Sample records for ultracold dense gas

  1. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  2. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    PubMed

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  3. Ultracold Chemical Reactions of a Single Rydberg Atom in a Dense Gas

    DOE PAGES

    Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix; ...

    2016-08-10

    Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less

  4. Contact interaction in an unitary ultracold Fermi gas

    DOE PAGES

    Pessoa, Renato; Gandolfi, Stefano; Vitiello, S. A.; ...

    2015-12-16

    An ultracold Fermi atomic gas at unitarity presents universal properties that in the dilute limit can be well described by a contact interaction. By employing a guiding function with correct boundary conditions and making simple modifications to the sampling procedure we are able to calculate the properties of a true contact interaction with the diffusion Monte Carlo method. The results are obtained with small variances. Our calculations for the Bertsch and contact parameters are in excellent agreement with published experiments. The possibility of using a more faithful description of ultracold atomic gases can help uncover additional features of ultracold atomicmore » gases. In addition, this work paves the way to perform quantum Monte Carlo calculations for other systems interacting with contact interactions, where the description using potentials with finite effective range might not be accurate.« less

  5. Ultracold Gas Theory from the Top-Down and Bottom-Up

    NASA Astrophysics Data System (ADS)

    Colussi, Victor E.

    Advances in trapping and cooling of ultracold gases over the last several decades have made it possible to test many formerly outstanding predictions from disparate branches of physics. This thesis touches on three historical problems that have found new life recently in the context of ultracold Bose gases of alkali atoms. The first problem revolves around an outstanding prediction from Boltzmann over a century and half old that the breathing mode of a isotropically trapped classical gas should oscillate indefinitely. I analyze recent experimental results, and attribute observed damping sources to trap imperfections. The second question is about the analogue of first and second sound modes from liquid helium in trapped dilute gases. I present the results of a joint theoretical/experimental investigation of the breathing mode of a finite temperature Bose-Einstein condensate (BEC), attributing a striking collapse revival behavior of the resultant oscillation to in-phase and out-of-phase normal modes of the thermal cloud and condensate. The third problem is that of the formation of Borromean ring-like three-body bound states, referred to as Efimov trimers, in strongly-interacting few-body systems. I extend the predicted spectrum of Efimov states into the realm of many degenerate internal levels, and investigate the difficult three-body elastic scattering problem. These questions are part of the broader theme of this thesis: How can our understanding of few-body physics in the ultracold limit be translated into statements about the bulk behavior of an ultracold gas? For weakly-interacting Bose gases, this translation is well-known: the many-body properties of the gas are well-described by the tracking just the one and two particle correlations. I analyze a generalization of this procedure to higher order correlations, the general connection between few-body physics and correlations in a dilute gas, and results for the emergence of Efimov physics in the magnetic phase

  6. A vacuum gauge based on an ultracold gas

    NASA Astrophysics Data System (ADS)

    Makhalov, V. B.; Turlapov, A. V.

    2017-06-01

    We report the design and application of a primary vacuum gauge based on an ultracold gas of atoms in an optical dipole trap. The pressure is calculated from the confinement time for atoms in the trap. The relationship between pressure and confinement time is established from the first principles owing to elimination of all channels introducing losses, except for knocking out an atom from the trap due to collisions with a residual gas particle. The method requires the knowledge of the gas chemical composition in the vacuum chamber, and, in the absence of this information, the systematic error is less than that of the ionisation sensor.

  7. Progress towards a rapidly rotating ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; van de Graaff, Michael; Cornell, Eric; Jin, Deborah

    2015-05-01

    We are designing an experiment with the goal of creating a rapidly rotating ultracold Fermi gas, which is promising system in which to study quantum Hall physics. We propose to use selective evaporation of a gas that has been initialized with a modest rotation rate to increase the angular momentum per particle in order to reach rapid rotation. We have performed simulations of this evaporation process for a model optical trap potential. Achieving rapid rotation will require a very smooth, very harmonic, and dynamically variable optical trap. We plan to use a setup consisting of two acousto-optical modulators to ``paint'' an optical dipole trapping potential that can be made smooth, radially symmetric, and harmonic. This project is supported by NSF, NIST, NASA.

  8. Stable spin domains in a nondegenerate ultracold gas

    NASA Astrophysics Data System (ADS)

    Graham, S. D.; Niroomand, D.; Ragan, R. J.; McGuirk, J. M.

    2018-05-01

    We study the stability of two-domain spin structures in an ultracold gas of magnetically trapped 87Rb atoms above quantum degeneracy. Adding a small effective magnetic field gradient stabilizes the domains via coherent collective spin rotation effects, despite negligibly perturbing the potential energy relative to the thermal energy. We demonstrate that domain stabilization is accomplished through decoupling the dynamics of longitudinal magnetization, which remains in time-independent domains, from transverse magnetization, which undergoes a purely transverse spin wave trapped within the domain wall. We explore the effect of temperature and density on the steady-state domains, and compare our results to a hydrodynamic solution to a quantum Boltzmann equation.

  9. Evidence of Antiblockade in an Ultracold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Amthor, Thomas; Giese, Christian; Hofmann, Christoph S.; Weidemüller, Matthias

    2010-01-01

    We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.023002]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.

  10. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    öhlich, A Griesmaier, T Pfau, H Saito, Y Kawaguchi and M Ueda High-energy-resolution molecular beams for cold collision studies L P Parazzoli, N Fitch, D S Lobser and H J Lewandowski Collisional effects in the formation of cold guided beams of polar molecules M Motsch, C Sommer, M Zeppenfeld, L D van Buuren, P W H Pinkse and G Rempe Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms P Barletta, J Tennyson and P F Barker Efficient formation of ground-state ultracold molecules via STIRAP from the continuum at a Feshbach resonance Elena Kuznetsova, Marko Gacesa, Philippe Pellegrini, Susanne F Yelin and Robin Côté Emergent timescales in entangled quantum dynamics of ultracold molecules in optical lattices M L Wall and L D Carr Rotational state resolved photodissociation spectroscopy of translationally and vibrationally cold MgH+ ions: toward rotational cooling of molecular ions K Højbjerre, A K Hansen, P S Skyt, P F Staanum and M Drewsen Collective transverse cavity cooling of a dense molecular beam Thomas Salzburger and Helmut Ritsch A Stark decelerator on a chip Samuel A Meek, Horst Conrad and Gerard Meijer Deceleration of molecules by dipole force potential: a numerical simulation Susumu Kuma and Takamasa Momose Ultracold molecules: vehicles to scalable quantum information processing Kathy-Anne Brickman Soderberg, Nathan Gemelke and Cheng Chin Magnetic field modification of ultracold molecule-molecule collisions T V Tscherbul, Yu V Suleimanov, V Aquilanti and R V Krems Spectroscopy of 39K85Rb triplet excited states using ultracold a 3Σ+ state molecules formed by photoassociation J T Kim, D Wang, E E Eyler, P L Gould and W C Stwalley Pumping vortex into a Bose-Einstein condensate of heteronuclear molecules Z F Xu, R Q Wang and L You Intense atomic and molecular beams via neon buffer-gas cooling David Patterson, Julia Rasmussen and John M Doyle Dynamical properties of dipolar Fermi gases T Sogo, L He, T Miyakawa, S Yi, H Lu

  11. Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas

    NASA Astrophysics Data System (ADS)

    Rouse, I.; Willitsch, S.

    2017-04-01

    An ion in a radio frequency ion trap interacting with a buffer gas of ultracold neutral atoms is a driven dynamical system which has been found to develop a nonthermal energy distribution with a power law tail. The exact analytical form of this distribution is unknown, but has often been represented empirically by q -exponential (Tsallis) functions. Based on the concepts of superstatistics, we introduce a framework for the statistical mechanics of an ion trapped in an rf field subject to collisions with a buffer gas. We derive analytic ion secular energy distributions from first principles both neglecting and including the effects of the thermal energy of the buffer gas. For a buffer gas with a finite temperature, we prove that Tsallis statistics emerges from the combination of a constant heating term and multiplicative energy fluctuations. We show that the resulting distributions essentially depend on experimentally controllable parameters paving the way for an accurate control of the statistical properties of ion-atom hybrid systems.

  12. Understanding ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul

    2009-05-01

    The successful production of a dense sample of ultracold ground state KRb polar molecules [1] opens the door to a new era of research with dipolar gases and lattices of such species. This feat was achieved by first associating a K and a Rb atom to make a weakly bound Feshbach molecule and then coherently transferring the population to the ground vibrational level of the molecule. This talk focuses on theoretical issues associated with making and using ultracold polar molecules, using KRb as an example [2]. Full understanding of this species and the processes by which it is made requires taking advantage of accurate molecular potentials [3], ab initio calculations [4], and the properties of the long-range potential. A highly accurate model is available for KRb for all bound states below the ground state separated atom limit and could be constructed for other species. The next step is to develop an understanding of the interactions between polar molecules, and their control in the ultracold domain. Understanding long-range interactions and threshold resonances will be crucial for future work. [1] K.-K. Ni, et al, Science 322, 231(2008). [2] P. S. Julienne, arXiv:0812:1233. [3] Pashov et al., Phys. Rev. A76, 022511 (2007). [4] S. Kotochigova, et al., arXiv:0901.1486.

  13. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    NASA Astrophysics Data System (ADS)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  14. OH megamasers: dense gas & the infrared radiation field

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}<10L_{⊙}, OH kMs), OH absorbers and OH non-detections (non-OH MM). Through comparative analysis on their infrared emission, CO and HCN luminosities (good tracers for the low-density gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  15. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glassgold, A. E.; Najita, J. R.

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimesmore » as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.« less

  16. Thermometry of ultracold atoms by electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Peters, Thorsten; Wittrock, Benjamin; Blatt, Frank; Halfmann, Thomas; Yatsenko, Leonid P.

    2012-06-01

    We report on systematic numerical and experimental investigations of electromagnetically induced transparency (EIT) to determine temperatures in an ultracold atomic gas. The technique relies on the strong dependence of EIT on atomic motion (i.e., Doppler shifts), when the relevant atomic transitions are driven with counterpropagating probe and control laser beams. Electromagnetically induced transparency permits thermometry with satisfactory precision over a large temperature range, which can be addressed by the appropriate choice of Rabi frequency in the control beam. In contrast to time-of-flight techniques, thermometry by EIT is fast and nondestructive, i.e., essentially it does not affect the ultracold medium. In an experimental demonstration we apply both EIT and time-of-flight measurements to determine temperatures along different symmetry axes of an anisotropic ultracold gas. As an interesting feature we find that the temperatures in the anisotropic atom cloud vary in different directions.

  17. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    PubMed Central

    Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.

    2017-01-01

    We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879

  18. Closed-channel contribution in the BCS-BEC crossover regime of an ultracold Fermi gas with an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Inotani, D.; Ohashi, Y.

    2018-03-01

    We theoretically investigate strong-coupling properties of an ultracold Fermi gas with an orbital Feshbach resonance (OFR). Including tunable pairing interaction associated with an OFR within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR), we examine the occupation of the closed channel. We show that, although the importance of the closed channel is characteristic of the system with an OFR, the occupation number of the closed channel is found to actually be very small at the superfluid phase transition temperature T c, in the whole BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region, when we use the scattering parameters for an ultracold 173Yb Fermi gas. The occupation of the closed channel increases with increasing the temperature above T c, which is more remarkable for a stronger pairing interaction. We also present a prescription to remove effects of an experimentally inaccessible deep bound state from the NSR formalism, which we meet when we theoretically deal with a 173Yb Fermi gas with an OFR.

  19. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  20. Detecting Friedel oscillations in ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  1. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    NASA Astrophysics Data System (ADS)

    Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.

    2014-08-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.

  2. Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian

    2018-05-01

    We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.

  3. Large-eddy simulation of dense gas dispersion over a simplified urban area

    NASA Astrophysics Data System (ADS)

    Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson

    2017-03-01

    Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.

  4. Simulation of a Driven Dense Granular Gas

    NASA Astrophysics Data System (ADS)

    Bizon, Chris; Shattuck, M. D.; Swift, J. B.; Swinney, Harry L.

    1998-11-01

    Event driven particle simulations quantitatively reproduce the experimental results on vibrated granular layers, including the formation of standing wave patterns(C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), pp. 57-60 (1998). and secondary instabilities(J.R. deBruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift, and H.L. Swinney, Phys. Rev. Lett. 81) (1998), to appear. . In these simulations the velocity distributions are nearly Gaussian when scaled with the local fluctuational kinetic energy (granular temperature); this suggests that inelastic dense gas kinetic theory is applicable. We perform simulations of a two-dimensional granular gas that is homogeneously driven with fluctuating forces. We find that the equation of state differs from that of an elastic dense gas and that this difference is due to a change in the distribution of relative velocities at collisions. Granular thermal conductivity and viscosity are measured by allowing the fluctuating forces to have large scale spatial gradients.

  5. Strong-Coupling Effects and Shear Viscosity in an Ultracold Fermi Gas

    NASA Astrophysics Data System (ADS)

    Kagamihara, D.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the shear viscosity η , as well as the entropy density s, in the normal state of an ultracold Fermi gas. Including pairing fluctuations within the framework of a T-matrix approximation, we calculate these quantities in the Bardeen-Cooper-Schrieffer (BCS)-Bose-Einstein condensation (BEC) crossover region. We also evaluate η / s, to compare it with the lower bound of this ratio, conjectured by Kovtun, Son, and Starinets (KSS bound). In the weak-coupling BCS side, we show that the shear viscosity η is remarkably suppressed near the superfluid phase transition temperature Tc, due to the so-called pseudogap phenomenon. In the strong-coupling BEC side, we find that, within the neglect of the vertex corrections, one cannot correctly describe η . We also show that η / s decreases with increasing the interaction strength, to become very close to the KSS bound, \\hbar /4π kB, on the BEC side.

  6. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (I.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  7. Dense gas and star formation in individual Giant Molecular Clouds in M31

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Forbrich, J.; Fritz, J.

    2018-04-01

    Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.

  8. The dense gas mass fraction of molecular clouds in the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, Andrew J.; Heyer, Mark H., E-mail: abattist@astro.umass.edu, E-mail: heyer@astro.umass.edu

    2014-01-10

    The mass fraction of dense gas within giant molecular clouds (GMCs) of the Milky Way is investigated using {sup 13}CO data from the Five College Radio Astronomy Observatory Galactic Plane Surveys and the Bolocam Galactic Plane Survey (BGPS) of 1.1 mm dust continuum emission. A sample of 860 compact dust sources are selected from the BGPS catalog and kinematically linked to 344 clouds of extended (>3') {sup 13}CO J = 1-0 emission. Gas masses are tabulated for the full dust source and subregions within the dust sources with mass surface densities greater than 200 M {sub ☉} pc{sup –2}, whichmore » are assumed to be regions of enhanced volume density. Masses of the parent GMCs are calculated assuming optically thin {sup 13}CO J = 1-0 emission and local thermodynamic equilibrium conditions. The mean fractional mass of dust sources to host GMC mass is 0.11{sub −0.06}{sup +0.12}. The high column density subregions comprise 0.07{sub −0.05}{sup +0.13} of the mass of the cloud. Owing to our assumptions, these values are upper limits to the true mass fractions. The fractional mass of dense gas is independent of GMC mass and gas surface density. The low dense gas mass fraction suggests that the formation of dense structures within GMCs is the primary bottleneck for star formation. The distribution of velocity differences between the dense gas and the low density material along the line of sight is also examined. We find a strong, centrally peaked distribution centered on zero velocity displacement. This distribution of velocity differences is modeled with radially converging flows toward the dense gas position that are randomly oriented with respect to the observed line of sight. These models constrain the infall velocities to be 2-4 km s{sup –1} for various flow configurations.« less

  9. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.

  10. Testing the universality of the star-formation efficiency in dense molecular gas

    NASA Astrophysics Data System (ADS)

    Shimajiri, Y.; André, Ph.; Braine, J.; Könyves, V.; Schneider, N.; Bontemps, S.; Ladjelate, B.; Roy, A.; Gao, Y.; Chen, H.

    2017-08-01

    Context. Recent studies with, for example, Spitzer and Herschel have suggested that star formation in dense molecular gas may be governed by essentially the same "law" in Galactic clouds and external galaxies. This conclusion remains controversial, however, in large part because different tracers have been used to probe the mass of dense molecular gas in Galactic and extragalactic studies. Aims: We aimed to calibrate the HCN and HCO+ lines commonly used as dense gas tracers in extragalactic studies and to test the possible universality of the star-formation efficiency in dense gas (≳104 cm-3), SFEdense. Methods: We conducted wide-field mapping of the Aquila, Ophiuchus, and Orion B clouds at 0.04 pc resolution in the J = 1 - 0 transition of HCN, HCO+, and their isotopomers. For each cloud, we derived a reference estimate of the dense gas mass MHerschelAV > 8, as well as the strength of the local far-ultraviolet (FUV) radiation field, using Herschel Gould Belt survey data products, and estimated the star-formation rate from direct counting of the number of Spitzer young stellar objects. Results: The H13CO+(1-0) and H13CN(1-0) lines were observed to be good tracers of the dense star-forming filaments detected with Herschel. Comparing the luminosities LHCN and LHCO+ measured in the HCN and HCO+ lines with the reference masses MHerschelAV > 8, the empirical conversion factors αHerschel - HCN (=MHerschelAV > 8/LHCN) and αHerschel - HCO+ (=MHerschelAV > 8/LHCO+) were found to be significantly anti-correlated with the local FUV strength. In agreement with a recent independent study of Orion B by Pety et al., the HCN and HCO+ lines were found to trace gas down to AV ≳ 2. As a result, published extragalactic HCN studies must be tracing all of the moderate density gas down to nH2 ≲ 103 cm-3. Estimating the contribution of this moderate density gas from the typical column density probability distribution functions in nearby clouds, we obtained the following G0

  11. A review of the basic concepts of dense gas dispersion with special regard to modelling of heat transfer

    NASA Astrophysics Data System (ADS)

    Tasker, M. N.

    1984-01-01

    Dense gas dispersion is the study of the spreading and dilution of a gas that has a density greater than that of ambient air. Models to predict the dispersion of such dense gases as chlorine, sulfur dioxide, liquefied natural gas, and liquid propane are necessary to prevent a catastrophe in environmental and/or human terms. A basic physical picture of dense gas dispersion is provided. Mathematical and wind tunnel models of dense gas flow are presented and discussed, including the constraints and disadvantages of modelling techniques. Special emphasis is given to heat transfer during dense gas dispersion.

  12. A Green Method for Processing Polymers using Dense Gas Technology

    PubMed Central

    Yoganathan, Roshan B.; Mammucari, Raffaella; Foster, Neil R.

    2010-01-01

    Dense CO2 can be used as an environmentally-benign polymer processing medium because of its liquid-like densities and gas-like mass transfer properties.In this work, polymer bio-blends of polycarbonate (PC), a biocompatible polymer, and polycaprolactone (PCL), a biodegradable polymer were prepared. Dense CO2 was used as a reaction medium for the melt-phase PC polymerization in the presence of dense CO2-swollen PCL particles and this method was used to prepare porous PC/PCL blends. To extend the applicability of dense CO2 to the biomedical industry and polymer blend processing, the impregnation of ibuprofen into the blend was conducted and subsequent dissolution characteristics were observed.

  13. The Coldest Place in the Universe: Probing the Ultra-cold Outflow and Dusty Disk in the Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Nyman, L.-Å.

    2017-06-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the cosmic background temperature. Our new CO 1-0 data reveal heretofore unseen distant regions of this ultra-cold outflow, out to ≳120,000 au. We find that in the ultra-cold outflow, the mass-loss rate (\\dot{M}) increases with radius, similar to its expansion velocity (V)—taking V\\propto r, we find \\dot{M}\\propto {r}0.9{--2.2}. The mass in the ultra-cold outflow is ≳ 3.3 M ⊙, and the Boomerang’s main-sequence progenitor mass is ≳ 4 M ⊙. Our high angular resolution (˜ 0\\buildrel{\\prime\\prime}\\over{.} 3) CO J = 3-2 map shows the inner bipolar nebula’s precise, highly collimated shape, and a dense central waist of size (FWHM) ˜1740 au × 275 au. The molecular gas and the dust as seen in scattered light via optical Hubble Space Telescope imaging show a detailed correspondence. The waist shows a compact core in thermal dust emission at 0.87-3.3 mm, which harbors (4{--}7)× {10}-4 M ⊙ of very large (˜millimeter-to-centimeter sized), cold (˜ 20{--}30 K) grains. The central waist (assuming its outer regions to be expanding) and fast bipolar outflow have expansion ages of ≲ 1925 {years} and ≤slant 1050 {years}: the “jet-lag” (I.e., torus age minus the fast-outflow age) in the Boomerang supports models in which the primary star interacts directly with a binary companion. We argue that this interaction resulted in a common-envelope configuration, while the Boomerang’s primary was an RGB or early-AGB star, with the companion finally merging into the primary’s core, and ejecting the primary’s envelope that now forms the ultra-cold outflow.

  14. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxiesmore » by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.« less

  15. Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas

    PubMed Central

    Takei, Nobuyuki; Sommer, Christian; Genes, Claudiu; Pupillo, Guido; Goto, Haruka; Koyasu, Kuniaki; Chiba, Hisashi; Weidemüller, Matthias; Ohmori, Kenji

    2016-01-01

    Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate an experimental approach towards this goal by utilizing an ultracold Rydberg gas generated with a broadband picosecond laser pulse. We follow the ultrafast evolution of its electronic coherence by time-domain Ramsey interferometry with attosecond precision. The observed electronic coherence shows an ultrafast oscillation with a period of 1 femtosecond, whose phase shift on the attosecond timescale is consistent with many-body correlations among Rydberg atoms beyond mean-field approximations. This coherent and ultrafast many-body dynamics is actively controlled by tuning the orbital size and population of the Rydberg state, as well as the mean atomic distance. Our approach will offer a versatile platform to observe and manipulate non-equilibrium dynamics of quantum many-body systems on the ultrafast timescale. PMID:27849054

  16. SU(3) Orbital Kondo Effect with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Nishida, Yusuke

    2013-09-01

    We propose a simple but novel scheme to realize the Kondo effect with ultracold atoms. Our system consists of a Fermi sea of spinless fermions interacting with an impurity atom of different species which is confined by an isotropic potential. The interspecies attraction can be tuned with an s-wave Feshbach resonance so that the impurity atom and a spinless fermion form a bound dimer that occupies a threefold-degenerate p orbital of the confinement potential. Many-body scatterings of this dimer and surrounding spinless fermions occur with exchanging their angular momenta and thus exhibit the SU(3) orbital Kondo effect. The associated Kondo temperature has a universal leading exponent given by TK∝exp⁡[-π/(3apkF3)] that depends only on an effective p-wave scattering volume ap and a Fermi wave vector kF. We also elucidate a Kondo singlet formation at zero temperature and an anisotropic interdimer interaction mediated by surrounding spinless fermions. The Kondo effect thus realized in ultracold atom experiments may be observed as an increasing atom loss by lowering the temperature or with radio-frequency spectroscopy. Our scheme and its extension to a dense Kondo lattice will be useful to develop new insights into yet unresolved aspects of Kondo physics.

  17. Creation of a strongly dipolar gas of ultracold ground-state 23 Na87 Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Wang, Dajun; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    We report on successful creation of an ultracold sample of ground-state 23 Na87 Rb molecules with a large effective electric dipole moment. Through a carefully designed two-photon Raman process, we have successfully transferred the magneto-associated Feshbach molecules to the singlet ground state with high efficiency, obtaining up to 8000 23 Na87 Rb molecules with peak number density over 1011 cm-3 in their absolute ground-state level. With an external electric field, we have induced an effective dipole moment over 1 Debye, making 23 Na87 Rb the most dipolar ultracold particle ever achieved. Contrary to the expectation, we observed a rather fast population loss even for 23 Na87 Rb in the absolute ground state with the bi-molecular exchange reaction energetically forbidden. The origin for the short lifetime and possible ways of mitigating it are currently under investigation. Our achievements pave the way toward investigation of ultracold bosonic molecules with strong dipolar interactions. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  18. Spontaneous evolution of rydberg atoms into an ultracold plasma

    PubMed

    Robinson; Tolra; Noel; Gallagher; Pillet

    2000-11-20

    We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.

  19. The dense gas mass fraction in the W51 cloud and its protoclusters

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam; Bally, John; Battersby, Cara; Youngblood, Allison; Darling, Jeremy; Rosolowsky, Erik; Arce, Héctor; Lebrón Santos, Mayra E.

    2015-01-01

    Context. The density structure of molecular clouds determines how they will evolve. Aims: We map the velocity-resolved density structure of the most vigorously star-forming molecular cloud in the Galactic disk, the W51 giant molecular cloud. Methods: We present new 2 cm and 6 cm maps of H2CO, radio recombination lines, and the radio continuum in the W51 star forming complex acquired with Arecibo and the Green Bank Telescope at ~ 50″ resolution. We use H2CO absorption to determine the relative line-of-sight positions of molecular and ionized gas. We measure gas densities using the H2CO densitometer, including continuous measurements of the dense gas mass fraction (DGMF) over the range 104cm-3dense gas mass fraction has been measured over a range of densities with a single data set. Results: The DGMF in W51 A is high, f ≳ 70% above n> 104cm-3, while it is low, f< 20%, in W51 B. We did not detect any H2CO emission throughout the W51 GMC; all gas dense enough to emit under normal conditions is in front of bright continuum sources and therefore is seen in absorption instead. Conclusions: (1) The dense gas fraction in the W51 A and B clouds shows that W51 A will continue to form stars vigorously, while star formation has mostly ended in W51 B. The lack of dense, star-forming gas around W51 C indicates that collect-and-collapse is not acting or is inefficient in W51. (2) Ongoing high-mass star formation is correlated with n ≳ 1 × 105cm-3 gas. Gas with n> 104cm-3 is weakly correlated with low and moderate mass star formation, but does not strongly correlate with high-mass star formation. (3) The nondetection of H2CO emission implies that the emission detected in other galaxies, e.g. Arp 220, comes from high-density gas that is not directly affiliated with already-formed massive stars. Either the non-star-forming ISM of these galaxies is very dense, implying the star formation density threshold is higher, or H ii regions

  20. Three Body Recombination and Photoassociative Ultracold Collisions Studied Using Translational Energy

    DTIC Science & Technology

    2009-02-27

    Sumission, or Preparation 1. "Multiple Scattering and the Density Distribution of a Cs MOT," R. Overstreet, P. Zabawa , J. Tallant, A. Schwettmann... Zabawa . J. Tallant, A. Schwettmann, J. Crawford, and J.P. Shaffer, DAMOP, Knoxville, TN, (2006). 6. "Ultracold Cs Rydberg Gas Dynamics," K.R

  1. Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.

    PubMed

    Doçaj, Andris; Wall, Michael L; Mukherjee, Rick; Hazzard, Kaden R A

    2016-04-01

    We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas.

  2. Expansion of an ultracold Rydberg plasma

    NASA Astrophysics Data System (ADS)

    Forest, Gabriel T.; Li, Yin; Ward, Edwin D.; Goodsell, Anne L.; Tate, Duncan A.

    2018-04-01

    We report a systematic experimental and numerical study of the expansion of ultracold Rydberg plasmas. Specifically, we have measured the asymptotic expansion velocities, v0, of ultracold neutral plasmas (UNPs) which evolve from cold, dense samples of Rydberg rubidium atoms using ion time-of-flight spectroscopy. From this, we have obtained values for the effective initial plasma electron temperature, Te ,0=mionv02/kB (where mion is the Rb+ ion mass), as a function of the original Rydberg atom density and binding energy, Eb ,i. We have also simulated numerically the interaction of UNPs with a large reservoir of Rydberg atoms to obtain data to compare with our experimental results. We find that for Rydberg atom densities in the range 107-109 cm-3, for states with principal quantum number n >40 , Te ,0 is insensitive to the initial ionization mechanism which seeds the plasma. In addition, the quantity kBTe ,0 is strongly correlated with the fraction of atoms which ionize, and is in the range 0.6 ×| Eb ,i|≲ kBTe ,0≲2.5 ×|Eb ,i| . On the other hand, plasmas from Rydberg samples with n ≲40 evolve with no significant additional ionization of the remaining atoms once a threshold number of ions has been established. The dominant interaction between the plasma electrons and the Rydberg atoms is one in which the atoms are deexcited, a heating process for electrons that competes with adiabatic cooling to establish an equilibrium where Te ,0 is determined by their Coulomb coupling parameter, Γe˜0.01 .

  3. Controlled experiments for dense gas diffusion: Experimental design and execution, model comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egami, R.; Bowen, J.; Coulombe, W.

    1995-07-01

    An experimental baseline CO2 release experiment at the DOE Spill Test Facility on the Nevada Test Site in Southern Nevada is described. This experiment was unique in its use of CO2 as a surrogate gas representative of a variety of specific chemicals. Introductory discussion places the experiment in historical perspective. CO2 was selected as a surrogate gas to provide a data base suitable for evaluation of model scenarios involving a variety of specific dense gases. The experiment design and setup are described, including design rationale and quality assurance methods employed. Resulting experimental data are summarized. Data usefulness is examined throughmore » a preliminary comparison of experimental results with simulations performed using the SLAV and DEGADIS dense gas models.« less

  4. State-to-state chemistry for three-body recombination in an ultracold rubidium gas.

    PubMed

    Wolf, Joschka; Deiß, Markus; Krükow, Artjom; Tiemann, Eberhard; Ruzic, Brandon P; Wang, Yujun; D'Incao, José P; Julienne, Paul S; Denschlag, Johannes Hecker

    2017-11-17

    Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb 2 molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck's constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes. Copyright © 2017, American Association for the Advancement of Science.

  5. The uniform electron gas at warm dense matter conditions

    NASA Astrophysics Data System (ADS)

    Dornheim, Tobias; Groth, Simon; Bonitz, Michael

    2018-05-01

    Motivated by the current high interest in the field of warm dense matter research, in this article we review the uniform electron gas (UEG) at finite temperature and over a broad density range relevant for warm dense matter applications. We provide an exhaustive overview of different simulation techniques, focusing on recent developments in the dielectric formalism (linear response theory) and quantum Monte Carlo (QMC) methods. Our primary focus is on two novel QMC methods that have recently allowed us to achieve breakthroughs in the thermodynamics of the warm dense electron gas: Permutation blocking path integral MC (PB-PIMC) and configuration path integral MC (CPIMC). In fact, a combination of PB-PIMC and CPIMC has allowed for a highly accurate description of the warm dense UEG over a broad density-temperature range. We are able to effectively avoid the notorious fermion sign problem, without invoking uncontrolled approximations such as the fixed node approximation. Furthermore, a new finite-size correction scheme is presented that makes it possible to treat the UEG in the thermodynamic limit without loss of accuracy. In addition, we in detail discuss the construction of a parametrization of the exchange-correlation free energy, on the basis of these data - the central thermodynamic quantity that provides a complete description of the UEG and is of crucial importance as input for the simulation of real warm dense matter applications, e.g., via thermal density functional theory. A second major aspect of this review is the use of our ab initio simulation results to test previous theories, including restricted PIMC, finite-temperature Green functions, the classical mapping by Perrot and Dharma-wardana, and various dielectric methods such as the random phase approximation, or the Singwi-Tosi-Land-Sjölander (both in the static and quantum versions), Vashishta-Singwi and the recent Tanaka scheme for the local field correction. Thus, for the first time, thorough

  6. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  7. Ultracold molecule assembly with photonic crystals

    NASA Astrophysics Data System (ADS)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  8. Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms

    DTIC Science & Technology

    2008-11-01

    explore phases that do not yet have analogous behavior in QCD . ..,.. Ultracold fennions in optical lattices . The evolution from BCS to BEC...trimer states. The three-component Fermi gas we have created will, when confined in an optical lattice , be an experimental realization of the SU(3...chromodynamics ( QCD ): the color superconducting phase and the formation of baryons. Our initial investigations have focused on understanding three-body

  9. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  10. Internal state control of a dense sample of ultracold 23Na87Rb molecules

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Guo, Mingyang; He, Junyu; Wang, Dajun; Quemener, Goulven; Gonzalez-Martinez, Maykel; Dulieu, Oliver

    2017-04-01

    We report the optimized production of ultracold 23Na87Rb molecules with completely controlled population distribution among internal states. Starting from a sample of 104 weakly bound Feshbach molecules, we achieved a hyperfine-structure-resolved STIRAP transfer to the ground state with an efficiency up to 95%. By tuning the frequency difference between the Raman lasers and applying an additional microwave signal, we realized the preparation of NaRb samples in different vibrational, rotational, and hyperfine levels. Based on this achievement, some results on molecular collisions with a range of possible loss channels will also be reported. This work was supported by the French ANR/Hong Kong RGC COPOMOL project (Grant No. A-CUHK403/13), the RGC General Research Fund (Grant No. CUHK14301815).

  11. Gas purification in the dense phase at the CATS terminal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Openshaw, P.J.; Carnell, P.J.H.; Rhodes, E.F.

    The purification and transportation of natural gas at very high pressures can help to minimize the capital cost of pipelines and processing equipment. However, complex mixtures of hydrocarbons undergo unusual phase changes, such as retrograde condensation, as the temperature and pressure are altered. The Central Area Transmission System (CATS) is a joint venture of Amoci, BG, Amerada Hess, Phillips, Agip and Fina operated by Amoco on behalf of the owners. The design of the CATS terminal has provided an interesting processing challenge. The terminal receives a total of 1.6 Bscf/d of rich gas from a number of offshore fields. Allmore » are relatively sweet but the small amounts of H{sub 2}S and Hg are removed. Fixed bed technology was selected as the most economic purification process, while minimizing hydrocarbon loss and operator involvement. Conventionally, the raw gas would be split into the different hydrocarbon fractions and each would be processed separately. This would require the installation of a large number of reactors. A more elegant solution is to treat the gas on arrival at the terminal in the dense phase. This option raised questions around whether a fixed bed would be prone to fouling, could the pressure drop be kept low enough to avoid phase separation and would inadvertent wetting by condensation cause problems. Details are given of the test work carried out to prove the viability of using fixed bed technology for dense phase gas processing, the eventual design adopted and the performance over the first year of service.« less

  12. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    DTIC Science & Technology

    2017-01-25

    Beaumont, TX (4/16). “Studying Strongly Coupled Systems with Ultracold Plasmas," Department of Physics and Astronomy Colloquium, University of South...Alabama, Mobile, AL (11/15). “Collective Modes and Correlations in Strongly Coupled Ultracold Plasmas," Department of Physics and Astronomy

  13. Dirac-, Rashba-, and Weyl-type spin-orbit couplings: Toward experimental realization in ultracold atoms

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Zong; Lu, Yue-Hui; Sun, Wei; Chen, Shuai; Deng, Youjin; Liu, Xiong-Jun

    2018-01-01

    We propose a hierarchy set of minimal optical Raman lattice schemes to pave the way for experimental realization of high-dimensional spin-orbit (SO) couplings for ultracold atoms, including two-dimensional (2D) Dirac type, 2D Rashba type, and three-dimensional (3D) Weyl type. The proposed Dirac-type SO coupling exhibits precisely controllable high symmetry, for which a large topological phase region is predicted. The generation of 2D Rashba and 3D Weyl types requires that two sources of laser beams have distinct frequencies of factor 2 difference. Surprisingly, we find that 133Cs atoms provide an ideal candidate for the realization. A common and essential feature is of high controllability and absent of any fine-tuning in the realization, and the resulting SO coupled ultracold atoms have a long lifetime. In particular, a long-lived topological Bose gas of 2D Dirac SO coupling has been proved in the follow-up experiment. These schemes essentially improve over the current experimental accessibility and controllability, and open a realistic way to explore novel high-dimensional SO physics, particularly quantum many-body physics and quantum far-from-equilibrium dynamics with novel topology for ultracold atoms.

  14. DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS

    EPA Science Inventory

    The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...

  15. Dense Gas-Star Systems: Evolution of Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, P.; Spurzem, R.

    In the 60s and 70s super-massive central objects (from now onwards SMOs) were thought to be the main source of active galactic nuclei (AGNs) characteristics (luminosities of L ≅1012 Lodot). The release of gravitational binding energy by the accretion of material on to an SMO in the range of 107 - 109 Modot has been suggested to be the primary powerhouse (Lynden-Bell 1969). That rather exotic idea in early time has become common sense nowadays. Not only our own galaxy harbours a few million-solar mass black hole (Genzel 2001) but also many of other non-active galaxies show kinematic and gas-dynamic evidence of these objects (Magorrian et al. 1998) The concept of central super-massive stars (SMSs henceforth) (cal M ≥ 5 × 104 Modot, where cal M is the mass of the SMS) embedded in dense stellar systems was suggested as a possible explanation for high- energy emissions phenomena occurring in AGNs and quasars (Vilkoviski 1976, Hara 1978), such as X-ray emissions (Bahcall and Ostriker, 1975). SMSs and super-massive black holes (SMBHs) are two possibilities to explain the nature of SMOs, and SMSs may be an intermediate step towards the formation of SMBHs (Rees 1984). In this paper we give the equations that describe the dynamics of such a dense star-gas system which are the basis for the code that will be used in a prochain future to simulate this scenario. We also briefly draw the mathematical fundamentals of the code.

  16. The geometric phase controls ultracold chemistry

    DOE PAGES

    Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.

    2015-07-30

    In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + Omore » 2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.« less

  17. Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, X.; Chen, Q.; Yang, Y.

    1996-12-31

    Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity ofmore » gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.« less

  18. The Transition from Diffuse to Dense Gas in Herschel Dust Emission Maps

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul

    Dense cores in dark clouds are the sites where young stars form. These regions manifest as relatively small (<0.1pc) pockets of cold and dense gas. If we wish to understand the star formation process, we have to understand the physical conditions in dense cores. This has been a main aim of star formation research in the past decade. Today, we do indeed possess a good knowledge of the density and velocity structure of cores, as well as their chemical evolution and physical lifetime. However, we do not understand well how dense cores form out of the diffuse gas clouds surrounding them. It is crucial that we constrain the relationship between dense cores and their environment: if we only understand dense cores, we may be able to understand how individual stars form --- but we would not know how the star forming dense cores themselves come into existence. We therefore propose to obtain data sets that reveal both dense cores and the clouds containing them in the same map. Based on these maps, we will study how dense cores form out of their natal clouds. Since cores form stars, this knowledge is crucial for the development of a complete theoretical and observational understanding of the formation of stars and their planets, as envisioned in NASA's Strategic Science Plan. Fortunately, existing archival data allow to derive exactly the sort of maps we need for our analysis. Here, we describe a program that exclusively builds on PACS and SPIRE dust emission imaging data from the NASA-supported Herschel mission. The degree-sized wide-field Herschel maps of the nearby (<260pc) Polaris Flare and Aquila Rift clouds are ideal for our work. They permit to resolve dense cores (<0.1pc), while the maps also reveal large-scale cloud structure (5pc and larger). We will generate column density maps from these dust emission maps and then run a tree-based hierarchical multi-scale structure analysis on them. Only this procedure permits to exploit the full potential of the maps: we will

  19. Production, Manipulation, and Applications of Ultracold Polar Molecules

    DTIC Science & Technology

    2015-04-30

    molecules, cooling, trapping, photoassociation, feshbach resonances, quantum simulation , ultracold collisions, ultracold chemistry, optical lattices...been a multitude of less predictable outcomes: special quantum information processing schemes, uses of entanglement such a spin-squeezing for better...field seeing states to high-field-seeking states (and back) at key points in the magnetic field. The molecules spontaneously emit photons as they are

  20. Ultracold atoms and their applications (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 28 October 2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Ultracold atoms and their applications", was held in the conference hall of the Lebedev Physical Institute, RAS, on 28 October 2015.The papers collected in this issue were written based on talks given at the session:(1) Vishnyakova G A, Golovizin A A, Kalganova E S, Tregubov D O, Khabarova K Yu (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Sorokin V N, Sukachev D D, Kolachevsky N N (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Ultracold lanthanides: from optical clock to a quantum simulator"; (2) Barmashova T V, Martiyanov K A, Makhalov V B (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod), Turlapov A V (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod) "Fermi liquid to Bose condensate crossover in a two-dimensional ultracold gas experiment"; (3) Taichenachev A V, Yudin V I, Bagayev S N (Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects"; (4) Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A (Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information". • Ultracold lanthanides: from optical clock to a quantum simulator, G A Vishnyakova, A A Golovizin, E S Kalganova, V N Sorokin, D D Sukachev, D O Tregubov, K Yu Khabarova, N N Kolachevsky Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 168-173 • Fermi liquid-to-Bose condensate crossover in a two

  1. The Green Bank Ammonia Survey: Observations of Hierarchical Dense Gas Structures in Cepheus-L1251

    NASA Astrophysics Data System (ADS)

    Keown, Jared; Di Francesco, James; Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Ginsburg, Adam; Offner, Stella S. R.; Caselli, Paola; Alves, Felipe; Chacón-Tanarro, Ana; Punanova, Anna; Redaelli, Elena; Seo, Young Min; Matzner, Christopher D.; Chun-Yuan Chen, Michael; Goodman, Alyssa A.; Chen, How-Huan; Shirley, Yancy; Singh, Ayushi; Arce, Hector G.; Martin, Peter; Myers, Philip C.

    2017-11-01

    We use Green Bank Ammonia Survey observations of NH3 (1, 1) and (2, 2) emission with 32″ FWHM resolution from a ˜10 pc2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH3 data results in 22 top-level structures, which reside within 13 lower-level parent structures. The structures are compact (0.01 {pc}≲ {R}{eff}≲ 0.1 {pc}) and are spatially correlated with the highest H2 column density portions of the cloud. We also compare the ammonia data to a catalog of dense cores identified by higher-resolution (18.″2 FWHM) Herschel Space Observatory observations of dust continuum emission from Cepheus-L1251. Maps of kinetic gas temperature, velocity dispersion, and NH3 column density, derived from detailed modeling of the NH3 data, are used to investigate the stability and chemistry of the ammonia-identified and Herschel-identified structures. We show that the dust and dense gas in the structures have similar temperatures, with median T dust and T K measurements of 11.7 ± 1.1 K and 10.3 ± 2.0 K, respectively. Based on a virial analysis, we find that the ammonia-identified structures are gravitationally dominated, yet may be in or near a state of virial equilibrium. Meanwhile, the majority of the Herschel-identified dense cores appear to be not bound by their own gravity and instead confined by external pressure. CCS (20 - 10) and HC5N (9-8) emission from the region reveal broader line widths and centroid velocity offsets when compared to the NH3 (1, 1) emission in some cases, likely due to these carbon-based molecules tracing the turbulent outer layers of the dense cores.

  2. Microwave ac Zeeman force for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.

    2018-04-01

    We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.

  3. Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL

    NASA Astrophysics Data System (ADS)

    Zetterlund, Erika; Glenn, Jason; Maloney, Phil

    2016-01-01

    The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane

  4. The CO Transition from Diffuse Molecular Gas to Dense Clouds

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, Steven

    2017-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.

  5. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules.

    PubMed

    Park, Jee Woo; Yan, Zoe Z; Loh, Huanqian; Will, Sebastian A; Zwierlein, Martin W

    2017-07-28

    Coherence, the stability of the relative phase between quantum states, is central to quantum mechanics and its applications. For ultracold dipolar molecules at sub-microkelvin temperatures, internal states with robust coherence are predicted to offer rich prospects for quantum many-body physics and quantum information processing. We report the observation of stable coherence between nuclear spin states of ultracold fermionic sodium-potassium (NaK) molecules in the singlet rovibrational ground state. Ramsey spectroscopy reveals coherence times on the scale of 1 second; this enables high-resolution spectroscopy of the molecular gas. Collisional shifts are shown to be absent down to the 100-millihertz level. This work opens the door to the use of molecules as a versatile quantum memory and for precision measurements on dipolar quantum matter. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. The effect of dense gas dynamics on loss in ORC transonic turbines

    NASA Astrophysics Data System (ADS)

    Durá Galiana, FJ; Wheeler, APS; Ong, J.; Ventura, CA de M.

    2017-03-01

    This paper describes a number of recent investigations into the effect of dense gas dynamics on ORC transonic turbine performance. We describe a combination of experimental, analytical and computational studies which are used to determine how, in-particular, trailing-edge loss changes with choice of working fluid. A Ludwieg tube transient wind-tunnel is used to simulate a supersonic base flow which mimics an ORC turbine vane trailing-edge flow. Experimental measurements of wake profiles and trailing-edge base pressure with different working fluids are used to validate high-order CFD simulations. In order to capture the correct mixing in the base region, Large-Eddy Simulations (LES) are performed and verified against the experimental data by comparing the LES with different spatial and temporal resolutions. RANS and Detached-Eddy Simulation (DES) are also compared with experimental data. The effect of different modelling methods and working fluid on mixed-out loss is then determined. Current results point at LES predicting the closest agreement with experimental results, and dense gas effects are consistently predicted to increase loss.

  7. Nuclear-spin-independent short-range three-body physics in ultracold atoms.

    PubMed

    Gross, Noam; Shotan, Zav; Kokkelmans, Servaas; Khaykovich, Lev

    2010-09-03

    We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.

  8. Thermal effects in light scattering from ultracold bosons in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakomy, Kazimierz; Idziaszek, Zbigniew; Trippenbach, Marek

    2009-10-15

    We study the scattering of a weak and far-detuned light from a system of ultracold bosons in one-dimensional and three-dimensional optical lattices. We show the connection between angular distributions of the scattered light and statistical properties of a Bose gas in a periodic potential. The angular patterns are determined by the Fourier transform of the second-order correlation function, and thus they can be used to retrieve information on particle number fluctuations and correlations. We consider superfluid and Mott-insulator phases of the Bose gas in a lattice and we analyze in detail how the scattering depends on the system dimensionality, temperature,more » and atom-atom interactions.« less

  9. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    NASA Astrophysics Data System (ADS)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  10. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules.

    PubMed

    Huang, Jiayu; Liu, Shu; Zhang, Dong H; Krems, Roman V

    2018-04-06

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  11. Reaching Higher Gamma in Ultracold Neutral Plasmas Through Disorder-Induced Heating Control

    DTIC Science & Technology

    2016-06-27

    shielding ,” Phys. Rev. E 87, 033101 (2013) 4 Sequential ionization of ultracold plasma ions A simulation published in 2007 by Michael Murillo showed...AFRL-AFOSR-VA-TR-2017-0031 Reaching higher Gamma in ultracold neutral plasmas through disorder-induced heating control Scott Bergeson BRIGHAM YOUNG...TYPE Final Report 3. DATES COVERED (From - To) 01 June 2012 - 31 May 2016 4. TITLE AND SUBTITLE Reaching higher Gamma in ultracold neutral plasmas

  12. Plasma oscillations in spherical Gaussian shaped ultracold neutral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li

    2016-04-15

    The collective plasma oscillations are investigated in ultracold neutral plasma with a non-uniform density profile. Instead of the plane configuration widely used, we derive the plasma oscillation equations with spherically symmetric distribution and Gaussian density profile. The damping of radial oscillation is found. The Tonks–Dattner resonances of the ultracold neutral plasma with an applied RF field are also calculated.

  13. DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY VARIATIONS IN THE ANTENNAE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigiel, F.; Leroy, A. K.; Blitz, L.

    2015-12-20

    We use the Combined Array for Research in Millimeter-wave Astronomy (CARMA) millimeter interferometer to map the Antennae Galaxies (NGC 4038/39), tracing the bulk of the molecular gas via the {sup 12}CO(1–0) line and denser molecular gas via the high density transitions HCN(1–0), HCO{sup +}(1–0), CS(2–1), and HNC(1–0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified “supergiant molecular clouds.” We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formationmore » efficiency (star formation rate/H{sub 2} ∝ IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of six within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in millimeter-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO{sup +} (1–0) emission is stronger than HCN (1–0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.« less

  14. Geometrical optics of dense aerosols: forming dense plasma slabs.

    PubMed

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  15. JILA BEC/Ultracold Atoms Homepage

    Science.gov Websites

    JILA BEC & Ultracold Atoms Bose Einstein Condensate Eric Cornell Cornell Group Debbie Jin Jin Group Jun Ye Ye Group Dana Anderson Anderson Group What is BEC? Easy BEC Machine Nobel BEC BibTek Papers

  16. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Kinetic simulations of gas breakdown in the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.

    2017-06-01

    The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.

  18. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin

    2017-02-01

    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ˜300 pc, with a width of ˜50 pc, and a velocity dispersion of ˜40 km s-1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s-1 pc-1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1-0)/CO(1-0) line ratio of ˜ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (˜ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ˜1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.

  19. Control of Ultracold Photodissociation with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Majewska, I.; Lee, C.-H.; Kondov, S. S.; McGuyer, B. H.; Moszynski, R.; Zelevinsky, T.

    2018-01-01

    Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic reaction at ultracold temperatures allows its quantum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.

  20. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    PubMed

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  1. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  2. Kinetic simulations of gas breakdown in the dense plasma focus

    DOE PAGES

    Bennett, N.; Blasco, M.; Breeding, K.; ...

    2017-06-09

    We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less

  3. Thick discs, and an outflow, of dense gas in the nuclei of nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Davies, R. I.; Burtscher, L.; Contursi, A.; Genzel, R.; González-Alfonso, E.; Graciá-Carpio, J.; Janssen, A.; Lutz, D.; Orban de Xivry, G.; Rosario, D.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Tacconi, L.

    2016-05-01

    We discuss the dense molecular gas in central regions of nearby Seyfert galaxies, and report new arcsec resolution observations of HCN (1-0) and HCO+ (1-0) for three objects. In NGC 3079, the lines show complex profiles as a result of self-absorption and saturated continuum absorption. H13CN reveals the continuum absorption profile, with a peak close to the galaxy's systemic velocity that traces disc rotation, and a second feature with a blue wing extending to -350 km s-1 that most likely traces a nuclear outflow. The morphological and spectral properties of the emission lines allow us to constrain the dense gas dynamics. We combine our kinematic analysis for these three objects, as well as another with archival data, with a previous comparable analysis of four other objects, to create a sample of eight Seyferts. In seven of these, the emission line kinematics imply thick disc structures on radial scales of ˜100 pc, suggesting such structures are a common occurrence. We find a relation between the circum-nuclear LHCN and Mdyn that can be explained by a gas fraction of 10 per cent and a conversion factor αHCN ˜ 10 between gas mass and HCN luminosity. Finally, adopting a different perspective to probe the physical properties of the gas around active galactic nuclei, we report on an analysis of molecular line ratios which indicates that the clouds in this region are not self-gravitating.

  4. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.

    PubMed

    Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim

    2014-02-10

    We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.

  5. Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules

    DTIC Science & Technology

    2017-02-07

    AFRL-AFOSR-VA-TR-2017-0035 Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules Wesley Campbell UNIVERSITY OF CALIFORNIA...REPORT TYPE Final 3. DATES COVERED (From - To) April 2013 - June 2016 4. TITLE AND SUBTITLE Mode-Locked Deceleration of Molecular Beams: Physics with...of Molecular Beams: Physics with Ultracold Molecules" P.I. Wesley C. Campbell Report Period: April 1, 2013- March 30, 2016 As a direct result of

  6. The charge imbalance in ultracold plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li

    2016-09-15

    Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperaturemore » are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.« less

  7. NGVLA Observations of Dense Gas Filaments in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Di Francesco, James; Chen, Mike; Keown, Jared; GAS Team, KEYSTONE Team

    2018-01-01

    Recent observations of continuum emission from nearby star-forming regions with Herschel and JCMT have revealed that filaments are ubiquitous structures within molecular clouds. Such filaments appear to be intimately connected to star formation, with those having column densities of AV > 8 hosting the majority of prestellar cores and young protostars in clouds. Indeed, this “threshold” can be explained simply as the result of supercritical cylinder fragmentation. How specifically star-forming filaments form in molecular clouds, however, remains unclear, though gravity and turbulence are likely involved. Observations of their kinematics are needed to understand how mass flows both onto and through these filaments. We show here results from two recent surveys, the Green Bank Ammonia Survey (GAS) and the K-band Examinations of Young Stellar Object Natal Environments (KEYSTONE) that have used the Green Bank Telescope’s K-band Focal Plane Array instrument to map NH3 (1,1) emission from dense gas in nearby star-forming regions. Data from both surveys show that NH3 emission traces extremely well the high column density gas across these star-forming regions. In particular, the GAS results for NGC 1333 show NH3-based velocity gradients either predominantly parallel or perpendicular to the filament spines. Though the GAS and KEYSTONE data are vital for probing filaments, higher resolutions than possible with the GBT alone are needed to examine the kinematic patterns on the 0.1-pc scales of star-forming cores within filaments. We describe how the Next Generation Very Large Array (NGVLA) will uniquely provide the key wide-field data of high sensitivity needed to explore how ambient gas in molecular clouds forms filaments that evolve toward star formation.

  8. The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120-5453

    NASA Astrophysics Data System (ADS)

    Privon, G. C.; Aalto, S.; Falstad, N.; Muller, S.; González-Alfonso, E.; Sliwa, K.; Treister, E.; Costagliola, F.; Armus, L.; Evans, A. S.; Garcia-Burillo, S.; Izumi, T.; Sakamoto, K.; van der Werf, P.; Chu, J. K.

    2017-02-01

    We present new Atacama Large Millimeter/submillimeter Array Band 7 (˜340 GHz) observations of the dense gas tracers HCN, HCO+, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120-5453. We find centrally enhanced HCN (4-3) emission, relative to HCO+ (4-3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ˜1.2 yr-1, the high HCN/HCO+ ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds may also contribute additional mechanical heating. The starburst size implies a high ΣIR of 4.7 × 1012 L ⊙ kpc-2, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H2O lines and find a nuclear dust temperature of ˜40 K. IRAS 13120-5453 has a lower dust temperature and ΣIR than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120-5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.

  9. The simulation and experimental validation on gas-solid two phase flow in the riser of a dense fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Yao; Jiang, Fan; Xu, Xiang; Wang, Sheng-Dian; Fan, Bao-Guo; Xiao, Yun-Han

    2009-06-01

    Gas-solid flow in dense CFB (circulating fluidized bed)) riser under the operating condition, superficial gas 15.5 m/s and solid flux 140 kg/m2s using Geldart B particles (sand) was investigated by experiments and CFD (computational fluid dynamics) simulation. The overall and local flow characteristics are determined using the axial pressure profiles and solid concentration profiles. The cold experimental results indicate that the axial solid concentration distribution contains a dilute region towards the up-middle zone and a dense region near the bottom and the top exit zones. The typical core-annulus structure and the back-mixing phenomenon near the wall of the riser can be observed. In addition, owing to the key role of the drag force of gas-solid phase, a revised drag force coefficient, based on the EMMS (energy-minimization multi-scale) model which can depict the heterogeneous character of gas-solid two phase flow, was proposed and coupled into the CFD control equations. In order to find an appropriate drag force model for the simulation of dense CFB riser, not only the revised drag force model but some other kinds of drag force model were used in the CFD. The flow structure, solid concentration, clusters phenomenon, fluctuation of two phases and axial pressure drop were analyzed. By comparing the experiment with the simulation, the results predicted by the EMMS drag model showed a better agreement with the experimental axial average pressure drop and apparent solid volume fraction, which proves that the revised drag force based on the EMMS model is an appropriate model for the dense CFB simulation.

  10. Analytical Wave Functions for Ultracold Collisions.

    NASA Astrophysics Data System (ADS)

    Cavagnero, M. J.

    1998-05-01

    Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.

  11. Optimizing Dense Plasma Focus Neutron Yields With Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Stein, Elizabeth; Higginson, Drew; Kueny, Christopher; Link, Anthony; Schmidt, Andrea

    2017-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high-density jets are modeled in the large-eddy Navier-Stokes code CharlesX, which is suitable for modeling both sub-sonic and supersonic gas flow. The gas pattern, which is essentially static on z-pinch time scales, is imported from CharlesX to LSP for neutron yield predictions. Fast gas puffs allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of a subsonic jet increases relative to the background fill, we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density via super-sonic flow (also known as Mach diamonds) allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration and the necessary jet conditions for increasing neutron yield and reducing yield variability are explored. Simulations of realistic jet profiles are performed and compared to the ideal scenario. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL.

  12. Testing Lorentz and C P T invariance with ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Escobar, C. A.

    2018-05-01

    In this paper we investigate, within the standard model extension framework, the influence of Lorentz- and C P T -violating terms on gravitational quantum states of ultracold neutrons. Using a semiclassical wave packet, we derive the effective nonrelativistic Hamiltonian which describes the neutrons vertical motion by averaging the contributions from the perpendicular coordinates to the free falling axis. We compute the physical implications of the Lorentz- and C P T -violating terms on the spectra. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the symmetries-violation cμν n coefficients. We find that ultracold neutrons are sensitive to the ain and ein coefficients, which thus far are unbounded by experiments in the neutron sector. We propose two additional problems involving ultracold neutrons which could be relevant for improving our current bounds; namely, gravity-resonance spectroscopy and neutron whispering gallery wave.

  13. Artificial Gauge Fields for Ultracold Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Jimenez-Garcia, Karina

    2013-05-01

    Ultracold atoms are a versatile probe for physics at the core of the most intriguing and fascinating systems in the quantum world. Due to the high degree of experimental control offered by such systems, effective Hamiltonians can be designed and experimentally implemented on them. This unique feature makes ultracold atom systems ideal for quantum simulation of complex phenomena as important as high-temperature superconductivity, and recently of novel artificial gauge fields. Suitably designed artificial gauge fields allow neutral particles to experience synthetic- electric or magnetic fields; furthermore, their generalization to matrix valued gauge fields leads to spin-orbit coupling featuring unprecedented control in contrast to ordinary condensed matter systems, thus allowing the characterization of the underlying mechanism of phenomena such as the spin Hall effect and topological insulators. In this talk, I will present an overview of our experiments on quantum simulation with ultracold atom systems by focusing on the realization of light induced artificial gauge fields. We illuminate our Bose-Einstein condensates with a pair of far detuned ``Raman'' lasers, thus creating dressed states that are spin and momentum superpositions. We adiabatically load the atoms into the lowest energy dressed state, where they acquire an experimentally-tunable effective dispersion relation, i.e. we introduce gauge terms into the Hamiltonian. We control such light-induced gauge terms via the strength of the Raman coupling and the detuning from Raman resonance. Our experimental techniques for ultracold bosons have surpassed the apparent limitations imposed by their neutral charge, bosonic nature, and ultra-low energy and have allowed the observation of these new and exciting phenomena. Future work might allow the realization of the bosonic quantum Hall effect, of topological insulators and of systems supporting Majorana fermions using cold atoms. This work was partially supported by

  14. Dipolar collisions of ultracold 23Na87Rb molecules.

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; González-Martínez, Maykel; Dulieu, Olivier; Wang, Dajun

    2017-04-01

    Although ultracold polar molecules have long been proposed as a primary candidate for investigating dipolar many body physics, many of their basic properties, like their collisions in external electric fields, are still largely unknown. In fact, despite the successful production of several new ultracold molecular species in the last two years, so far the only available dipolar collision data is still from JILA's fermionic 40K87Rb experiment in 2010. In this talk, we will describe our investigation on dipolar collisions of ultracold bosonic and chemically stable 23Na87Rb molecules which possess a large permanent electric dipole moment. With a moderate electric field, an effective dipole moment large enough to strongly couple higher partial waves into the collisions can be achieved. We will report the influence of this effect on the molecular collisions observed in our experiment. Our theoretical model for understanding these observations will also be presented. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  15. Computational Modeling of Low-Density Ultracold Plasmas

    NASA Astrophysics Data System (ADS)

    Witte, Craig

    In this dissertation I describe a number of different computational investigations which I have undertaken during my time at Colorado State University. Perhaps the most significant of my accomplishments was the development of a general molecular dynamic model that simulates a wide variety of physical phenomena in ultracold plasmas (UCPs). This model formed the basis of most of the numerical investigations discussed in this thesis. The model utilized the massively parallel architecture of GPUs to achieve significant computing speed increases (up to 2 orders of magnitude) above traditional single core computing. This increased computing power allowed for each particle in an actual UCP experimental system to be explicitly modeled in simulations. By using this model, I was able to undertake a number of theoretical investigations into ultracold plasma systems. Chief among these was our lab's investigation of electron center-of-mass damping, in which the molecular dynamics model was an essential tool in interpreting the results of the experiment. Originally, it was assumed that this damping would solely be a function of electron-ion collisions. However, the model was able to identify an additional collisionless damping mechanism that was determined to be significant in the first iteration of our experiment. To mitigate this collisionless damping, the model was used to find a new parameter range where this mechanism was negligible. In this new parameter range, the model was an integral part in verifying the achievement of a record low measured UCP electron temperature of 1.57 +/- 0.28K and a record high electron strong coupling parameter, Gamma, of 0.35 +/-0.08$. Additionally, the model, along with experimental measurements, was used to verify the breakdown of the standard weak coupling approximation for Coulomb collisions. The general molecular dynamics model was also used in other contexts. These included the modeling of both the formation process of ultracold plasmas

  16. Ultracold atoms in an optical lattice one millimeter from air

    NASA Astrophysics Data System (ADS)

    Jervis, Dylan; Edge, Graham; Trotzky, Stefan; McKay, David; Thywissen, Joseph

    2013-05-01

    Over the past decade, ultracold atoms in optical lattices have shown to be versatile systems able to realize canonical Hamiltonians of condensed matter. High-resolution in-situ imaging of ultracold clouds has furthermore enabled thermometry, equation of state measurements, direct measurement of fluctuations, and unprecedented control. We report on microscopy of ultracold bosons and fermions in a novel configuration where the atoms are harmonically trapped 800 microns away from a 200 micron-thick vacuum window. This window also serves as a retro-reflecting mirror for an optical lattice, into which the atoms can be loaded. Two additional transverse standing waves complete the three-dimensional lattice setup. In free space, we have shown that laser cooling with 405 nm light, on the open 4S1/2-5P3/2 transition, allows for temperatures below the Doppler temperature of the 4S1/2-4P3/2 cycling transition at 767 nm. Microscopy with 405 nm light furthermore reduces the diffraction limit of in-situ imaging.

  17. Observation of Feshbach resonances between ultracold Na and Rb atoms

    NASA Astrophysics Data System (ADS)

    Wang, Fudong; Xiong, Dezhi; Li, Xiaoke; Wang, Dajun

    2013-03-01

    Absolute ground-state 23Na87Rb molecule has a large electric dipole moment of 3.3 Debye and its two body exchange chemical reaction is energetically forbidden at ultracold temperatures. It is thus a nice candidate for studying quantum gases with dipolar interactions. We have built an experiment setup to investigate ultracold collisions between Na and Rb atoms as a first step toward the production of ground state molecular samples. Ultracold mixtures are first obtained by evaporative cooling of Rb and sympathetic cooling of Na. They are then transferred to a crossed dipole trap and prepared in different spin combinations for Feshbach resonance study. Several resonances below 1000 G are observed with both atoms prepared in either | F = 1,mF = 1 > or | F = 1,mF = - 1 > hyperfine states. Most of them are within 30 G of predicted values§ based on potentials obtained by high quality molecular spectroscopy studies. This work is supported by RGC Hong Kong. § E. Tiemann, private communications

  18. ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Elisabeth A. C.; Battersby, Cara, E-mail: elisabeth.mills@sjsu.edu

    We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources ofmore » scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.« less

  19. Ultracold Molecules in Optical Lattices: Efficient Production and Application to Molecular Clocks

    DTIC Science & Technology

    2015-05-03

    near the intercombination- line threshold were measured for a variety of states, and explained by considering nonadiabatic effects ( Coriolis coupling) in...Moszynski, T. Zelevinsky. Nonadiabatic Effects in Ultracold Molecules via Anomalous Linear and Quadratic Zeeman Shifts, Physical Review Letters, (12...M. McDonald, G. Reinaudi, W. Skomorowski, R. Moszynski, T. Zelevinsky. Measurement of Nonadiabatic Effects in Ultracold Molecules via Anomalous

  20. From gas to stars in energetic environments: dense gas clumps in the 30 Doradus region within the Large Magellanic Cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Crystal N.; Meier, David S.; Ott, Jürgen

    2014-09-20

    We present parsec-scale interferometric maps of HCN(1-0) and HCO{sup +}(1-0) emission from dense gas in the star-forming region 30 Doradus, obtained using the Australia Telescope Compact Array. This extreme star-forming region, located in the Large Magellanic Cloud (LMC), is characterized by a very intense ultraviolet ionizing radiation field and sub-solar metallicity, both of which are expected to impact molecular cloud structure. We detect 13 bright, dense clumps within the 30 Doradus-10 giant molecular cloud. Some of the clumps are aligned along a filamentary structure with a characteristic spacing that is consistent with formation via varicose fluid instability. Our analysis showsmore » that the filament is gravitationally unstable and collapsing to form stars. There is a good correlation between HCO{sup +} emission in the filament and signatures of recent star formation activity including H{sub 2}O masers and young stellar objects (YSOs). YSOs seem to continue along the same direction of the filament toward the massive compact star cluster R136 in the southwest. We present detailed comparisons of clump properties (masses, linewidths, and sizes) in 30Dor-10 to those in other star forming regions of the LMC (N159, N113, N105, and N44). Our analysis shows that the 30Dor-10 clumps have similar masses but wider linewidths and similar HCN/HCO{sup +} (1-0) line ratios as clumps detected in other LMC star-forming regions. Our results suggest that the dense molecular gas clumps in the interior of 30Dor-10 are well shielded against the intense ionizing field that is present in the 30 Doradus region.« less

  1. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit

    DOE PAGES

    Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; ...

    2016-10-07

    Here we perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N = 1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F xc of the macroscopic electron gas withmore » an unprecedented accuracy of | Δ V | / | V | , | Δ F xc | / | F | xc ~ 10 $-$3. Finally, a comparison of our new data to the recent parametrization of F xc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.« less

  2. Bose and Fermi Gases of Ultracold Ytterbium in a Triangular Optical Lattice

    NASA Astrophysics Data System (ADS)

    Thobe, Alexander; Doerscher, Soeren; Hundt, Bastian; Kochanke, Andre; Becker, Christoph; Sengstock, Klaus

    2013-05-01

    Quantum gases of alkaline-earth like atoms such as Calcium, Strontium and Ytterbium (Yb) open up exciting new possibilities for the study of many body physics in optical lattices, ranging from SU(N) symmetric spin Hamiltonians to the Kondo Lattice Model. Here, we present experimental studies of ultracold bosonic and fermionic Yb quantum gases. Unlike other experiments studying ultracold alkaline earth-like atoms, we have implemented a 2D-MOT instead of a Zeeman slower as a source of cold atoms. From the 2D-MOT, operating on the broad 1S0 -->1P1 transtition, the atoms are directly loaded into the 3D-MOT operating on a narrow intercombination line. The atoms are then evaporatively cooled to quantum degeneracy in a crossed optical dipole trap. With this setup we routinely produce BECs and degenerate Fermi gases of different Yb isotopes. Moreover, we present first results on spectroscopy of an interacting fermi gas on the ultranarrow 1S0 -->3P0 clock transition in a magic wavelength optical lattice. In future experiments, this spectroscopy will serve as a versatile tool for interaction sensing and selective addressing of atoms in a wavelength tunable, state dependent, triangular optical lattice, which we are currently implementing. This work is supported by DFG within SFB 925 and GrK 1355, as well as EU FETOpen (iSense).

  3. Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Dong, Lin

    Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.

  4. Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV

    DTIC Science & Technology

    2015-11-20

    AFRL-AFOSR-VA-TR-2015-0388 COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV R Jason Jones ARIZONA UNIV BOARD OF REGENTS TUCSON Final...TITLE AND SUBTITLE COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0563 5c. PROGRAM...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Narrow UV transitions in atomic Hg can be utilized

  5. Importance of geometric phase effects in ultracold chemistry

    DOE PAGES

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2015-08-28

    Here, it is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. The effect arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. It is magnified when the two scattering amplitudes have comparable magnitude and they scatter into the same angular region which occurs in the isotropic scatteringmore » characteristic of the ultracold regime (s-wave scattering). Results are presented for the O + OH → H + O 2 reaction for total angular momentum quantum number J = 0–5. Large geometric phase effects occur for collision energies below 0.1 K, but the effect vanishes at higher energies when contributions from different partial waves are included. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. In this case, the geometric phase plays the role of a “quantum switch” which can turn the reaction “on” or “off”.« less

  6. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime

    NASA Astrophysics Data System (ADS)

    Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.

    2018-04-01

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  7. Symmetry and the geometric phase in ultracold hydrogen-exchange reactions

    NASA Astrophysics Data System (ADS)

    Croft, J. F. E.; Hazra, J.; Balakrishnan, N.; Kendrick, B. K.

    2017-08-01

    Quantum reactive scattering calculations are reported for the ultracold hydrogen-exchange reaction and its non-reactive atom-exchange isotopic counterparts, proceeding from excited rotational states. It is shown that while the geometric phase (GP) does not necessarily control the reaction to all final states, one can always find final states where it does. For the isotopic counterpart reactions, these states can be used to make a measurement of the GP effect by separately measuring the even and odd symmetry contributions, which experimentally requires nuclear-spin final-state resolution. This follows from symmetry considerations that make the even and odd identical-particle exchange symmetry wavefunctions which include the GP locally equivalent to the opposite symmetry wavefunctions which do not. It is shown how this equivalence can be used to define a constant which quantifies the GP effect and can be obtained solely from experimentally observable rates. This equivalence reflects the important role that discrete symmetries play in ultracold chemistry and highlights the key role that ultracold reactions can play in understanding fundamental aspects of chemical reactivity more generally.

  8. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    PubMed

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  9. The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120–5453

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Privon, G. C.; Treister, E.; Aalto, S.

    2017-02-01

    We present new Atacama Large Millimeter/submillimeter Array Band 7 (∼340 GHz) observations of the dense gas tracers HCN, HCO{sup +}, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120–5453. We find centrally enhanced HCN (4–3) emission, relative to HCO{sup +} (4–3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ∼1.2 yr{sup −1}, the high HCN/HCO{sup +} ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds maymore » also contribute additional mechanical heating. The starburst size implies a high Σ{sub IR} of 4.7 × 10{sup 12} L {sub ⊙} kpc{sup −2}, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H{sub 2}O lines and find a nuclear dust temperature of ∼40 K. IRAS 13120–5453 has a lower dust temperature and Σ{sub IR} than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120–5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.« less

  10. Ultra-Cold Atoms on Optical Lattices

    ERIC Educational Resources Information Center

    Ghosh, Parag

    2009-01-01

    The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…

  11. Manufacturing a thin wire electrostatic trap for ultracold polar molecules.

    PubMed

    Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P

    2007-11-01

    We present a detailed description on how to build a thin wire electrostatic trap (TWIST) for ultracold polar molecules. It is the first design of an electrostatic trap that can be superimposed directly onto a magneto-optical trap (MOT). We can thus continuously produce ultracold polar molecules via photoassociation from a two species MOT and instantaneously trap them in the TWIST without the need for complex transfer schemes. Despite the spatial overlap of the TWIST and the MOT, the two traps can be operated and optimized completely independently due to the complementary nature of the utilized trapping mechanisms.

  12. Preparation of Ultracold Atom Clouds at the Shot Noise Level.

    PubMed

    Gajdacz, M; Hilliard, A J; Kristensen, M A; Pedersen, P L; Klempt, C; Arlt, J J; Sherson, J F

    2016-08-12

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔNultracold clouds can be prepared below the shot noise level.

  13. The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, M B

    2008-05-11

    Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reactsmore » with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.« less

  14. Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jie, Jianwen; Qi, Ran; Zhang, Peng

    2018-05-01

    We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.

  15. Characterizing Feshbach resonances in ultracold scattering calculations

    NASA Astrophysics Data System (ADS)

    Frye, Matthew D.; Hutson, Jeremy M.

    2017-10-01

    We describe procedures for converging on and characterizing zero-energy Feshbach resonances that appear in scattering lengths for ultracold atomic and molecular collisions as a function of an external field. The elastic procedure is appropriate for purely elastic scattering, where the scattering length is real and displays a true pole. The regularized scattering length procedure is appropriate when there is weak background inelasticity, so that the scattering length is complex and displays an oscillation rather than a pole, but the resonant scattering length ares is close to real. The fully complex procedure is appropriate when there is substantial background inelasticity and the real and imaginary parts of ares are required. We demonstrate these procedures for scattering of ultracold 85Rb in various initial states. All of them can converge on and provide full characterization of resonances, from initial guesses many thousands of widths away, using scattering calculations at only about ten values of the external field.

  16. Inductively guided circuits for ultracold dressed atoms

    PubMed Central

    Sinuco-León, German A.; Burrows, Kathryn A.; Arnold, Aidan S.; Garraway, Barry M.

    2014-01-01

    Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control. PMID:25348163

  17. Seeing the Forest Through the Trees: The Distribution and Properties of Dense Molecular Gas in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Ellsworth-Bowers, Timothy P.

    The Milky Way Galaxy serves as a vast laboratory for studying the dynamics and evolution of the dense interstellar medium and the processes of and surrounding massive star formation. From our vantage point within the Galactic plane, however, it has been extremely difficult to construct a coherent picture of Galactic structure; we cannot see the forest for the trees. The principal difficulties in studying the structure of the Galactic disk have been obscuration by the ubiquitous dust and molecular gas and confusion between objects along a line of sight. Recent technological advances have led to large-scale blind surveys of the Galactic plane at (sub-)millimeter wavelengths, where Galactic dust is generally optically thin, and have opened a new avenue for studying the forest. The Bolocam Galactic Plane Survey (BGPS) observed over 190 deg 2 of the Galactic plane in dust continuum emission near lambda = 1.1 mm, producing a catalog of over 8,000 dense molecular cloud structures across a wide swath of the Galactic disk. Deriving the spatial distribution and physical properties of these objects requires knowledge of distance, a component lacking in the data themselves. This thesis presents a generalized Bayesian probabilistic distance estimation method for dense molecular cloud structures, and demonstrates it with the BGPS data set. Distance probability density functions (DPDFs) are computed from kinematic distance likelihoods (which may be double- peaked for objects in the inner Galaxy) and an expandable suite of prior information to produce a comprehensive tally of our knowledge (and ignorance) of the distances to dense molecular cloud structures. As part of the DPDF formalism, this thesis derives several prior DPDFs for resolving the kinematic distance ambiguity in the inner Galaxy. From the collection of posterior DPDFs, a set of objects with well-constrained distance estimates is produced for deriving Galactic structure and the physical properties of dense molecular

  18. Trapping of ultracold polar molecules with a thin-wire electrostatic trap.

    PubMed

    Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P

    2007-10-05

    We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.

  19. Determination of the axial-vector weak coupling constant with ultracold neutrons.

    PubMed

    Liu, J; Mendenhall, M P; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; García, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C-Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Pérez Galván, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S J; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R

    2010-10-29

    A precise measurement of the neutron decay β asymmetry A₀ has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A₀ = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.

  20. Particle statistics and lossy dynamics of ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Yago Malo, J.; van Nieuwenburg, E. P. L.; Fischer, M. H.; Daley, A. J.

    2018-05-01

    Experimental control over ultracold quantum gases has made it possible to investigate low-dimensional systems of both bosonic and fermionic atoms. In closed one-dimensional systems there are many similarities in the dynamics of local quantities for spinless fermions and strongly interacting "hard-core" bosons, which on a lattice can be formalized via a Jordan-Wigner transformation. In this study, we analyze the similarities and differences for spinless fermions and hard-core bosons on a lattice in the presence of particle loss. The removal of a single fermion causes differences in local quantities compared with the bosonic case because of the different particle exchange symmetry in the two cases. We identify deterministic and probabilistic signatures of these dynamics in terms of local particle density, which could be measured in ongoing experiments with quantum gas microscopes.

  1. High-resolution internal state control of ultracold 23Na87Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; Wang, Dajun

    2018-02-01

    We report the full internal state control of ultracold 23Na87Rb molecules, including vibrational, rotational, and hyperfine degrees of freedom. Starting from a sample of weakly bound Feshbach molecules, we realize the creation of molecules in single hyperfine levels of both the rovibrational ground and excited states with a high-efficiency and high-resolution stimulated Raman adiabatic passage. This capability brings broad possibilities for investigating ultracold polar molecules with different chemical reactivities and interactions with a single molecular species. Moreover, starting from the rovibrational and hyperfine ground state, we achieve rotational and hyperfine control with one- and two-photon microwave spectroscopy to reach levels not accessible by the stimulated Raman transfer. The combination of these two techniques results in complete control over the internal state of ultracold polar molecules, which paves the way to study state-dependent molecular collisions and state-controlled chemical reactions.

  2. Ultracold neutral plasmas

    NASA Astrophysics Data System (ADS)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  3. Ultracold Neutron Sources

    NASA Astrophysics Data System (ADS)

    Martin, Jeffery

    2016-09-01

    The free neutron is an excellent laboratory for searches for physics beyond the standard model. Ultracold neutrons (UCN) are free neutrons that can be confined to material, magnetic, and gravitational traps. UCN are compelling for experiments requiring long observation times, high polarization, or low energies. The challenge of experiments has been to create enough UCN to reach the statistical precision required. Production techniques involving neutron interactions with condensed matter systems have resulted in some successes, and new UCN sources are being pursued worldwide to exploit higher UCN densities offered by these techniques. I will review the physics of how the UCN sources work, along with the present status of the world's efforts. research supported by NSERC, CFI, and CRC.

  4. Geometrical Optics of Dense Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, amore » critical result for controlled focusing. __________________________________________________« less

  5. Geometric phase effects in ultracold chemistry

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.

    2016-05-01

    In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  6. Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    DTIC Science & Technology

    2016-06-06

    Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular

  7. Total cross sections for ultracold neutrons scattered from gases

    DOE PAGES

    Seestrom, Susan Joyce; Adamek, Evan R.; Barlow, Dave; ...

    2017-01-30

    Here, we have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n-butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He. The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to ourmore » previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.« less

  8. Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid

    NASA Astrophysics Data System (ADS)

    Chomaz, L.; Baier, S.; Petter, D.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.

    2016-10-01

    In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s -wave scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 ×104 atoms . Based on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite scattering length.

  9. Time dependent chemistry in dense molecular clouds. I - Grain surface reactions, gas/grain interactions and infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Dhendecourt, L. B.; Allamandola, L. J.; Greenberg, J. M.

    1985-01-01

    For the fist time, a time-dependent model is described which includes the role of grains in the production of molecules in dense clouds including ion-molecule gas phase chemistry. The approach provides information regarding the coupling between the two phases. Although the coupling between the two chemistries is extremely strong, the two domains maintain their own identities. While H2O, CH4, and NH3 are made efficiently, with a high production rate on grains and released back to the gas phase, the gas phase is essentially responsible for the formation of CO, a very stable molecule which may or may not react on grains with atomic oxygen and may or may not form CO2.

  10. Research of fundamental interactions with use of ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2017-01-01

    Use of ultracold neutrons (UCN) gives unique opportunities of a research of fundamental interactions in physics of elementary particles. Search of the electric dipole moment of a neutron (EDM) aims to test models of CP violation. Precise measurement of neutron lifetime is extremely important for cosmology and astrophysics. Considerable progress in these questions can be reached due to supersource of ultracold neutrons on the basis of superfluid helium which is under construction now in PNPI NRC KI. This source will allow us to increase density of ultracold neutrons approximately by 100 times in respect to the best UCN source at high flux reactor of Institute Laue-Langevin (Grenoble, France). Now the project and basic elements of the source are prepared, full-scale model of the source is tested, the scientific program is developed. Increase in accuracy of neutron EDM measurements by order of magnitude, down to level 10-27 -10-28 e cm is planned. It is highly important for physics of elementary particles. Accuracy of measurement of neutron lifetime can be increased by order of magnitude also. At last, at achievement of UCN density ˜ 103 - 104 cm-3, the experiment search for a neutron-antineutron oscillations using UCN will be possible. The present status of the project and its scientific program will be discussed.

  11. Observation of cooperative Mie scattering from an ultracold atomic cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, H.; Stehle, C.; Slama, S.

    Scattering of light at a distribution of scatterers is an intrinsically cooperative process, which means that the scattering rate and the angular distribution of the scattered light are essentially governed by bulk properties of the distribution, such as its size, shape, and density, although local disorder and density fluctuations may have an important impact on the cooperativity. Via measurements of the radiation pressure force exerted by a far-detuned laser beam on a very small and dense cloud of ultracold atoms, we are able to identify the respective roles of superradiant acceleration of the scattering rate and of Mie scattering inmore » the cooperative process. They lead, respectively, to a suppression or an enhancement of the radiation pressure force. We observe a maximum in the radiation pressure force as a function of the phase shift induced in the incident laser beam by the cloud's refractive index. The maximum marks the borderline of the validity of the Rayleigh-Debye-Gans approximation from a regime, where Mie scattering is more complex. Our observations thus help to clarify the intricate relationship between Rayleigh scattering of light at a coarse-grained ensemble of individual scatterers and Mie scattering at the bulk density distribution.« less

  12. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    NASA Astrophysics Data System (ADS)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  13. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS On control of kinematic parameters of ultracold neutrons in waveguides

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2010-10-01

    The possibility of controlling the kinematic parameters of ultracold neutrons (UCNs) is analysed by the example of a waveguide transfer and transformation of 2D images in ultracold neutrons and by the example of an increase in the concentration and deceleration/acceleration of ultracold neutrons during their transport in the waveguide with a variable cross section. The critical parameters of the problem are estimated, which indicates both consistency of the proposed approach and the emerging experimental limitations.

  14. Tunneling and traversal of ultracold three-level atoms through vacuum-induced potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Shahid

    2011-09-15

    The passage of ultracold three-level atoms through the potential induced by the vacuum cavity mode is discussed using cascade atomic configuration. We study the tunneling or traversal time of the ultracold atoms via a bimodal high-Q cavity. It is found that the phase time, which may be considered as a measure for the time required to traverse the cavity, exhibits superclassical and subclassical behaviors. Further, the dark states and interference effects in cascade atomic configuration may influence the passage time of the atom through the cavity.

  15. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yinghe; Lu, Nanyao; Xu, C. Kevin

    We present our high-resolution (0.″15 × 0.″13, ∼34 pc) observations of the CO (6−5) line emission, which probes the warm and dense molecular gas, and the 434 μ m dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6−5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the COmore » (6−5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ∼10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa- α equivalent width. Within the nuclear region (radius ∼ 300 pc) and with a resolution of ∼34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s{sup −1} (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel .« less

  16. Making a molecular gas in the quantum regime

    NASA Astrophysics Data System (ADS)

    Ni, Kang-Kuen

    2017-04-01

    Ultracold molecules are exciting systems for a large range of scientific explorations including studies of novel phases of matter and precision measurement. In this talk, I will present a brief story of the first quantum gas of molecules, KRb, created under my PhD advisor, Deborah Jin, in 2008. A complete surprise was finding ultracold chemistry in such a system through measurements of reactant losses. In particular, long-range physics that determines KRb reactant collision rates, including van der Waals interactions, quantum statistics, and dipolar interactions, were studied extensively. However, the short-range behavior of these chemical reactions remains unknown. A legacy of her work is carried out in my lab at Harvard, where we are integrating physical chemistry tools with cold atom techniques to study ultracold chemistry with KRb molecules. In particular, we aim to elucidate the four-center reaction 2 KRb ->K2 + Rb2 by detecting the reaction products through ionization - both identify the product species and mapping out their complete quantum states.

  17. Universality and chaoticity in ultracold K+KRb chemical reactions

    DOE PAGES

    Croft, J. F. E.; Makrides, C.; Li, M.; ...

    2017-07-19

    A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatures lower than a few tens of nanokelvin. Here we consider the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. We map out an accurate ab initio ground-state potential energy surface of the K 2Rb complex in full dimensionality and report numerically-exact quantum-mechanical reaction dynamics. The distribution of rotationally resolved rates is shown to be Poissonian. An analysismore » of the hyperspherical adiabatic potential curves explains this statistical character revealing a chaotic distribution for the short-range collision complex that plays a key role in governing the reaction outcome.« less

  18. Characterising the Dense Molecular Gas in Exceptional Local Galaxies

    NASA Astrophysics Data System (ADS)

    Tunnard, Richard C. A.

    2016-08-01

    The interferometric facilities now coming online (the Atacama Large Millimetre Array (ALMA) and the NOrthern Extended Millimeter Array (NOEMA)) and those planned for the coming decade (the Next Generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA)) in the radio to sub-millimetre regimes are opening a window to the molecular gas in high-redshift galaxies. However, our understanding of similar galaxies in the local universe is still far from complete and the data analysis techniques and tools needed to interpret the observations in consistent and comparable ways are yet to be developed. I first describe the Monte Carlo Markov Chain (MCMC) script developed to empower a public radiative transfer code. I characterise both the public code and MCMC script, including an exploration of the effect of observing molecular lines at high redshift where the Cosmic Microwave Background (CMB) can provide a significant background, as well as the effect this can have on well-known local correlations. I present two studies of ultraluminous infrared galaxies (ULIRGs) in the local universe making use of literature and collaborator data. In the first of these, NGC6240, I use the wealth of available data and the geometry of the source to develop a multi-phase, multi-species model, finding evidence for a complex medium of hot diffuse and cold dense gas in pressure equilibrium. Next, I study the prototypical ULIRG Arp 220; an extraordinary galaxy rendered especially interesting by the controversy over the power source of the western of the two merger nuclei and its immense luminosity and dust obscuration. Using traditional grid based methods I explore the molecular gas conditions within the nuclei and find evidence for chemical differentiation between the two nuclei, potentially related to the obscured power source. Finally, I investigate the potential evolution of proto-clusters over cosmic time with sub-millimetre observations of 14 radio galaxies, unexpectedly finding

  19. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  20. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivity

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Guo, Mingyang; He, Junyu; Wang, Dajun; Quemener, Goulven; Gonzalez-Martinez, Maykel; Dulieu, Oliver

    2017-04-01

    The recent successful creation of several ultracold absolute ground-state polar molecules without chemical reaction channel has opened a new playground for investigating the so far poorly understood collisions between them. On one hand, these collisions are indispensable for the exploration of dipolar physics, on the other hand, they are direct manifestations of the brand-new field of ultracold chemistry. Here, we report on the study on molecular collisions with ultracold ground-state 23Na87Rb molecules prepared by transferring weakly bound Feshbach molecules with STIRAP. By tuning the Raman laser wavelength to control the internal states, samples with distinctly different chemical reactivity and inelastic channels can be prepared. Surprisingly, we found that the trap loss of the non-reactive case is nearly identical to that of the reactive case. We also developed a model based on the collision complex formation mechanism. The comparison between experiment and theory will also be presented. This work was supported by the French ANR/Hong Kong RGC COPOMOL project (Grant No. A-CUHK403/13), the RGC General Research Fund (Grant No. CUHK14301815).

  1. Strong Photoassociation in Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Jing, Li; Jamison, Alan; Rvachov, Timur; Ebadi, Sepher; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there are still open questions about strong photoassociation in ultracold gases. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system and to engineer Hamiltonians using dissipation. We propose the possibility to slow down decoherence by photoassociation through the quantum Zeno effect. This can realized by shining strong photoassociation light on the superposition of the lowest two hyperfine states of Lithium 6. NSF, ARO-MURI, Samsung, NSERC.

  2. The Dense Gas Fraction in the Central Molecular Zone in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vargas-Salazar, Irene; Battersby, Cara; Walker, Daniel; Zhang, Qizhou; CMZoom

    2017-01-01

    The Central Molecular Zone (CMZ), a large reservoir of dense molecular gas occupying the central 500pc of the Milky Way, is an extreme star-formation environment where the validity of star formation prescriptions can be tested. The star formation rate (SFR) in the CMZ is about an order of magnitude lower than predicted by the currently accepted prescriptions. An international team lead by PIs Battersby and Keto conducted a survey from 2013-2016 called CMZoom using the Submillimeter Array (SMA) to characterize star formation within resolved molecular clouds in this extreme region. One of the main goals of this survey is to further quantify and understand the low SFR found in this region of the Galaxy. Here, we use the CASA software package to run synthetic observations of hydrodynamical simulations of molecular clouds and vary the observation parameters in such a way that we explore the real parameter space that was probed during the survey. The purpose of this is to investigate how the different observational parameters affect the resultant data. Afterwards, we estimate the “dense gas fraction” (DGF) found in regions across the CMZ. This estimate was found by using the interferometric flux from SMA and the single-dish flux from the Bolocam Galactic Plane Survey. We analyzed the effects that different locations of the CMZ had on these approximate DGF. With these simulations and DGF estimates, we are able to generate improved methods to analyze the data from this survey that will help understand star formation in an extreme environment.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no.1262851, and by the Smithsonian Institution.

  3. Testing of a new dense gas approach in the Lagrangian Dispersion Model SPRAY.

    NASA Astrophysics Data System (ADS)

    Mortarini, Luca; Alessandrini, Stefano; Ferrero, Enrico; Anfossi, Domenico; Manfrin, Massimiliano

    2013-04-01

    A new original method for the dispersion of a positively and negatively buoyant plume is proposed. The buoyant pollutant movement is treated introducing a fictitious scalar inside the Lagrangian Stochastic Particle Model SPRAY. The method is based on the same idea of Alessandrini and Ferrero (Phys. A 388:1375-1387, 2009) for the treatment of a background substance entrainment into the plume. In this application, the fictitious scalar is the density and momentum difference between the plume portions and the environment air that naturally takes into account the interaction between the plume and the environment. As a consequence, no more particles than those inside the plume have to be released to simulate the entrainment of the background air temperature. In this way the entrainment is properly simulated and the plume sink is calculated from the local property of the flow. This new approach is wholly Lagrangian in the sense that the Eulerian grid is only used to compute the propriety of a portion of the plume from the particles contained in every cell. No equation of the bulk plume is solved on a fixed grid. To thoroughly test the turbulent velocity field calculated by the model, the latter is compared with a water tank experiment carried out in the TURLAB laboratory in Turin (Italy). A vertical density driven current was created releasing a saline solution (salt and water) in a water tank with no mean flow. The experiment reproduces in physical similarity, based on the density Froud number, the release of a dense gas in the planetary boundary layer and the Particle Image Velocimetry technique has been used to analyze the buoyancy generated velocity field. The high temporal and spatial resolution of the measurements gives a deep insight to the problems of the bouncing of the dense gas and of the creation of the outflow velocity at the ground.

  4. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    NASA Astrophysics Data System (ADS)

    Zhao, Yinghe; Lu, Nanyao; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Charmandaris, Vassilis; van der Werf, Paul; Zhang, Zhi-Yu; Cao, Chen

    2017-08-01

    We present our high-resolution (0.″15 × 0.″13, ˜34 pc) observations of the CO (6-5) line emission, which probes the warm and dense molecular gas, and the 434 μm dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ˜10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α equivalent width. Within the nuclear region (radius ˜ 300 pc) and with a resolution of ˜34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s-1 (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  5. Application of a Dense Gas Technique for Sterilizing Soft Biomaterials

    PubMed Central

    Karajanagi, Sandeep S.; Yoganathan, Roshan; Mammucari, Raffaella; Park, Hyoungshin; Cox, Julian; Zeitels, Steven M.; Langer, Robert; Foster, Neil R.

    2017-01-01

    Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO2)-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO2. The dense CO2-based methods effectively sterilized the hydrogels achieving a SAL of 10−7 without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO2-treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO2-based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements. PMID:21337339

  6. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.

    PubMed

    Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D

    2014-05-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.

  7. Coherent Multiple Light Scattering in Ultracold Atomic Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2003-05-01

    Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.

  8. Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse.

    PubMed

    Collins, T A; Malinovskaya, S A

    2012-06-15

    At ultracold temperatures, atoms are free from thermal motion, which makes them ideal objects of investigations aiming to advance high-precision spectroscopy, metrology, quantum computation, producing Bose condensates, etc. The quantum state of ultracold atoms may be created and manipulated by making use of quantum control methods employing low-intensity pulses. We theoretically investigate population dynamics of ultracold Rb vapor induced by nanosecond linearly chirped pulses having kW/cm2 beam intensity and show a possibility of controllable population transfer between hyperfine (HpF) levels of 5(2)/S(1/2) state through Raman transitions. Satisfying the one-photon resonance condition with the lowest of the HpF states of 5(2)/P(1/2) or 5(2)/P(3/2) state allows us to enter the adiabatic region of population transfer at very low field intensities, such that corresponding Rabi frequencies are less than or equal to the HpF splitting. This methodology provides a robust way to create a specifically designed superposition state in Rb in the basis of HpF levels and perform state manipulation controllable on the picosecond-to-nanosecond time scale.

  9. Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz-Weiling, Markus; Grant, Edward

    Double-resonant excitation of nitric oxide in a seeded supersonic molecular beam forms a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma travels with the propagation of the molecular beam in z over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The ω{sub 1} + ω{sub 2} laser crossed molecular beam excitation geometry convolutes the axial Gaussian distribution of NO in the molecular beam with the Gaussian intensity distribution of the perpendicularly aligned laser beam to create an ellipsoidal volume of Rydbergmore » gas. Detected images describe the evolution of this initial density as a function of selected Rydberg gas initial principal quantum number, n{sub 0}, ω{sub 1} laser pulse energy (linearly related to Rydberg gas density, ρ{sub 0}) and flight time. Low-density Rydberg gases of lower principal quantum number produce uniformly expanding, ellipsoidal charge-density distributions. Increase either of n{sub 0} or ρ{sub 0} breaks the ellipsoidal symmetry of plasma expansion. The volume bifurcates to form repelling plasma volumes. The velocity of separation depends on n{sub 0} and ρ{sub 0} in a way that scales uniformly with ρ{sub e}, the density of electrons formed in the core of the Rydberg gas by prompt Penning ionization. Conditions under which this electron gas drives expansion in the long axis dimension of the ellipsoid favours the formation of counter-propagating shock waves.« less

  10. Velocity selection for ultracold atoms using mazer action in a bimodal cavity

    NASA Astrophysics Data System (ADS)

    Irshad, Afshan; Qamar, Sajid; Qamar, Shahid

    2010-01-01

    In this paper, we discuss the velocity selection of ultracold three-level atoms in Λ configuration using a mazer. Our model is the same as discussed by Arun et al. [R. Arun, G.S. Agarwal, M.O. Scully, H. Walther, Phys. Rev. A 62 (2000) 023809] for mazer action in a bimodal cavity. We show that the initial Maxwellian velocity distribution of ultracold atoms can be narrowed due to the presence of resonances in the transmission through dressed-state potential. When the atoms are initially prepared in one of the two lower atomic states then significantly better velocity selectivity is obtained due to the presence of dark states.

  11. Transonic aerodynamics of dense gases. M.S. Thesis - Virginia Polytechnic Inst. and State Univ., Apr. 1990

    NASA Technical Reports Server (NTRS)

    Morren, Sybil Huang

    1991-01-01

    Transonic flow of dense gases for two-dimensional, steady-state, flow over a NACA 0012 airfoil was predicted analytically. The computer code used to model the dense gas behavior was a modified version of Jameson's FL052 airfoil code. The modifications to the code enabled modeling the dense gas behavior near the saturated vapor curve and critical pressure region where the fundamental derivative, Gamma, is negative. This negative Gamma region is of interest because the nonclassical gas behavior such as formation and propagation of expansion shocks, and the disintegration of inadmissible compression shocks may exist. The results indicated that dense gases with undisturbed thermodynamic states in the negative Gamma region show a significant reduction in the extent of the transonic regime as compared to that predicted by the perfect gas theory. The results support existing theories and predictions of the nonclassical, dense gas behavior from previous investigations.

  12. First Results from the Dense Extragalactic GBT+ARGUS Survey (DEGAS): A Direct, Quantitative Test of the Role of Gas Density in Star Formation

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda; Bigiel, Frank; Bolatto, Alberto; Church, Sarah; Cleary, Kieran; Frayer, David; Gallagher, Molly; Gundersen, Joshua; Harris, Andrew; Hughes, Annie; Jimenez-Donaire, Maria Jesus; Kessler, Sarah; Lee, Cheoljong; Leroy, Adam; Li, Jialu; Donovan Meyer, Jennifer; Rosolowsky, Erik; Sandstrom, Karin; Schinnener, Eva; Schruba, Andreas; Sieth, Matt; Usero, Antonio

    2018-01-01

    Gas density plays a central role in all modern theories of star formation. A key test of these theories involves quantifying the resolved gas density distribution and its relationship to star formation within a wide range of galactic environments. Until recently, this experiment has been difficult to perform owing to the faint nature of key molecular gas tracers like HCN and HCO+, but the superior sensitivity of modern millimeter instruments like ALMA and the IRAM 30m make these types of experiments feasible. In particular, the sensitivity and resolution provided by large aperture of the GBT combined with fast mapping speeds made possible by its new 16-pixel, 3mm focal plane array (Argus) make the GBT an almost-ideal instrument for this type of study. The Dense Extragalactic GBT+Argus Survey (DEGAS) will leverage these capabilities to perform the largest, resolved survey of molecular gas tracers in nearby galaxies, ultimately mapping a suite of four molecular gas tracers in the inner 2’ by 2’ of 36 nearby galaxies. When complete in 2020, DEGAS will be the largest resolved survey of dense molecular gas tracers in nearby galaxies. This talk will present early results from the first observations for this Green Bank Telescope large survey and highlight some exciting future possibilities for this survey.

  13. Quasi-One-Dimensional Ultracold Fermi Gases

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.

    Ultracold atoms have become an essential tool in studying condensed matter phenomena. The advantage of atomic physics experiments is that they provide an easily tunable system. This experiment uses the lowest two ground state hyperfine levels of fermionic lithium. Having two different states creates a pseudo-spin- 1/2 system and allows us to emulate electronic systems, such as superconductors and crystal lattices. In our experiment, we can control the ratio between these two states resulting in either a spin-balanced or a spin-imbalanced gas. Imposing an imbalance is analogous to applying a magnetic field to a superconductor which causes the electrons in the material to align to the field (thus breaking the electron pairs which cause superconductivity). This motivates us to understand the phases created when a spin-imbalance is created and the effect of changing the atomic interactions. In a 3D system, we find where superfluidity is suppressed throughout the BEC to BCS crossover. Using phase separation as a guide, we probe the dimensional crossover between 1D and 3D. The phase separation in 1D is inverted from that in 3D, which provides a unique characteristic to distinguish between the dimensions. By varying the tunneling between tubes and the atomic interactions in a 2D optical lattice, we control whether the system is 1D, 3D, or in between. Using the properties of a 3D gas as a guide, we directly observe when the gas has crossed over from being dominated by 1D-like behavior to 3D. In this way, we have found a universal value for the dimensional crossover. The 1D-3D crossover paves the way to search for the exotic FFLO (Fulde-Ferrell-Larkin-Ovchinnikov) superconductor. While most superconductors do not coexist with magnetism, the FFLO phase requires large magnetic fields to support its pairing mechanism. Additionally, this phase is more likely to be found in lower dimensional systems. However, at low dimensions, the effect of temperature fluctuations on the phase

  14. Effect of collisions on neutrino flavor inhomogeneity in a dense neutrino gas

    DOE PAGES

    Cirigliano, Vincenzo; Paris, Mark W.; Shalgar, Shashank

    2017-09-25

    We investigate the stability, with respect to spatial inhomogeneity, of a two-dimensional dense neutrino gas. The system exhibits growth of seed inhomogeneity due to nonlinear coherent neutrino self-interactions. In the absence of incoherent collisional effects, we also observe a dependence of this instability growth rate on the neutrino mass spectrum: the normal neutrino mass hierarchy exhibits spatial instability over a larger range of neutrino number density compared to that of the inverted case. Furthermore, we consider the effect of elastic incoherent collisions of the neutrinos with a static background of heavy, nucleon-like scatterers. At small scales, the growth of flavormore » instability can be suppressed by collisions. At large length scales we find, perhaps surprisingly, that for inverted neutrino mass hierarchy incoherent collisions fail to suppress flavor instabilities, independent of the coupling strength.« less

  15. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    NASA Astrophysics Data System (ADS)

    Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Myers, Philip C.; Di Francesco, James; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Chen, How-Huan; Chun-Yuan Chen, Michael; Keown, Jared; Punanova, Anna; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine; Singh, Ayushi; Arce, Héctor G.; Goodman, Alyssa A.; Martin, Peter; Redaelli, Elena

    2017-09-01

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  16. Holographic method for site-resolved detection of a 2D array of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes

    2016-08-01

    We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

  17. Explosive desorption of icy grain mantles in dense clouds

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Greenberg, J. M.

    1991-01-01

    The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.

  18. Potential Engineering of Fermi-Hubbard Systems using a Quantum Gas Microscope

    NASA Astrophysics Data System (ADS)

    Ji, Geoffrey; Mazurenko, Anton; Chiu, Christie; Parsons, Maxwell; Kanász-Nagy, Márton; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene; Greif, Daniel; Greiner, Markus

    2017-04-01

    Arbitrary control of optical potentials has emerged as an important tool in manipulating ultracold atomic systems, especially when combined with the single-site addressing afforded by quantum gas microscopy. Already, experiments have used digital micromirror devices (DMDs) to initialize and control ultracold atomic systems in the context of studying quantum walks, quantum thermalization, and many-body localization. Here, we report on progress in using a DMD located in the image plane of a quantum gas microscope to explore static and dynamic properties of a 2D Fermi-Hubbard system. By projecting a large, ring-shaped anti-confining potential, we demonstrate entropy redistribution and controlled doping of the system. Moreover, we use the DMD to prepare localized holes, which upon release interact with and disrupt the surrounding spin environment. These techniques pave the way for controlled investigations of dynamics in the low-temperature phases of the Hubbard model.

  19. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.

    PubMed

    Meinert, F; Mark, M J; Lauber, K; Daley, A J; Nägerl, H-C

    2016-05-20

    We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.

  20. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Helen; Di Francesco, James; Friesen, Rachel K.

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests thatmore » most of the dense cores are pressure-confined.« less

  1. Dense Nonaqueous Phase Liquids at Former Manufactured Gas Plants: Challenges to Modeling and Remediation

    PubMed Central

    Birak, P.S.; Miller, C.T.

    2008-01-01

    The remediation of dense non-aqueous phase liquids (DNAPLs) in porous media continues to be one of the most challenging problems facing environmental scientists and engineers. Of all the environmentally relevant DNAPLs, tars in the subsurface at former manufactured gas plants (FMGP’s) pose one of the biggest challenges due to their complex chemical composition and tendency to alter wettability. To further our understanding of these complex materials, we consulted historic documentation to evaluate the impact of gas manufacturing on the composition and physicochemical nature of the resulting tars. In the recent literature, most work to date has been focused in a relatively narrow portion of the expected range of tar materials, which has yielded a bias toward samples of relatively low viscosity and density. In this work, we consider the dissolution and movement of tars in the subsurface, models used to predict these phenomena, and approaches used for remediation. We also explore the open issues and detail important gaps in our fundamental understanding of these extraordinarily complex systems that must be resolved to reach a mature level of understanding. PMID:19176266

  2. Observation of symmetry-protected topological band with ultracold fermions

    PubMed Central

    Song, Bo; Zhang, Long; He, Chengdong; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2018-01-01

    Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems. PMID:29492457

  3. Atomtronics: Realizing the behavior of electronic components in ultracold atomic systems

    NASA Astrophysics Data System (ADS)

    Pepino, Ron

    2007-06-01

    Atomtronics focuses on creating an analogy of electronic devices and circuits with ultracold atoms. Such an analogy can come from the highly tunable band structure of ultracold neutral atoms trapped in optical lattices. Solely by tuning the parameters of the optical lattice, we demonstrate that conditions can be created that cause atoms in lattices to exhibit the same behavior as electrons moving through solid state media. We present our model and show how the atomtronic diode, field effect transistor, and bipolar junction transistor can all be realized. Our analogs of these fundamental components exhibit precisely-controlled atomic signal amplification, trimming, and switching (on/off) characteristics. In addition, the evolution of dynamics of the superfluid atomic currents within these systems is completely reversible. This implies a possible use of atomtronic systems in the development of quantum computational devices.

  4. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid

    NASA Astrophysics Data System (ADS)

    Roy, James W.; Smith, James E.

    2007-01-01

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  5. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid.

    PubMed

    Roy, James W; Smith, James E

    2007-01-30

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  6. Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model.

    PubMed

    Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng

    2016-07-01

    We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F-expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work.

  7. Conventional and dense gas techniques for the production of liposomes: a review.

    PubMed

    Meure, Louise A; Foster, Neil R; Dehghani, Fariba

    2008-01-01

    The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.

  8. Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider.

    PubMed

    Horvath, Milena S J; Thomas, Ryan; Tiesinga, Eite; Deb, Amita B; Kjærgaard, Niels

    2017-09-06

    Ultracold atomic gases have realized numerous paradigms of condensed matter physics, where control over interactions has crucially been afforded by tunable Feshbach resonances. So far, the characterization of these Feshbach resonances has almost exclusively relied on experiments in the threshold regime near zero energy. Here, we use a laser-based collider to probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring the overall atomic loss from colliding clouds as a function of magnetic field, we track the energy-dependent resonance position. At higher energy, our collider scheme broadens the loss feature, making the identification of the narrow resonance challenging. However, we observe that the collisions give rise to shifts in the center-of-mass positions of outgoing clouds. The shifts cross zero at the resonance and this allows us to accurately determine its location well above threshold. Our inferred resonance positions are in excellent agreement with theory.Studies on energy-dependent scattering of ultracold atoms were previously carried out near zero collision energies. Here, the authors observe a magnetic Feshbach resonance in ultracold Rb collisions for above-threshold energies and their method can also be used to detect higher partial wave resonances.

  9. Stability of gas channels in a dense suspension in the presence of obstacles

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Varas, Germán; Vidal, Valérie

    2017-06-01

    We investigate experimentally the influence of a fixed obstacle on gas rising in a dense suspension. Air is injected at a constant flow rate by a single nozzle at the bottom center of a Hele-Shaw cell. Without obstacles, previous works have shown that a fluidized zone is formed with a parabolic shape, with a central air channel and two granular convection rolls on its sides. Here, we quantify the influence of the obstacle's shape, size, and height on the location and dynamics of the central air channel. Different regimes are reported: the air channel can simply deviate (stable), or it can switch sides over time (unstable), leading to two signatures not only above the obstacle, but sometimes also below it. This feedback also influences the channel deviation when bypassing the obstacle. A wake of less or no motion is reported above the largest obstacles as well as the maximum probability of gas location, which can be interesting for practical applications. The existence of a critical height hc≃7 cm is discussed and compared with the existence of an air finger that develops from the injection nozzle and is stable in time. A dimensionless number describing the transition between air fingering and fracturing makes it possible to predict the channel's stability.

  10. Frequency standards based on ultracold atoms in tests of general relativity, navigation and gravimetry

    NASA Astrophysics Data System (ADS)

    Khabarova, K. Yu.; Kudeyarov, K. S.; Kolachevsky, N. N.

    2017-06-01

    Research and development in the field of optical clocks based on ultracold atoms and ions have enabled the relative uncertainty in frequency to be reduced down to a few parts in 1018. The use of novel, precise frequency comparison methods opens up new possibilities for basic research (sensitive tests of general relativity, a search for a drift of fundamental constants and a search for ‘dark matter’) as well as for state-of-the-art navigation and gravimetry. We discuss the key methods that are used in creating precision clocks (including transportable clocks) based on ultracold atoms and ions and the feasibility of using them in resolving current relativistic gravimetry issues.

  11. Interference, focusing and excitation of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.

    2011-05-01

    One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.

  12. Transfer coefficients in ultracold strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  13. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  14. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the lasermore » cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.« less

  15. Trapping ultracold gases near cryogenic materials with rapid reconfigurability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naides, Matthew A.; Turner, Richard W.; Lai, Ruby A.

    We demonstrate an atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≲100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracoldmore » gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this system, we have confined a 700-nK cloud of 8 × 10{sup 4} {sup 87}Rb atoms within 100 μm of a gold-mirrored 100-μm-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 μm away, remained at room temperature. Atoms may be imaged and retrapped every 16 s, allowing rapid data collection.« less

  16. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  17. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    NASA Astrophysics Data System (ADS)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad

  18. The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems

    NASA Astrophysics Data System (ADS)

    Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael

    2018-04-01

    This report addresses topics and questions of common interest in the fields of ultra-cold gases and nuclear physics in the context of the BCS-BEC crossover. By this crossover, the phenomena of Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation (BEC), which share the same kind of spontaneous symmetry breaking, are smoothly connected through the progressive reduction of the size of the fermion pairs involved as the fundamental entities in both phenomena. This size ranges, from large values when Cooper pairs are strongly overlapping in the BCS limit of a weak inter-particle attraction, to small values when composite bosons are non-overlapping in the BEC limit of a strong inter-particle attraction, across the intermediate unitarity limit where the size of the pairs is comparable with the average inter-particle distance. The BCS-BEC crossover has recently been realized experimentally, and essentially in all of its aspects, with ultra-cold Fermi gases. This realization, in turn, has raised the interest of the nuclear physics community in the crossover problem, since it represents an unprecedented tool to test fundamental and unanswered questions of nuclear many-body theory. Here, we focus on the several aspects of the BCS-BEC crossover, which are of broad joint interest to both ultra-cold Fermi gases and nuclear matter, and which will likely help to solve in the future some open problems in nuclear physics (concerning, for instance, neutron stars). Similarities and differences occurring in ultra-cold Fermi gases and nuclear matter will then be emphasized, not only about the relative phenomenologies but also about the theoretical approaches to be used in the two contexts. Common to both contexts is the fact that at zero temperature the BCS-BEC crossover can be described at the mean-field level with reasonable accuracy. At finite temperature, on the other hand, inclusion of pairing fluctuations beyond mean field represents an essential ingredient

  19. Ultracold Mixtures of Rubidium and Ytterbium for Open Quantum System Engineering

    NASA Astrophysics Data System (ADS)

    Herold, Creston David

    Exquisite experimental control of quantum systems has led to sharp growth of basic quantum research in recent years. Controlling dissipation has been crucial in producing ultracold, trapped atomic samples. Recent theoretical work has suggested dissipation can be a useful tool for quantum state preparation. Controlling not only how a system interacts with a reservoir, but the ability to engineer the reservoir itself would be a powerful platform for open quantum system research. Toward this end, we have constructed an apparatus to study ultracold mixtures of rubidium (Rb) and ytterbium (Yb). We have developed a Rb-blind optical lattice at 423.018(7) nm, which will enable us to immerse a lattice of Yb atoms (the system) into a Rb BEC (superfluid reservoir). We have produced Bose-Einstein condensates of 170Yb and 174Yb, two of the five bosonic isotopes of Yb, which also has two fermionic isotopes. Flexible optical trapping of Rb and Yb was achieved with a two-color dipole trap of 532 and 1064 nm, and we observed thermalization in ultracold mixtures of Rb and Yb. Using the Rb-blind optical lattice, we measured very small light shifts of 87Rb BECs near the light shift zero-wavelengths adjacent the 6p electronic states, through a coherent series of lattice pulses. The positions of the zero-wavelengths are sensitive to the electric dipole matrix elements between the 5s and 6p states, and we made the first experimental measurement of their strength. By measuring a light shift, we were not sensitive to excited state branching ratios, and we achieved a precision better than 0.3%.

  20. Design and initial results from a kilojoule level Dense Plasma Focus with hollow anode and cylindrically symmetric gas puff.

    PubMed

    Ellsworth, J L; Falabella, S; Tang, V; Schmidt, A; Guethlein, G; Hawkins, S; Rusnak, B

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10(7) per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  1. PENTrack - a versatile Monte Carlo tool for ultracold neutron sources and experiments

    NASA Astrophysics Data System (ADS)

    Picker, Ruediger; Chahal, Sanmeet; Christopher, Nicolas; Losekamm, Martin; Marcellin, James; Paul, Stephan; Schreyer, Wolfgang; Yapa, Pramodh

    2016-09-01

    Ultracold neutrons have energies in the hundred nano eV region. They can be stored in traps for hundreds of seconds. This makes them the ideal tool to study the neutron itself. Measurements of neutron decay correlations, lifetime or electric dipole moment are ideally suited for ultracold neutrons, as well as experiments probing the neutron's gravitational levels in the earth's field. We have developed a Monte Carlo simulation tool that can serve to design and optimize these experiments, and possibly correct results: PENTrack is a C++ based simulation code that tracks neutrons, protons and electrons or atoms, as well as their spins, in gravitational and electromagnetic fields. In addition wall interactions of neutrons due to strong interaction are modeled with a Fermi-potential formalism and take surface roughness into account. The presentation will introduce the physics behind the simulation and provide examples of its application.

  2. A continuous stochastic model for non-equilibrium dense gases

    NASA Astrophysics Data System (ADS)

    Sadr, M.; Gorji, M. H.

    2017-12-01

    While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are

  3. Dense-gas properties in Arp 220 revealed by isotopologue lines

    NASA Astrophysics Data System (ADS)

    Wang, Junzhi; Zhang, Zhi-Yu; Zhang, Jiangshui; Shi, Yong; Fang, Min

    2016-02-01

    We present observations of isotopologue lines of dense-gas tracers at 3 mm and 1 mm towards the nearest ultra-luminous infrared galaxy Arp 220. The 3-mm and 1-mm observations were performed with the Institut de Radioastronomie Millimétrique 30-m telescope and the Atacama Pathfinder Experiment 12-m telescope, respectively. We detected H13CN and HN13C in 1-0 and 3-2, and HC15N 1-0, among which HC15N 1-0 and HN13C 1-0 are detected in Arp 220 for the first time. The H13CO+ 1-0 and 3-2 lines are unlikely to be detected because of the confusion of SiO lines. We find that the ratio of the line brightness temperatures of HN13C 3-2/1-0 is 2.4, which is significantly higher than that of H13CN 3-2/1-0 (0.73). This indicates that HN13C and HNC molecules are in denser regions than H13CN and HCN molecules. With the line ratio of H13CN 1-0 and HC15N 1-0, the 14N/15N ratio was estimated to be 440^{+140}_{-82}, which is larger than that of the local interstellar medium.

  4. A detailed investigation of proposed gas-phase syntheses of ammonia in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Mclean, A. D.

    1987-01-01

    The initial reactions of the Herbst and Klemperer (1973) and the Dalgarno (1974) schemes (I and II, respectively) for the gas-phase synthesis of ammonia in dense interstellar clouds were investigated. The rate of the slightly endothermic reaction between N(+) and H2 to yield NH(+) and H (scheme I) under interstellar conditions was reinvestigated under thermal and nonthermal conditions based on laboratory data. It was found that the relative importance of this reaction in synthesizing ammonia is determined by how the laboratory data at low temperature are interpreted. On the other hand, the exothermic reaction between N and H3(+) to form NH2(+) + H (scheme II) was calculated to possess significant activation energy and, therefore, to have a negligible rate coefficient under interstellar conditions. Consequently, this reaction cannot take place appreciably in interstellar clouds.

  5. Ultracold-atom quantum simulator for attosecond science

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Förster, Johann; Saenz, Alejandro

    2017-01-01

    A quantum simulator based on ultracold optically trapped atoms for simulating the physics of atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about 13 orders of magnitude allows one to watch in slow motion the tunneling and recollision processes that form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper understanding of strong-field physics, especially for many-body systems beyond the reach of classical computers. The quantum simulator can experimentally straightforwardly be realized and is shown to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.

  6. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  7. Ultra-cold 4He atom beams

    NASA Astrophysics Data System (ADS)

    Mulders, N.; Wyatt, A. F. G.

    1994-02-01

    It has been shown that it is possible to create ultra-cold 4He atom beams, using a metal film heater covered with a superfluid helium film. The transient behaviour of the atom pulse can be improved significantly by shaping of the heater pulse. The leading edge of more energetic atoms can be suppressed nearly completely, leaving a core of mono-energetic atoms. The maximum number of atoms in the pulse is determined by the amount of helium in the superfluid film on the heater. This seriously limits the ranges of pulse width and energy over which this beam source can be operated. However, these can be increased significantly by using porous gold smoke heaters.

  8. Numerical investigation of turbulence in reshocked Richtmyer-Meshkov unstable curtain of dense gas

    NASA Astrophysics Data System (ADS)

    Shankar, S. K.; Lele, S. K.

    2014-01-01

    Moderate-resolution numerical simulations of the impulsive acceleration of a dense gas curtain in air by a Mach 1.21 planar shock are carried out by solving the 3D compressible multi-species Navier-Stokes equations coupled with localized artificial diffusivity method to capture discontinuities in the flow field. The simulations account for the presence of three species in the flow field: air, and acetone (used as a tracer species in the experiments). Simulations at different concentration levels of the species are conducted and the temporal evolution of the curtain width is compared with the measured data from the experimental studies by Balakumar et al. (Phys Fluids 20:124103-124113, 2008). The instantaneous density and velocity fields at two different times (prior and after the reshock) are compared with experimental data and show good qualitative agreement. The reshock process is studied by re-impacting the evolving curtain with the reflected shock wave. Reshock causes enhanced mixing and destroys the ordered velocity field causing a chaotic flow. The unsteady flow field is characterized by computing statistics of certain flow variables using two different definitions of the mean flow. The average profiles conditioned on the heavy gas (comprising and acetone) and the corresponding fluctuating fields provide metrics which are more suitable to comparing with experimentally measured data. Mean profiles (conditioned on the heavy gas) of stream-wise velocity, variance of stream-wise velocity, and turbulent kinetic energy and PDF (probability distribution function) of fluctuating velocity components are computed at two different times along the flow evolution and are seen to show trend towards grid convergence. The spectra of turbulent kinetic energy and scalar energy (of mass fraction of heavy gas) show the existence of more than half decade of inertial sub-range at late times following reshock. The Reynolds stresses in the domain are reported while identifying the

  9. Possible Many-Body Localization in a Long-Lived Finite-Temperature Ultracold Quasineutral Molecular Plasma

    NASA Astrophysics Data System (ADS)

    Sous, John; Grant, Edward

    2018-03-01

    We argue that the quenched ultracold plasma presents an experimental platform for studying the quantum many-body physics of disordered systems in the long-time and finite energy-density limits. We consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg molecules, ions, and electrons that exhibits a long-lived state of arrested relaxation. The qualitative features of this state fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der Waals interactions. This effective model appears to offer a way to envision the essential quantum disordered nonequilibrium physics of this system.

  10. Two-dimensional Fermi gas in spin-dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Anzai, Takaaki; Nishida, Yusuke

    Experimental techniques in ultracold atoms allow us to tune parameters of the system at will. In particular, synthetic magnetic fields have been created by using the atom-light coupling and, therefore, it is interesting to study what kinds of quantum phenomena appear in correlated ultracold atoms subjected to synthetic magnetic fields. In this work, we consider a two-dimensional Fermi gas with two spin states in spin-dependent magnetic fields which are assumed to be antiparallel for different spin states. By studying the ground-state phase diagram within the mean-field approximation, we find quantum spin Hall and superfluid phases separated by a second-order phase transition. We also show that there are regions where the superfluid gap parameter is proportional to the attractive coupling, which is in marked contrast to the usual exponential dependence. Moreover, we elucidate that the universality class of the phase transition belongs to that of the XY model at special points of the phase boundary, while it belongs to that of a dilute Bose gas anywhere else. International Research Center for Nanoscience and Quantum Physics, Tokyo Institute of Technology.

  11. Measurement of optical Feshbach resonances in an ideal gas.

    PubMed

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  12. A hybrid system of a membrane oscillator coupled to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  13. The Relationship between the Dense Neutral and Diffuse Ionized Gas in the Thick Disks of Two Edge-on Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rueff, Katherine M.; Howk, J. Christopher; Pitterle, Marissa; Hirschauer, Alec S.; Fox, Andrew J.; Savage, Blair D.

    2013-03-01

    We present high-resolution, optical images (BVI + Hα) of the multiphase interstellar medium (ISM) in the thick disks of the edge-on spiral galaxies NGC 4013 and NGC 4302. Our images from the Hubble Space Telescope (HST), Large Binocular Telescope, and WIYN 3.5 m telescope reveal an extensive population of filamentary dust absorption seen to z ~2-2.5 kpc. Many of these dusty thick disk structures have characteristics reminiscent of molecular clouds found in the Milky Way disk. Our Hα images show that the extraplanar diffuse ionized gas (DIG) in these galaxies is dominated by a smooth, diffuse component. The strongly filamentary morphologies of the dust absorption have no counterpart in the smoothly distributed Hα emission. We argue that the thick disk DIG and dust-bearing filaments trace physically distinct phases of the thick disk ISM, the latter tracing a dense, warm or cold neutral medium. The dense, dusty matter in the thick disks of spiral galaxies is largely tracing matter ejected from the thin disk via energetic feedback from massive stars. The high densities of the gas may be a result of converging gas flows. This dense material fuels some thick disk star formation, as evidenced by the presence of thick disk H II regions. Based on observations obtained with the NASA/ESA Hubble Space Telescope operated at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also, based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US, Italy, and Germany. LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Instituto Nazionale do Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and Heidelberg University; Ohio State University, and the Research Corporation, on

  14. MALATANG: MApping the dense moLecular gAs in the sTrongest stAr-formiNg Galaxies

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Zhang, Zhiyu; Greve, Thomas; MALATANG Team

    2017-01-01

    The MALATANG Large Program is a 390 hr campaign, using the heterodyne array HARP on the JCMT to map theHCN and HCO+ J = 4 - 3 line emission in 23 of the nearest IR-brightest galaxies beyond the Local Group. Theobservations will reach a sensitivity of 0.3 K km/s (~ 4.5 x 10^6 Msun) at linear resolutions of 0.2-2.8kpc. It is thefirst survey to systematically map the distribution of dense molecular gas out to large galactocentric distances in a statisticallysignificant sample of nearby galaxies. MALATANG will bridge the gap, in terms of physical scale and luminosity,between extragalactic (i.e., galaxy-integrated) and Galactic (i.e., single molecular clouds) observations. A primarygoal of the survey is to delineate for the first time the distributed dense gas star-formation relations, as traced by theHCN and HCO+ J = 4-3, on scales of ~1kpc across our targets. Exploring the behaviour of these star-formationrelations in low surface density regions found in the disks as well as in the nuclear regions where surface densitiesare high, will shed new light on whether such environments are host to fundamentally different star-formation modes.The MALATANG data products of resolved HCN and HCO+ J = 4-3 maps of 23 IR-bright local galaxies, will beof great value to the extragalactic community and, in and of themselves, carry significant legacy value. At the moment,about 50% (~195hrs) of the 390hrs of time allocated to MALATANG has been observed. We here show somevery preliminary results as well after introducing our project.

  15. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey Patrick

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, made possible largely by the development of narrow-linewidth lasers and techniques for trapping and cooling at ultracold temperatures. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. These possibilities are all consequences of the richness of molecular structure, which is governed by physics substantially different from that characterizing atomic structure. This same richness of structure, however, increases the complexity of any molecular experiment manyfold over its atomic counterpart, magnifying the difficulty of everything from trapping and cooling to the comparison of theory with experiment. This thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. Our molecules are produced via photoassociation of ultracold strontium atoms followed by spontaneous decay to a stable ground state. We describe a thorough set of measurements characterizing the rovibrational structure of very weakly bound (and therefore very large) 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. The physical intuition gained in these experiments applies generally to weakly bound diatomic molecules, and suggests extensive applications in precision measurement and metrology. In addition, we present a detailed analysis of the thermally broadened spectroscopic lineshape of molecules in a non-magic optical lattice trap, showing how such lineshapes can be used to directly determine the temperature of atoms or molecules in situ, addressing a long-standing problem in ultracold physics

  16. Energy Flow in Dense Off-Equilibrium Plasma

    DTIC Science & Technology

    2016-07-15

    akT e in our system100 i e T T Teller 1966 Smoking Gun Experiment: Laser Breakdown in COLD gas In going from room to liquid Nitrogen temperature...oflaser breakdown have revealed a new phase of off-equilibrium plasma that has a tensile strength similar to a liquid , and reduced ion-electron...approved for public release. Part 1: Energy Balance in Sonoluminescing Dense Plasma Sonoluminescence occurs from rapid implosion of gas bubbles caused to

  17. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  18. Self-diffusion and conductivity in an ultracold strongly coupled plasma: Calculation by the method of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Bronin, S. Ya; Bobrov, A. A.; Khikhlukha, D. R.

    2018-01-01

    We present results of calculations by the method of molecular dynamics of self-diffusion and conductivity of electron and ion components of ultracold plasma in a comparison with available theoretical and experimental data. For the ion self-diffusion coefficient, good agreement was obtained with experiments on ultracold plasma. The results of the calculation of self-diffusion also agree well with other calculations performed for the same values of the coupling parameter, but at high temperatures. The difference in the results of the conductivity calculations on the basis of the current autocorrelation function and on the basis of the diffusion coefficient is discussed.

  19. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  20. Carbon dioxide remediation via oxygen-enriched combustion using dense ceramic membranes

    DOEpatents

    Balachandran, Uthamalingam; Bose, Arun C.; McIlvried, Howard G.

    2001-01-01

    A method of combusting pulverized coal by mixing the pulverized coal and an oxidant gas to provide a pulverized coal-oxidant gas mixture and contacting the pulverized coal-oxidant gas mixture with a flame sufficiently hot to combust the mixture. An oxygen-containing gas is passed in contact with a dense ceramic membrane of metal oxide material having electron conductivity and oxygen ion conductivity that is gas-impervious until the oxygen concentration on one side of the membrane is not less than about 30% by volume. An oxidant gas with an oxygen concentration of not less than about 30% by volume and a CO.sub.2 concentration of not less than about 30% by volume and pulverized coal is contacted with a flame sufficiently hot to combust the mixture to produce heat and a flue gas. One dense ceramic membrane disclosed is selected from the group consisting of materials having formulae SrCo.sub.0.8 Fe.sub.0.2 O.sub.x, SrCo.sub.0.5 FeO.sub.x and La.sub.0.2 Sr.sub.0.8 Co.sub.0.4 Fe.sub.0.6 O.sub.x.

  1. Quantum Engineering of Strongly Correlated Matter with Ultracold Fermi Gases

    DTIC Science & Technology

    2013-05-01

    aim at realizing model systems of strongly correlated, disordered electrons using ultracold fermionic atoms stored in an optical "crystal". The general...theme is to study high-temperature superfluids, Fermi liquids ("metals") and insulators in the presence of disordered impurities whose influence on...Presidential Early Career Award for Science and Education (PECASE). In this program, we aim at realizing model systems of strongly correlated, disordered

  2. Parametric Cooling of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.

  3. The contact of a homogeneous unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Patel, Parth; Yan, Zhenjie; Fletcher, Richard; Struck, Julian; Zwierlein, Martin

    2017-04-01

    The contact is a fundamental quantity that measures the strength of short-range correlations in quantum gases. As one of its most important implications, it provides a link between the microscopic two-particle correlation function at small distance and the macroscopic thermodynamic properties of the gas. In particular, pairing and superfluidity in a unitary Fermi gas can be expected to leave its mark in behavior of the contact. Here we present measurements on the temperature dependence of the contact of a unitary Fermi gas across the superfluid transition. By trapping ultracold 6Li atoms in a potential that is homogeneous in two directions and harmonic in the third, we obtain radiofrequency spectra of the homogeneous gas at a high signal-to-noise ratio. We compare our data to existing, but often mutually excluding theoretical calculations for the strongly interacting Fermi gas.

  4. An experimental toolbox for the generation of cold and ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Zeppenfeld, Martin; Gantner, Thomas; Glöckner, Rosa; Ibrügger, Martin; Koller, Manuel; Prehn, Alexander; Wu, Xing; Chervenkov, Sotir; Rempe, Gerhard

    2017-01-01

    Cold and ultracold molecules enable fascinating applications in quantum science. We present our toolbox of techniques to generate the required molecule ensembles, including buffergas cooling, centrifuge deceleration and optoelectrical Sisyphus cooling. We obtain excellent control over both the motional and internal molecular degrees of freedom, allowing us to aim at various applications.

  5. Proton cooling in ultracold low-density electron gas

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.; Khikhlukha, D. R.

    2015-11-01

    A sole proton energy loss processes in an electron gas and the dependence of these processes on temperature and magnetic field are studied using molecular dynamics techniques in present work. It appears that for electron temperatures less than 100 K many body collisions affect the proton energy loss and these collisions must be taken into account. The influence of a strong magnetic field on the relaxation processes is also considered in this work. Calculations were performed for electron densities 10 cm-3, magnetic field 1-3 Tesla, electron temperatures 10-50 K, initial proton energies 100-10000 K.

  6. Nodal Topological Phases in s-wave Superfluid of Ultracold Fermionic Gases

    NASA Astrophysics Data System (ADS)

    Huang, Bei-Bing; Yang, Xiao-Sen

    2018-02-01

    The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid. In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines, which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11547047 and 11504143

  7. Quantum levitation of nanoparticles seen with ultracold neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu; Voronin, A. Yu.; Lambrecht, A.

    2013-09-15

    Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nanodroplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces results in new effects on a cross-road of the fields of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing so-called 'small heating' of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there.

  8. Work on the physics of ultracold atoms in Russia

    NASA Astrophysics Data System (ADS)

    Kolachevsky, N. N.; Taichenachev, A. V.

    2018-05-01

    In December 2017, the regular All-Russian Conference 'Physics of Ultracold Atoms' was held. Several tens of Russian scientists from major scientific centres of the country, as well as a number of leading foreign scientists took part in the Conference. The Conference topics covered a wide range of urgent problems: quantum metrology, quantum gases, waves of matter, spectroscopy, quantum computing, and laser cooling. This issue of Quantum Electronics publishes the papers reported at the conference and selected for the Journal by the Organising committee.

  9. Application of dense gas techniques for the production of fine particles.

    PubMed

    Foster, Neil R; Dehghani, Fariba; Charoenchaitrakoo, Kiang M; Warwick, Barry

    2003-01-01

    The feasibility of using dense gas techniques such as rapid expansion of supercritical solutions (RESS) and aerosol solvent extraction system (ASES) for micronization of pharmaceutical compounds is demonstrated. The chiral nonsteroidal anti-inflammatory racemic ibuprofen is soluble in carbon dioxide at 35 degrees C and pressures above 90 bar. The particle size decreased to less than 2 microm while the degree of crystallinity was slightly decreased when processed by RESS. The dissolution rate of the ibuprofen (a poorly water-soluble compound) was significantly enhanced after processing by RESS. The nonsteroidal anti-inflammatory drug Cu2(indomethacin)4L2(Cu-Indo); (L = dimethylformamide [DMF]), which possessed very low solubility in supercritical CO2, was successfully micronized by ASES at 25 degrees C and 68.9 bar using DMF as the solvent and CO2 as the antisolvent. The concentration of solute dramatically influenced the precipitate characteristics. The particles obtained from the ASES process were changed from bipyramidal to spherical, with particle size less than 5 microm, as the concentration increased from 5 to 100 mg/g. A further increase in solute concentration to 200 mg/g resulted in large porous spheres, between 20 and 50 micron, when processing Cu-Indo by the ASES method. The dissolution rate of the micronized Cu-Indo was significantly higher than the commercial product.

  10. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    PubMed

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  11. Effects of mode profile on tunneling and traversal of ultracold atoms through vacuum-induced potentials

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2016-04-01

    We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.

  12. Density-driven transport of gas phase chemicals in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai

    2018-01-01

    Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions

  13. Multiple shock reverberation compression of dense Ne up to the warm dense regime: Evaluating the theoretical models

    NASA Astrophysics Data System (ADS)

    Tang, J.; Gu, Y. J.; Chen, Q. F.; Li, Z. G.; Zheng, J.; Li, C. J.; Li, J. T.

    2018-04-01

    Multiple shock reverberation compression experiments are designed and performed to determine the equation of state of neon ranging from the initial dense gas up to the warm dense regime where the pressure is from about 40 MPa to 120 GPa and the temperature is from about 297 K up to above 20 000 K. The wide region experimental data are used to evaluate the available theoretical models. It is found that, for neon below 1.1 g/cm 3 , within the framework of density functional theory molecular dynamics, a van der Waals correction is meaningful. Under high pressure and temperature, results from the self-consistent fluid variational theory model are sensitive to the potential parameter and could give successful predictions in the whole experimental regime if a set of proper parameters is employed. The new observations on neon under megabar (1 Mbar =1011Pa ) pressure and eV temperature (1 eV ≈104K ) enrich the understanding on properties of warm dense matter and have potential applications in revealing the formation and evolution of gaseous giants or mega-Earths.

  14. A pilot scale ultrasonic system to enhance extraction processes with dense gases

    NASA Astrophysics Data System (ADS)

    Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.

  15. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.

  16. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  17. Program of Fundamental-Interaction Research for the Ultracold-Neutron Source at the the WWR-M Reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2018-03-01

    The use of ultracold neutrons opens unique possibilities for studying fundamental interactions in particles physics. Searches for the neutron electric dipole moment are aimed at testing models of CP violation. A precise measurement of the neutron lifetime is of paramount importance for cosmology and astrophysics. Considerable advances in these realms can be made with the aid of a new ultracold-neutron (UCN) supersource presently under construction at Petersburg Nuclear Physics Institute. With this source, it would be possible to obtain an UCN density approximately 100 times as high as that at currently the best UCN source at the high-flux reactor of the Institute Laue-Langevin (ILL, Grenoble, France). To date, the design and basic elements of the source have been prepared, tests of a full-scale source model have been performed, and the research program has been developed. It is planned to improve accuracy in measuring the neutron electric dipole moment by one order of magnitude to a level of 10-27 to 10-28 e cm. This is of crucial importance for particle physics. The accuracy in measuring the neutron lifetime can also be improved by one order of magnitude. Finally, experiments that would seek neutron-antineutron oscillations by employing ultracold neutrons will become possible upon reaching an UCN density of 103 to 104 cm-3. The current status of the source and the proposed research program are discussed.

  18. Detection of [SiLL] (34.8 micron) emission in Orion-KL: A measurement of the silicon abundance in dense interstellar gas

    NASA Technical Reports Server (NTRS)

    Haas, M. R.; Hollenbach, D. J.; Erickson, E. F.

    1985-01-01

    The first detection of the ground state fine structure transition of Si+ at a rest wavelength determined to be 34.815 + or - 0.004 micron are reported. These observations were obtained with the facility spectrometer on NASA's Kuiper Airborne Observatory. A 6' NW-SE strip scan across the Orion-KL region shows SiII emission from both the extended photodissociation region surrounding theta 1 Ori C and from the shocked gas NW of BN-KL. The inferred gas-phase silicon elemental abundance relative to hydrogen in the dense 10 to the 5/cc primarily neutral photodissociation region is approximately 2.6 x to the -6, a factor of 0.075 times the solar value and 3.4 times greater than the abundance in the moderate density approx. 10 to the 3/cc cloud toward zeta Oph. The silicon abundance in the shocked gas is approximately solar, indicating that any pre-existing grains have been destroyed in the shock wave or that the preshock gas carries a near solar abundance of gas phase silicon. The shock-excited SiII (34.8 micron) emission may arise from shocked wind material in the outflow around IRc2, with wind velocities approx. 100 km/s.

  19. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  20. Probing and characterizing the growth of a crystal of ultracold bosons and light

    NASA Astrophysics Data System (ADS)

    Ostermann, S.; Piazza, F.; Ritsch, H.

    2017-12-01

    The non-linear coupled particle light dynamics of an ultracold gas in the field of two independent counter-propagating laser beams can lead to the dynamical formation of a self-ordered lattice structure as presented in (2016) Phys. Rev. X 6 021026. Here we present new numerical studies on experimentally observable signatures to monitor the growth and properties of such a crystal in real time. While, at least theoretically, optimal non-destructive observation of the growth dynamics and the hallmarks of the crystalline phase can be performed by analyzing scattered light, monitoring the evolution of the particle’s momentum distribution via time-of-flight probing is an experimentally more accessible choice. In this work we show that both approaches allow us to unambiguously distinguish the crystal from independent collective scattering as it occurs in matter wave super-radiance. As a clear crystallization signature, we identify spatial locking between the two emerging standing laser waves, together creating the crystal potential. For sufficiently large systems, the system allows reversible adiabatic ramping into the crystalline phase as an alternative to a quench across the phase transition and growth from fluctuations.

  1. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements

    NASA Astrophysics Data System (ADS)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  2. Supersonic minimum length nozzle design for dense gases

    NASA Technical Reports Server (NTRS)

    Aldo, Andrew C.; Argrow, Brian M.

    1993-01-01

    Recently, dense gases have been investigated for many engineering applications such as for turbomachinery and wind tunnels. Supersonic nozzle design for these gases is complicated by their nonclassical behavior in the transonic flow regime. In this paper a method of characteristics (MOC) is developed for two-dimensional (planar) and, primarily, axisymmetric flow of a van der Waals gas. Using a straight aortic line assumption, a centered expansion is used to generate an inviscid wall contour of minimum length. The van der Waals results are compared to previous perfect gas results to show the real gas effects on the flow properties and inviscid wall contours.

  3. Quantum Reactive Scattering of Ultracold K+KRb Reaction: Universality and Chaotic Dynamics

    NASA Astrophysics Data System (ADS)

    Croft, J. F. E.; Makrides, C.; Li, M.; Petrov, A.; Kendrick, B. K.; Balakrishnan, N.; Kotochigova, S.

    2017-04-01

    A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatures lower than a few tens of nanoKelvin. In this talk, we discuss the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. We report numerically exact quantum-mechanical calculations of the K+KRb reaction on an accurate ab initio ground state potential energy surface of the K2Rb system and compare our results with available experimental data and predictions of universal models. The role of non-additive three-body contributions to the interaction potential is examined and is found to be small for the total reaction rates. However, the rotationally resolved rate coefficients are shown to be sensitive to the short-range interaction potential and follow a Poissonian distribution. This work was supported in part by NSF Grants PHY-1505557 (N.B.), PHY-1619788 (S.K.), ARO MURI Grant No. W911NF-12-1-0476 (N.B. & S.K.), and DOE LDRD Grant No. 20170221ER (B.K.).

  4. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  5. Toward Gas Chemistry in Low Metallicity Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.

    2017-01-01

    Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.

  6. Filamentation in the pinched column of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-03-01

    The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.

  7. Emergence of kinetic behavior in streaming ultracold neutral plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuillen, P.; Castro, J.; Bradshaw, S. J.

    2015-04-15

    We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.

  8. Preparation of a pure molecular quantum gas.

    PubMed

    Herbig, Jens; Kraemer, Tobias; Mark, Michael; Weber, Tino; Chin, Cheng; Nägerl, Hanns-Christoph; Grimm, Rudolf

    2003-09-12

    An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.

  9. Recent Advances in the Development and Application of Power Plate Transducers in Dense Gas Extraction and Aerosol Agglomeration Processes

    NASA Astrophysics Data System (ADS)

    Riera, E.; Cardoni, A.; Gallego-Juárez, J. A.; Acosta, V. M.; Blanco, A.; Rodríguez, G.; Blasco, M.; Herranz, L. E.

    Power ultrasound (PU) is an emerging, innovative, energy saving and environmental friendly technology that is generating a great interest in sectors such as food and pharmaceutical industries, green chemistry, environmental pollution, and other processes, where sustainable and energy efficient methods are required to improve and/or produce specific effects. Two typical effects of PU are the enhancement of mass transfer in gases and liquids, and the induction of particle agglomeration in aerosols. These effects are activated by a variety of mechanisms associated to the nonlinear propagation of high amplitude ultrasonic waves such as diffusion, agitation, entrainment, turbulence, etc. During the last years a great effort has been jointly made by the Spanish National Research Council (CSIC) and the company Pusonics towards introducing novel processes into the market based on airborne ultrasonic plate transducers. This technology was specifically developed for the treatment of gas and multiphasic media characterized by low specific acoustic impedance and high acoustic absorption. Different strategies have been developed to mitigate the effects of the nonlinear dynamic behavior of such ultrasonic piezoelectric transducers in order to enhance and stabilize their response at operational power conditions. This work deals with the latter advances in the mitigation of nonlinear problems found in power transducers; besides it describes two applications assisted by ultrasound developed at semi-industrial and laboratory scales and consisting in extraction via dense gases and particle agglomeration. Dense Gas Extraction (DGE) assisted by PU is a new process with a potential to enhance the extraction kinetics with supercritical CO2. Acoustic agglomeration of fine aerosol particles has a great potential for the treatment of air pollution problems generated by particulate materials. Experimental and numerical results in both processes will be shown and discussed.

  10. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  11. Spin-resolved correlations in the warm-dense homogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Arora, Priya; Kumar, Krishan; Moudgil, R. K.

    2017-04-01

    We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function gσσ'(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy Eint and exchange-correlation free energy Fxc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g↑↓(0). Our results of Eint and Fxc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of Eint from the RPIMC data for high densities ( 8% at rs = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of Eint with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons. Supplementary material in the form of one zip file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70532-y

  12. Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki

    2018-04-01

    We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.

  13. Ultracold Realization of AntiFerromagenteic Order

    NASA Astrophysics Data System (ADS)

    Shrestha, Uttam

    2011-03-01

    We investigate numerically the experimental feasibility of observing the antiferromagnetic (AF) order in the bosonic mixtures of rubidium (87 Rb) and potassium (41 K) in a two-dimensional optical lattice with external trapping potential. Within the mean-field approximation we have found the ground states which, for a specific range of parameters such as inter-species interactions and lattice height, interpolate from phase separation to the AF order. For the moderate lattice heights the coexistence of the Mott and AF phase is possible for rubidium atoms while the potassium atoms remain superfluid with overlapped AF phase. In our view there has not been any study on AF order in two-component systems when one component remains in the superfluid phase while the other is in the Mott phase. Therefore, this observation may provide a novel regime for studying quantum magnetism in ultracold systems. This work was supported by the EU Contract EU STREP NAMEQUAM.

  14. Measurement of Ultracold Neutrons Produced by Using Doppler-shifted Bragg Reflection at a Pulsed-neutron Source

    DOE R&D Accomplishments Database

    Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.

  15. Calorimetry of a Bose–Einstein-condensed photon gas

    PubMed Central

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-01-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978

  16. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2012-01-01

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  17. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments.

    PubMed

    Rvachov, Timur M; Son, Hyungmok; Sommer, Ariel T; Ebadi, Sepehr; Park, Juliana J; Zwierlein, Martin W; Ketterle, Wolfgang; Jamison, Alan O

    2017-10-06

    We create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  18. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur M.; Son, Hyungmok; Sommer, Ariel T.; Ebadi, Sepehr; Park, Juliana J.; Zwierlein, Martin W.; Ketterle, Wolfgang; Jamison, Alan O.

    2017-10-01

    We create fermionic dipolar 23Na 6Li molecules in their triplet ground state from an ultracold mixture of 23Na and 6Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3 ×1 04 ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p -wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  19. Localization in momentum space of ultracold atoms in incommensurate lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larcher, M.; Dalfovo, F.; Modugno, M.

    2011-01-15

    We characterize the disorder-induced localization in momentum space for ultracold atoms in one-dimensional incommensurate lattices, according to the dual Aubry-Andre model. For low disorder the system is localized in momentum space, and the momentum distribution exhibits time-periodic oscillations of the relative intensity of its components. The behavior of these oscillations is explained by means of a simple three-mode approximation. We predict their frequency and visibility by using typical parameters of feasible experiments. Above the transition the system diffuses in momentum space, and the oscillations vanish when averaged over different realizations, offering a clear signature of the transition.

  20. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Gas and dust in the star-forming region ρ Oph A. II. The gas in the PDR and in the dense cores

    NASA Astrophysics Data System (ADS)

    Larsson, B.; Liseau, R.

    2017-12-01

    Context. The evolution of interstellar clouds of gas and dust establishes the prerequisites for star formation. The pathway to the formation of stars can be studied in regions that have formed stars, but which at the same time also display the earliest phases of stellar evolution, i.e. pre-collapse/collapsing cores (Class -1), protostars (Class 0), and young stellar objects (Class I, II, III). Aims: We investigate to what degree local physical and chemical conditions are related to the evolutionary status of various objects in star-forming media. Methods: ρ Oph A displays the entire sequence of low-mass star formation in a small volume of space. Using spectrophotometric line maps of H2, H2O, NH3, N2H+, O2, O I, CO, and CS, we examine the distribution of the atomic and molecular gas in this dense molecular core. The physical parameters of these species are derived, as are their relative abundances in ρ Oph A. Using radiative transfer models, we examine the infall status of the cold dense cores from their resolved line profiles of the ground state lines of H2O and NH3, where for the latter no contamination from the VLA 1623 outflow is observed and line overlap of the hyperfine components is explicitly taken into account. Results: The stratified structure of this photon dominated region (PDR), seen edge-on, is clearly displayed. Polycyclic aromatic hydrocarbons (PAHs) and O I are seen throughout the region around the exciting star S 1. At the interface to the molecular core 0.05 pc away, atomic hydrogen is rapidly converted into H2, whereas O I protrudes further into the molecular core. This provides oxygen atoms for the gas-phase formation of O2 in the core SM 1, where X(O2) 5 × 10-8. There, the ratio of the O2 to H2O abundance [X(H2O) 5 × 10-9] is significantly higher than unity. Away from the core, O2 experiences a dramatic decrease due to increasing H2O formation. Outside the molecular core ρ Oph A, on the far side as seen from S 1, the intense radiation from

  2. Sulfur chemistry in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Huntress, W. T., Jr.

    1982-01-01

    A model is presented for the gas phase chemistry of molecules containing sulfur in dense interstellar clouds. The sulfur chemistry is different from that used in previous models as a result of an extensive search of the recent literature and the availability of new laboratory data. The changes have a significant effect on the calculated abundance of sulfur compounds. The linked chemistry of sulfur and oxygen in the present model requires a severe depletion of sulfur and low fractional abundances of both O and O2 in the dense clouds. In contrast, the high abundance of SO and the low abundance of CS relative to SO in the HVS in the KL may indicate an oxygen-rich, high temperature environment compared to OMC-1. The formation of S-H bonds is slow because of the absence of radiative association between S(+) and H2. The present model underestimates the abundance of H2S unless a radiative association reaction between HS(+) and H2 is postulated.

  3. Spin relaxation in ultracold collisions of molecular radicals with alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur; Klos, Jacek; Zukowski, Piotr

    2016-05-01

    We present accurate quantum scattering calculations of spin relaxation in ultracold collisions of alkali-metal atoms and polar 2 Σ molecules CaH, SrF, and SrOH. The calculations employ state-of-the-art ab initio interaction potentials and a rigorous quantum theory of atom-molecule collisions in a magnetic field based on the total angular momentum representation. We will further discuss the relevance of the results to atom-molecule sympathetic cooling experiments in a magnetic trap.

  4. Analytical results for the time-dependent current density distribution of expanding ultracold gases after a sudden change of the confining potential

    NASA Astrophysics Data System (ADS)

    Boumaza, R.; Bencheikh, K.

    2017-12-01

    Using the so-called operator product expansion to lowest order, we extend the work in Campbell et al (2015 Phys. Rev. Lett 114 125302) by deriving a simple analytical expression for the long-time asymptotic one-body reduced density matrix during free expansion for a one-dimensional system of bosons with large atom number interacting through a repulsive delta potential initially confined by a potential well. This density matrix allows direct access to the momentum distribution and also to the mass current density. For initially confining power-law potentials we give explicit expressions, in the limits of very weak and very strong interaction, for the current density distributions during the free expansion. In the second part of the work we consider the expansion of ultracold gas from a confining harmonic trap to another harmonic trap with a different frequency. For the case of a quantum impenetrable gas of bosons (a Tonks-Girardeau gas) with a given atom number, we present an exact analytical expression for the mass current distribution (mass transport) after release from one harmonic trap to another harmonic trap. It is shown that, for a harmonically quenched Tonks-Girardeau gas, the current distribution is a suitable collective observable and under the weak quench regime, it exhibits oscillations at the same frequencies as those recently predicted for the peak momentum distribution in the breathing mode. The analysis is extended to other possible quenched systems.

  5. The sensitivity of gas-phase models of dense interstellar clouds to changes in dissociative recombination branching ratios

    NASA Technical Reports Server (NTRS)

    Millar, T. J.; Defrees, D. J.; Mclean, A. D.; Herbst, E.

    1988-01-01

    The approach of Bates to the determination of neutral product branching ratios in ion-electron dissociative recombination reactions has been utilized in conjunction with quantum chemical techniques to redetermine branching ratios for a wide variety of important reactions of this class in dense interstellar clouds. The branching ratios have then been used in a pseudo time-dependent model calculation of the gas phase chemistry of a dark cloud resembling TMC-1 and the results compared with an analogous model containing previously used branching ratios. In general, the changes in branching ratios lead to stronger effects on calculated molecular abundances at steady state than at earlier times and often lead to reductions in the calculated abundances of complex molecules. However, at the so-called 'early time' when complex molecule synthesis is most efficient, the abundances of complex molecules are hardly affected by the newly used branching ratios.

  6. Magnetic-field gradiometer based on ultracold collisions

    NASA Astrophysics Data System (ADS)

    Wasak, Tomasz; Jachymski, Krzysztof; Calarco, Tommaso; Negretti, Antonio

    2018-05-01

    We present a detailed analysis of the usefulness of ultracold atomic collisions for sensing the strength of an external magnetic field as well as its spatial gradient. The core idea of the sensor, which we recently proposed in Jachymski et al. [Phys. Rev. Lett. 120, 013401 (2018), 10.1103/PhysRevLett.120.013401], is to probe the transmission of the atoms through a set of quasi-one-dimensional waveguides that contain an impurity. Magnetic-field-dependent interactions between the incoming atoms and the impurity naturally lead to narrow resonances that can act as sensitive field probes since they strongly affect the transmission. We illustrate our findings with concrete examples of experimental relevance, demonstrating that for large atom fluences N a sensitivity of the order of 1 nT/√{N } for the field strength and 100 nT/(mm √{N }) for the gradient can be reached with our scheme.

  7. Ultracold collisions between spin-orbit-coupled dipoles: General formalism and universality

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hougaard, Christiaan R.; Mulkerin, Brendan C.; Liu, Xia-Ji

    2018-04-01

    A theoretical study of the low-energy scattering properties of two aligned identical bosonic and fermionic dipoles in the presence of isotropic spin-orbit coupling is presented. A general treatment of particles with arbitrary (pseudo)spin is given in the framework of multichannel scattering. At ultracold temperatures and away from shape resonances or closed-channel dominated resonances, the cross section can be well described within the Born approximation to within corrections due to the s -wave scattering. We compare our findings with numerical calculations and find excellent agreement.

  8. Evaluation of commercial nickel-phosphorus coating for ultracold neutron guides using a pinhole bottling method

    DOE PAGES

    Pattie. Jr., Robert Wayne; Adamek, Evan Robert; Brenner, Thomas; ...

    2017-08-10

    We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle wasmore » interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1.3(1)×10 –4. In conclusion, we also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.« less

  9. Evaluation of commercial nickel-phosphorus coating for ultracold neutron guides using a pinhole bottling method

    NASA Astrophysics Data System (ADS)

    Pattie, R. W.; Adamek, E. R.; Brenner, T.; Brandt, A.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S. A.; Geltenbort, P.; Ito, T. M.; Lauer, T.; Liu, C. Y.; Majewski, J.; Makela, M.; Masuda, Y.; Morris, C. L.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Schroffenegger, J.; Tang, Z.; Wei, W.; Wang, Z.; Watkins, E.; Young, A. R.; Zeck, B. A.

    2017-11-01

    We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50 μm thick NiP coatings on stainless steel and aluminum substrates was measured to be VF = 213(5 . 2) neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle was interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1 . 3(1) × 10-4. We also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.

  10. Evaluation of commercial nickel-phosphorus coating for ultracold neutron guides using a pinhole bottling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattie. Jr., Robert Wayne; Adamek, Evan Robert; Brenner, Thomas

    We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle wasmore » interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1.3(1)×10 –4. In conclusion, we also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.« less

  11. Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2016-08-01

    Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.

  12. Shear viscosity in an anisotropic unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.

    2017-11-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  13. Experimental Observation of One-Dimensional Superradiance Lattices in Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Chen, Liangchao; Wang, Pengjun; Meng, Zengming; Huang, Lianghui; Cai, Han; Wang, Da-Wei; Zhu, Shi-Yao; Zhang, Jing

    2018-05-01

    We measure the superradiant emission in a one-dimensional (1D) superradiance lattice (SL) in ultracold atoms. Resonantly excited to a superradiant state, the atoms are further coupled to other collectively excited states, which form a 1D SL. The directional emission of one of the superradiant excited states in the 1D SL is measured. The emission spectra depend on the band structure, which can be controlled by the frequency and intensity of the coupling laser fields. This work provides a platform for investigating the collective Lamb shift of resonantly excited superradiant states in Bose-Einstein condensates and paves the way for realizing higher dimensional superradiance lattices.

  14. SO(3) "Nuclear Physics" with ultracold Gases

    NASA Astrophysics Data System (ADS)

    Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.-J.

    2018-06-01

    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.

  15. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  16. Charge transfer in ultracold gases via Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2017-06-01

    We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.

  17. Ultracold bosons in a one-dimensional optical lattice chain: Newton's cradle and Bose enhancement effect

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Guo; Yang, Shi-Jie

    2017-05-01

    We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.

  18. Molecular gas in high-mass filament WB673

    NASA Astrophysics Data System (ADS)

    Kirsanova, Maria S.; Salii, Svetlana V.; Sobolev, Andrej M.; Olofsson, Anders Olof Henrik; Ladeyschikov, Dmitry A.; Thomasson, Magnus

    2017-12-01

    We studied the distribution of dense gas in a filamentary molecular cloud containing several dense clumps. The center of the filament is given by the dense clump WB673. The clumps are high-mass and intermediate-mass starforming regions. We observed CS (2-1), 13CO (1-0), C18O(1-0), and methanol lines at 96 GHz toward WB673 with the Onsala Space Observatory 20-m telescope. We found CS (2-1) emission in the inter-clump medium so the clumps are physically connected and the whole cloud is indeed a filament. Its total mass is 104 M⊙ and mass-to-length ratio is 360M⊙ pc-1 from 13CO (1-0) data. Mass-to-length ratio for the dense gas is 3.4 - 34M⊙ pc-1 from CS (2-1) data. The PV-diagram of the filament is V-shaped. We estimated physical conditions in the molecular gas using methanol lines. Location of the filament on the sky between extended shells suggests that it could be a good example to test theoretical models of formation of the filaments via multiple compression of interstellar gas by supersonic waves.

  19. Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms.

    PubMed

    Harte, Tiffany; Bruce, Graham D; Keeling, Jonathan; Cassettari, Donatella

    2014-11-03

    Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.

  20. A prestorage method to measure neutron transmission of ultracold neutron guides

    NASA Astrophysics Data System (ADS)

    Blau, B.; Daum, M.; Fertl, M.; Geltenbort, P.; Göltl, L.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Schmidt-Wellenburg, P.; Zsigmond, G.

    2016-01-01

    There are worldwide efforts to search for physics beyond the Standard Model of particle physics. Precision experiments using ultracold neutrons (UCN) require very high intensities of UCN. Efficient transport of UCN from the production volume to the experiment is therefore of great importance. We have developed a method using prestored UCN in order to quantify UCN transmission in tubular guides. This method simulates the final installation at the Paul Scherrer Institute's UCN source where neutrons are stored in an intermediate storage vessel serving three experimental ports. This method allowed us to qualify UCN guides for their intended use and compare their properties.

  1. Role of Feshbach resonances in enhancing the production of deeply bound ultracold LiRb molecules with laser pulses

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Ghosal, Subhas; Côté, Robin

    2010-03-01

    We investigate the possibility of forming deeply bound LiRb molecules in a two-color photoassociation experiment. Ultracold ^6Li and ^87Rb atoms colliding in the vicinity of a magnetic Feshbach resonance are photoassociated into an excited electronic state. A wavepacket is then formed by exciting a few vibrational levels of the excited state and allowed to propagate. We calculate the time-dependent overlaps between the wave packet and the lowest vibrational levels of the ground state. After the optimal overlap is obtained we use the second laser pulse to dump the wave packet and efficiently populate the deeply bound ro-vibrational levels of ^6Li^87Rb in the ground state. The resulting combination of Feshbach-optimized photoassociation (FOPA) with the time-dependent pump-dump approach will produce a large number of stable ultracold molecules in the ground state. This technique is general and applicable to other systems.

  2. ATCA survey of ammonia in the galactic center: The temperatures of dense gas clumps between Sgr A* and Sgr B2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Jürgen; Weiß, Axel; Henkel, Christian

    We present a large-scale, interferometric survey of ammonia (1, 1) and (2, 2) toward the Galactic center observed with the Australia Telescope Compact Array. The survey covers Δℓ ∼ 1° (∼150 pc at an assumed distance of 8.5 kpc) and Δb ∼ 0.°2 (∼30 pc) which spans the region between the supermassive black hole Sgr A* and the massive star forming region Sgr B2. The resolution is ∼20'' (∼0.8 pc) and emission at scales ≳ 2' (≳ 3.2 pc) is filtered out due to missing interferometric short spacings. Consequently, the data represent the denser, compact clouds and disregards the large-scale,more » diffuse gas. Many of the clumps align with the 100 pc dust ring and mostly anti-correlate with 1.2 cm continuum emission. We present a kinetic temperature map of the dense gas. The temperature distribution peaks at ∼38 K with a width at half maximum between 18 K and 61 K (measurements sensitive within T {sub kin} ∼ 10-80 K). Larger clumps are on average warmer than smaller clumps which suggests internal heating sources. Our observations indicate that the circumnuclear disk ∼1.5 pc around Sgr A* is supplied with gas from the 20 km s{sup –1} molecular cloud. This gas is substantially cooler than gas ∼3-15 pc away from Sgr A*. We find a strong temperature gradient across Sgr B2. Ammonia column densities correlate well with SCUBA 850 μm fluxes, but the relation is shifted from the origin, which may indicate a requirement for a minimum amount of dust to form and shield ammonia. Around the Arches and Quintuplet clusters we find shell morphologies with UV-influenced gas in their centers, followed by ammonia and radio continuum layers.« less

  3. Losses and depolarization of ultracold neutrons on neutron guide and storage materials

    NASA Astrophysics Data System (ADS)

    Bondar, V.; Chesnevskaya, S.; Daum, M.; Franke, B.; Geltenbort, P.; Göltl, L.; Gutsmiedl, E.; Karch, J.; Kasprzak, M.; Kessler, G.; Kirch, K.; Koch, H.-C.; Kraft, A.; Lauer, T.; Lauss, B.; Pierre, E.; Pignol, G.; Reggiani, D.; Schmidt-Wellenburg, P.; Sobolev, Yu.; Zechlau, T.; Zsigmond, G.

    2017-09-01

    At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to ˜460 s were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, η , varied between 1.0 ×10-4 and 2.2 ×10-4 . All η values are in agreement with theory except for dPS, where anomalous losses at room temperature were established with four standard deviations. The depolarization probabilities per wall collision β measured with unprecedented sensitivity varied between 0.7 ×10-6 and 9.0 ×10-6 . Our depolarization result for copper differs from other experiments by 4.4 and 15.8 standard deviations. The β values of the paramagnetic NiMo alloys over molybdenum content show an increase of β with increasing Mo content. This is in disagreement with expectations from literature. Finally, ferromagnetic behavior of NiMo alloys at room temperature was found for molybdenum contents of 6.5 at.% or less and paramagnetic behavior for more than 8.7 at.%. This may contribute to solving an ambiguity in literature.

  4. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics: Quantum many-body physics of ultracold molecules in optical lattices: models and simulation methods

    NASA Astrophysics Data System (ADS)

    Wall, Michael

    2014-03-01

    Experimental progress in generating and manipulating synthetic quantum systems, such as ultracold atoms and molecules in optical lattices, has revolutionized our understanding of quantum many-body phenomena and posed new challenges for modern numerical techniques. Ultracold molecules, in particular, feature long-range dipole-dipole interactions and a complex and selectively accessible internal structure of rotational and hyperfine states, leading to many-body models with long range interactions and many internal degrees of freedom. Additionally, the many-body physics of ultracold molecules is often probed far from equilibrium, and so algorithms which simulate quantum many-body dynamics are essential. Numerical methods which are to have significant impact in the design and understanding of such synthetic quantum materials must be able to adapt to a variety of different interactions, physical degrees of freedom, and out-of-equilibrium dynamical protocols. Matrix product state (MPS)-based methods, such as the density-matrix renormalization group (DMRG), have become the de facto standard for strongly interacting low-dimensional systems. Moreover, the flexibility of MPS-based methods makes them ideally suited both to generic, open source implementation as well as to studies of the quantum many-body dynamics of ultracold molecules. After introducing MPSs and variational algorithms using MPSs generally, I will discuss my own research using MPSs for many-body dynamics of long-range interacting systems. In addition, I will describe two open source implementations of MPS-based algorithms in which I was involved, as well as educational materials designed to help undergraduates and graduates perform research in computational quantum many-body physics using a variety of numerical methods including exact diagonalization and static and dynamic variational MPS methods. Finally, I will mention present research on ultracold molecules in optical lattices, such as the exploration of

  5. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  6. Universality and chaotic dynamics in reactive scattering of ultracold KRb molecules with K atoms

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana; Croft, James F. E.; Balakrishnan, Naduvalath; Kendrick, Brian K.

    2017-04-01

    We study the benchmark reaction between the most-celebrated ultracold polar molecule, KRb, with an ultracold K atom. For the first time we map out an accurate ab initio ground potential energy surface of the K2Rb complex in full dimensionality and performed a numerically exact quantum-mechanical calculation of reaction dynamics based on coupled-channels approach in hyperspherical coordinates. An analysis of the adiabatic hyperspherical potentials reveals a chaotic distribution for the short-range complex that plays a key role in governing the reaction outcome. The equivalent distribution for a lighter collisional system with a smaller density of states (here the Li2Yb trimer) only shows random behavior. We find an extreme sensitivity of our chaotic system to a small perturbation associated with the weak non-additive three-body potential contribution that does not affect the total reaction rate coefficient but leads to a significant change in the rotational distribution in the product molecule. In both cases the distribution of these rates is random or Poissonian. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and PHY-1619788 (S.K.), ARO MURI Grant No. W911NF-12-1-0476 (N.B. & S.K.), and DOE LDRD Grant No. 20170221ER (B.K.).

  7. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Viscosity and thermal conductivity of moderately dense gas mixtures.

    NASA Technical Reports Server (NTRS)

    Wakeham, W. A.; Kestin, J.; Mason, E. A.; Sandler, S. I.

    1972-01-01

    Derivation of a simple, semitheoretical expression for the initial density dependence of the viscosity and thermal conductivity of gaseous mixtures in terms of the appropriate properties of the pure components and of their interaction quantities. The derivation is based on Enskog's theory of dense gases and yields an equation in which the composition dependence of the linear factor in the density expansion is explicit. The interaction quantities are directly related to those of the mixture extrapolated to zero density and to a universal function valid for all gases. The reliability of the formulation is assessed with respect to the viscosity of several binary mixtures. It is found that the calculated viscosities of binary mixtures agree with the experimental data with a precision which is comparable to that of the most precise measurements.

  9. Compact Laser System for Field Deployable Ultracold Atom Sensors

    NASA Astrophysics Data System (ADS)

    Pino, Juan; Luey, Ben; Anderson, Mike

    2013-05-01

    As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA

  10. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers

    NASA Astrophysics Data System (ADS)

    Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.

    2017-09-01

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  11. Lattice-Assisted Spectroscopy: A Generalized Scanning Tunneling Microscope for Ultracold Atoms.

    PubMed

    Kantian, A; Schollwöck, U; Giamarchi, T

    2015-10-16

    We propose a scheme to measure the frequency-resolved local particle and hole spectra of any optical lattice-confined system of correlated ultracold atoms that offers single-site addressing and imaging, which is now an experimental reality. Combining perturbation theory and time-dependent density matrix renormalization group simulations, we quantitatively test and validate this approach of lattice-assisted spectroscopy on several one-dimensional example systems, such as the superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.

  12. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  13. Thermophysical properties of multi-shock compressed dense argon

    NASA Astrophysics Data System (ADS)

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-01

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  14. The bound states of ultracold KRb molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul; Hanna, Thomas

    2009-03-01

    Recently ultracold vibrational ground state ^40K^87Rb polar molecules have been made using magnetoassociation of two cold atoms to a weakly bound Feshbach molecule, followed by a two-color optical STIRAP process to transfer molecules to the molecular ground state [1]. We have used accurate potential energy curves for the singlet and triplet states of the KRb molecule [2] with coupled channels calculations to calculate all of the bound states of the ^40K^87Rb molecule as a function of magnetic field from the cold atom collision threshold to the v=0 ground state. We have also developed approximate models for understanding the changing properties of the molecular bound states as binding energy increases. Some overall conclusions from these calculations will be presented. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science, 2008, 322, 231--235. [2] A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Kn"ockel, and E. Tiemann, Phys. Rev. A, 2007, 76, 022511.

  15. Formation of ultracold molecules induced by a high-power single frequency fiber laser

    NASA Astrophysics Data System (ADS)

    Fernandes Passagem, Henry; Colin-Rodriguez, Ricardo; Ventura da Silva, Paulo; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Marcassa, Luis

    2017-04-01

    Photoassociation of a pair of ultracold atoms is a quite simple and rapid approach for cold molecule formation. The main limitation of PA is that the latter step is incoherent, so that the population of the created molecules is spread over many vibrational levels with weak or moderate binding energies. If the excited electronic molecular state exhibits a peculiar feature at short internuclear distance like a potential barrier or an avoided crossing, the population of deeply-bound ground state levels may be significantly enhanced. In this work, the influence of a high-power single frequency fiber laser on the formation of ultracold 85Rb2 molecules is investigated as a function of its frequency (in the 1062-1070 nm range) in a magneto optical trap. We found evidence for the formation of ground state 85Rb2 molecules in low vibrational levels (v <= 20) with a maximal rate of 104 s-1, induced by short-range photoassociation by the fiber laser followed by spontaneous emission. When this laser is used to set up a dipole trap, we measure an atomic loss rate at a wavelength far from the PA resonances only 4 times smaller than the one observed at a PA resonance wavelength. This work may have important consequences for atom trapping using lasers around 1060 nm. This work is supported by Grants 2013/02816-8 and 2014/24479-6, Sao Paulo Research Foundation (FAPESP).

  16. Geometric phase effects in ultracold collisions of H/D with rotationally excited HD

    NASA Astrophysics Data System (ADS)

    Kendrick, Brian K.; Croft, James F. E.; Hazra, Jisha; Balakrishnan, N.

    2017-04-01

    Quantum reactive scattering calculations for the H/D + HD(v = 4 , j = 1 , 2) -> H/D + HD(v', j') and H + H2(v = 4 , j = 1 , 2) -> H + H2(v', j') exchange reactions are presented for the ground electronic state of H3. A numerically exact three-dimensional time-independent scattering method based on hyperspherical coordinates is used to compute rotationally resolved reaction cross sections and non-thermal rate coefficients for collision energies between 1 μK and 100 K . The geometric (Berry) phase associated with the D3h conical intersection in H3 is included using a U(1) vector (gauge) potential approach. It is shown that the geometric phase leads to a significant (up to three orders of magnitude) enhancement or suppression of the ultracold reaction rate coefficients depending upon whether the interference between the reaction pathways encircling the conical intersection is constructive or destructive. The nature of the interference is governed by a newly discovered mechanism which leads to an effective quantization of the ultracold scattering phase shifts. Interesting behavior due to rotational excitation of the HD and H2 is observed which might be exploited by experimentalists to control the reaction outcome. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.), and DOE LDRD Grant No. 20170221ER (B.K.).

  17. First measurement of the neutron beta asymmetry with ultracold neutrons.

    PubMed

    Pattie, R W; Anaya, J; Back, H O; Boissevain, J G; Bowles, T J; Broussard, L J; Carr, R; Clark, D J; Currie, S; Du, S; Filippone, B W; Geltenbort, P; García, A; Hawari, A; Hickerson, K P; Hill, R; Hino, M; Hoedl, S A; Hogan, G E; Holley, A T; Ito, T M; Kawai, T; Kirch, K; Kitagaki, S; Lamoreaux, S K; Liu, C-Y; Liu, J; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Meier, N; Mendenhall, M P; Morris, C L; Mortensen, R; Pichlmaier, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Sabourov, K; Sallaska, A L; Saunders, A; Schmid, R; Seestrom, S; Servicky, C; Sjue, S K L; Smith, D; Sondheim, W E; Tatar, E; Teasdale, W; Terai, C; Tipton, B; Utsuro, M; Vogelaar, R B; Wehring, B W; Xu, Y P; Young, A R; Yuan, J

    2009-01-09

    We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021.

  18. The MCUCN simulation code for ultracold neutron physics

    NASA Astrophysics Data System (ADS)

    Zsigmond, G.

    2018-02-01

    Ultracold neutrons (UCN) have very low kinetic energies 0-300 neV, thereby can be stored in specific material or magnetic confinements for many hundreds of seconds. This makes them a very useful tool in probing fundamental symmetries of nature (for instance charge-parity violation by neutron electric dipole moment experiments) and contributing important parameters for the Big Bang nucleosynthesis (neutron lifetime measurements). Improved precision experiments are in construction at new and planned UCN sources around the world. MC simulations play an important role in the optimization of such systems with a large number of parameters, but also in the estimation of systematic effects, in benchmarking of analysis codes, or as part of the analysis. The MCUCN code written at PSI has been extensively used for the optimization of the UCN source optics and in the optimization and analysis of (test) experiments within the nEDM project based at PSI. In this paper we present the main features of MCUCN and interesting benchmark and application examples.

  19. Geometric phase effects in ultracold hydrogen exchange reactions

    NASA Astrophysics Data System (ADS)

    Naduvalath, Balakrishnan; Croft, James F. E.; Hazra, Jisha; Kendrick, Brian K.

    2017-04-01

    Electronically non-adiabatic effects play an important role in many chemical reactions. The geometric phase, also known as the Berry's phase, arises from the adiabatic transport of the electronic wave function around a conical intersection between two electronic potential energy surfaces. It is shown that in ultracold collisions of H and D atoms with vibrationally excited HD, inclusion of the geometric phase leads to constructive and destructive interferences between non-reactive and exchange components of the wave function. This results in strong enhancement or suppression of reactivity depending on the final rovibrational levels of the scattered HD molecules. The effect is illustrated for non-rotating and rotationally excited HD molecules in the v = 4 vibrational level for which the H+HD and D+HD reactions occur through a barrierless path. This work was supported in part by NSF Grant PHY-1505557 (N.B.), ARO MURI Grant No. W911NF-12-1-0476 (N.B.), and DOE LDRD Grant No. 20170221ER (B.K.).

  20. Deploying Solid Targets in Dense Plasma Focus Devices for Improved Neutron Yields

    NASA Astrophysics Data System (ADS)

    Podpaly, Y. A.; Chapman, S.; Povilus, A.; Falabella, S.; Link, A.; Shaw, B. H.; Cooper, C. M.; Higginson, D.; Holod, I.; Sipe, N.; Gall, B.; Schmidt, A. E.

    2017-10-01

    We report on recent progress in using solid targets in dense plasma focus (DPF) devices. DPFs have been observed to generate energetic ion beams during the pinch phase; these beams interact with the dense plasma in the pinch region as well as the background gas and are believed to be the primary neutron generation mechanism for a D2 gas fill. Targets can be placed in the beam path to enhance neutron yield and to shorten the neutron pulse if desired. In this work, we measure yields from placing titanium deuteride foils, deuterated polyethylene, and non-deuterated control targets in deuterium filled DPFs at both megajoule and kilojoule scales. Furthermore, we have deployed beryllium targets in a helium gas-filled, kilojoule scale DPF for use as a potential AmBe radiological source replacement. Neutron yield, neutron time of flight, and optical images are used to diagnose the effectiveness of target deployments relative to particle-in-cell simulation predictions. A discussion of target holder engineering for material compatibility and damage control will be shown as well. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by the Office of Defense Nuclear Nonproliferation Research and Development within U.S. DOE's National Nuclear Security Administration and the LLNL Institutional Computing Grand Challenge program.

  1. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    DOEpatents

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  2. Towards fundamental understanding of ultracold KRb

    NASA Astrophysics Data System (ADS)

    Kotochigova, Svetlana

    2009-05-01

    The recent formation of ultracold KRb molecules in their absolute rovibrational ground state [1] has created great promise for study of collective phenomena that rely on the long-range interactions between polar molecules. Here we discuss the theoretical analysis of various essential properties of the KRb molecules [2] that accompanied these experimental advances. This analysis is based on multi-channel bound-state calculations of both ground and excited electronic states. We have found that the theoretical hyperfine and Zeeman mixed X^1&+circ; and a^3&+circ; vibrational structure shows excellent agreement with the experimentally observed structure. In addition, multi-channel calculations of the rovibrational structure of the excited state potentials have allowed us to find the optimal transitions to the lowest v=0 vibrational levels. Finally, we examine the dynamic polarizability of vibrationally cold KRb molecules as a function of laser frequency. Based on this knowledge, laser frequencies can be selected to minimize decoherence from loss of molecules due to spontaneous or laser-induced transitions. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008). [2] S. Kotochigova, E. Tiesinga, and P. S. Julienne, submitted to New J. Phys. (2009).

  3. The Cold Side of Galaxy Formation: Dense Gas Through Cosmic Time

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group

    2018-01-01

    The processes that lead to the formation and evolution of galaxies throughout the history of the Universe involve the complex interplay between hierarchical merging of dark matter halos, accretion of primordial and recycled gas, transport of gas within galaxy disks, accretion onto central super-massive black holes, and the formation of molecular clouds which subsequently collapse and fragment. The resulting star formation and black hole accretion provide large sources of energy and momentum that light up galaxies and lead to feedback. The ngVLA will be key to further understand how gas is accreted onto galaxies, and the processes that regulate the growth of galaxies through cosmic history. It will reveal how and on which timescales star formation and black hole accretion impact the gas in galaxies, and how the physical properties and chemical state of the gas change as gas cycles between different phases for different galaxy populations over a broad range in redshifts. The ngVLA will have the capability to carry out unbiased, large cosmic volume surveys at virtually any redshift down to an order of magnitude lower gas masses than currently possible in the critical low-level CO lines, thus exposing the evolution of gaseous reservoirs from the earliest epochs to the peak of the cosmic history of star formation. It will also image routinely and systematically the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts. The ngVLA thus is poised to revolutionize our understanding of galaxy evolution through cosmic time.

  4. Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming

    2018-05-01

    Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.

  5. Critical density of a soliton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El, G. A., E-mail: g.el@lboro.ac.uk

    We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg–de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function.

  6. Critical density of a soliton gas

    NASA Astrophysics Data System (ADS)

    El, G. A.

    2016-02-01

    We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg-de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function.

  7. Pump-probe study of the formation of rubidium molecules by ultrafast photoassociation of ultracold atoms

    NASA Astrophysics Data System (ADS)

    McCabe, David J.; England, Duncan G.; Martay, Hugo E. L.; Friedman, Melissa E.; Petrovic, Jovana; Dimova, Emiliya; Chatel, Béatrice; Walmsley, Ian A.

    2009-09-01

    An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step toward a fully coherent pump-dump approach to the stabilization of Rb2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of preassociated molecules.

  8. The Coldest Object in the Universe: Probing the Mass Distribution of the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    NASA Technical Reports Server (NTRS)

    Sahai, R.; Vlemmings, W.; Nyman, L. A.

    2014-01-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001 solar mass M yr (exp -1) and low-luminosity (300L ) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle O data, and reveal heretofore unseen distant regions of the ultra-cold outflow reheated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4 in). The waist shows a core-halo structure in the thermal dust emission at 0.88 millimeter, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 millimeter fluxes support the presence of about 5 x 10 (exp -4) solar mass of very large (approximately millimeter-sized), cold (approximately 30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.

  9. The Coldest Object in the Universe: Probing the Mass Distribution of the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W.; Nyman, L.

    2015-12-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the Universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001M⊙) and low-luminosity (300L⊙) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle 0 data, and reveal heretofore unseen distant regions of the ultra-cold outflow re-heated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4”). The waist shows a core-halo structure in the thermal dust emission at 0.88 mm, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 mm fluxes support the presence of about 5×10-4 M⊙ of very large (˜mm-sized), cold (˜30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.

  10. Veselago lensing with ultracold atoms in an optical lattice.

    PubMed

    Leder, Martin; Grossert, Christopher; Weitz, Martin

    2014-01-01

    Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman π-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications.

  11. Rotational Effects of Nanoparticles for Cooling down Ultracold Neutrons

    PubMed Central

    Tu, Xiaoqing; Sun, Guangai; Gong, Jian; Liu, Lijuan; Ren, Yong; Gao, Penglin; Wang, Wenzhao; Yan, H.

    2017-01-01

    Due to quantum coherence, nanoparticles have very large cross sections when scattering with very cold or Ultracold Neutrons (UCN). By calculating the scattering cross section quantum mechanically at first, then treating the nanoparticles as classical objects when including the rotational effects, we can derive the associated energy transfer. We find that rotational effects could play an important role in slowing down UCN. In consequence, the slowing down efficiency can be improved by as much as ~40%. Since thermalization of neutrons with the moderator requires typically hundreds of collisions between them, a ~40% increase of the efficiency per collision could have a significant effect. Other possible applications, such as neutrons scattering with nano shells and magnetic particles,and reducing the systematics induced by the geometric phase effect using nanoparticles in the neutron Electric Dipole Moment (nEDM), are also discussed in this paper. PMID:28294116

  12. High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice

    NASA Astrophysics Data System (ADS)

    Fläschner, Nick; Tarnowski, Matthias; Rem, Benno S.; Vogel, Dominik; Sengstock, Klaus; Weitenberg, Christof

    2018-05-01

    Spectroscopic tools are fundamental for the understanding of complex quantum systems. Here, we demonstrate high-precision multiband spectroscopy in a graphenelike lattice using ultracold fermionic atoms. From the measured band structure, we characterize the underlying lattice potential with a relative error of 1.2 ×10-3 . Such a precise characterization of complex lattice potentials is an important step towards precision measurements of quantum many-body systems. Furthermore, we explain the excitation strengths into different bands with a model and experimentally study their dependency on the symmetry of the perturbation operator. This insight suggests the excitation strengths as a suitable observable for interaction effects on the eigenstates.

  13. On the Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jerome

    2017-10-01

    We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us 1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, 2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and 3) to explain how the concept of Coulomb logarithm emerges at high enough temperature but disappears at low enough temperature. Work supported by LDRD Grant No. 20170490ER.

  14. Ultracold Anions for High-Precision Antihydrogen Experiments

    NASA Astrophysics Data System (ADS)

    Cerchiari, G.; Kellerbauer, A.; Safronova, M. S.; Safronova, U. I.; Yzombard, P.

    2018-03-01

    Experiments with antihydrogen (H ¯) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H ¯ to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions—dominated by polarization and correlation effects—only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La- . Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν =96.592 713 (91 ) THz and its transition rate to be A =4.90 (50 )×104 s-1 . Using a novel high-precision theoretical treatment of La- we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La- . The new data establish the suitability of La- for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  15. Cosmic-ray ionisation of dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Vaupre, Solenn

    2015-07-01

    Cosmic rays (CR) are of tremendous importance in the dynamical and chemical evolution of interstellar molecular clouds, where stars and planets form. CRs are likely accelerated in the shells of supernova remnants (SNR), thus molecular clouds nearby can be irradiated by intense fluxes of CRs. CR protons have two major effects on dense molecular clouds: 1) when they encounter the dense medium, high-energy protons (>280 MeV) create pions that decay into gamma-rays. This process makes SNR-molecular cloud associations intense GeV and/or TeV sources whose spectra mimic the CR spectrum. 2) at lower energies, CRs penetrate the cloud and ionise the gas, leading to the formation of molecular species characteristic of the presence of CRs, called tracers of the ionisation. Studying these tracers gives information on low-energy CRs that are unaccessible to any other observations. I studied the CR ionisation of molecular clouds next to three SNRs: W28, W51C and W44. These SNRs are known to be interacting with the nearby clouds, from the presence of shocked gas, OH masers and pion-decay induced gamma-ray emission. My work includes millimeter observations and chemical modeling of tracers of the ionisation in these dense molecular clouds. In these three regions, we determined an enhanced CR ionisation rate, supporting the hypothesis of an origin of the CRs in the SNR nearby. The evolution of the CR ionisation rate with the distance to the SNR brings valuable constraints on the propagation properties of low-energy CRs. The method used relies on observations of the molecular ions HCO+ and DCO+, which shows crucial limitations at high ionisation. Therefore, I investigated, both through modeling and observations, the chemical abundances of several other species to try and identity alternative tracers of the ionisation. In particular, in the W44 region, observations of N2H+ bring additional constraints on the physical conditions, volatile abundances in the cloud, and the ionisation

  16. Search for massive protostellar candidates in the southern hemisphere. I. Association with dense gas

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Beltrán, M. T.; Brand, J.; Cesaroni, R.; Testi, L.; Molinari, S.; Walmsley, C. M.

    2005-03-01

    We have observed two rotational transitions of both CS and C17O, and the 1.2 mm continuum emission towards a sample of 130 high-mass protostellar candidates with δ < -30°. This work represents the first step of the extension to the southern hemisphere of a project started more than a decade ago aimed at the identification of massive protostellar candidates. Following the same approach adopted for sources with δ ≥ -30°, we have selected from the IRAS Point Source Catalogue 429 sources which potentially are compact molecular clouds on the basis of their IR colours. The sample has then been divided into two groups according to the colour indices [25 12] and [60 12]: the 298 sources with [25 12] ≥ 0.57 and [60 12] ≥ 1.30 have been called High sources, the remaining 131 have been called Low sources. In this paper, we check the association with dense gas and dust in 130 Low sources. We have obtained a detection rate of ~85% in CS, demonstrating a tight association of the sources with dense molecular clumps. Among the sources detected in CS, ~76% have also been detected in C17O and ~93% in the 1.2 mm continuum. Millimeter-continuum maps show the presence of clumps with diameters in the range 0.2-2 pc and masses from a few M⊙ to 105 M⊙; H2 volume densities computed from CS line ratios lie between ~104.5 and 105.5 cm-3. The bolometric luminosities of the sources, derived from IRAS data, are in the range 103-106 L⊙, consistent with embedded high-mass objects. Based on our results and those found in the literature for other samples of high-mass young stellar objects, we conclude that our sources are massive objects in a very early evolutionary stage, probably prior to the formation of an Hii region. We propose a scenario in which High and Low sources are both made of a massive clump hosting a high-mass protostellar candidate and a nearby stellar cluster. The difference might be due to the fact that the 12 μm IRAS flux, the best discriminant between the two

  17. Creation of Rydberg Polarons in a Bose Gas

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard

    2017-04-01

    In this talk we review the theory of various types of Bose polarons that can be realized in ultracold atomic systems. We then report the spectroscopic observation of Rydberg polarons in a Bose gas which is in excellent agreement with theoretical predictions. This novel type of polaron is created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate and it is distinguished by the occupation of a large number bound molecular states. The cross-over from few-body bound molecular oligomers to many-body polaron features is described with a functional determinant theory that solves an extended Froehlich Hamiltonian for an impurity in a Bose gas. The detailed analysis of the red-detuned tail of the excitation spectrum describes the contribution from the region of highest density in the condensate and provides a clear signature of Rydberg polarons. This work has been performed in collaboration with groups at Rice University, Harvard University, and the TU Vienna.

  18. Geometric phase effects in the ultracold D + HD $$ \\rightarrow $$ D + HD and D + HD $$\\leftrightarrow $$ H + D 2 reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth

    The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less

  19. Geometric phase effects in the ultracold D + HD $$ \\rightarrow $$ D + HD and D + HD $$\\leftrightarrow $$ H + D 2 reactions

    DOE PAGES

    Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth

    2016-12-15

    The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less

  20. Self-bound droplets of a dilute magnetic quantum liquid

    NASA Astrophysics Data System (ADS)

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  1. Self-bound droplets of a dilute magnetic quantum liquid.

    PubMed

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-10

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  2. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  3. Direct weak localization signature with ultracold atoms: the CBS revival

    NASA Astrophysics Data System (ADS)

    Josse, Vincent

    2016-05-01

    Ultracold atomic systems in presence of disorder have attracted a lot of interest over the past decade, in particular to study the physics of Anderson localization (AL) in a renewed perspective. Landmark experiments have been demonstrated, in 1D and 3D geometries. However many challenges remain and new ideas have emerged, as for instance the search for original signatures of Anderson localization in momentum space. Here I will describe our progresses along that line where a weak localization effect has been directly observed, i.e. the Coherent Backscattering (CBS) phenomenon. In particular I will report on the recent observation of suppression and revival of CBS when a controlled dephasing kick is applied to the system. This observation demonstrates a novel and general method, introduced by T. Micklitz and coworkers, to study probe phase coherence in disordered systems by manipulating time reversal symmetry.

  4. Quantum simulation of ultrafast dynamics using trapped ultracold atoms.

    PubMed

    Senaratne, Ruwan; Rajagopal, Shankari V; Shimasaki, Toshihiko; Dotti, Peter E; Fujiwara, Kurt M; Singh, Kevin; Geiger, Zachary A; Weld, David M

    2018-05-25

    Ultrafast electronic dynamics are typically studied using pulsed lasers. Here we demonstrate a complementary experimental approach: quantum simulation of ultrafast dynamics using trapped ultracold atoms. Counter-intuitively, this technique emulates some of the fastest processes in atomic physics with some of the slowest, leading to a temporal magnification factor of up to 12 orders of magnitude. In these experiments, time-varying forces on neutral atoms in the ground state of a tunable optical trap emulate the electric fields of a pulsed laser acting on bound charged particles. We demonstrate the correspondence with ultrafast science by a sequence of experiments: nonlinear spectroscopy of a many-body bound state, control of the excitation spectrum by potential shaping, observation of sub-cycle unbinding dynamics during strong few-cycle pulses, and direct measurement of carrier-envelope phase dependence of the response to an ultrafast-equivalent pulse. These results establish cold-atom quantum simulation as a complementary tool for studying ultrafast dynamics.

  5. Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell

    DOE PAGES

    Dong, Lei; Yu, Yajun; Li, Chunguang; ...

    2015-07-27

    A ppb-level formaldehyde (H 2CO) sensor was developed using a thermoelectrically cooled (TEC), continuous-wave (CW) room temperature interband cascade laser (ICL) emitting at 3.59 μm and a miniature dense pattern multipass gas cell with >50 m optical path length. Performance of the sensor was investigated with two measurement schemes: direct absorption (DAS) and wavelength modulation spectroscopy (WMS). With an integration time of less than 1.5 second, a detection limit of ~3 ppbv for H 2CO measurement with precision of 1.25 ppbv for DAS and 0.58 ppbv for WMS, respectively, was achieved without zero air based background subtraction. An Allan-Werle variancemore » analysis indicated that the precisions can be further improved to 0.26 ppbv @ 300s for DAS and 69 pptv @ 90 s for WMS, respectively. Finally, a side-by-side comparison between two measurement schemes is also discussed in detail.« less

  6. Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene

    2017-06-01

    Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.

  7. Repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism.

    PubMed

    Conduit, G J; Simons, B D

    2009-11-13

    Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic transition would take place at a weaker interaction strength than is observed in experiment. This discrepancy motivates a simple nonequilibrium theory that takes account of the dynamics of magnetic defects and three-body losses. The formalism developed displays good quantitative agreement with experiment.

  8. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  9. Influence of the finite linewidth of the laser radiation spectrum on the shape of the coherent population trapping resonance line in an optically dense medium with a buffer gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barantsev, K. A., E-mail: kostmann@yandex.ru; Popov, E. N.; Litvinov, A. N., E-mail: andrey.litvinov@mail.ru

    2015-11-15

    The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.

  10. Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.

    2014-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  11. Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening to continuous thickening

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisao; Takada, Satoshi; Garzó, Vicente

    2017-10-01

    The Enskog kinetic theory for moderately dense gas-solid suspensions under simple shear flow is considered as a model to analyze the rheological properties of the system. The influence of the environmental fluid on solid particles is modeled via a viscous drag force plus a stochastic Langevin-like term. The Enskog equation is solved by means of two independent but complementary routes: (i) Grad's moment method and (ii) event-driven Langevin simulation of hard spheres. Both approaches clearly show that the flow curve (stress-strain rate relation) depends significantly on the volume fraction of the solid particles. In particular, as the density increases, there is a transition from the discontinuous shear thickening (observed in dilute gases) to the continuous shear thickening for denser systems. The comparison between theory and simulations indicates that while the theoretical predictions for the kinetic temperature agree well with simulations for densities φ ≲0.5 , the agreement for the other rheological quantities (the viscosity, the stress ratio, and the normal stress differences) is limited to more moderate densities (φ ≲0.3 ) if the inelasticity during collisions between particles is not large.

  12. Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening to continuous thickening.

    PubMed

    Hayakawa, Hisao; Takada, Satoshi; Garzó, Vicente

    2017-10-01

    The Enskog kinetic theory for moderately dense gas-solid suspensions under simple shear flow is considered as a model to analyze the rheological properties of the system. The influence of the environmental fluid on solid particles is modeled via a viscous drag force plus a stochastic Langevin-like term. The Enskog equation is solved by means of two independent but complementary routes: (i) Grad's moment method and (ii) event-driven Langevin simulation of hard spheres. Both approaches clearly show that the flow curve (stress-strain rate relation) depends significantly on the volume fraction of the solid particles. In particular, as the density increases, there is a transition from the discontinuous shear thickening (observed in dilute gases) to the continuous shear thickening for denser systems. The comparison between theory and simulations indicates that while the theoretical predictions for the kinetic temperature agree well with simulations for densities φ≲0.5, the agreement for the other rheological quantities (the viscosity, the stress ratio, and the normal stress differences) is limited to more moderate densities (φ≲0.3) if the inelasticity during collisions between particles is not large.

  13. Artist's Rendering of Multiple Whirlpools in a Sodium Gas Cloud

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.

  14. Analytical solutions for the dynamics of two trapped interacting ultracold atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew; Calarco, Tommaso; CNR-INFM BEC Center, I-38050 Povo

    2006-08-15

    We discuss exact solutions of the Schroedinger equation for the system of two ultracold atoms confined in an axially symmetric harmonic potential. We investigate different geometries of the trapping potential, in particular we study the properties of eigenenergies and eigenfunctions for quasi-one-dimensional and quasi-two-dimensional traps. We show that the quasi-one-dimensional and the quasi-two-dimensional regimes for two atoms can be already realized in the traps with moderately large (or small) ratios of the trapping frequencies in the axial and the transverse directions. Finally, we apply our theory to Feshbach resonances for trapped atoms. Introducing in our description an energy-dependent scattering lengthmore » we calculate analytically the eigenenergies for two trapped atoms in the presence of a Feshbach resonance.« less

  15. Continued Analysis of the NIST Neutron Lifetime Measurement Using Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.; Yang, L.

    2013-10-01

    The neutron lifetime is an important parameter for constraining the Standard Model and providing input for Big Bang Nucleosynthesis. The current disagreement in the most recent generation of lifetime experiments suggests unknown or underestimated systematics and motivates the need for alternative measurement methods as well as additional investigations into potential systematics. Our measurement was performed using magnetically trapped Ultracold Neutrons in a 3.1 T Ioffe type trap configuration. The decay rate of the neutron population is recorded in real time by monitoring visible light resulting from beta decay. Data collected in late 2010 and early 2011 is being analyzed and systematic effects are being investigated. An overview of our current work on the analysis, Monte Carlo simulations, and systematic effects will be provided. This work was supported by the NSF and NIST.

  16. Ultracold Anions for High-Precision Antihydrogen Experiments.

    PubMed

    Cerchiari, G; Kellerbauer, A; Safronova, M S; Safronova, U I; Yzombard, P

    2018-03-30

    Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91)  THz and its transition rate to be A=4.90(50)×10^{4}  s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  17. Superfluid-ferromagnet-superfluid junction and the {pi} phase in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2010-09-15

    We investigate the possibility of a superfluid-ferromagnet-superfluid (SFS) junction in a superfluid Fermi gas. To examine this possibility in a simple manner, we consider an attractive Hubbard model at T=0 within the mean-field theory. When a potential barrier is embedded in a superfluid Fermi gas with population imbalance (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms with pseudospin {sigma}= {up_arrow}, {down_arrow}), this barrier is shown to be magnetized in the sense that excess {up_arrow}-spin atoms are localized around it. The resulting superfluid Fermi gas is spatially divided into two by this ferromagnet, so that one obtains amore » junction similar to the superconductor-ferromagnet-superconductor junction discussed in superconductivity. Indeed, we show that the so-called {pi} phase, which is a typical phenomenon in the SFS junction, is realized, where the superfluid order parameter changes its sign across the junction. Our results would be useful for the study of magnetic effects on fermion superfluidity using an ultracold Fermi gas.« less

  18. Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-08-01

    We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.

  19. Control system high-precision laser to obtain the ensemble of ultracold ions Th3+

    NASA Astrophysics Data System (ADS)

    Florentsev, V. V.; Zhdamirov, V. Yu; Rodko, I. I.; Borodulya, N. A.; Biryukov, A. P.

    2018-01-01

    One of key problems of nuclear standard frequency development is preparation assembly of ultracold thorium ions in Pauli trap. In this case semiconductive frequency-stabilized lasers with external resonator on frequencies 690 nm, 984 nm, and 1088 nm are used for excitation of corresponding electronic dipole and quadrupole cooling transitions for Th3+ ions. In the paper the results of development and creation of unified laser module, which is able to be used as base for full-featured system designed for laser cooling of Th3+ ions, are presented. The module is able to fine-tune necessary wavelength with accuracy ±5 nm.

  20. Molecular spectroscopy for producing ultracold ground-state NaRb molecules

    NASA Astrophysics Data System (ADS)

    Wang, Dajun; Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    Recently, we have successfully created an ultracold sample of absolute ground-state NaRb molecules by two-photon Raman transfer of weakly bound Feshbach molecules. Here we will present the detailed spectroscopic investigations on both the excited and the rovibrational ground states for finding the two-photon path. For the excited state, we focus on the A1Σ+ /b3 Π singlet and triplet admixture. We discovered an anomalously strong coupling between the Ω =0+ and 0- components which renders efficient population transfer possible. In the ground state, the pure nuclear hyperfine levels have been clearly resolved, which allows us to create molecules in the absolute ground state directly with Raman transfer. This work is jointly supported by Agence Nationale de la Recherche (#ANR-13- IS04-0004-01) and Hong Kong Research Grant Council (#A-CUHK403/13) through the COPOMOL project.

  1. Strong photoassociation in a degenerate fermi gas

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.

  2. Laser Beat-Wave Magnetization of a Dense Plasma

    NASA Astrophysics Data System (ADS)

    Yates, Kevin; Hsu, Scott; Montgomery, David; Dunn, John; Langendorf, Samuel; Pollock, Bradley; Johnson, Timothy; Welch, Dale; Thoma, Carsten

    2017-10-01

    We present results from the first of a series of experiments to demonstrate and characterize laser beat-wave magnetization of a dense plasma, motivated by the desire to create high-beta targets with standoff for magneto-inertial fusion. The experiments are being conducted at the Jupiter Laser Facility (JLF) at LLNL. The experiment uses the JLF Janus 1 ω (1053 nm) beam and a standalone Nd:YAG (1064 nm) to drive the beat wave, and the Janus 2 ω (526.5 nm) beam to ionize/heat a gas-jet target as well as to provide Thomson-scattering (TS) measurements of the target density/temperature and scattered light from the beat wave. Streaked TS data captured electron-plasma-wave and ion-acoustic-wave features utilizing either nitrogen or helium gas jets. Effects of initial gas density as well as laser intensity on target have been measured, with electron densities ranging from 1E18 to 1E19 cm-3 with temperatures of tens to hundreds of eV, near the desired range for optimal field generation. LSP simulations were run to aid experimental design and data interpretation. LANL LDRD Program.

  3. Ionised gas structure of 100 kpc in an over-dense region of the galaxy group COSMOS-Gr30 at z 0.7

    NASA Astrophysics Data System (ADS)

    Epinat, B.; Contini, T.; Finley, H.; Boogaard, L. A.; Guérou, A.; Brinchmann, J.; Carton, D.; Michel-Dansac, L.; Bacon, R.; Cantalupo, S.; Carollo, M.; Hamer, S.; Kollatschny, W.; Krajnović, D.; Marino, R. A.; Richard, J.; Soucail, G.; Weilbacher, P. M.; Wisotzki, L.

    2018-01-01

    We report the discovery of a 104 kpc2 gaseous structure detected in [O II]λλ3727, 3729 in an over-dense region of the COSMOS-Gr30 galaxy group at z 0.725 with deep MUSE Guaranteed Time Observations. We estimate the total amount of diffuse ionised gas to be of the order of ( 5 ± 3) × 1010 M⊙ and explore its physical properties to understand its origin and the source(s) of the ionisation. The MUSE data allow the identification of a dozen group members that are embedded in this structure through emission and absorption lines. We extracted spectra from small apertures defined for both the diffuse ionised gas and the galaxies. We investigated the kinematics and ionisation properties of the various galaxies and extended gas regions through line diagnostics (R23, O32, and [O III]/Hβ) that are available within the MUSE wavelength range. We compared these diagnostics to photo-ionisation models and shock models. The structure is divided into two kinematically distinct sub-structures. The most extended sub-structure of ionised gas is likely rotating around a massive galaxy and displays filamentary patterns that link some galaxies. The second sub-structure links another massive galaxy that hosts an active galactic nucleus (AGN) to a low-mass galaxy, but it also extends orthogonally to the AGN host disc over 35 kpc. This extent is likely ionised by the AGN itself. The location of small diffuse regions in the R23 vs. O32 diagram is compatible with photo-ionisation. However, the location of three of these regions in this diagram (low O32, high R23) can also be explained by shocks, which is supported by their high velocity dispersions. One edge-on galaxy shares the same properties and may be a source of shocks. Regardless of the hypothesis, the extended gas seems to be non-primordial. We favour a scenario where the gas has been extracted from galaxies by tidal forces and AGN triggered by interactions between at least the two sub-structures. Based on observations made with

  4. High-fidelity cluster state generation for ultracold atoms in an optical lattice.

    PubMed

    Inaba, Kensuke; Tokunaga, Yuuki; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto

    2014-03-21

    We propose a method for generating high-fidelity multipartite spin entanglement of ultracold atoms in an optical lattice in a short operation time with a scalable manner, which is suitable for measurement-based quantum computation. To perform the desired operations based on the perturbative spin-spin interactions, we propose to actively utilize the extra degrees of freedom (DOFs) usually neglected in the perturbative treatment but included in the Hubbard Hamiltonian of atoms, such as, (pseudo-)charge and orbital DOFs. Our method simultaneously achieves high fidelity, short operation time, and scalability by overcoming the following fundamental problem: enhancing the interaction strength for shortening the operation time breaks the perturbative condition of the interaction and inevitably induces unwanted correlations among the spin and extra DOFs.

  5. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  6. The molecular composition of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Allen, M.; Robinson, G. W.

    1977-01-01

    Presented in this paper is an ab initio chemical model for dense interstellar clouds that incorporates 598 grain surface reactions, with small grains providing the reaction area. Gas-phase molecules are depleted through collisions with grains. The abundances of 372 chemical species are calculated as a function of time and are found to be of sufficient magnitude to explain most observations. Peak abundances are achieved on time scales of the order of 100,000 to 1 million years, depending on cloud density and kinetic temperature. The reaction rates for ion-molecule chemistry are approximately the same, indicating that surface and gas-phase chemistry may be coupled in certain regions. The composition of grain mantles is shown to be a function of grain radius. In certain grain-size ranges, large molecules containing two or more heavy atoms are more predominant than lighter 'ices' - H2O, NH3, and CH4. It is possible that absorption due to these large molecules in the mantle may contribute to the observed 3-micron band in astronomical spectra.

  7. Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Sheth, K.

    2013-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  8. Ab initio thermodynamic results for warm dense matter

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael

    2016-10-01

    Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.

  9. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  10. Dissipative preparation of squeezed states with ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Caballar, Roland Cristopher F.; Diehl, Sebastian; Mäkelä, Harri; Oberthaler, Markus

    2014-05-01

    We present a dissipative quantum state preparation scheme for the creation of phase- and number-squeezed states. It utilizes ultracold atoms in a double-well configuration immersed in a background BEC acting as a dissipative quantum reservoir. We derive a master equation starting from microscopic physics, and show that squeezing develops on a time scale proportional to 1 / N , where N is the number of particles in the double well. This scaling, caused by bosonic enhancement, allows us to make the time scale for the creation of squeezed states very short. Effects of the dephasing which limits the lifetime of the squeezed states can be avoided by stroboscopically switching the driving off and on. We show that this approach leads to robust stationary squeezed states. We also provide the necessary ingredients for a potential experimental implementation. NRF (No. 2012R1A1A2008028), MPS, Korea MEST, FWF (No. F4006-N16), Alfred Kordelin Foundation, Magnus Ehrnrooth Foundation, Emil Aaltonen Foundation, Academy of Finland (No. 251748).

  11. Progress Towards Laser Cooling of an Ultracold Neutral Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; Gorman, Grant; Chen, Zhitao; Chow, Kyle; Killian, Thomas

    2017-04-01

    We report on progress towards laser-cooling of the ion component of an ultracold neutral plasma (UNP) consisting of 88Sr+. The goal of the experiment is to increase the value of the ion Coulomb Coupling Parameter, Γi, which is the ratio of the average nearest neighbor Coulomb interaction energy to the ion kinetic energy. Currently, Γi is limited to 3 in most UNP systems. We have developed a new photoionization pathway for plasma creation that starts with atoms in a magnetic trap. This allows us to create much larger plasmas (upwards of 109 atoms with a width of 4 mm). This greatly reduces the plasma expansion rate, giving more time for laser cooling. We have also installed lasers for optically pumping atoms out of dark states that are populated during laser cooling. We will discuss these new systems, along with the results of our first attempts at laser-cooling. Supported by NSF and DoE (PHY-0714603), the Air Force Office of Scientific Research (FA9550-12-1-0267), and the Shell Foundation.

  12. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  13. Measurement of the Neutron Lifetime with Ultra-cold Neutrons Stored in a Magneto-gravitational Trap

    NASA Astrophysics Data System (ADS)

    Ezhov, V. F.; Andreev, A. Z.; Ban, G.; Bazarov, B. A.; Geltenbort, P.; Glushkov, A. G.; Knyazkov, V. A.; Kovrizhnykh, N. A.; Krygin, G. B.; Naviliat-Cuncic, O.; Ryabov, V. L.

    2018-05-01

    We report a measurement of the neutron lifetime using ultra-cold neutrons stored in a magneto-gravitational trap made of permanent magnets. Neutrons surviving in the trap after fixed storage times have been counted and the trap losses have continuously been monitored during storage by detecting neutrons leaking from the trap. The value of the neutron lifetime resulting from this measurement is τ n = (878.3 ± 1.6stat ± 1.0syst) s. A unique feature of this experiment is the monitoring of leaking neutrons providing a robust control of the main systematic loss.

  14. Development and utilization of new diagnostics for dense-phase pneumatic transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. Because we anticipate the recent theories of rapid granular flows will bring insight to the dense pneumatic transport of particles, we have sought to substantiate these theories through computer simulations. There we have verified the theorymore » of Hanes, Jenkins Richman (1988) for the rapid, steady shear flow of identical, smooth, nearly elastics disks driven by identical, parallel, bumpy boundaries. Because granular flows depend strongly on the nature of their interaction with a boundary, we have verified the boundary conditions calculated by Jenkins (1991) for spheres interacting with a flat, frictional surface. During the previous reporting period, we began a study of the time relaxation of the second moment of velocity fluctuations for a collection of disks undergoing simple shear. In the present reporting period, we have completed this study of relaxation by comparing results of simulations with the theoretical predictions of Jenkins and Richman (1988). In addition, we have concluded a series of experiments with flour plugs in the dense-phase pneumatic setup. Finally, we have established several industrial contacts to transfer the diagnostic techniques developed under this contract. 7 refs., 11 figs.« less

  15. Enhancement of ultracold molecule formation by local control in the nanosecond regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, J. L.; Kallush, S.; Kosloff, R.

    2015-02-01

    We describe quantum simulations of ultracold 87Rb 2 molecule formation using photoassociation (PA) with nanosecond-time-scale pulses of frequency chirped light. In particular, we compare the case of a linear chirp to one where the frequency evolution is optimized by local control (LC) of the phase, and find that LC can provide a significant enhancement. The resulting optimal frequency evolution corresponds to a rapid jump from the PA absorption resonance to a downward transition to a bound level of the lowest triplet state. We also consider the case of two frequencies and investigate interference effects. The assumed chirp parameters should bemore » achievable with nanosecond pulse shaping techniques and are predicted to provide a significant enhancement over recent experiments with linear chirps.« less

  16. Summer ammonia measurements in a densely populated Mediterranean city

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Amato, F.; Reche, C.; Alastuey, A.; Otjes, R. P.; Blom, M. J.; Querol, X.

    2012-04-01

    Real-time measurements of ambient concentrations of gas-phase ammonia were performed in Barcelona (NE Spain) in summer between May and September 2011. Two measurement sites were selected: one in an urban background traffic-influenced area (UB) and the other in the historical city centre (CC). Levels of ammonia were higher at CC (5.6 ± 2.1 μg m-3 or 7.5 ± 2.8 ppbv) compared with UB (2.2 ± 1.0 μg m-3 or 2.9 ± 1.3 ppbv). This difference is attributed to the contribution from non-traffic sources such as waste containers, sewage systems, humans and open markets more dense in the densely populated historical city centre. Under high temperatures in summer these sources had the potential to increase the ambient levels of ammonia well above the urban-background-traffic-influenced UB measurement station. Measurements were used to assess major local emissions, sinks and diurnal evolution of NH3. The measured levels of NH3, especially high in the old city, may contribute to the high mean annual concentrations of secondary sulfate and nitrate measured in Barcelona compared with other cities in Spain affected by high traffic intensity. Ancillary measurements, including PM10, PM2.5, PM1 levels (Particulate Matter with aerodynamic diameter smaller than 10 μm, 2.5 μm, and 1 μm), gases and black carbon concentrations and meteorological data, were performed during the measurement campaign. The analysis of specific periods (3 special cases) during the campaign revealed that road traffic was a significant source of NH3. However, its effect was more evident at UB compared with CC where it was masked given the high levels of NH3 from non-traffic sources measured in the old city. The relationship between SO42- daily concentrations and gas-fraction ammonia (NH3/(NH3+NH4+)) revealed that the gas-to-phase partitioning (volatilization or ammonium salts formation) also played an important role in the evolution of NH3 concentration in summer in Barcelona.

  17. Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance

    NASA Astrophysics Data System (ADS)

    von Keyserlingk, C. W.; Conduit, G. J.

    2011-05-01

    We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.

  18. Heating of trapped ultracold atoms by collapse dynamics

    NASA Astrophysics Data System (ADS)

    Laloë, Franck; Mullin, William J.; Pearle, Philip

    2014-11-01

    The continuous spontaneous localization (CSL) theory alters the Schrödinger equation. It describes wave-function collapse as a dynamical process instead of an ill-defined postulate, thereby providing macroscopic uniqueness and solving the so-called measurement problem of standard quantum theory. CSL contains a parameter λ giving the collapse rate of an isolated nucleon in a superposition of two spatially separated states and, more generally, characterizing the collapse time for any physical situation. CSL is experimentally testable, since it predicts some behavior different from that predicted by standard quantum theory. One example is the narrowing of wave functions, which results in energy imparted to particles. Here we consider energy given to trapped ultracold atoms. Since these are the coldest samples under experimental investigation, it is worth inquiring how they are affected by the CSL heating mechanism. We examine the CSL heating of a Bose-Einstein condensate (BEC) in contact with its thermal cloud. Of course, other mechanisms also provide heat and also particle loss. From varied data on optically trapped cesium BECs, we present an energy audit for known heating and loss mechanisms. The result provides an upper limit on CSL heating and thereby an upper limit on the parameter λ . We obtain λ ≲1 (±1 ) ×10-7 s-1.

  19. ALMA 0.1-0.2 arcsec Resolution Imaging of the NGC 1068 Nucleus: Compact Dense Molecular Gas Emission at the Putative AGN Location

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1-0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3-2 and HCO+ J = 3-2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ˜1.1 mm (˜266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5-2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ˜10 pc and ˜several × 105 M ⊙, respectively. HCN-to-HCO+ J = 3-2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ˜2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v 2 = 1f) J = 3-2 emission lines were detected for HCN and HCO+ across the field of view.

  20. Superfluid Fermi atomic gas as a quantum simulator for the study of the neutron-star equation of state in the low-density region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji

    2018-01-01

    We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.

  1. Molecular Composition and Chemistry of Isolated Dense Cores

    NASA Astrophysics Data System (ADS)

    Cook, Amanda; Boogert, A.

    2009-01-01

    The composition of molecular clouds and the envelopes and disks surrounding low mass protostars within them is still poorly known. There is little doubt that a large fraction of the molecules is frozen on grains, but the abundance of several crucial species (e.g. ammonia, methanol, ions) in the ices is still uncertain. In addition, prominent spectral features discovered decades ago are still not securely identified (e.g. the 6.85-micron absorption band). Gas phase and grain surface chemistry play pivotal roles in molecule formation, but numerous other processes could have significant impacts as well: shocks, thermal heating, irradiation of ices by ultraviolet photons and cosmic rays. Complex species could be formed this way, profoundly influencing cloud, disk and planetary/cometary chemistry. We have obtained Spitzer/IRS spectra of an unprecedented sample of sight-lines tracing 25 dense isolated cores. These cores physically differ from the large, cluster-forming molecular clouds (e.g. Ophiuchus, Perseus) that are commonly studied: they are less turbulent, colder, less dense, and likely longer lived. These IRS spectra of isolated cores thus provide unique information on ice formation and destruction mechanisms. Toward the same cores, we observed 33 highly extincted background stars as well, tracing the quiescent cloud medium against which the ices around protostars can be contrasted.

  2. Ultrastable, Zerodur-based optical benches for quantum gas experiments.

    PubMed

    Duncker, Hannes; Hellmig, Ortwin; Wenzlawski, André; Grote, Alexander; Rafipoor, Amir Jones; Rafipoor, Mona; Sengstock, Klaus; Windpassinger, Patrick

    2014-07-10

    Operating ultracold quantum gas experiments outside of a laboratory environment has so far been a challenging goal, largely due to the lack of sufficiently stable optical systems. In order to increase the thermal stability of free-space laser systems, the application of nonstandard materials such as glass ceramics is required. Here, we report on Zerodur-based optical systems which include single-mode fiber couplers consisting of multiple components jointed by light-curing adhesives. The thermal stability is thoroughly investigated, revealing excellent fiber-coupling efficiencies between 0.85 and 0.92 in the temperature range from 17°C to 36°C. In conjunction with successfully performed vibration tests, these findings qualify our highly compact systems for atom interferometry experiments aboard a sounding rocket as well as various other quantum information and sensing applications.

  3. Implementation and Re nement of a Comprehensive Model for Dense Granular Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaresan, Sankaran

    2015-09-30

    Dense granular ows are ubiquitous in both natural and industrial processes. They manifest three di erent ow regimes, each exhibiting its own dependence on solids volume fraction, shear rate, and particle-level properties. This research project sought to develop continuum rheological models for dense granular ows that bridges multiple regimes of ow, implement them in open-source platforms for gas-particle ows and perform test simulations. The rst phase of the research covered in this project involved implementation of a steady- shear rheological model that bridges quasi-static, intermediate and inertial regimes of ow into MFIX (Multiphase Flow with Interphase eXchanges - a generalmore » purpose computer code developed at the National Energy Technology Laboratory). MFIX simulations of dense granular ows in hourglass-shaped hopper were then performed as test examples. The second phase focused on formulation of a modi ed kinetic theory for frictional particles that can be used over a wider range of particle volume fractions and also apply for dynamic, multi- dimensional ow conditions. To guide this work, simulations of simple shear ows of identical mono-disperse spheres were also performed using the discrete element method. The third phase of this project sought to develop and implement a more rigorous treatment of boundary e ects. Towards this end, simulations of simple shear ows of identical mono-disperse spheres con ned between parallel plates were performed and analyzed to formulate compact wall boundary conditions that can be used for dense frictional ows at at frictional boundaries. The fourth phase explored the role of modest levels of cohesive interactions between particles on the dense phase rheology. The nal phase of this project focused on implementation and testing of the modi ed kinetic theory in MFIX and running bin-discharge simulations as test examples.« less

  4. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules.

    PubMed

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley

    2016-03-07

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Σ molecules as qubits. Herein, we consider an array of polar (2)Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.

  5. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Venuti, Michael; Shi, Tan; Fellers, Deion; Morris, Christopher; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the energy of UCN, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, especially for samples with a surface oxide layer, this work has the potential to separate the various damage mechanisms proposed in previous works. During the irradiation with UCN, fission events are monitored by coincidence counting between prompt gamma rays using NaI detectors. Alpha spectroscopy of the ejected actinide material is performed in a custom-built ionization chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this presentation, we will discuss our experimental setup and present the preliminary results.

  6. Quantum dense key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  7. Dense Breasts

    MedlinePlus

    ... fatty tissue. On a mammogram, fatty tissue appears dark (radio-lucent) and the glandular and connective tissues ... white on mammography) and non-dense fatty tissue (dark on mammography) using a visual scale and assign ...

  8. Megajoule Dense Plasma Focus Solid Target Experiments

    NASA Astrophysics Data System (ADS)

    Podpaly, Y. A.; Falabella, S.; Link, A.; Povilus, A.; Higginson, D. P.; Shaw, B. H.; Cooper, C. M.; Chapman, S.; Bennett, N.; Sipe, N.; Olson, R.; Schmidt, A. E.

    2016-10-01

    Dense plasma focus (DPF) devices are plasma sources that can produce significant neutron yields from beam into gas interactions. Yield increases, up to approximately a factor of five, have been observed previously on DPFs using solid targets, such as CD2 and D2O ice. In this work, we report on deuterium solid-target experiments at the Gemini DPF. A rotatable target holder and baffle arrangement were installed in the Gemini device which allowed four targets to be deployed sequentially without breaking vacuum. Solid targets of titanium deuteride were installed and systematically studied at a variety of fill pressures, bias voltages, and target positions. Target holder design, experimental results, and comparison to simulations will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Momentum distribution functions in ensembles: the inequivalence of microcannonical and canonical ensembles in a finite ultracold system.

    PubMed

    Wang, Pei; Xianlong, Gao; Li, Haibin

    2013-08-01

    It is demonstrated in many thermodynamic textbooks that the equivalence of the different ensembles is achieved in the thermodynamic limit. In this present work we discuss the inequivalence of microcanonical and canonical ensembles in a finite ultracold system at low energies. We calculate the microcanonical momentum distribution function (MDF) in a system of identical fermions (bosons). We find that the microcanonical MDF deviates from the canonical one, which is the Fermi-Dirac (Bose-Einstein) function, in a finite system at low energies where the single-particle density of states and its inverse are finite.

  10. Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik

    2015-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  11. Dense module enumeration in biological networks

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  12. Fast, High-Precision Optical Polarization Synthesizer for Ultracold-Atom Experiments

    NASA Astrophysics Data System (ADS)

    Robens, Carsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea

    2018-03-01

    We present a technique for the precision synthesis of arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017), 10.1103/PhysRevLett.118.065302] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices which trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.

  13. Efficient photoassociation of ultracold cesium atoms with picosecond pulse laser

    NASA Astrophysics Data System (ADS)

    Hai, Yang; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin

    2017-08-01

    We investigate theoretically the formation of ultracold Cs2 molecules via photoassociation (PA) with three kinds of pulses (the Gaussian pulse, the asymmetric shaped laser pulse SL1 with a large rising time and a small falling time and the asymmetric shaped laser pulse SL2 with a small rising time and a large falling time). For the three kinds of pulses, the final population on vibrational levels from v‧ = 120 to 175 of the excited state displays a regular oscillation change with pulse width and interaction strength, and a high PA efficiency can be achieved with optimised parameters. The PA efficiency in the excited state steered by the SL1-pulse (SL2-pulse) train with optimised parameters which is composed of four SL1 (SL2) pulses is 1.74 times as much as that by the single SL1 (SL2) pulse due to the population accumulation effect. Moreover, a dump laser is employed to transfer the excited molecules from the excited state to the vibrational level v″ = 12 of the ground state to obtain stable molecules.

  14. Cosmic Star–Forming Gas as seen from the Milky Way

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens

    2018-01-01

    We still struggle to understand the star formation properties of galaxies throughout the cosmos. Is star formation driven by the structure of galaxies? Or is it plainly controlled by the mass of dense gas that can be found in a galaxy?This poster presents results from several recent projects that deliver important insights on the global star formation activity of galaxies, based on detailed studies of star-forming regions in the Milky Way. First, the proberties of dense clouds in the Galactic Center are discussed, using data from interferometers likw ALMA. Second, the kinematics of Milky Way molecular clouds are discussed based on a variety of data sets. Third, the LEGO survey (Line Emission in Galaxy Observations) is discussed. This latter study challenges concepts of how dense gas in galaxies can be traced. In combination these studies deliver a fresh look at the various factors controlling how galaxies form stars.

  15. HIGH-PRESSURE PHYSICS. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium.

    PubMed

    Knudson, M D; Desjarlais, M P; Becker, A; Lemke, R W; Cochrane, K R; Savage, M E; Bliss, D E; Mattsson, T R; Redmer, R

    2015-06-26

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets. Copyright © 2015, American Association for the Advancement of Science.

  16. Formation of ultracold molecules induced by a high-power single-frequency fiber laser

    NASA Astrophysics Data System (ADS)

    Fernandes Passagem, Henry; Colín-Rodríguez, Ricardo; Ventura da Silva, Paulo Cesar; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Marcassa, Luis Gustavo

    2017-02-01

    The influence of a high-power single-frequency fiber laser on the formation of ultracold 85Rb2 molecules is investigated as a function of its frequency (in the 1062-1070 nm range) in a magneto-optical trap. We find evidence for the formation of ground-state 85Rb2 molecules in low vibrational levels (v≤slant 20) with a maximal rate of 104 s-1, induced by short-range photoassociation by the fiber laser followed by spontaneous emission. When this laser is used to set up a dipole trap, we measure an atomic loss rate at a wavelength far from the PA resonances, only four times smaller than that observed at a PA resonance wavelength. This work may have important consequences for atom trapping using lasers around the conventional 1064 nm wavelength.

  17. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  18. VizieR Online Data Catalog: Galactic CHaMP. II. Dense gas clumps. (Ma+, 2013)

    NASA Astrophysics Data System (ADS)

    Ma, B.; Tan, J. C.; Barnes, P. J.

    2015-04-01

    A total of 303 dense gas clumps have been detected using the HCO+(1-0) line in the CHaMP survey (Paper I, Barnes et al. 2011, J/ApJS/196/12). In this article we have derived the SED for these clumps using Spitzer, MSX, and IRAS data. The Midcourse Space Experiment (MSX) was launched in 1996 April. It conducted a Galactic plane survey (0

  19. Direct Numerical Simulation of dense particle-laden turbulent flows using immersed boundaries

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Desjardins, Olivier

    2009-11-01

    Dense particle-laden turbulent flows play an important role in many engineering applications, ranging from pharmaceutical coating and chemical synthesis to fluidized bed reactors. Because of the complexity of the physics involved in these flows, current computational models for gas-particle processes, such as drag and heat transfer, rely on empirical correlations and have been shown to lack accuracy. In this work, direct numerical simulations (DNS) of dense particle-laden flows are conducted, using immersed boundaries (IB) to resolve the flow around each particle. First, the accuracy of the proposed approach is tested on a range of 2D and 3D flows at various Reynolds numbers, and resolution requirements are discussed. Then, various particle arrangements and number densities are simulated, the impact on particle wake interaction is assessed, and existing drag models are evaluated in the case of fixed particles. In addition, the impact of the particles on turbulence dissipation is investigated. Finally, a strategy for handling moving and colliding particles is discussed.

  20. Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation.

    PubMed

    He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan

    2018-01-01

    Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.

  1. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.

    PubMed

    Milner, A A; Korobenko, A; Milner, V

    2017-06-16

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  2. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2017-06-01

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  3. Quantum molecular dynamics simulations of dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.; Kress, J.; Troullier, N.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB,more » which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.« less

  4. Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyserlingk, C. W. von; Conduit, G. J.; Physics Department, Ben Gurion University, Beer Sheva 84105

    2011-05-15

    We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation ofmore » a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.« less

  5. Modeling CO2 air dispersion from gas driven lake eruptions

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  6. Development and utilization of new diagnostics for dense-phase pneumatic transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louge, M.Y.; Jenkins, J.T.

    Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. In particular, the authors have designed capacitance probes to measure local, time-dependent particle concentrations, and a new optical fiber probe based on laser-induced-phosphorescence to measure particle velocities. The principles for the capacitance and optical diagnostics weremore » given in the first and second quarterly reports. A final version of the optical fiber probe was designed in the previous reporting period. Because granular flows depends strongly on the nature of their interaction with a boundary, the authors have sought in the present reporting period to verify the boundary conditions recently calculated by Jenkins (J. Appl. Mech., in press (1991)) using computer simulations. 2 refs., 2 figs.« less

  7. Forbidden 2P–nP and 2P–nF transitions in the energy spectrum of ultracold Rydberg lithium-7 atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelener, B. B., E-mail: bobozel@mail.ru; Saakyan, S. A.; Sautenkov, V. A.

    2016-04-15

    Forbidden 2P–nP and 2P–nF transitions in the ranges of the principal quantum number n = 42–114 and n = 38–48 have been detected in the optical spectra of ultracold highly excited lithium-7 atoms. The presence of forbidden transitions is due to induced external electric fields. The quantum defects and ionization energy obtained in various experiments and predicted theoretically have been discussed.

  8. Dense CO2 as a Solute, Co-Solute or Co-Solvent in Particle Formation Processes: A Review

    PubMed Central

    Nunes, Ana V. M.; Duarte, Catarina M. M.

    2011-01-01

    The application of dense gases in particle formation processes has attracted great attention due to documented advantages over conventional technologies. In particular, the use of dense CO2 in the process has been subject of many works and explored in a variety of different techniques. This article presents a review of the current available techniques in use in particle formation processes, focusing exclusively on those employing dense CO2 as a solute, co-solute or co-solvent during the process, such as PGSS (Particles from gas-saturated solutions®), CPF (Concentrated Powder Form®), CPCSP (Continuous Powder Coating Spraying Process), CAN-BD (Carbon dioxide Assisted Nebulization with a Bubble Dryer®), SEA (Supercritical Enhanced Atomization), SAA (Supercritical Fluid-Assisted Atomization), PGSS-Drying and DELOS (Depressurization of an Expanded Liquid Organic Solution). Special emphasis is given to modifications introduced in the different techniques, as well as the limitations that have been overcome. PMID:28824121

  9. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  10. Summer ammonia measurements in a densely populated Mediterranean city

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Amato, F.; Reche, C.; Alastuey, A.; Otjes, R. P.; Blom, M. J.; Querol, X.

    2012-08-01

    Real-time measurements of ambient concentrations of gas-phase ammonia (NH3) were performed in Barcelona (NE Spain) in summer between May and September 2011. Two measurement sites were selected: one in an urban background traffic-influenced area (UB) and the other in the historical city centre (CC). Levels of NH3 were higher at CC (5.6 ± 2.1 μg m-3 or 7.5 ± 2.8 ppbv) compared with UB (2.2 ± 1.0 μg m-3 or 2.9 ± 1.3 ppbv). This difference is attributed to the contribution from non-traffic sources such as waste containers, sewage systems, humans and open markets more dense in the densely populated historical city centre. Under high temperatures in summer these sources had the potential to increase the ambient levels of NH3 well above the urban-background-traffic-influenced UB measurement station. Measurements were used to assess major local emissions, sinks and diurnal evolution of NH3. The measured levels of NH3, especially high in the old city, may contribute to the high mean annual concentrations of secondary sulfate and nitrate measured in Barcelona compared with other cities in Spain affected by high traffic intensity. Ancillary measurements, including PM10, PM2.5, PM1 levels (Particulate Matter with aerodynamic diameter smaller than 10 μm, 2.5 μm, and 1 μm), gases and black carbon concentrations and meteorological data, were performed during the measurement campaign. The analysis of specific periods (3 special cases) during the campaign revealed that road traffic was a significant source of NH3. However, its effect was more evident at UB compared with CC where it was masked given the high levels of NH3 from non-traffic sources measured in the old city. The relationship between SO42- daily concentrations and gas-fraction ammonia (NH3/(NH3 + NH4+)) revealed that the gas-to-particle phase partitioning (volatilization or ammonium salts formation) also played an important role in the evolution of NH3 concentration in summer in Barcelona.

  11. PHOSPHORUS-BEARING MOLECULES IN MASSIVE DENSE CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontani, F.; Rivilla, V. M.; Caselli, P.

    2016-05-10

    Phosphorus is a crucial element for the development of life, but so far P-bearing molecules have been detected only in a few astrophysical objects; hence, its interstellar chemistry is almost totally unknown. Here, we show new detections of phosphorus nitride (PN) in a sample of dense cores in different evolutionary stages of the intermediate- and high-mass star formation process: starless, with protostellar objects, and with ultracompact H ii regions. All detected PN line widths are smaller than ≃5 km s{sup −1}, and they arise from regions associated with kinetic temperatures smaller than 100 K. Because the few previous detections reportedmore » in the literature are associated with warmer and more turbulent sources, the results of this work show that PN can arise from relatively quiescent and cold gas. This information is challenging for theoretical models that invoke either high desorption temperatures or grain sputtering from shocks to release phosphorus into the gas phase. Derived column densities are of the order of 10{sup 11–12} cm{sup −2}, marginally lower than the values derived in the few high-mass star-forming regions detected so far. New constraints on the abundance of phosphorus monoxide, the fundamental unit of biologically relevant molecules, are also given.« less

  12. Isotopic Exchange in Porous and Dense Magnesium Borohydride.

    PubMed

    Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C

    2015-09-01

    Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  14. Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas

    NASA Astrophysics Data System (ADS)

    PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela

    2018-06-01

    We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.

  15. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  16. Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Riegger, L.; Darkwah Oppong, N.; Höfer, M.; Fernandes, D. R.; Bloch, I.; Fölling, S.

    2018-04-01

    We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of 173Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel.

  17. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  18. Interaction quenched ultracold few-boson ensembles in periodically driven lattices

    NASA Astrophysics Data System (ADS)

    Mistakidis, Simeon; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. It is shown that periodic driving enforces the bosons in the outer wells of the finite lattice to exhibit out-of-phase dipole-like modes, while in the central well the atomic cloud experiences a local breathing mode. The dynamical behavior is investigated with varying driving frequency, revealing a resonant-like behavior of the intra-well dynamics. An interaction quench in the periodically driven lattice gives rise to admixtures of different excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. We observe then multiple resonances between the inter- and intra-well dynamics at different quench amplitudes, with the position of the resonances being tunable via the driving frequency. Our results pave the way for future investigations on the use of combined driving protocols in order to excite different inter- and intra-well modes and to subsequently control them. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  19. Cylindrical and spherical Akhmediev breather and freak waves in ultracold neutral plasmas

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.; El-Awady, E. I.

    2018-01-01

    The properties of cylindrical and spherical ion-acoustic breathers Akhmediev breather and freak waves in strongly coupled ultracold neutral plasmas (UNPs), whose constituents are inertial strongly coupled ions and weakly coupled Maxwellian electrons, are investigated numerically. Using the derivative expansion method, the basic set of fluid equations is reduced to a nonplanar (cylindrical and spherical)/modified nonlinear Schrödinger equation (mNLSE). The analytical solutions of the mNLSE were not possible until now, so their numerical solutions are obtained using the finite difference scheme with the help of the Dirichlet boundary conditions. Moreover, the criteria for the existence and propagation of breathers are discussed in detail. The geometrical effects due to the cylindrical and spherical geometries on the breather profile are studied numerically. It is found that the propagation of the ion-acoustic breathers in one-dimensional planar and nonplanar geometries is very different. Finally, our results may help to manipulate matter breathers experimentally in UNPs.

  20. Observation of topological states in an optical Raman lattice with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Song, Bo; He, Chengdong; Zhang, Long; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    The spin-orbit coupling with cold atoms, especially in optical lattices, provides a versatile platform to investigate the intriguing topological matters. In this talk, we will present the realization of one-dimensional spin-dependent lattice dressed by the periodic Raman field. Ultracold 173Yb fermions loaded into an optical Raman lattice reveal non-trivial spin textures due to the band topology, by which we measured topological invariants and determined a topological phase transition. In addition, we explored the non-equilibrium quench dynamics between the topological and the trivial states by suddenly changing the band topology of the optical Raman lattice. The optical Raman lattice demonstrated here opens a new avenue to study the spin-orbit coupling physics and furthermore to realize novel quantum matters such as symmetry-protected topological states. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  1. ALMA 0.1–0.2 arcsec resolution imaging of the NGC 1068 Nucleus: compact dense molecular gas emission at the putative AGN location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1–0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3–2 and HCO{sup +} J = 3–2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ∼1.1 mm (∼266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5–2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecularmore » emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ∼10 pc and ∼several × 10{sup 5} M {sub ⊙}, respectively. HCN-to-HCO{sup +} J = 3–2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ∼2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited ( v {sub 2} = 1f) J = 3–2 emission lines were detected for HCN and HCO{sup +} across the field of view.« less

  2. Faraday spectroscopy of ultracold atoms guided in hollow core optical fibers

    NASA Astrophysics Data System (ADS)

    Fatemi, Fredrik; Pechkis, Joseph

    2013-05-01

    We have performed spatially and temporally resolved magnetometry using Faraday spectroscopy of ultracold rubidium atoms confined in hollow core optical fibers. We first guide 105 Rb atoms into a 3-cm-long, 100-micron-core hollow fiber using blue-detuned hollow waveguide modes. Inside the fiber, the atoms are exposed to an optical pumping pulse, and the Larmor precession is monitored by the polarization rotation of a probe laser beam detuned by 50 GHz. The intense guide beams can perturb the detected Larmor precession frequencies, but we show that by confining the atoms to the intensity null of higher order blue-detuned hollow modes, these perturbations are reduced by over 95% compared to red-detuned guides. By adjusting the guide beam detuning and polarization, the deleterious effects of both photon scattering and frequency shifts can be suppressed such that multiple magnetic field measurements with sensitivity of 30 nT per sampling pulse can be obtained throughout the length of the fiber in a single loading cycle. Work supported by ONR and DARPA.

  3. Observation of Resonant Effects in Ultracold Collisions between Heteronuclear Feshbach Molecules

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Wang, Fudong; Zhu, Bing; Guo, Mingyang; Lu, Bo; Wang, Dajun

    2016-05-01

    Magnetic field dependent dimer-dimer collisional losses are studied with ultracold 23 Na87 Rb Feshbach molecules. By ramping the magnetic field across the 347.8 G inter-species Feshbach resonance and removing residual atoms with a magnetic field gradient, ~ 8000 pure NaRb Feshbach molecules with a temperature below 1 μK are produced. By holding the pure molecule sample in a crossed optical dipole trap and measuring the time-dependent loss curves under different magnetic fields near the Feshbach resonance, the dimer-dimer loss rates with respect to the atomic scattering length a are mapped out. We observe a resonant feature at around a = 600a0 and a rising tail at above a = 1600a0 . This behavior resembles previous theoretical works on homonuclear Feshbach molecule, where resonant effects between dimer-dimer collisions tied to tetramer bound states were predicted. Our work shows the possibility of exploring four-body physics within a heteronuclear system. We are supported by Hong Kong RGC General Research Fund no. CUHK403813.

  4. Realization of the manipulation of ultracold atoms with a reconfigurable nanomagnetic system of domain walls.

    PubMed

    West, Adam D; Weatherill, Kevin J; Hayward, Thomas J; Fry, Paul W; Schrefl, Thomas; Gibbs, Mike R J; Adams, Charles S; Allwood, Dan A; Hughes, Ifan G

    2012-08-08

    Planar magnetic nanowires have been vital to the development of spintronic technology. They provide an unparalleled combination of magnetic reconfigurability, controllability, and scalability, which has helped to realize such applications as racetrack memory and novel logic gates. Microfabricated atom optics benefit from all of these properties, and we present the first demonstration of the amalgamation of spintronic technology with ultracold atoms. A magnetic interaction is exhibited through the reflection of a cloud of (87)Rb atoms at a temperature of 10 μK, from a 2 mm × 2 mm array of nanomagnetic domain walls. In turn, the incident atoms approach the array at heights of the order of 100 nm and are thus used to probe magnetic fields at this distance.

  5. MOLECULAR GAS AND STAR-FORMATION PROPERTIES IN THE CENTRAL AND BAR REGIONS OF NGC 6946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Hsi-An; Sorai, Kazuo; Kuno, Nario

    In this work, we investigate the molecular gas and star-formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star-formation tracers. A high-resolution image (100 pc) of {sup 13}CO (1–0) is created for the inner 2 kpc disk by the single-dish Nobeyama Radio Observatory 45 m telescope and interferometer Combined Array for Research in Millimeter-wave Astronomy, including the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single-dish HCN (1–0) observations were also made to constrain the amount of dense gas. The physical properties of molecular gas are inferred from (1)more » the large velocity gradient calculations using our observations and archival {sup 12}CO (1–0), {sup 12}CO(2–1) data, (2) the dense gas fraction suggested by the luminosity ratio of HCN to {sup 12}CO (1–0), and (3) the infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. The dense gas fraction of the central region is similar to that of luminous infrared galaxies/ultraluminous infrared galaxies, whereas the offset ridges are close to the global average of normal galaxies. The coolest and least-dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. The star-formation efficiency (SFE) changes by about five times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by the galactic bar. We find a consistency between the star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of subkiloparsec-scale temperature is driven by star formation.« less

  6. Dynamical theory of dense groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  7. Characterisation of dense non-aqueous phase liquids of coal tar using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Gauchotte-Lindsay, Caroline; McGregor, Laura; Richards, Phil; Kerr, Stephanie; Glenn, Aliyssa; Thomas, Russell; Kalin, Robert

    2013-04-01

    Comprehensive two-dimensional gas chromatography (GCxGC) is a recently developed analytical technique in which two capillary columns with different stationary phases are placed in series enabling planar resolution of the analytes. The resolution power of GCxGC is one order of magnitude higher than that of one dimension gas chromatography. Because of its high resolution capacity, the use of GCxGC for complex environmental samples such as crude oils, petroleum derivatives and polychlorinated biphenyls mixtures has rapidly grown in recent years. We developed a one-step method for the forensic analysis of coal tar dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plant (FMGP) sites. Coal tar is the by-product of the gasification of coal for heating and lighting and it is composed of thousands of organic and inorganic compounds. Before the boom of natural gases and oils, most towns and cities had one or several manufactured gas plants that have, in many cases, left a devastating environmental print due to coal tar contamination. The fate of coal tar DNAPLs, which can persist in the environment for more than a hundred years, is therefore of crucial interest. The presented analytical method consists of a unique clean-up/ extraction stage by pressurized liquid extraction and a single analysis of its organic chemical composition using GCxGC coupled with time of flight mass spectrometry (TOFMS). The chemical fingerprinting is further improved by derivatisation by N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) of the tar compounds containing -OH functions such as alcohols and carboxylic acids. We present here how, using the logical order of elution in GCxGC-TOFMS system, 1) the identification of never before observed -OH containing compounds is possible and 2) the isomeric selectivity of an oxidation reaction on a DNAPL sample can be revealed. Using samples collected at various FMGP sites, we demonstrate how this GCxGC method enables the simultaneous

  8. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  9. PREFACE: Many-body correlations from dilute to dense nuclear systems

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Urban, Michael; Yamada, Taiichi

    2011-09-01

    The International EFES-IN2P3 conference on "Many body correlations from dilute to dense nuclear systems" was held at the Institut Henri Poincaré (IHP), Paris, France, from 15-18 February 2011, on the occasion of the retirement of our colleague Peter Schuck. Correlations play a decisive role in various many-body systems such as nuclear systems, condensed matter and quantum gases. Important examples include: pairing correlations (Cooper pairs) which give rise to nuclear superfluidity (analogous to superconductivity in condensed matter); particle-hole (RPA) correlations in the description of the ground state beyond mean-field theory; clusters; and α-particle correlations in certain nuclei. Also, the nucleons themselves can be viewed as clusters of three quarks. During the past few years, researchers have started to study how the character of these correlations changes with the variation of the density. For instance, the Cooper pairs in dense matter can transform into a Bose-Einstein condensate (BEC) of true bound states at low density (this is the BCS-BEC crossover studied in ultracold Fermi gases). Similar effects play a role in neutron matter at low density, e.g., in the "neutron skin" of exotic nuclei. The α-cluster correlation becomes particularly important at lower density, such as in the excited states of some nuclei (e.g., the α-condensate-like structure in the Hoyle state of 12C) or in the formation of compact stars. In addition to nuclear physics, topics from astrophysics (neutron stars), condensed matter, and quantum gases were discussed in 48 talks and 19 posters, allowing the almost 90 participants from different communities to exchange their ideas, experiences and methods. The conference dinner took place at the Musée d'Orsay, and all the participants enjoyed the very pleasant atmosphere. One session of the conference was dedicated to the celebration of Peter's retirement. We would like to take this opportunity to wish Peter all the best and we hope

  10. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    2017-09-01

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  11. An approach to spin-resolved molecular gas microscopy

    NASA Astrophysics Data System (ADS)

    Covey, Jacob P.; De Marco, Luigi; Acevedo, Óscar L.; Rey, Ana Maria; Ye, Jun

    2018-04-01

    Ultracold polar molecules are an ideal platform for studying many-body physics with long-range dipolar interactions. Experiments in this field have progressed enormously, and several groups are pursuing advanced apparatus for manipulation of molecules with electric fields as well as single-atom-resolved in situ detection. Such detection has become ubiquitous for atoms in optical lattices and tweezer arrays, but has yet to be demonstrated for ultracold polar molecules. Here we present a proposal for the implementation of site-resolved microscopy for polar molecules, and specifically discuss a technique for spin-resolved molecular detection. We use numerical simulation of spin dynamics of lattice-confined polar molecules to show how such a scheme would be of utility in a spin-diffusion experiment.

  12. Specific heat and effects of strong pairing fluctuations in a superfluid Fermi atom gas in the BCS-BEC crossover region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Inotani, Daisuke; Ohashi, Yoji

    2018-03-01

    We theoretically investigate the specific heat at constant volume C V in the BCS(Bardeen-Cooper-Schrieffer)-BEC(Bose-Einstein-condensation)-crossover regime of an ultracold Fermi gas, below the superfluid phase transition temperature T c. Within the strong-coupling framework developed by Nozières and Schmitt-Rink, we show that the temperature dependence of C V drastically changes as one passes through the crossover region, and is sensitive to strong fluctuations in the Cooper channel near the unitarity limit. We also compare our results to a recent experiment on a 6Li unitary Fermi gas. Since fluctuation effects are a crucial key in the BCS-BEC-crossover phenomenon, our results would be helpful in considering how the fermionic BCS superfluid changes into BEC with increasing the interaction strength, from the viewpoint of specific heat.

  13. Site-Resolved Imaging with the Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Huber, Florian Gerhard

    The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.

  14. Structural and dynamical properties of recombining ultracold neutral plasma

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanat Kumar; Shaffer, Nathaniel R.; Baalrud, Scott D.

    2017-10-01

    An ultracold plasma (UCP) is an evolving collection of free charges and bound charges (Rydberg atoms). Over time, bound species concentration increases due to recombination. We present the structural and dynamical properties of an evolving UCP using classical molecular dynamics simulation. Coulomb collapse is avoided using a repulsive core with the attractive Coulomb potential. The repulsive core size controls the concentration of bound states, as it determines the depth of the potential well between opposite charges. We vary the repulsive core size to emulate the quasi-static state of plasma at different time during the evolution. Binary, chain and ring-like bound states are observed in the simulation carried out at different coupling strengths and repulsive core size. The effect of bound states can be seen as molecular peaks in the radial distribution function (RDF). The thermodynamic properties associated with the free charges can be analyzed from RDF by separating free from bound states. These bound states also change the dynamical properties of the plasma. The electron velocity auto-correlation displays oscillations due to the orbital motion in bound states. These bound states act like a neutral species, damping electron plasmon modes and broadening the ion acoustic mode. This work is supported by AFOSR Grant Number FA9550-16-1-0221. It used computational resources by XSEDE, which is supported by NSF Grant Number ACI-1053575.

  15. Mining connected global and local dense subgraphs for bigdata

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  16. Deterministic quantum dense coding networks

    NASA Astrophysics Data System (ADS)

    Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal

    2018-07-01

    We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.

  17. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction

    NASA Astrophysics Data System (ADS)

    Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.

    2018-01-01

    We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.

  18. A constitutive law for dense granular flows.

    PubMed

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  19. Quenching of para-H{sub 2} with an ultracold antihydrogen atom H{sub 1s}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultanov, Renat A.; Guster, Dennis; Adhikari, Sadhan K.

    2010-02-15

    In this work we report the results of calculation for quantum-mechanical rotational transitions in molecular hydrogen, H{sub 2}, induced by an ultracold ground-state antihydrogen atom H{sub 1s}. The calculations are accomplished using a nonreactive close-coupling quantum-mechanical approach. The H{sub 2} molecule is treated as a rigid rotor. The total elastic-scattering cross section {sigma}{sub el}({epsilon}) at energy {epsilon}, state-resolved rotational transition cross sections {sigma}{sub jj}{sup '}({epsilon}) between states j and j{sup '}, and corresponding thermal rate coefficients k{sub jj}{sup '}(T) are computed in the temperature range 0.004 K < or approx. T < or approx. 4 K. Satisfactory agreement with othermore » calculations (variational) has been obtained for {sigma}{sub el}({epsilon}).« less

  20. Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    DOE PAGES

    Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles; ...

    2016-05-16

    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less

  1. Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles

    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less

  2. Photoassociation of ultracold LiRb molecules with short pulses near a Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Ghosal, Subhas; Byrd, Jason; Côté, Robin

    2014-05-01

    Ultracold diatomic molecules prepared in the lowest ro-vibrational state are a required first step in many experimental studies aimed at investigating the properties of cold quantum matter. We propose a novel approach to produce such molecules in a two-color photoassociation experiment with short pulses performed near a Feshbach resonance. Specifically, we report the results of a theoretical investigation of formation of 6Li87Rb molecules in a magnetic field. We show that the molecular formation rate can be significantly increased if the pump step is performed near a magnetic Feshbach resonance due to the strong coupling between the energetically open and closed hyperfine states. In addition, the dependence of the nodal structure of the total wave function on the magnetic field allows for enhanced control over the shape and position of the wave packet. The proposed approach is applicable to different systems that have accessible Feshbach resonances. Partially supported by ARO(MG), DOE(SG), AFOFR(JB), NSF(RC).

  3. Studying topology and dynamical phase transitions with ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved state tomography from which we obtain the Berry curvature and Chern number. Furthermore, we study the time-evolution of the many-body wavefunction after a sudden quench of the lattce parameters and observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at critical times. Our measurements constitute the first observation of a so called dynamical topological phase transition`, which we show to be a fruitful concept for the understanding of quantum dynamics far from equilibrium

  4. Ultrafast visualization of the structural evolution of dense hydrogen towards warm dense matter

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke

    2016-10-01

    Hot dense hydrogen far from equilibrium is ubiquitous in nature occurring during some of the most violent and least understood events in our universe such as during star formation, supernova explosions, and the creation of cosmic rays. It is also a state of matter important for applications in inertial confinement fusion research and in laser particle acceleration. Rapid progress occurred in recent years characterizing the high-pressure structural properties of dense hydrogen under static or dynamic compression. Here, we show that spectrally and angularly resolved x-ray scattering measure the thermodynamic properties of dense hydrogen and resolve the ultrafast evolution and relaxation towards thermodynamic equilibrium. These studies apply ultra-bright x-ray pulses from the Linac Coherent Light (LCLS) source. The interaction of rapidly heated cryogenic hydrogen with a high-peak power optical laser is visualized with intense LCLS x-ray pulses in a high-repetition rate pump-probe setting. We demonstrate that electron-ion coupling is affected by the small number of particles in the Debye screening cloud resulting in much slower ion temperature equilibration than predicted by standard theory. This work was supported by the DOE Office of Science, Fusion Energy Science under FWP 100182.

  5. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  6. Inhomogeneous quasistationary state of dense fluids of inelastic hard spheres

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak

    2014-05-01

    We study closed dense collections of freely cooling hard spheres that collide inelastically with constant coefficient of normal restitution. We find inhomogeneous states (ISs) where the density profile is spatially nonuniform but constant in time. The states are exact solutions of nonlinear partial differential equations that describe the coupled distributions of density and temperature valid when inelastic losses of energy per collision are small. The derivation is performed without modeling the equations' coefficients that are unknown in the dense limit (such as the equation of state) using only their scaling form specific for hard spheres. Thus the IS is the exact state of this dense many-body system. It captures a fundamental property of inelastic collections of particles: the possibility of preserving nonuniform temperature via the interplay of inelastic cooling and heat conduction that generalizes previous results. We perform numerical simulations to demonstrate that arbitrary initial state evolves to the IS in the limit of long times where the container has the geometry of the channel. The evolution is like a gas-liquid transition. The liquid condenses in a vanishing part of the total volume but takes most of the mass of the system. However, the gaseous phase, which mass grows only logarithmically with the system size, is relevant because its fast particles carry most of the energy of the system. Remarkably, the system self-organizes to dissipate no energy: The inelastic decay of energy is a power law [1+t/tc]-2, where tc diverges in the thermodynamic limit. This is reinforced by observing that for supercritical systems the IS coincide in most of the space with the steady states of granular systems heated at one of the walls. We discuss the relation of our results to the recently proposed finite-time singularity in other container's geometries.

  7. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Kim, Woong-Tae; Tang, Ya-Wen; Wang, Hsiang-Hsu; Yen, Hsi-Wei; Hwang, Chorng-Yuan

    2017-09-01

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS(J = 2 - 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  8. Delayed Shock-induced Dust Formation in the Dense Circumstellar Shell Surrounding the Type IIn Supernova SN 2010jl

    NASA Astrophysics Data System (ADS)

    Sarangi, Arkaprabha; Dwek, Eli; Arendt, Richard G.

    2018-05-01

    The light curves of Type IIn supernovae are dominated by the radiative energy released through the interaction of the supernova shock waves with their dense circumstellar medium (CSM). The ultraluminous Type IIn supernova SN 2010jl exhibits an infrared emission component that is in excess of the extrapolated UV–optical spectrum as early as few weeks postexplosion. This emission has been considered by some as evidence for the rapid formation of dust in the cooling postshock CSM. We investigate the physical processes that may inhibit or facilitate the formation of dust in the CSM. When only radiative cooling is considered, the temperature of the dense shocked gas rapidly drops below the dust condensation temperature. However, by accounting for the heating of the postshock gas by the downstream radiation from the shock, we show that dust formation is inhibited until the radiation from the shock weakens as it propagates into the less dense outer regions of the CSM. In SN 2010jl, dust formation can therefore only commence after day ∼380. Only the IR emission since that epoch can be attributed to the newly formed CSM dust. Observations on day 460 and later show that the IR luminosity exceeds the UV–optical luminosity. The postshock dust cannot extinct the radiation emitted by the expanding SN shock. Therefore, its IR emission must be powered by an interior source, which we identify as the reverse shock propagating through the SN ejecta. IR emission before day 380 must therefore be an IR echo from preexisting CSM dust.

  9. Modelling compressible dense and dilute two-phase flows

    NASA Astrophysics Data System (ADS)

    Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin

    2017-06-01

    Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various

  10. Creation of ultracold molecules within the lifetime scale by direct implementation of an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Liu, Gengyuan; Malinovskaya, S. A.

    2018-06-01

    A method is proposed to create molecules in the ultracold state from the Feshbach molecules by stepwise adiabatic passage using an optical frequency comb without losses due to decoherence. An emphasis is made on the impact of the vibrational state manifold on controllability of the coherent dynamics by including five excited states into the model. The results are compared with recently reported results on a three-level ? system. Sinusoidal modulation across an individual pulse in the pulse train is applied, leading to the creation of a quasi-dark state, which minimizes population of the transitional, vibrational state manifold, and efficiently mitigates decoherence in the system. The parity of the temporal chirp is shown to be an important factor in designing population dynamics in the system.

  11. Ultracold Atoms in a Square Lattice with Spin-Orbit Coupling: Charge Order, Superfluidity, and Topological Signatures

    NASA Astrophysics Data System (ADS)

    Rosenberg, Peter; Shi, Hao; Zhang, Shiwei

    2017-12-01

    We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.

  12. Control dynamics of interaction quenched ultracold bosons in periodically driven lattices

    NASA Astrophysics Data System (ADS)

    Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  13. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Pinkas, Meirav; Dallal, Yehonatan; Ozeri, Roee

    2018-03-01

    Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid state systems. In this paper, we describe our experimental system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the ?K regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the ?K regime even for ion crystals of several ions. We further give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a power law distribution of the ion's energy. We also give an overview on the coherent and non-coherent thermometry tools which can be used to characterize the ion's energy distribution after single to many atom-ion collisions.

  14. Design and Construction of a Dense Plasma Focus Device

    DTIC Science & Technology

    1976-10-01

    This paper deals with the design of a dense plasma focus device as an engineering project. Essentially this approach can be summarized as follows...First, an introduction dealing with a general discussion of plasma devices focusing on the role of a dense plasma focus device as a useful tool in...future research; second, an explanation of the operation of the dense plasma focus ; third, a general design discussion of the dense plasma focus device

  15. Fission-gas-release rates from irradiated uranium nitride specimens

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.

    1973-01-01

    Fission-gas-release rates from two 93 percent dense UN specimens were measured using a sweep gas facility. Specimen burnup rates averaged .0045 and .0032 percent/hr, and the specimen temperatures ranged from 425 to 1323 K and from 552 to 1502 K, respectively. Burnups up to 7.8 percent were achieved. Fission-gas-release rates first decreased then increased with burnup. Extensive interconnected intergranular porosity formed in the specimen operated at over 1500 K. Release rate variation with both burnup and temperature agreed with previous irradiation test results.

  16. Trapped ultracold molecular ions: candidates for an optical molecular clock for a fundamental physics mission in space

    NASA Astrophysics Data System (ADS)

    Roth, B.; Koelemeij, J.; Daerr, H.; Ernsting, I.; Jorgensen, S.; Okhapkin, M.; Wicht, A.; Nevsky, A.; Schiller, S.

    2017-11-01

    Narrow ro-vibrational transitions in ultracold molecules are excellent candidates for frequency references in the near-IR to visible spectral domain and interesting systems for fundamental tests of physics, in particular for a satellite test of the gravitational redshift of clocks. We have performed laser spectroscopy of several ro-vibrational overtone transitions υ = 0 → υ = 4 in HD+ ions at around 1.4 μm. 1+1 REMPD was used as a detection method, followed by measurement of the number of remaining molecules. The molecular ions were stored in a linear radiofrequency trap and cooled to millikelvin temperatures, by sympathetic cooling using laser-cooled Be+ ions simultaneously stored in the same trap.

  17. Molecular Gas Heating Mechanisms, and Star Formation Feedback in Merger/Starbursts: NGC 6240 and Arp 193 as Case Studies

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Xilouris, E. M.; Weiss, Axel; van der Werf, Paul; Israel, F. P.; Greve, T. R.; Isaak, Kate G.; Gao, Y.

    2014-06-01

    We used the SPIRE/FTS instrument aboard the Herschel Space Observatory to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J = 4-3 to J = 13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular line survey of local Luminous Infrared Galaxies (L IR >= 1011 L ⊙). The high-J CO SLEDs are then combined with ground-based low-J CO, 13CO, HCN, HCO+, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging from J = 4-3 onward, with NGC 6240 having a much higher CO line excitation than Arp 193, despite their similar low-J CO SLEDs and L FIR/L CO, 1 - 0, L HCN/L CO (J = 1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp 193, one of the three most extreme starbursts in the local universe, the molecular SLEDs indicate a small amount (~5%-15%) of dense gas (n >= 104 cm-3) unlike NGC 6240 where most of the molecular gas (~60%-70%) is dense (n ~ (104-105) cm-3). Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas. In NGC 6240, and to a lesser degree in Arp 193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon-Dominated Regions. We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar initial mass function averaged over galactic evolution.

  18. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment.

    PubMed

    Holley, A T; Broussard, L J; Davis, J L; Hickerson, K; Ito, T M; Liu, C-Y; Lyles, J T M; Makela, M; Mammei, R R; Mendenhall, M P; Morris, C L; Mortensen, R; Pattie, R W; Rios, R; Saunders, A; Young, A R

    2012-07-01

    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ̅ε=0.9985(4).

  19. Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.

    2018-03-01

    A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.

  20. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  1. A dense cell retention culture system using stirred ceramic membrane reactor.

    PubMed

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  2. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    PubMed Central

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  3. Simulations Of Laser Cooling In An Ultracold Neutral Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; Strickler, Trevor; Pohl, Thomas; Vrinceanu, Daniel; Killian, Thomas

    2016-05-01

    Ultracold neutral plasmas (UNPs) generated by photoionization of laser-cooled, magneto-optically trapped neutral gases, are useful systems for studying strongly coupled plasmas. Coupling is parameterized by Γi, the ratio of the average nearest neighbor Coulomb interaction energy to the ion kinetic energy. For typical UNPs, Γi is currently limited to ~ 3 . For alkaline earth ions, higher Γi can be achieved by laser-cooling. Using Molecular Dynamics and a quantum trajectories approach, we have simulated laser-cooling of Sr+ ions interacting through a Yukawa potential. The simulations include re-pumping from two long-lived D-states, and are conducted at experimentally achievable parameters (density n = 2 e+14 m-3, size σ0 = 4 mm, Te = 19 K). Laser-cooling is shown to both reduce the temperature by a factor of 2 over relevant timescales (tens of μ s) and slow the electron thermal-pressure driven radial expansion of the UNP. We also discuss the unique aspects of laser-cooling in a highly collisional system; in particular, the effect of collisions on dark state formation due to the coupling of the P3/2 state to both the S1/2 (via the cooling transition) and the D5/2 (via a re-pump transition) states. Supported by NSF and DoE, the Air Force Office of Scientific Research, the NDSEG Program, and NIH NCRR S10RR02950, an IBM SUR Award in partnership with CISCO, Qlogic and Adaptive Computing.

  4. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-04-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  5. Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption

    NASA Technical Reports Server (NTRS)

    Bergin, E. A.; Langer, W. D.; Goldsmith, P. F.

    1995-01-01

    We present time-dependent models of the chemical evolution of molecular clouds which include depletion of atoms and molecules onto grain surfaces and desorption, as well as gas-phase interactions. We have included three mechanisms to remove species from the grain mantles: thermal evaporation, cosmic-ray-induced heating, and photodesorption. A wide range of parameter space has been explored to examine the abundance of species present both on the grain mantles and in the gas phase as a function of both position in the cloud (visual extinction) and of evolutionary state (time). The dominant mechanism that removes molecules from the grain mantles is cosmic-ray desorption. At times greater than the depletion timescale, the abundances of some simple species agree with abundances observed in the cold dark cloud TMC-1. Even though cosmic-ray desorption preserves the gas-phase chemistry at late times, molecules do show significant depletions from the gas phase. Examination of the dependence of depletion as a function of density shows that when the density increases from 10(exp 3)/cc to 10(exp 5)/cc several species including HCO(+), HCN, and CN show gas-phase abundance reductions of over an order of magnitude. The CO: H2O ratio in the grain mantles for our standard model is on the order of 10:1, in reasonable agreement with observations of nonpolar CO ice features in rho Ophiuchus and Serpens. We have also examined the interdependence of CO depletion with the space density of molecular hydrogen and binding energy to the grain surface. We find that the observed depletion of CO in Taurus in inconsistent with CO bonding in an H2O rich mantle, in agreement with observations. We suggest that if interstellar grains consist of an outer layer of CO ice, then the binding energies for many species to the grain mantle may be lower than commonly used, and a significant portion of molecular material may be maintained in the gas phase.

  6. Correlations and enlarged superconducting phase of t -J⊥ chains of ultracold molecules on optical lattices

    NASA Astrophysics Data System (ADS)

    Manmana, Salvatore R.; Möller, Marcel; Gezzi, Riccardo; Hazzard, Kaden R. A.

    2017-10-01

    We compute physical properties across the phase diagram of the t -J⊥ chain with long-range dipolar interactions, which describe ultracold polar molecules on optical lattices. Our results obtained by the density-matrix renormalization group indicate that superconductivity is enhanced when the Ising component Jz of the spin-spin interaction and the charge component V are tuned to zero and even further by the long-range dipolar interactions. At low densities, a substantially larger spin gap is obtained. We provide evidence that long-range interactions lead to algebraically decaying correlation functions despite the presence of a gap. Although this has recently been observed in other long-range interacting spin and fermion models, the correlations in our case have the peculiar property of having a small and continuously varying exponent. We construct simple analytic models and arguments to understand the most salient features.

  7. How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?

    NASA Astrophysics Data System (ADS)

    Wofford, Alia

    2017-01-01

    The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.

  8. Direct Measure of the Dense Methane Phase in Gas Shale Organic Porosity by Neutron Scattering

    DOE PAGES

    Eberle, Aaron P. R.; King, Hubert E.; Ravikovitch, Peter I.; ...

    2016-08-30

    Here, we report the first direct measurements of methane density in shale gas using small-angle neutron scattering. At a constant pressure, the density of methane in the inorganic pores is similar to the gas bulk density of the system conditions. Conversely, the methane density is 2.1 ± 0.2 times greater in the organic mesopores. Furthermore, classical density functional theory calculations show that this excess density in the organic pores persists to elevated temperatures, typical of shale gas reservoir conditions, providing new insight into the hydrocarbon storage mechanisms within these reservoirs.

  9. ALEGRA-HEDP simulations of the dense plasma focus.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicker, Dawn G.; Kueny, Christopher S.; Rose, David V.

    We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from themore » beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.« less

  10. Coalescence preference in densely packed microbubbles

    DOE PAGES

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; ...

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  11. Coalescence preference in densely packed microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  12. Dense Regions in Supersonic Isothermal Turbulence

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Goldreich, Peter

    2018-02-01

    The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star-forming clouds. This work presents a simple model for the structure of dense regions in turbulence in which the density distribution behind isothermal shocks originates from rough hydrostatic balance between the pressure gradient behind the shock and its deceleration from ram pressure applied by the background fluid. Using simulations of supersonic isothermal turbulence and idealized waves moving through a background medium, we show that the structural properties of dense, shocked regions broadly agree with our analytical model. Our work provides a new conceptual picture for describing the dense regions, which complements theoretical efforts to understand the bulk statistical properties of turbulence and attempts to model the more complex features of star-forming clouds like magnetic fields, self-gravity, or radiative properties.

  13. Dimer formation of perylene: An ultracold spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    Birer, Ö.; Yurtsever, E.

    2015-10-01

    The electronic spectra of perylene inside helium nanodroplets recorded by the depletion method are presented. The results show two broad peaks in addition to sharp monomer vibronic transitions due to dimer formation. In order to understand the details of the spectra, first the dimer formation is studied by DFT and SCS-MP2 calculations and then the electronic spectra are calculated at the minima of the potential energy surface (PES). Theoretical calculations show that there are two low-lying energetically degenerate dimer structures; namely a parallel displaced one and a rotated stacked one. PES around these minima is very flat with a number of local minima at higher energies which at the experimental temperatures cannot be populated. Even though thermodynamically these two structures are equally populated, dynamical considerations point out that in helium droplet the parallel displaced geometry is encouraged by the natural alignment of the molecules due to the acquired angular momentum following the pick-up process. The calculated spectrum of the parallel displaced geometry predicts the positions of the dimer transitions within 30 nm of the experimental spectrum. Furthermore, the difference between the two dimer transitions is accurately predicted to be about 25 nm while the experimental difference was about 20 nm. Such a small difference could only be detected due to the ultracold conditions helium nanodroplets provided.

  14. Geometric phase effects in the ultracold H + H 2 reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, N.

    2016-10-27

    The H 3 system has served as a prototype for geometric phase (GP) effects in bimolecular chemical reactions for over three decades. Despite a large number of theoretical and experimental efforts, no conclusive evidence of GP effects in the integral cross section or reaction rate has been presented until recently. Here we report a more detailed account of GP effects in the H + H 2(v = 4, j = 0) → H + H 2(v', j') (para-para) reaction rate coefficients for temperatures between 1 μK (8.6 × 10 –11 eV) and 100 K (8.6 × 10 –3 eV). Themore » GP effect is found to persist in both vibrationally resolved and total rate coefficients for collision energies up to about 10 K. The GP effect also appears in rotationally resolved differential cross sections leading to a very different oscillatory structure in both energy and scattering angle. It is shown to suppress a prominent shape resonance near 1 K and enhance a shape resonance near 8 K, providing new experimentally verifiable signatures of the GP effect in the fundamental hydrogen exchange reaction. As a result, the GP effect in the D + D 2 and T + T 2 reactions is also examined in the ultracold limit and its sensitivity to the potential energy surface is explored.« less

  15. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS( J = 2 − 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward themore » nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.« less

  16. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Afach, S.; Ayres, N. J.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Griffith, W. C.; Grujić, Z. D.; Harris, P. G.; Heil, W.; Hélaine, V.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Musgrave, M.; Naviliat-Cuncic, O.; Pendlebury, J. M.; Piegsa, F. M.; Pignol, G.; Plonka-Spehr, C.; Prashanth, P. N.; Quéméner, G.; Rawlik, M.; Rebreyend, D.; Ries, D.; Roccia, S.; Rozpedzik, D.; Schmidt-Wellenburg, P.; Severijns, N.; Thorne, J. A.; Weis, A.; Wursten, E.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.

    2015-10-01

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μ T magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT /cm . This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  17. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of thismore » ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.« less

  18. ALMA Observations of the Coldest Place in the Universe: The Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-11-01

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  19. Dense Suspension Splash

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  20. Inflationary preheating dynamics with two-species condensates

    NASA Astrophysics Data System (ADS)

    Zache, T. V.; Kasper, V.; Berges, J.

    2017-06-01

    We investigate both analytically and numerically a two-component ultracold atom system in one spatial dimension. The model features a tachyonic instability, which incorporates characteristic aspects of the mechanisms for particle production in early universe inflaton models. We establish a direct correspondence between measurable macroscopic growth rates for occupation numbers of the ultracold Bose gas and the underlying microscopic processes in terms of Feynman loop diagrams. We analyze several existing ultracold atom setups featuring dynamical instabilities and propose optimized protocols for their experimental realization. We demonstrate that relevant dynamical processes can be enhanced using a seeding procedure for unstable modes and clarify the role of initial quantum fluctuations and the generation of a nonlinear secondary stage for the amplification of modes.

  1. A Theoretical Investigation of the Plausibility of Reactions Between Ammonia and Carbonyl Species (Formaldehyde, Acetaldehyde, and Acetone) in Interstellar Ice Analogs at Ultracold Temperatures

    NASA Technical Reports Server (NTRS)

    Chen, Lina; Woon, David E.

    2011-01-01

    We have reexamined the reaction between formaldehyde and ammonia, which was previously studied by us and other workers in modestly sized cluster calculations. Larger model systems with up to 12H2O were employed, and reactions of two more carbonyl species, acetaldehyde and acetone, were also carried out. Calculations were performed at the B3LYP/6-31+G** level with bulk solvent effects treated with a polarizable continuum model; limited MP2/6-31+G** calculations were also performed. We found that while the barrier for the concerted proton relay mechanism described in previous work remains modest, it is still prohibitively high for the reaction to occur under the ultracold conditions that prevail in dense interstellar clouds. However, a new pathway emerged in more realistic clusters that involves at least one barrierless step for two of the carbonyl species considered here: ammonia reacts with formaldehyde and acetaldehyde to form a partial charge transfer species in small clusters (4H2O) and a protonated hydroxyamino intermediate species in large clusters (9H2O, 12H2O); modest barriers that decrease sharply with cluster size are found for the analogous processes for the acetone-NH3 reaction. Furthermore, if a second ammonia replaces one of the water molecules in calculations in the 9H2O clusters, deprotonation can occur to yield the same neutral hydroxyamino species that is formed via the original concerted proton relay mechanism. In at least one position, deprotonation is barrierless when zero-point energy is included. In addition to describing the structures and energetics of the reactions between formaldehyde, acetaldehyde, and acetone with ammonia, we report spectroscopic predictions of the observable vibrational features that are expected to be present in ice mixtures of different composition.

  2. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-01

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  3. A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways

    PubMed Central

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-01-01

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios. PMID:23881130

  4. A bandwidth-efficient service for local information dissemination in sparse to dense roadways.

    PubMed

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-07-05

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.

  5. Deep He II and C IV Spectroscopy of a Giant Lyα Nebula: Dense Compact Gas Clumps in the Circumgalactic Medium of a z ~ 2 Quasar

    NASA Astrophysics Data System (ADS)

    Arrigoni Battaia, Fabrizio; Hennawi, Joseph F.; Prochaska, J. Xavier; Cantalupo, Sebastiano

    2015-08-01

    The recent discovery by Cantalupo et al. of the largest (˜500 kpc) luminous (L ≃ 1.43 × 1045 erg s-1) Lyα nebula associated with the quasar UM287 (z = 2.279) poses a great challenge to our current understanding of the astrophysics of the halos hosting massive z ˜ 2 galaxies. Either an enormous reservoir of cool gas is required M ≃ 1012 M⊙, exceeding the expected baryonic mass available, or one must invoke extreme gas clumping factors not present in high-resolution cosmological simulations. However, observations of Lyα emission alone cannot distinguish between these two scenarios. We have obtained the deepest ever spectroscopic integrations in the He ii λ1640 and C iv λ1549 emission lines with the goal of detecting extended line emission, but detect neither line to a 3σ limiting SB ≃ 10-18 erg s-1 cm-2 arcsec-2. We construct simple models of the expected emission spectrum in the highly probable scenario that the nebula is powered by photoionization from the central hyper-luminous quasar. The non-detection of He ii implies that the nebular emission arises from a mass Mc ≲ 6.4 × 1010 M⊙ of cool gas on ˜200 kpc scales, distributed in a population of remarkably dense (nH ≳ 3 cm-3) and compact (R ≲ 20 pc) clouds, which would clearly be unresolved by current cosmological simulations. Given the large gas motions suggested by the Lyα line (v ≃ 500 km s-1), it is unclear how these clouds survive without being disrupted by hydrodynamic instabilities. Our work serves as a benchmark for future deep integrations with current and planned wide-field IFU spectrographs such as MUSE, KCWI, and KMOS. Our observations and models suggest that a ≃10 hr exposure would likely detect ˜10 rest-frame UV/optical emission lines, opening up the possibility of conducting detailed photoionization modeling to infer the physical state of gas in the circumgalactic medium. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a

  6. Herschel Observations of EXtra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    NASA Astrophysics Data System (ADS)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H2S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H2 32S, H2 34S, and H2 33S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H2S follow straight lines given the uncertainties and yield T rot = 141 ± 12 K. This indicates H2S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E up >~ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N tot(H2 32S) = 9.5 ± 1.9 × 1017 cm-2, gas kinetic temperature, T kin = 120+/- ^{13}_{10} K, and constrain the H2 volume density, n_H_2 >~ 9 × 10 7 cm-3, for the H2S emitting gas. These results point to an H2S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H2S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H2S of <4.9 × 10 -3. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  8. Molecular gas heating mechanisms, and star formation feedback in merger/starbursts: NGC 6240 and Arp 193 as case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Xilouris, E. M.

    2014-06-20

    We used the SPIRE/FTS instrument aboard the Herschel Space Observatory to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J = 4-3 to J = 13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular line survey of local Luminous Infrared Galaxies (L {sub IR} ≥ 10{sup 11} L {sub ☉}). The high-J CO SLEDs are then combined with ground-based low-J CO, {sup 13}CO, HCN, HCO{sup +}, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging frommore » J = 4-3 onward, with NGC 6240 having a much higher CO line excitation than Arp 193, despite their similar low-J CO SLEDs and L {sub FIR}/L {sub CO,} {sub 1} {sub –0}, L {sub HCN}/L {sub CO} (J = 1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp 193, one of the three most extreme starbursts in the local universe, the molecular SLEDs indicate a small amount (∼5%-15%) of dense gas (n ≥ 10{sup 4} cm{sup –3}) unlike NGC 6240 where most of the molecular gas (∼60%-70%) is dense (n ∼ (10{sup 4}-10{sup 5}) cm{sup –3}). Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas. In NGC 6240, and to a lesser degree in Arp 193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon-Dominated Regions. We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar initial mass function averaged over galactic evolution.« less

  9. Direct simulation of high-vorticity gas flows

    NASA Technical Reports Server (NTRS)

    Bird, G. A.

    1987-01-01

    The computational limitations associated with the molecular dynamics (MD) method and the direct simulation Monte Carlo (DSMC) method are reviewed in the context of the computation of dilute gas flows with high vorticity. It is concluded that the MD method is generally limited to the dense gas case in which the molecular diameter is one-tenth or more of the mean free path. It is shown that the cell size in DSMC calculations should be small in comparison with the mean free path, and that this may be facilitated by a new subcell procedure for the selection of collision partners.

  10. Free Volume of the Hard Spheres Gas

    ERIC Educational Resources Information Center

    Shutler, P. M. E.; Martinez, J. C.; Springham, S. V.

    2007-01-01

    The Enskog factor [chi] plays a central role in the theory of dense gases, quantifying how the finite size of molecules causes many physical quantities, such as the equation of state, the mean free path, and the diffusion coefficient, to deviate from those of an ideal gas. We suggest an intuitive but rigorous derivation of this fact by showing how…

  11. The structure and kinematics of dense gas in NGC 2068

    NASA Astrophysics Data System (ADS)

    Walker-Smith, S. L.; Richer, J. S.; Buckle, J. V.; Smith, R. J.; Greaves, J. S.; Bonnell, I. A.

    2013-03-01

    We have carried out a survey of the NGC 2068 region in the Orion B molecular cloud using HARP on the James Clerk Maxwell Telescope, in the 13CO and C18O (J = 3-2) and H13CO+ (J = 4-3) lines. We used 13CO to map the outflows in the region, and matched them with previously defined Submillimetre Common-User Bolometer Array cores. We decomposed the C18O and H13CO+ into Gaussian clumps, finding 26 and eight clumps, respectively. The average deconvolved radii of these clumps are 6200 ± 2000 and 3600 ± 900 au for C18O and H13CO+, respectively. We have also calculated virial and gas masses for these clumps, and hence determined how bound they are. We find that the C18O clumps are more bound than the H13CO+ clumps (average gas mass to virial mass ratio of 4.9 compared to 1.4). We measure clump internal velocity dispersions of 0.28 ± 0.02 and 0.27 ± 0.04 km s-1 for C18O and H13CO+, respectively, although the H13CO+ values are heavily weighted by a majority of the clumps being protostellar, and hence having intrinsically greater linewidths. We suggest that the starless clumps correspond to local turbulence minima, and we find that our clumps are consistent with formation by gravoturbulent fragmentation. We also calculate interclump velocity dispersions of 0.39 ± 0.05 and 0.28 ± 0.08 km s-1 for C18O and H13CO+, respectively. The velocity dispersions (both internal and external) for our clumps match results from numerical simulations of decaying turbulence in a molecular cloud. However, there is still insufficient evidence to conclusively determine the type of turbulence and time-scale of star formation, due to the small size of our sample.

  12. The chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1991-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar and circumstellar clouds incorporating the biogenic elements. Recent results include the identification of a new astronomical carbon-chain molecule, C4Si. This species was detected in the envelope expelled from the evolved star IRC+10216 in observations at the Nobeyama Radio Observatory in Japan. C4Si is the carrier of six unidentified lines which had previously been observed. This detection reveals the existence of a new series of carbon-chain molecules, C sub n Si (n equals 1, 2, 4). Such molecules may well be formed from the reaction of Si(+) with acetylene and acetylene derivatives. Other recent research has concentrated on the chemical composition of the cold, dark interstellar clouds, the nearest dense molecular clouds to the solar system. Such regions have very low kinetic temperatures, on the order of 10 K, and are known to be formation sites for solar-type stars. We have recently identified for the first time in such regions the species of H2S, NO, HCOOH (formic acid). The H2S abundance appears to exceed that predicted by gas-phase models of ion-molecule chemistry, perhaps suggesting the importance of synthesis on grain surfaces. Additional observations in dark clouds have studied the ratio of ortho- to para-thioformaldehyde. Since this ratio is expected to be unaffected by both radiative and ordinary collisional processes in the cloud, it may well reflect the formation conditions for this molecule. The ratio is observed to depart from that expected under conditions of chemical equilibrium at formation, perhaps reflecting efficient interchange between cold dust grains in the gas phase.

  13. THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH {sup 13}CO(1-0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Rosolowsky, Erik

    2015-01-20

    We present an expanded distance catalog for 1710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO{sup +}(3-2), NH{sub 3}(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey (GRS) {sup 13}CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region ofmore » the GRS {sup 13}CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of {sup 13}CO matched to the BGPS source. For objects with a HCO{sup +}(3-2) velocity, ≈95% of the new {sup 13}CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and H II regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties ≲ 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum-Centaurus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.« less

  14. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less

  15. Porous Structure Design of Polymeric Membranes for Gas Separation

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...

    2017-04-04

    High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.

  16. HD 62542: Probing the Bare, Dense Core of an Interstellar Cloud

    NASA Astrophysics Data System (ADS)

    Welty, Daniel; Sonnentrucker, Paule G.; Rachford, Brian; Snow, Theodore; York, Donald G.

    2018-01-01

    We discuss the interstellar absorption from many atomic and molecular species seen in high-resolution HST/STIS UV spectra of the moderately reddened B3-5 V star HD 62542 [E(B-V) ~ 0.35; AV ~ 1.2]. This remarkable sight line exhibits both very steep far-UV extinction and a high fraction of hydrogen in molecular form -- with strong absorption from CH, C2, CN, and CO but weak absorption from CH+ and most of the commonly observed diffuse interstellar bands. Most of the material appears to reside in a single narrow velocity component -- thus offering a rare opportunity to probe the relatively dense, primarily molecular core of a single interstellar cloud, with little associated diffuse atomic gas.Detailed analyses of the absorption-line profiles seen in the UV spectra reveal a number of properties of the main diffuse molecular cloud toward HD 62542:1) The depletions of Mg, Si, and Fe are more severe than those seen in any other sight line, but the depletions of Cl and Kr are very mild; the overall pattern of depletions differs somewhat from those derived from larger samples of Galactic sight lines.2) The rotational excitation of H2 and C2 indicates that the gas is fairly cold (Tk = 40-45 K) and moderately dense (nH > 420 cm-3) somewhat higher densities are suggested by the fine-structure excitation of neutral carbon.3) The excitation temperatures characterizing the rotational populations of both 12CO (11.7 K) and 13CO (7.7 K) are higher than those typically found for Galactic diffuse molecular clouds.4) Carbon is primarily singly ionized -- N(C+) > N(CO) > N(C).5) The relative abundances of various trace neutral atomic species reflect the effects of both the steep far-UV extinction and the severe depletions of some elements.6) Differences in line widths for the various atomic and molecular species are suggestive of differences in spatial distribution within the main cloud.Support for this study was provided by NASA, via STScI grant GO-12277.008-A.

  17. Probing topology by "heating": Quantized circular dichroism in ultracold atoms.

    PubMed

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G; Zoller, Peter; Goldman, Nathan

    2017-08-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η 0 = ν/ ℏ 2 , where h = 2π ℏ is Planck's constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter.

  18. Adimensional theory of shielding in ultracold collisions of dipolar rotors

    NASA Astrophysics Data System (ADS)

    González-Martínez, Maykel L.; Bohn, John L.; Quéméner, Goulven

    2017-09-01

    We investigate the electric field shielding of ultracold collisions of dipolar rotors, initially in their first rotational excited state, using an adimensional approach. We establish a map of good and bad candidates for efficient evaporative cooling based on this shielding mechanism, by presenting the ratio of elastic over quenching processes as a function of a rescaled rotational constant B ˜=B /sE3 and a rescaled electric field F ˜=d F /B . B ,d ,F ,andsE 3 are respectively the rotational constant, the full electric dipole moment of the molecules, the applied electric field, and a characteristic dipole-dipole energy. We identify two groups of bi-alkali-metal dipolar molecules. The first group, including RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, and LiCs, is favorable with a ratio over 1000 at collision energies equal to (or even higher than) their characteristic dipolar energy. The second group, including LiNa and KRb, is not favorable. More generally, for molecules well described by Hund's case b, our adimensional study provides the conditions of efficient evaporative cooling. The range of appropriate rescaled rotational constant and rescaled field is approximately B ˜≥108 and 3.25 ≤F ˜≤3.8 , with a maximum ratio reached for F ˜≃3.4 for a given B ˜. We also discuss the importance of the electronic van der Waals interaction on the adimensional character of our study.

  19. Experimental measurement of self-diffusion in a strongly coupled plasma

    DOE PAGES

    Strickler, Trevor S.; Langin, Thomas K.; McQuillen, Paul; ...

    2016-05-17

    Here, we present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short time scales compared to the inverse collision rate. The measured average velocity of a tagged population of ions is shown to be equivalent to the ion-velocity autocorrelation function. We thus gain access to fundamental aspects of the single-particle dynamics in strongly coupled plasmas and to the ion self-diffusion constant under conditions where experimental measurements have been lacking. Nonexponential decay towards equilibrium of the average velocity heralds non-Markovian dynamics that are not predicted by traditional descriptions of weakly coupled plasmas.more » This demonstrates the utility of ultracold neutral plasmas for studying the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.« less

  20. Consolidation of silicon nitride without additives. [for gas turbine engine efficiency increase

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Yeh, H. C.

    1976-01-01

    The use of ceramics for gas turbine engine construction might make it possible to increase engine efficiency by raising operational temperatures to values beyond those which can be tolerated by metallic alloys. The most promising ceramics being investigated in this connection are Si3N4 and SiC. A description is presented of a study which had the objective to produce dense Si3N4. The two most common methods of consolidating Si3N4 currently being used include hot pressing and reaction sintering. The feasibility was explored of producing a sound, dense Si3N4 body without additives by means of conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. It was found that Si3N4 can be densified without additions to a density which exceeds 95% of the theoretical value

  1. Interpreting the sub-linear Kennicutt-Schmidt relationship: the case for diffuse molecular gas

    NASA Astrophysics Data System (ADS)

    Shetty, Rahul; Clark, Paul C.; Klessen, Ralf S.

    2014-08-01

    Recent statistical analysis of two extragalactic observational surveys strongly indicate a sub-linear Kennicutt-Schmidt (KS) relationship between the star formation rate (ΣSFR) and molecular gas surface density (Σmol). Here, we consider the consequences of these results in the context of common assumptions, as well as observational support for a linear relationship between ΣSFR and the surface density of dense gas. If the CO traced gas depletion time (τ_dep^CO) is constant, and if CO only traces star-forming giant molecular clouds (GMCs), then the physical properties of each GMC must vary, such as the volume densities or star formation rates. Another possibility is that the conversion between CO luminosity and Σmol, the XCO factor, differs from cloud-to-cloud. A more straightforward explanation is that CO permeates the hierarchical interstellar medium, including the filaments and lower density regions within which GMCs are embedded. A number of independent observational results support this description, with the diffuse gas comprising at least 30 per cent of the total molecular content. The CO bright diffuse gas can explain the sub-linear KS relationship, and consequently leads to an increasing τ_dep^CO with Σmol. If ΣSFR linearly correlates with the dense gas surface density, a sub-linear KS relationship indicates that the fraction of diffuse gas fdiff grows with Σmol. In galaxies where Σmol falls towards the outer disc, this description suggests that fdiff also decreases radially.

  2. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  3. Gamma ray measurements with photoconductive detectors using a dense plasma focus.

    PubMed

    May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C

    2014-11-01

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  4. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  5. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  6. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as keymore » input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.« less

  7. Real-Time Large-Scale Dense Mapping with Surfels

    PubMed Central

    Fu, Xingyin; Zhu, Feng; Wu, Qingxiao; Sun, Yunlei; Lu, Rongrong; Yang, Ruigang

    2018-01-01

    Real-time dense mapping systems have been developed since the birth of consumer RGB-D cameras. Currently, there are two commonly used models in dense mapping systems: truncated signed distance function (TSDF) and surfel. The state-of-the-art dense mapping systems usually work fine with small-sized regions. The generated dense surface may be unsatisfactory around the loop closures when the system tracking drift grows large. In addition, the efficiency of the system with surfel model slows down when the number of the model points in the map becomes large. In this paper, we propose to use two maps in the dense mapping system. The RGB-D images are integrated into a local surfel map. The old surfels that reconstructed in former times and far away from the camera frustum are moved from the local map to the global map. The updated surfels in the local map when every frame arrives are kept bounded. Therefore, in our system, the scene that can be reconstructed is very large, and the frame rate of our system remains high. We detect loop closures and optimize the pose graph to distribute system tracking drift. The positions and normals of the surfels in the map are also corrected using an embedded deformation graph so that they are consistent with the updated poses. In order to deal with large surface deformations, we propose a new method for constructing constraints with system trajectories and loop closure keyframes. The proposed new method stabilizes large-scale surface deformation. Experimental results show that our novel system behaves better than the prior state-of-the-art dense mapping systems. PMID:29747450

  8. Photons in dense nuclear matter: Random-phase approximation

    NASA Astrophysics Data System (ADS)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  9. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-01-01

    The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  10. Mode-coupling of interaction quenched ultracold bosons in periodically driven lattices

    NASA Astrophysics Data System (ADS)

    Mistakidis, Simeon; Schmelcher, Peter

    2016-05-01

    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. As a first attempt a brief analysis of the dynamics caused exclusively by the periodically driven lattice is presented and the induced low-lying modes are introduced. It is shown that the periodic driving enforces the bosons in the outer wells to exhibit out-of-phase dipole-like modes, while in the central well the cloud experiences a local-breathing mode. The dynamical behavior of the system is investigated with respect to the driving frequency, revealing a resonant-like behavior of the intra-well dynamics. Subsequently, we drive the system to a highly non-equilibrium state by performing an interaction quench upon the periodically driven lattice. This protocol gives rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result (of the quench) the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Finally, our study reveals that the position of the resonances can be adjusted e.g. via the driving frequency or the atom number manifesting their many-body nature. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  11. Kinetic Energy Oscillations during Disorder Induced Heating in an Ultracold Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; McQuillen, Patrick; Strickler, Trevor; Pohl, Thomas; Killian, Thomas

    2015-05-01

    Ultracold neutral plasmas of strontium are generated by photoionizing laser-cooled atoms at temperature TMOT ~ 10 mK and density n ~1016 m-3 in a magneto-optical trap (MOT). After photoionization, the ions heat to ~ 1 K by a mechanism known as Disorder Induced Heating (DIH). During DIH kinetic energy oscillations (KEO) occur at a frequency ~ 2ωpi , where ωpi is the plasma frequency, indicating coupling to collective modes of the plasma. Electron screening also comes into play by changing the interaction from a Coulomb to a Yukawa interaction. Although DIH has been previously studied, improved measurements combined with molecular dynamics (MD) simulations allow us to probe new aspects. We demonstrate a measurement of the damping of the KEO due to electron screening which agrees with the MD simulations. We show that the MD simulations can be used to fit experimental DIH curves for plasma density n, resulting in very accurate density measurements. Finally, we discuss how ion temperature measurements are affected by the non-thermal distribution of the ions during the early stages of DIH. This work was supported by the United States National Science Foundation and the Department of Energy (PHY-0714603), the Air Force Office of Scientific Research (FA9550- 12-1-0267), the Shell Foundation, and the Department of Defense (NDSEG Fellowship)

  12. Temperature scaling in a dense vibrofluidized granular material.

    PubMed

    Sunthar, P; Kumaran, V

    1999-08-01

    The leading order "temperature" of a dense two-dimensional granular material fluidized by external vibrations is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The temperature is determined by relating the source of energy due to the vibrating surface and the energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, are in error.

  13. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  14. Electric manipulation of ultracold polar ^40K^87Rb molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John

    2009-05-01

    Ultracold fermionic polar molecules of ^40K^87Rb in their absolute rovibronic ground state (v=0,n=0,^1σ) have been created recently [1] in a magnetic trap and open new perspectives to create fermionic degenerate gases of polar molecules. To achieve this goal, it is very important to understand the collisional properties of such molecules under magnetic and electric fields. In our presentation, we investigate ground state fermionic ^40K^87Rb + ^40K^87Rb collisions in the presence of a magnetic field and explore the possibility to control these collisions when an electric field is applied. We will explore the main physical processes that can lead to such manipulation. This problem is complicated by the Zeeman and Stark splitting of all levels of the polar molecules and by the possibility of forming ^40K2 + ^87Rb2 chemical products. 1 - K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008).

  15. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

    PubMed

    Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-10-16

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  16. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  17. Proton Beam Driven Isochoric Heating to Warm Dense Matter Conditions on Texas Petawatt

    NASA Astrophysics Data System (ADS)

    Roycroft, R.; Dyer, G. M.; McCary, E.; Jiao, X.; Bowers, B.; Bernstein, A.; Ditmire, T.; Montgomery, M.; Winget, D.; Hegelich, B. M.

    2017-10-01

    Isochoric heating of solids and gases to warm dense matter conditions is relevant to the study of equation of state as well as laboratory astrophysics, specifically heating of hydrogen gas ( 1017-1019 cm3) to 0.5-3eV for the study of white dwarf atmospheres. In a series of experiments on Texas Petawatt, we have built a platform using the petawatt laser focused softly to a large focal spot (60-70um) to generate large numbers of intermediate energy protons via TNSA, ideal for isochoric heating. We have previously used the proton beam to isochorically heat 10um aluminum foils to 20eV. This poster presents results of experiments in which low Z materials such as methane gas, carbon foams, and hydrogen are heated using this platform. We are measuring the surface brightness temperature and heating with a streaked optical pyrometer, and XUV emissions using an XUV spectrometer. Supported by NNSA cooperative agreement DE-NA0002008, the DARPA PULSE program (12-63-PULSE-FP014), and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  18. Cloud photogrammetry with dense stereo for fisheye cameras

    NASA Astrophysics Data System (ADS)

    Beekmans, Christoph; Schneider, Johannes; Läbe, Thomas; Lennefer, Martin; Stachniss, Cyrill; Simmer, Clemens

    2016-11-01

    We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.

  19. Dense Cores in Galaxies Out to z = 2.5 in SDSS, UltraVISTA, and the Five 3D-HST/CANDELS Fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.; Bezanson, Rachel; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Förster Schreiber, Natascha M.; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn

    2014-08-01

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M ⊙ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ⊙ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011 M ⊙ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.

  20. Hybrid-Based Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  1. Relocatable dense medium coal preparation plants for Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, R.

    1994-12-31

    The major recent coal mine developments in Indonesia have been situated along the east coast of Kalimantan (Borneo). Design and construction in these remote areas require a high level of innovation and ingenuity to ensure that the plants can be brought on line effectively. This paper describes the design, installation, and operation of two relocatable modular dense medium plants. The plants were specifically built to overcome the difficulties of remote areas and can be assembled by a semi-skilled workforce. The two relocatable dense medium coal preparation plants recently built for mines in Kalimantan are unique in that the plants weremore » fabricated, preassembled, and wet-commissioned in Brisbane, Australia, before shipment to Indonesia. The plants are a 3OO t/h dense medium bath, cyclone, and spirals plant and a 250 t/h dense medium cyclone and spirals with reject and tailings co-disposal. The relocatable plant concept has enabled a low capital cost per ton per hour and an extremely fast construction timetable-20 weeks from contract award to completion of wet-commissioning for shipment to Indonesia.« less

  2. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  3. Radon measurement of natural gas using alpha scintillation cells.

    PubMed

    Kitto, Michael E; Torres, Miguel A; Haines, Douglas K; Semkow, Thomas M

    2014-12-01

    Due to their sensitivity and ease of use, alpha-scintillation cells are being increasingly utilized for measurements of radon ((222)Rn) in natural gas. Laboratory studies showed an average increase of 7.3% in the measurement efficiency of alpha-scintillation cells when filled with less-dense natural gas rather than regular air. A theoretical calculation comparing the atomic weight and density of air to that of natural gas suggests a 6-7% increase in the detection efficiency when measuring radon in the cells. A correction is also applicable when the sampling location and measurement laboratory are at different elevations. These corrections to the measurement efficiency need to be considered in order to derive accurate concentrations of radon in natural gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Probing the critical exponent of the superfluid fraction in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Liu, Xia-Ji

    2013-11-01

    We theoretically investigate the critical behavior of a second-sound mode in a harmonically trapped ultracold atomic Fermi gas with resonant interactions. Near the superfluid phase transition with critical temperature Tc, the frequency or the sound velocity of the second-sound mode crucially depends on the critical exponent β of the superfluid fraction. In an isotropic harmonic trap, we predict that the mode frequency diverges like (1-T/Tc)β-1/2 when β<1/2. In a highly elongated trap, the speed of the second sound reduces by a factor of 1/2β+1 from that in a homogeneous three-dimensional superfluid. Our prediction could readily be tested by measurements of second-sound wave propagation in a setup, such as that exploited by Sidorenkov [Nature (London)NATUAS0028-083610.1038/nature12136 498, 78 (2013)] for resonantly interacting lithium-6 atoms, once the experimental precision is improved.

  5. A hybrid scenario for gas giant planet formation in rings

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Cai, Kai; Mejía, Annie C.; Pickett, Megan K.

    2005-02-01

    The core-accretion mechanism for gas giant formation may be too slow to create all observed gas giant planets during reasonable gas disk lifetimes, but it has yet to be firmly established that the disk instability model can produce permanent bound gaseous protoplanets under realistic conditions. Based on our recent simulations of gravitational instabilities in disks around young stars, we suggest that, even if instabilities due to disk self-gravity do not produce gaseous protoplanets directly, they may create persistent dense rings that are conducive to accelerated growth of gas giants through core accretion. The rings occur at and near the boundary between stable and unstable regions of the disk and appear to be produced by resonances with discrete spiral modes on the unstable side.

  6. Visualizing the BEC-BCS crossover in a two-dimensional Fermi gas: Pairing gaps and dynamical response functions from ab initio computations

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Experiments with ultracold atoms provide a highly controllable laboratory setting with many unique opportunities for precision exploration of quantum many-body phenomena. The nature of such systems, with strong interaction and quantum entanglement, makes reliable theoretical calculations challenging. Especially difficult are excitation and dynamical properties, which are often the most directly relevant to experiment. We carry out exact numerical calculations, by Monte Carlo sampling of imaginary-time propagation of Slater determinants, to compute the pairing gap in the two-dimensional Fermi gas from first principles. Applying state-of-the-art analytic continuation techniques, we obtain the spectral function and the density and spin structure factors providing unique tools to visualize the BEC-BCS crossover. These quantities will allow for a direct comparison with experiments.

  7. On the nature of intramolecular vibrational energy transfer in dense molecular environments

    NASA Astrophysics Data System (ADS)

    von Benten, Rebekka S.; Abel, Bernd

    2010-12-01

    Transient femtosecond-IR-pump-UV-absorption probe-spectroscopy has been employed to shed light on the nature of intramolecular vibrational energy transfer (IVR) in dense molecular environments ranging from the diluted gas phase to the liquid. A general feature in our experiments and those of others is that IVR proceeds via multiple timescales if overtones or combination vibrations of high frequency modes are excited. It has been found that collisions enhance IVR if its (slower) timescales can compete with collisions. This enhancement is, however, much more weaker and rather inefficient as opposed to the effect of collisions on intermolecular energy transfer which is well known. In a series of experiments we found that IVR depends not significantly on the average energy transferred in a collision but rather on the number of collisions. The collisions are much less efficient in affecting IVR than VET. We conclude that collision induced broadening of vibrational energy levels reduces the energy gaps and enhances existing couplings between tiers. The present results are an important step forward to rationalize and understand apparently different and not consistent results from different groups on different molecular systems between gas and liquid phases.

  8. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    PubMed Central

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  9. Dense power-law networks and simplicial complexes

    NASA Astrophysics Data System (ADS)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  10. Coaxial gas-liquid jet: Dispersion and dynamics

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Lotov, V. V.; Nesterov, A. Yu.

    2018-03-01

    The aim of the work was to study the pneumatic spraying of liquids in a gas jet with reference to the creation of high-flow nozzles. A complex experimental study of a coaxial jet was performed with a central supply of liquid beyond the cutoff of the confusor nozzle at subsonic and supersonic flow conditions. A set of optical methods for flows diagnostics that can function in dense gas-liquid jets provides new data on the structure of the spray: the gas velocity field without liquid, shadow visualization of the geometry and wave structure of the jet with and without fluid, the velocity profiles of the liquid phase, size distribution of the droplets. The key parameters of the liquid breakup processes for the We numbers are obtained. A dynamic approach to the determination of average droplet sizes is considered. A physical model of a coaxial gas-liquid jet with a central fluid supply is proposed.

  11. MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu

    2015-11-20

    The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems near other black holes indicates that dense neutral disks can be found in galactic nuclei. We show that depending on their inclination angle, optical depth, and spin temperature, these disks could be observed spectroscopically through 21 cm absorption. Related spectroscopic observations of Sgr A* can determine its HI disk parameters and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2 could could also be detected in 21 cm absorption against Sgr A* radio emission.

  12. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGES

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; ...

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  13. Fundamental Studies of Droplet Interactions in Dense Sprays

    DTIC Science & Technology

    1992-12-31

    correlations for the drag coefficients, Nusselt numbers, and Sherwood numbers for hydrocarbon fuel droplets in dense sprays were obtained. 14. SUBJECYTEM...tions for the drag coefficients, Nusselt numbers, and Sherwood numbers for hydrocarbon fuel droplets in dense sprays were obtained. Nomenclature a...the drag coefficient, lift coefficient, moment coefficient, Nusselt number, Sherwood number, and vaporization rates are different from those of an

  14. Manufacture of dense sintered bodies containing silicon nitride

    NASA Technical Reports Server (NTRS)

    Hirota, K.; Hasegawa, Y.; Ogura, K.; Yashima, Y.

    1985-01-01

    Sintered bodies containing 1-32.5 Si oxide and 1.5 wt.% SiC (Si oxide/SiC wt. ratio 3/2) are prepared and kept in a 10-3000 kg/2 sq. cm. N (g) atmosphere at 1500-2300 degrees, while simultaneously maintaining the CO (g) partial pressure around the body lower than the nitrogenation equil. pressure to give a dense sintered body. The prepared dense sintered body has high strength at high temperatures. Thus, SiC 40, oxide 30 and Si3N4 30 wt% were fired to a body which was kept in 1500 kg/sq. cm. N (g) for 20 h at 2000 degrees to give a dense sintered body having high bending strength at high temperatures.

  15. Quantum Gas Microscope for Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin

    2016-05-01

    Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.

  16. Eculizumab for dense deposit disease and C3 glomerulonephritis.

    PubMed

    Bomback, Andrew S; Smith, Richard J; Barile, Gaetano R; Zhang, Yuzhou; Heher, Eliot C; Herlitz, Leal; Stokes, M Barry; Markowitz, Glen S; D'Agati, Vivette D; Canetta, Pietro A; Radhakrishnan, Jai; Appel, Gerald B

    2012-05-01

    The principle defect in dense deposit disease and C3 glomerulonephritis is hyperactivity of the alternative complement pathway. Eculizumab, a monoclonal antibody that binds to C5 to prevent formation of the membrane attack complex, may prove beneficial. In this open-label, proof of concept efficacy and safety study, six subjects with dense deposit disease or C3 glomerulonephritis were treated with eculizumab every other week for 1 year. All had proteinuria >1 g/d and/or AKI at enrollment. Subjects underwent biopsy before enrollment and repeat biopsy at the 1-year mark. The subjects included three patients with dense deposit disease (including one patient with recurrent dense deposit disease in allograft) and three patients with C3 glomerulonephritis (including two patients with recurrent C3 glomerulonephritis in allograft). Genetic and complement function testing revealed a mutation in CFH and MCP in one subject each, C3 nephritic factor in three subjects, and elevated levels of serum membrane attack complex in three subjects. After 12 months, two subjects showed significantly reduced serum creatinine, one subject achieved marked reduction in proteinuria, and one subject had stable laboratory parameters but histopathologic improvements. Elevated serum membrane attack complex levels normalized on therapy and paralleled improvements in creatinine and proteinuria. Clinical and histopathologic data suggest a response to eculizumab in some but not all subjects with dense deposit disease and C3 glomerulonephritis. Elevation of serum membrane attack complex before treatment may predict response. Additional research is needed to define the subgroup of dense deposit disease/C3 glomerulonephritis patients in whom eculizumab therapy can be considered.

  17. Tear gas: an epidemiological and mechanistic reassessment

    PubMed Central

    Rothenberg, Craig; Achanta, Satyanarayana; Svendsen, Erik R.

    2016-01-01

    Deployments of tear gas and pepper spray have rapidly increased worldwide. Large amounts of tear gas have been used in densely populated cities, including Cairo, Istanbul, Rio de Janeiro, Manama (Bahrain), and Hong Kong. In the United States, tear gas was used extensively during recent riots in Ferguson, Missouri. Whereas tear gas deployment systems have rapidly improved—with aerial drone systems tested and requested by law enforcement—epidemiological and mechanistic research have lagged behind and have received little attention. Case studies and recent epidemiological studies revealed that tear gas agents can cause lung, cutaneous, and ocular injuries, with individuals affected by chronic morbidities at high risk for complications. Mechanistic studies identified the ion channels TRPV1 and TRPA1 as targets of capsaicin in pepper spray, and of the tear gas agents chloroacetophenone, CS, and CR. TRPV1 and TRPA1 localize to pain‐sensing peripheral sensory neurons and have been linked to acute and chronic pain, cough, asthma, lung injury, dermatitis, itch, and neurodegeneration. In animal models, transient receptor potential inhibitors show promising effects as potential countermeasures against tear gas injuries. On the basis of the available data, a reassessment of the health risks of tear gas exposures in the civilian population is advised, and development of new countermeasures is proposed. PMID:27391380

  18. Hot-filament chemical vapor deposition chamber and process with multiple gas inlets

    DOEpatents

    Deng, Xunming; Povolny, Henry S.

    2004-06-29

    A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.

  19. Dilute and dense axion stars

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  20. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    PubMed Central

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750