance. UWB SAW tags will have an extremely small chip size (<0.5 x 1 mm(2)) and a low cost. They also can provide a large number of different codes. The estimated read range for UWB SAW tags is about 2 m with a reader radiating as low as <0.1 mW power levels with an extremely low duty factor.

  15. Remote Respiration Monitoring Using Ultra-wideband Microwave Sensor

    NASA Astrophysics Data System (ADS)

    Higashikatsuragi, Kenji; Nakahata, Youichiro; Matsunami, Isamu; Kajiwara, Akihiro

    Impulse based ultra-wideband radio has lately attracted considerable attention as medical monitoring sensor since it is expected to measure bio-signals of a patient on a bed such as respiration rate and heartbeat with a remote non-contact approach. It is also friendly to the environment including the human body due to the very low electromagnetic energy emission. Using conventional ranging scheme, however, high speed A/D device should be required in order to detect the small respiratory displacement. This paper suggests a respiratory monitoring scheme where the respiration rate is measured by observing the variation of the path strength from the patient. Therefore, it does not require high speed A/D. It also makes possible to design the simultaneous monitoring of multiple patients in hospital beds, for example. In this paper the measurements were conducted for various scenarios and the feasibility is discussed.

  16. Tunable rejection filters with ultra-wideband using zeroth shear mode plate wave resonators

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Sannomiya, Toshio; Tanaka, Shuji

    2017-07-01

    This paper reports wide band rejection filters and tunable rejection filters using ultra-wideband zeroth shear mode (SH0) plate wave resonators. The frequency range covers the digital TV band in Japan that runs from 470 to 710 MHz. This range has been chosen to meet the TV white space cognitive radio requirements of rejection filters. Wide rejection bands were obtained using several resonators with different frequencies. Tunable rejection filters were demonstrated using Si diodes connected to the band rejection filters. Wide tunable ranges as high as 31% were measured by applying a DC voltage to the Si diodes.

  17. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  18. Three-Dimensional Planetary Surface Tracking Based on a Simple Ultra-Wideband Impulse-Radio Infrastructure

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Ni, David; Ngo, Phong

    2010-01-01

    Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.

  19. UWB transmitter

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-01-15

    An ultra-wideband (UWB) dual impulse transmitter is made up of a trigger edge selection circuit actuated by a single trigger input pulse; a first step recovery diode (SRD) based pulser connected to the trigger edge selection circuit to generate a first impulse output; and a second step recovery diode (SRD) based pulser connected to the trigger edge selection circuit in parallel to the first pulser to generate a second impulse output having a selected delay from the first impulse output.

  20. 125Mbps ultra-wideband system evaluation for cortical implant devices.

    PubMed

    Luo, Yi; Winstead, Chris; Chiang, Patrick

    2012-01-01

    This paper evaluates the performance of a 125Mbps Impulse Ratio Ultra-Wideband (IR-UWB) system for cortical implant devices by using low-Q inductive coil link operating in the near-field domain. We examine design tradeoffs between transmitted signal amplitude, reliability, noise and clock jitter. The IR-UWB system is modeled using measured parameters from a reported UWB transceiver implemented in 90nm-CMOS technology. Non-optimized inductive coupling coils with low-Q value for near-field data transmission are modeled in order to build a full channel from the transmitter (Tx) to the receiver (Rx). On-off keying (OOK) modulation is used together with a low-complexity convolutional error correcting code. The simulation results show that even though the low-Q coils decrease the amplitude of the received pulses, the UWB system can still achieve acceptable performance when error correction is used. These results predict that UWB is a good candidate for delivering high data rates in cortical implant devices.

  1. Effects of radio transmitters on migrating wood thrushes

    USGS Publications Warehouse

    Powell, L.A.; Krementz, D.G.; Lang, J.D.; Conroy, M.J.

    1998-01-01

    We quantified the effects of radio transmitters on Wood Thrushes (Hylocichla mustelina) using 4 yr of banding and telemetry data from Piedmont National Wildlife Refuge, Georgia. Flight performance models suggest that the 1.6-g transmitter shortens the migratory range of Wood Thrushes by only 60 km, and the estimated migratory range is adequate to accomplish migration even with limited fat stores. We used two strengths of line, 5- and 9-kg test-strength braided Dacron, to attach the transmitters using the thigh-harness method. We recaptured 13 returning radio-marked Wood Thrushes, seven of which were still marked. Six of the seven birds marked with the 5-kg test harnesses lost their transmitters within 1 yr while all six of the 9-kg test harnesses were still attached up to 21 mo later. Radio-marking did not reduce the return rates of adults and immatures, and the transmitters did not cause radio-marked birds to lose more mass than banded-only birds. Wood Thrushes can successfully carry a transmitter during migration with no detectable negative effects. We recommend continued use of the thigh-harness method, but we encourage the use of 5-kg cotton line.

  2. Effects of radio transmitters on nesting captive mallards

    USGS Publications Warehouse

    Houston, Robert A.; Greenwood, Raymond J.

    1993-01-01

    Radio packages may subtly affect bird behavior and condition, and thus could bias results from studies using this technique. To assess effects on reproduction of mallards (Anas platyrhynchos), we tested 3 types of back-mounted radio packages on captive females. Eight paired females were randomly assigned to each of 4 treatments: 4-g transmitter attached with sutures and glue, 10-g or 18-g transmitter attached with a harness, and no transmitter (control). All mallards were fed ad libitum. No differences were detected among treatments in number of clutches, clutch size, nesting interval, egg mass, or body mass; powers (range = 0.15-0.48) of tests were low. Feather wear and skin irritation around radio packages were minimal. Birds retained sutured transmitters for an average of 43.5 days (range = 3-106 days) and harness transmitters for the duration of the study (106 days). Sutures were not reliable and presently are not recommended as an attachment method. Caution is advised in applying these results to radio-equipped mallards in the wild.

  3. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  4. Ultra-wideband polarization insensitive UT-shaped metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Karampour, Nasrollah; Nozhat, Najmeh

    2017-05-01

    In this paper, an ultra-wideband metamaterial absorber (MMA) with U and T shaped resonators has been proposed. The resonators and the ground plane consist of gold (Au) and titanium (Ti) layers. The resistive sheet effect of Ti layer and the resonance elements in the structure cause a broad absorption spectrum. The simulations are based on the finite element method (FEM) and the results show that the absorption of the proposed structure is more than 90% between 150 and 300 THz that is much larger than previous works. Moreover, by applying the interference theory, we have demonstrated that the simulation results are in good agreement with the theoretical results. The primary proposed MMA is polarization sensitive. Therefore, a polarization insensitive metamaterial absorber has been suggested. Also, because of the extra resonance elements the full width at 90% absorption increases about 35 THz. This ultra-wideband MMA has various applications in microbalometer, imaging, thermal emitters, photovoltaic, and energy harvesting.

  5. Solar radio-transmitters on snail kites in Florida

    USGS Publications Warehouse

    Snyder, N.F.R.; Beissinger, S.R.; Fuller, M.R.

    1989-01-01

    The effectiveness and safety of one- and two-stage solar radio-transmitters in tracking the movements and survival of adult and fledgling Snail Kites (Rostrhamus sociabilis) were evaluated between 1979 and 1983 in southern Florida. Transmitters were attached to birds with back-pack arrangements using teflon ribbon straps. Accessory plastic shields minimized feather coverage of the solar cells. Intact transmitters were seen on birds up to 47 mo after installation. Operating lives ranged from 8 to 21 mo for one-stage, and 10 to 14 mo for two-stage transmitters. Because survival of adult and nestling radio-marked kites was high, we conclude that our transmitter-attachment method had little effect on the birds.

  6. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion.

  7. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  8. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  9. A radio transmitter attachment technique for soras

    USGS Publications Warehouse

    Haramis, G.M.; Kearns, G.D.

    2000-01-01

    We modified a figure-8 leg-loop harness designed for small passerines to attach successfully 1.8-g radio transmitters over the synsacrum of migrant Soras (Porzana carolina). Because of the short caudal region of Soras, addition of a waist loop was critical to securing the transmitter while leg loops were maintained to center the package. Thin gauge (0.6-mm diameter) elastic thread proved ideal for transmitter attachment and allowed for freedom of movement and girth expansion associated with fattening during a 6-10 week stopover. Of 110 Soras radio tagged during three field seasons, only a single mortality was observed and only a single bird lost its transmitter. Migration from the study area was confirmed for 76 (69%) and suspected for another 25 birds (total 92%).

  10. Optical Tunable-Based Transmitter for Multiple Radio Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung (Inventor); Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor); Freeman, Jon C. (Inventor)

    2016-01-01

    An optical tunable transmitter is used to transmit multiple radio frequency bands on a single beam. More specifically, a tunable laser is configured to generate a plurality of optical wavelengths, and an optical tunable transmitter is configured to modulate each of the plurality of optical wavelengths with a corresponding radio frequency band. The optical tunable transmitter is also configured to encode each of the plurality of modulated optical wavelengths onto a single laser beam for transmission of a plurality of radio frequency bands using the single laser beam.

  11. Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director

    DTIC Science & Technology

    2014-08-01

    Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director by Amir I Zaghloul, Youn M... Antenna with Electromagnetic Band Gap (EBG) Surface and Director Amir I Zaghloul, Youn M Lee, Gregory A Mitchell, and Theodore K Anthony...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG

  12. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    NASA Astrophysics Data System (ADS)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  13. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  14. Ultra-wideband design of waveguide magneto-optical isolator operating in 1.31mum and 1.55mum band.

    PubMed

    Shoji, Yuya; Mizumoto, Tetsuya

    2007-01-22

    The design of an ultra-wideband waveguide magneto-optical isolator is described. The isolator is based on a Mach-Zehnder interferometer employing nonreciprocal phase shift. The ultra-wideband design is realized by adjusting the wavelength dependence of reciprocal phase difference to compensate for that of nonreciprocal phase difference in the backward direction. We obtained the ultra-wideband design that provides isolation > 35dB from 1.25mum to >1.65mum. This is the proposal of magneto-optical isolator that operates both in 1.31mum band and 1.55mum band.

  15. Implanting radio transmitters in wintering canvasbacks

    USGS Publications Warehouse

    Olsen, Glenn H.; Dein, F. Joshua; Haramis, G. Michael; Jorde, Dennis G.

    1992-01-01

    To conduct telemetry studies of wintering canvasbacks (Aythya valisineria) on Chesapeake Bay [Maryland, USA], we needed to devise a suitable method of radio transmitter attachment. We describe as aseptic, intraabdominal surgical technique, using the inhalation anesthetic isoflurane, to implant 20-g radio transmitters in free-ranging canvasbacks. We evaluated the technique over 3 winters (1987-89), when an annual average of 83 female canvasbacks received implant surgery during a 9-day period in mid-December. Of 253 ducks, 248 (98%) were implanted successfully, and 200 (80.65) completed the 70-day study until early March. No mortality or abnormal behavior from surgery was identified post-release.

  16. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    NASA Astrophysics Data System (ADS)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  17. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  18. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  19. Design of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Weinreb, Sander; Mani, Handi

    2007-01-01

    A wideband Radio Telescope is being designed for use in the Goldstone Apple Valley Radio Telescope program. It uses an existing 34-meter antenna retrofitted with a tertiary offset mirror placed at the apex of the main reflector. It can be rotated to use two feeds that cover the 1.2 to 14 GHz band. The feed for 4.0 to 14.0 GHz is a cryogenically cooled commercially available open boundary quadridge horn from ETS-Lindgren. Coverage from 1.2 to 4.0 GHz is provided by an un-cooled scaled version of the same feed. The performance is greater than 40% over most of the band and greater than 55%from 6 to 13.5 GHz.

  20. Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range.

    PubMed

    Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei

    2013-05-06

    A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.

  1. Ultra-Wideband Transceiver Design and Optimization

    NASA Astrophysics Data System (ADS)

    Mehra, Ashutosh

    The technology landscape has quickly changed over the last few years. Developments in personal area networks, IC technology, DSP processing and bio-medical devices have enabled the integration of short range communication into low cost personal health care solutions. Newer technologies and solutions are being developed to cater to the personal operating space(POS) and body area networks(BAN). Health care is driving towards using multiple sensor and therapeutic nodes inside the POS. Technology has enabled remote patient care where the patient has low cost on-body wearables that allow the patient/physician to access vital signs without the patient physically visiting the clinic. Big semiconductor giants want to move into the wearable health monitor space. Along with the developments in fitness based health wearables, there has been a lot of interest towards developing BAN devices catering to the 'mission-critical' wearables and implants. Hearing aids, EKG monitors, neurostimulators are some examples. This work explores the use of the 802.15 ulta wideband (UWB) standard for designing a radio to operate in the a wireless sensor network in the BAN. The specific application targeted is a hearing aid. However, the design in this work is capable of working in a low power low range application with the ability to have multiple data rates ranging from a few kHz to 10's of MHz. The first radio designed by Marconi using spark-gap transmitters was an impulse radio (IR). The IR UWB technology boasts of low power, low cost, high data rates, multiple channels, simultaneous networking, the ability to carry information through obstacles that more limited bandwidths cannot, and also potentially lower complexity hardware design. The inherent timing accuracy associated with the technology gives UWB transmissions immunity to multipath fading and are hence make them more suitable for a cluttered indoor environment. The key difference with the traditional narrowband transceiver is that

  2. Numerical Modeling of Ultra Wideband Combined Antennas

    NASA Astrophysics Data System (ADS)

    Zorkal'tseva, M. Yu.; Koshelev, V. I.; Petkun, A. A.

    2017-12-01

    With the help of a program we developed, based on the finite difference method in the time domain, we have investigated the characteristics of ultra wideband combined antennas in detail. The antennas were developed to radiate bipolar pulses with durations in the range 0.5-3 ns. Data obtained by numerical modeling are compared with the data of experimental studies on antennas and have been used in the synthesis of electromagnetic pulses with maximum field strength.

  3. Accurate measurement of chest compression depth using impulse-radio ultra-wideband sensor on a mattress.

    PubMed

    Yu, Byung Gyu; Oh, Je Hyeok; Kim, Yeomyung; Kim, Tae Wook

    2017-01-01

    We developed a new chest compression depth (CCD) measuring technology using radar and impulse-radio ultra-wideband (IR-UWB) sensor. This study was performed to determine its accuracy on a soft surface. Four trials, trial 1: chest compressions on the floor using an accelerometer device; trial 2: chest compressions on the floor using an IR-UWB sensor; trial 3: chest compressions on a foam mattress using an accelerometer device; trial 4: chest compressions on a foam mattress using an IR-UWB sensor, were performed in a random order. In all the trials, a cardiopulmonary resuscitation provider delivered 50 uninterrupted chest compressions to a manikin. The CCD measured by the manikin and the device were as follows: 57.42 ± 2.23 and 53.92 ± 2.92 mm, respectively in trial 1 (p < 0.001); 56.29 ± 1.96 and 54.16 ± 3.90 mm, respectively in trial 2 (p < 0.001); 55.61 ± 1.57 and 103.48 ± 10.48 mm, respectively in trial 3 (p < 0.001); 57.14 ± 3.99 and 55.51 ± 3.39 mm, respectively in trial 4 (p = 0.012). The gaps between the CCD measured by the manikin and the devices (accelerometer device vs. IR-UWB sensor) on the floor were not different (3.50 ± 2.08 mm vs. 3.15 ± 2.27 mm, respectively, p = 0.136). However, the gaps were significantly different on the foam mattress (48.53 ± 5.65 mm vs. 4.10 ± 2.47 mm, p < 0.001). The IR-UWB sensor could measure the CCD accurately both on the floor and on the foam mattress.

  4. Effects of external radio transmitters on fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, M.J.; McCormick, J.H.

    1981-04-01

    Yellow perch (Perca flavescens) and largemouth bass (Micropterus salmoides) were studied to determine the effects of externally attached radio transmitter tags. Perch that had been tagged with dummy radio tags were more susceptible to predation and more sensitive to environmental stress than were controls. Feeding and respiration rates were similar among dummy tagged and control groups of perch over a 6-week period. The feeding rate of dummy tagged largemouth bass was lower than that of untagged fish over a 3,5-week period. On the basis of these studies, we conclude that weights of external transmitters in water should be less thanmore » 1.5% of the fish weight. Design considerations should include streamlining components and an anterior attachment wire at the extreme leading edge of an external transmitter to prevent entanglement of the tag in surrounding vegetation.« less

  5. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  6. Loss from harlequin ducks of abdominally implanted radio transmitters equipped with percutaneous antennas

    USGS Publications Warehouse

    Mulcahy, D.M.; Esler, Daniel N.; Stoskopf, M.K.

    1999-01-01

    We documented extrusion and loss of abdominally implanted radio transmitters with percutaneous antennas from adult female Harlequin Ducks (Histrionicus histrionicus). Birds were captured during wing molt (late August to mid-September) in 1995-1997. Of 44 Harlequin Ducks implanted with radios and recaptured, 7 (16%) had lost their transmitters and 5 (11%) had radios in the process of extruding. Most (11 of 12) extrusions and losses occurred in birds implanted with radios in 1996 and recaptured in 1997. We suggest that transmitter extrusions and losses were due largely to changes in transmitter design made between 1095 and 1996. Transmitters implanted in 1996 were cylindrical rather than spherical, had a flat end with an abrupt edge, and the lower portion of the antenna was reinforced. Radio losses occurred after the 7-mo monitoring period and caused no apparent harm to the birds. Investigators using implanted radios with percutaneous antennas for long-term projects should be aware of the potential for radio extrusion and should minimize the problem by using transmitters that have no sharp edges and that are wide, rather than narrow.

  7. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  8. Ultra-wideband ladder filter using SH(0) plate wave in thin LiNbO(3) plate and its application to tunable filter.

    PubMed

    Kadota, Michio; Tanaka, Shuji

    2015-05-01

    A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space.

  9. Technique for implanting radio transmitters subcutaneously in day-old ducklings

    USGS Publications Warehouse

    Korschgen, C.E.; Kenow, K.P.; Green, W.L.; Samuel, M.D.; Sileo, L.

    1996-01-01

    We developed and evaluated a surgical procedure for implanting radio transmitters in 1-d-old Canvasback (Aythya valisineria) ducklings. Transmitters (1.5 g) were implanted subcutaneously on the back of ducklings while under a general anesthetic, isoflurane, within a few hours of hatching. Evaluations indicate that the procedure is a reliable method for radio-marking ducklings.

  10. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    DTIC Science & Technology

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  11. Accurate measurement of chest compression depth using impulse-radio ultra-wideband sensor on a mattress

    PubMed Central

    Kim, Yeomyung

    2017-01-01

    Objective We developed a new chest compression depth (CCD) measuring technology using radar and impulse-radio ultra-wideband (IR-UWB) sensor. This study was performed to determine its accuracy on a soft surface. Methods Four trials, trial 1: chest compressions on the floor using an accelerometer device; trial 2: chest compressions on the floor using an IR-UWB sensor; trial 3: chest compressions on a foam mattress using an accelerometer device; trial 4: chest compressions on a foam mattress using an IR-UWB sensor, were performed in a random order. In all the trials, a cardiopulmonary resuscitation provider delivered 50 uninterrupted chest compressions to a manikin. Results The CCD measured by the manikin and the device were as follows: 57.42 ± 2.23 and 53.92 ± 2.92 mm, respectively in trial 1 (p < 0.001); 56.29 ± 1.96 and 54.16 ± 3.90 mm, respectively in trial 2 (p < 0.001); 55.61 ± 1.57 and 103.48 ± 10.48 mm, respectively in trial 3 (p < 0.001); 57.14 ± 3.99 and 55.51 ± 3.39 mm, respectively in trial 4 (p = 0.012). The gaps between the CCD measured by the manikin and the devices (accelerometer device vs. IR-UWB sensor) on the floor were not different (3.50 ± 2.08 mm vs. 3.15 ± 2.27 mm, respectively, p = 0.136). However, the gaps were significantly different on the foam mattress (48.53 ± 5.65 mm vs. 4.10 ± 2.47 mm, p < 0.001). Conclusion The IR-UWB sensor could measure the CCD accurately both on the floor and on the foam mattress. PMID:28854262

  12. Development of an Ultra-Wideband Receiver for the North America Array

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Soriano, M.; Hoppe, D.; Russell, D.; D'Addario, L.; Long, E.; Bowen, J.; Samoska, L.; Lazio, J.

    2016-11-01

    The North America Array (NAA) is a concept for a radio astronomical interferometric array operating in the 1.2 GHz to 116 GHz frequency range. It has been designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage beyond the current Karl G. Jansky Very Large Array (VLA). It will have a continuous frequency coverage of 1.2 GHz to 50 GHz and 70 to 116 GHz, and a total aperture 10 times more sensitive than the VLA (and 25 times more sensitive than a 34-m-diameter antenna of the Deep Space Network [DSN]). One of the key goals for the NAA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range in contrast to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs. To minimize implementation, operational, and maintenance costs, we are developing a receiver that is compact, simple to assemble, and that consumes less power. The objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower-band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feedhorn, low-noise amplifier (LNA), and downconverters to analog intermediate frequencies. Both the feedhorn and the LNA are cryogenically cooled. Key features of this design are a quad-ridge feedhorn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30°K at the low end of the band. In this article, we report on the status of this receiver package development, including the feed design and LNA implementation. We present simulation studies of the feed horn carried out to optimize illumination

  13. Design and Performance of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Weinreb, Sander; Imbriale, William A.; Jones, Glenn; Mani, Handi

    2012-01-01

    The Goldstone Apple Valley Radio Telescope (GAVRT) is an outreach project, a partnership involving NASA's Jet Propulsion Laboratory (JPL), the Lewis Center for Educational Research (LCER), and the Apple Valley Unified School District near the NASA Goldstone deep space communication complex. This educational program currently uses a 34-meter antenna, DSS12, at Goldstone for classroom radio astronomy observations via the Internet. The current program utilizes DSS12 in two narrow frequency bands around S-band (2.3 GHz) and X-band (8.45 GHz), and is used by a training program involving a large number of secondary school teachers and their classrooms. To expand the program, a joint JPL/LCER project was started in mid-2006 to retrofit an additional existing 34-meter beam-waveguide antenna, DSS28, with wideband feeds and receivers to cover the 0.5-to- 14-GHz frequency bands. The DSS28 antenna has a 34-meter diameter main reflector, a 2.54-meter subreflector, and a set of beam waveguide mirrors surrounded by a 2.43-meter tube. The antenna was designed for high power and a narrow frequency band around 7.2 GHz. The performance at the low end of the frequency band desired for the educational program would be extremely poor if the beam waveguide system was used as part of the feed system. Consequently, the 34-meter antenna was retrofitted with a tertiary offset mirror placed at the vertex of the main reflector. The tertiary mirror can be rotated to use two wideband feeds that cover the 0.5-to-14-GHz band. The earlier designs for both GAVRT and the DSN only used narrow band feeds and consequently, only covered a small part of the S- and X-band frequencies. By using both a wideband feed and wideband amplifiers, the entire band from 0.5 to 14 GHz is covered, expanding significantly the science activities that can be studied using this system.

  14. Radio-transmitters have no impact on survival of pre-fledged American Woodcocks

    USGS Publications Warehouse

    Daly, Kyle O.; Andersen, David E.; Brininger, Wayne L.; Cooper, Thomas R.

    2015-01-01

    American Woodcocks (Scolopax minor) are a high priority species of conservation need across most of their breeding range due to long-term population declines. Survival of juveniles may be key to understanding these population declines, but there have been few direct estimates of juvenile woodcock survival rates, and no recent assessment of the possible effect of radio-tagging on juvenile survival. In 2011 and 2012, we radio-tagged 73 juvenile American Woodcocks in west-central Minnesota and compared survival rates of radio-tagged (N = 58) and non-radio-tagged (N = 82) juveniles during the period from hatching to fledging. We compared survival rates of juveniles with known fates and used logistic-exposure models to assess the potential impact of radio-transmitters on survival. We evaluated variables related to juvenile survival including age, hatch date, maximum and minimum temperature, precipitation, and year to assess the possible effects of radio-transmitters. The best-supported model of survival rate of juvenile American Woodcocks included the interaction of age and year and a negative effect of precipitation (β = −0.76, 85% CI: −1.08 to −0.43), but did not include a negative effect of transmitters. Our results suggest that radio-transmitters did not impact survival of juvenile American Woodcocks and that transmitters are a reliable tool for studying survival of juvenile American Woodcocks, and perhaps other precocial shorebirds.

  15. Effects of implanted radio transmitters with percutaneous antennas on the behavior of Canada Geese

    USGS Publications Warehouse

    Hupp, Jerry W.; Ruhl, G.A.; Pearce, John M.; Mulcahy, Daniel M.; Tomeo, M.A.

    2003-01-01

    We examined whether surgically-implanted radio transmitters with percutaneous antennas affected behavior of Lesser Canada Geese (Branta canadensis parvipes) in Anchorage, Alaska. We implanted either a 26-g VHF radio transmitter or a larger VHF radio that was the same mass (35 g) and shape as a satellite transmitter in the coelom of adult females captured during molt in 2000. A control group of females was marked with leg bands. We simultaneously observed behavior of radio-marked and control females from 4-62 d following capture. We observed no differences in the proportion of time birds in different treatments allocated among grazing, resting, comfort, walking, and alert behavior. Females in different treatments spent a similar proportion of time in the water. Implantation of radio transmitters did not affect the frequency of agonistic interactions. We conclude that coelomic radio transmitters with percutaneous antennas had minimal effects on the behavior of Canada Geese.

  16. Evaluation of 3 radio transmitters and collar designs for Amazona

    USGS Publications Warehouse

    Meyers, J.M.

    1996-01-01

    I evaluated 3 radio transmitter attachments and designs for adult parrots. Two of the transmitters and attachments were similar to those used previously in the study on fledgling and adult parrots. I designed, in collaboration with the manufacturer, a third transmitter and attachment that provided protection of key areas from chewing and eventual destruction of the attachment or transmitter. This design was used successfully to radio-track parrots an average of 43.4 weeks (range = 35.9-51.6 weeks). It was the only transmitter of the 3 tested to operate without failure (>36 weeks) caused by chewing damage to the transmitter, antenna, collar, or attachment mechanism (Fisher's exact test, 3 df, P = 0.0003). Its adjustable collar, made from 59 kg-test stainless steel wire covered with plastic heat-shrink tubing, was sturdy and easy to apply. Transmitters for parrots should be enclosed in a protective metal case (brass) and have metal crimped tubes (brass or copper) protecting key areas, such as the base of the antenna and mechanism for attachment of the collar.

  17. RF Safety Analysis of a Novel Ultra-wideband Fetal Monitoring System.

    PubMed

    Bushberg, Jerrold T; Tupin, J Paul

    2017-05-01

    The LifeWave Ultra-Wideband RF sensor (LWUWBS) is a monitoring solution for a variety of physiologic assessment applications, including maternal fetal monitoring in both the antepartum and intrapartum periods. The system uses extremely low power radio frequency (RF) ultra-wide band (UWB) signals to provide continuous fetal heart rate and contractions monitoring during labor and delivery. Even with the incorporation of three very conservative assumptions, (1) concentration of the RF energy in 1 cm, (2) minimal (2.5 cm) maternal tissue attenuation of fetal exposure, and (3) absence of normal thermoregulatory compensation, the maternal whole body spatial-averaged specific absorption rate (WBSAR) would be 34,000 times below the FCC public exposure limit of 0.08 W kg and, at 8 wk or more gestation, the peak spatial-averaged specific absorption rate (PSSAR) in the fetus would be more than 160 times below the localized exposure limit of 1.6 mW g. Even when using very conservative assumptions, an analysis of the LWUWBS's impact on tissue heating is a factor of 7 lower than what is allowed for fetal ultrasound and at least a factor of 650 compared to fetal MRI. The actual transmitted power levels of the LWUWBS are well below all Federal safety standards, and the potential for tissue heating is substantially lower than associated with current ultrasonic fetal monitors and MRI.

  18. A VLSI Neural Monitoring System With Ultra-Wideband Telemetry for Awake Behaving Subjects.

    PubMed

    Greenwald, E; Mollazadeh, M; Hu, C; Wei Tang; Culurciello, E; Thakor, V

    2011-04-01

    Long-term monitoring of neuronal activity in awake behaving subjects can provide fundamental information about brain dynamics for neuroscience and neuroengineering applications. Here, we present a miniature, lightweight, and low-power recording system for monitoring neural activity in awake behaving animals. The system integrates two custom designed very-large-scale integrated chips, a neural interface module fabricated in 0.5 μm complementary metal-oxide semiconductor technology and an ultra-wideband transmitter module fabricated in a 0.5 μm silicon-on-sapphire (SOS) technology. The system amplifies, filters, digitizes, and transmits 16 channels of neural data at a rate of 1 Mb/s. The entire system, which includes the VLSI circuits, a digital interface board, a battery, and a custom housing, is small and lightweight (24 g) and, thus, can be chronically mounted on small animals. The system consumes 4.8 mA and records continuously for up to 40 h powered by a 3.7-V, 200-mAh rechargeable lithium-ion battery. Experimental benchtop characterizations as well as in vivo multichannel neural recordings from awake behaving rats are presented here.

  19. Quasi-static Design of Electrically Small Ultra-Wideband Antennas

    DTIC Science & Technology

    2017-02-01

    this design reduces the width of the antenna, which implies that the bulb shape can be non -spherical at high frequencies. The stored energy in an...conclusion. The Quasi-static Antenna Design Algorithm generates three UWB non -spherical bulb shapes. The non -spherical bulb shape performs as well...TECHNICAL REPORT 3056 February 2017 Quasi-static Design of Electrically Small Ultra-Wideband Antennas Thomas O. Jones III Approved for public

  20. Effects of radio transmitters on the behavior of Red-headed Woodpeckers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovich, Mark; Kilgo, John, C.

    2009-05-01

    ABSTRACT. Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior of and use of cavities byRed-headedWoodpeckers (Melanerpes erythrocephalus). Using backpack harnesses, we attached 2.1-g transmitter packages that averaged 3.1% of body weight (range = 2.5–3.6%) to Red-headed Woodpeckers. We observed both radio-tagged (N = 23) and nonradio-tagged (N = 28) woodpeckers and determined the percentage of time spent engagedmore » in each of five behaviors: flight, foraging, perching, preening, and territorial behavior. We found no difference between the two groups in the percentage of time engaged in each behavior. In addition, we found that transmitters had no apparent effect on use of cavities for roosting by radio-tagged woodpeckers (N = 25).We conclude that backpack transmitters weighing less than 3.6% of body weight had no impact on either their behavior or their ability to use cavities.« less

  1. Effects of radio transmitters on the behavior of Red-headed Woodpeckers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovich, Mark; Kilgo, John, C.

    ABSTRACT. Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior of and use of cavities byRed-headedWoodpeckers (Melanerpes erythrocephalus). Using backpack harnesses, we attached 2.1-g transmitter packages that averaged 3.1% of body weight (range = 2.5–3.6%) to Red-headed Woodpeckers. We observed both radio-tagged (N = 23) and nonradio-tagged (N = 28) woodpeckers and determined the percentage of time spent engagedmore » in each of five behaviors: flight, foraging, perching, preening, and territorial behavior. We found no difference between the two groups in the percentage of time engaged in each behavior. In addition, we found that transmitters had no apparent effect on use of cavities for roosting by radio-tagged woodpeckers (N = 25).We conclude that backpack transmitters weighing less than 3.6% of body weight had no impact on either their behavior or their ability to use cavities.« less

  2. FIR Filter of DS-CDMA UWB Modem Transmitter

    NASA Astrophysics Data System (ADS)

    Kang, Kyu-Min; Cho, Sang-In; Won, Hui-Chul; Choi, Sang-Sung

    This letter presents low-complexity digital pulse shaping filter structures of a direct sequence code division multiple access (DS-CDMA) ultra wide-band (UWB) modem transmitter with a ternary spreading code. The proposed finite impulse response (FIR) filter structures using a look-up table (LUT) have the effect of saving the amount of memory by about 50% to 80% in comparison to the conventional FIR filter structures, and consequently are suitable for a high-speed parallel data process.

  3. Programmable Ultra-Lightweight System Adaptable Radio

    NASA Technical Reports Server (NTRS)

    Werkheiser, Arthur

    2015-01-01

    The programmable ultra-lightweight system adaptable radio (PULSAR) is a NASA Marshall Space Flight Center transceiver designed for the CubeSat market, but has the potential for other markets. The PULSAR project aims to reduce size, weight, and power while increasing telemetry data rate. The current version of the PULSAR has a mass of 2.2 kg and a footprint of 10.8 cm2. The height depends on the specific configuration. The PULSAR S-Band Communications Subsystem is an S- and X-band transponder system comprised of a receiver/detector (receiver) element, a transmitter element(s), and related power distribution, command, control, and telemetry element for operation and information interfaces. It is capable of receiving commands, encoding and transmitting telemetry, as well as providing tracking data in a manner compatible with Earthbased ground stations, near Earth network, and deep space network station resources. The software-defined radio's (SDR's) data format characteristics can be defined and reconfigured during spaceflight or prior to launch. The PULSAR team continues to evolve the SDR to improve the performance and form factor to meet the requirements that the CubeSat market space requires. One of the unique features is that the actual radio design can change (somewhat), but not require any hardware modifications due to the use of field programmable gate arrays.

  4. Towards sparse characterisation of on-body ultra-wideband wireless channels.

    PubMed

    Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-06-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices.

  5. Ultra-wideband optical leaky-wave slot antennas.

    PubMed

    Wang, Yan; Helmy, Amr S; Eleftheriades, George V

    2011-06-20

    We propose and investigate an ultra-wideband leaky-wave antenna that operates at optical frequencies for the purpose of efficient energy coupling between localized nanoscale optical circuits and the far-field. The antenna consists of an optically narrow aluminum slot on a silicon substrate. We analyze its far-field radiation pattern in the spectral region centered around 1550 nm with a 50% bandwidth ranging from 2000 nm to 1200 nm. This plasmonic leaky-wave slot produces a maximum far-field radiation angle at 32° and a 3 dB beamwidth of 24° at its center wavelength. The radiation pattern is preserved within the 50% bandwidth suffering only insignificant changes in both the radiation angle and the beamwidth. This wide-band performance is quite unique when compared to other optical antenna designs. Furthermore, the antenna effective length for radiating 90% and 99.9% of the input power is only 0.5λ(0) and 1.5λ(0) respectively at 1550 nm. The versatility and simplicity of the proposed design along with its small footprint makes it extremely attractive for integration with nano-optical components using existing technologies.

  6. Towards sparse characterisation of on-body ultra-wideband wireless channels

    PubMed Central

    Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-01-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409

  7. Matching layer for path loss reduction in ultra wideband implant communications.

    PubMed

    Chavez-Santiago, Raul; Khaleghi, Ali; Balasingham, Ilangko

    2014-01-01

    Real-time monitoring of various physiological signals is of utmost importance for the treatment of chronic conditions. Radio technology can enable real-time sensing and collection of physiological data to facilitate timely medication and early pre-hospital management of patients. This can be realized with the aid of implantable biomedical sensors with the capability to transmit wirelessly the collected information to an external unit for display and analysis. Currently, commercial wireless medical implantable sensors operate in frequencies below 1 GHz with narrowband signals. Recently, it has been demonstrated that ultra wideband (UWB) signals could be also used for the radio interface of these devices. However, establishing an implant communication link in the allocated UWB spectrum of 3.1-10.6 GHz is challenging. The attenuation of UWB signals propagating through biological tissues at these frequencies is high. Part of these path losses are caused by the impedance mismatch between the two propagation environments (i.e., air and biological tissues) that constitute an implant communication link. This mismatch results in inefficient power transmission of the radio waves. In this paper we propose the use of a layer of dielectric material that can be applied on the patient's skin. The permittivity value of this matching layer has to be chosen such that wave coupling is maximized. Through numerical simulations we determined the appropriate permittivity value of a matching layer for UWB implant communication links in the human thorax for 1-6 GHz. Path loss reduction of up to 10 dB can be obtained in this frequency band. These results can help improve the use of UWB signals for other in-body biomedical devices like the wireless capsule endoscope (WCE).

  8. Effects of radio transmitters on the behavior of Red-headed Woodpeckers

    Treesearch

    Mark Vukovich; John C. Kilgo

    2009-01-01

    Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior...

  9. An improved ultra wideband channel model including the frequency-dependent attenuation for in-body communications.

    PubMed

    Khaleghi, A; Chávez-Santiago, R; Balasingham, I

    2012-01-01

    Ultra wideband (UWB) technology has big potential for applications in wireless body area networks (WBANs). The inherent characteristics of UWB signals make them suitable for the wireless interface of medical sensors. In particular, implanted medical wireless sensors for monitoring physiological parameters, automatic drug provision, etc. can benefit greatly from this ultra low power (ULP) interface. As with any other wireless technology, accurate knowledge of the channel is necessary for the proper design of communication systems. Only a few models that describe the radio propagation inside the human body have been published. Moreover, there is no comprehensive UWB in-body propagation model that includes the frequency-dependent attenuation. Hence, this paper extends a statistical model for UWB propagation channels inside the human chest in the 1-6 GHz frequency range by including the frequency-dependent attenuation. This is done by modeling the spectrum shape of distorted pulses at different depths inside the human chest. The distortion of the pulse was obtained through numerical simulations using a voxel representation of the human body. We propose a mathematical expression for the spectrum shape of the distorted pulses that act as a window function to reproduce the effects of frequency-dependent attenuation.

  10. Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew

    2017-01-01

    The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range

  11. Measurement of Ultra Wideband Radar Cross Sections of an Automobile at Ka Band Using Circular Polarizations

    NASA Astrophysics Data System (ADS)

    Osaki, Hideyuki; Nishide, Takehiko; Kobayashi, Takehiko

    Ultra wideband (UWB) radar cross sections (RCSs) of several targets have been measured using various combinations of transmitting and receiving linear polarizations (V-V, H-H, and +45°--45°) with a view to obtaining information on the design of vehicular short-range radars. This paper reports the UWB RCSs (σLR and σLL) of a typical passenger automobile using two circular polarization combinations (L and R denote left and right circular polarizations). The wideband measurements were carried out with use of a vector network analyzer by sweeping the frequency from 24.5 to 28.8GHz in a radio anechoic chamber. The UWB RCSs were derived by integrating the received power in the frequency domain. Similar to the linear polarization results, fluctuations of the RCSs were smaller in the UWB than in narrowband for both L-R and L-L, because the ultra-wide bandwidth cancels out RCS plunges caused by narrowband interference among reflected waves from various facets of the target. The median of (σLR-σLL) was 2dB, while the median of (σHH-σ+45°--45°) or (σVV-σ+45°--45°) was 6dB. This is because the body of the automobile comprises a number of smaller scattering objects yielding σLL, either similar to the corner reflectors or asymmetrical to the radar boresight. Frequency-domain responses showed a number of notches caused by the interference between numerous reflecting waves having power levels of a similar order and different round-trip path lengths. Some representative reflective parts of the automobile were identified through analyses of time-domain responses.

  12. Development of an Ultra-Wideband Circularly Polarized Multiple Layer Dielectric Rod Antenna Design

    NASA Astrophysics Data System (ADS)

    Wainwright, Gregory D.

    This dissertations focuses on the development of a novel Ultra-Wideband (UWB) circularly polarized dielectric rod antenna (CPDRA) which yields a constant gain, pattern, and phase center. These properties are important in many applications. Within radar systems a constant phase center is desirable to avoid errors within downrange and crossrange measurements. In a reflector antenna the illumination, spillover, and phase efficiencies will remain the same over an ultra-wideband. Lastly, near field probes require smooth amplitude and phase patterns over frequency to avoid errors during the calibration process of the antenna under test. In this dissertation a novel CP feeding network has been developed for an ultra-wideband dielectric rod antenna. Circularly-polarized antennas have a major advantage over its linearly-polarized counterpart in that the polarization mismatch loss caused by misalignment between the polarizations of the incident fields and antenna can be avoided. This is important in satellite communications and broadcasts where signal propagation through the ionosphere can experience Faraday Rotation. A circularly polarized antenna is also helpful in mobile radar and communication systems where the receiving antennas orientation is not fixed. Previous research on UWB dielectric rod antenna designs has focused on Dual linear feeds. Each polarization within the dual linear feed is excited by a pair of linear launcher arms fed with a 0°-180° hybrid balun. The proposed CPDRA design does not require the 0°-180° hybrid baluns or 0°-90° hybrid for achieving CP operation. These hybrids will increase the antennas size, weight, cost, and reduce operational bandwidth. A design technique has been developed for an UWB multilayer dielectric waveguide used in a CPDRA antenna. This design technique uses near-field Electric field data from inside the waveguide, in conjunction with a genetic algorithm optimization to yield a wideband waveguide with a near field

  13. Micro-miniature radio frequency transmitter for communication and tracking applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutcher, R.I.; Emery, M.S.; Falter, K.G.

    1996-12-31

    A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests will be discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its smallmore » size of 2.2 x 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications will be presented.« less

  14. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  15. Flexible ultra-wideband antenna incorporated with metamaterial structures: multiple notches for chipless RFID application

    NASA Astrophysics Data System (ADS)

    Jalil, M. E.; Rahim, M. K. A.; Samsuri, N. A.; Dewan, R.; Kamardin, K.

    2017-01-01

    A coplanar waveguide (CPW) ultra-wideband (UWB) antenna incorporated with metamaterial—split ring resonator structure—that operates from 3.0 to 12.0 GHz is proposed for chipless RFID tag. The 30 mm × 40 mm flexible chipless RFID tag is designed on the fleece substrate ( ɛ r = 1.35, thickness = 1 mm and tan δ = 0.025). A six-slotted modified complementary split ring resonator (MCSRR) is introduced into the ultra-wideband antenna to produce multiple band notches at 3.0, 4.0, 5.0, 6.0 and 7.0 GHz. The frequency shifting technique is introduced for designing a high-capacity chipless RFID tag with compact size. Each MCSRR is able to code in four different allocations (00, 01, 10 and 11). To achieve encoding of 10-bits data (10,234 number), six MCSRRs are proposed with three-slotted MCSRR in the radiator and three-slotted MCSRR in the ground plane.

  16. Evaluation of three miniature radio transmitter attachment methods for small passerines

    USGS Publications Warehouse

    Sykes, P.W.; Carpenter, J.W.; Holzman, S.; Geissler, P.H.

    1990-01-01

    Thirty-two immature common yellowthroats were used to evaluate three methods of attaching radio transmitters to the backs of small passerines: adhesive, velcro, and harness. There were no significant differences between the three methods; however, the adhesive method of transmitter attachment to small birds was found to be the preferred technique.

  17. Macro-motion detection using ultra-wideband impulse radar.

    PubMed

    Xin Li; Dengyu Qiao; Ye Li

    2014-01-01

    Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.

  18. Array analysis of electromagnetic radiation from radio transmitters for submarine communication

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Evans, Adrian

    2014-12-01

    The array analyses used for seismic and infrasound research are adapted and applied here to the electromagnetic radiation from radio transmitters for submarine communication. It is found that the array analysis enables a determination of the slowness and the arrival azimuth of the wave number vectors associated with the electromagnetic radiation. The array analysis is applied to measurements of ˜20-24 kHz radio waves from transmitters for submarine communication with an array of 10 radio receivers distributed over an area of ˜1 km ×1 km. The observed slowness of the observed wave number vectors range from ˜2.7 ns/m to ˜4.1 ns/m, and the deviations between the expected arrival azimuths and the observed arrival azimuths range from ˜-9.7° to ˜14.5°. The experimental results suggest that it is possible to determine the locations of radio sources from transient luminous events above thunderclouds with an array of radio receivers toward detailed investigations of the electromagnetic radiation from sprites.

  19. Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging

    NASA Astrophysics Data System (ADS)

    Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ

    2015-01-01

    Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)

  20. Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.

    PubMed

    Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C

    2013-03-01

    This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers.

  1. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  2. Efficacy of using radio transmitters to monitor least tern chicks

    USGS Publications Warehouse

    Whittier, Joanna B.; Leslie, David M.

    2005-01-01

    Little is known about Least Tern (Sterna antillarum) chicks from the time they leave the nest until fledging because they are highly mobile and cryptically colored. We evaluated the efficacy of using radiotelemetry to monitor Interior Least Tern (S. a. athalassos) chicks at Salt Plains National Wildlife Refuge, Oklahoma. In 1999, we attached radio transmitters to 26 Least Tern chicks and tracked them for 2-17 days. No adults abandoned their chicks after transmitters were attached. Transmitters did not appear to alter growth rates of transmittered chicks (P = 0.36) or prevent feather growth, although dermal irritation was observed on one chick. However, without frequent reattachment, transmitters generally did not remain on chicks <1 week old for more than 2 days because of feather growth and transmitter removal, presumably by adult terns. Although the presence of transmitters did not adversely affect Least Tern chicks, future assessments should investigate nonintrusive methods to improve retention of transmitters on young chicks and reduce the number of times that chicks need to be handled.

  3. Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Waldstein, Seth W.; Barbosa Kortright, Miguel A.; Simons, Rainee N.

    2017-01-01

    The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitrate (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6, and Drain Efficiency (DE) of 48.9 under continuous wave (CW) operation.

  4. Application of a modified harness design for attachment of radio transmitters to shorebirds

    USGS Publications Warehouse

    Sanzenbacher, Peter M.; Haig, Susan M.; Oring, Lewis W.

    2000-01-01

    Radio transmitter attachment methodology is important to the design of radio telemetry studies. In 1998, we attached 5 transmitters to a captive population of Western Sandpipers (Calidris mauri) and 7 transmitters to wild Killdeer (Charadriusv ociferus) using a modified version of the Rappole and Tipton (1991) figure-8 leg-loop harness. Captive birds fitted with harnesses did not exhibit quantifiable differences in behavior relative to control birds. Based on initial success in using the leg-loop harnesses, we used harnesses to attach transmitters in the wild to 30 Killdeer and 49 Dunlin (Calidris alpina) during the winters of 1998-1999 and 1999-2000. This was part of a study on movements of wintering shorebirds in the Willamette Valley of Oregon, USA. Wild birds showed no adverse effects of the harnesses.Thus, the described harness is a practical method for attachment of transmitters to shorebirds. Advantages of this harness method include a reduction in handling time at capture, elimination of the need to clip feathers for attachment, and increased transmitter retention time.

  5. Nonlethal gill biopsy does not affect juvenile chinook salmon implanted with radio transmitters

    USGS Publications Warehouse

    Martinelli-Liedtke, T. L.; Shively, R.S.; Holmberg, G.S.; Sheer, M.B.; Schrock, R.M.

    1999-01-01

    Using gastric and surgical transmitter implantation, we compared radio-tagged juvenile chinook salmon Oncorhynchus tshawytscha (T(O)) with tagged fish also having a gill biopsy (T(B)) to determine biopsy effects on fish implanted with radio transmitters. We found no evidence during the 21-d period to suggest that a gill biopsy reduced survival, growth, or gross condition of the tagged-biopsy group, regardless of transmitter implantation technique. We recorded 100% survival of all treatment groups. Relative growth rates of T(O) and T(B) fish did not differ significantly. Leukocrit and lysozyme levels were not significantly different among groups, suggesting that no signs of infection were present. Our findings suggest that small chinook salmon can tolerate the combination of transmitter implantation and gill biopsy without compromising condition relative to fish receiving only the transmitter. We believe a gill biopsy can be used in field telemetry studies, especially when physiological data are needed in addition to behavioral data.

  6. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  7. Reconfigurable ultra-wideband waveform generation with simple photonic devices

    NASA Astrophysics Data System (ADS)

    Dastmalchi, Mansour; Abtahi, Mohammad; Lemus, David; Rusch, Leslie A.; LaRochelle, Sophie

    2012-08-01

    We propose and experimentally demonstrate a low cost, low power consumption technique for ultra-wideband pulse shaping. Our approach is based on thermal apodization of two identical linearly chirped fiber Bragg gratings (LCFBG) placed in both arms of a balanced photodetector. Resistive heating elements with low electrical power consumption are used to tune the LCFBG spectral responses. Using a standard gain switched distributed feedback laser as a pulsed optical source and a simple energy detector receiver, we measured a bit error rate of 1.5×10-4 at a data rate of 1 Gb/s after RF transmission over a 1-m link.

  8. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    PubMed Central

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-01-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028

  9. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures.

    PubMed

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-11-24

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

  10. Marking Ground Targets With Radio Transmitters Dropped From Aircraft

    Treesearch

    Thomas H. Nichols; Michael E. Ostry; Mark R. Fuller

    1981-01-01

    Reports development and use of a radio transmitter device that can be dropped from aircraft into target areas in remote habitats. Such a device could be a valuable tool for studying and managing forests and wildlife, for controlling forest fires, and for handling emergencies.

  11. Signal processing techniques for the U.S. Army Research Laboratory stepped frequency ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2017-05-01

    The U.S. Army Research Laboratory (ARL) recently designed and tested a new prototype radar, the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar system, based on a stepped-frequency architecture to address issues associated with our previous impulse-based radars. This is a low-frequency ultra-wideband (UWB) radar with frequencies spanning from 300 to 2000 MHz. Mounted on a vehicle, the radar can be configured in either sidelooking or forward-looking synthetic aperture radar (SAR) mode. We recently conducted our first experiment at Yuma Proving Grounds (YPG). This paper summarizes the radar configurations, parameters, and SAR geometry. The radar data and other noise sources, to include the self-interference signals and radio-frequency interference (RFI) noise sources, are presented and characterized in both the raw (pre-focus) and SAR imagery domains. This paper also describes our signal processing techniques for extracting noise from radar data, as well as the SAR imaging algorithms for forming SAR imagery in both forward- and side-looking modes. Finally, this paper demonstrates our spectral recovery technique and results for a radar operating in a spectrally restricted environment.

  12. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  13. The 10 micrometer transmitter

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication tests, and engineering model components of a 10.6 mum wideband transceiver system are reported. The effort emphasized the transmitter subsystem, including the development of the laser, the modulator driver, and included productization of both the transmitter and local oscillator lasers. The transmitter subsystem is functionally compatible with the receiver engineering model terminal, and has undergone high data rate communication system testing against that terminal.

  14. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    PubMed

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  15. Snake mortality associated with late season radio-transmitter implantation

    Treesearch

    D. Craig Rudolph; Shirley J. Burgdorf; Richard R. Schaefer; Richard N. Conner; Robert T. Zappalorth

    1998-01-01

    Radio-telemetry is an increasingly used procedure to obtain data on the biology of free-living snakes (Reinert 1992, 1994). In Texas and Louisiana we have been using the surgical technique of Weatherhead and Anderka (1984) to implant transmitters in timber rattlesnakes (Crotalus horridus) and Louisiana pine snakes (Pituophis melanoleucus...

  16. Ultra-Wideband Millimeter-Wave Dielectric Characteristics of Freshly Excised Normal and Malignant Human Skin Tissues.

    PubMed

    Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar

    2018-06-01

    Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.

  17. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  18. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  19. Ultra-Wideband Chaos Life-Detection Radar with Sinusoidal Wave Modulation

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Li, Ying; Zhang, Jianguo; Han, Hong; Zhang, Bing; Wang, Longsheng; Wang, Yuncai; Wang, Anbang

    2017-12-01

    We propose and experimentally demonstrate an ultra-wideband (UWB) chaos life-detection radar. The proposed radar transmits a wideband chaotic-pulse-position modulation (CPPM) signal modulated by a single-tone sinusoidal wave. A narrow-band split ring sensor is used to collect the reflected sinusoidal wave, and a lock-in amplifier is utilized to identify frequencies of respiration and heartbeat by detecting the phase change of the sinusoidal echo signal. Meanwhile, human location is realized by correlating the CPPM echo signal with its delayed duplicate and combining the synthetic aperture technology. Experimental results demonstrate that the human target can be located accurately and his vital signs can be detected in a large dynamic range through a 20-cm-thick wall using our radar system. The down-range resolution is 15cm, benefiting from the 1-GHz bandwidth of the CPPM signal. The dynamic range for human location is 50dB, and the dynamic ranges for heartbeat and respiration detection respectively are 20dB and 60dB in our radar system. In addition, the bandwidth of the CPPM signal can be adjusted from 620MHz to 1.56GHz to adapt to different requirements.

  20. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  1. Radiofrequency Exposures of Workers on Low-Power FM Radio Transmitters.

    PubMed

    Valic, Blaž; Kos, Bor; Gajšek, Peter

    2017-05-01

    Low-power radio transmitters are one of the most common radio frequency sources and the exposure limit values (ELVs) for occupational exposure may be exceeded close to them. Therefore, a detailed analysis and assessment of occupational exposure in their vicinity is presented in the paper. For 20 different exposure scenarios, electric field strength and specific absorption rate (SAR) values were computed to determine whether the action levels (ALs) and ELVs of the European directive 2013/35/EU are exceeded for different 500 W radio transmitters. The results show that the ALs are very conservative for such exposure situations. Even when the ALs are greatly exceeded, the SAR values are not necessarily above the limit. However, in some situations, the ELVs were also exceeded. The local 10 g averaged value of the SAR can be exceeded if the worker is grounded (in direct contact with the steel structure), while the whole body ELVs can be exceeded for exposures at distances of <1 m from the transmitting dipole array antennas. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Background-free millimeter-wave ultra-wideband signal generation based on a dual-parallel Mach-Zehnder modulator.

    PubMed

    Zhang, Fangzheng; Pan, Shilong

    2013-11-04

    A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.

  3. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Zulkifli, M Z; Hassan, N A

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum withmore » a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)« less

  4. Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.

    PubMed

    Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto

    2017-02-01

    Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.

  5. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    PubMed

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  6. Compact Electromagnetic Bandgap Structures for Notch Band in Ultra-Wideband Applications

    PubMed Central

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15–5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied. PMID:22163430

  7. Effect of relative volume on radio transmitter expulsion in subadult common carp

    USGS Publications Warehouse

    Penne, C.R.; Ahrens, N.L.; Summerfelt, R.C.; Pierce, C.L.

    2007-01-01

    Expulsion of surgically implanted radio transmitters is a problem in some fish telemetry studies. We conducted a 109-d experiment to test the hypothesis that variation in relative volume of transmitters surgically implanted in subadult common carp Cyprinus carpio would affect transmitter expulsion. We also necropsied fish at the end of the experiment to evaluate histological evidence for the mechanism of expulsion. Survival rate was high during our experiment; all control fish and 88% of the fish subjected to the implantation surgery survived. Expulsion rate was low; of the 23 fish that received transmitters and survived the experiment, only two (9%) expelled the transmitters. One of these expulsions occurred through a rupture of the incision and the other occurred via the intestine. Retained transmitters were all encapsulated by tissue, and most exhibited multiple adhesions to the intestine, gonads, and body wall. Adhesions were more numerous in fish that received larger transmitters. ?? Copyright by the American Fisheries Society 2007.

  8. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less

  9. 47 CFR 95.627 - MedRadio transmitters in the 401-406 MHz band.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the MedRadio programmer/control transmitter monitoring system antenna gain relative to an isotropic... level must be increased or decreased by an amount equal to the monitoring system antenna gain above or below the gain of an isotropic antenna, respectively. (4) If no signal in a MedRadio channel above the...

  10. 47 CFR 95.627 - MedRadio transmitters in the 401-406 MHz band.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the MedRadio programmer/control transmitter monitoring system antenna gain relative to an isotropic... level must be increased or decreased by an amount equal to the monitoring system antenna gain above or below the gain of an isotropic antenna, respectively. (4) If no signal in a MedRadio channel above the...

  11. 47 CFR 95.627 - MedRadio transmitters in the 401-406 MHz band.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the MedRadio programmer/control transmitter monitoring system antenna gain relative to an isotropic... level must be increased or decreased by an amount equal to the monitoring system antenna gain above or below the gain of an isotropic antenna, respectively. (4) If no signal in a MedRadio channel above the...

  12. Optimal Design of Miniaturized Reflecting Metasurfaces for Ultra-Wideband and Angularly Stable Polarization Conversion.

    PubMed

    Borgese, Michele; Costa, Filippo; Genovesi, Simone; Monorchio, Agostino; Manara, Giuliano

    2018-05-16

    An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.

  13. Ultra-Wideband Massive MIMO Communications Using Multi-mode Antennas

    NASA Astrophysics Data System (ADS)

    Hoeher, P. A.; Manteuffel, D.; Doose, N.; Peitzmeier, N.

    2017-09-01

    An ultra-wideband system design is presented which supports wireless internet access and similar short-range applications with data rates of the order of 100 Gbps. Unlike concurrent work exploring the 60 GHz regime and beyond for this purpose, our focus is on the 6.0 -8.5 GHz frequency band. Hence, a bandwidth efficiency of about 50 bps/Hz is necessary. This sophisticated goal is targeted by employing two key enabling techniques: massive MIMO communications in conjunction with multi-mode antennas. This concept is suitable both for small-scale terminals like smartphones, as well as for powerful access points. Compared to millimeter wave and THz band communications, the 6.0 -8.5 GHz frequency band offers more robustness in NLOS scenarios and is more mature with respect to system components.

  14. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  15. Radio frequency radiation (RFR) from TV and radio transmitters at a pilot region in Turkey.

    PubMed

    Sirav, Bahriye; Seyhan, Nesrin

    2009-09-01

    For the last 30 y, the biological effects of non-ionising radiation (NIR: 0-300 GHz) have been a major topic in bioelectromagnetism. Since the number of radiofrequency (RF) systems operating in this frequency range has shown an incredible increase over the last few decades, the dangers of exposure to the fields generated thereby has become an important public health issue. In this study, the aim was to evaluate the level of RF electromagnetic radiation in Yenimahalle Sentepe Dededoruk Hill in Ankara, Turkey that is a multiple-transmitter site hosting 64 different TV and radio towers and one base station for mobile phone communication. The site has been of interest as it is nearby a residential community. Within the technical input data available on 31 of the radio and TV transmitters, the calculated radiation level in this particular region was found to be approximately four times higher than the permitted standards of Turkey, which are the same as the ICNIRP standards. Electromagnetic field measurement is needed in the site.

  16. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.

  17. 75. Transmitter building no. 102, view of typical radio frequency ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. Transmitter building no. 102, view of typical radio frequency switching group for lower antenna A & B and upper antenna A & B and MIP/MWOC automated interface cabinet. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. Ultra wideband surface wave communications

    NASA Astrophysics Data System (ADS)

    Lacomb, Julie Anne

    Ultra Wideband (UWB), an impulse carrier waveform, was applied at HF-VHF frequencies to utilize surface wave propagation. UWB involves the propagation of transient pulses rather than continuous waves which makes the system easier to implement, inexpensive, low power and small. Commercial UWB for wireless personal area networks is 3.1 to 10.6 GHz band as approved by the FCC with ranges up to 12 ft. The use of surface wave propagation (instead of commercial SHF UWB) extends the communication range. Surface wave is a means of propagation where the wave is guided by the surface of the Earth. Surface wave is efficient at low frequencies, VLF to HF. The UWB HF channel was modeled and also experimentally characterized. The Federal Communications Commission (FCC) defines UWB as a signal with either a fractional bandwidth of 20% of the center frequency or a bandwidth of 500MHz. Designing an antenna to operate over the 20% bandwidth requirement of UWB is one of the greatest challenges. Two different antenna designs are presented, a spoke top antenna and a traveling wave antenna with photonic bandgap. These designs were implemented at the commercial UWB frequencies (3.1--10.6 GHz) due to availability of modeling tools for the higher frequencies, the reduced antenna size and the availability of measurement facilities. The spoke top was optimum for replication of the time domain input signal. The traveling wave antenna with photonic bandgap demonstrated increased impedance bandwidth of the antenna.

  19. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu; Khorasani, Arash Elhami

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs thatmore » have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.« less

  20. Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength- and time-division multiplexing.

    PubMed

    Li, Yihan; Kuse, Naoya; Fermann, Martin

    2017-08-07

    A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.

  1. Design and verification of wide-band, simultaneous, multi-frequency, tuning circuits for large moment transmitter loops

    NASA Astrophysics Data System (ADS)

    Dvorak, Steven L.; Sternberg, Ben K.; Feng, Wanjie

    2017-03-01

    In this paper we discuss the design and verification of wide-band, multi-frequency, tuning circuits for large-moment Transmitter (TX) loops. Since these multi-frequency, tuned-TX loops allow for the simultaneous transmission of multiple frequencies at high-current levels, they are ideally suited for frequency-domain geophysical systems that collect data while moving, such as helicopter mounted systems. Furthermore, since multi-frequency tuners use the same TX loop for all frequencies, instead of using separate tuned-TX loops for each frequency, they allow for the use of larger moment TX loops. In this paper we discuss the design and simulation of one- and three-frequency tuned TX loops and then present measurement results for a three-frequency, tuned-TX loop.

  2. Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.

  3. Radio Receiver Instrument (RRI) ePOP transionospheric observations from an HF transmitter in Ottawa (45N, 75W)

    NASA Astrophysics Data System (ADS)

    Hussey, G. C.; Danskin, D. W.; Gillies, R. G.; James, H. G.; Yau, A. W.; Hird, F. C.; Fairbairn, D. T.

    2016-12-01

    A ground-based HF transmitter operating at 10.422 MHz in Ottawa, Canada (45.4N, 75.6W) was the radio source for reception by the satellite-based Radio Receiver Instrument (RRI) for 5 passes in late April, 2016. The RRI is one of eight instruments on the enhanced Polar Outflow Probe (ePOP) scientific payload portion of the CSA (Canadian Space Agency) CASSIOPE (Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer) satellite mission launched in September, 2013. The crossed-dipole configuration of the RRI allows for complete polarization observations. Initial analysis of the passes indicates reception of a highly polarized signal. South of the transmitter the signal clearly exhibits Faraday rotation of an essentially linearly polarized radio wave in agreement with modeling by Gillies et al. [2007]. This propagation is characterized as quasi-longitudinal (QL) by the Appleton-Hartree equation (electromagnetic wave propagation in a cold magnetized plasma) as the radio waves travel in a direction more along the magnetic field of the Earth. When the satellite moves north of the Ottawa transmitter the radio wave propagation transitions into quasi-transverse (QT). The data indicates favoring circular polarization dependent on the geometry with respect to the transmitter. Surprisingly the Faraday rotation effect is still very pronounced reversing in direction roughly 1000 km north of the transmitter. The model of Gillies et al. [2007] has been extended to explain these observations. This is the first direct observation, by polarimetry, of HF radio wave propagation in near-Earth space plasmas.Gillies, R.G., G.C. Hussey, H.G. James, G.J. Sofko, and D. Andre, Modelling and observation of transionospheric propagation results from ISIS II in preparation for ePOP, Ann. Geophys. 25, 87-97, 2007.

  4. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles.

    PubMed

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-07-23

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves.

  5. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles

    PubMed Central

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-01-01

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves. PMID:26202495

  6. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas

    PubMed Central

    Van Baelen, Dries

    2018-01-01

    A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15–5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna’s figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%. PMID:29301378

  7. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression.

    PubMed

    Zheng, Yuejun; Zhou, Yulong; Gao, Jun; Cao, Xiangyu; Yang, Huanhuan; Li, Sijia; Xu, Liming; Lan, Junxiang; Jidi, Liaori

    2017-11-23

    A double-layer complementary metasurface (MS) with ultra-wideband polarization conversion is presented. Then, we propose two application cases by applying the polarization conversion structures to aperture coupling patch antenna (ACPA). Due to the existence of air-filled gap of ACPA, air substrate and dielectric substrate are used to construct the double-layer MS. The polarization conversion bandwidth is broadened toward low-frequency range. Subsequently, two application cases of antenna are proposed and investigated. The simultaneous improvement of radiation and scattering performance of antenna is normally considered as a contradiction. Gratifyingly, the contradiction is addressed in these two application cases. According to different mechanism of scattering suppression (i.e., polarization conversion and phase cancellation), the polarization conversion structures are utilized to construct uniform and orthogonal arrangement configurations. And then, the configurations are integrated into ACPA and two different kinds of metasurface-based (MS-based) ACPA are formed. Radiation properties of the two MS-based ACPAs are improved by optimizing the uniform and orthogonal arrangement configurations. The measured results suggest that ultra-wideband polarization conversion properties of the MS are achieved and radiation enhancement and scattering suppression of the two MS-based ACPAs are obtained. These results demonstrate that we provide novel approach to design high-performance polarization conversion MS and MS-based devices.

  8. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas.

    PubMed

    Van Baelen, Dries; Lemey, Sam; Verhaevert, Jo; Rogier, Hendrik

    2018-01-03

    A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15-5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna's figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.

  9. An ultra-wideband antenna for pulsed applications

    NASA Technical Reports Server (NTRS)

    Darden, William H.; Burnside, Walter D.; Gilreath, Melvin C.

    1993-01-01

    A wideband feed is proposed to support wideband radiation, and a design process is presented for a slotline bowtie hybrid (SBH) antenna based on specified pattern characteristics. Measured results are presented to demonstrate the pattern control of the antenna over its bandwidth. Impulse response plots are used to illustrate the pulse performance of this antenna type. For the antenna discussed here, the bandwidth was measured to be 6 to 1 and actually is expected to be larger.

  10. Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser.

    PubMed

    Juan, Yu-Shan; Lin, Fan-Yi

    2010-04-26

    We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.

  11. Requirements for a multi-scale, ultra wide-band National Geoelectromagnetic Facility (Invited)

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2009-12-01

    surface conductance. Such information is insufficient to remove near surface effects for those imaging upper-to-mid crustal electrical properties. In order to obtain field measurements that can span near-surface through crust and upper mantle problems, an initiative to establish a multi-institutional National Geoelectromagnetic Facility has been proposed as part of a Virtual Institute for EM methods. An academic-industry partnership is designing a flexible, ultra wide-band system capable of being configured to obtain most of the data types indicated above. The system is specified to to provide between 100 dB - 130 dB dynamic range for sample rates from DC up to 2.5 MHz. A hybrid magnetic field sensor employing both induction coils and fluxgates, and a flexible arrangement of electric field sensors completes the specified receivers. The systems can be configured for sustained, low-power autonomous operation, or for higher power high frequency, active source operations. A series of controlled source transmitter systems is also specified. As financial support for the National Geoelectromagnetic Facility is being aligned, an organizational framework is being developed to permit efficient scheduling, data flow and archiving of resulting data sets. Education and outreach efforts are intrinsic to this, with close interactions with SAGE and other projects planned from the outset.

  12. FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks

    PubMed Central

    Kopta, Vladimir; Farserotu, John; Enz, Christian

    2017-01-01

    The Frequency Modulated Ultra-Wideband (FM-UWB) is known as a low-power, low-complexity modulation scheme targeting low to moderate data rates in applications such as wireless body area networks. In this paper, a thorough review of all FM-UWB receivers and transmitters reported in literature is presented. The emphasis is on trends in power reduction that exhibit an improvement by a factor 20 over the past eight years, showing the high potential of FM-UWB. The main architectural and circuit techniques that have led to this improvement are highlighted. Seldom explored potential of using higher data rates and more complex modulations is demonstrated as a way to increase energy efficiency of FM-UWB. Multi-user communication over a single Radio Frequency (RF) channel is explored in more depth and multi-channel transmission is proposed as an extension of standard FM-UWB. The two techniques provide means of decreasing network latency, improving performance, and allow the FM-UWB to accommodate the increasing number of sensor nodes in the emerging applications such as High-Density Wireless Sensor Networks. PMID:28481248

  13. Inflammatory reaction to fabric collars from percutaneous antennas attached to intracoelomic radio transmitters implanted in harlequin ducks (Histrionicus histrionicus)

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Burek, K.A.; Esler, Daniel N.

    2007-01-01

    In wild birds implanted intracoelomically with radio transmitters, a synthetic fabric collar placed around the base of a percutaneous antenna is believed to function as a barrier to contamination of the coelom. We examined 13 fabric collars recovered from percutaneous antennas of radio transmitters implanted intracoelomically in harlequin ducks (Histrionicus histrionicus) 12 months earlier. Both the transmitters and antenna collars were encapsulated in fibrous connective tissue, with adhesions to internal organs. Histologically, bacteria were evident at the fabric-plastic interface in 8 of 10 collars examined in cross section and along the length of the collar in 3 collars examined longitudinally. Bacteria were confined within the fibrotic sheath surrounding the transmitter and the antenna collar in all birds. No evidence of chronic systemic effects secondary to implantation was present on hematologic or serum biochemical testing. These findings indicate that antenna collars do not prevent the entry of bacteria along the percutaneous antenna but may help stabilize the antenna and minimize coelomic contamination. We conclude that radio transmitters implanted into the coelom of harlequin ducks do not appear to cause significant health problems for at least 1 year after implantation.

  14. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  15. Software-Defined Radio Global System for Mobile Communications Transmitter Development for Heterogeneous Network Vulnerability Testing

    DTIC Science & Technology

    2013-12-01

    AbdelWahab, “ 2G / 3G Inter-RAT Handover Performance Analysis,” Second European Conference on Antennas and Propagation, pp. 1, 8, 11–16, Nov. 2007. [19] J...RADIO GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS TRANSMITTER DEVELOPMENT FOR HETEROGENEOUS NETWORK VULNERABILITY TESTING by Carson C. McAbee... MOBILE COMMUNICATIONS TRANSMITTER DEVELOPMENT FOR HETEROGENEOUS NETWORK VULNERABILITY TESTING 5. FUNDING NUMBERS 6. AUTHOR(S) Carson C. McAbee

  16. Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

    NASA Technical Reports Server (NTRS)

    Novak, M.; Alwan, Elias; Miranda, Felix; Volakis, John

    2015-01-01

    There is a continuing need for reducing size and weight of satellite systems, and is also strong interest to increase the functional role of small- and nano-satellites (for instance SmallSats and CubeSats). To this end, a family of arrays is presented, demonstrating ultra-wideband operation across the numerous satellite communications and sensing frequencies up to the Ku-, Ka-, and Millimeter-Wave bands. An example design is demonstrated to operate from 3.5-18.5 GHz with VSWR2 at broadside, and validated through fabrication of an 8 x 8 prototype. This design is optimized for low cost, using Printed Circuit Board (PCB) fabrication. With the same fabrication technology, scaling is shown to be feasible up to a 9-49 GHz band. Further designs are discussed, which extend this wideband operation beyond the Ka-band, for instance from 20-80 GHz. Finally we will discuss recent efforts in the direct integration of such arrays with digital beamforming back-ends. It will be shown that using a novel on-site coding architecture, orders of magnitude reduction in hardware size, power, and cost is accomplished in this transceiver.

  17. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    NASA Astrophysics Data System (ADS)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  18. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.

    PubMed

    Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H

    2016-06-08

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

  19. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    PubMed Central

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  20. Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.

    PubMed

    Goodarzy, Farhad; Skafidas, Stan E

    2014-01-01

    An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.

  1. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  2. Design and performance of an ultra-wideband stepped-frequency radar with precise frequency control for landmine and IED detection

    NASA Astrophysics Data System (ADS)

    Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) has developed an impulse-based vehicle-mounted forward-looking ultra- wideband (UWB) radar for imaging buried landmines and improvised explosive devices (IEDs). However, there is no control of the radiated spectrum in this system. As part of ARL's Partnerships in Research Transition (PIRT) program, the above deficiency is addressed by the design of a Stepped-Frequency Radar (SFR) which allows for precise control over the radiated spectrum, while still maintaining an effective ultra-wide bandwidth. The SFR utilizes a frequency synthesizer which can be configured to excise prohibited and interfering frequency bands and also implement frequency-hopping capabilities. The SFR is designed to be a forward-looking ground- penetrating (FLGPR) Radar utilizing a uniform linear array of sixteen (16) Vivaldi notch receive antennas and two (2) Quad-ridge horn transmit antennas. While a preliminary SFR consisting of four (4) receive channels has been designed, this paper describes major improvements to the system, and an analysis of expected system performance. The 4-channel system will be used to validate the SFR design which will eventually be augmented in to the full 16-channel system. The SFR has an operating frequency band which ranges from 300 - 2000 MHz, and a minimum frequency step-size of 1 MHz. The radar system is capable of illuminating range swaths that have maximum extents of 30 to 150 meters (programmable). The transmitter has the ability to produce approximately -2 dBm/MHz average power over the entire operating frequency range. The SFR will be used to determine the practicality of detecting and classifying buried and concealed landmines and IEDs from safe stand-off distances.

  3. Ultra-Wideband Impulse Radio for Tactical Ad-Hoc Military Communications

    DTIC Science & Technology

    2010-09-02

    Synchronization, Channel Estimation, and Detection for DS - CDMA Impulse-Radio Systems,” IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp...desired user. Complex matrix operations required by other techniques found in the CDMA literature are not required in our suppression process...domain while a frequency-domain procedure for synchronization is studied in [52]. 5 In the CDMA literature, near-far resistant synchronization is studied

  4. Performance of Ultra Wideband On-Body Communication Based on Statistical Channel Model

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; Wang, Jianqing

    Ultra wideband (UWB) on-body communication is attracting much attention in biomedical applications. In this paper, the performance of UWB on-body communication is investigated based on a statistically extracted on-body channel model, which provides detailed characteristics of the multi-path-affected channel with an emphasis on various body postures or body movement. The possible data rate, the possible communication distance, as well as the bit error rate (BER) performance are clarified via computer simulation. It is found that the conventional correlation receiver is incompetent in the multi-path-affected on-body channel, while the RAKE receiver outperforms the conventional correlation receiver at a cost of structure complexity. Different RAKE receiver structures are compared to show the improvement of the BER performance.

  5. Radio-transmitters do not affect seasonal productivity of female Golden-winged Warblers

    USGS Publications Warehouse

    Streby, Henry M.; Peterson, Sean M.; Gesmundo, Callie; Johnson, Michael K.; Fish, Alexander C.; Lehman, Justin A.; Andersen, David E.

    2013-01-01

    Investigating the potential effects of handling and marking techniques on study animals is important for correct interpretation of research results and to effect progress in data-collection methods. Few investigators have compared the reproductive output of radio-tagged and non-radio-tagged songbirds, and no one to date has examined the possible effect of radio-tagging adult songbirds on the survival of their fledglings. In 2011 and 2012, we compared several parameters of reproductive output of two groups of female Golden-winged Warblers (Vermivora chrysoptera) breeding in Minnesota, including 45 females with radio-transmitters and 73 females we did not capture, handle, or mark. We found no difference between groups in clutch sizes, hatching success, brood sizes, length of incubation and nestling stages, fledging success, number of fledglings, or survival of fledglings to independence. Thus, radio-tags had no measurable impact on the productivity of female Golden-winged Warblers. Our results build upon previous studies where investigators have reported no effects of radio-tagging on the breeding parameters of songbirds by also demonstrating no effect of radio-tagging through the post-fledging period and, therefore, the entire breeding season.

  6. Safety assessment of ultra-wideband antennas for microwave breast imaging.

    PubMed

    De Santis, Valerio; Sill, Jeff M; Bourqui, Jeremie; Fear, Elise C

    2012-04-01

    This article deals with the safety assessment of several ultra-wideband (UWB) antenna designs for use in prototype microwave breast imaging systems. First, the performances of the antennas are validated by comparison of measured and simulated data collected for a simple test case. An efficient approach to estimating the specific energy absorption (SA) is introduced and validated. Next, SA produced by the UWB antennas inside more realistic breast models is computed. In particular, the power levels and pulse repetition periods adopted for the SA evaluation follow the measurement protocol employed by a tissue sensing adaptive radar (TSAR) prototype system. Results indicate that the SA for the antennas examined is below limits prescribed in standards for exposure of the general population; however, the difficulties inherent in applying such standards to UWB exposures are discussed. The results also suggest that effective tools for the rapid evaluation of new sensors have been developed. © 2011 Wiley Periodicals, Inc.

  7. Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.

    PubMed

    Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.

  8. Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation

    PubMed Central

    Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397

  9. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB

  10. Ultra-wideband high-speed Mach-Zehnder switch based on hybrid plasmonic waveguides.

    PubMed

    Janjan, Babak; Fathi, Davood; Miri, Mehdi; Ghaffari-Miab, Mohsen

    2017-02-20

    In this paper, the distinctive dispersion characteristic of hybrid plasmonic waveguides is exploited for designing ultra-wideband directional couplers. It is shown that by using optimized geometrical dimensions for hybrid plasmonic waveguides, nearly wavelength-independent directional couplers can be achieved. These broadband directional couplers are then used to design Mach-Zehnder-interferometer-based switches. Our simulation results show the ultra-wide bandwidth of ∼260  nm for the proposed hybrid plasmonic-waveguide-based switch. Further investigation of the proposed Mach-Zehnder switch confirms that because of the strong light confinement in the hybrid plasmonic waveguide structure, the switching time, power consumption, and overall footprint of the device can be significantly improved compared to silicon-ridge-waveguide-based Mach-Zehnder switches. For the Mach-Zehnder switch designed by using the optimized directional coupler, the switching time is found to be less than one picosecond, while the power consumption, VπLπ figure of merit, and active length of the device are ∼61  fJ/bit, 85  V×μm, and 30 μm, respectively.

  11. Radio Links for the NASA ABTS

    NASA Technical Reports Server (NTRS)

    Jeutter, Dean C.

    1996-01-01

    Goals Determine Out-Link FSK Bandwidth Develop FSK Outlink Transmitter Develop Wideband Outlink FSK Receiver Develop OOK In-Link Transmitter Develop OOK In-Link Receiver Marry Out-Link & In-Link Components Outlink FSK Bandwidth preliminary inlink transmitter were accomplished in Summer 1995 visit. The calculation of FSK bandwidth is repeated in these notes. Spectrum analyzer measurements of the actual FSK spectrum agree well with the calculations. The goal to develop a wideband FSK receiver for outlink data was given first priority for end of Summer 1996 completion. The goal of developing OOK inlink transmitter and receiver system components and interfacing all outlink and inlink components into an operating closed loop prototypical system was given a December 1, 1996 completion date.

  12. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  13. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband.

    PubMed

    Tang, Haitao; Yu, Yuan; Wang, Ziwei; Xu, Lu; Zhang, Xinliang

    2018-05-15

    A novel wideband tunable optoelectronic oscillator based on a microwave photonic filter (MPF) with an ultra-narrow passband is proposed and experimentally demonstrated. The single-passband MPF is realized by cascading an MPF based on stimulated Brillouin scattering and an infinite impulse response (IIR) MPF based on an active fiber recirculating delay loop. The measured full width at half-maximum bandwidth of the cascaded MPFs is 150 kHz. To the best of my knowledge, this is the first time realizing such a narrow passband in single-passband MPF. The oscillation frequency of the OEO can be tuned from 0 to 40 GHz owing to the wideband tunability of the MPF. Thanks to the ultrahigh mode selectivity of the IIR filter, the mode hopping is successfully suppressed. A stable microwave signal at 8.18 GHz is obtained with a phase noise of -113  dBc/Hz at 10 kHz, and the side mode noise is below -95  dBc/Hz. The signal-to-noise ratio exceeds 50 dB during the tuning process.

  14. Ultra-high-energy cosmic rays from radio galaxies

    NASA Astrophysics Data System (ADS)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  15. Subcutaneous anchor attachment increases retention of radio transmitters on Xantus' and marbled murrelets

    USGS Publications Warehouse

    Newman, Scott H.; Takekawa, John Y.; Whitworth, Darrell L.; Burkett, Esther E.

    1999-01-01

    We modified a subcutaneous anchor attachment and achieved transmitter reten- tion times that exceeded those reported previously for other attachments used on alcids. Traditional suture and epoxy attachment methods were used on Xantus' Murrelets in 1995 and 1996, while the modified attachment was used for Xantus' Murrelets in 1996 and 1997 and Marbled Murrelets in 1997. Modifications included use of an inhalant anesthetic, placing the anchor in a more cranial position on the back, application of marine epoxy, and place- ment of a single subcutaneous non-absorbable suture at the caudal end of the radio to hold the radio in place initially. We located 22 of 56 (39%) Xantus' Murrelets radio-marked using suture and epoxy during aerial surveys in 1995 and 1996. Of birds radio-marked using the subcutaneous anchor attachment, we located 92 of 113 (81%) Xantus' Murrelets marked in 1996 and 1997 and all 28 (100%) Marbled Murrelets marked in 1997 during aerial surveys. The maximum confirmed duration for the subcutaneous anchor transmitter attachment was 51 d for Xantus' Murrelets and 78 d for Marbled Murrelets versus 41 d for the suture and epoxy attachment used on Xantus' Murrelets. Recapture rates of radio-marked Xantus' Mur- relets were similar to recapture rates of unmarked Xantus' Murrelets. Our post-release ob- servations indicated negligible short-term physical effects from the attachment procedure, while telemetry data and examination of recaptured murrelets indicated no evidence of infection or other long-term physical effects. Breeding behavior of some murrelets was not disrupted; however, further evaluation of potential effects of this attachment technique on breeding and behavior is needed.

  16. All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan

    2017-03-15

    An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg⁡) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.

  17. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  18. Ultra-wideband microwave photonic filter with a high Q-factor using a semiconductor optical amplifier.

    PubMed

    Chen, Han

    2017-04-01

    An ultra-wideband microwave photonic filter (MPF) with a high quality (Q)-factor based on the birefringence effects in a semiconductor optical amplifier (SOA) is presented, and the theoretical fundamentals of the design are explained. The proposed MPF along orthogonal polarization in an active loop operates at up to a Ku-band and provides a tunable free spectral range from 15.44 to 19.44 GHz by controlling the SOA injection current. A prototype of the equivalent second-order infinite impulse response filter with a Q-factor over 6300 and a rejection ration exceeding 41 dB is experimentally demonstrated.

  19. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-01-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations.

  20. 76 FR 12995 - In the Matter of Certain Radio Control Hobby Transmitters and Receivers and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-763] In the Matter of Certain Radio Control Hobby..., under section 337 of the Tariff Act of 1930, as amended, 19 U.S.C. 1337, on behalf of Horizon Hobby, Inc... within the United States after importation of certain radio control hobby transmitters and receivers and...

  1. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  2. Minimizing marker mass and handling time when attaching radio-transmitters and geolocators to small songbirds

    USGS Publications Warehouse

    Streby, Henry M.; McAllister, Tara L.; Peterson, Sean M.; Kramer, Gunnar R.; Lehman, Justin A.; Andersen, David E.

    2015-01-01

    Radio-transmitters and light-level geolocators are currently small enough for use on songbirds weighing <15 g. Various methods are used to attach these markers to larger songbirds, but with small birds it becomes especially important to minimize marker mass and bird handling time. Here, we offer modifications to harness materials and marker preparation for transmitters and geolocators, and we describe deployment methods that can be safely completed in 20–60 s per bird. We describe a 0.5-mm elastic sewing thread harness for radio-transmitters that allows nestlings, fledglings, and adults to be marked with the same harness size and reliably falls off to avoid poststudy effects. We also describe a 0.5-mm jewelry cord harness for geolocators that provides a firm fit for >1 yr. Neither harness type requires plastic or metal tubes, rings, or other attachment fixtures on the marker, nor do they require crimping beads, epoxy, scissors, or tying knots while handling birds. Both harnesses add 0.03 g to the mass of markers for small wood-warblers (Parulidae). This minimal additional mass is offset by trimming transmitter antennas or geolocator connection nodes, resulting in no net mass gain for transmitters and 0.02 g added for geolocators compared with conventional harness methods that add >0.40 g. We and others have used this transmitter attachment method with several small songbird species, with no effects on adult and fledgling behavior and survival. We have used this geolocator attachment method on 9-g wood-warblers with no effects on return rates, return dates, territory fidelity, and body mass. We hope that these improvements to the design and deployment of the leg-loop harness method will enable the safe and successful use of these markers, and eventually GPS and other tags, on similarly small songbirds.

  3. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    PubMed

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-05-16

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  4. 47 CFR 73.315 - FM transmitter location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM transmitter location. 73.315 Section 73.315 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.315 FM transmitter location. (a) The transmitter location shall be chosen so that...

  5. 47 CFR 73.315 - FM transmitter location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM transmitter location. 73.315 Section 73.315 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.315 FM transmitter location. (a) The transmitter location shall be chosen so that...

  6. A new metamaterial-based wideband rectangular invisibility cloak

    NASA Astrophysics Data System (ADS)

    Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.

    2018-02-01

    A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.

  7. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    PubMed

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  8. Ultra-Wideband Radar Measurements of Thickness of Snow Over Sea Ice

    NASA Technical Reports Server (NTRS)

    Kanagaratnam, P.; Markus, T.; Lytle, V.; Heavey, B.; Jansen, P.; Prescott, G.; Gogineni, S.

    2007-01-01

    An accurate knowledge of snow thickness and its variability over sea ice is crucial for determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from passive microwave satellite data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultra wideband frequency-modulated continuous-wave (FM-CW) radar to measure snow thickness over sea ice. We made snow-thickness measurements over Antarctic sea ice by operating the radar from a sled during September and October, 2003. We performed radar measurements over 11 stations with varying snow thickness between 4 and 85 cm. We observed excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm.

  9. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkifli, M Z; Ahmad, H; Hassan, N A

    2011-07-31

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm tomore » 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)« less

  10. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip.

    PubMed

    Lin, Yongbin; Guo, Junpeng; Lindquist, Robert G

    2009-09-28

    Dramatic increase in the bandwidth of optical fiber inline polarizer can be achieved by using metal nano-grid on the fiber tip. However, high extinction ratio of such fiber polarizer requires high spatial frequency metal nano girds with high aspect ratio on the small area of optical fiber tip. We report the development of a nano-fabrication process on the optical fiber tip, and the design and realization of the first ultra-wideband fiber inline polarization device with Au nano gird fabricated on a single mode optical fiber end face.

  11. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    PubMed

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

  12. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    PubMed Central

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied. PMID:22163498

  13. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    PubMed

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  14. Ultra Wideband (UWB) communication vulnerability for security applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooley, H. Timothy

    2010-07-01

    RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages overmore » conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.« less

  15. Surgical and immediate postrelease mortality of harlequin ducks (Histrionicus histrionicus) implanted with abdominal radio transmitters with percutaneous antennae

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Esler, Daniel N.

    1999-01-01

    Radiotelemetry is an essential tool in the study of free-ranging bird populations, and a variety of transmitter-attachment methods have been developed. A promising new method is abdominal implantation of a transmitter with a percutaneous antenna. Researchers using this technique should be concerned about and aware of mortality during surgery and during the immediate postrelease period (the 14-day period following surgery). Of 307 radio-implant surgeries performed between 1995 and 1997 in harlequin ducks (Histrionicus histrionicus), 7 (2.3%) deaths were documented during surgery or anesthetic recovery. Of 295 birds released with implanted radios, 10 (3.4%) died during the immediate postrelease period. Modifications to anesthetic procedures used in the 204 surgeries performed in 1996 and 1997 reduced mortality to 1.5% during surgery and 1.5% during the immediate postrelease period. Anesthetic modifications included intubation of all birds, placement of birds on an elevated platform that allowed the head to rest at a level lower than the body during surgery, placement of a heated water blanket under the birds during surgery, monitoring of body temperature, and use of electrocardiogram and Doppler ultrasound to monitor heart rates and arrhythmias. Low levels of mortality associated with abdominal implantation of radio transmitters may be unavoidable, but mortality can be minimized with adjustments to anesthetic technique.

  16. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  17. Effects of antenna length and material on output power and detection of miniature radio transmitters

    USGS Publications Warehouse

    Beeman, J.W.; Bower, N.; Juhnke, S.; Dingmon, L.; Van Den, Tillaart; Thomas, T.

    2007-01-01

    The optimal antenna of transmitters used in small aquatic animals is often a compromise between efficient radio wave propagation and effects on animal behavior. Radio transmission efficiency generally increases with diameter and length of the conductor, but increased antenna length or weight can adversely affect animal behavior. We evaluated the effects of changing antenna length and material on the subsequent tag output power, reception, and detection of tagged fish. In a laboratory, we compared the relative signal strengths in water of 150 MHz transmitters over a range of antenna lengths (from 6 to 30 cm) and materials (one weighing about half of the other). The peak relative signal strengths were at 20 and 22 cm, which are approximately one wavelength underwater at the test frequency. The peak relative signal strengths at these lengths were approximately 50% greater than those of 30 cm antennas, a length commonly used in fisheries research. Few significant differences were present in distances for the operator to hear or the telemetry receiver to decode transmitters from a boat-mounted receiving system based on antenna length, but the percent of tagged fish detected passing a hydroelectric dam fitted with an array of receiving systems was significantly greater at the antenna length with peak output power in laboratory tests. This study indicates careful choice of antenna length and material of small transmitters can be used to reduce weight and possible antenna effects on animal behavior, to maximize tag output power and detection, or to balance these factors based on the needs of the application. ?? 2007 Springer Science+Business Media B.V.

  18. 47 CFR 15.501 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Scope. 15.501 Section 15.501 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.501 Scope. This subpart sets out the regulations for unlicensed ultra-wideband transmission systems. ...

  19. 47 CFR 15.501 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Scope. 15.501 Section 15.501 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.501 Scope. This subpart sets out the regulations for unlicensed ultra-wideband transmission systems. ...

  20. WIDE-BAND SPECTRA OF GIANT RADIO PULSES FROM THE CRAB PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikami, Ryo; Asano, Katsuaki; Tanaka, Shuta J.

    2016-12-01

    We present the results of the simultaneous observation of giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70% or more of the GRP spectra are consistent with single power laws and their spectral indices are distributed from −4 to −1. Wemore » also find that a significant number of GRPs have such a hard spectral index (approximately −1) that the fluence at 0.3 GHz is below the detection limit (“dim-hard” GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensive studies on the GRP spectra are useful materials to verify the GRP model of fast radio bursts in future observations.« less

  1. Spectrum sensing and resource allocation for multicarrier cognitive radio systems under interference and power constraints

    NASA Astrophysics Data System (ADS)

    Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku

    2014-12-01

    Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.

  2. Complex Permittivity of Planar Building Materials Measured With an Ultra-Wideband Free-Field Antenna Measurement System.

    PubMed

    Davis, Ben; Grosvenor, Chriss; Johnk, Robert; Novotny, David; Baker-Jarvis, James; Janezic, Michael

    2007-01-01

    Building materials are often incorporated into complex, multilayer macrostructures that are simply not amenable to measurements using coax or waveguide sample holders. In response to this, we developed an ultra-wideband (UWB) free-field measurement system. This measurement system uses a ground-plane-based system and two TEM half-horn antennas to transmit and receive the RF signal. The material samples are placed between the antennas, and reflection and transmission measurements made. Digital signal processing techniques are then applied to minimize environmental and systematic effects. The processed data are compared to a plane-wave model to extract the material properties with optimization software based on genetic algorithms.

  3. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †

    PubMed Central

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  4. Technical note: a novel approach to the detection of estrus in dairy cows using ultra-wideband technology.

    PubMed

    Homer, E M; Gao, Y; Meng, X; Dodson, A; Webb, R; Garnsworthy, P C

    2013-10-01

    Detection of estrus is a key determinant of profitability of dairy herds, but estrus is increasingly difficult to observe in the modern dairy cow with shorter duration and less-intense estrus. Concurrent with the unfavorable correlation between milk yield and fertility, estrus-detection rates have declined to less than 50%. We tested ultra-wideband (UWB) radio technology (Thales Research & Technology Ltd., Reading, UK) for proof of concept that estrus could be detected in dairy cows (two 1-wk-long trials; n=16 cows, 8 in each test). The 3-dimensional positions of 12 cows with synchronized estrous cycles and 4 pregnant control cows were monitored continuously using UWB mobile units operating within a network of 8 base units for a period of 7d. In the study, 10 cows exhibited estrus as confirmed by visual observation, activity monitoring, and milk progesterone concentrations. Automated software was developed for analysis of UWB data to detect cows in estrus and report the onset of estrus in real time. The UWB technology accurately detected 9 out of 10 cows in estrus. In addition, UWB technology accurately confirmed all 6 cows not in estrus. In conclusion, UWB technology can accurately detect estrus and hence we have demonstrated proof of concept for a novel technology that has significant potential to improve estrus-detection rates. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    NASA Astrophysics Data System (ADS)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  6. THE UNUSUAL RADIO AFTERGLOW OF THE ULTRA-LONG GAMMA-RAY BURST GRB 130925A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horesh, Assaf; Cenko, S. Bradley; Perley, Daniel A.

    2015-10-10

    GRB 130925A is one of the recent additions to the growing family of ultra-long gamma-ray bursts (GRBs; T90 ≳1000 s). While the X-ray emission of ultra-long GRBs have been studied extensively in the past, no comprehensive radio data set has been obtained so far. We report here the early discovery of an unusual radio afterglow associated with the ultra-long GRB 130925A. The radio emission peaks at low-frequencies (∼7 GHz) at early times, only 2.2 days after the burst occurred. More notably, the radio spectrum at frequencies above 10 GHz exhibits a rather steep cut-off, compared to other long GRB radiomore » afterglows. This cut-off can be explained if the emitting electrons are either mono-energetic or originate from a rather steep, dN/dE ∝ E{sup −4}, power-law energy distribution. An alternative electron acceleration mechanism may be required to produce such an electron energy distribution. Furthermore, the radio spectrum exhibits a secondary underlying and slowly varying component. This may hint that the radio emission we observed is comprised of emission from both a reverse and a forward shock. We discuss our results in comparison with previous works that studied the unusual X-ray spectrum of this event and discuss the implications of our findings on progenitor scenarios.« less

  7. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    PubMed

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  8. Ultra-Wideband Radiometry Remote Sensing of Polar Ice Sheet Temperature Profile, Sea Ice and Terrestrial Snow Thickness: Forward Modeling and Data Analysis

    NASA Astrophysics Data System (ADS)

    Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.

    2017-12-01

    The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument

  9. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  10. A Radio Study of the Ultra-luminous FIR Galaxy NGC 6240

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Wilson, A. S.; Bland-Hawthorn, J.

    1993-05-01

    A number of galaxies observed in the IRAS mission are noted to emit ~ 99% of their bolometric flux in the FIR, with FIR luminosities in excess of 10(11) Lsun. The interacting galaxy NGC 6240 has often been referred to as the ``proto-typical'' ultra-luminous (L_FIR >~ 10(12) Lsun) FIR galaxy. The origin of the FIR excess remains a disputed subject in the literature. New observations of NGC 6240 were taken with the VLA at 20cm in the B-configuration, and at 3.6cm in the A-configuration. No significant radio emission was detected from or near the possible ultra-massive ``dark core'' hypothesized by Bland-Hawthorn et. al. (1991); however, approximately 30% of Seyfert galaxies have 20 cm radio luminosities weaker than the upper limit derived from the radio maps. The non-thermal radio emission from luminous FIR galaxies is tightly correlated with the FIR emission. Previous radio observations of NGC 6240 revealed two compact, steep-spectrum nuclear sources, nearly coincident with the two nuclear sources seen in optical images. The 2 images from the new VLA observations and 5 images from previous VLA observations are used to identify the morphological and spectral features of the strong, compact components in the nuclear regions (<~ 1.5 kpc; D=100 Mpc) and of the weaker ``clumps'' of diffuse emission south and west (>~ 3 kpc) from the nucleus. Feasible explanations for the radio emission are discussed. The models that have been proposed in the literature for the FIR excess of NGC 6240 are evaluated for consistency with the observed radio emission.

  11. Effects of surgically and gastrically implanted radio transmitters on growth and feeding behavior of juvenile chinook salmon

    USGS Publications Warehouse

    Adams, N.S.; Rondorf, D.W.; Evans, S.D.; Kelly, J.E.

    1997-01-01

    We examined the effects of surgically and gastrically implanted radio transmitters (representing 2.3-5.5% of body weight) on the growth and feeding behavior of 192 juvenile chinook salmon Oncorhynchus tshawytscha (114-159 mm in fork length). Throughout the 54-d study, the 48 fish with transmitters in their stomachs (gastric fish) consistently grew more slowly than fish with surgically implanted transmitters (surgery fish), fish with surgery but no implanted transmitter (sham-surgery fish), or fish exposed only to handling (control fish). Growth rates of surgery fish were also slightly impaired at day 21, but by day 54 they were growing at rates comparable with those of control fish. Despite differences in growth, overall health was similar among all test fish. However, movement of the transmitter antenna caused abrasions at the corner of the mouth in all gastric fish, whereas only 22% of the surgery fish had inflammation around the antenna exit wound. Feeding activity was similar among groups, but gastric fish exhibited a coughing behavior and appeared to have difficulty retaining swallowed food. Because growth and feeding behavior were less affected by the presence of surgically implanted transmitters than by gastric implants, we recommend surgically implanting transmitters for biotelemetry studies of juvenile chinook salmon between 114 and 159 mm fork length.

  12. Ultra-Wideband Radars for Measurements over Land and Sea Ice

    NASA Astrophysics Data System (ADS)

    Gogineni, S.; Hale, R.; Miller, H. G.; Yan, S.; Rodriguez-Morales, F.; Leuschen, C.; Wang, Z.; Gomez-Garcia, D.; Binder, T.; Steinhage, D.; Gehrmann, M.; Braaten, D. A.

    2015-12-01

    We developed two ultra-wideband (UWB) radars for measurements over the ice sheets in Greenland and Antarctica and sea ice. One of the UWB radars operates over a 150-600 MHz frequency range with a large, cross-track 24-element array. It is designed to sound ice, image the ice-bed interface, and map internal layers with fine resolution. The 24-element array consists of three 8-element sub-arrays. One of these sub-arrays is mounted under the fuselage of a BT-67 aircraft; the other two are mounted under the wings. The polarization of each antenna element can be individually reconfigured depending on the target of interest. The measured inflight VSWR is less than 2 over the operating range. The fuselage sub-array is used both for transmission and reception, and the wing-mounted sub-arrays are used for reception. The transmitter consists of an 8-channel digital waveform generator to synthesize chirped pulses of selectable pulse width, duration, and bandwidth. It also consists of drivers and power amplifiers to increase the power level of each individual channel to about 1 kW and a fast high-power transmit/receive switch. Each receiver consists of a limiter, switches, low-noise and driver amplifiers, and filters to shape and amplify received signals to the level required for digitization. The digital sub-section consists of timing and control sub-systems and 24 14-bit A/D converters to digitize received signals at a rate of 1.6 GSPS. The radar performance is evaluated using an optical delay line to simulate returns from about 2 km thick ice, and the measured radar loop sensitivity is about 215 dB. The other UWB microwave radar operates over a 2-18 GHz frequency range in Frequency-Modulated Continuous Wave (FM-CW) mode. It is designed to sound more than 1 m of snow over sea ice and map internal layers to a depth about 25-40 m in polar firn and ice. We operated the microwave radar over snow-covered sea ice and mapped snow as thin as 5 cm and as thick as 60 cm. We mapped

  13. Preening behavior of adult gyrfalcons tagged with backpack transmitters

    USGS Publications Warehouse

    Booms, T.L.; Schempf, P.F.; Fuller, M.R.

    2011-01-01

    Radio transmitters provide data that enhance understanding of raptor biology (Walls and Kenward 2007) and are now used to answer a multitude of research questions (Meyburg and Fuller 2007). However, transmitters affect the birds that carry them (Barron et al. 2010), and it is important to document and evaluate such effects (Casper 2009). For example, decreased survival has been documented in Prairie Falcons (Falco mexicanus; Steenhof et al. 2006), Northern Goshawks (Accipiter gentilis; Reynolds et al. 2004), and Spotted Owls (Strix occidentalis; Paton et al. 1991) tagged with radio transmitters. However, no such effects were reported for Peregrine Falcons (Falco peregrinus; Fuller et al. 1998, McGrady et al. 2002) and a number of other species (Kenward 2001). White and Garrott (1990) noted that in general, animals tagged with radio transmitters often altered their behaviors for 1–14 d after release during an adjustment period that included increased preening and grooming frequencies. Although more than 90 Gyrfalcons (Falco rusticolus) have been tagged with radio transmitters (e.g., Burnham 2007, McIntyre et al. 2009, T. Booms unpubl. data), the effects of transmitters on this species are not well documented. Anecdotal information suggests some Gyrfalcons might be negatively affected by radio-tagging (Booms et al. 2008). As part of a study investigating Gyrfalcon breeding biology, we conducted opportunistic, focused observations on two radio-tagged adult female Gyrfalcons and their unmarked mates. We here describe and quantify preening behavior of Gyrfalcons shortly after radio-tagging.

  14. 75 FR 62476 - Ultra-Wideband Transmission Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... would be obtained from measurements taken with the system operating in its normal operating mode. At the... with the transmitter operating continuously at a fundamental transmission frequency. 9. Subsequent to... systems, measured in their normal operating modes, is less than that of a UWB transmitter employing...

  15. 47 CFR 73.515 - NCE FM transmitter location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false NCE FM transmitter location. 73.515 Section 73.515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.515 NCE FM transmitter location. The...

  16. 47 CFR 73.515 - NCE FM transmitter location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false NCE FM transmitter location. 73.515 Section 73.515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.515 NCE FM transmitter location. The...

  17. Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.

    2018-04-01

    The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWR<2 for entire bandwidth of antenna and peak gain is 5.2 dB. Thus the antenna covers the UWB range and it can also be used for bands such as 2.4/3.6/5 -GHz WLAN bands, 2.5/3.5/5.5GHz WiMAX bands and X band satellite communication at 7.25-8.395 GHz.

  18. Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces

    NASA Astrophysics Data System (ADS)

    Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua

    2016-12-01

    An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).

  19. Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels.

    PubMed

    Al-Samman, A M; Azmi, M H; Rahman, T A; Khan, I; Hindia, M N; Fattouh, A

    2016-01-01

    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.

  20. Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels

    PubMed Central

    Al-Samman, A. M.; Azmi, M. H.; Rahman, T. A.; Khan, I.; Hindia, M. N.; Fattouh, A.

    2016-01-01

    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method. PMID:27992445

  1. Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop.

    PubMed

    Luo, Bowen; Dong, Jianji; Yu, Yuan; Yang, Ting; Zhang, Xinliang

    2012-06-15

    We propose and demonstrate a novel scheme of ultra-wideband (UWB) doublet pulse generation using a semiconductor optical amplifier (SOA) based polarization-diversified loop (PDL) without any assistant light. In our scheme, the incoming gaussian pulse is split into two parts by the PDL, and each of them is intensity modulated by the other due to cross-gain modulation (XGM) in the SOA. Then, both parts are recombined with incoherent summation to form a UWB doublet pulse. Bi-polar UWB doublet pulse generation is demonstrated using an inverted gaussian pulse injection. Moreover, pulse amplitude modulation of UWB doublet is also experimentally demonstrated. Our scheme shows some advantages, such as simple implementation without assistant light and single optical carrier operation with good fiber dispersion tolerance.

  2. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    NASA Astrophysics Data System (ADS)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  3. PNTAB view : minimum criteria for testing/evaluation of interference potential of high power terrestrial transmitters in repurposed radio bands.

    DOT National Transportation Integrated Search

    2017-03-30

    Brief, 6-point set of guidelines that describe how to test the interference potential of high power terrestrial transmitters in repurposed radio bands. Presented at Global Positioning System Adjacent Band Compatibility Assessment Workshop VI, 03/30/2...

  4. Single-chip fully integrated direct-modulation CMOS RF transmitters for short-range wireless applications.

    PubMed

    El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed; Deen, M Jamal

    2013-08-02

    Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of -122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of -120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  5. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Charrier, D.; Denis, L.; Hilgers, G.; Mohrmann, L.; Philipps, B.; Seeger, O.

    2012-10-01

    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.

  6. Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy.

    PubMed

    Vakarin, Vladyslav; Ramírez, Joan Manel; Frigerio, Jacopo; Ballabio, Andrea; Le Roux, Xavier; Liu, Qiankun; Bouville, David; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2017-09-01

    This Letter explores the use of Ge-rich Si 0.2 Ge 0.8 waveguides on graded Si 1-x Ge x substrate for the demonstration of ultra-wideband photonic integrated circuits in the mid-infrared (mid-IR) wavelength range. We designed, fabricated, and characterized broadband Mach-Zehnder interferometers fully covering a range of 3 μm in the mid-IR band. The fabricated devices operate indistinctly in quasi-TE and quasi-TM polarizations, and have an extinction ratio higher than 10 dB over the entire operating wavelength range. The obtained results are in good correlation with theoretical predictions, while numerical simulations indicate that the device bandwidth can reach one octave with low additional losses. This Letter paves the way for further realization of mid-IR integrated spectrometers using low-index-contrast Si 1-x Ge x waveguides with high germanium concentration.

  7. Deep Wideband Single Pointings and Mosaics in Radio Interferometry: How Accurately Do We Reconstruct Intensities and Spectral Indices of Faint Sources?

    NASA Astrophysics Data System (ADS)

    Rau, U.; Bhatnagar, S.; Owen, F. N.

    2016-11-01

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1-2 GHz)) and 46-pointing mosaic (D-array, C-Band (4-8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μJy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  8. Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated Raman scattering.

    PubMed

    Semrau, Daniel; Killey, Robert; Bayvel, Polina

    2017-06-12

    As the bandwidths of optical communication systems are increased to maximize channel capacity, the impact of stimulated Raman scattering (SRS) on the achievable information rates (AIR) in ultra-wideband coherent WDM systems becomes significant, and is investigated in this work, for the first time. By modifying the GN-model to account for SRS, it is possible to derive a closed-form expression that predicts the optical signal-to-noise ratio of all channels at the receiver for bandwidths of up to 15 THz, which is in excellent agreement with numerical calculations. It is shown that, with fixed modulation and coding rate, SRS leads to a drop of approximately 40% in achievable information rates for bandwidths higher than 15 THz. However, if adaptive modulation and coding rates are applied across the entire spectrum, this AIR reduction can be limited to only 10%.

  9. 47 CFR 73.4108 - FM transmitter site map submissions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM transmitter site map submissions. 73.4108 Section 73.4108 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4108 FM transmitter site map...

  10. Lensless, ultra-wideband fiber optic rotary joint for biomedical applications.

    PubMed

    Kim, Wihan; Chen, Xi; Jo, Javier A; Applegate, Brian E

    2016-05-01

    The demands of optical fiber-based biomedical applications can, in many cases, outstrip the capabilities of lens-based commercially available fiber optic rotary joints. In some circumstances, it is necessary to use very broad spectral bandwidths (near UV to short-wave IR) and specialized optical fibers, such as double-clad fiber, and have the capacity to accommodate high rotational velocities. The broad spectrum, stretching down into the UV, presents two problems: (1) adequate chromatic correction in the lenses across the entire bandwidth and (2) strong UV absorption by the fluids used to lubricate the rotary joint. To accommodate these types of applications, we have developed an ultra-wideband lensless fiber optic rotary joint based on the principle that when two optical fibers are coaligned and placed in contact (or very close), the optical losses at the junction are very low. The advances demonstrated here enable excellent performance (<0.2  dB insertion loss), even down into the UV and spanning a wavelength range of at least 355-1360 nm with single-mode, multimode, and double-clad fibers. We also demonstrate excellent performance, ∼0.38  dB insertion loss, at rotational velocities up to 8800 rpm (146 Hz). To the best of our knowledge, this is the first demonstration of this type of rotary joint capable of such a wide bandwidth and high rotational velocities.

  11. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  12. A radio monitoring survey of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  13. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes

    NASA Astrophysics Data System (ADS)

    Li, Long; Lv, Zhiyong

    2017-08-01

    In this paper, a metamaterial absorber is designed, fabricated, and experimentally demonstrated to realize ultra-wideband absorption, which is composed of three layers of square resistive metasurfaces with different dimensions. Multilayer resistive metasurfaces can not only broaden the absorption bandwidth but also adjust the impedance matching based on multi-resonant modes. The total thickness of the proposed absorber is 3.8 mm, which is only 0.09 λ at the lowest frequency. The bandwidth of absorptivity more than 90% is from 7.0 GHz to 37.4 GHz, and the relative absorption bandwidth is about 137%. The proposed absorber has good polarization-insensitiveness and wide incident angle stability. The measured results agree well with the theoretical design and the numerical simulations.

  14. Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion.

    PubMed

    Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter

    2012-08-27

    We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

  15. Measurement of the complex permittivity of microbubbles using a cavity perturbation technique for contrast enhanced ultra-wideband breast cancer detection.

    PubMed

    Ogunlade, Olumide; Chen, Yifan; Kosmas, Panagiotis

    2010-01-01

    Measurements of the complex permittivity of various concentrations of microbubbles in ethylene glycol liquid phantom have been carried out. A cavity perturbation technique using custom rectangular waveguide cavities, which are sensitive to small changes in the permittivity of the perturber, has been employed. Three different frequencies within the ultra-wideband (UWB) frequency spectrum have been used for the experiments. The results show that the concentration of the air filled microbubbles required to achieve a dielectric contrast as little as 2% exceeds the recommended dosage used in clinical ultrasound applications, by more than two orders of magnitude.

  16. Ultra-sparse dielectric nanowire grids as wideband reflectors and polarizers.

    PubMed

    Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2015-11-02

    Engaging both theory and experiment, we investigate resonant photonic lattices in which the duty cycle tends to zero. Corresponding dielectric nanowire grids are mostly empty space if operated as membranes in vacuum or air. These grids are shown to be effective wideband reflectors with impressive polarizing properties. We provide computed results predicting nearly complete reflection and attendant polarization extinction in multiple spectral regions. Experimental results with Si nanowire arrays with 10% duty cycle show ~200-nm-wide band of high reflection for one polarization state and free transmission for the orthogonal state. These results agree quantitatively with theoretical predictions. It is fundamentally extremely significant that the wideband spectral expressions presented can be generated in these minimal systems.

  17. Radio Hazard Safety Assessment for Marine Ship Transmitters: Measurements Using a New Data Collection Method and Comparison with ICNIRP and ARPANSA Limits

    PubMed Central

    Halgamuge, Malka N.

    2015-01-01

    We investigated the levels of radio frequency electromagnetic fields (RF EMFs) emitted from marine ship transmitters. In this study, we recorded the radio frequency (RF) electric field (EF) levels emitted from transmitters from a marine vessel focusing on the areas normally occupied by crew members and passengers. Previous studies considered radiation hazard safety assessment for marine vessels with a limited number of transmitters, such as very high-frequency (VHF) transceivers, radar and communication transmitters. In our investigation, EF levels from seven radio transmitters were measured, including: VHF, medium frequency/high frequency (MF/HF), satellite communication (Sat-Com C), AISnavigation, radar X-band and radar S-band. Measurements were carried out in a 40 m-long, three-level ship (upper deck, bridge deck and bridge roof) at 12 different locations. We developed a new data-collection protocol and performed it under 11 different scenarios to observe and measure the radiation emissions from all of the transmitters. In total, 528 EF field measurements were collected and averaged over all three levels of the marine ship with RF transmitters: the measured electric fields were the lowest on the upper deck (0.82–0.86 V/m), the highest on the bridge roof (2.15–3.70 V/m) and in between on the bridge deck (0.47–1.15 V/m). The measured EF levels were then assessed for compliance with the occupational and general public reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) standards. The ICNIRP and the ARPANSA limits for the general public were exceeded on the bridge roof; nevertheless, the occupational limits were respected everywhere. The measured EF levels, hence, complied with the ICNIRP guidelines and the ARPANSA standards. In this paper, we provide a new data collection model for future surveys, which could be conducted with

  18. 47 CFR 90.471 - Points of operation in internal transmitter control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Points of operation in internal transmitter control systems. 90.471 Section 90.471 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control Systems § 90.471 Points of...

  19. 47 CFR 90.471 - Points of operation in internal transmitter control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Points of operation in internal transmitter control systems. 90.471 Section 90.471 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control Systems § 90.471 Points of...

  20. 47 CFR 90.471 - Points of operation in internal transmitter control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Points of operation in internal transmitter control systems. 90.471 Section 90.471 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control Systems § 90.471 Points of...

  1. 47 CFR 90.471 - Points of operation in internal transmitter control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Points of operation in internal transmitter control systems. 90.471 Section 90.471 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control Systems § 90.471 Points of...

  2. 47 CFR 90.471 - Points of operation in internal transmitter control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Points of operation in internal transmitter control systems. 90.471 Section 90.471 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control Systems § 90.471 Points of...

  3. Effects of harness-attached transmitters on premigration and reproduction of Brant

    USGS Publications Warehouse

    Ward, David H.; Flint, Paul L.

    1995-01-01

    Radio transmitters are an important tool in waterfowl ecology studies, but little is known about their effects on free-ranging geese. We attached transmitters to female brant (Branta bernicla nigricans) to investigate migration schedules at a fall staging area, return rates to nesting grounds, and nesting rates of returning females in subsequent breeding seasons. Radio-tagged females (n = 62) carried either 35-g back-mounted transmitters attached with ribbon harnesses, or 26- or 32-g back-mounted transmitters affixed with plastic-coated wire harnesses (Dwyer 1972). Arrival and departure schedules at Izembek Lagoon, Alaska, did not differ (P > 0.05) between radio-tagged females and the entire population in 1987-89. Color-banded females with transmitters returned to the breeding colony in subsequent nesting seasons (1988-92) at a lower (P ≤ 0.003) rate (≤4%) than color-banded females without transmitters (57-83%). The 1 returning color-banded female with a transmitter did not breed, while an average 90% of the returning color-banded females without transmitters nested in subsequent breeding seasons (P = 0.005). Back-mounted, harness-attached transmitters may bias data in studies of waterfowl behavior, productivity, and survival.

  4. 47 CFR 101.129 - Transmitter location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Transmitter location. 101.129 Section 101.129 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.129 Transmitter location. (a) The applicant must determine, prior to...

  5. 47 CFR 101.807 - Transmitter power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Transmitter power. 101.807 Section 101.807 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.807 Transmitter power. Stations in this service will...

  6. 47 CFR 101.807 - Transmitter power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Transmitter power. 101.807 Section 101.807 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.807 Transmitter power. Stations in this service will...

  7. 47 CFR 101.807 - Transmitter power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmitter power. 101.807 Section 101.807 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.807 Transmitter power. Stations in this service will...

  8. 47 CFR 101.807 - Transmitter power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Transmitter power. 101.807 Section 101.807 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.807 Transmitter power. Stations in this service will...

  9. 47 CFR 101.129 - Transmitter location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Transmitter location. 101.129 Section 101.129 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.129 Transmitter location. (a) The applicant must determine, prior to...

  10. 47 CFR 101.807 - Transmitter power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Transmitter power. 101.807 Section 101.807 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.807 Transmitter power. Stations in this service will...

  11. A low complexity wireless microbial fuel cell monitor using piezoresistive sensors and impulse-radio ultra-wide-band

    NASA Astrophysics Data System (ADS)

    Crepaldi, M.; Chiolerio, A.; Tommasi, T.; Hidalgo, D.; Canavese, G.; Stassi, S.; Demarchi, D.; Pirri, F. C.

    2013-05-01

    Microbial Fuel Cells (MFCs) are energy sources which generate electrical charge thanks to bacteria metabolism. Although functionally similar to chemical fuel cells (both including reactants and two electrodes, and anode and cathode), they have substantial advantages, e.g. 1) operation at ambient temperature and pressure; 2) use of neutral electrolytes and avoidance of expensive catalysts (e.g. platinum); 3) operation using organic wastes. An MFC can be effectively used in environments where ubiquitous networking requires the wireless monitoring of energy sources. We then report on a simple monitoring system for MFC comprising an ultra-low-power Impulse-Radio Ultra-Wide-Band Transmitter (TX) operating in the low 0-960MHz band and a nanostructured piezoresistive pressure sensor connected to a discrete component digital read-out circuit. The sensor comprises an insulating matrix of polydimethylsiloxane and nanostructured multi-branched copper microparticles as conductive filler. Applied mechanical stress induces a sample deformation that modulates the mean distance between particles, i.e. the current flow. The read-out circuit encodes pressure as a pulse rate variation, with an absolute sensitivity to the generated MFC voltage. Pulses with variable repetition frequency can encode battery health: the pressure sensor can be directly connected to the cells membrane to read excessive pressure. A prototype system comprises two MFCs connected in series to power both the UWB transmitter which consumes 40μW and the read-out circuit. The two MFC generate an open circuit voltage of 1.0+/-0.1V. Each MFC prototype has a total volume of 0.34L and is formed by two circular Poly(methyl methacrylate) (PMMA) chambers (anode and cathode) separated by a cation exchange membrane. The paper reports on the prototype and measurements towards a final solution which embeds all functionalities within a MFC cell. Our solution is conceived to provide energy sources integrating energy management

  12. EDGES and the Development of Absolute Calibration for Wideband Radio Receivers for 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Bowman, Judd D.

    2018-06-01

    The ultra-violet light emitted by early stars, when the universe was less than 400 million years old, alters the excitation state of the 21cm hyperfine line of primordial neutral hydrogen gas that surrounds the stars. This causes the gas to absorb photons from the cosmic microwave background (CMB). Later, energy deposited into the gas by the ultra-violet and X-ray emission from these early stars and their remnants heats the gas and eventually ionizes it. These effects produce spectral features in the CMB observable today at frequencies redshifted to below 200 MHz. The 21cm signal is approximately 10,000 times fainter the foreground synchrotron emission from the Milky Way, leading to the requirement that any instrument designed to observe it must have a knowable response at the 0.01% level. Typical radio receivers used in astronomical measurements are accurate at the 1-10% level. Over the last decade, our team has investigated new radio receiver designs and accurate calibration strategies in the laboratory and in ground-based instruments to achieve the 0.01% performance goal. Building on these efforts, we recently reported evidence for detection of the redshifted 21cm signal as a decrease in the sky-averaged radio intensity observed by the Experiment to Detect the Global EoR Signature (EDGES). We found a flattened absorption profile in the measured radio spectrum centered at a frequency of 78 MHz with full width at half maximum of 19 MHz and an amplitude of 0.5 K. The frequency of the profile is roughly consistent with astrophysical models of early star formation. However, the amplitude of the observed profile is more than a factor of two greater than the largest standard predictions and suggests that the gas was either significantly colder than expected or the background radiation temperature was hotter than expected.

  13. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.

    PubMed

    Sam, Somarith; Lim, Sungjoon

    2013-04-01

    This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%.

  14. 47 CFR 90.215 - Transmitter measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmitter measurements. 90.215 Section 90.215... MOBILE RADIO SERVICES General Technical Standards § 90.215 Transmitter measurements. (a) The licensee of... current station authorization. On authorizations stating only the input power to the final radiofrequency...

  15. Launch device using endlessly single-mode PCF for ultra-wideband WDM transmission in graded-index multi-mode fiber.

    PubMed

    Ma, Lin; Hanzawa, Nobutomo; Tsujikawa, Kyozo; Azuma, Yuji

    2012-10-22

    We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.

  16. An ultra-wideband wire spiral antenna for in-body communications using different material matching layers.

    PubMed

    Khaleghi, Ali; Balasingham, Ilangko; Chavez-Santiago, Raul

    2014-01-01

    In this work an ultra-wideband wire antenna was designed and fabricated for transmitting/receiving signals to/from inside the human body. The antenna provides high gain and thus high field intensity in its broadside direction; hence, a high energy density wireless can be established with the inner body. The proposed antenna operates in the frequency band of 3-10 GHz with an impedance of 200 Ohms in free space. The antenna was embedded in different materials with permittivity values ranging from 12 to 74 in order to evaluate the matching layer effect on wave propagation from outside to inside the body. The antenna port impedance was adjusted by using matching circuits. The electric field intensity inside the human chest was calculated for different materials and depths. The best improvement in wave penetration was obtained for the frequency band of 750-1000 MHz by embedding the antenna inside a material with permittivity equal to 27.

  17. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation

    NASA Astrophysics Data System (ADS)

    He, Yixin; Wang, Yuye; Xu, Degang; Nie, Meitong; Yan, Chao; Tang, Longhuang; Shi, Jia; Feng, Jiachen; Yan, Dexian; Liu, Hongxiang; Teng, Bing; Feng, Hua; Yao, Jianquan

    2018-01-01

    We have demonstrated a high-energy and broadly tunable monochromatic terahertz (THz) source based on difference frequency generation (DFG) in DAST crystal. A high-energy dual-wavelength optical parametric oscillator with two KTP crystals was constructed as a light source for DFG, where the effect of blue light was first observed accompanying with tunable dual-wavelength pump light due to different nonlinear processes. The THz frequency was tuned randomly in the range of 0.3-19.6 THz. The highest energy of 870 nJ/pulse was obtained at 18.9 THz under the intense pump intensity of 247 MW/cm2. The THz energy dips above 3 THz have been analyzed and mainly attributed to the resonance absorption induced by lattice vibration in DAST crystal. The dependence of THz output on the input energy was studied experimentally, and THz output saturation was observed. Furthermore, tests of transmission spectroscopy of four typical samples were demonstrated with this ultra-wideband THz source.

  18. 47 CFR 87.143 - Transmitter control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 87.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO..., the control point for an automatically controlled enroute station is the computer facility which controls the transmitter. Any computer controlled transmitter must be equipped to automatically shut down...

  19. 47 CFR 87.143 - Transmitter control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 87.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO..., the control point for an automatically controlled enroute station is the computer facility which controls the transmitter. Any computer controlled transmitter must be equipped to automatically shut down...

  20. 47 CFR 87.143 - Transmitter control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 87.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO..., the control point for an automatically controlled enroute station is the computer facility which controls the transmitter. Any computer controlled transmitter must be equipped to automatically shut down...

  1. 47 CFR 87.143 - Transmitter control requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 87.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO..., the control point for an automatically controlled enroute station is the computer facility which controls the transmitter. Any computer controlled transmitter must be equipped to automatically shut down...

  2. 47 CFR 87.143 - Transmitter control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 87.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO..., the control point for an automatically controlled enroute station is the computer facility which controls the transmitter. Any computer controlled transmitter must be equipped to automatically shut down...

  3. Wide-band analog frequency modulation of optic signals using indirect techniques

    NASA Technical Reports Server (NTRS)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  4. Effects of implanted transmitters on adult bluegills at two temperatures

    USGS Publications Warehouse

    Knights, Brent C.; Lasee, Becky A.

    1996-01-01

    Laterally compressed panfishes are small and have limited intraperitoneal space; thus, they may suffer adversely from surgically implanted transmitters even if the transmitter meets the generally recommended ratio of transmitter weight to fish weight of 2%. We studied the effects of intraperitoneal transmitters (2.81 g) on survival, growth, healing, and health of bluegills Lepomis macrochirus (mean weight 133 g) held for 8 weeks at 6 degree C and 20 degree C. Radio-tagged bluegills at 20 degree C had a mortality rate of 10% and tag loss rate of 15%. At 6 degree C, bluegills had no mortality or tag loss. Radio-tagged and reference fish fed in both 20 degree C raceways; however, a few reference fish appeared dominant at feeding time. This dominance by a few reference fish was also indicated by a large weight gain for three reference fish in each 20 degree C raceway. At 6 degree C, neither reference fish nor radio-tagged fish fed activity. Radio-tagged fish held at 20 degree C exhibited pelvic fin erosion, erythema and necrosis at the antenna exit and at suture insertions, and lost or loose sutures, effects not observed in other test fishes. Examination of fish held at 20 degree C also showed enclosure of the transmitters in a fibrous capsule and adhesion of visceral organs. Epithelialization over the incision occurred in radio-tagged bluegills at both temperatures, but there was little further healing at 6 degree C. At 20 degree C, tissue responses included chronic inflammation and dermal granulation. Radio-tagged fish did not appear to be more susceptible than reference fish to bacterial infection. Mortality, adverse morphological effects, altered behavior, and limited healing in bluegills suggest that implanted transmitters impaired their health. Thus, movement and habitat use data collected by telemetry for this species and perhaps for other panfishes should be interpreted with caution.

  5. Ultra-short pulse generator

    DOEpatents

    McEwan, Thomas E.

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  6. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.

    2017-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework

  7. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.

    2018-01-01

    Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.

  8. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.

    PubMed

    Zhou, Yong Jin; Yang, Bao Jia

    2015-05-10

    Although subwavelength planar terahertz (THz) plasmonic devices can be implemented based on planar spoof surface plasmons (SPs), they still suffer from a little high propagation loss. Here the dispersion and propagation characteristics of the spoof plasmonic waveguide composed of double metal strips corrugated with dumbbell shaped grooves have been investigated. It has been found that much lower propagation loss and longer propagation length can be achieved based on the waveguide compared with the conventional spoof plasmonic waveguide with rectangular grooves. Moreover, the waveguide can implement a decrease in size of about 22%. An ultra-wideband THz plasmonic filter for planar circuits has been demonstrated based on the proposed waveguide. The experimental verification at the microwave frequency has been conducted by scaling up the geometry size of the filter.

  9. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGES

    Abbasi, R.; Takai, H.; Allen, C.; ...

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  10. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  11. Ultra-short pulse generator

    DOEpatents

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  12. 47 CFR 90.473 - Operation of internal transmitter control systems through licensed fixed control points.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...

  13. 47 CFR 90.473 - Operation of internal transmitter control systems through licensed fixed control points.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...

  14. 47 CFR 90.473 - Operation of internal transmitter control systems through licensed fixed control points.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...

  15. 47 CFR 90.473 - Operation of internal transmitter control systems through licensed fixed control points.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...

  16. 47 CFR 90.473 - Operation of internal transmitter control systems through licensed fixed control points.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...

  17. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    PubMed

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  18. Three Specialized Innovations for FAST Wideband Receiver

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Yu, Xinying; Duan, Ran; Hao, Jie; Li, Di

    2015-08-01

    The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) will soon finish the largest antenna in the world. Known as FAST, the Five-hundred-meter Aperture Spherical Radio Telescope will be the most sensitive single-dish radio telescope in the low frequency radio bands between 70 MHz and 3 GHz.To take advantage of its giant aperture, all relevant cutting-edge technology should be applied to FAST to ensure that it achieves the best possible overall performance. The wideband receiver that is currently under development can not only be directly applied to FAST, but also used for other Chinese radio telescopes, such as the Shanghai 65-meter telescope and the Xinjiang 110-meter telescope, to ensure that these telescopes are among the best in the world. Recently, rapid development related to this wideband receiver has been underway. In this paper, we will introduce three key aspects of the FAST wideband receiver project. First is the use of a high-performance analog-to-digital converter (ADC). With the cooperation of Hao Jie’s team from the Institute of Automation of the Chinese Academy of Sciences(CASIA), we have developed 3-Gsps,12-bit ADCs, which have not been used previously in astronomy, and we expect to realize the 3-GHz bandwidth in a single step by covering the entire bandwidth via interleaving or a complex fast Fourier transform (FFT).Second is the front-end analog signal integrated circuit board. We wish to achieve a series of amplification, attenuation, and mixing filtering operations on a single small board, thereby achieving digital control of the bandpass behavior both flexibly and highly-efficiently. This design will not only greatly reduce the required cost and power but will also make the best use of the digital-system’s flexibility. Third is optimization of the FFT: the existing FFT is not very efficient; therefore, we will optimize the FFT for large-scale operation. For this purpose, we intend to cascade two FFTs. Another

  19. 47 CFR 101.131 - Transmitter construction and installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Transmitter construction and installation. 101.131 Section 101.131 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.131 Transmitter construction and...

  20. 47 CFR 101.131 - Transmitter construction and installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Transmitter construction and installation. 101.131 Section 101.131 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.131 Transmitter construction and...

  1. 47 CFR 101.131 - Transmitter construction and installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Transmitter construction and installation. 101.131 Section 101.131 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.131 Transmitter construction and...

  2. 47 CFR 101.131 - Transmitter construction and installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Transmitter construction and installation. 101.131 Section 101.131 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.131 Transmitter construction and...

  3. 47 CFR 87.91 - Operation of transmitter controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of transmitter controls. 87.91 Section 87.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO.... These operators must not perform any internal adjustment of transmitter frequency determining elements...

  4. Design of a Single Channel Modulated Wideband Converter for Wideband Spectrum Sensing: Theory, Architecture and Hardware Implementation

    PubMed Central

    Liu, Weisong; Huang, Zhitao; Wang, Xiang; Sun, Weichao

    2017-01-01

    In a cognitive radio sensor network (CRSN), wideband spectrum sensing devices which aims to effectively exploit temporarily vacant spectrum intervals as soon as possible are of great importance. However, the challenge of increasingly high signal frequency and wide bandwidth requires an extremely high sampling rate which may exceed today’s best analog-to-digital converters (ADCs) front-end bandwidth. Recently, the newly proposed architecture called modulated wideband converter (MWC), is an attractive analog compressed sensing technique that can highly reduce the sampling rate. However, the MWC has high hardware complexity owing to its parallel channel structure especially when the number of signals increases. In this paper, we propose a single channel modulated wideband converter (SCMWC) scheme for spectrum sensing of band-limited wide-sense stationary (WSS) signals. With one antenna or sensor, this scheme can save not only sampling rate but also hardware complexity. We then present a new, SCMWC based, single node CR prototype System, on which the spectrum sensing algorithm was tested. Experiments on our hardware prototype show that the proposed architecture leads to successful spectrum sensing. And the total sampling rate as well as hardware size is only one channel’s consumption of MWC. PMID:28471410

  5. A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    PubMed Central

    Qiu, Robert; Guo, Nan; Li, Husheng; Wu, Zhiqiang; Chakravarthy, Vasu; Song, Yu; Hu, Zhen; Zhang, Peng; Chen, Zhe

    2009-01-01

    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge. PMID:22454598

  6. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  7. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  8. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    NASA Astrophysics Data System (ADS)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  9. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    PubMed

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  10. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done onmore » CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.« less

  11. Estimation of Cardiopulmonary Parameters From Ultra Wideband Radar Measurements Using the State Space Method.

    PubMed

    Naishadham, Krishna; Piou, Jean E; Ren, Lingyun; Fathy, Aly E

    2016-12-01

    Ultra wideband (UWB) Doppler radar has many biomedical applications, including remote diagnosis of cardiovascular disease, triage and real-time personnel tracking in rescue missions. It uses narrow pulses to probe the human body and detect tiny cardiopulmonary movements by spectral analysis of the backscattered electromagnetic (EM) field. With the help of super-resolution spectral algorithms, UWB radar is capable of increased accuracy for estimating vital signs such as heart and respiration rates in adverse signal-to-noise conditions. A major challenge for biomedical radar systems is detecting the heartbeat of a subject with high accuracy, because of minute thorax motion (less than 0.5 mm) caused by the heartbeat. The problem becomes compounded by EM clutter and noise in the environment. In this paper, we introduce a new algorithm based on the state space method (SSM) for the extraction of cardiac and respiration rates from UWB radar measurements. SSM produces range-dependent system poles that can be classified parametrically with spectral peaks at the cardiac and respiratory frequencies. It is shown that SSM produces accurate estimates of the vital signs without producing harmonics and inter-modulation products that plague signal resolution in widely used FFT spectrograms.

  12. A GPU-Based Wide-Band Radio Spectrometer

    NASA Astrophysics Data System (ADS)

    Chennamangalam, Jayanth; Scott, Simon; Jones, Glenn; Chen, Hong; Ford, John; Kepley, Amanda; Lorimer, D. R.; Nie, Jun; Prestage, Richard; Roshi, D. Anish; Wagner, Mark; Werthimer, Dan

    2014-12-01

    The graphics processing unit has become an integral part of astronomical instrumentation, enabling high-performance online data reduction and accelerated online signal processing. In this paper, we describe a wide-band reconfigurable spectrometer built using an off-the-shelf graphics processing unit card. This spectrometer, when configured as a polyphase filter bank, supports a dual-polarisation bandwidth of up to 1.1 GHz (or a single-polarisation bandwidth of up to 2.2 GHz) on the latest generation of graphics processing units. On the other hand, when configured as a direct fast Fourier transform, the spectrometer supports a dual-polarisation bandwidth of up to 1.4 GHz (or a single-polarisation bandwidth of up to 2.8 GHz).

  13. Imaging of Ultra-Wideband Georadar Data

    NASA Astrophysics Data System (ADS)

    ferguson, Robert; Yedlin, Matthew; Pichot, Christian; Dauvignac, Jean-Yves; Fortino, Nicolas; Gaffet, Stéphane

    2013-04-01

    We present a methodology for georadar acquisition and processing that returns superior images of the subsurface for low cost. Georadar data were acquired in March 2011 in the anti-blast tunnel within the Inter-Disciplinary Underground Science & Technology Laboratory at the Laboratoire Souterrain a Bas Bruit (LSBB, http://lsbb.oca.eu), Rustrel, France. The georadar data from LSBB were acquired with an exponentially tapered slot antenna (ETSA) of the Vivaldi type. The ETSA is connected to an Agilent vector network analyzer and it operates between 150 MHz to 2 GHz with a noise floor of -120 dB. One of the most interesting technical aspects of the recordings is the use of both a conventional bistatic recording geometry (the source / receiver offset is about 65 cm) and what we will call a monostatic recording geometry where the emitting antenna is also the receiving antenna. The monostatic (reflection) data and bistatic (transmission) data are recorded complex numbers and each recorded number is a stack of monochromatic wave measurements. This system is reported to have a number of outstanding attributes including long depth of resolution due to it's wide bandwidth. Compared to other systems it has a greater dynamic range plus low distortion, and this is achieved with low-noise, low-loss cables and shielding with ultra-wideband absorbers. The resulting monostatic georadargrams are a true, zero-offset recording geometry, and so zero-offset migration (imaging that is based on the exploding reflector concept) returns a high accuracy image for low cost. To restore reflection attenuation due to the low Q factor associated with georadar, we apply nonstationary, Gabor-domain deconvolution. We find that amplitude attenuation is restored and phase distortion is corrected. The improved accuracy of our methodology is established first through direct comparison of our Gabor-deconvolved data with conventional, stationary deconvolution where we find that the nonstationary result is

  14. Design of an optical fiber cable link for lightning instrumentation. [wideband pulse recording system

    NASA Technical Reports Server (NTRS)

    Grove, C. H.; Phillips, R. L.; Wojtasinski, R. J.

    1975-01-01

    A lightning instrumentation system was designed to record current magnitudes of lightning strikes that hit a launch pad service structure at NASA's Kennedy Space Center. The instrumentation system consists of a lightning ground rod with a current sensor coil, an optical transmitter, an optical fiber cable link, a detector receiver, and a recording system. The transmitter is a wideband pulse transformer driving an IR LED emitter. The transmitter operates linearly as a transducer. A low loss fiber bundle provides isolation of the recorder system from the electromagnetic field of the lightning strike. The output of an optical detector receiver module is sampled and recorded in digital format. The significant factors considered in the design were dynamic range, linearity, mechanical configuration, electromagnetic isolation, and temperature compensation.

  15. An ultra-wideband microwave tomography system: preliminary results.

    PubMed

    Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe

    2009-01-01

    We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.

  16. GTAG: architecture and design of miniature transmitter with position logging for radio telemetry

    NASA Astrophysics Data System (ADS)

    Řeřucha, Šimon; Bartonička, Tomáš; Jedlička, Petr

    2011-10-01

    The radio telemetry is a well-known technique used within zoological research to exploit the behaviour of animal species. A usage of GPS for a frequent and precise position recording gives interesting possibility for a further enhancement of this method. We present our proposal of an architecture and design concepts of telemetry transmitter with GPS module, called GTAG, that is suited for study of the Egyptian fruit bat (Rousettus aegyptiacus). The model group we study set particular constrains, especially the weight limit (9 g) and prevention of any power resources recharging technique. We discuss the aspect of physical realization and the energyconsumption issues. We have developed a reference implementation that has been already deployed during telemetry sessions and we evaluate the experience and compare the estimated performance of our device to a real data.

  17. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    PubMed

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  18. Ultra-wideband technology radio frequency interference effects to GPS and interference scenario development : first interim report

    DOT National Transportation Integrated Search

    2000-09-12

    In October, 1999, at the request of the Department of Transportation (DoT), the RTCA undertook an effort to investigate the radio frequency interference (RFI) environment in the vicinity of the new Global Positioning System (GPS) L5 frequency (1176.4...

  19. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    NASA Astrophysics Data System (ADS)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  20. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Photonic generation of background-free millimeter-wave ultra-wideband pulses based on a single dual-drive Mach-Zehnder modulator.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua

    2014-03-01

    We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach-Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.

  2. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development: Study of the Optical Setup of a Wide-Band Optical Modulation Spectrometer

    NASA Technical Reports Server (NTRS)

    Tolls, Volker; Stringfellow, Guy (Technical Monitor)

    2001-01-01

    The purpose of this study is to advance the design of the optical setup for a wide-band Optical Modulation Spectrometer (OMS) for use with astronomical heterodyne receiver systems. This report describes the progress of this investigation achieved from March until December 2001.

  3. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  4. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties.

  5. Electric Field Strength Of Coherent Radio Emission In Rock Salt Concerning Ultra High-Energy Neutrino Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y.; Chiba, M.; Yasuda, O.

    2006-07-12

    Detection possibility of ultra high-energy (UHE) neutrino (E >1015 eV) in natural huge rock salt formation has been studied. Collision between the UHE neutrino and the rock salt produces electromagnetic (EM) shower. Charge difference (excess electrons) between electrons and positrons in EM shower radiates radio wave coherently (Askar'yan effect). Angular distribution and frequency spectrum of electric field strength of radio wave radiated from 3-dimensional EM shower in rock salt are presented.

  6. 47 CFR 73.685 - Transmitter location and antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...

  7. 47 CFR 73.685 - Transmitter location and antenna system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...

  8. 47 CFR 73.685 - Transmitter location and antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...

  9. 47 CFR 73.685 - Transmitter location and antenna system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...

  10. 47 CFR 73.685 - Transmitter location and antenna system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...

  11. Radio frequency detection assembly and method for detecting radio frequencies

    DOEpatents

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  12. 47 CFR 73.4108 - FM transmitter site map submissions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM transmitter site map submissions. 73.4108... RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4108 FM transmitter site map submissions. See Memorandum Opinion and Order and Public Notice, adopted October 24, 1986. 1 FCC Rcd 381 (1986...

  13. DEEP WIDEBAND SINGLE POINTINGS AND MOSAICS IN RADIO INTERFEROMETRY: HOW ACCURATELY DO WE RECONSTRUCT INTENSITIES AND SPECTRAL INDICES OF FAINT SOURCES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in themore » reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.« less

  14. Assessment of gaseous CO2 and AQUI-S as anesthetics when surgically implanting radio transmitters into cutthroat trout

    USGS Publications Warehouse

    Sanderson, T.B.; Hubert, W.A.

    2007-01-01

    Tricaine methanesulfonate (MS-222) and CO2 are anesthetics that can be legally used in fisheries work in the United States, but they are limited in their field applications. A mandatory 21-d withdrawal period is required for fish exposed to MS-222. Carbon dioxide is not approved by the U.S. Food and Drug Administration, but it is a "low regulatory priority drug" that can be used legally for fish anesthesia. However, stressful induction and lengthy recovery times have been associated with CO2. AQUI-S is a clove oil derivative that has the potential to become an approved anesthetic without the limitations of MS-222 or CO2. We compared the efficacy of CO2 with that of AQUI-S when surgically implanting radio transmitters into cutthroat trout Oncorhynchus clarkii. A 20% survival rate was observed when CO2 was used in combination with silk sutures, but a 100% survival rate was observed when CO2 was used in combination with surgical staples to shorten the duration of the surgical procedure. A 100% survival rate was observed when AQUI-S was used in combination with either silk sutures or surgical staples. Carbon dioxide in combination with surgical staples seemed to provide a reasonable option when surgically implanting radio transmitters into cutthroat trout, but AQUI-S may be the preferred anesthesia because high pH and dissolved oxygen levels and low free-CO2 concentrations are maintained during surgical procedures.

  15. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...

  16. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...

  17. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...

  18. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazakevich, G.; Johnson, R.; Neubauer, M.

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operationmore » cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.« less

  19. Wideband propagation measurement system using spread spectrum signaling and TDRS

    NASA Technical Reports Server (NTRS)

    Jenkins, Jeffrey D.; Fan, Yiping; Osborne, William P.

    1995-01-01

    In this paper, a wideband propagation measurement system, which consisted of a ground-based transmitter, a mobile receiver, and a data acquisition system, was constructed. This system has been employed in a study of the characteristics of different propagation environments, such as urban, suburban and rural areas, by using a pseudonoise spreading sequence transmitted over NASA's Tracking and Data Relay Satellite System. The hardware and software tests showed that it met overall system requirements and it was very robust during a 3-month-long outdoor data collection experiment.

  20. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  1. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  2. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  3. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  4. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  5. Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports.

    PubMed

    Serpiello, F R; Hopkins, W G; Barnes, S; Tavrou, J; Duthie, G M; Aughey, R J; Ball, K

    2018-08-01

    The validity of an Ultra-wideband (UWB) positioning system was investigated during linear and change-of-direction (COD) running drills. Six recreationally-active men performed ten repetitions of four activities (walking, jogging, maximal acceleration, and 45º COD) on an indoor court. Activities were repeated twice, in the centre of the court and on the side. Participants wore a receiver tag (Clearsky T6, Catapult Sports) and two reflective markers placed on the tag to allow for comparisons with the criterion system (Vicon). Distance, mean and peak velocity, acceleration, and deceleration were assessed. Validity was assessed via percentage least-square means difference (Clearsky-Vicon) with 90% confidence interval and magnitude-based inference; typical error was expressed as within-subject standard deviation. The mean differences for distance, mean/peak speed, and mean/peak accelerations in the linear drills were in the range of 0.2-12%, with typical errors between 1.2 and 9.3%. Mean and peak deceleration had larger differences and errors between systems. In the COD drill, moderate-to-large differences were detected for the activity performed in the centre of the court, increasing to large/very large on the side. When filtered and smoothed following a similar process, the UWB-based positioning system had acceptable validity, compared to Vicon, to assess movements representative of indoor sports.

  6. Radio Jove: Citizen Science for Jupiter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Higgins, C. A.; Thieman, J.; Reyes, F. J.; Typinski, D.; Flagg, R. F.; Greenman, W.; Brown, J.; Ashcraft, T.; Sky, J.; Cecconi, B.; Garcia, L. N.

    2016-12-01

    The Radio Jove Project (http://radiojove.gsfc.nasa.gov) has been operating as an educational activity for 18 years to introduce radio astronomy activities to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with radio observatories in real-time over the Internet. Recently some of our dedicated citizen science observers have upgraded their systems to better study radio emission from Jupiter and the Sun by adding dual-polarization spectrographs and wide-band antennas in the frequency range of 15-30 MHz. Some of these observations are being used in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, and the Ukrainian URAN2 Radio Telescope. In particular, there is an effort to support the Juno Mission radio waves instrument at Jupiter by using citizen science ground-based data for comparison and polarization verification. These data will be archived through a Virtual European Solar and Planetary Access (VESPA) archive (https://voparis-radiojove.obspm.fr/radiojove/welcome) for use by the amateur and professional radio science community. We overview the program and display recent observations that will be of interest to the science community.

  7. Ultra-wideband Radar for Building Interior Imaging

    DTIC Science & Technology

    2008-12-01

    same cross range resolution as a monostatic configuration with an equal number of transmitters and receivers (Ressler et al., 2007). In terms of...By this procedure we ensure a constant cross range resolution across the entire image. 2.2. Measurements setup The one story abandoned barrack...identify its geometry and materials. Two-by-four wooden studs (3.8 cm x 8.9 cm cross -section dimensions) are used for most exterior and interior walls

  8. Fornax A, Centaurus A other radio galaxies as sources of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2018-06-01

    The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.

  9. 47 CFR 80.911 - VHF transmitter.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false VHF transmitter. 80.911 Section 80.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.911 VHF...

  10. 47 CFR 80.911 - VHF transmitter.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false VHF transmitter. 80.911 Section 80.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.911 VHF...

  11. 47 CFR 80.911 - VHF transmitter.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false VHF transmitter. 80.911 Section 80.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.911 VHF...

  12. 47 CFR 80.911 - VHF transmitter.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false VHF transmitter. 80.911 Section 80.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.911 VHF...

  13. Radio frequency power load and associated method

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2010-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus includes a container and a fluid having an ion source therein, the fluid being contained in the container. Two conductors are immersed in the fluid. A radio frequency transmission system includes a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus includes a fluid having an ion source therein, and two conductors immersed in the fluid. A method of dissipating power generated by a radio frequency transmission system includes the steps of: immersing two conductors of a radio frequency power load apparatus in a fluid having an ion source therein; and connecting the apparatus to an amplifier of the transmission system.

  14. Antenna design and implementation for the future space Ultra-Long wavelength radio telescope

    NASA Astrophysics Data System (ADS)

    Chen, Linjie; Aminaei, Amin; Gurvits, Leonid I.; Wolt, Marc Klein; Pourshaghaghi, Hamid Reza; Yan, Yihua; Falcke, Heino

    2018-04-01

    In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth's ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole-type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 - 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.

  15. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  16. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  17. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  18. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  19. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  20. Testing tail-mounted transmitters with Myocastor coypus (nutria)

    USGS Publications Warehouse

    Merino, S.; Carter, J.; Thibodeaux, G.

    2007-01-01

    We developed a tail-mounted radio-transmitter for Myocastor coypus (nutria) that offers a practical and efficient alternative to collar or implant methods. The mean retention time was 96 d (range 57-147 d, n = 7), making this a practical method for short-term studies. The tail-mounts were less injurious to animals than collars and easier for field researchers to implement than either collars or surgically implanted transmitters.

  1. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  2. Radio Frequency Power Load and Associated Method

    NASA Technical Reports Server (NTRS)

    Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.

  3. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200more » MHz signal and precisely control amplitude and phase.« less

  4. Placement of intracoelomic radio transmitters and silicone passive sampling devices in northern leopard frogs (Lithobates pipiens)

    USGS Publications Warehouse

    Yaw, Taylor; Swanson, Jennifer E; Pierce, Clay; Muths, Erin L.; Smalling, Kelly; Vandever, Mark; Zaffarano, Bianca Anne

    2017-01-01

    Historically, wetland toxin exposure studies have relied on single time point samples from stationary sampling devices. Development of passive sampling devices (PSDs) that can be attached to individual animals within wetland habitats has greatly improved in recent years, presenting an innovative sampling technology that can potentially yield individual-specific, quantifiable data about chemical exposure. In this study, silicone based PSDs were attached to the ventral skin of 20 northern leopard frogs (Lithobates pipiens) with polypropylene sutures after radio transmitters had been surgically implanted into the coleomic cavity. After a recovery period frogs were released back into the wetland habitat where they were acquired. The animals were located daily using radio telemetry to assess how long PSDs would remain attached in the frogs' natural habitat. After one week, PSDs remained on 18 of the original 20 frogs. At 2 weeks 17 frogs were recovered and no PSDs remained attached. Although valuable data can be obtained over a short time period, more research will be necessary to demonstrate effectiveness of externally attaching silicone PSDs to northern leopard frogs for time periods longer than 1-2 weeks.

  5. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  6. New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region.

    PubMed

    Ohno, Seigo; Miyamoto, Katsuhiko; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A method for simultaneously measuring the refractive index and absorption coefficient of nonlinear optical crystals in the ultra-wideband terahertz (THz) region is described. This method is based on the analysis of a collinear difference frequency generation (DFG) process using a tunable, dual-wavelength, optical parametric oscillator. The refractive index and the absorption coefficient in the organic nonlinear crystal DAST were experimentally determined in the frequency range 2.5-26.2 THz by measuring the THz-wave output using DFG. The resultant refractive index in the x-direction was approximately 2.3, while the absorption spectrum was in good agreement with FT-IR measurements. The output of the DAST-DFG THz-wave source was optimized to the phase-matching condition using the measured refractive index spectrum in THz region, which resulted in an improvement in the output power of up to a factor of nine.

  7. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  8. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  9. Radio Observations of Ultra-Luminous X-Ray Sources and their Implication for Models

    NASA Astrophysics Data System (ADS)

    Koerding, E. G.; Colbert, E. J. M.; Falcke, H.

    2004-05-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These intriguing sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg/sec. Assuming isotropic emission the Eddington Limit suggests that they harbor intermediate mass black holes. Due to the problems of this explanation also other possibilities are currently discussed, among them are anisotropic emission, super-Eddington accretion flows or relativistically beamed emission from microquasars. Detections of compact radio cores at the positions of ULXs would be a direct hint to jet-emission. However, as the ULX phenomenom is connected to star formation we have to assume that they are strongly accreting objects. Thus, similar to their nearest Galactic cousins, the very high state X-ray binaries (see e.g., GRS 1915), ULXs may show radio flares. A well-defined sample of the 9 nearest ULXs has been monitored eight times during 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is 0.15 mJy (4 σ ) for flares and 68 μ Jy for continuous emission. In M82 some ULXs seem to be connected to radio supernova remnants. Besides that no flare or continuous emission has been detected. As the timescales of radio flares in ULXs are highly uncertain, it could well be that we have undersampled the lightcurve. However, upper bounds for the probability to detect a flare can be given. The upper limits for the continuous emission are compared with the emission found in NGC 5408 X-1 and with quasars and microquasars. We show that these limits are well in agreement with the microblazar model using the Radio/X-ray correlation of XRBs and AGN. Thus, it could well be that ULXs are microblazers which may be radio loud.

  10. ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: SERVS IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonso, J.; Bizzocchi, L.; Grossi, M.

    2011-12-20

    Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610more » MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.« less

  11. 47 CFR 73.653 - Operation of TV aural and visual transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Operation of TV aural and visual transmitters. 73.653 Section 73.653 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Television Broadcast Stations § 73.653 Operation of TV aural and visual...

  12. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    NASA Astrophysics Data System (ADS)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All

  13. White Nail Radio Transmitter: Billion Dollar Savings through Energy Efficiency

    DTIC Science & Technology

    2011-05-10

    increase efficiency and reduce overall energy consumption ashore by 50 percent CNO, Navy Energy Vision, P 10 White Nail Vision Your Cell Phone Cell...Estimated Total Number of transmitters 3,000,000 Estimated total power saved Watt 1,250,000,000 Cell Phone Transmitter Efficiency 1.25 Gigawatts saved...Greenhouse Gas Power 4 1 Energy Navy Use 7.3 Billion kWh White Nail Cell Phone Savings 11 Billion kWh One and a half times!!! Saves the output of four of

  14. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    NASA Astrophysics Data System (ADS)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  15. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    NASA Astrophysics Data System (ADS)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upper limits on the radio flux can be converted into upper limits for the black hole masses of MBH ≲ 10^3 M⊙.

  16. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212... powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines...

  17. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212... powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines...

  18. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212... powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines...

  19. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212... powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines...

  20. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212... powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines...

  1. Superconductor Semiconductor Research for NASA's Submillimeter Wavelength Missions

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.

    1997-01-01

    Wideband, coherent submillimeter wavelength detectors of the highest sensitivity are essential for the success of NASA's future radio astronomical and atmospheric space missions. The critical receiver components which need to be developed are ultra- wideband mixers and suitable local oscillator sources. This research is focused on two topics, (1) the development of reliable varactor diodes that will generate the required output power for NASA missions in the frequency range from 300 GHZ through 2.5 THz, and (2) the development of wideband superconductive mixer elements for the same frequency range.

  2. Gigahertz Electromagnetic Structures via Direct Ink Writing for Radio-Frequency Oscillator and Transmitter Applications.

    PubMed

    Zhou, Nanjia; Liu, Chengye; Lewis, Jennifer A; Ham, Donhee

    2017-04-01

    Radio-frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever-pervasive wireless networks. While transistors are best realized by top-down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver-nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave-based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self-sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Wideband optical sensing using pulse interferometry.

    PubMed

    Rosenthal, Amir; Razansky, Daniel; Ntziachristos, Vasilis

    2012-08-13

    Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing - a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.

  4. NOAA Weather Radio

    Science.gov Websites

    Questions NOAA WEATHER RADIO Marine Coverage The NOAA Weather Radio network provides near continuous coverage of the coastal U.S, Great Lakes, Hawaii, and populated Alaska coastline. Typical coverage is 25 Transmitter frequency, call sign and power; and remarks (if any.) Atlantic Gulf of Mexico Great Lakes West

  5. Study of Ultra-High Energy Cosmic Rays from Extensive Air Showers Radio Emission

    NASA Astrophysics Data System (ADS)

    Petrov, Igor; Kozlov, Vladimir; Petrov, Zim; Knurenko, Stanislav; Pravdin, Mikhail

    The study of cosmic rays with the help of radio detection from extensive air showers may be an alternative to traditional detecting methods, which use a large area array installed with hundreds and thousands of scintillation detectors for charged particles, or the detectors of measuring the emission produced by relativistic particles of EAS in the optical wavelengths. Processes that lead to the emission of electromagnetic radiation are well known and calculations show that the air shower radio emission depends on the processes of development of the electromagnetic cascade, i.e. related with the longitudinal development of the shower, with the magnetic field near sea level etc. In this regard, there is a question to establish the correlation between characteristics of EAS both longitudinal and lateral development and radio emission parameters observed when air shower particles pass through the atmosphere. For this purpose, in Yakutsk, radio array for detecting air shower radio emission was established. The array consists of the antenna field on which crossed antennas are installed; antennas oriented E - W and N - S. Radio emission measurements are conducted at frequency 32 MHz, free from industrial noise. In 2008 - 2013 years, Yakutsk array has measured several seasons of registration of EAS events, including showers with energies above 10 (19) eV. In the course of the data analysis the following results were obtained: a) lateral distribution of the radio signal plotted as a function of distance from the shower axis ; b) a correlation between the amplitude of the radio signal with the energy of the shower, which is determined by measuring the fluxes of charged particles , muons and EAS Cerenkov radiation (energy balance method); c) we made evaluation of the depth of maximum development of the shower using form of radio emission LDF measured in ultra-high energy showers; g) a comparison of the Yakutsk array data with data from other arrays.

  6. 47 CFR 2.813 - Transmitters operated in the Instructional Television Fixed Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Transmitters operated in the Instructional Television Fixed Service. 2.813 Section 2.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency...

  7. 47 CFR 2.813 - Transmitters operated in the Instructional Television Fixed Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Transmitters operated in the Instructional Television Fixed Service. 2.813 Section 2.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency...

  8. Analisis experimental de la propagacion en redes de area corporal para la banda de ultra wideband. experimental characterization of the propagation in ultra wideband body area networks

    NASA Astrophysics Data System (ADS)

    Garcia Serna, Ruben Gregorio

    Diferentes dispositivos capaces de obtener informacion sobre parametros fisiologicos, cinematicos o contextuales del cuerpo pueden interconectarse de manera inalambrica dando lugar a las denominadas Redes de Area Corporal Inalambricas (WBAN, Wireless Body Area Networks). De entre las posibles tecnologias para establecer los enlaces, Ultra Wideband (UWB) esta captando cada vez un mayor interes debido a caracteristicas tales como el bajo nivel de potencia de transmision requerido (bajo nivel de exposicion a campos electromagneticos), el alto ancho de banda disponible y la alta resolucion temporal/espacial. El diseno de sistemas centrados en el cuerpo requiere de modelos de canal que describan de manera precisa la propagacion de senales en este tipo de entornos. Esta tesis se plantea con el objetivo de contribuir al estudio experimental de la propagacion en sistemas centrados en el cuerpo operando en la banda UWB. En primer lugar, se presenta un marco introductorio a las redes WBAN, sus elementos constitutivos, bandas de frecuencia, estandarizacion y modelos de canal. Ademas, se introducen los fundamentos de la tecnologia UWB y sus aplicaciones en este area. Seguidamente, se analiza en terminos de las perdidas de propagacion y la dispersion de retardo la propagacion en el canal off-body entre un transmisor fijo y un dispositivo receptor colocado sobre la superficie del cuerpo de un sujeto. Se considera la influencia de diferentes aspectos, tales como el entorno de medidas, la posicion de colocacion de una antena sobre el cuerpo y la postura adoptada por un sujeto. Finalmente, se analiza el canal de propagacion in-body considerando el movimiento relativo entre dos dispositivos causado por efecto de la respiracion. Las condiciones de propagacion en el interior del cuerpo se emulan por medio de un phantom liquido para UWB y la caracterizacion se plantea tanto en frecuencia, en terminos del modelado de la forma y el ensanchamiento del espectro Doppler, como en tiempo, por

  9. Miniature biotelemeter gives multichannel wideband biomedical data

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.

    1972-01-01

    A miniature biotelemeter was developed for sensing and transmitting multiple channels of biomedical data over a radio link. The design of this miniature, 10-channel, wideband (5 kHz/channel), pulse amplitude modulation/ frequency modulation biotelemeter takes advantage of modern device technology (e.g., integrated circuit operational amplifiers, complementary symmetry/metal oxide semiconductor logic, and solid state switches) and hybrid packaging techniques. The telemeter is being used to monitor 10 channels of neuron firings from specific regions of the brain in rats implanted with chronic electrodes. Design, fabrication, and testing of an engineering model biotelemeter are described.

  10. 47 CFR 2.811 - Transmitters operated under part 73 of this chapter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Transmitters operated under part 73 of this chapter. 2.811 Section 2.811 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2...

  11. 47 CFR 2.811 - Transmitters operated under part 73 of this chapter.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Transmitters operated under part 73 of this chapter. 2.811 Section 2.811 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2...

  12. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography

    NASA Astrophysics Data System (ADS)

    Wallage, A. L.; Gaughan, J. B.; Lisle, A. T.; Beard, L.; Collins, C. W.; Johnston, S. D.

    2017-07-01

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT ( r > 0.94, P < 0.001) and ST ( r > 0.80, P < 0.001). Surgery produced temporary minor inflammation and scrotal hematoma in two animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  13. An efficient magnetron transmitter for superconducting accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  14. An efficient magnetron transmitter for superconducting accelerators

    DOE PAGES

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; ...

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  15. The evolution of transmission security functions in modern military wideband radios

    NASA Astrophysics Data System (ADS)

    Matyszkiel, R.; Kaniewski, P.; Kustra, M.; Jach, J.

    2017-04-01

    Rapid development of advanced military command and control systems results in a dynamic growth in demand for data rate. One of the methods that make it possible to deal with the problem of limited capacity of military wireless systems is the use of broadband radios. Another one is the increase in the capacity of narrowband radios by implementing advanced modulation systems. Apart from remarkable benefits, such as the increase in system bit rate, there are also certain limitations since such radios are more sensitive to radio-electronic countermeasures, and the operation in the broad band makes it easier for the enemy to detect the radio emission. In such a situation, it is essential to define again and implement the transmission security functions into modern radios consistently. In this article, some current NATO activities are discussed, regarding the definitions of transmission security functions and the way of implementing them in radios, while paying special attention to a new element, that is to AIE radio cryptography (On Air Encryption). In the paper, the authors present an exemplary implementation of the functions in the Cognitive Radio Demonstrator using R-450C radio, the results of the examinations as well as the conclusions.

  16. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fundamental frequency following the provisions of § 15.31(m). (3) For systems operating in the 23.12-29.0 GHz... with the transmitter operating continuously at a fundamental frequency. The video bandwidth of the... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband vehicular radar systems...

  17. Captive and field-tested radio attachments for bald eagles

    USGS Publications Warehouse

    Buehler, D.A.; Fraser, J.D.; Fuller, M.R.; McAllister, L.S.; Seegar, J.K.D.

    1995-01-01

    The effects of two radio transmitter attachment techniques on captive and one attachment technique on wild Bald Eagles (Haliaeetus leucocephalus) were studied. A Y-attachment method with a 160-g dummy transmitter was less apt to cause tissue damage on captive birds than an X-attachment method, and loosely fit transmitters caused less damage than tightly fit transmitters Annual survival of wild birds fitted with 65-g transmitters via an X attachment was estimated at 90-95%. As a result of high survival, only five wild birds marked as nestlings were recovered.Two of these birds had superficial pressure sores from tight-fitting harnesses It is recommended that a 1.3-cm space be left between the transmitter and the bird's b ack when radio-tagging post-fiedging Bald Eagles. Additional space, perhaps up to 2.5 cm, is required for nestlings to allow for added growth and development.

  18. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for indoor UWB systems. 15.517 Section 15.517 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.517 Technical requirements for indoor UWB systems. (a) Operation...

  19. Survey of Ultra-wideband Radar

    NASA Astrophysics Data System (ADS)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  20. Trends in Performance and Characteristics of Ultra-Stable Oscillators for Deep Space Radio Science Experiments

    NASA Technical Reports Server (NTRS)

    Asmar, Sami

    1997-01-01

    Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.

  1. Design of a fiber-optic transmitter for microwave analog transmission with high phase stability

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Primas, L. E.; Maleki, L.

    1990-01-01

    The principal considerations in the design of fiber-optic transmitters for highly phase-stable radio frequency and microwave analog transmission are discussed. Criteria for a fiber-optic transmitter design with improved amplitude and phase-noise performance are developed through consideration of factors affecting the phase noise, including low-frequency laser-bias supply noise, the magnitude and proximity of external reflections into the laser, and temperature excursions of the laser-transmitter package.

  2. Design and development of ultra-wideband 3 dB hybrid coupler for Ion cyclotron resonance frequency heating in tokamak.

    PubMed

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V

    2014-04-01

    Design and development of a high power ultra-wideband, 3 dB tandem hybrid coupler is presented and its application in ICRF heating of the tokamak is discussed. In order to achieve the desired frequency band of 38-112 MHz and 200 kW power handling capability, the 3 dB hybrid coupler is developed using two 3-element 8.34 ± 0.2 dB coupled lines sections in tandem. In multi-element coupled lines, junctions are employed for the joining of coupled elements that produce the undesirable reactance called junction discontinuity effect. The effect becomes prominent in the high power multi-element coupled lines for high frequency (HF) and very high frequency(VHF) applications because of larger structural dimensions. Junction discontinuity effect significantly deteriorates coupling and output performance from the theoretical predictions. For the analysis of junction discontinuity effect and its compensation, a theoretical approach has been developed and generalized for n-element coupled lines section. The theory has been applied in the development of the 3 dB hybrid coupler. The fabricated hybrid coupler has been experimentally characterized using vector network analyzer and obtained results are found in good agreement with developed theory.

  3. Design and demonstration of ultra-fast W-band photonic transmitter-mixer and detectors for 25 Gbits/sec error-free wireless linking.

    PubMed

    Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E

    2012-09-10

    A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

  4. Do transmitters affect survival and body condition of American beavers Castor canadensis?

    USGS Publications Warehouse

    Smith, Joshua B.; Windels, Steve K.; Wolf, Tiffany; Klaver, Robert W.; Belant, Jerrold L.

    2016-01-01

    One key assumption often inferred with using radio-equipped individuals is that the transmitter has no effect on the metric of interest. To evaluate this assumption, we used a known fate model to assess the effect of transmitter type (i.e. tail-mounted or peritoneal implant) on short-term (one year) survival and a joint live—dead recovery model and results from a mark—recapture study to compare long-term (eight years) survival and body condition of ear-tagged only American beavers Castor canadensis to those equipped with radio transmitters in Voyageurs National Park, Minnesota, USA. Short-term (1-year) survival was not influenced by transmitter type (wi = 0.64). Over the 8-year study period, annual survival was similar between transmitter-equipped beavers (tail-mounted and implant transmitters combined; 0.76; 95% CI = 0.45–0.91) versus ear-tagged only (0.78; 95% CI = 0.45–0.93). Additionally, we found no difference in weight gain (t9 = 0.25, p = 0.80) or tail area (t11 = 1.25, p = 0.24) from spring to summer between the two groups. In contrast, winter weight loss (t22 = - 2.03, p = 0.05) and tail area decrease (t30 = - 3.04, p = 0.01) was greater for transmitterequipped (weight = - 3.09 kg, SE = 0.55; tail area = - 33.71 cm2, SE = 4.80) than ear-tagged only (weight = - 1.80 kg, SE = 0.33; tail area = - 12.38 cm2, SE = 5.13) beavers. Our results generally support the continued use of transmitters on beavers for estimating demographic parameters, although we recommend additional assessments of transmitter effects under different environmental conditions.

  5. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for medical imaging systems. 15.513 Section 15.513 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB...

  6. 47 CFR 15.510 - Technical requirements for through D-wall imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for through D-wall imaging systems. 15.510 Section 15.510 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.510 Technical requirements for through D-wall imaging...

  7. 47 CFR 15.523 - Measurement procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurement procedures. 15.523 Section 15.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.523 Measurement procedures. Measurements shall be made in accordance with the procedures specified by...

  8. Effect of hunter selectivity on harvest rates of radio-collared white-tailed deer in Pennsylvania

    USGS Publications Warehouse

    Buderman, Frances E.; Diefenbach, Duane R.; Rosenberry, C.S.; Wallingford, Bret D.; Long, Eric S.

    2014-01-01

    Radio transmitters are a commonly used tool for monitoring the fates of harvested species, although little research has been devoted to whether a visible radio transmitter changes a hunters' willingness to harvest that animal. We initially surveyed deer hunters to assess their willingness to harvest radio-collared deer and predicted radio collars were unlikely to affect the harvest of antlerless deer, but hunters may be less willing to harvest small-antlered males with radio collars compared to large-antlered males. We fitted white-tailed deer (Odocoileus virginianus) with radio collars that were visible to hunters or with ear-tag transmitters or ear-tags that were difficult to detect visually and estimated if harvest rates differed among marking methods. For females, the best model failed to detect an effect of radio collars on harvest rates. Also, we failed to detect a difference between male deer fitted with radio collars and ear-tag transmitters. When we compared males fitted with radio collars versus ear tags, we found harvest rate patterns were opposite to our predictions, with lower harvest rates for adult males fitted with radio collars and higher harvest rates for yearling males fitted with radio collars. Our study suggests that harvest rate estimates generated from a sample of deer fitted with visible radio collars can be representative of the population of inference. 

  9. Terrestrial VLF transmitter injection into the magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Inan, U. S.

    2012-08-01

    Very Low Frequency (VLF, 3-30 kHz) radio waves emitted from ground sources (transmitters and lightning) strongly impact the radiation belts, driving electron precipitation via whistler-electron gyroresonance, and contributing to the formation of the slot region. However, calculations of the global impacts of VLF waves are based on models of trans-ionospheric propagation to calculate the VLF energy reaching the magnetosphere. Limited comparisons of these models to individual satellite passes have found that the models may significantly (by >20 dB) overestimate amplitudes of ground based VLF transmitters in the magnetosphere. To form a much more complete empirical picture of VLF transmitter energy reaching the magnetosphere, we present observations of the radiation pattern from a number of ground-based VLF transmitters by averaging six years of data from the DEMETER satellite. We divide the slice at ˜700 km altitude above a transmitter into pixels and calculate the average field for all satellite passes through each pixel. There are enough data to see 25 km features in the radiation pattern, including the modal interference of the subionospheric signal mapped upwards. Using these data, we deduce the first empirical measure of the radiated power into the magnetosphere from these transmitters, for both daytime and nighttime, and at both the overhead and geomagnetically conjugate region. We find no detectable variation of signal intensity with geomagnetic conditions at low and mid latitudes (L < 2.6). We also present evidence of ionospheric heating by one VLF transmitter which modifies the trans-ionospheric absorption of signals from other transmitters passing through the heated region.

  10. Amateur Radio Flash Mob: Citizen Radio Science Response to a Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Frissell, N. A.

    2017-12-01

    Over a decade's worth of scientifically useful data from radio amateurs worldwide is publicly available, with momentum building in science exploitation of this data. For the 2017 solar eclipse, a "flash mob" of radio amateurs were organized in the form of a contest. Licensed radio amateurs transmitted on specific frequency bands, with awards given for a new generation of raw data collection allowing sophisticated post-processing of raw ADC data, to extract quantities such as Doppler shift due to ionospheric lifting for example. We discuss transitioning science priorities to gamified scoring procedures incentivizing the public to submit the highest quality and quantity of archival raw radio science data. The choices of frequency bands to encourage in the face of regulatory limitations is discussed. An update on initial field experiments using wideband experimental modulation specially licensed yet receivable by radio amateurs for high spatiotemporal resolution imaging of the ionosphere is given. The cost of this equipment is less than $500 per node, comparing favorably to legacy oblique ionospheric sounding networks.

  11. An Examination of Application of Artificial Neural Network in Cognitive Radios

    NASA Astrophysics Data System (ADS)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  12. Suzaku Discovery of Ultra-fast Outflows in Radio-loud AGN

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.; Tombesi, F.; Reeves, J.; Braito, V.; Gofford, J.; Cappi, M.

    2010-03-01

    We present the results of an analysis of the 3.5--10.5 keV spectra of five bright Broad-Line Radio Galaxies (BLRGs) using proprietary and archival Suzaku observations. In three sources -- 3C 111, 3C 120, and 3C 390.3 -- we find evidence, for the first time in a radio-loud AGN, for absorption features at observed energies 7 keV and 8--9 keV, with high significance according to both the F-test and extensive Monte Carlo simulations (99% or larger). In the remaining two BLRGs, 3C 382 and 3C 445, there is no evidence for such absorption features in the XIS spectra. If interpreted as due to Fe XXV and/or Fe XXVI K-shell resonance lines, the absorption features in 3C 111, 3C 120, and 3C 390.3 imply an origin from an ionized gas outflowing with velocities in the range v 0.04-0.15c, reminiscent of Ultra-Fast Outflows (UFOs) previously observed in radio-quiet Seyfert galaxies. A fit with specific photoionization models gives ionization parameters log ξ 4--5.6 erg s-1 cm and column densities of NH 1022-23 cm-2, similar to the values observed in Seyferts. Based on light travel time arguments, we estimate that the UFOs in the three BLRGs are located within 20--500 gravitational radii from the central black hole, and thus most likely are connected to disk winds/outflows. Our estimates show that the UFOs mass outflow rate is comparable to the accretion rate and their kinetic energy a significant fraction of the AGN bolometric luminosity, making these outflows significant for the global energetic of these systems, in particular for mechanisms of jet formation.

  13. 47 CFR 95.639 - Maximum transmitter power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... condition of modulation, shall exceed: (1) 50 W Carrier power (average TP during one unmodulated RF cycle... output power authorized for LPRS stations is 100 mW. (f) In the MedRadio Service: (1) For transmitters..., the peak EIRP over the frequency bands of operation shall not exceed the lesser of 1 mW or 10 log B—7...

  14. Design and analysis of an energy-efficient O-QPSK coherent IR-UWB transceiver with a 0.52° RMS phase-noise fractional synthesizer

    NASA Astrophysics Data System (ADS)

    Ying, Yutong; Lin, Fujiang; Bai, Xuefei

    2018-03-01

    This paper explores an energy-efficient pulsed ultra-wideband (UWB) radio-frequency (RF) front-end chip fabricated in 0.18-μm CMOS technology, including a transmitter, receiver, and fractional synthesizer. The transmitter adopts a digital offset quadrature phase-shift keying (O-QPSK) modulator and passive direct-phase multiplexing technology, which are energy- and hardware-efficient, to enhance the data rate for a given spectrum. A passive mixer and a capacitor cross-coupled (CCC) source-follower driving amplifier (DA) are also designed for the transmitter to further reduce the low power consumption. For the receiver, a power-aware low-noise amplifier (LNA) and a quadrature mixer are applied. The LNA adopts a CCC boost common-gate amplifier as the input stage, and its current is reused for the second stage to save power. The mixer uses a shared amplification stage for the following passive IQ mixer. Phase noise suppression of the phase-locked loop (PLL) is achieved by utilizing an even-harmonics-nulled series-coupled quadrature oscillator (QVCO) and an in-band noise-aware charge pump (CP) design. The transceiver achieves a measured data rate of 0.8 Gbps with power consumption of 16 mW and 31.5 mW for the transmitter and the receiver, respectively. The optimized integrated phase noise of the PLL is 0.52° at 4.025 GHz. Project supported by the National Science and Technology Major Project of China (No. 2011ZX03004-002-01).

  15. Transionospheric Propagation of VLF Transmitter Signals

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Inan, U. S.; Lehtinen, N. G.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters may play a significant role in precipitation of inner belt (L<2.5) energetic Van Allen electrons. Initial analyses of the total contribution of VLF transmitters utilized models of transionospheric propagation, but some recent studies have suggested that those models may overestimate (by 20-100 dB) the VLF energy reaching the magnetosphere. One possible cause of this discrepancy was suggested to be conversion of wave energy into electrostatic modes in the D, E, and F regions, from ionospheric density irregularities, either natural or generated by the transmitter heating itself. The DEMETER satellite built a six year history of continuous and global survey mode data which, when combined, yields detailed pictures of the radiation pattern from many transmitters into space at 680 km, with 25 km resolution, and clear features like the interference pattern on the ground mapped upwards. With both E and B survey mode data, we can also directly approximate the total power injected into the magnetosphere from each transmitter, separately for day and night, as well as the power arriving at the conjugate region. We find no detectable variation of signal intensity with geomagnetic conditions. We find evidence of transmitter heating affecting the transionospheric propagation of other transmitters. We find that the power reaching the conjugate region is a large fraction of the power injected above the transmitter. We then employ a full wave model to simulate VLF transmitter transionospheric propagation, calculating the electromagnetic fields and power flux injected into the magnetosphere. Although the model does not include ionospheric irregularities, the radiation pattern largely matches the observed one, and the total power calculated is within 6 dB of observations for every transmitter, both day and night, and across a range of low to middle latitudes and transmitter powers. We thus conclude that the effect of

  16. A Clock Fingerprints-Based Approach for Wireless Transmitter Identification

    NASA Astrophysics Data System (ADS)

    Zhao, Caidan; Xie, Liang; Huang, Lianfen; Yao, Yan

    Cognitive radio (CR) was proposed as one of the promising solutions for low spectrum utilization. However, security problems such as the primary user emulation (PUE) attack severely limit its applications. In this paper, we propose a clock fingerprints-based authentication approach to prevent PUE attacks in CR networks with the help of curve fitting and classifier. An experimental setup was constructed using the WLAN cards and software radio devices, and the corresponding results show that satisfied identification can be achieved for wireless transmitters.

  17. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  18. Multi-beam transmitter geometries for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Tellez, Jason A.; Schmidt, Jason D.

    2010-02-01

    Free-space optical communications systems provide the opportunity to take advantage of higher data transfer rates and lower probability of intercept compared to radio-frequency communications. However, propagation through atmospheric turbulence, such as for airborne laser communication over long paths, results in intensity variations at the receiver and a corresponding degradation in bit error rate (BER) performance. Previous literature has shown that two transmitters, when separated sufficiently, can effectively average out the intensity varying effects of the atmospheric turbulence at the receiver. This research explores the impacts of adding more transmitters and the marginal reduction in the probability of signal fades while minimizing the overall transmitter footprint, an important design factor when considering an airborne communications system. Analytical results for the cumulative distribution function are obtained for tilt-only results, while wave-optics simulations are used to simulate the effects of scintillation. These models show that the probability of signal fade is reduced as the number of transmitters is increased.

  19. 47 CFR 95.628 - MedRadio transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... human body, radiated emissions and EIRP measurements for transmissions by stations authorized under this section may be made in accordance with a Commission-approved human body simulator and test technique. A... from a medical implant or medical body-worn device on that channel. The MedRadio communications session...

  20. 47 CFR 95.628 - MedRadio transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... human body, radiated emissions and EIRP measurements for transmissions by stations authorized under this section may be made in accordance with a Commission-approved human body simulator and test technique. A... from a medical implant or medical body-worn device on that channel. The MedRadio communications session...

  1. Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band.

    PubMed

    Iluz, Zeev; Boag, Amir

    2011-08-01

    A dual-Vivaldi nanoantenna is proposed to demonstrate the possibility of wideband operation at IR frequencies. The antenna geometry design is guided by the material properties of metals at IR frequencies. According to our numerical results, this nanoantenna has both high radiation efficiency and good impedance-matching properties over a wide frequency band (more than 122%) in the IR frequency band. The design is based on the well-known Vivaldi antenna placed on quartz substrate but operating as a pair instead of a single element. Such a pair of Vivaldi antennas oriented in opposite directions produces the main lobe in the broadside direction (normal to the axes of the antennas) rather than the usual peak gain along the axis (end fire) of a single Vivaldi antenna. The dual-Vivaldi nanoantenna is easy to fabricate in a conventional electron-beam lithography process, and it provides a large number of degrees of freedom, facilitating design for ultra-wideband operation. © 2011 Optical Society of America

  2. Broadband/Wideband Magnetoelectric Response

    DOE PAGES

    Park, Chee-Sung; Priya, Shashank

    2012-01-01

    A broadband/wideband magnetoelectric (ME) composite offers new opportunities for sensing wide ranges of both DC and AC magnetic fields. The broadband/wideband behavior is characterized by flat ME response over a given AC frequency range and DC magnetic bias. The structure proposed in this study operates in the longitudinal-transversal (L-T) mode. In this paper, we provide information on (i) how to design broadband/wideband ME sensors and (ii) how to control the magnitude of ME response over a desired frequency and DC bias regime. A systematic study was conducted to identify the factors affecting the broadband/wideband behavior by developing experimental models andmore » validating them against the predictions made through finite element modeling. A working prototype of the sensor with flat bands for both DC and AC magnetic field conditions was successfully obtained. These results are quite promising for practical applications such as current probe, low-frequency magnetic field sensing, and ME energy harvester.« less

  3. 47 CFR 80.481 - Alternative technical parameters for AMTS transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Alternative technical parameters for AMTS transmitters. 80.481 Section 80.481 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Public Coast Stations Automated Systems § 80.481...

  4. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption.

    PubMed

    Zhou, Ziheng; Chen, Ke; Zhao, Junming; Chen, Ping; Jiang, Tian; Zhu, Bo; Feng, Yijun; Li, Yue

    2017-11-27

    The metasurfaces have recently been demonstrated to provide full control of the phase responses of electromagnetic (EM) wave scattering over subwavelength scales, enabling a wide range of practical applications. Here, we propose a comprehensive scheme for the efficient and flexible design of metasurface Salisbury screen (MSS) capable of absorbing the impinging EM wave in an ultra-wide frequency band. We show that properly designed reflective metasurface can be used to substitute the metallic ground of conventional Salisbury screen for generating diverse resonances in a desirable way, thus providing large controllability over the absorption bandwidth. Based on this concept, we establish an equivalent circuit model to qualitatively analysis the resonances in MSS and design algorithms to optimize the overall performance of the MSS. Experiments have been carried out to demonstrate that the absorption bandwidth from 6 GHz to 30 GHz with an efficiency higher than 85% can be achieved by the proposal, which is apparently much larger than that of conventional Salisbury screen (7 GHz - 17 GHz). The proposed concept of MSS could offer opportunities for flexibly designing thin electromagnetic absorbers with simultaneously ultra-wide bandwidth, polarization insensitivity, and wide incident angle, exhibiting promising potentials for many applications such as in EM compatibility, stealth technique, etc.

  5. Spectral Indices of Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su

    2015-01-01

    The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.

  6. Development of Wideband Feed

    NASA Astrophysics Data System (ADS)

    Ujihara, Hideki; Takefuji, Kazuhiro; Sekido, Mamoru; Kondo, Tetsuro

    2015-08-01

    Wideband feeds have developed for Kashima 34m antenna and new 2.4m portable VLBI antennas. Prototypes of the wideband feeds are multimode horns, first one was set on 34m in the end of 2013, and then replaced next one with 6.5-15.0GHz receiving frequency. Now, a new feed for 3.2GHz-14.4GHz will be installed in 2.4m and 34m antennas in this spring, which are named NINJA feed, because of its design flexibility in beam shpae. Next, IGUANA feed is now under design and fabrication, which is aimed for 2.2-22GHz and covers VGOS(VLBI2010) specification. This has coaxial structure, the smaller "daughter feed" for 6.4-22GHz is placed in the center of the larger "Mother feed" for 2.2-6.4GHz.They are used for our project of time and frequency transfer between remote atomic clocks by wideband VLBI, named Gala-V(Garapagos VLBI), and will also be used wideband VLBI observation for astronmy and geodesy.Prototype feeds were tested in measurement of aperture efficiency, SEFD and Tsys of 34m "Super Kashima Antenna" and both 6.7/12.2GHz methanol maser detection in one reciever system, and then better one is used for wideband VLBI observations.

  7. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  8. Coherent optical modulation for antenna remoting

    NASA Technical Reports Server (NTRS)

    Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.

    1991-01-01

    A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.

  9. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  10. Simplified Design Equations for Class-E Neural Prosthesis Transmitters

    PubMed Central

    Troyk, Philip; Hu, Zhe

    2013-01-01

    Extreme miniaturization of implantable electronic devices is recognized as essential for the next generation of neural prostheses, owing to the need for minimizing the damage and disruption of the surrounding neural tissue. Transcutaneous power and data transmission via a magnetic link remains the most effective means of powering and controlling implanted neural prostheses. Reduction in the size of the coil, within the neural prosthesis, demands the generation of a high-intensity radio frequency magnetic field from the extracoporeal transmitter. The Class-E power amplifier circuit topology has been recognized as a highly effective means of producing large radio frequency currents within the transmitter coil. Unfortunately, design of a Class-E circuit is most often fraught by the need to solve a complex set of equations so as to implement both the zero-voltage-switching and zero-voltage-derivative-switching conditions that are required for efficient operation. This paper presents simple explicit design equations for designing the Class-E circuit topology. Numerical design examples are presented to illustrate the design procedure. PMID:23292784

  11. Ultra-Wideband Harmonic Radar for Locating Radio-Frequency Electronics

    DTIC Science & Technology

    2015-03-01

    13  Fig. A-1 Measured S-parameters for the MiniCircuits SLP ...MiniCircuits SLP -1000+ lowpass filters. The relatively weak signal at f0 is increased by 40 dB by the Amplifier Research AR4W1000 power amplifier. The...Fig. A-1 Measured S-parameters for the MiniCircuits SLP -1000+ lowpass filter pair Fig. A-2 Measured S-parameters for the Amplifier Research

  12. Improved Resolution and Reduced Clutter in Ultra-Wideband Microwave Imaging Using Cross-Correlated Back Projection: Experimental and Numerical Results

    PubMed Central

    Jacobsen, S.; Birkelund, Y.

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40–50%. PMID:21331362

  13. Improved resolution and reduced clutter in ultra-wideband microwave imaging using cross-correlated back projection: experimental and numerical results.

    PubMed

    Jacobsen, S; Birkelund, Y

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40-50%.

  14. Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

    NASA Astrophysics Data System (ADS)

    Al Shamaileh, Khair A.

    The ever-growing demand toward designing microwave front-end components with enhanced access to the radio spectrum (e.g., multi-/wideband functionality) and improved physical features (e.g., miniaturized circuitry, ease and cost of fabrication) is becoming more paramount than ever before. This dissertation proposes new design methodologies, simulations, and experimental validations of passive front-ends (i.e., antennas, couplers, dividers) at microwave frequencies. The presented design concepts optimize both electrical and physical characteristics without degrading the intended performance. The developed designs are essential to the upcoming wireless technologies. The first proposed component is a compact ultra-wideband (UWB) Wilkinson power divider (WPD). The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional single-frequency divider with impedance-varying profiles governed by a truncated Fourier series. While such non-uniform transmission lines (NTLs) are obtained through the even-mode analysis, three isolation resistors are optimized in the odd-mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. The proposed design methodology is systematic, and results in single-layered and compact structures. For verification purposes, an equal split WPD is designed, simulated, and measured. The obtained results show that the input and output ports matching as well as the isolation between the output ports are below --10 dB; whereas the transmission parameters vary between --3.2 dB and --5 dB across the 3.1--10.6 GHz band. The designed divider is expected to find applications in UWB antenna diversity, multiple-input-multiple-output (MIMO) schemes, and antenna arrays feeding networks. The second proposed component is a wideband multi-way Bagley power divider (BPD). Wideband functionality is achieved by replacing the single-frequency matching uniform microstrip lines in

  15. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  16. Performance of implantable satellite transmitters in diving seabirds

    USGS Publications Warehouse

    Hatch, Shyla A.; Meyers, P.M.; Mulcahy, D.M.; Douglas, David C.

    2000-01-01

    We report on the first deployment of satellite transmitters in large alcids. In 1995 and 1996, we surgically implanted 51 transmitters in Common and Thick-billed murres (Uria aalge and U. lomvia) and Tufted Puffins (Fratercula cirrhata) at three colonies in Alaska. These devices furnished more than 2,900 locations over succeeding months (eight months maximum transmitter life), some 30-40% of which had calculated errors of <1,000 m. We considered other data to be reliable if locations were repetitive within a short period of time. As measures of data collection efficiency, we calculated location indices (number of locations per hour of transmission) of 0.44 during the breeding season and 0.35 overall. Those values compared favorably with satellite transmitters previously deployed on large mammals at similar latitudes. Transmitters did not last as long as expected because lithium batteries tended to self-discharge when kept at the high internal temperature of a bird. Most importantly, we encountered high mortality of instrumented birds, especially in the interval from 11-20 days after release. Our results suggest that radio transmission itself somehow impaired normal feeding behavior or otherwise compromised the birds' health. Those two problems (battery life and bird mortality) will need to be solved before implantable devices can be applied effectively to the same or similar species in the future. Received 24 August 1999, accepted 10 October 1999.

  17. Comfortable, lightweight safety helmet holds radio transmitter, receiver

    NASA Technical Reports Server (NTRS)

    Atlas, N. D.

    1964-01-01

    For two-way radio communication where safety gear is required, a lightweight helmet with few protrusions has been designed. The electronics components and power supply are mounted between the inner and outer shells, and resilient padding is used for the lining.

  18. Tracing Evolution of Starbursts and AGNs using Ultra-deep Radio and mm/smm Surveys

    NASA Astrophysics Data System (ADS)

    Yun, Min S.; Gim, Hansung; Morrison, Glenn; Hales, Christopher A.; Momjian, Emmanuel; Owen, Frazer; Kellermann, Ken; Aretxaga, Itziar; Giavalisco, Mauro; Hughes, David; Lowenthal, James; Miller, Neal; Kawabe, Ryohei; Kohno, Kotaro

    2015-08-01

    There is growing evidence supporting a rapid build up of metals among massive galaxies during their rapid growth via an intense starburst in the early epochs. These star formation activities may be largely obscured in the UV and optical light, as in the local universe. If the growth of supermassive blackholes occurs at or nearly the same time, the accompanying AGN activity may also be heavily obscured. Ultra-deep surveys in the radio and far-infrared can offer extinction-free view of these systems, and the advent of new facilities such as the Jansky VLA, ALMA, and LMT now allows us to probe directly the population of starburst galaxies that are responsible for the bulk of the stellar mass build-up during the epoch of galaxy growth (SFR > 10-100 M⊙/yr at z≈2 or earlier). We will present our analysis of the properties of the micro-Jansky radio sources identified by new Jansky VLA surveys of the GOODS and COSMOS fields using the rich archival data already available (Herschel, Spitzer, Chandra, ALMA, LMT, etc.). Specifically, we find evidence for two populations of microJy radio sources with distinct spectral index distribution. We explore whether this reflects differences in the underlying powering mechanisms by examining their radio-FIR correlation and X-ray properties. We also find the previously reported apparent systematic change in the "q-value" with increasing redshift, and we examine the reality of this trend in some detail. Finally, we will also examine the spatial extent of activities for a subset of the sample where high angular resolution (better than 1") information is available.

  19. 47 CFR 80.169 - Operators required to adjust transmitters or radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radar. 80.169 Section 80.169 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements § 80.169 Operators required to adjust transmitters or radar. (a) All adjustments of radio... transmitting Morse code. (c) Only persons holding an operator certificate containing a ship radar endorsement...

  20. 47 CFR 80.169 - Operators required to adjust transmitters or radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radar. 80.169 Section 80.169 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements § 80.169 Operators required to adjust transmitters or radar. (a) All adjustments of radio... transmitting Morse code. (c) Only persons holding an operator certificate containing a ship radar endorsement...

  1. 47 CFR 80.169 - Operators required to adjust transmitters or radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radar. 80.169 Section 80.169 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements § 80.169 Operators required to adjust transmitters or radar. (a) All adjustments of radio... certificate containing a ship radar endorsement must perform such functions on radar equipment. [51 FR 31213...

  2. 47 CFR 80.169 - Operators required to adjust transmitters or radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radar. 80.169 Section 80.169 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements § 80.169 Operators required to adjust transmitters or radar. (a) All adjustments of radio... certificate containing a ship radar endorsement must perform such functions on radar equipment. [51 FR 31213...

  3. 47 CFR 80.169 - Operators required to adjust transmitters or radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radar. 80.169 Section 80.169 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Requirements § 80.169 Operators required to adjust transmitters or radar. (a) All adjustments of radio... transmitting Morse code. (c) Only persons holding an operator certificate containing a ship radar endorsement...

  4. Penetration and propagation into biological matter and biological effects of high-power ultra-wideband pulses: a review.

    PubMed

    Schunck, Thérèse; Bieth, François; Pinguet, Sylvain; Delmote, Philippe

    2016-01-01

    Systems emitting ultra-wideband high power microwave (HP/UWB) pulses are developed for military and civilian applications. HP/UWB pulses typically have durations on the order of nanoseconds, rise times of picoseconds and amplitudes around 100 kV m(-1). This article reviews current research on biological effects from HP/UWB exposure. The different references were classified according to endpoints (cardiovascular system, central nervous system, behavior, genotoxicity, teratology …). The article also reviews the aspects of mechanisms of interactions and tissue damage as well as the numerical work that has been done for studying HP/UWB pulse propagation and pulse energy deposition inside biological tissues. The mechanisms proposed are the molecular conformation change, the modification of chemical reaction rates, membrane excitation and breakdown and direct electrical forces on cells or cell constituents, and the energy deposition. As regards the penetration of biological matter and the deposited energy, mainly computations were published. They have shown that the EM field inside the biological matter is strongly modified compared to the incident EM field and that the energy absorption for HP/UWB pulses occurs in the same way as for continuous waves. However, the energy carried by a HP/UWB pulse is very low and the deposited energy is low. The number of published studies dealing with the biological effects is small and only a few pointed out slight effects. It should be further noted that the animal populations used in the studies were not always large, the statistical analyses not always relevant and the teams involved in this research rather limited in number.

  5. Fractal-based wideband invisibility cloak

    NASA Astrophysics Data System (ADS)

    Cohen, Nathan; Okoro, Obinna; Earle, Dan; Salkind, Phil; Unger, Barry; Yen, Sean; McHugh, Daniel; Polterzycki, Stefan; Shelman-Cohen, A. J.

    2015-03-01

    A wideband invisibility cloak (IC) at microwave frequencies is described. Using fractal resonators in closely spaced (sub wavelength) arrays as a minimal number of cylindrical layers (rings), the IC demonstrates that it is physically possible to attain a `see through' cloaking device with: (a) wideband coverage; (b) simple and attainable fabrication; (c) high fidelity emulation of the free path; (d) minimal side scattering; (d) a near absence of shadowing in the scattering. Although not a practical device, this fractal-enabled technology demonstrator opens up new opportunities for diverted-image (DI) technology and use of fractals in wideband optical, infrared, and microwave applications.

  6. Potential Interference from Wireless Water Tank Transmitters at Goldstone

    NASA Astrophysics Data System (ADS)

    Ho, C.

    2008-02-01

    The Deep Space Network (DSN) facility in the Goldstone, California, area is considering installation of a new type of wireless transmitter (M2400S) within the facility. The transmitters will be used to monitor the water levels in several water tanks. Then these water-level signals will be transmitted to the nearby DSN facilities using transmitters operating in the UHF band (900-MHz) or S-band (2.4-GHz). This study is to evaluate the interference effects from the transmitters in adjacent DSN receiving stations. First we perform a terrain profile analysis to identify if there is a line of sight between each transmitter and the nearby DSN stations. After taking into account terrain shielding using high-resolution data, total propagation losses are calculated along each path. Then we perform the link analysis for each site to identify if the interference power exceeds the protection threshold of DSN receiving stations. As a result, we find that, because there is no bandpass filter installed in the transmitter system, interference power from the new transmitter at S-band will greatly exceed the protection criteria of broadband radio astronomy services (RAS) at S-band, such as Deep Space Station (DSS) 12 and DSS 28, by about 50 dB. The interference may also cause problems on all deep-space research stations at S-band, such as the Mars, Apollo, Venus, and Gemini sites. Without a sharp bandpass filter to suppress the out-of-band emissions in the frequency bands that the DSN station and RAS use, the author recommends not installing this type of transmitter within the Goldstone DSN facility area.

  7. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    NASA Astrophysics Data System (ADS)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  8. Range and movement of resident holdover and hatchery brown trout tagged with radio transmitters in the Farmington River, Connecticut

    USGS Publications Warehouse

    Popoff, N.D.; Neumann, Robert M.

    2005-01-01

    The 5.8-km West Branch Farmington River Trout Management Area (TMA) is one of Connecticut's premier catch-and-release fisheries for brown trout Salmo trutta. However, little is known about the behavior of brown trout in this system and to what extent brown trout emigrate from the TMA. The objectives of this study were to determine the movement, range, and emigration of resident holdover and newly stocked brown trout tagged with radio transmitters in the TMA. Transmitters were implanted into 22 first-year (mean total length = 314 mm) and 25 second-year (mean total length = 432 mm) holdover brown trout. Twenty catchable-size (mean total length = 290 mm) brown trout were also implanted with transmitters and released into the TMA. The mean range (distance between the extreme upstream and downstream locations) was greater for second-year holdover brown trout than for first-year holdover brown trout, and it was greater in fall than in winter. The movement (distance moved between successive locations) of holdover brown trout was greater in fall than in winter. Movement of first-year holdover brown trout was significantly related to discharge, water temperature, and the number of days between successive locations. Newly stocked brown trout exhibited the two largest ranges (5.3 and 4.7 km). The range of newly stocked brown trout was not different between seasons, but movement was greater in spring than in summer. Through 16 weeks poststocking, there was no discernable difference in the percentage of stocked brown trout dispersing in a predominantly upstream or downstream direction. Mean dispersal distances from the stocking location were 0.5 and 0.9 km at 2 and 12 weeks poststocking, respectively. Movement of newly stocked brown trout was positively related to discharge and negatively related to water temperature. A known 6% (4 of 67) of the tagged brown trout emigrated from the TMA, but up to 21% (14 of 67) of tagged fish could have left the study area if all missing fish

  9. Electromagnetic Interference Assessment of CDMA and GSM Wireless Phones to Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Salud, M. Theresa

    2002-01-01

    To address the concern for cellular phone electromagnetic interference (EMI) to aircraft radios, a radiated emission measurement process for CDMA (IS-95) and GSM (ETSI GSM 11.22) wireless handsets was developed. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective isotropic radiated power. Eight representative handsets (4 GSM, 4 CDMA) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation for cellular/PCS phones, Bluetooth, IEEE802.11b, IEEE802.11a, FRS/GMRS radios, and other portable transmitters. Aircraft interference path loss (IPL) and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using this data, a preliminary risk assessment is provided for CDMA and GSM wireless phone interference to aircraft localizer, Glideslope, VOR, and GPS radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, IPL, and navigation radio interference thresholds needs to be extended for an accurate risk assessment for wireless transmitters in aircraft.

  10. Coherence bandwidth loss in transionospheric radio propagation

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Gonzalez, V. H.; Hessing, A. R.

    1980-01-01

    In this report a theoretical model is developed that predicts the single-point, two-frequency coherence function for transionospheric radio waves. The theoretical model is compared to measured complex frequency correlation coefficients using data from the seven equispaced, phase-coherent UHF signals transmitted by the Wideband satellite. The theory and data are in excellent agreement. The theory is critically dependent upon the power-law index, and the frequency coherence data clearly favor the comparatively small spectral indices that have been consistently measured from the wideband satellite phase data. A model for estimating the pulse delay jitter induced by the coherence bandwidth loss is also developed and compared with the actual delay jitter observed on synthesized pulses obtained from the Wideband UFH comb. The results are in good agreement with the theory. The results presented in this report, which are based on an asymptotic theory, are compared with the more commonly used quadratic theory. The model developed and validated in this report can be used to predict the effects of coherence bandwidth loss in disturbed nuclear environments. Simple formulas for the resultant pulse delay jitter are derived that can be used in predictive codes.

  11. Wireless Phone Threat Assessment and New Wireless Technology Concerns for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Beggs, John H.; Salud, Maria Theresa P.

    2003-01-01

    To address the concern for cellular phone electromagnetic interference to aircraft radios, a radiated emission measurement process was developed for two dominant digital standards of wireless handsets. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective radiated power. Eight representative handsets (four from each digital standard) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation of other portable transmitters using a variety of wireless transmission protocols. Aircraft interference path loss and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using these data, a preliminary risk assessment is provided for wireless phone interference to aircraft Localizer, Glideslope, Very High Frequency Omni directional Range, and Global Positioning Satellite radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, interference path loss, and navigation radio interference thresholds need to be extended for an accurate risk assessment for wireless transmitters in aircraft.

  12. Transmittance measurements of ultra violet and visible wavelength interference filters flown aboard LDEF

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.; Smajkiewicz, Ali

    1991-01-01

    A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.

  13. An Overview Of Wideband Signal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Speiser, Jeffrey M.; Whitehouse, Harper J.

    1989-11-01

    This paper provides a unifying perspective for several narowband and wideband signal processing techniques. It considers narrowband ambiguity functions and Wigner-Ville distibutions, together with the wideband ambiguity function and several proposed approaches to a wideband version of the Wigner-Ville distribution (WVD). A unifying perspective is provided by the methodology of unitary representations and ray representations of transformation groups.

  14. Measurement of Automobile UWB Radar Cross Sections at Ka Band

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takehiko; Takahashi, Naoto; Yoshikawa, Makoto; Tsunoda, Kikuo; Tenno, Nobuyuki

    Ultra-wideband (UWB) radar cross sections (RCS) of an automobile were measured in the frequency range from 22 to 29 GHz, with a view to obtaining information on the design of vehicular cruise control short-range radars. The measurements were made in a radio anechoic chamber using three transmitting and receiving polarization combinations (V-V, H-H, and +45° to -45°). A vector network analyzer was used in making the wideband measurements. The UWB RCSs were derived by integrating the receiving power from 22 to 29 GHz. It was found that the UWB RCS of the automobile varied as follows:

  15. Wideband waveguide polarizer development for SETI

    NASA Technical Reports Server (NTRS)

    Lee, P.; Stanton, P.

    1991-01-01

    A wideband polarizer for the Deep Space Network (DSN) 34 meter beam waveguide antenna is needed for the Search for Extraterrestrial Intelligence (SETI) project. The results of a computer analysis of a wideband polarizer are presented.

  16. Accounting for tagging-to-harvest mortality in a Brownie tag-recovery model by incorporating radio-telemetry data.

    PubMed

    Buderman, Frances E; Diefenbach, Duane R; Casalena, Mary Jo; Rosenberry, Christopher S; Wallingford, Bret D

    2014-04-01

    The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50-100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo, to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

  17. Accounting for tagging-to-harvest mortality in a Brownie tag-recovery model by incorporating radio-telemetry data

    USGS Publications Warehouse

    Buderman, Frances E.; Diefenbach, Duane R.; Casalena, Mary Jo; Rosenberry, Christopher S.; Wallingford, Bret D.

    2014-01-01

    The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50–100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo,to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

  18. SArdinia Roach2-based Digital Architecture for Radio Astronomy (SARDARA)

    NASA Astrophysics Data System (ADS)

    Melis, A.; Concu, R.; Trois, A.; Possenti, A.; Bocchinu, A.; Bolli, P.; Burgay, M.; Carretti, E.; Castangia, P.; Casu, S.; Pestellini, C. Cecchi; Corongiu, A.; D’Amico, N.; Egron, E.; Govoni, F.; Iacolina, M. N.; Murgia, M.; Pellizzoni, A.; Perrodin, D.; Pilia, M.; Pisanu, T.; Poddighe, A.; Poppi, S.; Porceddu, I.; Tarchi, A.; Vacca, V.; Aresu, G.; Bachetti, M.; Barbaro, M.; Casula, A.; Ladu, A.; Leurini, S.; Loi, F.; Loru, S.; Marongiu, P.; Maxia, P.; Mazzarella, G.; Migoni, C.; Montisci, G.; Valente, G.; Vargiu, G.

    The Sardinia Radio Telescope (SRT) is a 64-m, fully-steerable single-dish radio telescope that was recently commissioned both technically and scientifically with regard to the basic observing modes. In order to improve the scientific capability and cover all the requirements for an advanced single-dish radio telescope, we developed the SArdinia Roach2-based Digital Architecture for Radio Astronomy (SARDARA), a wide-band, multi-feed, general-purpose, and reconfigurable digital platform, whose preliminary setup was used in the early science program of the SRT in 2016. In this paper, we describe the backend both in terms of its scientific motivation and technical design, how it has been interfaced with the telescope environment during its development and, finally, its scientific commissioning in different observing modes with single-feed receivers.

  19. Prototype ultra wideband-based wireless body area network--consideration of CAP and CFP slot allocation during human walking motion.

    PubMed

    Takei, Yuichiro; Katsuta, Hiroki; Takizawa, Kenichi; Ikegami, Tetsushi; Hamaguchi, Kiyoshi

    2012-01-01

    This paper presents an experimental evaluation of communication during human walking motion, using the medium access control (MAC) evaluation system for a prototype ultra-wideband (UWB) based wireless body area network for suitable MAC parameter settings for data transmission. Its physical layer and MAC specifications are based on the draft standard in IEEE802.15.6. This paper studies the effects of the number of retransmissions and the number of commands of GTS (guaranteed time slot) request packets in the CAP (contention access period) during human walking motion by varying the number of sensor nodes or the number of CFP (contention free period) slots in the superframe. The experiments were performed in an anechoic chamber. The number of packets received is decreased by packet loss caused by human walking motion in the case where 2 slots are set for CFP, regardless of the number of nodes, and this materially decreases the total number of packets received. The number of retransmissions and the GTS request commands increase according to increases in the number of nodes, largely reflecting the effects of the number of CFP slots in the case where 4 nodes are attached. In the cases where 2 or 3 nodes are attached and 4 slots are set for CFP, the packet transmission rate is more than 95%. In the case where 4 nodes are attached and 6 slots are set for CFP, the packet transmission rate is reduced to 88% at best.

  20. Characterization and Mitigation of Radio Frequency Interference in PolSAR Data

    NASA Astrophysics Data System (ADS)

    Tao, Mingliang; Zhou, Feng; Zhang, Zijing

    2017-11-01

    Polarimetric synthetic aperture radar (PolSAR) is a very important instrument for active remote sensing. However, it is common to find that PolSAR echoes are often contaminated by incoherent electromagnetic interference, which is referred to as radio frequency interference (RFI). The analysis of RFI signatures and its influence on PolSAR data seems to be lacking in existing literatures, especially for PolSAR post products, such as the polarimetric decomposition parameters and clustering result. The goal of this paper is to reveal the link between RFI and polarization, as well as to analyze the impact of interference on PolSAR image and its post products. Qualitative and quantitative analyses of the adverse impact of RFI on the real measured NASA/Jet Propulsion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar data set are illustrated from two perspectives, that is, evaluation of imaging quality and interpretation of scattering mechanisms. The point target response and effective number of looks are evaluated for assessing the distortion to focusing quality. Further, we discussed the characteristics of ultra wideband RFI and proposed a mitigation method using nonnegative matrix factorization along azimuth direction. The experimental results indicate the effectiveness of the proposed method.

  1. 78 FR 69629 - Revitalization of the AM Radio Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... comment on a number of procedures designed to revitalize the AM broadcast radio service, and to ease... designed to foster the revitalization of the AM broadcast radio service. DATES: Comments may be filed no... stated that it would permit AM stations, by rule waiver or experimental authorization, to use transmitter...

  2. Importance of a Low Radio Frequency Interference Environment for the DSG

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Farrell, W. M.; Burns, J. O.

    2018-02-01

    The Deep Space Gateway (DSG) can serve radio astronomy in a variety of ways. Thus, it is important that DSG electronics, transmitters, and the instruments located on the DSG avoid contaminating the radio-quiet environment of the lunar far-side.

  3. Cryogenic Integration of the 2-14 GHz Eleven Feed in a Wideband Receiver for VLBI2010

    NASA Technical Reports Server (NTRS)

    Pantaleev, Miroslaw; Jang, Jian; Karadikar, Yogesh; Helldner, Leif; Klein, Benjamin; Haas, Rudiger; Zaman, Ashraf; Zamani, Mojtaba; Kildal, Per-Simon

    2010-01-01

    The next generation VLBI systems require the design of a wideband receiver covering the 2-14 GHz range, necessitating a wideband feed. Presented here are the 2009 development of a cryogenic 2-14 GHz Eleven feed for reflector radio telescope antennas, including its integration into a cryogenic receiver. The Eleven feed is designed for dual linear polarization and consists of four log-periodic folded dipole arrays. Each pair of arrays is fed by a differential two-wire transmission line connected either to balun or a differential LNA. The present configuration has been measured in many configurations, at various independent labs - corresponding simulations have been done. The results show (across the band) a high polarization efficiency for the feed, with a nearly constant beam width, a reflection coefficient below -10dB, and a constant phase center. Electrical parameters under cryogenic conditions and measured receiver noise temperatures are presented.

  4. A microfabricated low-profile wideband antenna array for terahertz communications.

    PubMed

    Luk, K M; Zhou, S F; Li, Y J; Wu, F; Ng, K B; Chan, C H; Pang, S W

    2017-04-28

    While terahertz communications are considered to be the future solutions for the increasing demands on bandwidth, terahertz equivalents of radio frequency front-end components have not been realized. It remains challenging to achieve wideband, low profile antenna arrays with highly directive beams of radiation. Here, based on the complementary antenna approach, a wideband 2 × 2 cavity-backed slot antenna array with a corrugated surface is proposed. The approach is based on a unidirectional antenna with a cardiac radiation pattern and stable frequency characteristics that is achieved by integrating a series-resonant electric dipole with a parallel-resonant magnetic dipole. In this design, the slots work as magnetic dipoles while the corrugated surface radiates as an array of electric dipoles. The proposed antenna is realized at 1 THz operating frequency by stacking multiple metallized layers using the microfabrication technology. S-parameter measurements of this terahertz low-profile metallic antenna array demonstrate high efficiency at terahertz frequencies. Fractional bandwidth and gain are measured to be 26% and 14 dBi which are consistent with the simulated results. The proposed antenna can be used as the building block for larger antenna arrays with more directive beams, paving the way to develop high gain low-profile antennas for future communication needs.

  5. Cutting Edge RFID Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2007-01-01

    This viewgraph document reviews the use of Radio-frequency identification (RFID) for NASA applications. Some of the uses reviewed are: inventory management in space; potential RFID uses in a remote human outpost; Ultra-Wideband RFID for tracking; Passive, wireless sensors in NASA applications such as Micrometeoroid impact detection and Sensor measurements in environmental facilities; E-textiles for wireless and RFID.

  6. Pseudorange error analysis for precise indoor positioning system

    NASA Astrophysics Data System (ADS)

    Pola, Marek; Bezoušek, Pavel

    2017-05-01

    There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.

  7. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  8. A Compressed Sensing Based Ultra-Wideband Communication System

    DTIC Science & Technology

    2009-06-01

    principle, most of the processing at the receiver can be moved to the transmitter—where energy consumption and computation are sufficient for many advanced...extended to continuous time signals. We use ∗ to denote the convolution process in a linear time-invariant (LTI) system. Assume that there is an analog...Filter Channel Low Rate A/D Processing Sparse Bit Sequence UWB Pulse Generator α̂ Waves)(RadioGHz 5 MHz125 θ Ψ Φ y θ̂ 1 ˆ arg min s.t. yθ

  9. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru; Markov, G. A.; Ryabov, A. O.

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radiomore » transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.« less

  10. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  11. Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI

  12. Digital Front End for Wide-Band VLBI Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre; Sigman, Elliott; Navarro, Robert; Goodhart, Charles; Rogstad, Steve; Chandra, Kumar; Finley, Sue; Trinh, Joseph; Soriano, Melissa; White, Les; hide

    2006-01-01

    An upgrade to the very-long-baseline-interferometry (VLBI) science receiver (VSR) a radio receiver used in NASA's Deep Space Network (DSN) is currently being implemented. The current VSR samples standard DSN intermediate- frequency (IF) signals at 256 MHz and after digital down-conversion records data from up to four 16-MHz baseband channels. Currently, IF signals are limited to the 265-to-375-MHz range, and recording rates are limited to less than 80 Mbps. The new digital front end, denoted the Wideband VSR, provides improvements to enable the receiver to process wider bandwidth signals and accommodate more data channels for recording. The Wideband VSR utilizes state-of-the-art commercial analog-to-digital converter and field-programmable gate array (FPGA) integrated circuits, and fiber-optic connections in a custom architecture. It accepts IF signals from 100 to 600 MHz, sampling the signal at 1.28 GHz. The sample data are sent to a digital processing module, using a fiber-optic link for isolation. The digital processing module includes boards designed around an Advanced Telecom Computing Architecture (ATCA) industry-standard backplane. Digital signal processing implemented in FPGAs down-convert the data signals in up to 16 baseband channels with programmable bandwidths from 1 kHz to 16 MHz. Baseband samples are transmitted to a computer via multiple Ethernet connections allowing recording to disk at rates of up to 1 Gbps.

  13. Digital Audio Radio Broadcast Systems Laboratory Testing Nearly Complete

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the completion of phase one of the digital audio radio (DAR) testing conducted by the Consumer Electronics Group of the Electronic Industries Association. This satellite, satellite/terrestrial, and terrestrial digital technology will open up new audio broadcasting opportunities both domestically and worldwide. It will significantly improve the current quality of amplitude-modulated/frequency-modulated (AM/FM) radio with a new digitally modulated radio signal and will introduce true compact-disc-quality (CD-quality) sound for the first time. Lewis is hosting the laboratory testing of seven proposed digital audio radio systems and modes. Two of the proposed systems operate in two modes each, making a total of nine systems being tested. The nine systems are divided into the following types of transmission: in-band on-channel (IBOC), in-band adjacent-channel (IBAC), and new bands. The laboratory testing was conducted by the Consumer Electronics Group of the Electronic Industries Association. Subjective assessments of the audio recordings for each of the nine systems was conducted by the Communications Research Center in Ottawa, Canada, under contract to the Electronic Industries Association. The Communications Research Center has the only CCIR-qualified (Consultative Committee for International Radio) audio testing facility in North America. The main goals of the U.S. testing process are to (1) provide technical data to the Federal Communication Commission (FCC) so that it can establish a standard for digital audio receivers and transmitters and (2) provide the receiver and transmitter industries with the proper standards upon which to build their equipment. In addition, the data will be forwarded to the International Telecommunications Union to help in the establishment of international standards for digital audio receivers and transmitters, thus allowing U.S. manufacturers to compete in the

  14. Low cost and thin metasurface for ultra wide band and wide angle polarization insensitive radar cross section reduction

    NASA Astrophysics Data System (ADS)

    Ameri, Edris; Esmaeli, Seyed Hassan; Sedighy, Seyed Hassan

    2018-05-01

    A planar low cost and thin metasurface is proposed to achieve ultra-wideband radar cross section (RCS) reduction with stable performance with respect to polarization and incident angles. This metasurface is composed of two different artificial magnetic conductor unit cells arranged in a chessboard like configuration. These unit cells have a Jerusalem cross pattern with different thicknesses, which results in wideband out-phase reflection and RCS reduction, consequently. The designed metasurface reduces RCS more than 10-dB from 13.6 GHz to 45.5 GHz (108% bandwidth) and more than 20-dB RCS from 15.2 GHz to 43.6 GHz (96.6%). Moreover, the 10-dB RCS reduction bandwidth is very stable (more than 107%) for both TE and TM polarizations. The good agreement between simulations and measurement results proves the design, properly. The ultra-wide bandwidth, low cost, low profile, and stable performance of this metasurface prove its high capability compared with the state-of-the-art references.

  15. Mobile radio alternative systems study traffic model

    NASA Astrophysics Data System (ADS)

    Tucker, W. T.; Anderson, R. E.

    1983-06-01

    The markets for mobile radio services in non-urban areas of the United States are examined for the years 1985-2000. Three market categories are identified. New Services are defined as those for which there are different expressed ideas but which are not now met by any application of available technology. The complete fulfillment of the needs requires nationwide radio access to vehicles without knowledge of vehicle location, wideband data transmission from remote sites, one- and two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The commercial and public services market of interest to the study is drawn from existing users of mobile radio in non-urban areas who are dissatisfied with the geographical range or coverage of their systems. The mobile radio telephone market comprises potential users who require access to the public switched telephone network in areas that are not likely to be served by the traditional growth patterns of terrestrial mobile telephone services. Conservative, likely, and optimistic estimates of the markets are presented in terms of numbers of vehicles that will be served and the radio traffic they will generate.

  16. A standard operating procedure for the surgical implantation of transmitters in juvenile salmonids

    USGS Publications Warehouse

    Liedtke, T.L.; Beeman, J.W.; Gee, L.P.

    2012-01-01

    Biotelemetry is a useful tool to monitor the movements of animals and is widely applied in fisheries research. Radio or acoustic technology can be used, depending on the study design and the environmental conditions in the study area. A broad definition of telemetry also includes the use of Passive Integrated Transponder (PIT) tags, either separately or with a radio or acoustic transmitter. To use telemetry, fish must be equipped with a transmitter. Although there are several attachment procedures available, surgical implantation of transmitters in the abdominal cavity is recognized as the best technique for long-term telemetry studies in general (Stasko and Pincock, 1977; Winter, 1996; Jepsen, 2003), and specifically for juvenile salmonids, Oncorhynchus spp. (Adams and others, 1998a, 1998b; Martinelli and others, 1998; Hall and others, 2009). Studies that use telemetry assume that the processes by which the animals are captured, handled, and tagged, as well as the act of carrying the transmitter, will have minimal effect on their behavior and performance. This assumption, commonly stated as a lack of transmitter effects, must be valid if telemetry studies are to describe accurately the movements and behavior of an entire population of interest, rather than the subset of that population that carries transmitters. This document describes a standard operating procedure (SOP) for surgical implantation of radio or acoustic transmitters in juvenile salmonids. The procedures were developed from a broad base of published information, laboratory experiments, and practical experience in tagging thousands of fish for numerous studies of juvenile salmon movements near Columbia River and Snake River hydroelectric dams. Staff from the Western Fisheries Research Center's Columbia River Research Laboratory (CRRL) frequently have used telemetry studies to evaluate new structures or operations at hydroelectric dams in the Columbia River Basin, and these evaluations typically

  17. Search for ultra high energy astrophysical neutrinos with the ANITA experiment

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew

    2010-12-01

    This work describes a search for cosmogenic neutrinos at energies above 1018 eV with the Antarctic Impulsive Transient Antenna (ANITA). ANITA is a balloon-borne radio interferometer designed to measure radio impulsive emission from particle showers produced in the Antarctic ice-sheet by ultra-high energy neutrinos (UHEnu). Flying at 37 km altitude the ANITA detector is sensitive to 1M km3 of ice and is expected to produce the highest exposure to ultra high energy neutrinos to date. The design, flight performance, and analysis of the first flight of ANITA in 2006 are the subject of this dissertation. Due to sparse anthropogenic backgrounds throughout the Antarctic continent, the ANITA analysis depends on high resolution directional reconstruction. An interferometric method was developed that not only provides high resolution but is also sensitive to very weak radio emissions. The results of ANITA provide the strongest constraints on current ultra-high energy neutrino models. In addition there was a serendipitous observation of ultra-high energy cosmic ray geosynchrotron emissions that are of distinct character from the expected neutrino signal. This thesis includes a study of the radio Cherenkov emission from ultra-high energy electromagnetic showers in ice in the time-domain. All previous simulations computed the radio pulse frequency spectrum. I developed a purely time-domain algorithm for computing radiation using the vector potentials of charged particle tracks. The results are fully consistent with previous frequency domain calculations and shed new light into the properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly related to the depth development of the excess charge in the shower and its width to the observation angle with respect to the Cherenkov direction. This information can be of great practical importance for interpreting actual data.

  18. Design considerations on ultra-low-power wireless transmitters for wearable medical devices.

    PubMed

    Manstretta, Danilo

    2010-01-01

    A wireless transmitter for wearable bio-sensing applications must fulfill very specialized requirements. It has been estimated that for truly wearable systems it must operate with an average power consumption of less than 140 microW. The alternatives, pitfalls, and realistic performance of robust, low power signal transmission will be addressed.

  19. Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.

    PubMed

    Tsujimura, Shinichi; Yamagishi, Hiroto; Sankai, Yoshiyuki

    2009-01-01

    In order to minimize infection risks of patients with artificial hearts, wireless data transmission methods with electromagnetic induction or light have been developed. However, these methods tend to become difficult to transmit data if the external data transmission unit moves from its proper position. To resolve this serious problem, the purpose of this study is to develop a prototype wireless data communication system with ultra high frequency radio wave and confirm its performance. Due to its high-speed communication rate, low power consumption, high tolerance to electromagnetic disturbances, and secure wireless communication, we adopted Bluetooth radio wave technology for our system. The system consists of an internal data transmission unit and an external data transmission unit (53 by 64 by 16 mm, each), and each has a Bluetooth module (radio field intensity: 4 dBm, receiver sensitivity: -80 dBm). The internal unit also has a micro controller with an 8-channel 10-bit A/D converter, and the external unit also has a RS-232C converter. We experimented with the internal unit implanted into pig meat, and carried out data transmission tests to evaluate the performance of this system in tissue thickness of up to 3 mm. As a result, data transfer speeds of about 20 kbps were achieved within the communication distance of 10 m. In conclusion, we confirmed that the system can wirelessly transmit the data from the inside of the body to the outside, and it promises to resolve unstable data transmission due to accidental movements of an external data transmission unit.

  20. Self organization of wireless sensor networks using ultra-wideband radios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowla, Farid U; Nekoogar, Franak; Spiridon, Alex

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  1. SWARM: A Compact High Resolution Correlator and Wideband VLBI Phased Array Upgrade for SMA

    NASA Astrophysics Data System (ADS)

    Weintroub, Jonathan

    2014-06-01

    A new digital back end (DBE) is being commissioned on Mauna Kea. The “SMA Wideband Astronomical ROACH2 Machine”, or SWARM, processes a 4 GHz usable band in single polarization mode and is flexibly reconfigurable for 2 GHz full Stokes dual polarization. The hardware is based on the open source Reconfigurable Open Architecture Computing Hardware 2 (ROACH2) platform from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). A 5 GSps quad-core analog-to-digital converter board uses a commercial chip from e2v installed on a CASPER-standard printed circuit board designed by Homin Jiang’s group at ASIAA. Two ADC channels are provided per ROACH2, each sampling a 2.3 GHz Nyquist band generated by a custom wideband block downconverter (BDC). The ROACH2 logic includes 16k-channel Polyphase Filterbank (F-engine) per input followed by a 10 GbE switch based corner-turn which feeds into correlator-accumulator logic (X-engines) co-located with the F-engines. This arrangement makes very effective use of a small amount of digital hardware (just 8 ROACH2s in 1U rack mount enclosures). The primary challenge now is to meet timing at full speed for a large and very complex FPGA bit code. Design of the VLBI phased sum and recorder interface logic is also in process. Our poster will describe the instrument design, with the focus on the particular challenges of ultra wideband signal processing. Early connected commissioning and science verification data will be presented.

  2. 47 CFR 101.215 - Posting of station authorization and transmitter identification cards, plates, or signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Posting of station authorization and transmitter identification cards, plates, or signs. 101.215 Section 101.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational...

  3. 47 CFR 101.215 - Posting of station authorization and transmitter identification cards, plates, or signs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Posting of station authorization and transmitter identification cards, plates, or signs. 101.215 Section 101.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational...

  4. 47 CFR 101.215 - Posting of station authorization and transmitter identification cards, plates, or signs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Posting of station authorization and transmitter identification cards, plates, or signs. 101.215 Section 101.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational...

  5. 47 CFR 101.215 - Posting of station authorization and transmitter identification cards, plates, or signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Posting of station authorization and transmitter identification cards, plates, or signs. 101.215 Section 101.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational...

  6. 47 CFR 101.215 - Posting of station authorization and transmitter identification cards, plates, or signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Posting of station authorization and transmitter identification cards, plates, or signs. 101.215 Section 101.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational...

  7. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Félix A.

    2015-01-01

    Satellite communication has largely been accomplished using reflector antennas. However, such antennas are inherently bulky, and rely on mechanical steering. For this reason, ultra-wideband (UWB) and beam forming arrays have received strong interest. These lower weight, size,and cost arrays can combine many satellite applicationsspread throughout the C–Ka bands (4–40 GHz).To this end, we seek to develop an UWB Tightly-Coupled Dipole Array (TCDA) with the following attributes: UWB band operation (3.5–18.5 GHz) with low loss; 45° or more scanning in all planes; Low-cost Printed Circuit Board (PCB) fabrication; Scalable to Ka-band and above.

  8. Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor Systems

    PubMed Central

    Kim, Jong-Wan; Takao, Hidekuni; Sawada, Kazuaki; Ishida, Makoto

    2007-01-01

    This paper presents the integration of an inductor by complementary metal-oxide-semiconductor (CMOS) compatible processes for integrated smart microsensor systems that have been developed to monitor the motion and vital signs of humans in various environments. Integration of radio frequency transmitter (RF) technology with complementary metal-oxide-semiconductor/micro electro mechanical systems (CMOS/MEMS) microsensors is required to realize the wireless smart microsensors system. The essential RF components such as a voltage controlled RF-CMOS oscillator (VCO), spiral inductors for an LC resonator and an integrated antenna have been fabricated and evaluated experimentally. The fabricated RF transmitter and integrated antenna were packaged with subminiature series A (SMA) connectors, respectively. For the impedance (50 Ω) matching, a bonding wire type inductor was developed. In this paper, the design and fabrication of the bonding wire inductor for impedance matching is described. Integrated techniques for the RF transmitter by CMOS compatible processes have been successfully developed. After matching by inserting the bonding wire inductor between the on-chip integrated antenna and the VCO output, the measured emission power at distance of 5 m from RF transmitter was -37 dBm (0.2 μW).

  9. GPS Radiosonde with Spread-Spectrum Transmitter for Aerial dE/dt Studies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, R.; John, B. D.; William, W. P.; Aulich, G.; Ken, E.

    2003-12-01

    Inexpensive, low-power and reliable telemetry is a continuous struggle for those engaged in developing balloon-borne instruments for atmospheric electric studies. Several custom designs, by NCAR and others, have enabled much useful work in radiosondes. Also, packet radio technology has been used with great success. Easily obtainable packet radios are currently limited to 9600 baud. In search of higher baud rates that integrate well with microprocessor-based data acquisition systems, we have tested a new commercial off-the-shelf spread-spectrum transmitter. The transmitter operates in the 900 MHz industrial, scientific and medical (ISM) band with a transmit power of 100 mW. The transmitter (a Maxstream XC09-019NST) is used with a dedicated receiver, such that the data to be transmitted is fed via RS-232C protocols to the transmitter, and received as a text string via a serial port on the receiver. We did tests at raw baud rates of 9600 and 19200 (roughly 1000-2000 characters/second). Initial range tests required integrating the transmitter with a GPS and sending the NMEA-position-string (National Marine Electronics Assoc.) to a ground-based receiver. In ground-based tests, we repeatedly saw that a clear line-of-sight between transmitter and receiver was required for successful telemetry. The maximum range obtained during ground tests was 15.3 km at 9600 baud. Initial balloon tests results were, as hoped, more encouraging than ground-based tests. The maximum range (ground distance and altitude) of any balloon transmission was 58.0 km in fair-weather with excellent line-of-sight visibility. Our highest altitude transmission was 28.6 km absolute altitude (25.3 km altitude relative to launch point). These numbers were determined from the GPS coordinates transmitted. Antenna alignment and acceptance angle effects were observed in our received data. For these reasons, the full data rate of 19200 baud was only obtained out to 10 km, and then again around 45-58 km

  10. A COTS RF Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  11. A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2017-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  12. Linear transmitter design for MSAT terminals

    NASA Technical Reports Server (NTRS)

    Wilkinson, Ross; Macleod, John; Beach, Mark; Bateman, Andrew

    1990-01-01

    One of the factors that will undoubtedly influence the choice of modulation format for mobile satellites, is the availability of cheap, power-efficient, linear amplifiers for mobile terminal equipment operating in the 1.5-1.7 GHz band. Transmitter linearity is not easily achieved at these frequencies, although high power (20W) class A/AB devices are becoming available. However, these components are expensive and require careful design to achieve a modest degree of linearity. In this paper an alternative approach to radio frequency (RF) power amplifier design for mobile satellite (MSAT) terminals using readily-available, power-efficient, and cheap class C devices in a feedback amplifier architecture is presented.

  13. High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection

    NASA Astrophysics Data System (ADS)

    Zhang, Jiameng; Yang, Lan; Li, Linpeng; Zhang, Tong; Li, Haihong; Wang, Qingmin; Hao, Yanan; Lei, Ming; Bi, Ke

    2017-07-01

    An ultra-wideband polarization conversion metasurface based on S-shaped metallic structure is designed and prepared. The simulation results show that the polarization conversion bandwidth is 14 GHz for linearly polarized normally incident electromagnetic waves and the cross-polarized reflectance is more than 99% in the range of 10.3 GHz-20.5 GHz. On the premise of high reflection efficiency, the reflective phase can be regulated by changing the geometrical parameter of the S-shaped metallic structure. A phase gradient metasurface composed of six periodically arrayed S-shaped unit cells is proposed and further demonstrated both numerically and experimentally. The specular cross-polarization reflection of the phase gradient metasurface is below -10 dB, which shows a good performance on manipulating the direction of the reflected electromagnetic waves.

  14. Comparison of Image Processing Techniques using Random Noise Radar

    DTIC Science & Technology

    2014-03-27

    detection UWB ultra-wideband EM electromagnetic CW continuous wave RCS radar cross section RFI radio frequency interference FFT fast Fourier transform...several factors including radar cross section (RCS), orientation, and material makeup. A single monostatic radar at some position collects only range and...Chapter 2 is to provide the theory behind noise radar and SAR imaging. Section 2.1 presents the basic concepts in transmitting and receiving random

  15. Legislated emergency locating transmitters and emergency position indicating radio beacons

    NASA Technical Reports Server (NTRS)

    Wade, William R. (Inventor)

    1988-01-01

    An emergency locating transmitting (ELT) system is disclosed which comprises a legislated ELT modified with an interface unit and connected by a multiwire cable to a remote control monitor (RCM), typically located at the pilot position. The RCM can remotely test the ELT by disabling the legislated swept tone and allowing transmission of a single tone, turn the ELT on for legislated ELT transmission, and reset the ELT to an armed condition. The RCM also provides visual and audio indications of transmitter operating condition as well as ELT battery condition. Removing the RCM or shorting or opening the interface input connections will not affect traditional ELT operation.

  16. Three dimensional indoor positioning based on visible light with Gaussian mixture sigma-point particle filter technique

    NASA Astrophysics Data System (ADS)

    Gu, Wenjun; Zhang, Weizhi; Wang, Jin; Amini Kashani, M. R.; Kavehrad, Mohsen

    2015-01-01

    Over the past decade, location based services (LBS) have found their wide applications in indoor environments, such as large shopping malls, hospitals, warehouses, airports, etc. Current technologies provide wide choices of available solutions, which include Radio-frequency identification (RFID), Ultra wideband (UWB), wireless local area network (WLAN) and Bluetooth. With the rapid development of light-emitting-diodes (LED) technology, visible light communications (VLC) also bring a practical approach to LBS. As visible light has a better immunity against multipath effect than radio waves, higher positioning accuracy is achieved. LEDs are utilized both for illumination and positioning purpose to realize relatively lower infrastructure cost. In this paper, an indoor positioning system using VLC is proposed, with LEDs as transmitters and photo diodes as receivers. The algorithm for estimation is based on received-signalstrength (RSS) information collected from photo diodes and trilateration technique. By appropriately making use of the characteristics of receiver movements and the property of trilateration, estimation on three-dimensional (3-D) coordinates is attained. Filtering technique is applied to enable tracking capability of the algorithm, and a higher accuracy is reached compare to raw estimates. Gaussian mixture Sigma-point particle filter (GM-SPPF) is proposed for this 3-D system, which introduces the notion of Gaussian Mixture Model (GMM). The number of particles in the filter is reduced by approximating the probability distribution with Gaussian components.

  17. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    PubMed Central

    Li, Feilong; Li, Zhiqiang; Li, Guangxia; Dong, Feihong; Zhang, Wei

    2017-01-01

    The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU) with sufficient protection to licensed primary user (PU). Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS) in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO) mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS) framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS) is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework. PMID:28117712

  18. Collaborative Wideband Compressed Signal Detection in Interplanetary Internet

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Zhang, Gengxin; Bian, Dongming; Gou, Liang; Zhang, Wei

    2014-07-01

    As the development of autonomous radio in deep space network, it is possible to actualize communication between explorers, aircrafts, rovers and satellites, e.g. from different countries, adopting different signal modes. The first mission to enforce the autonomous radio is to detect signals of the explorer autonomously without disturbing the original communication. This paper develops a collaborative wideband compressed signal detection approach for InterPlaNetary (IPN) Internet where there exist sparse active signals in the deep space environment. Compressed sensing (CS) can be utilized by exploiting the sparsity of IPN Internet communication signal, whose useful frequency support occupies only a small portion of an entirely wide spectrum. An estimate of the signal spectrum can be obtained by using reconstruction algorithms. Against deep space shadowing and channel fading, multiple satellites collaboratively sense and make a final decision according to certain fusion rule to gain spatial diversity. A couple of novel discrete cosine transform (DCT) and walsh-hadamard transform (WHT) based compressed spectrum detection methods are proposed which significantly improve the performance of spectrum recovery and signal detection. Finally, extensive simulation results are presented to show the effectiveness of our proposed collaborative scheme for signal detection in IPN Internet. Compared with the conventional discrete fourier transform (DFT) based method, our DCT and WHT based methods reduce computational complexity, decrease processing time, save energy and enhance probability of detection.

  19. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    PubMed Central

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; Zito, Fabio; De Rossi, Danilo; Lanatà, Antonio

    2008-01-01

    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported. PMID:18389068

  20. Industrial WSN Based on IR-UWB and a Low-Latency MAC Protocol

    NASA Astrophysics Data System (ADS)

    Reinhold, Rafael; Underberg, Lisa; Wulf, Armin; Kays, Ruediger

    2016-07-01

    Wireless sensor networks for industrial communication require high reliability and low latency. As current wireless sensor networks do not entirely meet these requirements, novel system approaches need to be developed. Since ultra wideband communication systems seem to be a promising approach, this paper evaluates the performance of the IEEE 802.15.4 impulse-radio ultra-wideband physical layer and the IEEE 802.15.4 Low Latency Deterministic Network (LLDN) MAC for industrial applications. Novel approaches and system adaptions are proposed to meet the application requirements. In this regard, a synchronization approach based on circular average magnitude difference functions (CAMDF) and on a clean template (CT) is presented for the correlation receiver. An adapted MAC protocol titled aggregated low latency (ALL) MAC is proposed to significantly reduce the resulting latency. Based on the system proposals, a hardware prototype has been developed, which proves the feasibility of the system and visualizes the real-time performance of the MAC protocol.

  1. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    NASA Astrophysics Data System (ADS)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  2. 75 FR 33748 - Amateur Radio Use of the Allocation at 5 MHz

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... envelope power (PEP). 3. The existing amateur radio use of the 60 meter band represents a balancing of... Comment Filing System (ECFS), (2) the Federal Government's eRulemaking Portal, or (3) by filing paper... transmitter output power in modern amateur radio transceivers is 100 W PEP, and that the present 50 W PEP...

  3. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    NASA Astrophysics Data System (ADS)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  4. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  5. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  6. Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).

  7. Mobile radio alternative systems study. Volume 1: Traffic model

    NASA Technical Reports Server (NTRS)

    Tucker, W. T.; Anderson, R. E.

    1983-01-01

    The markets for mobile radio services in non-urban areas of the United States are examined for the years 1985-2000. Three market categories are identified. New Services are defined as those for which there are different expressed ideas but which are not now met by any application of available technology. The complete fulfillment of the needs requires nationwide radio access to vehicles without knowledge of vehicle location, wideband data transmission from remote sites, one- and two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The commercial and public services market of interest to the study is drawn from existing users of mobile radio in non-urban areas who are dissatisfied with the geographical range or coverage of their systems. The mobile radio telephone market comprises potential users who require access to the public switched telephone network in areas that are not likely to be served by the traditional growth patterns of terrestrial mobile telephone services. Conservative, likely, and optimistic estimates of the markets are presented in terms of numbers of vehicles that will be served and the radio traffic they will generate.

  8. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion

    NASA Astrophysics Data System (ADS)

    Fu, Shichen; Li, Yiming; Zhang, Minjun; Zong, Kai; Cheng, Long; Wu, Miao

    2018-01-01

    To realize unmanned pose detection of a coalmine boom-type roadheader, an ultra-wideband (UWB) pose detection system (UPDS) for a roadheader is designed, which consists of four UWB positioning base stations and three roadheader positioning nodes. The positioning base stations are used in turn to locate the positioning nodes of the roadheader fuselage. Using 12 sets of distance measurement information, a time-of-arrival (TOA) positioning model is established to calculate the 3D coordinates of three positioning nodes of the roadheader fuselage, and the three attitude angles (heading, pitch, and roll angles) of the roadheader fuselage are solved. A range accuracy experiment of a UWB P440 module was carried out in a narrow and closed tunnel, and the experiment data show that the mean error and standard deviation of the module can reach below 2 cm. Based on the TOA positioning model of the UPDS, we propose a fusion-positioning algorithm based on a Caffery transform and Taylor series expansion (CTFPA). We derived the complete calculation process, designed a flowchart, and carried out a simulation of CTFPA in MATLAB, comparing 1000 simulated positioning nodes of CTFPA and the Caffery positioning algorithm (CPA) for a 95 m long tunnel. The positioning error field of the tunnel was established, and the influence of the spatial variation on the positioning accuracy of CPA and CTFPA was analysed. The simulation results show that, compared with CPA, the positioning accuracy of CTFPA is clearly improved, and the accuracy of each axis can reach more than 5 mm. The accuracy of the X-axis is higher than that of the Y- and Z-axes. In section X-Y of the tunnel, the root mean square error (RMSE) contours of CTFPA are clear and orderly, and with an increase in the measuring distance, RMSE increases linearly. In section X-Z, the RMSE contours are concentric circles, and the variation ratio is nonlinear.

  9. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range.

  10. Ultrawideband Electromagnetic Interference to Aircraft Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  11. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  12. Jupiter Data Analysis Program: Analysis of Voyager wideband plasma wave observations

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1983-01-01

    Voyager plasma wave wideband frames from the Jovian encounters are analyzed. The 511 frames which were analyzed were chosen on the basis of low-rate spectrum analyzer data from the plasma wave receiver. These frames were obtained in regions and during times of various types of plasma or radio wave activity as determined by the low-rate, low-resolution data and were processed in order to provide high resolution measurements of the plasma wave spectrum for use in the study of a number of outstanding problems. Chorus emissions at Jupiter were analyzed. The detailed temporal and spectral form of the very complex chorus emissions near L = 8 on the Voyager 1 inbound passage was compared to both terrestrial chorus emissions as well as to the theory which was developed to explain the terrestrial waves.

  13. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Lambert, Kevin M.; Romanofsky, Robert R.; Durham, Tim; Speed, Kerry; Lange, Robert; Olsen, Art; Smith, Brett; Taylor, Robert; Schmidt, Mark; hide

    2016-01-01

    This presentation discusses current efforts to develop a Wideband Instrument for Snow Measurements (WISM). The objective of the effort are as follows: to advance the utility of a wideband active and passive instrument (8-40 gigahertz) to support the snow science community; improve snow measurements through advanced calibration and expanded frequency of active and passive sensors; demonstrate science utility through airborne retrievals of snow water equivalent (SWE); and advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  14. GNSS Clock Error Impacts on Radio Occultation Retrievals

    NASA Astrophysics Data System (ADS)

    Weiss, Jan; Sokolovskiy, Sergey; Schreiner, Bill; Yoon, Yoke

    2017-04-01

    We assess the impacts of GPS and GLONASS clock errors on radio occultation retrieval of bending angle, refractivity, and temperature from low Earth orbit. The major contributing factor is the interpretation of GNSS clock offsets sampled at 30 sec or longer intervals. Using 1 Hz GNSS clock estimates as truth we apply several interpolation and fitting schemes to evaluate how they affect the accuracy of atmospheric retrieval products. The results are organized by GPS and GLONASS space vehicle and the GNSS clock interpolation/fitting scheme. We find that bending angle error is roughly similar for all current GPS transmitters (about 0.7 mcrad) but note some differences related to the type of atomic oscillator onboard the transmitter satellite. GLONASS bending angle errors show more variation over the constellation and are approximately two times larger than GPS. An investigation of the transmitter clock spectra reveals this is due to more power in periods between 2-10 sec. Retrieved refractivity and temperature products show clear differences between GNSS satellite generations, and indicate that GNSS clocks sampled at intervals smaller than 5 sec significantly improve accuracy, particularly for GLONASS. We conclude by summarizing the tested GNSS clock estimation and application strategies in the context of current and future radio occultation missions.

  15. Postrelease monitoring of radio-instrumented sea otters in Prince William Sound

    USGS Publications Warehouse

    Monnett, C.; Rotterman, L.M.; Stack, C.; Monson, Daniel H.; Bayha, Keith; Kormendy, Jennifer

    1990-01-01

    Sea otters (Enhydra lutris) that were captured in western Prince William Sound (PWS) or the Gulf of Alaska, treated, and held in captivity at the temporary rehabilitation centers established in response to the T/V Exxon Valdez oil spill were instrumented with radio transmitters, released into eastern PWS, and monitored by radiotelemetry. We undertook the present study to gain information for guiding the release of the remaining captive otters and evaluating the efficacy of sea otter rehabilitation after exposure to crude oil. Radio transmitters were attached to the flippers of seven sea otters released in May 1989 and monitored for periods of a few hours to more than 60 days. However, little was learned about the fate of these animals because the radio transmitters used proved unreliable. Forty-five additional sea otters from the rehabilitation centers were implanted with radio transmitters, released into northeastern PWS and monitored for 8 months. During the first 20 days after the first release of these implanted otters (n = 21), they were more mobile than wild-caught and released sea otters studied in PWS, from 1984 through 1990. All were alive and vigorous at the end of the 20-day period. Tracking of all 45 implanted sea otters during the 8-month period showed that the otters remained highly mobile. Many (46.6%) crossed into western PWS. However, by the end of the 8 months, 12 of the instrumented otters were dead and 9 were missing. One radio failed. These mortality and missing rates are much higher than those normally observed for adult sea otters in PWS. The death rate was highest in winter. These data suggest that, despite the tremendous amount of money and energy directed toward the treatment and care of these animals, the sea otters released from the centers were not completely rehabilitated, that is, not returned to a normal state. We recommend that future policies focus on preventing otters from becoming oiled, rather than attempting to treat them

  16. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Bray, J. D.

    2016-04-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.

  17. Polarization of Narrowband VLF Transmitter Signals as an Ionospheric Diagnostic

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M. B.; Said, R. K.; Gołkowski, M.

    2018-01-01

    Very low frequency (VLF, 3-30 kHz) transmitter remote sensing has long been used as a simple yet useful diagnostic for the D region ionosphere (60-90 km). All it requires is a VLF radio receiver that records the amplitude and/or phase of a beacon signal as a function of time. During both ambient and disturbed conditions, the received signal can be compared to predictions from a theoretical model to infer ionospheric waveguide properties like electron density. Amplitude and phase have in most cases been analyzed each as individual data streams, often only the amplitude is used. Scattered field formulation combines amplitude and phase effectively, but does not address how to combine two magnetic field components. We present polarization ellipse analysis of VLF transmitter signals using two horizontal components of the magnetic field. The shape of the polarization ellipse is unchanged as the source phase varies, which circumvents a significant problem where VLF transmitters have an unknown source phase. A synchronized two-channel MSK demodulation algorithm is introduced to mitigate 90° ambiguity in the phase difference between the horizontal magnetic field components. Additionally, the synchronized demodulation improves phase measurements during low-SNR conditions. Using the polarization ellipse formulation, we take a new look at diurnal VLF transmitter variations, ambient conditions, and ionospheric disturbances from solar flares, lightning-ionospheric heating, and lightning-induced electron precipitation, and find differing signatures in the polarization ellipse.

  18. Limits on the Ultra-bright Fast Radio Burst Population from the CHIME Pathfinder

    NASA Astrophysics Data System (ADS)

    Amiri, M.; Bandura, K.; Berger, P.; Bond, J. R.; Cliche, J. F.; Connor, L.; Deng, M.; Denman, N.; Dobbs, M.; Domagalski, R. S.; Fandino, M.; Gilbert, A. J.; Good, D. C.; Halpern, M.; Hanna, D.; Hincks, A. D.; Hinshaw, G.; Höfer, C.; Hsyu, G.; Klages, P.; Landecker, T. L.; Masui, K.; Mena-Parra, J.; Newburgh, L. B.; Oppermann, N.; Pen, U. L.; Peterson, J. B.; Pinsonneault-Marotte, T.; Renard, A.; Shaw, J. R.; Siegel, S. R.; Sigurdson, K.; Smith, K.; Storer, E.; Tretyakov, I.; Vanderlinde, K.; Wiebe, D. V.; Scientific Collaboration20, CHIME

    2017-08-01

    We present results from a new incoherent-beam fast radio burst (FRB) search on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its large instantaneous field of view (FoV) and relative thermal insensitivity allow us to probe the ultra-bright tail of the FRB distribution, and to test a recent claim that this distribution’s slope, α \\equiv -\\tfrac{\\partial {log}N}{\\partial {log}S}, is quite small. A 256-input incoherent beamformer was deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were described by a single power law with α = 0.7, we would expect an FRB detection every few days, making this the fastest survey on the sky at present. We collected 1268 hr of data, amounting to one of the largest exposures of any FRB survey, with over 2.4 × 105 deg2 hr. Having seen no bursts, we have constrained the rate of extremely bright events to <13 sky-1 day-1 above ˜ 220\\sqrt{(τ /{ms})} {Jy} {ms} for τ between 1.3 and 100 ms, at 400-800 MHz. The non-detection also allows us to rule out α ≲ 0.9 with 95% confidence, after marginalizing over uncertainties in the GBT rate at 700-900 MHz, though we show that for a cosmological population and a large dynamic range in flux density, α is brightness dependent. Since FRBs now extend to large enough distances that non-Euclidean effects are significant, there is still expected to be a dearth of faint events and relative excess of bright events. Nevertheless we have constrained the allowed number of ultra-intense FRBs. While this does not have significant implications for deeper, large-FoV surveys like full CHIME and APERTIF, it does have important consequences for other wide-field, small dish experiments.

  19. Wideband RELAX and wideband CLEAN for aeroacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu

    2004-02-01

    Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.

  20. Wideband RELAX and wideband CLEAN for aeroacoustic imaging.

    PubMed

    Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu

    2004-02-01

    Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.