Sample records for ultracold fermi gases

  1. Detecting Friedel oscillations in ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  2. The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems

    NASA Astrophysics Data System (ADS)

    Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael

    2018-04-01

    This report addresses topics and questions of common interest in the fields of ultra-cold gases and nuclear physics in the context of the BCS-BEC crossover. By this crossover, the phenomena of Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation (BEC), which share the same kind of spontaneous symmetry breaking, are smoothly connected through the progressive reduction of the size of the fermion pairs involved as the fundamental entities in both phenomena. This size ranges, from large values when Cooper pairs are strongly overlapping in the BCS limit of a weak inter-particle attraction, to small values when composite bosons are non-overlapping in the BEC limit of a strong inter-particle attraction, across the intermediate unitarity limit where the size of the pairs is comparable with the average inter-particle distance. The BCS-BEC crossover has recently been realized experimentally, and essentially in all of its aspects, with ultra-cold Fermi gases. This realization, in turn, has raised the interest of the nuclear physics community in the crossover problem, since it represents an unprecedented tool to test fundamental and unanswered questions of nuclear many-body theory. Here, we focus on the several aspects of the BCS-BEC crossover, which are of broad joint interest to both ultra-cold Fermi gases and nuclear matter, and which will likely help to solve in the future some open problems in nuclear physics (concerning, for instance, neutron stars). Similarities and differences occurring in ultra-cold Fermi gases and nuclear matter will then be emphasized, not only about the relative phenomenologies but also about the theoretical approaches to be used in the two contexts. Common to both contexts is the fact that at zero temperature the BCS-BEC crossover can be described at the mean-field level with reasonable accuracy. At finite temperature, on the other hand, inclusion of pairing fluctuations beyond mean field represents an essential ingredient

  3. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  4. Bose and Fermi Gases of Ultracold Ytterbium in a Triangular Optical Lattice

    NASA Astrophysics Data System (ADS)

    Thobe, Alexander; Doerscher, Soeren; Hundt, Bastian; Kochanke, Andre; Becker, Christoph; Sengstock, Klaus

    2013-05-01

    Quantum gases of alkaline-earth like atoms such as Calcium, Strontium and Ytterbium (Yb) open up exciting new possibilities for the study of many body physics in optical lattices, ranging from SU(N) symmetric spin Hamiltonians to the Kondo Lattice Model. Here, we present experimental studies of ultracold bosonic and fermionic Yb quantum gases. Unlike other experiments studying ultracold alkaline earth-like atoms, we have implemented a 2D-MOT instead of a Zeeman slower as a source of cold atoms. From the 2D-MOT, operating on the broad 1S0 -->1P1 transtition, the atoms are directly loaded into the 3D-MOT operating on a narrow intercombination line. The atoms are then evaporatively cooled to quantum degeneracy in a crossed optical dipole trap. With this setup we routinely produce BECs and degenerate Fermi gases of different Yb isotopes. Moreover, we present first results on spectroscopy of an interacting fermi gas on the ultranarrow 1S0 -->3P0 clock transition in a magic wavelength optical lattice. In future experiments, this spectroscopy will serve as a versatile tool for interaction sensing and selective addressing of atoms in a wavelength tunable, state dependent, triangular optical lattice, which we are currently implementing. This work is supported by DFG within SFB 925 and GrK 1355, as well as EU FETOpen (iSense).

  5. Contact interaction in an unitary ultracold Fermi gas

    DOE PAGES

    Pessoa, Renato; Gandolfi, Stefano; Vitiello, S. A.; ...

    2015-12-16

    An ultracold Fermi atomic gas at unitarity presents universal properties that in the dilute limit can be well described by a contact interaction. By employing a guiding function with correct boundary conditions and making simple modifications to the sampling procedure we are able to calculate the properties of a true contact interaction with the diffusion Monte Carlo method. The results are obtained with small variances. Our calculations for the Bertsch and contact parameters are in excellent agreement with published experiments. The possibility of using a more faithful description of ultracold atomic gases can help uncover additional features of ultracold atomicmore » gases. In addition, this work paves the way to perform quantum Monte Carlo calculations for other systems interacting with contact interactions, where the description using potentials with finite effective range might not be accurate.« less

  6. Homogeneous Atomic Fermi Gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.

    2017-03-01

    We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

  7. Quantum Engineering of Strongly Correlated Matter with Ultracold Fermi Gases

    DTIC Science & Technology

    2013-05-01

    aim at realizing model systems of strongly correlated, disordered electrons using ultracold fermionic atoms stored in an optical "crystal". The general...theme is to study high-temperature superfluids, Fermi liquids ("metals") and insulators in the presence of disordered impurities whose influence on...Presidential Early Career Award for Science and Education (PECASE). In this program, we aim at realizing model systems of strongly correlated, disordered

  8. Itinerant ferromagnetism in ultracold Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiselberg, H.

    2011-05-15

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature, a second-order transition is found at ak{sub F}{approx_equal}0.90 compatible with results of quantum-Monte-Carlo (QMC) calculations. Thermodynamic functions and observables, such as the compressibility and spin susceptibility and the resulting fluctuations in number and spin, are calculated. For trapped gases, the resulting cloud radii and kinetic energies are calculated and compared to recent experiments. Spin-polarized systems are recommended for effective separation of large ferromagnetic domains. Collective modes are predicted and tricritical points are calculatedmore » for multicomponent systems.« less

  9. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  10. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  11. Cooling without contact in bilayer dipolar Fermi gases

    NASA Astrophysics Data System (ADS)

    Tanatar, Bilal; Renklioglu, Basak; Oktel, M. Ozgur

    2016-05-01

    We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modelled within the Euler-Lagrange Fermi-hypernetted chain approximation. The random-phase approximation is employed for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer proceeds via the long-range dipole-dipole interactions. A simple thermal model is developed to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process. Supported by TUBA and TUBITAK (112T974).

  12. Fulde–Ferrell superfluids in spinless ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo

    2018-06-01

    The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.

  13. Quantum criticality and universal scaling of strongly attractive spin-imbalanced Fermi gases in a one-dimensional harmonic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Xiangguo; Chen Shu; Guan Xiwen

    2011-07-15

    We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.

  14. Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases

    DOE PAGES

    Galea, Alexander; Dawkins, Hillary; Gandolfi, Stefano; ...

    2016-02-01

    Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. In this work, we perform T=0 ab initio diffusion Monte Carlo calculations for a strongly interacting two-component Fermi gas confined to two dimensions. We first go over finite-size systems and the connection to the thermodynamic limit. After that, we illustrate pertinent 2D scattering physics and properties of the wave function. We then show energy results for the strong-coupling crossover, in between the Bose-Einstein condensation (BEC) and Bardeen-Cooper-Schrieffer (BCS) regimes. Our energy results for the BEC-BCS crossover are parametrized to producemore » an equation of state, which is used to determine Tan's contact. We carry out a detailed comparison with other microscopic results. Lastly, we calculate the pairing gap for a range of interaction strengths in the strong coupling regime, following from variationally optimized many-body wave functions.« less

  15. Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model.

    PubMed

    Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng

    2016-07-01

    We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F-expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work.

  16. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    NASA Astrophysics Data System (ADS)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad

  17. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    PubMed

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  18. Dark lump excitations in superfluid Fermi gases

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  19. Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Dong, Lin

    Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.

  20. Quasi-One-Dimensional Ultracold Fermi Gases

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.

    Ultracold atoms have become an essential tool in studying condensed matter phenomena. The advantage of atomic physics experiments is that they provide an easily tunable system. This experiment uses the lowest two ground state hyperfine levels of fermionic lithium. Having two different states creates a pseudo-spin- 1/2 system and allows us to emulate electronic systems, such as superconductors and crystal lattices. In our experiment, we can control the ratio between these two states resulting in either a spin-balanced or a spin-imbalanced gas. Imposing an imbalance is analogous to applying a magnetic field to a superconductor which causes the electrons in the material to align to the field (thus breaking the electron pairs which cause superconductivity). This motivates us to understand the phases created when a spin-imbalance is created and the effect of changing the atomic interactions. In a 3D system, we find where superfluidity is suppressed throughout the BEC to BCS crossover. Using phase separation as a guide, we probe the dimensional crossover between 1D and 3D. The phase separation in 1D is inverted from that in 3D, which provides a unique characteristic to distinguish between the dimensions. By varying the tunneling between tubes and the atomic interactions in a 2D optical lattice, we control whether the system is 1D, 3D, or in between. Using the properties of a 3D gas as a guide, we directly observe when the gas has crossed over from being dominated by 1D-like behavior to 3D. In this way, we have found a universal value for the dimensional crossover. The 1D-3D crossover paves the way to search for the exotic FFLO (Fulde-Ferrell-Larkin-Ovchinnikov) superconductor. While most superconductors do not coexist with magnetism, the FFLO phase requires large magnetic fields to support its pairing mechanism. Additionally, this phase is more likely to be found in lower dimensional systems. However, at low dimensions, the effect of temperature fluctuations on the phase

  1. Progress towards a rapidly rotating ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; van de Graaff, Michael; Cornell, Eric; Jin, Deborah

    2015-05-01

    We are designing an experiment with the goal of creating a rapidly rotating ultracold Fermi gas, which is promising system in which to study quantum Hall physics. We propose to use selective evaporation of a gas that has been initialized with a modest rotation rate to increase the angular momentum per particle in order to reach rapid rotation. We have performed simulations of this evaporation process for a model optical trap potential. Achieving rapid rotation will require a very smooth, very harmonic, and dynamically variable optical trap. We plan to use a setup consisting of two acousto-optical modulators to ``paint'' an optical dipole trapping potential that can be made smooth, radially symmetric, and harmonic. This project is supported by NSF, NIST, NASA.

  2. Instability of Fulde-Ferrell-Larkin-Ovchinnikov states in atomic Fermi gases in three and two dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Jibiao; Che, Yanming; Zhang, Leifeng; Chen, Qijin

    2018-04-01

    The exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states have been actively searched for experimentally since the mean-field based FFLO theories were put forward half a century ago. Here, we investigate the stability of FFLO states in the presence of pairing fluctuations. We conclude that FFLO superfluids cannot exist in continuum in three and two dimensions, due to their intrinsic instability, associated with infinite quantum degeneracy of the pairs. These results address the absence of convincing experimental observations of FFLO phases in both condensed matter and in ultracold atomic Fermi gases with a population imbalance. We predict that the true ground state has a pair momentum distribution highly peaked on an entire constant energy surface.

  3. Two-Dimensional Homogeneous Fermi Gases

    NASA Astrophysics Data System (ADS)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  4. Strongly Interacting Fermi Gases In Two Dimensions

    DTIC Science & Technology

    2012-01-03

    Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas. Figure 2 Spin Transport in Spin-Imbalanced, strongly interacting...atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice . Decreasing the dimensionality leads to the...opening of a gap in radiofrequency spectra, even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the measured binding energy

  5. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  6. Spin Imbalanced Quasi-Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Ong, Willie C.

    Spin-imbalanced Fermi gases serve as a testbed for fundamental notions and are efficient table-top emulators of a variety of quantum matter ranging from neutron stars, the quark-gluon plasma, to high critical temperature superconductors. A macroscopic quantum phenomenon which occurs in spin-imbalanced Fermi gases is that of phase separation; in three dimensions, a spin-balanced, fully-paired superfluid core is surrounded by an imbalanced normal-fluid shell, followed by a fully polarized shell. In one dimension, the behavior is reversed; a balanced phase appears outside a spin-imbalanced core. This thesis details the first density profile measurements and studies on spin-imbalanced quasi-2D Fermi gases, accomplished with high-resolution, rapid sequential spin-imaging. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a 2D system. Data for normal-fluid mixtures are well fit by a simple 2D polaron model of the free energy. Not predicted by the model is an observed phase transition to a spin-balanced central core above a critical polarisation.

  7. Closed-channel contribution in the BCS-BEC crossover regime of an ultracold Fermi gas with an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Inotani, D.; Ohashi, Y.

    2018-03-01

    We theoretically investigate strong-coupling properties of an ultracold Fermi gas with an orbital Feshbach resonance (OFR). Including tunable pairing interaction associated with an OFR within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR), we examine the occupation of the closed channel. We show that, although the importance of the closed channel is characteristic of the system with an OFR, the occupation number of the closed channel is found to actually be very small at the superfluid phase transition temperature T c, in the whole BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region, when we use the scattering parameters for an ultracold 173Yb Fermi gas. The occupation of the closed channel increases with increasing the temperature above T c, which is more remarkable for a stronger pairing interaction. We also present a prescription to remove effects of an experimentally inaccessible deep bound state from the NSR formalism, which we meet when we theoretically deal with a 173Yb Fermi gas with an OFR.

  8. Total cross sections for ultracold neutrons scattered from gases

    DOE PAGES

    Seestrom, Susan Joyce; Adamek, Evan R.; Barlow, Dave; ...

    2017-01-30

    Here, we have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n-butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He. The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to ourmore » previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.« less

  9. Theory of BCS-BEC Crossover in Ultracold Fermi Gases: Insights into Thermodynamical and Spectroscopic Experiments

    NASA Astrophysics Data System (ADS)

    Levin, Kathryn

    2009-05-01

    In this talk we summarize our theoretical understanding of the atomic Fermi superfluids with an emphasis on understanding current experiments. We compare and contrast different theoretical approaches for dealing with finite temperature, and discuss their respective implications for these trapped gases. Armed with a basic picture of the thermodynamics we turn to a variety of different measurements based on radio frequency spectroscopy, including both momentum integrated and momentum resolved experiments. As recently reviewed in arXiv 0810.1940 and 0810.1938, we show how a broad range of experimental phenomena can be accomodated within our natural extension of the BCS-Leggett ground state to finite temperature, and briefly touch on the applicability of BCS-BEC crossover theory to the high temperature superconductors. Co-authors: Qijin Chen, Yan He and Chih-Chun Chien

  10. Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume, D.; Daily, K. M.

    We treat small trapped unequal-mass two-component Fermi gases at unitarity within a nonperturbative microscopic framework and investigate the system properties as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light fermions. While equal-mass Fermi gases with infinitely large interspecies s-wave scattering length a{sub s} are universal, we find that unequal-mass Fermi gases are, for sufficiently large {kappa} and in the regime where Efimov physics is absent, not universal. In particular, the (N{sub 1},N{sub 2})=(2,1) and (3, 1) systems exhibit three-body and four-body resonances at {kappa}=12.314(2) and 10.4(2), respectively, as well asmore » surprisingly large finite-range effects. These findings have profound implications for ongoing experimental efforts and quantum simulation proposals that utilize unequal-mass atomic Fermi gases.« less

  11. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the lasermore » cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.« less

  12. Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2016-08-01

    Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.

  13. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  14. Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki

    2018-04-01

    We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.

  15. The contact of a homogeneous unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Patel, Parth; Yan, Zhenjie; Fletcher, Richard; Struck, Julian; Zwierlein, Martin

    2017-04-01

    The contact is a fundamental quantity that measures the strength of short-range correlations in quantum gases. As one of its most important implications, it provides a link between the microscopic two-particle correlation function at small distance and the macroscopic thermodynamic properties of the gas. In particular, pairing and superfluidity in a unitary Fermi gas can be expected to leave its mark in behavior of the contact. Here we present measurements on the temperature dependence of the contact of a unitary Fermi gas across the superfluid transition. By trapping ultracold 6Li atoms in a potential that is homogeneous in two directions and harmonic in the third, we obtain radiofrequency spectra of the homogeneous gas at a high signal-to-noise ratio. We compare our data to existing, but often mutually excluding theoretical calculations for the strongly interacting Fermi gas.

  16. I.I. Rabi in Atomic, Molecular & Optical Physics Prize Talk: Strongly Interacting Fermi Gases of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2017-04-01

    Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.

  17. Nodal Topological Phases in s-wave Superfluid of Ultracold Fermionic Gases

    NASA Astrophysics Data System (ADS)

    Huang, Bei-Bing; Yang, Xiao-Sen

    2018-02-01

    The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid. In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines, which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11547047 and 11504143

  18. Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture

    NASA Astrophysics Data System (ADS)

    Duchon, Eric Nicholas

    Ultracold atomic gases may be the ultimate quantum simulator. These isolated systems have the lowest temperatures in the observable universe, and their properties and interactions can be precisely and accurately tuned across a full spectrum of behaviors, from few-body physics to highly-correlated many-body effects. The ability to impose potentials on and tune interactions within ultracold gases to mimic complex systems mean they could become a theorist's playground. One of their great strengths, however, is also one of the largest obstacles to this dream: isolation. This thesis touches on both of these themes. First, methods to characterize phases and quantum critical points, and to construct finite temperature phase diagrams using experimentally accessible observables in the Bose Hubbard model are discussed. Then, the transition from a weakly to a strongly interacting Bose-Fermi mixture in the continuum is analyzed using zero temperature numerical techniques. Real materials can be emulated by ultracold atomic gases loaded into optical lattice potentials. We discuss the characteristics of a single boson species trapped in an optical lattice (described by the Bose Hubbard model) and the hallmarks of the quantum critical region that separates the superfluid and the Mott insulator ground states. We propose a method to map the quantum critical region using the single, experimentally accessible, local quantity R, the ratio of compressibility to local number fluctuations. The procedure to map a phase diagram with R is easily generalized to inhomogeneous systems and generic many-body Hamiltonians. We illustrate it here using quantum Monte Carlo simulations of the 2D Bose Hubbard model. Secondly, we investigate the transition from a degenerate Fermi gas weakly coupled to a Bose Einstein condensate to the strong coupling limit of composite boson-fermion molecules. We propose a variational wave function to investigate the ground state properties of such a Bose-Fermi mixture

  19. Strong-Coupling Effects and Shear Viscosity in an Ultracold Fermi Gas

    NASA Astrophysics Data System (ADS)

    Kagamihara, D.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the shear viscosity η , as well as the entropy density s, in the normal state of an ultracold Fermi gas. Including pairing fluctuations within the framework of a T-matrix approximation, we calculate these quantities in the Bardeen-Cooper-Schrieffer (BCS)-Bose-Einstein condensation (BEC) crossover region. We also evaluate η / s, to compare it with the lower bound of this ratio, conjectured by Kovtun, Son, and Starinets (KSS bound). In the weak-coupling BCS side, we show that the shear viscosity η is remarkably suppressed near the superfluid phase transition temperature Tc, due to the so-called pseudogap phenomenon. In the strong-coupling BEC side, we find that, within the neglect of the vertex corrections, one cannot correctly describe η . We also show that η / s decreases with increasing the interaction strength, to become very close to the KSS bound, \\hbar /4π kB, on the BEC side.

  20. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    öhlich, A Griesmaier, T Pfau, H Saito, Y Kawaguchi and M Ueda High-energy-resolution molecular beams for cold collision studies L P Parazzoli, N Fitch, D S Lobser and H J Lewandowski Collisional effects in the formation of cold guided beams of polar molecules M Motsch, C Sommer, M Zeppenfeld, L D van Buuren, P W H Pinkse and G Rempe Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms P Barletta, J Tennyson and P F Barker Efficient formation of ground-state ultracold molecules via STIRAP from the continuum at a Feshbach resonance Elena Kuznetsova, Marko Gacesa, Philippe Pellegrini, Susanne F Yelin and Robin Côté Emergent timescales in entangled quantum dynamics of ultracold molecules in optical lattices M L Wall and L D Carr Rotational state resolved photodissociation spectroscopy of translationally and vibrationally cold MgH+ ions: toward rotational cooling of molecular ions K Højbjerre, A K Hansen, P S Skyt, P F Staanum and M Drewsen Collective transverse cavity cooling of a dense molecular beam Thomas Salzburger and Helmut Ritsch A Stark decelerator on a chip Samuel A Meek, Horst Conrad and Gerard Meijer Deceleration of molecules by dipole force potential: a numerical simulation Susumu Kuma and Takamasa Momose Ultracold molecules: vehicles to scalable quantum information processing Kathy-Anne Brickman Soderberg, Nathan Gemelke and Cheng Chin Magnetic field modification of ultracold molecule-molecule collisions T V Tscherbul, Yu V Suleimanov, V Aquilanti and R V Krems Spectroscopy of 39K85Rb triplet excited states using ultracold a 3Σ+ state molecules formed by photoassociation J T Kim, D Wang, E E Eyler, P L Gould and W C Stwalley Pumping vortex into a Bose-Einstein condensate of heteronuclear molecules Z F Xu, R Q Wang and L You Intense atomic and molecular beams via neon buffer-gas cooling David Patterson, Julia Rasmussen and John M Doyle Dynamical properties of dipolar Fermi gases T Sogo, L He, T Miyakawa, S Yi, H Lu

  1. Critical behavior in trapped strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Taylor, E.

    2009-08-01

    We investigate the width of the Ginzburg critical region and experimental signatures of critical behavior in strongly interacting trapped Fermi gases close to unitarity, where the s -wave scattering length diverges. Despite the fact that the width of the critical region is of the order unity, evidence of critical behavior in the bulk thermodynamics of trapped gases is strongly suppressed by their inhomogeneity. The specific heat of a harmonically confined gas, for instance, is linear in the reduced temperature t=(T-Tc)/Tc above Tc . We also discuss the prospects of observing critical behavior in the local compressibility from measurements of the density profile.

  2. Shear viscosity in an anisotropic unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.

    2017-11-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  3. Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Ong, W.; Cheng, Chingyun; Arakelyan, I.; Thomas, J. E.

    2015-03-01

    We measure the density profiles for a Fermi gas of Li 6 containing N1 spin-up atoms and N2 spin-down atoms, confined in a quasi-two-dimensional geometry. The spatial profiles are measured as a function of spin imbalance N2/N1 and interaction strength, which is controlled by means of a collisional (Feshbach) resonance. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a true two-dimensional system. We find that the data for normal-fluid mixtures are reasonably well fit by a simple two-dimensional polaron model of the free energy. Not predicted by the model is a phase transition to a spin-balanced central core, which is observed above a critical value of N2/N1. Our observations provide important benchmarks for predictions of the phase structure of quasi-two-dimensional Fermi gases.

  4. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    PubMed

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  5. Quantum Monte Carlo studies of superfluid Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.Y.; Pandharipande, V.R.; Carlson, J.

    2004-10-01

    We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak{sub F}. We report results for the ground-state energy, the pairing gap {delta}, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak{sub F}<-1, we obtain Bardeen-Cooper-Schrieffer (BCS) superfluid and the energy gap {delta} is much smaller than the Fermi gas energy E{sub FG}. When a>0, the interaction is strong enough tomore » form bound molecules with energy E{sub mol}. For 1/ak{sub F} > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with {delta} and gas energy per particle approaching E{sub mol}/2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5<1/ak{sub F}<0.5, is discussed.« less

  6. Particle scattering by harmonically trapped Bose and Fermi gases

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ankita; Das, Samir; Biswas, Shyamal

    2018-04-01

    We have analytically explored the quantum phenomenon of particle scattering by harmonically trapped Bose and Fermi gases with the short ranged Fermi–Huang {δ }p3 interactions (Fermi 1936 Ric. Sci. 7 13; Huang and Yang 1957 Phys. Rev. 105 767) interactions among the incident particle and the scatterers. We have predicted differential scattering cross-sections and their temperature dependence in this regard. Coherent scattering even by a single boson or fermion in the finite geometry gives rise to new tool of determining energy eigenstate of the scatterer. Our predictions on the differential scattering cross-sections can be tested within the present day experimental setups, specially, for (i) 3D harmonically trapped interacting Bose–Einstein condensate (BEC), (ii) BECs in a double well, and (iii) BECs in an optical lattice.

  7. Bragg spectroscopy of strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Lingham, M. G.; Fenech, K.; Peppler, T.; Hoinka, S.; Dyke, P.; Hannaford, P.; Vale, C. J.

    2016-10-01

    This article provides an overview of recent developments and emerging topics in the study of two-component Fermi gases using Bragg spectroscopy. Bragg scattering is achieved by exposing a gas to two intersecting laser beams with a slight frequency difference and measuring the momentum transferred to the atoms. By varying the Bragg laser detuning, it is possible to measure either the density or spin response functions which characterize the basic excitations present in the gas. Specifically, one can measure properties such as the dynamic and static structure factors, Tan's universal contact parameter and observe signatures for the onset of pair condensation locally within a gas.

  8. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    PubMed

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  9. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Equation of State of the Dilute Fermi Gases

    NASA Astrophysics Data System (ADS)

    Chang, Soon Yong

    2008-04-01

    In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.

  10. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    PubMed

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  11. Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.

    PubMed

    Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh

    2016-12-01

    We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for zz^{*}) for an ideal classical gas. Also, according to the singular point of thermodynamic curvature, we consider the condensation of nonextensive Boson gas.

  12. Quenching of internally 'hot' H2 and N2 gases by collisions with ultracold electrons: a computational 'experiment'

    NASA Astrophysics Data System (ADS)

    Gianturco, F. A.

    2008-11-01

    Quantum mechanical methods are employed to obtain superelastic cross sections involving H2 and N2 molecules, in excited rotational states, colliding with electrons at the very low collision energies which are encountered in cold trap experiments. This computational analysis intends to explore the feasibility of cold electrons for the collisional quenching of molecular gases down to the nanokelvin regimes. The results are obtained using rigorous coupled-channel (CC) calculations in the laboratory frame of reference which allows one to correctly describe the cross section behaviour at ultralow energies. The results are analysed down to the ultracold region of validity of Wigner's law, where it is found that electron-driven collisions exhibit substantial efficiency for the quenching of rotational populations in molecular gases involving the title systems. This work is affectionately dedicated to Anna Giardini, a creative experimentalist and a long-time friend, on the occasion of her 'official' retirement.

  13. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length a B to the fermion scattering length a 2D. We find a B ≃ 0.56a 2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  14. Energy-absorption spectroscopy of unitary Fermi gases in a uniform potential

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Yu, Zhenhua

    2018-04-01

    We propose to use the energy absorption spectroscopy to measure the kinetic coefficients of unitary Fermi gases in a uniform potential. We show that, in our scheme, the energy absorption spectrum is proportional to the dynamic structure factor of the system. The profile of the spectrum depends on the shear viscosity η , the thermal conductivity κ , and the superfluid bulk viscosity ξ3. We show that extraction of these coefficients from the spectrum is achievable in present experiments.

  15. Engineering frequency-dependent superfluidity in Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Arzamasovs, Maksims; Liu, Bo

    2018-04-01

    Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.

  16. Ultracold Gas Theory from the Top-Down and Bottom-Up

    NASA Astrophysics Data System (ADS)

    Colussi, Victor E.

    Advances in trapping and cooling of ultracold gases over the last several decades have made it possible to test many formerly outstanding predictions from disparate branches of physics. This thesis touches on three historical problems that have found new life recently in the context of ultracold Bose gases of alkali atoms. The first problem revolves around an outstanding prediction from Boltzmann over a century and half old that the breathing mode of a isotropically trapped classical gas should oscillate indefinitely. I analyze recent experimental results, and attribute observed damping sources to trap imperfections. The second question is about the analogue of first and second sound modes from liquid helium in trapped dilute gases. I present the results of a joint theoretical/experimental investigation of the breathing mode of a finite temperature Bose-Einstein condensate (BEC), attributing a striking collapse revival behavior of the resultant oscillation to in-phase and out-of-phase normal modes of the thermal cloud and condensate. The third problem is that of the formation of Borromean ring-like three-body bound states, referred to as Efimov trimers, in strongly-interacting few-body systems. I extend the predicted spectrum of Efimov states into the realm of many degenerate internal levels, and investigate the difficult three-body elastic scattering problem. These questions are part of the broader theme of this thesis: How can our understanding of few-body physics in the ultracold limit be translated into statements about the bulk behavior of an ultracold gas? For weakly-interacting Bose gases, this translation is well-known: the many-body properties of the gas are well-described by the tracking just the one and two particle correlations. I analyze a generalization of this procedure to higher order correlations, the general connection between few-body physics and correlations in a dilute gas, and results for the emergence of Efimov physics in the magnetic phase

  17. Dark solitons with Majorana fermions in spin-orbit-coupled Fermi gases.

    PubMed

    Xu, Yong; Mao, Li; Wu, Biao; Zhang, Chuanwei

    2014-09-26

    We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance, where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom density contrast across the soliton suddenly vanishes, suggesting a signature for identifying topological solitons.

  18. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    PubMed

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  19. SU(3) Orbital Kondo Effect with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Nishida, Yusuke

    2013-09-01

    We propose a simple but novel scheme to realize the Kondo effect with ultracold atoms. Our system consists of a Fermi sea of spinless fermions interacting with an impurity atom of different species which is confined by an isotropic potential. The interspecies attraction can be tuned with an s-wave Feshbach resonance so that the impurity atom and a spinless fermion form a bound dimer that occupies a threefold-degenerate p orbital of the confinement potential. Many-body scatterings of this dimer and surrounding spinless fermions occur with exchanging their angular momenta and thus exhibit the SU(3) orbital Kondo effect. The associated Kondo temperature has a universal leading exponent given by TK∝exp⁡[-π/(3apkF3)] that depends only on an effective p-wave scattering volume ap and a Fermi wave vector kF. We also elucidate a Kondo singlet formation at zero temperature and an anisotropic interdimer interaction mediated by surrounding spinless fermions. The Kondo effect thus realized in ultracold atom experiments may be observed as an increasing atom loss by lowering the temperature or with radio-frequency spectroscopy. Our scheme and its extension to a dense Kondo lattice will be useful to develop new insights into yet unresolved aspects of Kondo physics.

  20. Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms

    NASA Astrophysics Data System (ADS)

    He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  1. Understanding ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul

    2009-05-01

    The successful production of a dense sample of ultracold ground state KRb polar molecules [1] opens the door to a new era of research with dipolar gases and lattices of such species. This feat was achieved by first associating a K and a Rb atom to make a weakly bound Feshbach molecule and then coherently transferring the population to the ground vibrational level of the molecule. This talk focuses on theoretical issues associated with making and using ultracold polar molecules, using KRb as an example [2]. Full understanding of this species and the processes by which it is made requires taking advantage of accurate molecular potentials [3], ab initio calculations [4], and the properties of the long-range potential. A highly accurate model is available for KRb for all bound states below the ground state separated atom limit and could be constructed for other species. The next step is to develop an understanding of the interactions between polar molecules, and their control in the ultracold domain. Understanding long-range interactions and threshold resonances will be crucial for future work. [1] K.-K. Ni, et al, Science 322, 231(2008). [2] P. S. Julienne, arXiv:0812:1233. [3] Pashov et al., Phys. Rev. A76, 022511 (2007). [4] S. Kotochigova, et al., arXiv:0901.1486.

  2. Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms

    DTIC Science & Technology

    2008-11-01

    explore phases that do not yet have analogous behavior in QCD . ..,.. Ultracold fennions in optical lattices . The evolution from BCS to BEC...trimer states. The three-component Fermi gas we have created will, when confined in an optical lattice , be an experimental realization of the SU(3...chromodynamics ( QCD ): the color superconducting phase and the formation of baryons. Our initial investigations have focused on understanding three-body

  3. Core filling and snaking instability of dark solitons in spin-imbalanced superfluid Fermi gases

    NASA Astrophysics Data System (ADS)

    Reichl, Matthew D.; Mueller, Erich J.

    2017-05-01

    We use the time-dependent Bogoliubov-de Gennes equations to study dark solitons in three-dimensional spin-imbalanced superfluid Fermi gases. We explore how the shape and dynamics of dark solitons are altered by the presence of excess unpaired spins which fill their low-density core. The unpaired particles broaden the solitons and suppress the transverse snake instability. We discuss ways of observing these phenomena in cold-atom experiments.

  4. Pseudogap temperature and effects of a harmonic trap in the BCS-BEC crossover regime of an ultracold Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521; CREST

    2011-10-15

    We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined T-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of states (LDOS), as well as the single-particle local spectral weight (LSW). Starting from the superfluid phase transition temperature T{sub c}, we clarify how the pseudogap structures in these quantities disappear with increasing the temperature. As in the case of a uniform Fermi gas, LDOS and LSW give different pseudogap temperatures T{sup *} and T{sup **} at which the pseudogap structures in these quantities completely disappear. Determining T{supmore » *} and T{sup **} over the entire BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region, we identify the pseudogap regime in the phase diagram with respect to the temperature and the interaction strength. We also show that the so-called back-bending peak recently observed in the photoemission spectra by the JILA group may be explained as an effect of pseudogap phenomenon in the trap center. Since strong pairing fluctuations, spatial inhomogeneity, and finite temperatures are important keys in considering real cold Fermi gases, our results would be useful for clarifying normal-state properties of this strongly interacting Fermi system.« less

  5. Regime of validity of the pairing Hamiltonian in the study of Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S. Y.; Pandharipande, V. R.

    2006-06-01

    The ground state energy and pairing gap of the interacting Fermi gases calculated by the ab initio stochastic method are compared with those estimated from the Bardeen-Cooper-Schrieffer pairing Hamiltonian. We discuss the ingredients of this Hamiltonian in various regimes of interaction strength. In the weakly interacting (1/ak{sub F}<<0) regime the BCS Hamiltonian should describe Landau quasiparticle energies and interactions, on the other hand, in the strongly pairing regime, that is, 1/ak{sub F} > or approx. 0, it becomes part of the bare Hamiltonian. However, the bare BCS Hamiltonian is not adequate for describing atomic gases in the regime of weakmore » to moderate interaction strength -{infinity}<1/ak{sub F}<0 such as ak{sub F}{approx}-1.« less

  6. Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms

    NASA Technical Reports Server (NTRS)

    Ketterle, Wolfgang

    2003-01-01

    Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".

  7. Fermi gases with imaginary mass imbalance and the sign problem in Monte-Carlo calculations

    NASA Astrophysics Data System (ADS)

    Roscher, Dietrich; Braun, Jens; Chen, Jiunn-Wei; Drut, Joaquín E.

    2014-05-01

    Fermi gases in strongly coupled regimes are inherently challenging for many-body methods. Although progress has been made analytically, quantitative results require ab initio numerical approaches, such as Monte-Carlo (MC) calculations. However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due to the infamous sign problem. For finite spin imbalance, the problem can be circumvented using imaginary polarizations and analytic continuation, and large parts of the phase diagram then become accessible. We propose to apply this strategy to the mass-imbalanced case, which opens up the possibility to study the associated phase diagram with MC calculations. We perform a first mean-field analysis which suggests that zero-temperature studies, as well as detecting a potential (tri)critical point, are feasible.

  8. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  9. Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeffrey G., E-mail: jglee@umd.edu; Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742; Hill, W. T., E-mail: wth@umd.edu

    2014-10-15

    We present two spatial-shaping approaches – phase and amplitude – for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials – a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemicallymore » etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure is made as an opaque mask in the path of a dipole trap beam, followed by imaging the shadow onto the plane of the atoms. While much more lossy, this very simple and inexpensive approach can produce dipole potentials suitable for containing degenerate gases. High-quality amplitude masks can be produced with standard photolithography techniques. Amplitude shaping was demonstrated on a Bose-Einstein condensate.« less

  10. Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro

    2018-03-01

    We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.

  11. Strong photoassociation in a degenerate fermi gas

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.

  12. Strong Photoassociation in Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Jing, Li; Jamison, Alan; Rvachov, Timur; Ebadi, Sepher; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there are still open questions about strong photoassociation in ultracold gases. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system and to engineer Hamiltonians using dissipation. We propose the possibility to slow down decoherence by photoassociation through the quantum Zeno effect. This can realized by shining strong photoassociation light on the superposition of the lowest two hyperfine states of Lithium 6. NSF, ARO-MURI, Samsung, NSERC.

  13. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    NASA Astrophysics Data System (ADS)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  14. Observation of Feshbach resonances between ultracold Na and Rb atoms

    NASA Astrophysics Data System (ADS)

    Wang, Fudong; Xiong, Dezhi; Li, Xiaoke; Wang, Dajun

    2013-03-01

    Absolute ground-state 23Na87Rb molecule has a large electric dipole moment of 3.3 Debye and its two body exchange chemical reaction is energetically forbidden at ultracold temperatures. It is thus a nice candidate for studying quantum gases with dipolar interactions. We have built an experiment setup to investigate ultracold collisions between Na and Rb atoms as a first step toward the production of ground state molecular samples. Ultracold mixtures are first obtained by evaporative cooling of Rb and sympathetic cooling of Na. They are then transferred to a crossed dipole trap and prepared in different spin combinations for Feshbach resonance study. Several resonances below 1000 G are observed with both atoms prepared in either | F = 1,mF = 1 > or | F = 1,mF = - 1 > hyperfine states. Most of them are within 30 G of predicted values§ based on potentials obtained by high quality molecular spectroscopy studies. This work is supported by RGC Hong Kong. § E. Tiemann, private communications

  15. SO(3) "Nuclear Physics" with ultracold Gases

    NASA Astrophysics Data System (ADS)

    Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.-J.

    2018-06-01

    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.

  16. Loading ultracold gases in topological Floquet bands: the fate of current and center-of-mass responses

    NASA Astrophysics Data System (ADS)

    Dauphin, Alexandre; Tran, Duc-Thanh; Lewenstein, Maciej; Goldman, Nathan

    2017-06-01

    Topological band structures can be designed by subjecting lattice systems to time-periodic modulations, as was proposed for irradiated graphene, and recently demonstrated in two-dimensional (2D) ultracold gases and photonic crystals. However, changing the topological nature of Floquet Bloch bands from trivial to non-trivial, by progressively launching the time-modulation, is necessarily accompanied with gap-closing processes: this has important consequences for the loading of particles into a target Floquet band with non-trivial topology, and hence, on the subsequent measurements. In this work, we analyse how such loading sequences can be optimized in view of probing the topology of 2D Floquet bands through transport measurements. In particular, we demonstrate the robustness of center-of-mass responses, as compared to current responses, which present important irregularities due to an interplay between the micro-motion of the drive and inter-band interference effects. The results presented in this work illustrate how probing the center-of-mass displacement of atomic clouds offers a reliable method to detect the topology of Floquet bands, after realistic loading sequences.

  17. Quantum Polarization Spectroscopy of Ultracold Spinor Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, K.; Zawitkowski, L.; Sanpera, A.

    2007-03-09

    We propose a method for the detection of ground state quantum phases of spinor gases through a series of two quantum nondemolition measurements performed by sending off-resonant, polarized light pulses through the gas. Signatures of various mean-field as well as strongly correlated phases of F=1 and F=2 spinor gases obtained by detecting quantum fluctuations and mean values of polarization of transmitted light are identified.

  18. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    NASA Astrophysics Data System (ADS)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  19. Strongly Interacting Multi-component Fermions: From Ultracold Atomic Fermi Gas to Asymmetric Nuclear Matter in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Hatsuda, Tetsuo; Ohashi, Yoji

    2018-03-01

    We investigate an asymmetric nuclear matter consisting of protons and neutrons with spin degrees of freedom (σ = ↑, ↓). By generalizing the Nozières and Schmitt-Rink theory for two-component Fermi gases to the four-component case, we analyze the critical temperature T c of the superfluid phase transition. Although the pure neutron matter exhibits the dineutron condensation in the low-density region, the superfluid instability toward the deuteron condensation is found to take place as the proton fraction increases. We clarify the mechanism of the competition between the deuteron condensation and dineutron condensation. Our results would serve for understanding the properties of asymmetric nuclear matter realized in the interior of neutron stars.

  20. Charge transfer in ultracold gases via Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2017-06-01

    We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.

  1. Inductively guided circuits for ultracold dressed atoms

    PubMed Central

    Sinuco-León, German A.; Burrows, Kathryn A.; Arnold, Aidan S.; Garraway, Barry M.

    2014-01-01

    Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control. PMID:25348163

  2. Degenerate quantum gases with spin-orbit coupling: a review.

    PubMed

    Zhai, Hui

    2015-02-01

    This review focuses on recent developments in synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and the consequences of both in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and a richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking gives rise to intriguing behaviours of superfluid critical velocity and novel quantum dynamics; and the mixing of two-body singlet and triplet states yields a novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can, enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases. Finally we also point out major challenges and some possible future directions.

  3. Strongly Interacting Fermi Gases: Non-Equilibrium Dynamics and Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Sommer, Ariel

    2015-05-01

    Strongly interacting atomic Fermi gases near Feshbach resonances give access to a rich variety of phenomena in many-fermion physics and superfluidity. This flexible and microscopically well-characterized system provides a pristine platform in which to benchmark many-body theories. I will describe three experiments on gases of fermionic 6Li atoms. In the first experiment, we study spin transport in the return to equilibrium after a spin excitation. From the dynamics near equilibrium, we obtain spin transport coefficients over a range of temperatures and interaction strengths, and observe quantum-limited spin diffusion at unitarity. In separate experiments, we study the effect of dimensionality on the binding of pairs of fermions. We tune the system from three to two dimensions by adjusting the strength of a one-dimensional optical lattice, and measure the binding energy of fermion pairs using radio-frequency spectroscopy. In a third set of experiments, we study nonlinear excitations of a fermionic superfluid. Imprinting a phase jump on the superfluid order parameter causes a long-lived, localized density depletion that oscillates through the cloud. We measure the oscillation period and find that it corresponds to an emergent particle with an effective mass of up to several hundred times the bare mass. This excitation has been identified as a solitonic vortex that results from the decay of a planar soliton. This work was performed at the Massachusetts Institute of Technology under the supervision of Prof. Martin Zwierlein.

  4. Universality and chaoticity in ultracold K+KRb chemical reactions

    DOE PAGES

    Croft, J. F. E.; Makrides, C.; Li, M.; ...

    2017-07-19

    A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatures lower than a few tens of nanokelvin. Here we consider the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. We map out an accurate ab initio ground-state potential energy surface of the K 2Rb complex in full dimensionality and report numerically-exact quantum-mechanical reaction dynamics. The distribution of rotationally resolved rates is shown to be Poissonian. An analysismore » of the hyperspherical adiabatic potential curves explains this statistical character revealing a chaotic distribution for the short-range collision complex that plays a key role in governing the reaction outcome.« less

  5. Density functional theory versus quantum Monte Carlo simulations of Fermi gases in the optical-lattice arena★

    NASA Astrophysics Data System (ADS)

    Pilati, Sebastiano; Zintchenko, Ilia; Troyer, Matthias; Ancilotto, Francesco

    2018-04-01

    We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices (OLs) computed via density functional theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional OLs, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep OLs. We also consider a three-dimensional OL at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2018-90021-1.

  6. Quantum phases of quadrupolar Fermi gases in coupled one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Lahrz, M.; Mathey, L.

    2014-01-01

    Following the recent proposal to create quadrupolar gases [Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013), 10.1103/PhysRevLett.110.155301], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional (1D) systems, and derive the quantum phase diagram of ultracold fermionic atoms interacting via quadrupole-quadrupole interactions within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles θB,1c and θB,2c between 0 and π /2, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudospin language with regard to the two 1D systems, the system undergoes a spin-gap transition and displays a zigzag density pattern, above θB,2c and below θB,1c. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density-wave order compete with each other. The latter corresponds to a bond-order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.

  7. PENTrack - a versatile Monte Carlo tool for ultracold neutron sources and experiments

    NASA Astrophysics Data System (ADS)

    Picker, Ruediger; Chahal, Sanmeet; Christopher, Nicolas; Losekamm, Martin; Marcellin, James; Paul, Stephan; Schreyer, Wolfgang; Yapa, Pramodh

    2016-09-01

    Ultracold neutrons have energies in the hundred nano eV region. They can be stored in traps for hundreds of seconds. This makes them the ideal tool to study the neutron itself. Measurements of neutron decay correlations, lifetime or electric dipole moment are ideally suited for ultracold neutrons, as well as experiments probing the neutron's gravitational levels in the earth's field. We have developed a Monte Carlo simulation tool that can serve to design and optimize these experiments, and possibly correct results: PENTrack is a C++ based simulation code that tracks neutrons, protons and electrons or atoms, as well as their spins, in gravitational and electromagnetic fields. In addition wall interactions of neutrons due to strong interaction are modeled with a Fermi-potential formalism and take surface roughness into account. The presentation will introduce the physics behind the simulation and provide examples of its application.

  8. Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jie, Jianwen; Qi, Ran; Zhang, Peng

    2018-05-01

    We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.

  9. Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian

    2013-04-15

    We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed opticalmore » dipole trap and cooled evaporatively to quantum degeneracy.« less

  10. Vortices and antivortices in two-dimensional ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Bighin, G.; Salasnich, L.

    2017-04-01

    Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations.

  11. Vortices and antivortices in two-dimensional ultracold Fermi gases

    PubMed Central

    Bighin, G.; Salasnich, L.

    2017-01-01

    Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations. PMID:28374762

  12. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Huang, Liang-Hui; Li, Dong-Hao; Meng, Zeng-Ming; Wang, Peng-Jun; Zhang, Jing

    2018-03-01

    Not Available Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301600 and 2016YFA0301602, the National Natural Science Foundation of China under Grant Nos 11234008, 11474188 and 11704234, and the Fund for Shanxi ‘1331 Project’ Key Subjects Construction.

  13. Chemical potentials and thermodynamic characteristics of ideal Bose- and Fermi-gases in the region of quantum degeneracy

    NASA Astrophysics Data System (ADS)

    Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.

    2017-01-01

    Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.

  14. Ultracold atoms and their applications (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 28 October 2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Ultracold atoms and their applications", was held in the conference hall of the Lebedev Physical Institute, RAS, on 28 October 2015.The papers collected in this issue were written based on talks given at the session:(1) Vishnyakova G A, Golovizin A A, Kalganova E S, Tregubov D O, Khabarova K Yu (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Sorokin V N, Sukachev D D, Kolachevsky N N (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Ultracold lanthanides: from optical clock to a quantum simulator"; (2) Barmashova T V, Martiyanov K A, Makhalov V B (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod), Turlapov A V (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod) "Fermi liquid to Bose condensate crossover in a two-dimensional ultracold gas experiment"; (3) Taichenachev A V, Yudin V I, Bagayev S N (Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects"; (4) Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A (Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information". • Ultracold lanthanides: from optical clock to a quantum simulator, G A Vishnyakova, A A Golovizin, E S Kalganova, V N Sorokin, D D Sukachev, D O Tregubov, K Yu Khabarova, N N Kolachevsky Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 168-173 • Fermi liquid-to-Bose condensate crossover in a two

  15. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    PubMed

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  16. Work on the physics of ultracold atoms in Russia

    NASA Astrophysics Data System (ADS)

    Kolachevsky, N. N.; Taichenachev, A. V.

    2018-05-01

    In December 2017, the regular All-Russian Conference 'Physics of Ultracold Atoms' was held. Several tens of Russian scientists from major scientific centres of the country, as well as a number of leading foreign scientists took part in the Conference. The Conference topics covered a wide range of urgent problems: quantum metrology, quantum gases, waves of matter, spectroscopy, quantum computing, and laser cooling. This issue of Quantum Electronics publishes the papers reported at the conference and selected for the Journal by the Organising committee.

  17. Thermodynamic properties of Fermi gases in states with defined many-body spins

    NASA Astrophysics Data System (ADS)

    Yurovsky, Vladimir

    2016-05-01

    Zero-range interactions in cold spin- 1 / 2 Fermi gases can be described by single interaction strength, since collisions of atoms in the same spin state are forbidden by the Pauli principle. In a spin-independent trap potential (even in the presence of a homogeneous spin-dependent external field), the gas can persist in a state with the given many-body spin, since the spin operator commutes with the Hamiltonian. Spin and spatial degrees of freedom in such systems are separated, and the spin and spatial wavefunctions form non-Abelian irreducible representations of the symmetric group, unless the total spin is S = N / 2 for N atoms (see). Although the total wavefunction, being a linear combination of products of the spin and spatial functions, is permutation-antisymmetric, the non-Abelian permutation symmetry is disclosed in the matrix elements and, as demonstrated here, in thermodynamic properties. The effects include modification of the specific heat and compressibility of the gas.

  18. Dissipative preparation of squeezed states with ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Caballar, Roland Cristopher F.; Diehl, Sebastian; Mäkelä, Harri; Oberthaler, Markus

    2014-05-01

    We present a dissipative quantum state preparation scheme for the creation of phase- and number-squeezed states. It utilizes ultracold atoms in a double-well configuration immersed in a background BEC acting as a dissipative quantum reservoir. We derive a master equation starting from microscopic physics, and show that squeezing develops on a time scale proportional to 1 / N , where N is the number of particles in the double well. This scaling, caused by bosonic enhancement, allows us to make the time scale for the creation of squeezed states very short. Effects of the dephasing which limits the lifetime of the squeezed states can be avoided by stroboscopically switching the driving off and on. We show that this approach leads to robust stationary squeezed states. We also provide the necessary ingredients for a potential experimental implementation. NRF (No. 2012R1A1A2008028), MPS, Korea MEST, FWF (No. F4006-N16), Alfred Kordelin Foundation, Magnus Ehrnrooth Foundation, Emil Aaltonen Foundation, Academy of Finland (No. 251748).

  19. Kosterlitz-Thouless transition and vortex-antivortex lattice melting in two-dimensional Fermi gases with p - or d -wave pairing

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-12-01

    We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.

  20. Long-lived trimers in a quasi-two-dimensional Fermi system

    NASA Astrophysics Data System (ADS)

    Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper

    2018-04-01

    We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.

  1. Heat Transfer Through Dipolar Coupling: Sympathetic cooling without contact

    NASA Astrophysics Data System (ADS)

    Oktel, Mehmet; Renklioglu, Basak; Tanatar, Bilal

    We consider two parallel layers of dipolar ultracold gases at different temperatures and calculate the heat transfer through dipolar coupling. As the simplest model we consider a system in which both of the layers contain two-dimensional spin-polarized Fermi gases. The effective interactions describing the correlation effects and screening between the dipoles are obtained by the Euler-Lagrange Fermi-hypernetted-chain approximation in a single layer. We use the random-phase approximation (RPA) for the interactions across the layers. We find that heat transfer through dipolar coupling becomes efficient when the layer separation is comparable to dipolar interaction length scale. We characterize the heat transfer by calculating the time constant for temperature equilibration between the layers and find that for the typical experimental parameter regime of dipolar molecules this is on the order of milliseconds. We generalize the initial model to Boson-Boson and Fermion-Boson layers and suggest that contactless sympathetic cooling may be used for ultracold dipolar molecules. Supported by TUBITAK 1002-116F030.

  2. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  3. Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations

    NASA Astrophysics Data System (ADS)

    Yang, Li; Pu, Han

    2016-09-01

    We show that the wave function in one spatial sector x1Fermi gas with short-range p -wave interaction and that of a spin system governed by spin-parity projection operators. Applying this mapping to strongly interacting spinor gases, we obtain a generalized spin-chain model that captures both the static and dynamics properties of the system. Using this spin-chain model, we investigate the breathing-mode frequency and the quench dynamics of strongly interacting, harmonically trapped spinor gases.

  4. Potential Engineering of Fermi-Hubbard Systems using a Quantum Gas Microscope

    NASA Astrophysics Data System (ADS)

    Ji, Geoffrey; Mazurenko, Anton; Chiu, Christie; Parsons, Maxwell; Kanász-Nagy, Márton; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene; Greif, Daniel; Greiner, Markus

    2017-04-01

    Arbitrary control of optical potentials has emerged as an important tool in manipulating ultracold atomic systems, especially when combined with the single-site addressing afforded by quantum gas microscopy. Already, experiments have used digital micromirror devices (DMDs) to initialize and control ultracold atomic systems in the context of studying quantum walks, quantum thermalization, and many-body localization. Here, we report on progress in using a DMD located in the image plane of a quantum gas microscope to explore static and dynamic properties of a 2D Fermi-Hubbard system. By projecting a large, ring-shaped anti-confining potential, we demonstrate entropy redistribution and controlled doping of the system. Moreover, we use the DMD to prepare localized holes, which upon release interact with and disrupt the surrounding spin environment. These techniques pave the way for controlled investigations of dynamics in the low-temperature phases of the Hubbard model.

  5. Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider.

    PubMed

    Horvath, Milena S J; Thomas, Ryan; Tiesinga, Eite; Deb, Amita B; Kjærgaard, Niels

    2017-09-06

    Ultracold atomic gases have realized numerous paradigms of condensed matter physics, where control over interactions has crucially been afforded by tunable Feshbach resonances. So far, the characterization of these Feshbach resonances has almost exclusively relied on experiments in the threshold regime near zero energy. Here, we use a laser-based collider to probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring the overall atomic loss from colliding clouds as a function of magnetic field, we track the energy-dependent resonance position. At higher energy, our collider scheme broadens the loss feature, making the identification of the narrow resonance challenging. However, we observe that the collisions give rise to shifts in the center-of-mass positions of outgoing clouds. The shifts cross zero at the resonance and this allows us to accurately determine its location well above threshold. Our inferred resonance positions are in excellent agreement with theory.Studies on energy-dependent scattering of ultracold atoms were previously carried out near zero collision energies. Here, the authors observe a magnetic Feshbach resonance in ultracold Rb collisions for above-threshold energies and their method can also be used to detect higher partial wave resonances.

  6. Disordered Quantum Gases and Spin-Dependent Lattices

    DTIC Science & Technology

    2013-07-07

    regarding the role of disorder in many-particle quantum systems, such as superconductors and electronic solids. These issues are of great technological...REPORT Disordered Quantum Gases and Spin-Dependent Lattices 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This grant supported the first realization of...the disordered Bose-Hubbard models using ultra-cold atoms trapped in a disordered optical lattice. Several critical questions regarding this crucial

  7. Global thermodynamics of confined inhomogeneous dilute gases: A semi-classical approach

    NASA Astrophysics Data System (ADS)

    Poveda-Cuevas, F. J.; Reyes-Ayala, I.; Seman, J. A.; Romero-Rochín, V.

    2018-04-01

    In this work we present our contribution to the Latin American School of Physics "Marcos Moshinsky" 2017 on Quantum Correlations which was held in Mexico City during the summer of 2017. We review the efforts that have been done to construct a global thermodynamic description of ultracold dilute gases confined in inhomogeneous potentials. This is difficult because the presence of this non-uniform trap makes the pressure of the gas to be a spatially dependent variable and its volume an ambiguously defined quantity. In this paper we introduce new global thermodynamic variables, equivalent to pressure and volume, and propose a realistic model of the equation of state of the system. This model is based on a mean-field approach which asymptotically reaches the Thomas-Fermi limit for a weakly interacting Bose gas. We put special emphasis to the transition between the normal and superfluid phases by studying the behavior of the isothermal compressibility across the transition. We reveal how the potential modifies the critical properties of the transition by determining the critical exponents associated to the divergences not of the susceptibilities but of their derivatives.

  8. Superfluid-ferromagnet-superfluid junction and the {pi} phase in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2010-09-15

    We investigate the possibility of a superfluid-ferromagnet-superfluid (SFS) junction in a superfluid Fermi gas. To examine this possibility in a simple manner, we consider an attractive Hubbard model at T=0 within the mean-field theory. When a potential barrier is embedded in a superfluid Fermi gas with population imbalance (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms with pseudospin {sigma}= {up_arrow}, {down_arrow}), this barrier is shown to be magnetized in the sense that excess {up_arrow}-spin atoms are localized around it. The resulting superfluid Fermi gas is spatially divided into two by this ferromagnet, so that one obtains amore » junction similar to the superconductor-ferromagnet-superconductor junction discussed in superconductivity. Indeed, we show that the so-called {pi} phase, which is a typical phenomenon in the SFS junction, is realized, where the superfluid order parameter changes its sign across the junction. Our results would be useful for the study of magnetic effects on fermion superfluidity using an ultracold Fermi gas.« less

  9. Trapping ultracold gases near cryogenic materials with rapid reconfigurability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naides, Matthew A.; Turner, Richard W.; Lai, Ruby A.

    We demonstrate an atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≲100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracoldmore » gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this system, we have confined a 700-nK cloud of 8 × 10{sup 4} {sup 87}Rb atoms within 100 μm of a gold-mirrored 100-μm-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 μm away, remained at room temperature. Atoms may be imaged and retrapped every 16 s, allowing rapid data collection.« less

  10. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.

    PubMed

    Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan

    2015-05-04

    Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

  11. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    NASA Astrophysics Data System (ADS)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  12. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive SU(w) Fermi Gases

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Cong; Guan, Xi-Wen

    2017-06-01

    We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional (1D) strongly attractive Fermi gases with SU(w) symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents z = 2 and correlation length exponent ν = 1/2. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large SU(w) and non-SU(w) symmetries in one dimension. Supported by the National Natural Science Foundation of China under Grant No 11374331 and the key NSFC under Grant No 11534014. XWG has been partially supported by the Australian Research Council.

  13. Stochastic and equilibrium pictures of the ultracold Fano-Feshbach-resonance molecular conversion rate

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Tomotake; Watanabe, Shinichi; Zhang, Chen; Greene, Chris H.

    2013-05-01

    The ultracold molecular conversion rate occurring in an adiabatic ramp through a Fano-Feshbach resonance is studied and compared in two statistical models. One model, the so-called stochastic phase-space sampling (SPSS) [Hodby , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.120402 94, 120402 (2005)] evaluates the overlap of two atomic distributions in phase space by sampling atomic pairs according to a phase-space criterion. The other model, the chemical equilibrium theory (ChET) [Watabe and Nikuni, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.77.013616 77, 013616 (2008)] considers atomic and molecular distributions in the limit of the chemical and thermal equilibrium. The present study applies SPSS and ChET to a prototypical system of K+K→ K2 in all the symmetry combinations, namely Fermi-Fermi, Bose-Bose, and Bose-Fermi cases. To examine implications of the phase-space criterion for SPSS, the behavior of molecular conversion is analyzed using four distinct geometrical constraints. Our comparison of the results of SPSS with those of ChET shows that while they appear similar in most situations, the two models give rise to rather dissimilar behaviors when the presence of a Bose-Einstein condensate strongly affects the molecule formation.

  14. Superconductor-insulator transition and Fermi-Bose crossovers

    DOE PAGES

    Loh, Yen Lee; Randeria, Mohit; Trivedi, Nandini; ...

    2016-05-31

    The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-likemore » SC, with an energy gap for fermions that remains finite across the SIT. Hence, the energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insight into important questions about the SIT in solid-state systems, our model should be experimentally realizable using ultracold fermions in optical lattices.« less

  15. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  16. Modeling Strongly Correlated Fermi Systems Using Ultra-Cold Atoms

    DTIC Science & Technology

    2008-06-28

    the two-dimensional Hubbard model on a square lattice ( a model which is purported to describe the high-temperature superconducting cuprates...beams and (2) stroboscopically alternating the beams very rapidly (~100 kHz) such that the beams were never on simultaneously ( the atoms experience a ...gases relies on (1) using a large-volume, magnetic trap to compress the atomic gas to a volume that can be captured by an optical trap

  17. Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover in atomic Fermi gases

    PubMed Central

    Chen, Qijin

    2016-01-01

    BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875

  18. Observation of antiferromagnetic correlations in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Duarte, P. M.; Yang, T. L.; Liu, X.; Hulet, R. G.; Paiva, T. C. L.; Huse, D.; Scalettar, R. T.; Trivedi, N.

    2014-05-01

    The physics of high temperature superconductors is not well understood, although it is known that the undoped parent compounds of many of them are antiferromagnetic (AF) insulators. The Fermi-Hubbard model at half filling (one atom per lattice site) is known to exhibit a phase transition to an antiferromagnetic insulator at a low temperature. We realize the Fermi-Hubbard model by loading ultracold 6Li atoms into a three-dimensional red-detuned optical lattice. We have compensated the confining potential of the lattice with blue-detuned laser beams in order to evaporatively cool the atoms. We have cooled sufficiently to observe AF correlations using spin-sensitive Bragg scattering of near-resonant light. Comparison with Quantum Monte Carlo (QMC) calculations indicates that the temperature is between 2-3 TN, where short-range correlations begin to develop. Bragg scattering combined with QMC provides sensitive thermometry in a previously unexplored regime. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  19. Momentum distribution functions in ensembles: the inequivalence of microcannonical and canonical ensembles in a finite ultracold system.

    PubMed

    Wang, Pei; Xianlong, Gao; Li, Haibin

    2013-08-01

    It is demonstrated in many thermodynamic textbooks that the equivalence of the different ensembles is achieved in the thermodynamic limit. In this present work we discuss the inequivalence of microcanonical and canonical ensembles in a finite ultracold system at low energies. We calculate the microcanonical momentum distribution function (MDF) in a system of identical fermions (bosons). We find that the microcanonical MDF deviates from the canonical one, which is the Fermi-Dirac (Bose-Einstein) function, in a finite system at low energies where the single-particle density of states and its inverse are finite.

  20. Weyl Points in Three-Dimensional Optical Lattices: Synthetic Magnetic Monopoles in Momentum Space.

    PubMed

    Dubček, Tena; Kennedy, Colin J; Lu, Ling; Ketterle, Wolfgang; Soljačić, Marin; Buljan, Hrvoje

    2015-06-05

    We show that a Hamiltonian with Weyl points can be realized for ultracold atoms using laser-assisted tunneling in three-dimensional optical lattices. Weyl points are synthetic magnetic monopoles that exhibit a robust, three-dimensional linear dispersion, identical to the energy-momentum relation for relativistic Weyl fermions, which are not yet discovered in particle physics. Weyl semimetals are a promising new avenue in condensed matter physics due to their unusual properties such as the topologically protected "Fermi arc" surface states. However, experiments on Weyl points are highly elusive. We show that this elusive goal is well within experimental reach with an extension of techniques recently used in ultracold gases.

  1. Two-dimensional Fermi gas in spin-dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Anzai, Takaaki; Nishida, Yusuke

    Experimental techniques in ultracold atoms allow us to tune parameters of the system at will. In particular, synthetic magnetic fields have been created by using the atom-light coupling and, therefore, it is interesting to study what kinds of quantum phenomena appear in correlated ultracold atoms subjected to synthetic magnetic fields. In this work, we consider a two-dimensional Fermi gas with two spin states in spin-dependent magnetic fields which are assumed to be antiparallel for different spin states. By studying the ground-state phase diagram within the mean-field approximation, we find quantum spin Hall and superfluid phases separated by a second-order phase transition. We also show that there are regions where the superfluid gap parameter is proportional to the attractive coupling, which is in marked contrast to the usual exponential dependence. Moreover, we elucidate that the universality class of the phase transition belongs to that of the XY model at special points of the phase boundary, while it belongs to that of a dilute Bose gas anywhere else. International Research Center for Nanoscience and Quantum Physics, Tokyo Institute of Technology.

  2. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; ...

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  3. Ultracold molecule assembly with photonic crystals

    NASA Astrophysics Data System (ADS)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  4. Spin-orbit coupling in ultracold Fermi gases of 173Yb atoms

    NASA Astrophysics Data System (ADS)

    Song, Bo; He, Chengdong; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Cai, Geyue; Amanov, Dovran; Zhang, Shanchao; Jo, Gyu-Boong

    2017-04-01

    Synthetic spin-orbit coupling (SOC) in cold atoms opens an intriguing new way to probe nontrivial topological orders beyond natural conditions. Here, we report the realization of the SOC physics both in a bulk system and in an optical lattice. First, we demonstrate two hallmarks induced from SOC in a bulk system, spin dephasing in the Rabi oscillation and asymmetric atomic distribution in the momentum space respectively. Then we describe the observation of non-trivial spin textures and the determination of the topological phase transition in a spin-dependent optical lattice dressed by the periodic Raman field. Furthermore, we discuss the quench dynamics between topological and trivial states by suddenly changing the band topology. Our work paves a new way to study non-equilibrium topological states in a controlled manner. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants).

  5. Quantum phase slips: from condensed matter to ultracold quantum gases.

    PubMed

    D'Errico, C; Abbate, S Scaffidi; Modugno, G

    2017-12-13

    Quantum phase slips (QPS) are the primary excitations in one-dimensional superfluids and superconductors at low temperatures. They have been well characterized in most condensed-matter systems, and signatures of their existence have been recently observed in superfluids based on quantum gases too. In this review, we briefly summarize the main results obtained on the investigation of phase slips from superconductors to quantum gases. In particular, we focus our attention on recent experimental results of the dissipation in one-dimensional Bose superfluids flowing along a shallow periodic potential, which show signatures of QPS.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).

  6. Tan's contact and the phase distribution of repulsive Fermi gases: Insights from quantum chromodynamics noise analyses

    NASA Astrophysics Data System (ADS)

    Porter, William J.; Drut, Joaquín E.

    2017-05-01

    Path-integral analyses originally pioneered in the study of the complex-phase problem afflicting lattice calculations of finite-density quantum chromodynamics are generalized to nonrelativistic Fermi gases with repulsive interactions. Using arguments similar to those previously applied to relativistic theories, we show that the analogous problem in nonrelativistic systems manifests itself naturally in Tan's contact as a nontrivial cancellation between terms with varied dependence on extensive thermodynamic quantities. We analyze that case under the assumption of a Gaussian phase distribution, which is supported by our Monte Carlo calculations and perturbative considerations. We further generalize these results to observables other than the contact, as well as to polarized systems and systems with fixed particle number. Our results are quite general in that they apply to repulsive multicomponent fermions, they are independent of dimensionality or trapping potential, and they hold in the ground state as well as at finite temperature.

  7. Comparative study of BCS-BEC crossover theories above T{sub c}: The nature of the pseudogap in ultracold atomic Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, C.-C.; Guo Hao; He Yan

    2010-02-15

    This article presents a comparison of two finite-temperature BCS-Bose-Einstein condensation (BEC) crossover theories above the transition temperature: Nozieres-Schmitt-Rink (NSR) theory and finite-T extended BCS-Leggett theory. The comparison is cast in the form of numerical studies of the behavior of the fermionic spectral function both theoretically and as constrained by (primarily) radio frequency (rf) experiments. Both theories include pair fluctuations and exhibit pseudogap effects, although the nature of this pseudogap is very different. The pseudogap in finite-T extended BCS-Leggett theory is found to follow a BCS-like dispersion which, in turn, is associated with a broadened BCS-like self-energy, rather more similar tomore » what is observed in high-temperature superconductors (albeit, for a d-wave case). The fermionic quasiparticle dispersion is different in NSR theory and the damping is considerably larger. We argue that the two theories are appropriate in different temperature regimes with the BCS-Leggett approach being more suitable nearer to condensation. There should, in effect, be little difference at higher T as the pseudogap becomes weaker and where the simplifying approximations used in the BCS-Leggett approach break down. On the basis of momentum-integrated rf studies of unpolarized gases, it would be difficult to distinguish which theory is the better one. A full comparison for polarized gases is not possible since it is claimed that there are inconsistencies in the NSR approach (not found in the BCS-Leggett scheme). Future experiments along the lines of momentum-resolved experiments look to be very promising in distinguishing the two theories.« less

  8. Ultracold fermions in a one-dimensional bipartite optical lattice: Metal-insulator transitions driven by shaking

    NASA Astrophysics Data System (ADS)

    Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.

    2014-08-01

    We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.

  9. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    ERIC Educational Resources Information Center

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  10. Universal Fermi Gases in Mixed Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Tan, Shina

    2008-10-24

    We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.0351

  11. Quantum Reactive Scattering of Ultracold K+KRb Reaction: Universality and Chaotic Dynamics

    NASA Astrophysics Data System (ADS)

    Croft, J. F. E.; Makrides, C.; Li, M.; Petrov, A.; Kendrick, B. K.; Balakrishnan, N.; Kotochigova, S.

    2017-04-01

    A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatures lower than a few tens of nanoKelvin. In this talk, we discuss the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. We report numerically exact quantum-mechanical calculations of the K+KRb reaction on an accurate ab initio ground state potential energy surface of the K2Rb system and compare our results with available experimental data and predictions of universal models. The role of non-additive three-body contributions to the interaction potential is examined and is found to be small for the total reaction rates. However, the rotationally resolved rate coefficients are shown to be sensitive to the short-range interaction potential and follow a Poissonian distribution. This work was supported in part by NSF Grants PHY-1505557 (N.B.), PHY-1619788 (S.K.), ARO MURI Grant No. W911NF-12-1-0476 (N.B. & S.K.), and DOE LDRD Grant No. 20170221ER (B.K.).

  12. Non-Equilibrium Dynamics of Fermi Gases Near A Scattering Resonance

    NASA Astrophysics Data System (ADS)

    Trotzky, S.; Luciuk, C.; Smale, S.; Beattie, S.; Taylor, E.; Enss, T.; Zhang, Shizhong; Thywissen, J. H.

    2015-05-01

    We present recent dynamic measurements of fermionic potassium (40K) near Fano-Feshbach scattering resonances. In our experiments, we start with a weakly or non-interacting Fermi gas and initiate strong interactions on a timescale that is fast compared to the equilibration mechanisms in the system quasi-instantaneous quench. Equally fast measurements allow us to follow the non-equilibrium many-body dynamics. First, we discuss time-resolved radio-frequency (rf) spectroscopy, and its use to probe the evolution of the short-range part of the many-body wave function - i.e., the contact. Second, we discuss spin-echo measurements that reveal the nature of transverse spin transport. Most recently, we have studied a Fermi gas with repulsive interactions in the metastable upper branch of the energy spectrum near a s-wave scattering resonance.

  13. Non-equilibrium dynamics of artificial quantum matter

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash

    The rapid progress of the field of ultracold atoms during the past two decades has set new milestones in our control over matter. By cooling dilute atomic gases and molecules to nano-Kelvin temperatures, novel quantum mechanical states of matter can be realized and studied on a table-top experimental setup while bulk matter can be tailored to faithfully simulate abstract theoretical models. Two of such models which have witnessed significant experimental and theoretical attention are (1) the two-component Fermi gas with resonant s-wave interactions, and (2) the single-component Fermi gas with dipole-dipole interactions. This thesis is devoted to studying the non-equilibrium collective dynamics of these systems using the general framework of quantum kinetic theory. We present a concise review of the utilized mathematical methods in the first two chapters, including the Schwinger-Keldysh formalism of non-equilibrium quantum fields, two-particle irreducible (2PI) effective actions and the framework of quantum kinetic theory. We study the collective dynamics of the dipolar Fermi gas in a quasi-two-dimensional optical trap in chapter 3 and provide a detailed account of its dynamical crossover from the collisionless to the hydrodynamical regime. Chapter 4 is devoted to studying the dynamics of the attractive Fermi gas in the normal phase. Starting from the self-consistent T-matrix (pairing fluctuation) approximation, we systematically derive a set of quantum kinetic equations and show that they provide a globally valid description of the dynamics of the attractive Fermi gas, ranging from the weak-coupling Fermi liquid phase to the intermediate non-Fermi liquid pairing pseudogap regime and finally the strong-coupling Bose liquid phase. The shortcomings of the self-consistent T-matrix approximation in two spatial dimensions are discussed along with a proposal to overcome its unphysical behaviors. The developed kinetic formalism is finally utilized to reproduce and

  14. Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, J.; Weimer, H.; Lemeshko, M.

    2016-09-01

    The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a potential for explaining the mystery of high-temperature superconductivity. Recent progress in ultracold atoms in optical lattices has paved the way to studying the model’s phase diagram using the tools of quantum simulation, which emerged as a promising alternative to the numerical calculations plagued by the infamous sign problem. However, the temperatures achieved using elaborate laser cooling protocols so far have been too high to show the appearance of antiferromagnetic (AF) and superconducting quantum phases directly. In this work, we demonstrate that using the machinery of dissipative quantum state engineering, one can observe the emergence of the AF order in the Fermi-Hubbard model with fermions in optical lattices. The core of the approach is to add incoherent laser scattering in such a way that the AF state emerges as the dark state of the driven-dissipative dynamics. The proposed controlled dissipation channels described in this work are straightforward to add to already existing experimental setups.

  15. Atom chips with free-standing two-dimensional electron gases: advantages and challenges

    NASA Astrophysics Data System (ADS)

    Sinuco-León, G. A.; Krüger, P.; Fromhold, T. M.

    2018-03-01

    In this work, we consider the advantages and challenges of using free-standing two-dimensional electron gases (2DEG) as active components in atom chips for manipulating ultracold ensembles of alkali atoms. We calculate trapping parameters achievable with typical high-mobility 2DEGs in an atom chip configuration and identify advantages of this system for trapping atoms at sub-micron distances from the atom chip. We show how the sensitivity of atomic gases to magnetic field inhomogeneity can be exploited for controlling the atoms with quantum electronic devices and, conversely, using the atoms to probe the structural and transport properties of semiconductor devices.

  16. Progress towards ultracold gases in arbitrary 2D potentials

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore

    2016-05-01

    We describe our progress in building an apparatus for investigating degenerate quantum gases of potassium in arbitrary two-dimensional optical potentials. The optical potentials are created by holographic projection of an image created using a MEMS mirror array. Systems we would like to study with this experiment are quantum simulations of bosons and fermions at crystal heterojunctions and systems with well defined boundaries, including topological edge states. Funding provided by the Charles E Kaufman Foundation, a part of the Pittsburgh Foundation.

  17. Multiparticle instability in a spin-imbalanced Fermi gas

    NASA Astrophysics Data System (ADS)

    Whitehead, T. M.; Conduit, G. J.

    2018-01-01

    Weak attractive interactions in a spin-imbalanced Fermi gas induce a multiparticle instability, binding multiple fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up- and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive this result using an analytical approach, and verify it using exact diagonalization. The multiparticle instability extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity out of Cooper pairs.

  18. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    PubMed

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  19. Weyl Superfluidity in a Three-dimensional Dipolar Fermi Gas

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Yin, Lan; Liu, W. Vincent

    2015-03-01

    Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases. Work supported in part by U.S. ARO, AFOSR, DARPA-OLE-ARO, Charles E. Kaufman Foundation and The Pittsburgh Foundation, JQI-NSF-PFC, ARO-Atomtronics-MURI, and NSF of China.

  20. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    DTIC Science & Technology

    2017-01-25

    Beaumont, TX (4/16). “Studying Strongly Coupled Systems with Ultracold Plasmas," Department of Physics and Astronomy Colloquium, University of South...Alabama, Mobile, AL (11/15). “Collective Modes and Correlations in Strongly Coupled Ultracold Plasmas," Department of Physics and Astronomy

  1. Studying topology and dynamical phase transitions with ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved state tomography from which we obtain the Berry curvature and Chern number. Furthermore, we study the time-evolution of the many-body wavefunction after a sudden quench of the lattce parameters and observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at critical times. Our measurements constitute the first observation of a so called dynamical topological phase transition`, which we show to be a fruitful concept for the understanding of quantum dynamics far from equilibrium

  2. Instability of superfluid Fermi gases induced by a rotonlike density mode in optical lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunomae, Yoshihiro; Yamamoto, Daisuke; Danshita, Ippei

    2009-12-15

    We study the stability of superfluid Fermi gases in deep optical lattices in the BCS-Bose-Einstein condensation (BEC) crossover at zero temperature. Within the tight-binding attractive Hubbard model, we calculate the spectrum of the low-energy Anderson-Bogoliubov (AB) mode as well as the single-particle excitations in the presence of superfluid flow in order to determine the critical velocities. To obtain the spectrum of the AB mode, we calculate the density response function in the generalized random-phase approximation applying the Green's function formalism developed by Cote and Griffin to the Hubbard model. We find that the spectrum of the AB mode is separatedmore » from the particle-hole continuum having the characteristic rotonlike minimum at short wavelength due to the strong charge-density-wave fluctuations. The energy of the rotonlike minimum decreases with increasing the lattice velocity and it reaches zero at the critical velocity which is smaller than the pair-breaking velocity. This indicates that the superfluid state is energetically unstable due to the spontaneous emission of the short-wavelength rotonlike excitations of the AB mode instead due to pair breaking. We determine the critical velocities as functions of the interaction strength across the BCS-BEC crossover regime.« less

  3. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    NASA Astrophysics Data System (ADS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ , effective magnetic field H1, H2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν =1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry.

  4. The geometric phase controls ultracold chemistry

    DOE PAGES

    Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.

    2015-07-30

    In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + Omore » 2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.« less

  5. Particle statistics and lossy dynamics of ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Yago Malo, J.; van Nieuwenburg, E. P. L.; Fischer, M. H.; Daley, A. J.

    2018-05-01

    Experimental control over ultracold quantum gases has made it possible to investigate low-dimensional systems of both bosonic and fermionic atoms. In closed one-dimensional systems there are many similarities in the dynamics of local quantities for spinless fermions and strongly interacting "hard-core" bosons, which on a lattice can be formalized via a Jordan-Wigner transformation. In this study, we analyze the similarities and differences for spinless fermions and hard-core bosons on a lattice in the presence of particle loss. The removal of a single fermion causes differences in local quantities compared with the bosonic case because of the different particle exchange symmetry in the two cases. We identify deterministic and probabilistic signatures of these dynamics in terms of local particle density, which could be measured in ongoing experiments with quantum gas microscopes.

  6. Production, Manipulation, and Applications of Ultracold Polar Molecules

    DTIC Science & Technology

    2015-04-30

    molecules, cooling, trapping, photoassociation, feshbach resonances, quantum simulation , ultracold collisions, ultracold chemistry, optical lattices...been a multitude of less predictable outcomes: special quantum information processing schemes, uses of entanglement such a spin-squeezing for better...field seeing states to high-field-seeking states (and back) at key points in the magnetic field. The molecules spontaneously emit photons as they are

  7. Fermions in Two Dimensions: Scattering and Many-Body Properties

    DOE PAGES

    Galea, Alexander; Zielinski, Tash; Gandolfi, Stefano; ...

    2017-08-10

    Ultracold atomic Fermi gases in two dimensions (2D) are an increasingly popular topic of research. The interaction strength between spin-up and spin-down particles in two-component Fermi gases can be tuned in experiments, allowing for a strongly interacting regime where the gas properties are yet to be fully understood. We have probed this regime for 2D Fermi gases by performing T = 0 ab initio diffusion Monte Carlo calculations. The many-body dynamics are largely dependent on the two-body interactions; therefore, we start with an in-depth look at scattering theory in 2D. We show the partial-wave expansion and its relation to themore » scattering length and effective range. Then, we discuss our numerical methods for determining these scattering parameters. Here, we close out this discussion by illustrating the details of bound states in 2D. Transitioning to the many-body system, we also use variationally optimized wave functions to calculate ground-state properties of the gas over a range of interaction strengths. We show results for the energy per particle and parametrize an equation of state. We then proceed to determine the chemical potential for the strongly interacting gas.« less

  8. Fermions in Two Dimensions: Scattering and Many-Body Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galea, Alexander; Zielinski, Tash; Gandolfi, Stefano

    Ultracold atomic Fermi gases in two dimensions (2D) are an increasingly popular topic of research. The interaction strength between spin-up and spin-down particles in two-component Fermi gases can be tuned in experiments, allowing for a strongly interacting regime where the gas properties are yet to be fully understood. We have probed this regime for 2D Fermi gases by performing T = 0 ab initio diffusion Monte Carlo calculations. The many-body dynamics are largely dependent on the two-body interactions; therefore, we start with an in-depth look at scattering theory in 2D. We show the partial-wave expansion and its relation to themore » scattering length and effective range. Then, we discuss our numerical methods for determining these scattering parameters. Here, we close out this discussion by illustrating the details of bound states in 2D. Transitioning to the many-body system, we also use variationally optimized wave functions to calculate ground-state properties of the gas over a range of interaction strengths. We show results for the energy per particle and parametrize an equation of state. We then proceed to determine the chemical potential for the strongly interacting gas.« less

  9. Synthetic topological Kondo insulator in a pumped optical cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen; Zou, Xu-Bo; Guo, Guang-Can

    2018-02-01

    Motivated by experimental advances on ultracold atoms coupled to a pumped optical cavity, we propose a scheme for synthesizing and observing the Kondo insulator in Fermi gases trapped in optical lattices. The synthetic Kondo phase arises from the screening of localized atoms coupled to mobile ones, which in our proposal is generated via the pumping laser as well as the cavity. By designing the atom-cavity coupling, it can engineer a nearest-neighbor-site Kondo coupling that plays an essential role for supporting topological Kondo phase. Therefore, the cavity-induced Kondo transition is associated with a nontrivial topological features, resulting in the coexistence of the superradiant and topological Kondo state. Our proposal can be realized with current technique, and thus has potential applications in quantum simulation of the topological Kondo insulator in ultracold atoms.

  10. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  11. Momentum-resolved spectroscopy of a Fermi liquid

    PubMed Central

    Doggen, Elmer V. H.; Kinnunen, Jami J.

    2015-01-01

    We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948

  12. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    NASA Astrophysics Data System (ADS)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  13. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules.

    PubMed

    Huang, Jiayu; Liu, Shu; Zhang, Dong H; Krems, Roman V

    2018-04-06

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  14. Specific heat and effects of strong pairing fluctuations in a superfluid Fermi atom gas in the BCS-BEC crossover region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Inotani, Daisuke; Ohashi, Yoji

    2018-03-01

    We theoretically investigate the specific heat at constant volume C V in the BCS(Bardeen-Cooper-Schrieffer)-BEC(Bose-Einstein-condensation)-crossover regime of an ultracold Fermi gas, below the superfluid phase transition temperature T c. Within the strong-coupling framework developed by Nozières and Schmitt-Rink, we show that the temperature dependence of C V drastically changes as one passes through the crossover region, and is sensitive to strong fluctuations in the Cooper channel near the unitarity limit. We also compare our results to a recent experiment on a 6Li unitary Fermi gas. Since fluctuation effects are a crucial key in the BCS-BEC-crossover phenomenon, our results would be helpful in considering how the fermionic BCS superfluid changes into BEC with increasing the interaction strength, from the viewpoint of specific heat.

  15. Competition Between Pairing and Ferromagnetic Instabilities in Ultracold Fermi Gases Near Feshbach Resonances

    DTIC Science & Technology

    2010-05-13

    see the inset of Fig. 1). Thus, the two-body pairing process becomes for- bidden when the binding energy ∼ 1/ ma2 exceeds the maxi- mum energy that can...matrix in vacuum. For each value of the scattering length, the T-matrix has a line of poles on the BEC side located at ωq = Ωq+i∆q = −1/ ma2 + mq2/4

  16. Reaching Higher Gamma in Ultracold Neutral Plasmas Through Disorder-Induced Heating Control

    DTIC Science & Technology

    2016-06-27

    shielding ,” Phys. Rev. E 87, 033101 (2013) 4 Sequential ionization of ultracold plasma ions A simulation published in 2007 by Michael Murillo showed...AFRL-AFOSR-VA-TR-2017-0031 Reaching higher Gamma in ultracold neutral plasmas through disorder-induced heating control Scott Bergeson BRIGHAM YOUNG...TYPE Final Report 3. DATES COVERED (From - To) 01 June 2012 - 31 May 2016 4. TITLE AND SUBTITLE Reaching higher Gamma in ultracold neutral plasmas

  17. Plasma oscillations in spherical Gaussian shaped ultracold neutral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li

    2016-04-15

    The collective plasma oscillations are investigated in ultracold neutral plasma with a non-uniform density profile. Instead of the plane configuration widely used, we derive the plasma oscillation equations with spherically symmetric distribution and Gaussian density profile. The damping of radial oscillation is found. The Tonks–Dattner resonances of the ultracold neutral plasma with an applied RF field are also calculated.

  18. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    PubMed

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  19. Thermometry of ultracold atoms by electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Peters, Thorsten; Wittrock, Benjamin; Blatt, Frank; Halfmann, Thomas; Yatsenko, Leonid P.

    2012-06-01

    We report on systematic numerical and experimental investigations of electromagnetically induced transparency (EIT) to determine temperatures in an ultracold atomic gas. The technique relies on the strong dependence of EIT on atomic motion (i.e., Doppler shifts), when the relevant atomic transitions are driven with counterpropagating probe and control laser beams. Electromagnetically induced transparency permits thermometry with satisfactory precision over a large temperature range, which can be addressed by the appropriate choice of Rabi frequency in the control beam. In contrast to time-of-flight techniques, thermometry by EIT is fast and nondestructive, i.e., essentially it does not affect the ultracold medium. In an experimental demonstration we apply both EIT and time-of-flight measurements to determine temperatures along different symmetry axes of an anisotropic ultracold gas. As an interesting feature we find that the temperatures in the anisotropic atom cloud vary in different directions.

  20. Engineered Potentials and Dynamics of Ultracold Quantum Gases Under the Microscope

    DTIC Science & Technology

    2014-05-09

    CONTRACT OR GRANT NUMBER: DESCRIPTION OF MATERIAL INSTITUTION: PRINCIPAL INVESTIGATOR: Paola Cappellaro TYPE REPORT: Ph.D. Dissertation PERIOD...CONTRACT NUMBER Engineered potentials and dynamics of ulu·acold quantum gases W911NF-11-1-0400 under the microscope Sb. GRANT NUMBER Sc. PROGRAM...Schnorrberger, M. Moreno- Cardoner , S. Fölling, and I. Bloch, “Counting atoms using interaction blockade in an optical superlat- tice,” Phys. Rev. Lett

  1. Studying non-equilibrium many-body dynamics using one-dimensional Bose gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langen, Tim; Gring, Michael; Kuhnert, Maximilian

    2014-12-04

    Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.

  2. Superfluid Fermi atomic gas as a quantum simulator for the study of the neutron-star equation of state in the low-density region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji

    2018-01-01

    We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.

  3. JILA BEC/Ultracold Atoms Homepage

    Science.gov Websites

    JILA BEC & Ultracold Atoms Bose Einstein Condensate Eric Cornell Cornell Group Debbie Jin Jin Group Jun Ye Ye Group Dana Anderson Anderson Group What is BEC? Easy BEC Machine Nobel BEC BibTek Papers

  4. Interacting preformed Cooper pairs in resonant Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbels, K. B.; Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525 AJ Nijmegen; Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht

    2011-07-15

    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozieres-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalismmore » with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi et al. [Science 327, 442 (2010)] and Nascimbene et al. [Nature (London) 463, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, which can be tested in experiments.« less

  5. Control of Ultracold Photodissociation with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Majewska, I.; Lee, C.-H.; Kondov, S. S.; McGuyer, B. H.; Moszynski, R.; Zelevinsky, T.

    2018-01-01

    Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic reaction at ultracold temperatures allows its quantum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.

  6. Negative specific heat with trapped ultracold quantum gases

    NASA Astrophysics Data System (ADS)

    Strzys, M. P.; Anglin, J. R.

    2014-01-01

    The second law of thermodynamics normally prescribes that heat tends to disperse, but in certain cases it instead implies that heat will spontaneously concentrate. The spontaneous formation of stars out of cold cosmic nebulae, without which the universe would be dark and dead, is an example of this phenomenon. Here we show that the counter-intuitive thermodynamics of spontaneous heat concentration can be studied experimentally with trapped quantum gases, by using optical lattice potentials to realize weakly coupled arrays of simple dynamical subsystems, so that under the standard assumptions of statistical mechanics, the behavior of the whole system can be predicted from ensemble properties of the isolated components. A naive application of the standard statistical mechanical formalism then identifies the subsystem excitations as heat in this case, but predicts them to share the peculiar property of self-gravitating protostars, of having negative micro-canonical specific heat. Numerical solution of real-time evolution equations confirms the spontaneous concentration of heat in such arrays, with initially dispersed energy condensing quickly into dense ‘droplets’. Analysis of the nonlinear dynamics in adiabatic terms allows it to be related to familiar modulational instabilities. The model thus provides an example of a dictionary mesoscopic system, in which the same non-trivial phenomenon can be understood in both thermodynamical and mechanical terms.

  7. Exploring the Kibble-Zurek mechanism with homogeneous Bose gases

    NASA Astrophysics Data System (ADS)

    Beugnon, Jérôme; Navon, Nir

    2017-01-01

    Out-of-equilibrium phenomena are a subject of considerable interest in many fields of physics. Ultracold quantum gases, which are extremely clean, well-isolated and highly controllable systems, offer ideal platforms to investigate this topic. The recent progress in tailoring trapping potentials now allows the experimental production of homogeneous samples in custom geometries, which is a key advance for studies of the emergence of coherence in interacting quantum systems. Here we review recent experiments in which temperature quenches have been performed across the Bose-Einstein condensation phase transition in an annular geometry and in homogeneous 3D and quasi-2D gases. Combined, these experiments comprehensively explore and validate the Kibble-Zurek (KZ) scenario through complementary measurements of correlation functions and density of topological defects. They allow the measurement of KZ scaling laws, the direct confirmation of the ‘freeze-out’ hypothesis that underlies the KZ theory, and the extraction of critical exponents of the Bose-Einstein condensation transition.

  8. Second sound and the density response function in uniform superfluid atomic gases

    NASA Astrophysics Data System (ADS)

    Hu, H.; Taylor, E.; Liu, X.-J.; Stringari, S.; Griffin, A.

    2010-04-01

    Recently, there has been renewed interest in second sound in superfluid Bose and Fermi gases. By using two-fluid hydrodynamic theory, we review the density response χnn(q, ω) of these systems as a tool to identify second sound in experiments based on density probes. Our work generalizes the well-known studies of the dynamic structure factor S(q, ω) in superfluid 4He in the critical region. We show that, in the unitary limit of uniform superfluid Fermi gases, the relative weight of second versus first sound in the compressibility sum rule is given by the Landau-Placzek ratio \\epsilon_{\\mathrm{LP}}\\equiv (\\bar{c}_p-\\bar{c}_v)/\\bar{c}_v for all temperatures below Tc. In contrast to superfluid 4He, epsilonLP is much larger in strongly interacting Fermi gases, being already of order unity for T~0.8Tc, thereby providing promising opportunities to excite second sound with density probes. The relative weights of first and second sound are quite different in S(q, ω) (measured in pulse propagation studies) as compared with Imχnn(q, ω) (measured in two-photon Bragg scattering). We show that first and second sound in S(q, ω) in a strongly interacting Bose-condensed gas are similar to those in a Fermi gas at unitarity. However, in a weakly interacting Bose gas, first and second sound are mainly uncoupled oscillations of the thermal cloud and condensate, respectively, and second sound has most of the spectral weight in S(q, ω). We also discuss the behaviour of the superfluid and normal fluid velocity fields involved in first and second sound.

  9. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    PubMed

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  10. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  11. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.

    PubMed

    Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim

    2014-02-10

    We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.

  12. Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules

    DTIC Science & Technology

    2017-02-07

    AFRL-AFOSR-VA-TR-2017-0035 Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules Wesley Campbell UNIVERSITY OF CALIFORNIA...REPORT TYPE Final 3. DATES COVERED (From - To) April 2013 - June 2016 4. TITLE AND SUBTITLE Mode-Locked Deceleration of Molecular Beams: Physics with...of Molecular Beams: Physics with Ultracold Molecules" P.I. Wesley C. Campbell Report Period: April 1, 2013- March 30, 2016 As a direct result of

  13. The charge imbalance in ultracold plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li

    2016-09-15

    Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperaturemore » are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.« less

  14. Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices

    NASA Astrophysics Data System (ADS)

    Huang, Beibing

    2018-01-01

    In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.

  15. Analytical Wave Functions for Ultracold Collisions.

    NASA Astrophysics Data System (ADS)

    Cavagnero, M. J.

    1998-05-01

    Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.

  16. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling

    PubMed Central

    Hou, Yan-Hua; Yu, Zhenhua

    2015-01-01

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations. PMID:26483090

  17. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    PubMed

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  18. Testing Lorentz and C P T invariance with ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Escobar, C. A.

    2018-05-01

    In this paper we investigate, within the standard model extension framework, the influence of Lorentz- and C P T -violating terms on gravitational quantum states of ultracold neutrons. Using a semiclassical wave packet, we derive the effective nonrelativistic Hamiltonian which describes the neutrons vertical motion by averaging the contributions from the perpendicular coordinates to the free falling axis. We compute the physical implications of the Lorentz- and C P T -violating terms on the spectra. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the symmetries-violation cμν n coefficients. We find that ultracold neutrons are sensitive to the ain and ein coefficients, which thus far are unbounded by experiments in the neutron sector. We propose two additional problems involving ultracold neutrons which could be relevant for improving our current bounds; namely, gravity-resonance spectroscopy and neutron whispering gallery wave.

  19. Artificial Gauge Fields for Ultracold Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Jimenez-Garcia, Karina

    2013-05-01

    Ultracold atoms are a versatile probe for physics at the core of the most intriguing and fascinating systems in the quantum world. Due to the high degree of experimental control offered by such systems, effective Hamiltonians can be designed and experimentally implemented on them. This unique feature makes ultracold atom systems ideal for quantum simulation of complex phenomena as important as high-temperature superconductivity, and recently of novel artificial gauge fields. Suitably designed artificial gauge fields allow neutral particles to experience synthetic- electric or magnetic fields; furthermore, their generalization to matrix valued gauge fields leads to spin-orbit coupling featuring unprecedented control in contrast to ordinary condensed matter systems, thus allowing the characterization of the underlying mechanism of phenomena such as the spin Hall effect and topological insulators. In this talk, I will present an overview of our experiments on quantum simulation with ultracold atom systems by focusing on the realization of light induced artificial gauge fields. We illuminate our Bose-Einstein condensates with a pair of far detuned ``Raman'' lasers, thus creating dressed states that are spin and momentum superpositions. We adiabatically load the atoms into the lowest energy dressed state, where they acquire an experimentally-tunable effective dispersion relation, i.e. we introduce gauge terms into the Hamiltonian. We control such light-induced gauge terms via the strength of the Raman coupling and the detuning from Raman resonance. Our experimental techniques for ultracold bosons have surpassed the apparent limitations imposed by their neutral charge, bosonic nature, and ultra-low energy and have allowed the observation of these new and exciting phenomena. Future work might allow the realization of the bosonic quantum Hall effect, of topological insulators and of systems supporting Majorana fermions using cold atoms. This work was partially supported by

  20. Dipolar collisions of ultracold 23Na87Rb molecules.

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; González-Martínez, Maykel; Dulieu, Olivier; Wang, Dajun

    2017-04-01

    Although ultracold polar molecules have long been proposed as a primary candidate for investigating dipolar many body physics, many of their basic properties, like their collisions in external electric fields, are still largely unknown. In fact, despite the successful production of several new ultracold molecular species in the last two years, so far the only available dipolar collision data is still from JILA's fermionic 40K87Rb experiment in 2010. In this talk, we will describe our investigation on dipolar collisions of ultracold bosonic and chemically stable 23Na87Rb molecules which possess a large permanent electric dipole moment. With a moderate electric field, an effective dipole moment large enough to strongly couple higher partial waves into the collisions can be achieved. We will report the influence of this effect on the molecular collisions observed in our experiment. Our theoretical model for understanding these observations will also be presented. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  1. Computational Modeling of Low-Density Ultracold Plasmas

    NASA Astrophysics Data System (ADS)

    Witte, Craig

    In this dissertation I describe a number of different computational investigations which I have undertaken during my time at Colorado State University. Perhaps the most significant of my accomplishments was the development of a general molecular dynamic model that simulates a wide variety of physical phenomena in ultracold plasmas (UCPs). This model formed the basis of most of the numerical investigations discussed in this thesis. The model utilized the massively parallel architecture of GPUs to achieve significant computing speed increases (up to 2 orders of magnitude) above traditional single core computing. This increased computing power allowed for each particle in an actual UCP experimental system to be explicitly modeled in simulations. By using this model, I was able to undertake a number of theoretical investigations into ultracold plasma systems. Chief among these was our lab's investigation of electron center-of-mass damping, in which the molecular dynamics model was an essential tool in interpreting the results of the experiment. Originally, it was assumed that this damping would solely be a function of electron-ion collisions. However, the model was able to identify an additional collisionless damping mechanism that was determined to be significant in the first iteration of our experiment. To mitigate this collisionless damping, the model was used to find a new parameter range where this mechanism was negligible. In this new parameter range, the model was an integral part in verifying the achievement of a record low measured UCP electron temperature of 1.57 +/- 0.28K and a record high electron strong coupling parameter, Gamma, of 0.35 +/-0.08$. Additionally, the model, along with experimental measurements, was used to verify the breakdown of the standard weak coupling approximation for Coulomb collisions. The general molecular dynamics model was also used in other contexts. These included the modeling of both the formation process of ultracold plasmas

  2. Perron-Frobenius theorem on the superfluid transition of an ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Sakumichi, Naoyuki; Kawakami, Norio; Ueda, Masahito

    2014-05-01

    The Perron-Frobenius theorem is applied to identify the superfluid transition of the BCS-BEC crossover based on a cluster expansion method of Lee and Yang. Here, the cluster expansion is a systematic expansion of the equation of state (EOS) in terms of the fugacity z = exp (βμ) as βpλ3 = 2 z +b2z2 +b3z3 + ⋯ , with inverse temperature β =(kB T) - 1 , chemical potential μ, pressure p, and thermal de Broglie length λ =(2 πℏβ / m) 1 / 2 . According to the method of Lee and Yang, EOS is expressed by the Lee-Yang graphs. A singularity of an infinite series of ladder-type Lee-Yang graphs is analyzed. We point out that the singularity is governed by the Perron-Frobenius eigenvalue of a certain primitive matrix which is defined in terms of the two-body cluster functions and the Fermi distribution functions. As a consequence, it is found that there exists a unique fugacity at the phase transition point, which implies that there is no fragmentation of Bose-Einstein condensates of dimers and Cooper pairs at the ladder-approximation level of Lee-Yang graphs. An application to a BEC of strongly bounded dimers is also made.

  3. Strongly interacting Sarma superfluid near orbital Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Zou, Peng; He, Lianyi; Liu, Xia-Ji; Hu, Hui

    2018-04-01

    We investigate the nature of superfluid pairing in a strongly interacting Fermi gas near orbital Feshbach resonances with spin-population imbalance in three dimensions, which can be well described by a two-band or two-channel model. We show that a Sarma superfluid with gapless single-particle excitations is favored in the closed channel at large imbalance. It is thermodynamically stable against the formation of an inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov superfluid and features a well-defined Goldstone-Anderson-Bogoliubov phonon mode and a massive Leggett mode as collective excitations at low momentum. At large momentum, the Leggett mode disappears and the phonon mode becomes damped at zero temperature, due to the coupling to the particle-hole excitations. We discuss possible experimental observation of a strongly interacting Sarma superfluid with ultracold alkaline-earth-metal Fermi gases.

  4. Ultracold atoms in an optical lattice one millimeter from air

    NASA Astrophysics Data System (ADS)

    Jervis, Dylan; Edge, Graham; Trotzky, Stefan; McKay, David; Thywissen, Joseph

    2013-05-01

    Over the past decade, ultracold atoms in optical lattices have shown to be versatile systems able to realize canonical Hamiltonians of condensed matter. High-resolution in-situ imaging of ultracold clouds has furthermore enabled thermometry, equation of state measurements, direct measurement of fluctuations, and unprecedented control. We report on microscopy of ultracold bosons and fermions in a novel configuration where the atoms are harmonically trapped 800 microns away from a 200 micron-thick vacuum window. This window also serves as a retro-reflecting mirror for an optical lattice, into which the atoms can be loaded. Two additional transverse standing waves complete the three-dimensional lattice setup. In free space, we have shown that laser cooling with 405 nm light, on the open 4S1/2-5P3/2 transition, allows for temperatures below the Doppler temperature of the 4S1/2-4P3/2 cycling transition at 767 nm. Microscopy with 405 nm light furthermore reduces the diffraction limit of in-situ imaging.

  5. Ultracold Molecules in Optical Lattices: Efficient Production and Application to Molecular Clocks

    DTIC Science & Technology

    2015-05-03

    near the intercombination- line threshold were measured for a variety of states, and explained by considering nonadiabatic effects ( Coriolis coupling) in...Moszynski, T. Zelevinsky. Nonadiabatic Effects in Ultracold Molecules via Anomalous Linear and Quadratic Zeeman Shifts, Physical Review Letters, (12...M. McDonald, G. Reinaudi, W. Skomorowski, R. Moszynski, T. Zelevinsky. Measurement of Nonadiabatic Effects in Ultracold Molecules via Anomalous

  6. Thermodynamics of an Attractive 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  7. Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV

    DTIC Science & Technology

    2015-11-20

    AFRL-AFOSR-VA-TR-2015-0388 COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV R Jason Jones ARIZONA UNIV BOARD OF REGENTS TUCSON Final...TITLE AND SUBTITLE COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0563 5c. PROGRAM...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Narrow UV transitions in atomic Hg can be utilized

  8. Chemical potential, Gibbs-Duhem equation and quantum gases

    NASA Astrophysics Data System (ADS)

    Lee, M. Howard

    2017-05-01

    Thermodynamic relations like the Gibbs-Duhem are valid from the lowest to the highest temperatures. But they cannot by themselves provide any specific temperature behavior of thermodynamic functions like the chemical potential. In this work, we show that if some general conditions are attached to the Gibbs-Duhem equation, it is possible to obtain the low temperature form of the chemical potential for the ideal Fermi and Bose gases very directly.

  9. Importance of geometric phase effects in ultracold chemistry

    DOE PAGES

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2015-08-28

    Here, it is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. The effect arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. It is magnified when the two scattering amplitudes have comparable magnitude and they scatter into the same angular region which occurs in the isotropic scatteringmore » characteristic of the ultracold regime (s-wave scattering). Results are presented for the O + OH → H + O 2 reaction for total angular momentum quantum number J = 0–5. Large geometric phase effects occur for collision energies below 0.1 K, but the effect vanishes at higher energies when contributions from different partial waves are included. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. In this case, the geometric phase plays the role of a “quantum switch” which can turn the reaction “on” or “off”.« less

  10. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime

    NASA Astrophysics Data System (ADS)

    Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.

    2018-04-01

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  11. Symmetry and the geometric phase in ultracold hydrogen-exchange reactions

    NASA Astrophysics Data System (ADS)

    Croft, J. F. E.; Hazra, J.; Balakrishnan, N.; Kendrick, B. K.

    2017-08-01

    Quantum reactive scattering calculations are reported for the ultracold hydrogen-exchange reaction and its non-reactive atom-exchange isotopic counterparts, proceeding from excited rotational states. It is shown that while the geometric phase (GP) does not necessarily control the reaction to all final states, one can always find final states where it does. For the isotopic counterpart reactions, these states can be used to make a measurement of the GP effect by separately measuring the even and odd symmetry contributions, which experimentally requires nuclear-spin final-state resolution. This follows from symmetry considerations that make the even and odd identical-particle exchange symmetry wavefunctions which include the GP locally equivalent to the opposite symmetry wavefunctions which do not. It is shown how this equivalence can be used to define a constant which quantifies the GP effect and can be obtained solely from experimentally observable rates. This equivalence reflects the important role that discrete symmetries play in ultracold chemistry and highlights the key role that ultracold reactions can play in understanding fundamental aspects of chemical reactivity more generally.

  12. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    PubMed

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  13. Universal Fermi Gas with Two- and Three-Body Resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Son, Dam Thanh; Tan, Shina

    2008-03-07

    We consider a Fermi gas with two components of different masses, with the s-wave two-body interaction tuned to unitarity. In the range of mass ratio 8.62Fermi gases with and without three-body resonance when the mass ratio is close to the critical values of 8.62 and 13.6.« less

  14. Ultra-Cold Atoms on Optical Lattices

    ERIC Educational Resources Information Center

    Ghosh, Parag

    2009-01-01

    The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…

  15. Manufacturing a thin wire electrostatic trap for ultracold polar molecules.

    PubMed

    Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P

    2007-11-01

    We present a detailed description on how to build a thin wire electrostatic trap (TWIST) for ultracold polar molecules. It is the first design of an electrostatic trap that can be superimposed directly onto a magneto-optical trap (MOT). We can thus continuously produce ultracold polar molecules via photoassociation from a two species MOT and instantaneously trap them in the TWIST without the need for complex transfer schemes. Despite the spatial overlap of the TWIST and the MOT, the two traps can be operated and optimized completely independently due to the complementary nature of the utilized trapping mechanisms.

  16. Preparation of Ultracold Atom Clouds at the Shot Noise Level.

    PubMed

    Gajdacz, M; Hilliard, A J; Kristensen, M A; Pedersen, P L; Klempt, C; Arlt, J J; Sherson, J F

    2016-08-12

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔNultracold clouds can be prepared below the shot noise level.

  17. Polarized Fermi Condensates with Unequal Masses: Tuning the Tricritical Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, M. M.; Marchetti, F. M.; Simons, B. D.

    We consider a two-component atomic Fermi gas within a mean-field, single-channel model, where both the mass and population of each component are unequal. We show that the tricritical point at zero temperature evolves smoothly from the BEC to BCS side of the resonance as a function of mass ratio r. We find that the interior gap state proposed by Liu and Wilczek is always unstable to phase separation, while the breached pair state with one Fermi surface for the excess fermions exhibits differences in its density of states and pair correlation functions depending on which side of the resonance itmore » lies. Finally, we show that, when r > or appro. 3.95, the finite-temperature phase diagram of trapped gases at unitarity becomes topologically distinct from the equal mass system.« less

  18. Characterizing Feshbach resonances in ultracold scattering calculations

    NASA Astrophysics Data System (ADS)

    Frye, Matthew D.; Hutson, Jeremy M.

    2017-10-01

    We describe procedures for converging on and characterizing zero-energy Feshbach resonances that appear in scattering lengths for ultracold atomic and molecular collisions as a function of an external field. The elastic procedure is appropriate for purely elastic scattering, where the scattering length is real and displays a true pole. The regularized scattering length procedure is appropriate when there is weak background inelasticity, so that the scattering length is complex and displays an oscillation rather than a pole, but the resonant scattering length ares is close to real. The fully complex procedure is appropriate when there is substantial background inelasticity and the real and imaginary parts of ares are required. We demonstrate these procedures for scattering of ultracold 85Rb in various initial states. All of them can converge on and provide full characterization of resonances, from initial guesses many thousands of widths away, using scattering calculations at only about ten values of the external field.

  19. EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Vassen, W.; Hemmerich, A.; Arimondo, E.

    2003-04-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by

  20. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  1. Probing the critical exponent of the superfluid fraction in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Liu, Xia-Ji

    2013-11-01

    We theoretically investigate the critical behavior of a second-sound mode in a harmonically trapped ultracold atomic Fermi gas with resonant interactions. Near the superfluid phase transition with critical temperature Tc, the frequency or the sound velocity of the second-sound mode crucially depends on the critical exponent β of the superfluid fraction. In an isotropic harmonic trap, we predict that the mode frequency diverges like (1-T/Tc)β-1/2 when β<1/2. In a highly elongated trap, the speed of the second sound reduces by a factor of 1/2β+1 from that in a homogeneous three-dimensional superfluid. Our prediction could readily be tested by measurements of second-sound wave propagation in a setup, such as that exploited by Sidorenkov [Nature (London)NATUAS0028-083610.1038/nature12136 498, 78 (2013)] for resonantly interacting lithium-6 atoms, once the experimental precision is improved.

  2. Trapping of ultracold polar molecules with a thin-wire electrostatic trap.

    PubMed

    Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P

    2007-10-05

    We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.

  3. Determination of the axial-vector weak coupling constant with ultracold neutrons.

    PubMed

    Liu, J; Mendenhall, M P; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; García, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C-Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Pérez Galván, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S J; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R

    2010-10-29

    A precise measurement of the neutron decay β asymmetry A₀ has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A₀ = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.

  4. High-resolution internal state control of ultracold 23Na87Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; Wang, Dajun

    2018-02-01

    We report the full internal state control of ultracold 23Na87Rb molecules, including vibrational, rotational, and hyperfine degrees of freedom. Starting from a sample of weakly bound Feshbach molecules, we realize the creation of molecules in single hyperfine levels of both the rovibrational ground and excited states with a high-efficiency and high-resolution stimulated Raman adiabatic passage. This capability brings broad possibilities for investigating ultracold polar molecules with different chemical reactivities and interactions with a single molecular species. Moreover, starting from the rovibrational and hyperfine ground state, we achieve rotational and hyperfine control with one- and two-photon microwave spectroscopy to reach levels not accessible by the stimulated Raman transfer. The combination of these two techniques results in complete control over the internal state of ultracold polar molecules, which paves the way to study state-dependent molecular collisions and state-controlled chemical reactions.

  5. Ultracold neutral plasmas

    NASA Astrophysics Data System (ADS)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  6. Ultracold Neutron Sources

    NASA Astrophysics Data System (ADS)

    Martin, Jeffery

    2016-09-01

    The free neutron is an excellent laboratory for searches for physics beyond the standard model. Ultracold neutrons (UCN) are free neutrons that can be confined to material, magnetic, and gravitational traps. UCN are compelling for experiments requiring long observation times, high polarization, or low energies. The challenge of experiments has been to create enough UCN to reach the statistical precision required. Production techniques involving neutron interactions with condensed matter systems have resulted in some successes, and new UCN sources are being pursued worldwide to exploit higher UCN densities offered by these techniques. I will review the physics of how the UCN sources work, along with the present status of the world's efforts. research supported by NSERC, CFI, and CRC.

  7. Geometric phase effects in ultracold chemistry

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.

    2016-05-01

    In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  8. Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    DTIC Science & Technology

    2016-06-06

    Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular

  9. Research of fundamental interactions with use of ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2017-01-01

    Use of ultracold neutrons (UCN) gives unique opportunities of a research of fundamental interactions in physics of elementary particles. Search of the electric dipole moment of a neutron (EDM) aims to test models of CP violation. Precise measurement of neutron lifetime is extremely important for cosmology and astrophysics. Considerable progress in these questions can be reached due to supersource of ultracold neutrons on the basis of superfluid helium which is under construction now in PNPI NRC KI. This source will allow us to increase density of ultracold neutrons approximately by 100 times in respect to the best UCN source at high flux reactor of Institute Laue-Langevin (Grenoble, France). Now the project and basic elements of the source are prepared, full-scale model of the source is tested, the scientific program is developed. Increase in accuracy of neutron EDM measurements by order of magnitude, down to level 10-27 -10-28 e cm is planned. It is highly important for physics of elementary particles. Accuracy of measurement of neutron lifetime can be increased by order of magnitude also. At last, at achievement of UCN density ˜ 103 - 104 cm-3, the experiment search for a neutron-antineutron oscillations using UCN will be possible. The present status of the project and its scientific program will be discussed.

  10. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    NASA Astrophysics Data System (ADS)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS On control of kinematic parameters of ultracold neutrons in waveguides

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2010-10-01

    The possibility of controlling the kinematic parameters of ultracold neutrons (UCNs) is analysed by the example of a waveguide transfer and transformation of 2D images in ultracold neutrons and by the example of an increase in the concentration and deceleration/acceleration of ultracold neutrons during their transport in the waveguide with a variable cross section. The critical parameters of the problem are estimated, which indicates both consistency of the proposed approach and the emerging experimental limitations.

  12. Visualizing the BEC-BCS crossover in a two-dimensional Fermi gas: Pairing gaps and dynamical response functions from ab initio computations

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Experiments with ultracold atoms provide a highly controllable laboratory setting with many unique opportunities for precision exploration of quantum many-body phenomena. The nature of such systems, with strong interaction and quantum entanglement, makes reliable theoretical calculations challenging. Especially difficult are excitation and dynamical properties, which are often the most directly relevant to experiment. We carry out exact numerical calculations, by Monte Carlo sampling of imaginary-time propagation of Slater determinants, to compute the pairing gap in the two-dimensional Fermi gas from first principles. Applying state-of-the-art analytic continuation techniques, we obtain the spectral function and the density and spin structure factors providing unique tools to visualize the BEC-BCS crossover. These quantities will allow for a direct comparison with experiments.

  13. Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.

    PubMed

    Doçaj, Andris; Wall, Michael L; Mukherjee, Rick; Hazzard, Kaden R A

    2016-04-01

    We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas.

  14. Tunneling and traversal of ultracold three-level atoms through vacuum-induced potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Shahid

    2011-09-15

    The passage of ultracold three-level atoms through the potential induced by the vacuum cavity mode is discussed using cascade atomic configuration. We study the tunneling or traversal time of the ultracold atoms via a bimodal high-Q cavity. It is found that the phase time, which may be considered as a measure for the time required to traverse the cavity, exhibits superclassical and subclassical behaviors. Further, the dark states and interference effects in cascade atomic configuration may influence the passage time of the atom through the cavity.

  15. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivity

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Guo, Mingyang; He, Junyu; Wang, Dajun; Quemener, Goulven; Gonzalez-Martinez, Maykel; Dulieu, Oliver

    2017-04-01

    The recent successful creation of several ultracold absolute ground-state polar molecules without chemical reaction channel has opened a new playground for investigating the so far poorly understood collisions between them. On one hand, these collisions are indispensable for the exploration of dipolar physics, on the other hand, they are direct manifestations of the brand-new field of ultracold chemistry. Here, we report on the study on molecular collisions with ultracold ground-state 23Na87Rb molecules prepared by transferring weakly bound Feshbach molecules with STIRAP. By tuning the Raman laser wavelength to control the internal states, samples with distinctly different chemical reactivity and inelastic channels can be prepared. Surprisingly, we found that the trap loss of the non-reactive case is nearly identical to that of the reactive case. We also developed a model based on the collision complex formation mechanism. The comparison between experiment and theory will also be presented. This work was supported by the French ANR/Hong Kong RGC COPOMOL project (Grant No. A-CUHK403/13), the RGC General Research Fund (Grant No. CUHK14301815).

  16. 12th US-Japan Seminar: Many Body Quantum Systems from Quantum Gases to Metrology and Information Processing. Held in Madison, Wisconsin on 20-24 September 2015

    DTIC Science & Technology

    2016-06-03

    Ultracold Atoms 5:10 Zelevinsky Ye Inouye High-precision spectroscopy with two-body quantum systems Low entropy quantum gas of polar molecules New limit...12th US-Japan Seminar: Many Body Quantum Systems from Quantum Gases to Metrology and Information Processing Support was provided for The 12th US...Japan Seminar on many body quantum systems which was held in Madison, Wisconsin from September 20 to 24, 2015 at the Monona Terrace Convention Center

  17. Electric manipulation of ultracold polar ^40K^87Rb molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John

    2009-05-01

    Ultracold fermionic polar molecules of ^40K^87Rb in their absolute rovibronic ground state (v=0,n=0,^1σ) have been created recently [1] in a magnetic trap and open new perspectives to create fermionic degenerate gases of polar molecules. To achieve this goal, it is very important to understand the collisional properties of such molecules under magnetic and electric fields. In our presentation, we investigate ground state fermionic ^40K^87Rb + ^40K^87Rb collisions in the presence of a magnetic field and explore the possibility to control these collisions when an electric field is applied. We will explore the main physical processes that can lead to such manipulation. This problem is complicated by the Zeeman and Stark splitting of all levels of the polar molecules and by the possibility of forming ^40K2 + ^87Rb2 chemical products. 1 - K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008).

  18. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    PubMed Central

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  19. Observation of scale invariance and conformal symmetry breaking in expanding Fermi gases

    NASA Astrophysics Data System (ADS)

    Elliott, Ethan; Joseph, James; Thomas, John

    2014-05-01

    We precisely test scale invariance and examine local thermal equilibrium in the hydrodynamic expansion of a Fermi gas of atoms as a function of interaction strength. After release from an anisotropic optical trap, we observe that a resonantly interacting gas obeys scale-invariant hydrodynamics, where the mean square cloud size = expands ballistically (like a noninteracting gas) and the energy-averaged bulk viscosity is consistent with zero, 0 . 00 (0 . 04) ℏ n , with n the density. In contrast, the aspect ratios of the cloud exhibit anisotropic ``elliptic'' flow with an energy-dependent shear viscosity. Tuning away from resonance, we observe conformal symmetry breaking, where deviates from ballistic flow. NSF, DOE, ARO, AFO.

  20. The fermi paradox is neither Fermi's nor a paradox.

    PubMed

    Gray, Robert H

    2015-03-01

    The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox.

  1. {pi} junction and spontaneous current state in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2011-07-15

    We discuss an idea to realize a spontaneous current in a superfluid Fermi gas. When a polarized Fermi superfluid (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms in the hyperfine state described by pseudospin {sigma}={up_arrow},{down_arrow}) is loaded onto a ring-shaped trap with a weak potential barrier, some excess atoms ({Delta}N=N{sub {up_arrow}}-N{sub {down_arrow}}) are localized around the barrier. As shown in our previous paper [T. Kashimura, S. Tsuchiya, and Y. Ohashi, Phys. Rev. A 82, 033617 (2010)], this polarized potential barrier works as a {pi} junction in the sense that the superfluid order parameter changes its sign acrossmore » the barrier. Because of this, the phase of the superfluid order parameter outside the junction is shown to be twisted by {pi} along the ring, which naturally leads to a circulating supercurrent. While the ordinary supercurrent state is obtained as a metastable state, this spontaneous current state is shown to be more stable than the case with no current. Our results indicate that localized excess atoms would be useful for the manipulation of the superfluid order parameter in cold Fermi gases.« less

  2. VizieR Online Data Catalog: Fermi/non-Fermi blazars jet power and accretion (Chen+, 2015)

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Zhang, X.; Zhang, H. J.; Yu, X. L.

    2017-11-01

    We selected the sample using radio catalogues to get the widest possible sample of blazars based on their radio properties. We split them into Fermi-detected sources and non-Fermi detections. Massaro et al. (2009, J/A+A/495/691) created the "Multifrequency Catalogue of Blazars" (Roma-BZCAT), which classifies blazars into three main groups based on their spectral properties. In total, we have a sample containing 177 clean Fermi blazars (96 Fermi FSRQs and 81 Fermi BL Lacs) and 133 non-Fermi blazars (105 non-Fermi FSRQs and 28 non-Fermi BL Lacs). (2 data files).

  3. Momentum-resolved radio-frequency spectroscopy of a spin-orbit-coupled atomic Fermi gas near a Feshbach resonance in harmonic traps

    NASA Astrophysics Data System (ADS)

    Peng, Shi-Guo; Liu, Xia-Ji; Hu, Hui; Jiang, Kaijun

    2012-12-01

    We theoretically investigate the momentum-resolved radio-frequency spectroscopy of a harmonically trapped atomic Fermi gas near a Feshbach resonance in the presence of equal Rashba and Dresselhaus spin-orbit coupling. The system is qualitatively modeled as an ideal gas mixture of atoms and molecules, in which the properties of molecules, such as the wave function, binding energy, and effective mass, are determined from the two-particle solution of two interacting atoms. We calculate separately the radio-frequency response from atoms and molecules at finite temperatures by using the standard Fermi golden rule and take into account the effect of harmonic traps within local density approximation. The total radio-frequency spectroscopy is discussed as functions of temperature and spin-orbit coupling strength. Our results give a qualitative picture of radio-frequency spectroscopy of a resonantly interacting spin-orbit-coupled Fermi gas and can be directly tested in atomic Fermi gases of 40K atoms at Shanxi University and 6Li atoms at the Massachusetts Institute of Technology.

  4. Coherent Multiple Light Scattering in Ultracold Atomic Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2003-05-01

    Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.

  5. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements

    NASA Astrophysics Data System (ADS)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  6. Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse.

    PubMed

    Collins, T A; Malinovskaya, S A

    2012-06-15

    At ultracold temperatures, atoms are free from thermal motion, which makes them ideal objects of investigations aiming to advance high-precision spectroscopy, metrology, quantum computation, producing Bose condensates, etc. The quantum state of ultracold atoms may be created and manipulated by making use of quantum control methods employing low-intensity pulses. We theoretically investigate population dynamics of ultracold Rb vapor induced by nanosecond linearly chirped pulses having kW/cm2 beam intensity and show a possibility of controllable population transfer between hyperfine (HpF) levels of 5(2)/S(1/2) state through Raman transitions. Satisfying the one-photon resonance condition with the lowest of the HpF states of 5(2)/P(1/2) or 5(2)/P(3/2) state allows us to enter the adiabatic region of population transfer at very low field intensities, such that corresponding Rabi frequencies are less than or equal to the HpF splitting. This methodology provides a robust way to create a specifically designed superposition state in Rb in the basis of HpF levels and perform state manipulation controllable on the picosecond-to-nanosecond time scale.

  7. Simulations Of Laser Cooling In An Ultracold Neutral Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; Strickler, Trevor; Pohl, Thomas; Vrinceanu, Daniel; Killian, Thomas

    2016-05-01

    Ultracold neutral plasmas (UNPs) generated by photoionization of laser-cooled, magneto-optically trapped neutral gases, are useful systems for studying strongly coupled plasmas. Coupling is parameterized by Γi, the ratio of the average nearest neighbor Coulomb interaction energy to the ion kinetic energy. For typical UNPs, Γi is currently limited to ~ 3 . For alkaline earth ions, higher Γi can be achieved by laser-cooling. Using Molecular Dynamics and a quantum trajectories approach, we have simulated laser-cooling of Sr+ ions interacting through a Yukawa potential. The simulations include re-pumping from two long-lived D-states, and are conducted at experimentally achievable parameters (density n = 2 e+14 m-3, size σ0 = 4 mm, Te = 19 K). Laser-cooling is shown to both reduce the temperature by a factor of 2 over relevant timescales (tens of μ s) and slow the electron thermal-pressure driven radial expansion of the UNP. We also discuss the unique aspects of laser-cooling in a highly collisional system; in particular, the effect of collisions on dark state formation due to the coupling of the P3/2 state to both the S1/2 (via the cooling transition) and the D5/2 (via a re-pump transition) states. Supported by NSF and DoE, the Air Force Office of Scientific Research, the NDSEG Program, and NIH NCRR S10RR02950, an IBM SUR Award in partnership with CISCO, Qlogic and Adaptive Computing.

  8. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  9. Velocity selection for ultracold atoms using mazer action in a bimodal cavity

    NASA Astrophysics Data System (ADS)

    Irshad, Afshan; Qamar, Sajid; Qamar, Shahid

    2010-01-01

    In this paper, we discuss the velocity selection of ultracold three-level atoms in Λ configuration using a mazer. Our model is the same as discussed by Arun et al. [R. Arun, G.S. Agarwal, M.O. Scully, H. Walther, Phys. Rev. A 62 (2000) 023809] for mazer action in a bimodal cavity. We show that the initial Maxwellian velocity distribution of ultracold atoms can be narrowed due to the presence of resonances in the transmission through dressed-state potential. When the atoms are initially prepared in one of the two lower atomic states then significantly better velocity selectivity is obtained due to the presence of dark states.

  10. A Next-Generation Apparatus for Lithium Optical Lattice Experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv

    Quantum simulation is emerging as an ambitious and active subfield of atomic physics. This thesis describes progress towards the goal of simulating condensed matter systems, in particular the physics of the Fermi-Hubbard model, using ultracold Lithium atoms in an optical lattice. A major goal of the quantum simulation program is to observe phase transitions of the Hubbard model, into Neal antiferromagnetic phases and d-wave superfluid phases. Phase transitions are generally accompanied by a change in an underlying correlation in a physical system. Such correlations may be most amenable to probing by looking at fluctuations in the system. Experimental techniques for probing density and magnetization fluctuations in a variety of atomic Fermi systems are developed. The suppression of density fluctuations (or atom "shot noise") in an ideal degenerate Fermi gas is observed by absorption imaging of time-of-flight expanded clouds. In-trap measurements of density and magnetization fluctuations are not easy to probe with absorption imaging, due to their extremely high attenuation. A method to probe these fluctuations based on speckle patterns, caused by fluctuations in the index of refraction for a detuned illumination beam, is developed and applied first to weakly interacting and then to strongly interacting in-trap gases. Fluctuation probes such as these will be a crucial tool in future quantum simulation of condensed matter systems. The quantum simulation experiments that we want to perform require a complex sequence of precisely timed computer controlled events. A distributed GUI-based control system designed with such experiments in mind, The Cicero Word Generator, is described. The system makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature allows this to be extended to other output

  11. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    NASA Astrophysics Data System (ADS)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  12. Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian

    Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.

  13. Chladni solitons and the onset of the snaking instability for dark solitons in confined superfluids.

    PubMed

    Muñoz Mateo, A; Brand, J

    2014-12-19

    Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ, and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.

  14. Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids

    NASA Astrophysics Data System (ADS)

    Muñoz Mateo, A.; Brand, J.

    2014-12-01

    Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ , and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.

  15. Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2016-12-01

    We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.

  16. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    DOE PAGES

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; ...

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be β NiP on SS = (3.3 +1.8, -5.6) X 10 -6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be β NiP on Al = (3.6 +2.1, -5.9) X 10 -6. For the copper guide used as reference, the spin flip probability per bounce was found to be β Cu =more » (6.7 + 5.0, -2.5) X 10 -6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding β NiP on SS < 6.2 X 10 -6 (90% C.L.) and β NiP on Al < 7.0 X 10 -6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.« less

  17. Exact mapping between different dynamics of isotropically trapped quantum gases

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Pelster, Axel; Anglin, James R.

    2016-05-01

    Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics, where strong interactions or non-equilibrium states prevent exact theoretical treatment. In this talk, we present a class of exact mappings between all the observables of different experiments, under the experimentally attainable conditions that the gas particles interact via a homogeneously scaling two-body potential which is in general time-dependent, and are confined in an isotropic harmonic trap. We express our result through an identity relating second-quantized field operators in the Heisenberg picture of quantum mechanics which makes it general. It applies to arbitrary measurements on possibly multi-component Bose or Fermi gases in arbitrary initial quantum states, no matter how highly excited or far from equilibrium. We use an example to show how the results of two different and currently feasible experiments can be mapped onto each other by our spacetime transformation. DAMOP sorting category: 6.11 Nonlinear dynamics and out-of-equilibrium trapped gases EW acknowledge the financial support from the Alexander von Humboldt foundation.

  18. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.

  19. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.

    PubMed

    Meinert, F; Mark, M J; Lauber, K; Daley, A J; Nägerl, H-C

    2016-05-20

    We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.

  20. Fundamental Interactions for Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    D'Incao, Jose P.; Willians, Jason R.

    2015-05-01

    Precision atom interferometers (AI) in space are a key element for several applications of interest to NASA. Our proposal for participating in the Cold Atom Laboratory (CAL) onboard the International Space Station is dedicated to mitigating the leading-order systematics expected to corrupt future high-precision AI-based measurements of fundamental physics in microgravity. One important focus of our proposal is to enhance initial state preparation for dual-species AIs. Our proposed filtering scheme uses Feshbach molecular states to create highly correlated mixtures of heteronuclear atomic gases in both their position and momentum distributions. We will detail our filtering scheme along with the main factors that determine its efficiency. We also show that the atomic and molecular heating and loss rates can be mitigated at the unique temperature and density regimes accessible on CAL. This research is supported by the National Aeronautics and Space Administration.

  1. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    Emerets's experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.

  2. Observation of symmetry-protected topological band with ultracold fermions

    PubMed Central

    Song, Bo; Zhang, Long; He, Chengdong; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2018-01-01

    Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems. PMID:29492457

  3. Competing order parameters in Fermi systems with engineered band dispersion

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Te; Boyack, Rufus; Anderson, Brandon; Levin, K.

    We explore a variety of competing phases in 2D and 3D Fermi gases in the presence of novel dispersion relations resulting from a shaken optical lattice. We incorporate spin imbalance along with attractive interactions. In 3D, at the mean field level we present phase diagrams reflecting the stability of alternative order parameters in the pairing (including LOFF) and charge density wave channels. We perform analogous studies in 2D, where we focus on the competition between different paired phases. Important in this regard is that our 2D studies are consistent with the Mermin Wagner theorem, so that, while there is competition, conventional superfluidity cannot occur

  4. Probing topology by "heating": Quantized circular dichroism in ultracold atoms.

    PubMed

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G; Zoller, Peter; Goldman, Nathan

    2017-08-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η 0 = ν/ ℏ 2 , where h = 2π ℏ is Planck's constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter.

  5. Atomtronics: Realizing the behavior of electronic components in ultracold atomic systems

    NASA Astrophysics Data System (ADS)

    Pepino, Ron

    2007-06-01

    Atomtronics focuses on creating an analogy of electronic devices and circuits with ultracold atoms. Such an analogy can come from the highly tunable band structure of ultracold neutral atoms trapped in optical lattices. Solely by tuning the parameters of the optical lattice, we demonstrate that conditions can be created that cause atoms in lattices to exhibit the same behavior as electrons moving through solid state media. We present our model and show how the atomtronic diode, field effect transistor, and bipolar junction transistor can all be realized. Our analogs of these fundamental components exhibit precisely-controlled atomic signal amplification, trimming, and switching (on/off) characteristics. In addition, the evolution of dynamics of the superfluid atomic currents within these systems is completely reversible. This implies a possible use of atomtronic systems in the development of quantum computational devices.

  6. Expansion of an ultracold Rydberg plasma

    NASA Astrophysics Data System (ADS)

    Forest, Gabriel T.; Li, Yin; Ward, Edwin D.; Goodsell, Anne L.; Tate, Duncan A.

    2018-04-01

    We report a systematic experimental and numerical study of the expansion of ultracold Rydberg plasmas. Specifically, we have measured the asymptotic expansion velocities, v0, of ultracold neutral plasmas (UNPs) which evolve from cold, dense samples of Rydberg rubidium atoms using ion time-of-flight spectroscopy. From this, we have obtained values for the effective initial plasma electron temperature, Te ,0=mionv02/kB (where mion is the Rb+ ion mass), as a function of the original Rydberg atom density and binding energy, Eb ,i. We have also simulated numerically the interaction of UNPs with a large reservoir of Rydberg atoms to obtain data to compare with our experimental results. We find that for Rydberg atom densities in the range 107-109 cm-3, for states with principal quantum number n >40 , Te ,0 is insensitive to the initial ionization mechanism which seeds the plasma. In addition, the quantity kBTe ,0 is strongly correlated with the fraction of atoms which ionize, and is in the range 0.6 ×| Eb ,i|≲ kBTe ,0≲2.5 ×|Eb ,i| . On the other hand, plasmas from Rydberg samples with n ≲40 evolve with no significant additional ionization of the remaining atoms once a threshold number of ions has been established. The dominant interaction between the plasma electrons and the Rydberg atoms is one in which the atoms are deexcited, a heating process for electrons that competes with adiabatic cooling to establish an equilibrium where Te ,0 is determined by their Coulomb coupling parameter, Γe˜0.01 .

  7. Extended Thomas-Fermi density functional for the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Salasnich, Luca; Toigo, Flavio

    2008-11-01

    We determine the energy density ξ(3/5)nɛF and the gradient correction λℏ2(∇n)2/(8mn) of the extended Thomas-Fermi (ETF) density functional, where n is the number density and ɛF is the Fermi energy, for a trapped two-component Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. 99, 233201 (2007)]. In particular we find that ξ=0.455 and λ=0.13 give the best fit of the DMC data with an even number N of particles. We also study the odd-even splitting γN1/9ℏω of the ground-state energy for the unitary gas in a harmonic trap of frequency ω determining the constant γ . Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.

  8. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  9. Fermion superfluid with hybridized s- and p-wave pairings

    NASA Astrophysics Data System (ADS)

    Zhou, LiHong; Yi, Wei; Cui, XiaoLing

    2017-12-01

    Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s- and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s- and p-wave interactions, which is realizable in a two-component 40K Fermi gas with close-by s- and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s- and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.

  10. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  11. Dirac-, Rashba-, and Weyl-type spin-orbit couplings: Toward experimental realization in ultracold atoms

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Zong; Lu, Yue-Hui; Sun, Wei; Chen, Shuai; Deng, Youjin; Liu, Xiong-Jun

    2018-01-01

    We propose a hierarchy set of minimal optical Raman lattice schemes to pave the way for experimental realization of high-dimensional spin-orbit (SO) couplings for ultracold atoms, including two-dimensional (2D) Dirac type, 2D Rashba type, and three-dimensional (3D) Weyl type. The proposed Dirac-type SO coupling exhibits precisely controllable high symmetry, for which a large topological phase region is predicted. The generation of 2D Rashba and 3D Weyl types requires that two sources of laser beams have distinct frequencies of factor 2 difference. Surprisingly, we find that 133Cs atoms provide an ideal candidate for the realization. A common and essential feature is of high controllability and absent of any fine-tuning in the realization, and the resulting SO coupled ultracold atoms have a long lifetime. In particular, a long-lived topological Bose gas of 2D Dirac SO coupling has been proved in the follow-up experiment. These schemes essentially improve over the current experimental accessibility and controllability, and open a realistic way to explore novel high-dimensional SO physics, particularly quantum many-body physics and quantum far-from-equilibrium dynamics with novel topology for ultracold atoms.

  12. Creation of a strongly dipolar gas of ultracold ground-state 23 Na87 Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Wang, Dajun; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    We report on successful creation of an ultracold sample of ground-state 23 Na87 Rb molecules with a large effective electric dipole moment. Through a carefully designed two-photon Raman process, we have successfully transferred the magneto-associated Feshbach molecules to the singlet ground state with high efficiency, obtaining up to 8000 23 Na87 Rb molecules with peak number density over 1011 cm-3 in their absolute ground-state level. With an external electric field, we have induced an effective dipole moment over 1 Debye, making 23 Na87 Rb the most dipolar ultracold particle ever achieved. Contrary to the expectation, we observed a rather fast population loss even for 23 Na87 Rb in the absolute ground state with the bi-molecular exchange reaction energetically forbidden. The origin for the short lifetime and possible ways of mitigating it are currently under investigation. Our achievements pave the way toward investigation of ultracold bosonic molecules with strong dipolar interactions. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  13. Fermi surfaces in Kondo insulators

    NASA Astrophysics Data System (ADS)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  14. Frequency standards based on ultracold atoms in tests of general relativity, navigation and gravimetry

    NASA Astrophysics Data System (ADS)

    Khabarova, K. Yu.; Kudeyarov, K. S.; Kolachevsky, N. N.

    2017-06-01

    Research and development in the field of optical clocks based on ultracold atoms and ions have enabled the relative uncertainty in frequency to be reduced down to a few parts in 1018. The use of novel, precise frequency comparison methods opens up new possibilities for basic research (sensitive tests of general relativity, a search for a drift of fundamental constants and a search for ‘dark matter’) as well as for state-of-the-art navigation and gravimetry. We discuss the key methods that are used in creating precision clocks (including transportable clocks) based on ultracold atoms and ions and the feasibility of using them in resolving current relativistic gravimetry issues.

  15. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6

    NASA Astrophysics Data System (ADS)

    Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.

    2018-02-01

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.

  16. Interference, focusing and excitation of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.

    2011-05-01

    One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.

  17. Probing topology by “heating”: Quantized circular dichroism in ultracold atoms

    PubMed Central

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G.; Zoller, Peter; Goldman, Nathan

    2017-01-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system’s chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This “differential integrated rate” is directly related to the strength of the driving field through the quantized coefficient η0 = ν/ℏ2, where h = 2π ℏ is Planck’s constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter. PMID:28835930

  18. Transfer coefficients in ultracold strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  19. Many-body physics using cold atoms

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh

    Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin

  20. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB 6

    DOE PAGES

    Hartstein, M.; Toews, W. H.; Hsu, Y. -T.; ...

    2017-10-23

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less

  1. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    PubMed

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  2. Fermi at Six Months

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2009-01-01

    An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.

  3. Seebeck effect on a weak link between Fermi and non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. T.; Kiselev, M. N.

    2018-02-01

    We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.

  4. The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review

    NASA Astrophysics Data System (ADS)

    Kinnunen, Jami J.; Baarsma, Jildou E.; Martikainen, Jani-Petri; Törmä, Päivi

    2018-04-01

    We review the concepts and the present state of theoretical studies of spin-imbalanced superfluidity, in particular the elusive Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state, in the context of ultracold quantum gases. The comprehensive presentation of the theoretical basis for the FFLO state that we provide is useful also for research on the interplay between magnetism and superconductivity in other physical systems. We focus on settings that have been predicted to be favourable for the FFLO state, such as optical lattices in various dimensions and spin–orbit coupled systems. These are also the most likely systems for near-future experimental observation of the FFLO state. Theoretical bounds, such as Bloch’s and Luttinger’s theorems, and experimentally important limitations, such as finite-size effects and trapping potentials, are considered. In addition, we provide a comprehensive review of the various ideas presented for the observation of the FFLO state. We conclude our review with an analysis of the open questions related to the FFLO state, such as its stability, superfluid density, collective modes and extending the FFLO superfluid concept to new types of lattice systems.

  5. Three Body Recombination and Photoassociative Ultracold Collisions Studied Using Translational Energy

    DTIC Science & Technology

    2009-02-27

    Sumission, or Preparation 1. "Multiple Scattering and the Density Distribution of a Cs MOT," R. Overstreet, P. Zabawa , J. Tallant, A. Schwettmann... Zabawa . J. Tallant, A. Schwettmann, J. Crawford, and J.P. Shaffer, DAMOP, Knoxville, TN, (2006). 6. "Ultracold Cs Rydberg Gas Dynamics," K.R

  6. Bose-Einstein condensation in atomic alkali gases

    NASA Astrophysics Data System (ADS)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  7. Ultracold Mixtures of Rubidium and Ytterbium for Open Quantum System Engineering

    NASA Astrophysics Data System (ADS)

    Herold, Creston David

    Exquisite experimental control of quantum systems has led to sharp growth of basic quantum research in recent years. Controlling dissipation has been crucial in producing ultracold, trapped atomic samples. Recent theoretical work has suggested dissipation can be a useful tool for quantum state preparation. Controlling not only how a system interacts with a reservoir, but the ability to engineer the reservoir itself would be a powerful platform for open quantum system research. Toward this end, we have constructed an apparatus to study ultracold mixtures of rubidium (Rb) and ytterbium (Yb). We have developed a Rb-blind optical lattice at 423.018(7) nm, which will enable us to immerse a lattice of Yb atoms (the system) into a Rb BEC (superfluid reservoir). We have produced Bose-Einstein condensates of 170Yb and 174Yb, two of the five bosonic isotopes of Yb, which also has two fermionic isotopes. Flexible optical trapping of Rb and Yb was achieved with a two-color dipole trap of 532 and 1064 nm, and we observed thermalization in ultracold mixtures of Rb and Yb. Using the Rb-blind optical lattice, we measured very small light shifts of 87Rb BECs near the light shift zero-wavelengths adjacent the 6p electronic states, through a coherent series of lattice pulses. The positions of the zero-wavelengths are sensitive to the electric dipole matrix elements between the 5s and 6p states, and we made the first experimental measurement of their strength. By measuring a light shift, we were not sensitive to excited state branching ratios, and we achieved a precision better than 0.3%.

  8. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν <1 /2 but kF*=√{4 π ρh } for ν >1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  9. FermiGrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yocum, D.R.; Berman, E.; Canal, P.

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  10. Ultracold-atom quantum simulator for attosecond science

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Förster, Johann; Saenz, Alejandro

    2017-01-01

    A quantum simulator based on ultracold optically trapped atoms for simulating the physics of atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about 13 orders of magnitude allows one to watch in slow motion the tunneling and recollision processes that form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper understanding of strong-field physics, especially for many-body systems beyond the reach of classical computers. The quantum simulator can experimentally straightforwardly be realized and is shown to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.

  11. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  12. Ultra-cold 4He atom beams

    NASA Astrophysics Data System (ADS)

    Mulders, N.; Wyatt, A. F. G.

    1994-02-01

    It has been shown that it is possible to create ultra-cold 4He atom beams, using a metal film heater covered with a superfluid helium film. The transient behaviour of the atom pulse can be improved significantly by shaping of the heater pulse. The leading edge of more energetic atoms can be suppressed nearly completely, leaving a core of mono-energetic atoms. The maximum number of atoms in the pulse is determined by the amount of helium in the superfluid film on the heater. This seriously limits the ranges of pulse width and energy over which this beam source can be operated. However, these can be increased significantly by using porous gold smoke heaters.

  13. Possible Many-Body Localization in a Long-Lived Finite-Temperature Ultracold Quasineutral Molecular Plasma

    NASA Astrophysics Data System (ADS)

    Sous, John; Grant, Edward

    2018-03-01

    We argue that the quenched ultracold plasma presents an experimental platform for studying the quantum many-body physics of disordered systems in the long-time and finite energy-density limits. We consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg molecules, ions, and electrons that exhibits a long-lived state of arrested relaxation. The qualitative features of this state fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der Waals interactions. This effective model appears to offer a way to envision the essential quantum disordered nonequilibrium physics of this system.

  14. Investigation of the Fermi-Hubbard model with 6Li in an optical lattice

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Duarte, P. M.; Yang, T.-L.; Hulet, R. G.

    2013-05-01

    We present our results on investigation of the physics of the Fermi-Hubbard model using an ultracold gas of 6Li loaded into an optical lattice. We use all-optical methods to efficiently cool and load the lattice beginning with laser cooling on the 2S1 / 2 --> 2P3 / 2 transition and then further cooling using the narrow 2S1 / 2 --> 3P3 / 2 transition to T ~ 59 μK. The second stage of laser cooling greatly enhances loading to an optical dipole trap where a two spin state mixture of atoms is evaporatively cooled to degeneracy. We then adiabatically load ~106 degenerate fermions into a 3D optical lattice formed by three orthogonal standing waves of 1064 nm light. Overlapped with each of the three lattice beams is a non-retroreflected beam at 532 nm. This light cancels the harmonic trapping caused by the lattice beams, which extends the number of lattice sites over which a Néel phase can exist and may allow evaporative cooling in the lattice. By using Bragg scattering of light, we investigate the possibility of observing long-range antiferromagnetic ordering of spins in the lattice. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  15. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Altman, E.

    2010-10-01

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  16. A hybrid system of a membrane oscillator coupled to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  17. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey Patrick

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, made possible largely by the development of narrow-linewidth lasers and techniques for trapping and cooling at ultracold temperatures. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. These possibilities are all consequences of the richness of molecular structure, which is governed by physics substantially different from that characterizing atomic structure. This same richness of structure, however, increases the complexity of any molecular experiment manyfold over its atomic counterpart, magnifying the difficulty of everything from trapping and cooling to the comparison of theory with experiment. This thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. Our molecules are produced via photoassociation of ultracold strontium atoms followed by spontaneous decay to a stable ground state. We describe a thorough set of measurements characterizing the rovibrational structure of very weakly bound (and therefore very large) 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. The physical intuition gained in these experiments applies generally to weakly bound diatomic molecules, and suggests extensive applications in precision measurement and metrology. In addition, we present a detailed analysis of the thermally broadened spectroscopic lineshape of molecules in a non-magic optical lattice trap, showing how such lineshapes can be used to directly determine the temperature of atoms or molecules in situ, addressing a long-standing problem in ultracold physics

  18. Self-diffusion and conductivity in an ultracold strongly coupled plasma: Calculation by the method of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Bronin, S. Ya; Bobrov, A. A.; Khikhlukha, D. R.

    2018-01-01

    We present results of calculations by the method of molecular dynamics of self-diffusion and conductivity of electron and ion components of ultracold plasma in a comparison with available theoretical and experimental data. For the ion self-diffusion coefficient, good agreement was obtained with experiments on ultracold plasma. The results of the calculation of self-diffusion also agree well with other calculations performed for the same values of the coupling parameter, but at high temperatures. The difference in the results of the conductivity calculations on the basis of the current autocorrelation function and on the basis of the diffusion coefficient is discussed.

  19. State-to-state chemistry for three-body recombination in an ultracold rubidium gas.

    PubMed

    Wolf, Joschka; Deiß, Markus; Krükow, Artjom; Tiemann, Eberhard; Ruzic, Brandon P; Wang, Yujun; D'Incao, José P; Julienne, Paul S; Denschlag, Johannes Hecker

    2017-11-17

    Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb 2 molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck's constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes. Copyright © 2017, American Association for the Advancement of Science.

  20. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  1. Photoemission spectrum and effect of inhomogeneous pairing fluctuations in the BCS-BEC crossover regime of an ultracold Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Ohashi, Yoji; CREST

    2010-09-15

    We investigate the photoemission-type spectrum in a cold Fermi gas which was recently measured by the JILA group [Stewart et al., Nature (London) 454, 744 (2008)]. This quantity gives us very useful information about single-particle properties in the BCS-BEC crossover. In this paper, including pairing fluctuations within a T-matrix theory, as well as effects of a harmonic trap within the local density approximation, we show that spatially inhomogeneous pairing fluctuations due to the trap potential are an important key to understanding the observed spectrum. In the crossover region, while strong pairing fluctuations lead to the so-called pseudogap phenomenon in themore » trap center, such strong-coupling effects are found to be weak around the edge of the gas. Our results including this effect are shown to agree well with the recent photoemission data of the JILA group.« less

  2. Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2017-04-01

    Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.

  3. Parametric Cooling of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.

  4. An experimental toolbox for the generation of cold and ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Zeppenfeld, Martin; Gantner, Thomas; Glöckner, Rosa; Ibrügger, Martin; Koller, Manuel; Prehn, Alexander; Wu, Xing; Chervenkov, Sotir; Rempe, Gerhard

    2017-01-01

    Cold and ultracold molecules enable fascinating applications in quantum science. We present our toolbox of techniques to generate the required molecule ensembles, including buffergas cooling, centrifuge deceleration and optoelectrical Sisyphus cooling. We obtain excellent control over both the motional and internal molecular degrees of freedom, allowing us to aim at various applications.

  5. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE PAGES

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; ...

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr 1-xLa x)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  6. Thermal transitions, pseudogap behavior, and BCS-BEC crossover in Fermi-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna

    2018-03-01

    We study the mass imbalanced Fermi-Fermi mixture within the framework of a two-dimensional lattice fermion model. Based on the thermodynamic and species-dependent quasiparticle behavior, we map out the finite-temperature phase diagram of this system and show that unlike the balanced Fermi superfluid, there are now two different pseudogap regimes as PG-I and PG-II. While within the PG-I regime both the fermionic species are pseudogapped, PG-II corresponds to the regime where pseudogap feature survives only in the light species. We believe that the single-particle spectral features that we discuss in this paper are observable through the species-resolved radio-frequency spectroscopy and momentum-resolved photoemission spectroscopy measurements on systems such as 6Li-40K mixture. We further investigate the interplay between the population and mass imbalances and report that at a fixed population imbalance, the BCS-BEC crossover in a Fermi-Fermi mixture would require a critical interaction (Uc) for the realization of the uniform superfluid state. The effect of imbalance in mass on the exotic Fulde-Ferrell-Larkin-Ovchinnikov superfluid phase has been probed in detail in terms of the thermodynamic and quasiparticle behavior of this phase. It has been observed that in spite of the s -wave symmetry of the pairing field, a nodal superfluid gap is realized in the Larkin-Ovchinnikov regime. Our results on the various thermal scales and regimes are expected to serve as benchmarks for the experimental observations on 6Li-40K mixture.

  7. Solitonic Excitations in Fermionic Superfluids and Progress towards Fermi Gas in Uniform Potential

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Yan, Zhenjie; Patel, Parth; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions. We also report on the trapping of fermionic atoms of 6Li in a quasi-homogenous all-optical potential, and discuss progress towards directly observing the momentum distribution of the fermions in a box. This new tool offers the possibility to quantitatively study Fermi gases at finite temperature and in the presence of spin-imbalance, with unprecedented accuracy.

  8. Beyond the Fermi liquid paradigm: Hidden Fermi liquids

    PubMed Central

    Jain, J. K.; Anderson, P. W.

    2009-01-01

    An intense investigation of possible non-Fermi liquid states of matter has been inspired by two of the most intriguing phenomena discovered in the past quarter century, namely, high-temperature superconductivity and the fractional quantum Hall effect. Despite enormous conceptual strides, these two fields have developed largely along separate paths. Two widely employed theories are the resonating valence bond theory for high-temperature superconductivity and the composite fermion theory for the fractional quantum Hall effect. The goal of this perspective article is to note that they subscribe to a common underlying paradigm: They both connect these exotic quantum liquids to certain ordinary Fermi liquids residing in unphysical Hilbert spaces. Such a relation yields numerous nontrivial experimental consequences, exposing these theories to rigorous and definitive tests. PMID:19506260

  9. Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Setiawan, Widagdo

    Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.

  10. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules.

    PubMed

    Park, Jee Woo; Yan, Zoe Z; Loh, Huanqian; Will, Sebastian A; Zwierlein, Martin W

    2017-07-28

    Coherence, the stability of the relative phase between quantum states, is central to quantum mechanics and its applications. For ultracold dipolar molecules at sub-microkelvin temperatures, internal states with robust coherence are predicted to offer rich prospects for quantum many-body physics and quantum information processing. We report the observation of stable coherence between nuclear spin states of ultracold fermionic sodium-potassium (NaK) molecules in the singlet rovibrational ground state. Ramsey spectroscopy reveals coherence times on the scale of 1 second; this enables high-resolution spectroscopy of the molecular gas. Collisional shifts are shown to be absent down to the 100-millihertz level. This work opens the door to the use of molecules as a versatile quantum memory and for precision measurements on dipolar quantum matter. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. 7th International Fermi Symposium

    NASA Astrophysics Data System (ADS)

    2017-10-01

    The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We

  12. Quantum levitation of nanoparticles seen with ultracold neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu; Voronin, A. Yu.; Lambrecht, A.

    2013-09-15

    Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nanodroplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces results in new effects on a cross-road of the fields of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing so-called 'small heating' of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there.

  13. Effects of mode profile on tunneling and traversal of ultracold atoms through vacuum-induced potentials

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2016-04-01

    We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.

  14. Fermi arc plasmons in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.; Rudner, Mark S.

    2017-11-01

    In the recently discovered Weyl semimetals, the Fermi surface may feature disjoint, open segments—the so-called Fermi arcs—associated with topological states bound to exposed crystal surfaces. Here we show that the collective dynamics of electrons near such surfaces sharply departs from that of a conventional three-dimensional metal. In magnetic systems with broken time reversal symmetry, the resulting Fermi arc plasmons (FAPs) are chiral, with dispersion relations featuring open, hyperbolic constant frequency contours. As a result, a large range of surface plasmon wave vectors can be supported at a given frequency, with corresponding group velocity vectors directed along a few specific collimated directions. Fermi arc plasmons can be probed using near-field photonics techniques, which may be used to launch highly directional, focused surface plasmon beams. The unusual characteristics of FAPs arise from the interplay of bulk and surface Fermi arc carrier dynamics and give a window into the unusual fermiology of Weyl semimetals.

  15. Recent Developments in Non-Fermi Liquid Theory

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik

    2018-03-01

    Non-Fermi liquids are unconventional metals whose physical properties deviate qualitatively from those of noninteracting fermions due to strong quantum fluctuations near Fermi surfaces. They arise when metals are subject to singular interactions mediated by soft collective modes. In the absence of well-defined quasiparticles, universal physics of non-Fermi liquids is captured by interacting field theories which replace Landau Fermi liquid theory. However, it has been difficult to understand their universal low-energy physics due to a lack of theoretical methods that take into account strong quantum fluctuations in the presence of abundant low-energy degrees of freedom. In this review, we discuss two approaches that have been recently developed for non-Fermi liquid theory with emphasis on two space dimensions. The first is a perturbative scheme based on a dimensional regularization, which achieves a controlled access to the low-energy physics by tuning the codimension of Fermi surface. The second is a nonperturbative approach which treats the interaction ahead of the kinetic term through a non-Gaussian scaling called interaction-driven scaling. Examples of strongly coupled non-Fermi liquids amenable to exact treatments through the interaction-driven scaling are discussed.

  16. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  17. Program of Fundamental-Interaction Research for the Ultracold-Neutron Source at the the WWR-M Reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2018-03-01

    The use of ultracold neutrons opens unique possibilities for studying fundamental interactions in particles physics. Searches for the neutron electric dipole moment are aimed at testing models of CP violation. A precise measurement of the neutron lifetime is of paramount importance for cosmology and astrophysics. Considerable advances in these realms can be made with the aid of a new ultracold-neutron (UCN) supersource presently under construction at Petersburg Nuclear Physics Institute. With this source, it would be possible to obtain an UCN density approximately 100 times as high as that at currently the best UCN source at the high-flux reactor of the Institute Laue-Langevin (ILL, Grenoble, France). To date, the design and basic elements of the source have been prepared, tests of a full-scale source model have been performed, and the research program has been developed. It is planned to improve accuracy in measuring the neutron electric dipole moment by one order of magnitude to a level of 10-27 to 10-28 e cm. This is of crucial importance for particle physics. The accuracy in measuring the neutron lifetime can also be improved by one order of magnitude. Finally, experiments that would seek neutron-antineutron oscillations by employing ultracold neutrons will become possible upon reaching an UCN density of 103 to 104 cm-3. The current status of the source and the proposed research program are discussed.

  18. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  19. Stable spin domains in a nondegenerate ultracold gas

    NASA Astrophysics Data System (ADS)

    Graham, S. D.; Niroomand, D.; Ragan, R. J.; McGuirk, J. M.

    2018-05-01

    We study the stability of two-domain spin structures in an ultracold gas of magnetically trapped 87Rb atoms above quantum degeneracy. Adding a small effective magnetic field gradient stabilizes the domains via coherent collective spin rotation effects, despite negligibly perturbing the potential energy relative to the thermal energy. We demonstrate that domain stabilization is accomplished through decoupling the dynamics of longitudinal magnetization, which remains in time-independent domains, from transverse magnetization, which undergoes a purely transverse spin wave trapped within the domain wall. We explore the effect of temperature and density on the steady-state domains, and compare our results to a hydrodynamic solution to a quantum Boltzmann equation.

  20. A vacuum gauge based on an ultracold gas

    NASA Astrophysics Data System (ADS)

    Makhalov, V. B.; Turlapov, A. V.

    2017-06-01

    We report the design and application of a primary vacuum gauge based on an ultracold gas of atoms in an optical dipole trap. The pressure is calculated from the confinement time for atoms in the trap. The relationship between pressure and confinement time is established from the first principles owing to elimination of all channels introducing losses, except for knocking out an atom from the trap due to collisions with a residual gas particle. The method requires the knowledge of the gas chemical composition in the vacuum chamber, and, in the absence of this information, the systematic error is less than that of the ionisation sensor.

  1. Microwave ac Zeeman force for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.

    2018-04-01

    We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.

  2. Understanding and Using the Fermi Science Tools

    NASA Astrophysics Data System (ADS)

    Asercion, Joseph

    2018-01-01

    The Fermi Science Support Center (FSSC) provides information, documentation, and tools for the analysis of Fermi science data, including both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Source and binary versions of the Fermi Science Tools can be downloaded from the FSSC website, and are supported on multiple platforms. An overview document, the Cicerone, provides details of the Fermi mission, the science instruments and their response functions, the science data preparation and analysis process, and interpretation of the results. Analysis Threads and a reference manual available on the FSSC website provide the user with step-by-step instructions for many different types of data analysis: point source analysis - generating maps, spectra, and light curves, pulsar timing analysis, source identification, and the use of python for scripting customized analysis chains. We present an overview of the structure of the Fermi science tools and documentation, and how to acquire them. We also provide examples of standard analyses, including tips and tricks for improving Fermi science analysis.

  3. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    PubMed Central

    Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.

    2017-01-01

    We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879

  4. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  5. Nonlocal Poisson-Fermi model for ionic solvent.

    PubMed

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  6. Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz-Weiling, Markus; Grant, Edward

    Double-resonant excitation of nitric oxide in a seeded supersonic molecular beam forms a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma travels with the propagation of the molecular beam in z over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The ω{sub 1} + ω{sub 2} laser crossed molecular beam excitation geometry convolutes the axial Gaussian distribution of NO in the molecular beam with the Gaussian intensity distribution of the perpendicularly aligned laser beam to create an ellipsoidal volume of Rydbergmore » gas. Detected images describe the evolution of this initial density as a function of selected Rydberg gas initial principal quantum number, n{sub 0}, ω{sub 1} laser pulse energy (linearly related to Rydberg gas density, ρ{sub 0}) and flight time. Low-density Rydberg gases of lower principal quantum number produce uniformly expanding, ellipsoidal charge-density distributions. Increase either of n{sub 0} or ρ{sub 0} breaks the ellipsoidal symmetry of plasma expansion. The volume bifurcates to form repelling plasma volumes. The velocity of separation depends on n{sub 0} and ρ{sub 0} in a way that scales uniformly with ρ{sub e}, the density of electrons formed in the core of the Rydberg gas by prompt Penning ionization. Conditions under which this electron gas drives expansion in the long axis dimension of the ellipsoid favours the formation of counter-propagating shock waves.« less

  7. The Fermiac or Fermi's Trolley

    NASA Astrophysics Data System (ADS)

    Coccetti, F.

    2016-03-01

    The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  8. Emergence of kinetic behavior in streaming ultracold neutral plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuillen, P.; Castro, J.; Bradshaw, S. J.

    2015-04-15

    We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.

  9. The many faces of Fermi

    NASA Astrophysics Data System (ADS)

    Delmastro, Marco

    2017-12-01

    When I settled down to read The Last Man Who Knew Everything by Davis Schwartz, I was asking myself whether there was any need for yet another Enrico Fermi biography. While navigating this ambitious book, I realized that maybe I knew less than I thought about Fermi, and that maybe there was still a lot I could learn.

  10. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, G.W.; Dye, D.H.; Karim, D.P.

    1987-02-01

    The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less

  11. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    NASA Astrophysics Data System (ADS)

    Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.

    1987-02-01

    The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.

  12. Analytical results for the time-dependent current density distribution of expanding ultracold gases after a sudden change of the confining potential

    NASA Astrophysics Data System (ADS)

    Boumaza, R.; Bencheikh, K.

    2017-12-01

    Using the so-called operator product expansion to lowest order, we extend the work in Campbell et al (2015 Phys. Rev. Lett 114 125302) by deriving a simple analytical expression for the long-time asymptotic one-body reduced density matrix during free expansion for a one-dimensional system of bosons with large atom number interacting through a repulsive delta potential initially confined by a potential well. This density matrix allows direct access to the momentum distribution and also to the mass current density. For initially confining power-law potentials we give explicit expressions, in the limits of very weak and very strong interaction, for the current density distributions during the free expansion. In the second part of the work we consider the expansion of ultracold gas from a confining harmonic trap to another harmonic trap with a different frequency. For the case of a quantum impenetrable gas of bosons (a Tonks-Girardeau gas) with a given atom number, we present an exact analytical expression for the mass current distribution (mass transport) after release from one harmonic trap to another harmonic trap. It is shown that, for a harmonically quenched Tonks-Girardeau gas, the current distribution is a suitable collective observable and under the weak quench regime, it exhibits oscillations at the same frequencies as those recently predicted for the peak momentum distribution in the breathing mode. The analysis is extended to other possible quenched systems.

  13. Non-Equilbrium Fermi Gases

    DTIC Science & Technology

    2016-02-02

    understanding is the experimental verification of a new model of light-induced loss spectra, employing continuum-dressed basis states, which agrees in...and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self -explanatory... verification of a new model of light-induced loss spectra, employing continuum-dressed basis states, which agrees in shape and magnitude with all of our

  14. Fermi arc mediated entropy transport in topological semimetals

    NASA Astrophysics Data System (ADS)

    McCormick, Timothy M.; Watzman, Sarah J.; Heremans, Joseph P.; Trivedi, Nandini

    2018-05-01

    The low-energy excitations of topological Weyl semimetals are composed of linearly dispersing Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore, on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points. We propose a pathway for entropy transport involving Fermi arcs on one surface connecting to Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel. The circulating currents result in a net entropy transport without any net charge transport. We provide results for the Fermi arc mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultraquantum limit, where only chiral Landau levels are involved. Our work provides a proposed signature of Fermi arc mediated magnetothermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.

  15. Large optical conductivity of Dirac semimetal Fermi arc surface states

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  16. Collapse and revival of the Fermi sea in a Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Iyer, Deepak; Will, Sebastian; Rigol, Marcos

    2014-05-01

    The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.

  17. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  18. Surface effects in the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Salasnich, L.; Ancilotto, F.; Toigo, F.

    2010-01-01

    We study the extended Thomas-Fermi (ETF) density functional of the superfluid unitary Fermi gas. This functional includes a gradient term which is essential to describe accurately the surface effects of the system, in particular with a small number of atoms, where the Thomas-Fermi (local density) approximation fails. We find that our ETF functional gives density profiles which are in good agreement with recent Monte Carlo results and also with a more sophisticated superfluid density functional based on Bogoliubov-de Gennes equations. In addition, by using extended hydrodynamics equations of superfluids, we calculate the frequencies of collective surface oscillations of the unitary Fermi gas, showing that quadrupole and octupole modes strongly depend on the number of trapped atoms.

  19. STEM education and Fermi problems

    NASA Astrophysics Data System (ADS)

    Holubova, Renata

    2017-01-01

    One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.

  20. Ultracold Realization of AntiFerromagenteic Order

    NASA Astrophysics Data System (ADS)

    Shrestha, Uttam

    2011-03-01

    We investigate numerically the experimental feasibility of observing the antiferromagnetic (AF) order in the bosonic mixtures of rubidium (87 Rb) and potassium (41 K) in a two-dimensional optical lattice with external trapping potential. Within the mean-field approximation we have found the ground states which, for a specific range of parameters such as inter-species interactions and lattice height, interpolate from phase separation to the AF order. For the moderate lattice heights the coexistence of the Mott and AF phase is possible for rubidium atoms while the potassium atoms remain superfluid with overlapped AF phase. In our view there has not been any study on AF order in two-component systems when one component remains in the superfluid phase while the other is in the Mott phase. Therefore, this observation may provide a novel regime for studying quantum magnetism in ultracold systems. This work was supported by the EU Contract EU STREP NAMEQUAM.

  1. Lifetime of Feshbach dimers in a Fermi-Fermi mixture of 6Li and 40K

    NASA Astrophysics Data System (ADS)

    Jag, M.; Cetina, M.; Lous, R. S.; Grimm, R.; Levinsen, J.; Petrov, D. S.

    2016-12-01

    We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of 6Li and 40K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our 40K-6Li system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.

  2. Fermi's Conundrum: Proliferation and Closed Societies

    NASA Astrophysics Data System (ADS)

    Teller, Wendy; Westfall, Catherine

    2007-04-01

    On January 1, 1946 Emily Taft Douglas, a freshman Representative at Large for Illinois, sent a letter to Enrico Fermi. She wanted to know whether, if atomic energy was used for peaceful purposes, it might be possible to clandestinely divert some material for bombs. Douglas first learned about the bomb not quite five months before when Hiroshima was bombed. Even though she was not a scientist she identified a key problem of the nuclear age. Fermi responded with requirements to allow peaceful uses of atomic energy and still outlaw nuclear weapons. First, free interchange of information between people was required, and second, people who reported possible violations had to be protected. Fermi had lived in Mussolini's Italy and worked under the war time secrecy restrictions of the Manhattan Project. He was not optimistic that these conditions could be met. This paper discusses how Douglas came to recognize the proliferation issue and what led Fermi to his solution and his pessimism about its practicality.

  3. Casimir forces between defects in one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.

    2005-08-01

    We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.

  4. Coherent and dissipative transport in a Josephson junction between fermionic superfluids of 6Li atoms

    NASA Astrophysics Data System (ADS)

    Neri, Elettra; Scazza, Francesco; Roati, Giacomo

    2018-04-01

    Quantum systems out of equilibrium offer the possibility of understanding intriguing and challenging problems in modern physics. Studying transport properties is not only valuable to unveil fundamental properties of quantum matter but it is also an excellent tool for developing new quantum devices which inherently employ quantum-mechanical effects. In this contribution, we present our experimental studies on quantum transport using ultracold Fermi gases of 6Li atoms. We realize the analogous of a Josephson junction by bisecting fermionic superfluids by a thin optical barrier. We observe coherent dynamics in both the population and in the relative phase between the two reservoirs. For critical parameters, the superfluid dynamics exhibits both coherent and resistive flow due to phase-slippage events manifesting as vortices propagating into the bulk. We uncover also a regime of strong dissipation where the junction operation is irreversibly affected by vortex proliferation. Our studies open new directions for investigating dissipation and superfluid transport in strongly correlated fermionic systems.

  5. Measurement of Ultracold Neutrons Produced by Using Doppler-shifted Bragg Reflection at a Pulsed-neutron Source

    DOE R&D Accomplishments Database

    Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.

  6. Spontaneous evolution of rydberg atoms into an ultracold plasma

    PubMed

    Robinson; Tolra; Noel; Gallagher; Pillet

    2000-11-20

    We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.

  7. Double-wells and double-layers in dusty Fermi-Dirac plasmas: Comparison with the semiclassical Thomas-Fermi counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Based on the quantum hydrodynamics (QHD) model, a new relationship between the electrostatic-potential and the electron-density in the ultradense plasma is derived. Propagation of arbitrary amplitude nonlinear ion waves is, then, investigated in a completely degenerate dense dusty electron-ion plasma, using this new energy relation for the relativistic electrons, in the ground of quantum hydrodynamics model and the results are compared to the case of semiclassical Thomas-Fermi dusty plasma. Based on the standard pseudopotential approach, it is remarked that the Fermi-Dirac plasma, in contrast to the Thomas-Fermi counterpart, accommodates a wide variety of nonlinear excitations such as positive/negative-potential ion solitarymore » and periodic waves, double-layers, and double-wells. It is also remarked that the relativistic degeneracy parameter which relates to the mass-density of plasma has significant effects on the allowed matching-speed range in Fermi-Dirac dusty plasmas.« less

  8. Effects of impurity and Bose-Fermi interactions on the transition temperature of a dilute dipolar Bose-Einstein condensation in trapped Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.

    2014-03-01

    The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).

  9. Noise of a Chargeless Fermi Liquid

    NASA Astrophysics Data System (ADS)

    Moca, Cǎtǎlin Paşcu; Mora, Christophe; Weymann, Ireneusz; Zaránd, Gergely

    2018-01-01

    We construct a Fermi liquid theory to describe transport in a superconductor-quantum dot-normal metal junction close to the singlet-doublet (parity changing) transition of the dot. Though quasiparticles do not have a definite charge in this chargeless Fermi liquid, in the case of particle-hole symmetry, a mapping to the Anderson model unveils a hidden U(1) symmetry and a corresponding pseudocharge. In contrast to other correlated Fermi liquids, the back scattering noise reveals an effective charge equal to the charge of Cooper pairs, e*=2 e . In addition, we find a strong suppression of noise when the linear conductance is unitary, even for its nonlinear part.

  10. Dynamical vanishing of the order parameter in a confined Bardeen-Cooper-Schrieffer Fermi gas after an interaction quench

    NASA Astrophysics Data System (ADS)

    Hannibal, S.; Kettmann, P.; Croitoru, M. D.; Axt, V. M.; Kuhn, T.

    2018-01-01

    We present a numerical study of the Higgs mode in an ultracold confined Fermi gas after an interaction quench and find a dynamical vanishing of the superfluid order parameter. Our calculations are done within a microscopic density-matrix approach in the Bogoliubov-de Gennes framework which takes the three-dimensional cigar-shaped confinement explicitly into account. In this framework, we study the amplitude mode of the order parameter after interaction quenches starting on the BCS side of the BEC-BCS crossover close to the transition and ending in the BCS regime. We demonstrate the emergence of a dynamically vanishing superfluid order parameter in the spatiotemporal dynamics in a three-dimensional trap. Further, we show that the signal averaged over the whole trap mirrors the spatiotemporal behavior and allows us to systematically study the effects of the system size and aspect ratio on the observed dynamics. Our analysis enables us to connect the confinement-induced modifications of the dynamics to the pairing properties of the system. Finally, we demonstrate that the signature of the Higgs mode is contained in the dynamical signal of the condensate fraction, which, therefore, might provide a new experimental access to the nonadiabatic regime of the Higgs mode.

  11. The Coldest Place in the Universe: Probing the Ultra-cold Outflow and Dusty Disk in the Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Nyman, L.-Å.

    2017-06-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the cosmic background temperature. Our new CO 1-0 data reveal heretofore unseen distant regions of this ultra-cold outflow, out to ≳120,000 au. We find that in the ultra-cold outflow, the mass-loss rate (\\dot{M}) increases with radius, similar to its expansion velocity (V)—taking V\\propto r, we find \\dot{M}\\propto {r}0.9{--2.2}. The mass in the ultra-cold outflow is ≳ 3.3 M ⊙, and the Boomerang’s main-sequence progenitor mass is ≳ 4 M ⊙. Our high angular resolution (˜ 0\\buildrel{\\prime\\prime}\\over{.} 3) CO J = 3-2 map shows the inner bipolar nebula’s precise, highly collimated shape, and a dense central waist of size (FWHM) ˜1740 au × 275 au. The molecular gas and the dust as seen in scattered light via optical Hubble Space Telescope imaging show a detailed correspondence. The waist shows a compact core in thermal dust emission at 0.87-3.3 mm, which harbors (4{--}7)× {10}-4 M ⊙ of very large (˜millimeter-to-centimeter sized), cold (˜ 20{--}30 K) grains. The central waist (assuming its outer regions to be expanding) and fast bipolar outflow have expansion ages of ≲ 1925 {years} and ≤slant 1050 {years}: the “jet-lag” (I.e., torus age minus the fast-outflow age) in the Boomerang supports models in which the primary star interacts directly with a binary companion. We argue that this interaction resulted in a common-envelope configuration, while the Boomerang’s primary was an RGB or early-AGB star, with the companion finally merging into the primary’s core, and ejecting the primary’s envelope that now forms the ultra-cold outflow.

  12. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments.

    PubMed

    Rvachov, Timur M; Son, Hyungmok; Sommer, Ariel T; Ebadi, Sepehr; Park, Juliana J; Zwierlein, Martin W; Ketterle, Wolfgang; Jamison, Alan O

    2017-10-06

    We create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  13. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur M.; Son, Hyungmok; Sommer, Ariel T.; Ebadi, Sepehr; Park, Juliana J.; Zwierlein, Martin W.; Ketterle, Wolfgang; Jamison, Alan O.

    2017-10-01

    We create fermionic dipolar 23Na 6Li molecules in their triplet ground state from an ultracold mixture of 23Na and 6Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3 ×1 04 ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p -wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  14. Localization in momentum space of ultracold atoms in incommensurate lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larcher, M.; Dalfovo, F.; Modugno, M.

    2011-01-15

    We characterize the disorder-induced localization in momentum space for ultracold atoms in one-dimensional incommensurate lattices, according to the dual Aubry-Andre model. For low disorder the system is localized in momentum space, and the momentum distribution exhibits time-periodic oscillations of the relative intensity of its components. The behavior of these oscillations is explained by means of a simple three-mode approximation. We predict their frequency and visibility by using typical parameters of feasible experiments. Above the transition the system diffuses in momentum space, and the oscillations vanish when averaged over different realizations, offering a clear signature of the transition.

  15. Spin relaxation in ultracold collisions of molecular radicals with alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur; Klos, Jacek; Zukowski, Piotr

    2016-05-01

    We present accurate quantum scattering calculations of spin relaxation in ultracold collisions of alkali-metal atoms and polar 2 Σ molecules CaH, SrF, and SrOH. The calculations employ state-of-the-art ab initio interaction potentials and a rigorous quantum theory of atom-molecule collisions in a magnetic field based on the total angular momentum representation. We will further discuss the relevance of the results to atom-molecule sympathetic cooling experiments in a magnetic trap.

  16. Quantum chaos on a critical Fermi surface.

    PubMed

    Patel, Aavishkar A; Sachdev, Subir

    2017-02-21

    We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of [Formula: see text] species of fermions at nonzero density coupled to a [Formula: see text] gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of [Formula: see text], the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details.

  17. Magnetic-field gradiometer based on ultracold collisions

    NASA Astrophysics Data System (ADS)

    Wasak, Tomasz; Jachymski, Krzysztof; Calarco, Tommaso; Negretti, Antonio

    2018-05-01

    We present a detailed analysis of the usefulness of ultracold atomic collisions for sensing the strength of an external magnetic field as well as its spatial gradient. The core idea of the sensor, which we recently proposed in Jachymski et al. [Phys. Rev. Lett. 120, 013401 (2018), 10.1103/PhysRevLett.120.013401], is to probe the transmission of the atoms through a set of quasi-one-dimensional waveguides that contain an impurity. Magnetic-field-dependent interactions between the incoming atoms and the impurity naturally lead to narrow resonances that can act as sensitive field probes since they strongly affect the transmission. We illustrate our findings with concrete examples of experimental relevance, demonstrating that for large atom fluences N a sensitivity of the order of 1 nT/√{N } for the field strength and 100 nT/(mm √{N }) for the gradient can be reached with our scheme.

  18. Ultracold collisions between spin-orbit-coupled dipoles: General formalism and universality

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hougaard, Christiaan R.; Mulkerin, Brendan C.; Liu, Xia-Ji

    2018-04-01

    A theoretical study of the low-energy scattering properties of two aligned identical bosonic and fermionic dipoles in the presence of isotropic spin-orbit coupling is presented. A general treatment of particles with arbitrary (pseudo)spin is given in the framework of multichannel scattering. At ultracold temperatures and away from shape resonances or closed-channel dominated resonances, the cross section can be well described within the Born approximation to within corrections due to the s -wave scattering. We compare our findings with numerical calculations and find excellent agreement.

  19. Nuclear-spin-independent short-range three-body physics in ultracold atoms.

    PubMed

    Gross, Noam; Shotan, Zav; Kokkelmans, Servaas; Khaykovich, Lev

    2010-09-03

    We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.

  20. Evaluation of commercial nickel-phosphorus coating for ultracold neutron guides using a pinhole bottling method

    DOE PAGES

    Pattie. Jr., Robert Wayne; Adamek, Evan Robert; Brenner, Thomas; ...

    2017-08-10

    We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle wasmore » interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1.3(1)×10 –4. In conclusion, we also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.« less

  1. Evaluation of commercial nickel-phosphorus coating for ultracold neutron guides using a pinhole bottling method

    NASA Astrophysics Data System (ADS)

    Pattie, R. W.; Adamek, E. R.; Brenner, T.; Brandt, A.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S. A.; Geltenbort, P.; Ito, T. M.; Lauer, T.; Liu, C. Y.; Majewski, J.; Makela, M.; Masuda, Y.; Morris, C. L.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Schroffenegger, J.; Tang, Z.; Wei, W.; Wang, Z.; Watkins, E.; Young, A. R.; Zeck, B. A.

    2017-11-01

    We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50 μm thick NiP coatings on stainless steel and aluminum substrates was measured to be VF = 213(5 . 2) neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle was interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1 . 3(1) × 10-4. We also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.

  2. Evaluation of commercial nickel-phosphorus coating for ultracold neutron guides using a pinhole bottling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattie. Jr., Robert Wayne; Adamek, Evan Robert; Brenner, Thomas

    We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle wasmore » interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1.3(1)×10 –4. In conclusion, we also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.« less

  3. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.

  4. Self-consistent theory of atomic Fermi gases with a Feshbach resonance at the superfluid transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiaji; Hu Hui

    2005-12-15

    A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and 'bare' Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T{sub c} increases monotonically at all widths as the effective interaction between atoms becomes moremore » attractive. Furthermore, a residue factor Z{sub m} of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T{sub c}. Our many-body calculations of Z{sub m} agree qualitatively well with recent measurments of the gas of {sup 6}Li atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.« less

  5. Entanglement entropy and the Fermi surface.

    PubMed

    Swingle, Brian

    2010-07-30

    Free fermions with a finite Fermi surface are known to exhibit an anomalously large entanglement entropy. The leading contribution to the entanglement entropy of a region of linear size L in d spatial dimensions is S∼L(d-1)logL, a result that should be contrasted with the usual boundary law S∼L(d-1). This term depends only on the geometry of the Fermi surface and on the boundary of the region in question. I give an intuitive account of this anomalous scaling based on a low energy description of the Fermi surface as a collection of one-dimensional gapless modes. Using this picture, I predict a violation of the boundary law in a number of other strongly correlated systems.

  6. Ordered structures in rotating ultracold Bose gases

    NASA Astrophysics Data System (ADS)

    Barberán, N.; Lewenstein, M.; Osterloh, K.; Dagnino, D.

    2006-06-01

    Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Ω increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N<10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Ω .

  7. Quantum mechanical models for the Fermi shuttle

    NASA Astrophysics Data System (ADS)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  8. FermiGrid—experience and future plans

    NASA Astrophysics Data System (ADS)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.

    2008-07-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.

  9. FermiGrid - experience and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, K.; Berman, E.; Canal, P.

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and themore » Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.« less

  10. Experimental Observation of One-Dimensional Superradiance Lattices in Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Chen, Liangchao; Wang, Pengjun; Meng, Zengming; Huang, Lianghui; Cai, Han; Wang, Da-Wei; Zhu, Shi-Yao; Zhang, Jing

    2018-05-01

    We measure the superradiant emission in a one-dimensional (1D) superradiance lattice (SL) in ultracold atoms. Resonantly excited to a superradiant state, the atoms are further coupled to other collectively excited states, which form a 1D SL. The directional emission of one of the superradiant excited states in the 1D SL is measured. The emission spectra depend on the band structure, which can be controlled by the frequency and intensity of the coupling laser fields. This work provides a platform for investigating the collective Lamb shift of resonantly excited superradiant states in Bose-Einstein condensates and paves the way for realizing higher dimensional superradiance lattices.

  11. Radio core dominance of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are < log Rrangle = 0.99±0.87 for FDBs and < log Rrangle = -0.62±1.15 for the non-FDBs. A K-S test shows that the probability for the two distributions of FDBs and non-FDBs to come from the same parent distribution is near zero (P =9.12×10^{-52}). Secondly, we also investigated the variability index (V.I.) in the γ-ray band for FDBs, and we found V.I.=(0.12 ±0.07) log R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0

  12. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  13. Fermi Gamma-Ray Space Telescope Science Overview

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    After more than 2 years of science operations, the Fermi Gamma-ray Space Telescope continues to survey the high-energy sky on a daily basis. In addition to the more than 1400 sources found in the first Fermi Large Area Telescope Catalog (I FGL), new results continue to emerge. Some of these are: (1) Large-scale diffuse emission suggests possible activity from the Galactic Center region in the past; (2) a gamma-ray nova was found, indicating particle acceleration in this binary system; and (3) the Crab Nebula, long thought to be a steady source, has varied in the energy ranges seen by both Fermi instruments.

  14. Ultracold bosons in a one-dimensional optical lattice chain: Newton's cradle and Bose enhancement effect

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Guo; Yang, Shi-Jie

    2017-05-01

    We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.

  15. Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms.

    PubMed

    Harte, Tiffany; Bruce, Graham D; Keeling, Jonathan; Cassettari, Donatella

    2014-11-03

    Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.

  16. A prestorage method to measure neutron transmission of ultracold neutron guides

    NASA Astrophysics Data System (ADS)

    Blau, B.; Daum, M.; Fertl, M.; Geltenbort, P.; Göltl, L.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Schmidt-Wellenburg, P.; Zsigmond, G.

    2016-01-01

    There are worldwide efforts to search for physics beyond the Standard Model of particle physics. Precision experiments using ultracold neutrons (UCN) require very high intensities of UCN. Efficient transport of UCN from the production volume to the experiment is therefore of great importance. We have developed a method using prestored UCN in order to quantify UCN transmission in tubular guides. This method simulates the final installation at the Paul Scherrer Institute's UCN source where neutrons are stored in an intermediate storage vessel serving three experimental ports. This method allowed us to qualify UCN guides for their intended use and compare their properties.

  17. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  18. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  19. Fermi level dependence of hydrogen diffusivity in GaN

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Pearton, S. J.; Ren, F.; Theys, B.; Jomard, F.; Teukam, Z.; Dmitriev, V. A.; Nikolaev, A. E.; Usikov, A. S.; Nikitina, I. P.

    2001-09-01

    Hydrogen diffusion studies were performed in GaN samples with different Fermi level positions. It is shown that, at 350 °C, hydrogen diffusion is quite fast in heavily Mg doped p-type material with the Fermi level close to Ev+0.15 eV, considerably slower in high-resistivity p-GaN(Zn) with the Fermi level Ev+0.9 eV, while for conducting and semi-insulating n-GaN samples with the Fermi level in the upper half of the band gap no measurable hydrogen diffusion could be detected. For these latter samples it is shown that higher diffusion temperature of 500 °C and longer times (50 h) are necessary to incorporate hydrogen to appreciable depth. These findings are in line with previously published theoretical predictions of the dependence of hydrogen interstitials formation in GaN on the Fermi level position.

  20. Role of Feshbach resonances in enhancing the production of deeply bound ultracold LiRb molecules with laser pulses

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Ghosal, Subhas; Côté, Robin

    2010-03-01

    We investigate the possibility of forming deeply bound LiRb molecules in a two-color photoassociation experiment. Ultracold ^6Li and ^87Rb atoms colliding in the vicinity of a magnetic Feshbach resonance are photoassociated into an excited electronic state. A wavepacket is then formed by exciting a few vibrational levels of the excited state and allowed to propagate. We calculate the time-dependent overlaps between the wave packet and the lowest vibrational levels of the ground state. After the optimal overlap is obtained we use the second laser pulse to dump the wave packet and efficiently populate the deeply bound ro-vibrational levels of ^6Li^87Rb in the ground state. The resulting combination of Feshbach-optimized photoassociation (FOPA) with the time-dependent pump-dump approach will produce a large number of stable ultracold molecules in the ground state. This technique is general and applicable to other systems.

  1. Observation strategies with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    McEnery, Julie E.; Fermi mission Teams

    2015-01-01

    During the first few years of the Fermi mission, the default observation mode has been an all-sky survey, optimized to provide relatively uniform coverage of the entire sky every three hours. Over 95% of the mission has been performed in this observation mode. However, Fermi is capable of flexible survey mode patterns, and inertially pointed observations both of which allow increased coverage of selected parts of the sky. In this presentation, we will describe the types of observations that Fermi can make, the relative advantages and disadvantages of various observations, and provide guidelines to help Fermi users plan and evaluate non-standard observations.

  2. Non-Fermi liquids in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne; Allen, S. James

    2018-06-01

    Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics. For example, one encounters metal-insulator transitions, deviations from Landau Fermi liquid behavior, longitudinal and Hall scattering rate separation, a pseudogap phase, and bad metal behavior. These properties have been studied extensively in bulk materials, such as the unconventional superconductors and heavy fermion systems. Oxide heterostructures have recently emerged as new platforms to probe, control, and understand strong correlation phenomena. This article focuses on unconventional transport phenomena in oxide thin film systems. We use specific systems as examples, namely charge carriers in SrTiO3 layers and interfaces with SrTiO3, and strained rare earth nickelate thin films. While doped SrTiO3 layers appear to be a well behaved, though complex, electron gas or Fermi liquid, the rare earth nickelates are a highly correlated electron system that may be classified as a non-Fermi liquid. We discuss insights into the underlying physics that can be gained from studying the emergence of non-Fermi liquid behavior as a function of the heterostructure parameters. We also discuss the role of lattice symmetry and disorder in phenomena such as metal-insulator transitions in strongly correlated heterostructures.

  3. Enrico Fermi and the Dolomites

    NASA Astrophysics Data System (ADS)

    Battimelli, Giovanni; de Angelis, Alessandro

    2014-11-01

    Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.

  4. Losses and depolarization of ultracold neutrons on neutron guide and storage materials

    NASA Astrophysics Data System (ADS)

    Bondar, V.; Chesnevskaya, S.; Daum, M.; Franke, B.; Geltenbort, P.; Göltl, L.; Gutsmiedl, E.; Karch, J.; Kasprzak, M.; Kessler, G.; Kirch, K.; Koch, H.-C.; Kraft, A.; Lauer, T.; Lauss, B.; Pierre, E.; Pignol, G.; Reggiani, D.; Schmidt-Wellenburg, P.; Sobolev, Yu.; Zechlau, T.; Zsigmond, G.

    2017-09-01

    At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to ˜460 s were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, η , varied between 1.0 ×10-4 and 2.2 ×10-4 . All η values are in agreement with theory except for dPS, where anomalous losses at room temperature were established with four standard deviations. The depolarization probabilities per wall collision β measured with unprecedented sensitivity varied between 0.7 ×10-6 and 9.0 ×10-6 . Our depolarization result for copper differs from other experiments by 4.4 and 15.8 standard deviations. The β values of the paramagnetic NiMo alloys over molybdenum content show an increase of β with increasing Mo content. This is in disagreement with expectations from literature. Finally, ferromagnetic behavior of NiMo alloys at room temperature was found for molybdenum contents of 6.5 at.% or less and paramagnetic behavior for more than 8.7 at.%. This may contribute to solving an ambiguity in literature.

  5. Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.

    PubMed

    Zheng, Wei; Zhai, Hui

    2014-12-31

    In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.

  6. Fermi Large Area Telescope

    Science.gov Websites

    Home Mission Instrument Institutions Publications NASA Pictures Internal lock The Fermi Large Area Monitor (GBM). Wikipedia Country Funding Agencies United States NASA; Department of Energy France

  7. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics: Quantum many-body physics of ultracold molecules in optical lattices: models and simulation methods

    NASA Astrophysics Data System (ADS)

    Wall, Michael

    2014-03-01

    Experimental progress in generating and manipulating synthetic quantum systems, such as ultracold atoms and molecules in optical lattices, has revolutionized our understanding of quantum many-body phenomena and posed new challenges for modern numerical techniques. Ultracold molecules, in particular, feature long-range dipole-dipole interactions and a complex and selectively accessible internal structure of rotational and hyperfine states, leading to many-body models with long range interactions and many internal degrees of freedom. Additionally, the many-body physics of ultracold molecules is often probed far from equilibrium, and so algorithms which simulate quantum many-body dynamics are essential. Numerical methods which are to have significant impact in the design and understanding of such synthetic quantum materials must be able to adapt to a variety of different interactions, physical degrees of freedom, and out-of-equilibrium dynamical protocols. Matrix product state (MPS)-based methods, such as the density-matrix renormalization group (DMRG), have become the de facto standard for strongly interacting low-dimensional systems. Moreover, the flexibility of MPS-based methods makes them ideally suited both to generic, open source implementation as well as to studies of the quantum many-body dynamics of ultracold molecules. After introducing MPSs and variational algorithms using MPSs generally, I will discuss my own research using MPSs for many-body dynamics of long-range interacting systems. In addition, I will describe two open source implementations of MPS-based algorithms in which I was involved, as well as educational materials designed to help undergraduates and graduates perform research in computational quantum many-body physics using a variety of numerical methods including exact diagonalization and static and dynamic variational MPS methods. Finally, I will mention present research on ultracold molecules in optical lattices, such as the exploration of

  8. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  9. Sources of GeV Photons and the Fermi Results

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    This chapter presents the elaborated lecture notes on Sources of GeV Photons and the Fermi Results given by Charles D. Dermer at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". The Fermi Gamma-ray Space Telescope made important discoveries and established new results in various areas of astrophysics: from our solar system to remote gamma-ray bursts, from pulsar physics to limits on dark matter and Lorentz invariance violations. The author gives a broad overview of these results by discussing GeV instrumentation and the GeV sky as seen by Fermi, the Fermi catalogs on gamma-ray sources, pulsars and active galactic nuclei, relativistic jet physics and blazars, gamma-rays from cosmic rays in the Galaxy, from star-forming galaxies and from clusters of galaxies, the diffuse extra-galactic gamma-ray background, micro-quasars, radio galaxies, the extragalactic background light, gamma-ray bursts, Fermi acceleration, ultra-high energy cosmic rays, and black holes.

  10. Quasiparticles and Fermi liquid behaviour in an organic metal

    PubMed Central

    Kiss, T.; Chainani, A.; Yamamoto, H.M.; Miyazaki, T.; Akimoto, T.; Shimojima, T.; Ishizaka, K.; Watanabe, S.; Chen, C.-T.; Fukaya, A.; Kato, R.; Shin, S.

    2012-01-01

    Many organic metals display exotic properties such as superconductivity, spin-charge separation and so on and have been described as quasi-one-dimensional Luttinger liquids. However, a genuine Fermi liquid behaviour with quasiparticles and Fermi surfaces have not been reported to date for any organic metal. Here, we report the experimental Fermi surface and band structure of an organic metal (BEDT-TTF)3Br(pBIB) obtained using angle-resolved photoelectron spectroscopy, and show its consistency with first-principles band structure calculations. Our results reveal a quasiparticle renormalization at low energy scales (effective mass m*=1.9 me) and ω2 dependence of the imaginary part of the self energy, limited by a kink at ~50 meV arising from coupling to molecular vibrations. The study unambiguously proves that (BEDT-TTF)3Br(pBIB) is a quasi-2D organic Fermi liquid with a Fermi surface consistent with Shubnikov-de Haas results. PMID:23011143

  11. Universality and chaotic dynamics in reactive scattering of ultracold KRb molecules with K atoms

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana; Croft, James F. E.; Balakrishnan, Naduvalath; Kendrick, Brian K.

    2017-04-01

    We study the benchmark reaction between the most-celebrated ultracold polar molecule, KRb, with an ultracold K atom. For the first time we map out an accurate ab initio ground potential energy surface of the K2Rb complex in full dimensionality and performed a numerically exact quantum-mechanical calculation of reaction dynamics based on coupled-channels approach in hyperspherical coordinates. An analysis of the adiabatic hyperspherical potentials reveals a chaotic distribution for the short-range complex that plays a key role in governing the reaction outcome. The equivalent distribution for a lighter collisional system with a smaller density of states (here the Li2Yb trimer) only shows random behavior. We find an extreme sensitivity of our chaotic system to a small perturbation associated with the weak non-additive three-body potential contribution that does not affect the total reaction rate coefficient but leads to a significant change in the rotational distribution in the product molecule. In both cases the distribution of these rates is random or Poissonian. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and PHY-1619788 (S.K.), ARO MURI Grant No. W911NF-12-1-0476 (N.B. & S.K.), and DOE LDRD Grant No. 20170221ER (B.K.).

  12. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  13. Conformal Fermi Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Liang; Pajer, Enrico; Schmidt, Fabian, E-mail: ldai@ias.edu, E-mail: Enrico.pajer@gmail.com, E-mail: fabians@mpa-garching.mpg.de

    Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, bymore » removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable effects and ''projection'' terms.« less

  14. "Where is Everybody?" An Account of Fermi's Question

    DOE R&D Accomplishments Database

    Jones, E. M.

    1985-03-01

    Enrico Fermi's famous question, now central to debates about the prevalence of extraterrestrial civilizations, arose during a luncheon conversation with Emil Konopinski, Edward Teller, and Herbert York in the summer of 1950. Fermi's companions on that day have provided accounts of the incident.

  15. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    PubMed

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  16. Evidence of Antiblockade in an Ultracold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Amthor, Thomas; Giese, Christian; Hofmann, Christoph S.; Weidemüller, Matthias

    2010-01-01

    We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.023002]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.

  17. Compact Laser System for Field Deployable Ultracold Atom Sensors

    NASA Astrophysics Data System (ADS)

    Pino, Juan; Luey, Ben; Anderson, Mike

    2013-05-01

    As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA

  18. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers

    NASA Astrophysics Data System (ADS)

    Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.

    2017-09-01

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  19. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  20. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  1. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2009-10-30

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  2. Controlling resonant tunneling in graphene via Fermi velocity engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Jonas R. F., E-mail: jonas.lima@ufrpe.br; Pereira, Luiz Felipe C.; Bezerra, C. G.

    We investigate the resonant tunneling in a single layer graphene superlattice with modulated energy gap and Fermi velocity via an effective Dirac-like Hamiltonian. We calculate the transmission coefficient with the transfer matrix method and analyze the effect of a Fermi velocity modulation on the electronic transmission, in the case of normal and oblique incidence. We find it is possible to manipulate the electronic transmission in graphene by Fermi velocity engineering, and show that it is possible to tune the transmitivity from 0 to 1. We also analyze how a Fermi velocity modulation influences the total conductance and the Fano factor.more » Our results are relevant for the development of novel graphene-based electronic devices.« less

  3. Fermi/GBM Results of Magnetars

    NASA Technical Reports Server (NTRS)

    Kouveliotou, chryssa

    2011-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 18) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11,2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from four magnetar sources. Two of these were brand new sources, SGR J0501 +4516, discovered with Swift and extensively monitored with Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN). A third was SGR Jl550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP IEI547.0-5408), but exhibiting a very prolific outburst with over 400 events recorded in January 2009. In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.

  4. Fermi's Motion Produces a Study in Spirograph

    NASA Image and Video Library

    2013-02-27

    Final still from Fermi video [bit.ly/Y2K4LN]. Credit: NASA/DOE/Fermi LAT Collaboration ----- NASA's Fermi Gamma-ray Space Telescope orbits our planet every 95 minutes, building up increasingly deeper views of the universe with every circuit. Its wide-eyed Large Area Telescope (LAT) sweeps across the entire sky every three hours, capturing the highest-energy form of light -- gamma rays -- from sources across the universe. These range from supermassive black holes billions of light-years away to intriguing objects in our own galaxy, such as X-ray binaries, supernova remnants and pulsars. Now a Fermi scientist has transformed LAT data of a famous pulsar into a mesmerizing movie that visually encapsulates the spacecraft's complex motion. Click here to continue reading: 1.usa.gov/WhYwCU NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  6. Pairing in a dry Fermi sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Thomas A.; Staar, Peter; Mishra, V.

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  7. Pairing in a dry Fermi sea

    DOE PAGES

    Maier, Thomas A.; Staar, Peter; Mishra, V.; ...

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  8. Lattice-Assisted Spectroscopy: A Generalized Scanning Tunneling Microscope for Ultracold Atoms.

    PubMed

    Kantian, A; Schollwöck, U; Giamarchi, T

    2015-10-16

    We propose a scheme to measure the frequency-resolved local particle and hole spectra of any optical lattice-confined system of correlated ultracold atoms that offers single-site addressing and imaging, which is now an experimental reality. Combining perturbation theory and time-dependent density matrix renormalization group simulations, we quantitatively test and validate this approach of lattice-assisted spectroscopy on several one-dimensional example systems, such as the superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.

  9. Acoustics of tachyon Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trojan, Ernst; Vlasov, George V.

    2011-06-15

    We consider a Fermi gas of free tachyons as a continuous medium and find whether it satisfies the causality condition. There is no stable tachyon matter with the particle density below critical value n{sub T} and the Fermi momentum k{sub F}<{radical}((3/2))m that depends on the tachyon mass m. The pressure P and energy density E cannot be arbitrary small, but the situation P>E is not forbidden. Existence of shock waves in tachyon gas is also discussed. At low density n{sub T}

  10. Multimode Bose-Hubbard model for quantum dipolar gases in confined geometries

    NASA Astrophysics Data System (ADS)

    Cartarius, Florian; Minguzzi, Anna; Morigi, Giovanna

    2017-06-01

    We theoretically consider ultracold polar molecules in a wave guide. The particles are bosons: They experience a periodic potential due to an optical lattice oriented along the wave guide and are polarized by an electric field orthogonal to the guide axis. The array is mechanically unstable by opening the transverse confinement in the direction orthogonal to the polarizing electric field and can undergo a transition to a double-chain (zigzag) structure. For this geometry we derive a multimode generalized Bose-Hubbard model for determining the quantum phases of the gas at the mechanical instability, taking into account the quantum fluctuations in all directions of space. Our model limits the dimension of the numerically relevant Hilbert subspace by means of an appropriate decomposition of the field operator, which is obtained from a field theoretical model of the linear-zigzag instability. We determine the phase diagrams of small systems using exact diagonalization and find that, even for tight transverse confinement, the aspect ratio between the two transverse trap frequencies controls not only the classical but also the quantum properties of the ground state in a nontrivial way. Convergence tests at the linear-zigzag instability demonstrate that our multimode generalized Bose-Hubbard model can catch the essential features of the quantum phases of dipolar gases in confined geometries with a limited computational effort.

  11. The bound states of ultracold KRb molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul; Hanna, Thomas

    2009-03-01

    Recently ultracold vibrational ground state ^40K^87Rb polar molecules have been made using magnetoassociation of two cold atoms to a weakly bound Feshbach molecule, followed by a two-color optical STIRAP process to transfer molecules to the molecular ground state [1]. We have used accurate potential energy curves for the singlet and triplet states of the KRb molecule [2] with coupled channels calculations to calculate all of the bound states of the ^40K^87Rb molecule as a function of magnetic field from the cold atom collision threshold to the v=0 ground state. We have also developed approximate models for understanding the changing properties of the molecular bound states as binding energy increases. Some overall conclusions from these calculations will be presented. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science, 2008, 322, 231--235. [2] A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Kn"ockel, and E. Tiemann, Phys. Rev. A, 2007, 76, 022511.

  12. Fermi-LAT detection of ongoing gamma-ray activity from the new gamma-ray source Fermi J1654-1055 (PMN J1632-1052)

    NASA Astrophysics Data System (ADS)

    Kocevski, D.; Ajello, M.; Buson, S.; Buehler, R.; Giomi, M.

    2016-02-01

    During the week between February 8 and 15, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a new transient source, Fermi J1654-1055.

  13. Observation of Dipolar Spin-Exchange Interactions with Polar Molecules in a Lattice

    DTIC Science & Technology

    2013-01-01

    extend beyond nearest neighbours. This allows coherent spin dynamics to persist even for gases with relatively high entropy and low lattice filling...dynamics to persist even for gases with relatively high entropy and low lat- tice filling. While measured effects of dipolar interactions in ultracold...limits superexchange to nearest-neighbor interactions and requires extremely low temperature and entropy . In contrast, long-range dipolar

  14. Fermi, Szilard and Trinity

    ERIC Educational Resources Information Center

    Anderson, Herbert L.

    1974-01-01

    The final installment of the author's recollections of his work with physicists Enrico Fermi, Leo Szilard and others in developing the first controlled nuclear chain reaction and in preparing the test explosion of the first atomic bomb. (GS)

  15. Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Hammer, H.-W.; Klos, P.; Lynn, J. E.; Schwenk, A.

    2017-06-01

    We present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy. This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.

  16. Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    DOE PAGES

    Gandolfi, Stefano; Hammer, Hans -Werner; Klos, P.; ...

    2017-06-08

    Here, we present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy.more » This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.« less

  17. Realizing Fulde-Ferrell Superfluids via a Dark-State Control of Feshbach Resonances

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Hu, Hui; Liu, Xia-Ji

    2018-01-01

    We propose that the long-sought Fulde-Ferrell superfluidity with nonzero momentum pairing can be realized in ultracold two-component Fermi gases of K 40 or Li 6 atoms by optically tuning their magnetic Feshbach resonances via the creation of a closed-channel dark state with a Doppler-shifted Stark effect. In this scheme, two counterpropagating optical fields are applied to couple two molecular states in the closed channel to an excited molecular state, leading to a significant violation of Galilean invariance in the dark-state regime and hence to the possibility of Fulde-Ferrell superfluidity. We develop a field theoretical formulation for both two-body and many-body problems and predict that the Fulde-Ferrell state has remarkable properties, such as anisotropic single-particle dispersion relation, suppressed superfluid density at zero temperature, anisotropic sound velocity, and rotonic collective mode. The latter two features can be experimentally probed using Bragg spectroscopy, providing a smoking-gun proof of Fulde-Ferrell superfluidity.

  18. Formation of ultracold molecules induced by a high-power single frequency fiber laser

    NASA Astrophysics Data System (ADS)

    Fernandes Passagem, Henry; Colin-Rodriguez, Ricardo; Ventura da Silva, Paulo; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Marcassa, Luis

    2017-04-01

    Photoassociation of a pair of ultracold atoms is a quite simple and rapid approach for cold molecule formation. The main limitation of PA is that the latter step is incoherent, so that the population of the created molecules is spread over many vibrational levels with weak or moderate binding energies. If the excited electronic molecular state exhibits a peculiar feature at short internuclear distance like a potential barrier or an avoided crossing, the population of deeply-bound ground state levels may be significantly enhanced. In this work, the influence of a high-power single frequency fiber laser on the formation of ultracold 85Rb2 molecules is investigated as a function of its frequency (in the 1062-1070 nm range) in a magneto optical trap. We found evidence for the formation of ground state 85Rb2 molecules in low vibrational levels (v <= 20) with a maximal rate of 104 s-1, induced by short-range photoassociation by the fiber laser followed by spontaneous emission. When this laser is used to set up a dipole trap, we measure an atomic loss rate at a wavelength far from the PA resonances only 4 times smaller than the one observed at a PA resonance wavelength. This work may have important consequences for atom trapping using lasers around 1060 nm. This work is supported by Grants 2013/02816-8 and 2014/24479-6, Sao Paulo Research Foundation (FAPESP).

  19. Geometric phase effects in ultracold collisions of H/D with rotationally excited HD

    NASA Astrophysics Data System (ADS)

    Kendrick, Brian K.; Croft, James F. E.; Hazra, Jisha; Balakrishnan, N.

    2017-04-01

    Quantum reactive scattering calculations for the H/D + HD(v = 4 , j = 1 , 2) -> H/D + HD(v', j') and H + H2(v = 4 , j = 1 , 2) -> H + H2(v', j') exchange reactions are presented for the ground electronic state of H3. A numerically exact three-dimensional time-independent scattering method based on hyperspherical coordinates is used to compute rotationally resolved reaction cross sections and non-thermal rate coefficients for collision energies between 1 μK and 100 K . The geometric (Berry) phase associated with the D3h conical intersection in H3 is included using a U(1) vector (gauge) potential approach. It is shown that the geometric phase leads to a significant (up to three orders of magnitude) enhancement or suppression of the ultracold reaction rate coefficients depending upon whether the interference between the reaction pathways encircling the conical intersection is constructive or destructive. The nature of the interference is governed by a newly discovered mechanism which leads to an effective quantization of the ultracold scattering phase shifts. Interesting behavior due to rotational excitation of the HD and H2 is observed which might be exploited by experimentalists to control the reaction outcome. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.), and DOE LDRD Grant No. 20170221ER (B.K.).

  20. First measurement of the neutron beta asymmetry with ultracold neutrons.

    PubMed

    Pattie, R W; Anaya, J; Back, H O; Boissevain, J G; Bowles, T J; Broussard, L J; Carr, R; Clark, D J; Currie, S; Du, S; Filippone, B W; Geltenbort, P; García, A; Hawari, A; Hickerson, K P; Hill, R; Hino, M; Hoedl, S A; Hogan, G E; Holley, A T; Ito, T M; Kawai, T; Kirch, K; Kitagaki, S; Lamoreaux, S K; Liu, C-Y; Liu, J; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Meier, N; Mendenhall, M P; Morris, C L; Mortensen, R; Pichlmaier, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Sabourov, K; Sallaska, A L; Saunders, A; Schmid, R; Seestrom, S; Servicky, C; Sjue, S K L; Smith, D; Sondheim, W E; Tatar, E; Teasdale, W; Terai, C; Tipton, B; Utsuro, M; Vogelaar, R B; Wehring, B W; Xu, Y P; Young, A R; Yuan, J

    2009-01-09

    We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021.

  1. Solitonic excitations in collisions of superfluid nuclei a qualitatively new phenomenon distinct from the Josephson effect

    NASA Astrophysics Data System (ADS)

    Sekizawa, Kazuyuki; Wlazłowski, Gabriel; Magierski, Piotr

    2017-11-01

    Recently, we have reported a novel role of pairing in low-energy heavy ion reactions at energies above the Coulomb barrier, which may have a detectable impact on reaction outcomes, such as the kinetic energy of fragments and the fusion cross section [arXiv:1611.10261, arXiv:1702.00069]. The phenomenon mimics the one studied experimentally with ultracold atomic gases, where two clouds of fermionic superfluids with different phases of the pairing fields are forced to merge, inducing various excitation modes of the pairing field. Although it originates from the phase difference of the pairing fields, the physics behind it is markedly different from the so-called Josephson effect. In this short contribution, we will briefly outline the results discussed in our recent papers and explain relations with the field of ultracold atomic gases.

  2. Towards a complete Fermi surface in underdoped high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug

  3. The MCUCN simulation code for ultracold neutron physics

    NASA Astrophysics Data System (ADS)

    Zsigmond, G.

    2018-02-01

    Ultracold neutrons (UCN) have very low kinetic energies 0-300 neV, thereby can be stored in specific material or magnetic confinements for many hundreds of seconds. This makes them a very useful tool in probing fundamental symmetries of nature (for instance charge-parity violation by neutron electric dipole moment experiments) and contributing important parameters for the Big Bang nucleosynthesis (neutron lifetime measurements). Improved precision experiments are in construction at new and planned UCN sources around the world. MC simulations play an important role in the optimization of such systems with a large number of parameters, but also in the estimation of systematic effects, in benchmarking of analysis codes, or as part of the analysis. The MCUCN code written at PSI has been extensively used for the optimization of the UCN source optics and in the optimization and analysis of (test) experiments within the nEDM project based at PSI. In this paper we present the main features of MCUCN and interesting benchmark and application examples.

  4. Geometric phase effects in ultracold hydrogen exchange reactions

    NASA Astrophysics Data System (ADS)

    Naduvalath, Balakrishnan; Croft, James F. E.; Hazra, Jisha; Kendrick, Brian K.

    2017-04-01

    Electronically non-adiabatic effects play an important role in many chemical reactions. The geometric phase, also known as the Berry's phase, arises from the adiabatic transport of the electronic wave function around a conical intersection between two electronic potential energy surfaces. It is shown that in ultracold collisions of H and D atoms with vibrationally excited HD, inclusion of the geometric phase leads to constructive and destructive interferences between non-reactive and exchange components of the wave function. This results in strong enhancement or suppression of reactivity depending on the final rovibrational levels of the scattered HD molecules. The effect is illustrated for non-rotating and rotationally excited HD molecules in the v = 4 vibrational level for which the H+HD and D+HD reactions occur through a barrierless path. This work was supported in part by NSF Grant PHY-1505557 (N.B.), ARO MURI Grant No. W911NF-12-1-0476 (N.B.), and DOE LDRD Grant No. 20170221ER (B.K.).

  5. Magnetar Observations with Fermi/GBM

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.

  6. Chandra and Swift Observations of Unidentified Fermi-LAT Objects

    NASA Astrophysics Data System (ADS)

    Donato, Davide; Cheung, T.; Gehrels, N.

    2010-03-01

    In the last year we targeted some of the unidentified Fermi-LAT objects (UFOs) at high Galactic latitude with Chandra and Swift in order to determine the basic properties (positions, fluxes, hardness ratios) of all X-ray sources within the Fermi-LAT localization circles. These satellites enable us to detect the X-ray conterparts with a flux limit that is at least an order of magnitude lower than achieved in extant RASS data and to further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources. Here we present the results obtained with 5 Chandra pointings of high Galactic latitude UFOs in the Fermi-LAT 3-months bright source list. The association of detected X-ray sources within the improved 11-months Fermi-LAT localization circles with available optical and radio observations is discussed.

  7. Repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism.

    PubMed

    Conduit, G J; Simons, B D

    2009-11-13

    Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic transition would take place at a weaker interaction strength than is observed in experiment. This discrepancy motivates a simple nonequilibrium theory that takes account of the dynamics of magnetic defects and three-body losses. The formalism developed displays good quantitative agreement with experiment.

  8. Towards fundamental understanding of ultracold KRb

    NASA Astrophysics Data System (ADS)

    Kotochigova, Svetlana

    2009-05-01

    The recent formation of ultracold KRb molecules in their absolute rovibrational ground state [1] has created great promise for study of collective phenomena that rely on the long-range interactions between polar molecules. Here we discuss the theoretical analysis of various essential properties of the KRb molecules [2] that accompanied these experimental advances. This analysis is based on multi-channel bound-state calculations of both ground and excited electronic states. We have found that the theoretical hyperfine and Zeeman mixed X^1&+circ; and a^3&+circ; vibrational structure shows excellent agreement with the experimentally observed structure. In addition, multi-channel calculations of the rovibrational structure of the excited state potentials have allowed us to find the optimal transitions to the lowest v=0 vibrational levels. Finally, we examine the dynamic polarizability of vibrationally cold KRb molecules as a function of laser frequency. Based on this knowledge, laser frequencies can be selected to minimize decoherence from loss of molecules due to spontaneous or laser-induced transitions. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008). [2] S. Kotochigova, E. Tiesinga, and P. S. Julienne, submitted to New J. Phys. (2009).

  9. Out-of-equilibrium dynamics of repulsive Fermi gases in quasiperiodic potentials: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Rossini, Davide; Pilati, Sebastiano

    2018-04-01

    The dynamics of a one-dimensional two-component Fermi gas in the presence of a quasiperiodic optical lattice (OL) is investigated by means of a density functional theory approach. Inspired by the protocol implemented in recent cold-atom experiments—designed to identify the many-body localization transition—we analyze the relaxation of an initially prepared imbalance between the occupation number of odd and of even sites. For quasidisorder strength beyond the Anderson localization transition, the imbalance survives for long times, indicating the inability of the system to reach local equilibrium. The late-time value of the imbalance diminishes for increasing interaction strength. Close to the critical quasidisorder strength corresponding to the noninteracting (Anderson) transition, the interacting system displays an extremely slow relaxation dynamics, consistent with subdiffusive behavior. The amplitude of the imbalance fluctuations around its running average is found to decrease with time, and such damping is more effective with increasing interaction strengths. While our study addresses the setup with two equally intense OLs, very similar effects due to interactions have been observed also in recent cold-atom experiments performed in the tight-binding regime, i.e., where one of the two OLs is very deep and the other is much weaker.

  10. Cinema, Fermi problems and general education

    NASA Astrophysics Data System (ADS)

    Efthimiou, C. J.; Llewellyn, R. A.

    2007-05-01

    During the past few years the authors have developed a new approach to the teaching of physical science, a general education course typically found in the curricula of nearly every college and university. This approach, called Physics in Films (Efthimiou and Llewellyn 2006 Phys. Teach. 44 28-33), uses scenes from popular films to illustrate physical principles and has excited student interest and improved student performance. A similar approach at the senior/high-school level, nicknamed Hollywood Physics, has been developed by Chandler (2006 Phys. Teach. 44 290-2 2002 Phys. Teach. 40 420-4). The two approaches may be considered complementary as they target different student groups. The analyses of many of the scenes in Physics in Films are a direct application of Fermi calculations—estimates and approximations designed to make solutions of complex and seemingly intractable problems understandable to the student non-specialist. The intent of this paper is to provide instructors with examples they can use to develop skill in recognizing Fermi problems and making Fermi calculations in their own courses.

  11. [Gases in vitreoretinal surgery].

    PubMed

    Janco, L; Vida, R; Bartos, M; Villémová, K; Izák, M

    2012-02-01

    To evaluate the importance and benefits of using gases in vitreoretinal surgery. The gases represent a wide group of substances used in eye surgery for more than 100 years. The role of intraocular gases in vitreoretinal surgery is irreplaceable. Their use is still considered to be the "gold standard". An important step in eye surgery was the introduction of expanding gases--sulfur hexafluoride and perfluorocarbons into routine clinical practice. The most common indications for the use of intraocular gases are: retinal detachment, idiopathic macular hole, complications of vitreoretinal surgery and others. The introduction of intraocular gases into routine clinical practice, along with other modern surgical techniques resulted in significant improvement of postoperative outcomes in a wide range of eye diseases. Understanding the principles of intraocular gases use brings the benefits to the patient and physician as well. Due to their physical and chemical properties they pose far the best and most appropriate variant of intraocular tamponade. Gases also bring some disadvantages, such as difficulties in detailed fundus examination, visual acuity testing, ultrasonographic examination, difficulties in application of intravitreal drugs or reduced possibility of retina laser treatment. The gases significantly change optical system properties of the eye. The use of gases in vitreoretinal surgery has significantly increased success rate of retinal detachment surgery, complicated posterior segment cases, trauma, surgery of the macula and other diseases.

  12. Use of Fermi-Dirac statistics for defects in solids

    NASA Astrophysics Data System (ADS)

    Johnson, R. A.

    1981-12-01

    The Fermi-Dirac distribution function is an approximation describing a special case of Boltzmann statistics. A general occupation probability formula is derived and a criterion given for the use of Fermi-Dirac statistics. Application to classical problems of defects in solids is discussed.

  13. Thermodynamics and structural transition of binary atomic Bose-Fermi mixtures in box or harmonic potentials: A path-integral study

    NASA Astrophysics Data System (ADS)

    Kim, Tom; Chien, Chih-Chun

    2018-03-01

    Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures, we use the local density approximation to map out the finite-temperature density profiles and present typical trap structures, including the mixture, partially separated phases, and fully separated phases.

  14. FERMI Observations of TeV-Selected Active Galactic Nuclei

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-04

    Here, we report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the thirdmore » EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Finally, evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.« less

  15. Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521

    2011-07-01

    We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.

  16. NASA's Fermi Telescope Resolves Radio Galaxy Centaurus A

    NASA Image and Video Library

    2017-12-08

    NASA release April 1, 2010 Fermi's Large Area Telescope resolved high-energy gamma rays from an extended region around the active galaxy Centaurus A. The emission corresponds to million-light-year-wide radio-emitting gas thrown out by the galaxy's supersized black hole. This inset shows an optical/gamma-ray composite of the galaxy and its location on the Fermi one-year sky map. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  17. Gap Solitons of Superfluid Fermi Gas in FS Optical Lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhang, Ke-Zhi; He, Yong-Lin; Liu, Zhen-Lai; Zhu, Liao

    2018-01-01

    By employing the mean-field theory and hydrodynamic scheme, we study the gap solitons of superfluid Fermi gas in Fourier-Synthesized(FS) optical lattices. By means of numerical methods and variational approximation, the atomic interaction, the chemical potential, the potential depth of the lattice and relative phase of the Fermi system are derived along the Bose-Enstein condensation(BEC)side to the Bardeen-Cooper-Schrieffer (BCS)side. It means that the condition exciting gap solitons is obtained. Moreover, we analyze the fundamental gap soltions of the superfluid Fermi gas. It is found that the relative phase α impacts greatly on the properties of fundamental gap solitons for superfluid Fermi gas. Especially, the nonlinearity interaction term g decreases with α. Add, due to Fermi pressure, curvature changes of g in the BEC limit( γ = 1, here, γ is a function of an interaction parameter) is larger than that at unitary ( γ = 2/3). Spatial distribution of gap solitons exhibit very obvious different when the system transit from the BEC side to BCS side.

  18. Pump-probe study of the formation of rubidium molecules by ultrafast photoassociation of ultracold atoms

    NASA Astrophysics Data System (ADS)

    McCabe, David J.; England, Duncan G.; Martay, Hugo E. L.; Friedman, Melissa E.; Petrovic, Jovana; Dimova, Emiliya; Chatel, Béatrice; Walmsley, Ian A.

    2009-09-01

    An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step toward a fully coherent pump-dump approach to the stabilization of Rb2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of preassociated molecules.

  19. Veselago lensing with ultracold atoms in an optical lattice.

    PubMed

    Leder, Martin; Grossert, Christopher; Weitz, Martin

    2014-01-01

    Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman π-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications.

  20. Rotational Effects of Nanoparticles for Cooling down Ultracold Neutrons

    PubMed Central

    Tu, Xiaoqing; Sun, Guangai; Gong, Jian; Liu, Lijuan; Ren, Yong; Gao, Penglin; Wang, Wenzhao; Yan, H.

    2017-01-01

    Due to quantum coherence, nanoparticles have very large cross sections when scattering with very cold or Ultracold Neutrons (UCN). By calculating the scattering cross section quantum mechanically at first, then treating the nanoparticles as classical objects when including the rotational effects, we can derive the associated energy transfer. We find that rotational effects could play an important role in slowing down UCN. In consequence, the slowing down efficiency can be improved by as much as ~40%. Since thermalization of neutrons with the moderator requires typically hundreds of collisions between them, a ~40% increase of the efficiency per collision could have a significant effect. Other possible applications, such as neutrons scattering with nano shells and magnetic particles,and reducing the systematics induced by the geometric phase effect using nanoparticles in the neutron Electric Dipole Moment (nEDM), are also discussed in this paper. PMID:28294116

  1. High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice

    NASA Astrophysics Data System (ADS)

    Fläschner, Nick; Tarnowski, Matthias; Rem, Benno S.; Vogel, Dominik; Sengstock, Klaus; Weitenberg, Christof

    2018-05-01

    Spectroscopic tools are fundamental for the understanding of complex quantum systems. Here, we demonstrate high-precision multiband spectroscopy in a graphenelike lattice using ultracold fermionic atoms. From the measured band structure, we characterize the underlying lattice potential with a relative error of 1.2 ×10-3 . Such a precise characterization of complex lattice potentials is an important step towards precision measurements of quantum many-body systems. Furthermore, we explain the excitation strengths into different bands with a model and experimentally study their dependency on the symmetry of the perturbation operator. This insight suggests the excitation strengths as a suitable observable for interaction effects on the eigenstates.

  2. Non-Fermi glasses: fractionalizing electrons at finite energy density

    NASA Astrophysics Data System (ADS)

    Parameswaran, Siddharth; Gopalakrishnan, Sarang

    Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states. We argue for the existence of ``non-Fermi glasses,'' which are phases of interacting disordered fermions that are fully many-body localized, yet cannot be deformed into an Anderson insulator without an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral features to Anderson insulators. We identify a diagnostic, based on ratios of correlation functions, that sharply distinguishes between the two phases even at infinite temperature. We argue that our results and diagnostic should generically apply to the high-temperature behavior of the many-body localized descendants of fractionalized phases. S.A.P. is supported by NSF Grant DMR-1455366 and a UC President's Research Catalyst Award CA-15-327861, and S.G. by the Burke Institute at Caltech.

  3. Ultracold Anions for High-Precision Antihydrogen Experiments

    NASA Astrophysics Data System (ADS)

    Cerchiari, G.; Kellerbauer, A.; Safronova, M. S.; Safronova, U. I.; Yzombard, P.

    2018-03-01

    Experiments with antihydrogen (H ¯) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H ¯ to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions—dominated by polarization and correlation effects—only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La- . Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν =96.592 713 (91 ) THz and its transition rate to be A =4.90 (50 )×104 s-1 . Using a novel high-precision theoretical treatment of La- we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La- . The new data establish the suitability of La- for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  4. Non-Fermi-liquid magic angle effects in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lebed, A. G.

    2016-07-01

    We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .

  5. Leptonic v.s. Hadronic Origin of the Gamma-ray Emission of the Fermi bubbles: Updates from Fermi-LAT and Forecast for Future Gamma-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2014-06-01

    Data from the Fermi-LAT revealed two large gamma-ray bubbles, extending 50 degrees above and below the Galactic center, with a width of about 40 degrees in longitude. Such structure has been confirmed with multi-wavelength observations. With the most up to date Fermi-LAT data analysis, I will show that the Fermi bubbles have a spectral cutoff at both low energy < 1 GeV and high energy > 150 GeV. Detailed analysis of the spectral features will help us to distinguish the leptonic origin from hadronic origin of the gamma-ray emission from the bubbles. I will also describe what we expect to learn about the bubbles from future gamma-ray telescopes after Fermi, with an emphasis on Dark Matter Particle Explorer and Pair Production Gamma-ray Unit.

  6. Fractionalized Fermi liquid in a Kondo-Heisenberg model

    DOE PAGES

    Tsvelik, A. M.

    2016-10-10

    The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. Here, I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. The resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations, in agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003)]. Furthermore, the system undergoes amore » phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.« less

  7. Surface to bulk Fermi arcs via Weyl nodes as topological defects

    PubMed Central

    Kim, Kun Woo; Lee, Woo-Ram; Kim, Yong Baek; Park, Kwon

    2016-01-01

    A hallmark of Weyl semimetal is the existence of surface Fermi arcs. An intriguing question is what determines the connectivity of surface Fermi arcs, when multiple pairs of Weyl nodes are present. To answer this question, we show that the locations of surface Fermi arcs are predominantly determined by the condition that the Zak phase integrated along the normal-to-surface direction is . The Zak phase can reveal the peculiar topological structure of Weyl semimetal directly in the bulk. Here, we show that the winding of the Zak phase around each projected Weyl node manifests itself as a topological defect of the Wannier–Stark ladder, energy eigenstates under an electric field. Remarkably, this leads to bulk Fermi arcs, open-line segments in the bulk spectra. Bulk Fermi arcs should exist in conjunction with surface counterparts to conserve the Weyl fermion number under an electric field, which is supported by explicit numerical evidence. PMID:27845342

  8. Optoelectrical Cooling of Formaldehyde to Sub-Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Zeppenfeld, Martin

    2016-05-01

    Due to their strong long-range dipole-dipole interactions and large number of internal states, polar molecules cooled to ultracold temperatures enable fascinating applications ranging from ultracold chemistry to investigation of dipolar quantum gases. However, realizing a simple and general technique to cool molecules to ultracold temperatures, akin to laser cooling of atoms, has been a formidable challenge. We present results for opto-electrical Sisyphus cooling applied to formaldehyde (H2 CO). In this generally applicable cooling scheme, molecules repeatedly move up and down electric field gradients of a trapping potential in different rotational states to efficiently extract kinetic energy. A total of about 300,000 molecules are thereby cooled by a factor of 1000 to 400uK, resulting in a record-large ensemble of ultracold molecules. In addition to cooling of the motional degrees of freedom, optical pumping via a vibrational transition allows us to control the internal rotational state. We thereby achieve a purity of over 80% of formaldehyde molecules in a single rotational M-sublevel. Our experiment provides an excellent starting point for precision spectroscopy and investigation of ultracold collisions.

  9. Geometric phase effects in the ultracold D + HD $$ \\rightarrow $$ D + HD and D + HD $$\\leftrightarrow $$ H + D 2 reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth

    The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less

  10. Geometric phase effects in the ultracold D + HD $$ \\rightarrow $$ D + HD and D + HD $$\\leftrightarrow $$ H + D 2 reactions

    DOE PAGES

    Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth

    2016-12-15

    The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less

  11. Tuning the Fano factor of graphene via Fermi velocity modulation

    NASA Astrophysics Data System (ADS)

    Lima, Jonas R. F.; Barbosa, Anderson L. R.; Bezerra, C. G.; Pereira, Luiz Felipe C.

    2018-03-01

    In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.

  12. Fermi large area telescope second source catalog

    DOE PAGES

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; ...

    2012-03-28

    Here, we present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are fluxmore » measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. Furthermore, we provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. Finally, the 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.« less

  13. Fermi Large Area Telescope Second Source Catalog

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; hide

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  14. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, P. L.; Ajello, M.; Allafort, A.

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurementsmore » in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.« less

  15. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  16. Observation of the Leggett-Rice Effect in a Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Trotzky, S.; Beattie, S.; Luciuk, C.; Smale, S.; Bardon, A. B.; Enss, T.; Taylor, E.; Zhang, S.; Thywissen, J. H.

    2015-01-01

    We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of 40K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter γ =1.08 (9 ) and a bare transverse spin diffusivity D0⊥=2.3 (4 )ℏ/m for a normal-state gas initialized with full polarization and at one-fifth of the Fermi temperature, where m is the atomic mass. One might expect γ =0 at unitarity, where two-body scattering is purely dissipative. We observe γ →0 as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a nonzero γ . Tuning the scattering length a , we find that a sign change in γ occurs in the range 0 <(kFa )-1≲1.3 , where kF is the Fermi momentum. We discuss how γ reveals the effective interaction strength of the gas, such that the sign change in γ indicates a switching of branch between a repulsive and an attractive Fermi gas.

  17. Direct weak localization signature with ultracold atoms: the CBS revival

    NASA Astrophysics Data System (ADS)

    Josse, Vincent

    2016-05-01

    Ultracold atomic systems in presence of disorder have attracted a lot of interest over the past decade, in particular to study the physics of Anderson localization (AL) in a renewed perspective. Landmark experiments have been demonstrated, in 1D and 3D geometries. However many challenges remain and new ideas have emerged, as for instance the search for original signatures of Anderson localization in momentum space. Here I will describe our progresses along that line where a weak localization effect has been directly observed, i.e. the Coherent Backscattering (CBS) phenomenon. In particular I will report on the recent observation of suppression and revival of CBS when a controlled dephasing kick is applied to the system. This observation demonstrates a novel and general method, introduced by T. Micklitz and coworkers, to study probe phase coherence in disordered systems by manipulating time reversal symmetry.

  18. Fermi Spots a Record Flare from Blazar

    NASA Image and Video Library

    2015-07-10

    Blazar 3C 279's historic gamma-ray flare can be seen in this image from the Large Area Telescope (LAT) on NASA's Fermi satellite. Gamma rays with energies from 100 million to 100 billion electron volts (eV) are shown; for comparison, visible light has energies between 2 and 3 eV. The image spans 150 degrees, is shown in a stereographic projection, and represents an exposure from June 11 at 00:28 UT to June 17 at 08:17 UT. Credit: NASA/DOE/Fermi LAT Collaboration

  19. MASTER: OT detection during Fermi trigger inspection

    NASA Astrophysics Data System (ADS)

    Popova, E.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gress, O.; Ivanov, K.; Potter, S.; Gabovich, A.

    2016-11-01

    During inspection of Fermi trigger 501261070 ( (Ra,Dec)=47.190,-47.210; GRB_ERROR_radius=3.27deg, GRB_TIME=2016/11/19 15:11:06.40UT http://gcn.gsfc.nasa.gov/other/501261070.fermi ) MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 03h 22m 52.70s -48d 29m 10.9s on 2016-11-19 21:17:17.878UT with unfiltered m_OT=17.8 (mlim=19.7).

  20. Quantum simulation of ultrafast dynamics using trapped ultracold atoms.

    PubMed

    Senaratne, Ruwan; Rajagopal, Shankari V; Shimasaki, Toshihiko; Dotti, Peter E; Fujiwara, Kurt M; Singh, Kevin; Geiger, Zachary A; Weld, David M

    2018-05-25

    Ultrafast electronic dynamics are typically studied using pulsed lasers. Here we demonstrate a complementary experimental approach: quantum simulation of ultrafast dynamics using trapped ultracold atoms. Counter-intuitively, this technique emulates some of the fastest processes in atomic physics with some of the slowest, leading to a temporal magnification factor of up to 12 orders of magnitude. In these experiments, time-varying forces on neutral atoms in the ground state of a tunable optical trap emulate the electric fields of a pulsed laser acting on bound charged particles. We demonstrate the correspondence with ultrafast science by a sequence of experiments: nonlinear spectroscopy of a many-body bound state, control of the excitation spectrum by potential shaping, observation of sub-cycle unbinding dynamics during strong few-cycle pulses, and direct measurement of carrier-envelope phase dependence of the response to an ultrafast-equivalent pulse. These results establish cold-atom quantum simulation as a complementary tool for studying ultrafast dynamics.

  1. Experimental observation of optical Weyl points and Fermi arcs

    NASA Astrophysics Data System (ADS)

    Rechtsman, Mikael

    We directly observe the presence type-II Weyl points for optical photons in a three-dimensional dielectric structure comprising arrays of evanescently-coupled, single-mode, helical waveguides. We also observe the corresponding Fermi arc surface states emerging from Weyl points (despite the use of the `Fermi arc' terminology, we are referring to bosons rather than fermions). The Weyl points are manifested by the presence of conical diffraction at the Weyl frequency in the photonic band structure, and the Fermi arc states are manifested by the emergence of surface states as we scan in frequency past the Weyl point. We map the Weyl points to Dirac points of the isofrequency surface, and the Fermi arcs to chiral edge states of an anomalous Floquet insulator. In collaboration with: Jiho Noh, Sheng Huang, Daniel Leykam*, Y. D. Chong, Kevin Chen, and Mikael C. Rechtsman M.C.R. acknowledges the National Science Foundation under Award Number ECCS-1509546, the Penn State MRSEC, Center for Nanoscale Science, under Award Number NSF DMR-1420620, and the Alfred P. Sloan Foundation under fellowship number FG-2016-6418.

  2. Generalized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations

    NASA Astrophysics Data System (ADS)

    Rosu, Haret C.; Mancas, Stefan C.

    2017-04-01

    A one-parameter family of Emden-Fowler equations defined by Lampariello's parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class.

  3. Thermal effects in light scattering from ultracold bosons in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakomy, Kazimierz; Idziaszek, Zbigniew; Trippenbach, Marek

    2009-10-15

    We study the scattering of a weak and far-detuned light from a system of ultracold bosons in one-dimensional and three-dimensional optical lattices. We show the connection between angular distributions of the scattered light and statistical properties of a Bose gas in a periodic potential. The angular patterns are determined by the Fourier transform of the second-order correlation function, and thus they can be used to retrieve information on particle number fluctuations and correlations. We consider superfluid and Mott-insulator phases of the Bose gas in a lattice and we analyze in detail how the scattering depends on the system dimensionality, temperature,more » and atom-atom interactions.« less

  4. Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene

    2017-06-01

    Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.

  5. Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Sun, Ning

    2018-04-01

    Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.

  6. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  7. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  8. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE PAGES

    Harrison, Neil

    2016-08-16

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  9. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Neil

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  10. Renormalization Group Theory for the Imbalanced Fermi Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbels, K. B.; Stoof, H. T. C.

    2008-04-11

    We formulate a Wilsonian renormalization group theory for the imbalanced Fermi gas. The theory is able to recover quantitatively well-established results in both the weak-coupling and the strong-coupling (unitarity) limits. We determine for the latter case the line of second-order phase transitions of the imbalanced Fermi gas and, in particular, the location of the tricritical point. We obtain good agreement with the recent experiments of Y. Shin et al. [Nature (London) 451, 689 (2008)].

  11. Effective field theories for superconducting systems with multiple Fermi surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com; Granado, D.R., E-mail: diegorochagrana@uerj.br; Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defectsmore » and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.« less

  12. Do the surface Fermi arcs in Weyl semimetals survive disorder?

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Pixley, J. H.; Huse, David A.; Refael, Gil; Das Sarma, S.

    2018-06-01

    We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculations on a lattice model exhibiting Weyl Fermi arcs. We find that the Fermi-arc surface states, in addition to having a finite lifetime from disorder broadening, hybridize with nonperturbative bulk rare states making them no longer bound to the surface (i.e., they lose their purely surface spectral character). Thus, we provide strong numerical evidence that the Weyl Fermi arcs are not topologically protected from disorder. Nonetheless, the surface chiral velocity is robust and survives in the presence of strong disorder, persisting all the way to the Anderson-localized phase by forming localized current loops that live within the localization length of the surface. Thus, the Weyl semimetal is not topologically robust to the presence of disorder, but the surface chiral velocity is.

  13. Quantum defect theory for the orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng

    2017-01-01

    In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang et al., Phys. Rev. Lett. 115, 135301 (2015), 10.1103/PhysRevLett.115.135301]. When the OFR of the 173Yb atoms occurs, the energy gap between the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range, and binding energy of two-body bound states for the systems with OFR. With these results we further study the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold gases of alkali-earth-metal-like atoms with OFR.

  14. Analytical solutions for the dynamics of two trapped interacting ultracold atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew; Calarco, Tommaso; CNR-INFM BEC Center, I-38050 Povo

    2006-08-15

    We discuss exact solutions of the Schroedinger equation for the system of two ultracold atoms confined in an axially symmetric harmonic potential. We investigate different geometries of the trapping potential, in particular we study the properties of eigenenergies and eigenfunctions for quasi-one-dimensional and quasi-two-dimensional traps. We show that the quasi-one-dimensional and the quasi-two-dimensional regimes for two atoms can be already realized in the traps with moderately large (or small) ratios of the trapping frequencies in the axial and the transverse directions. Finally, we apply our theory to Feshbach resonances for trapped atoms. Introducing in our description an energy-dependent scattering lengthmore » we calculate analytically the eigenenergies for two trapped atoms in the presence of a Feshbach resonance.« less

  15. Continued Analysis of the NIST Neutron Lifetime Measurement Using Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.; Yang, L.

    2013-10-01

    The neutron lifetime is an important parameter for constraining the Standard Model and providing input for Big Bang Nucleosynthesis. The current disagreement in the most recent generation of lifetime experiments suggests unknown or underestimated systematics and motivates the need for alternative measurement methods as well as additional investigations into potential systematics. Our measurement was performed using magnetically trapped Ultracold Neutrons in a 3.1 T Ioffe type trap configuration. The decay rate of the neutron population is recorded in real time by monitoring visible light resulting from beta decay. Data collected in late 2010 and early 2011 is being analyzed and systematic effects are being investigated. An overview of our current work on the analysis, Monte Carlo simulations, and systematic effects will be provided. This work was supported by the NSF and NIST.

  16. Ultracold Anions for High-Precision Antihydrogen Experiments.

    PubMed

    Cerchiari, G; Kellerbauer, A; Safronova, M S; Safronova, U I; Yzombard, P

    2018-03-30

    Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91)  THz and its transition rate to be A=4.90(50)×10^{4}  s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  17. Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-08-01

    We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.

  18. Five Years of the Fermi LAT Flare Advocate

    NASA Astrophysics Data System (ADS)

    Carpenter, Bryce; Ojha, R.; Gasparrini, D.; Ciprini, S.; Fermi LAT Collaboration; Fermi LAT Flare Advocates

    2014-01-01

    Since the launch of the Fermi satellite, the Fermi Large Area Telescope (LAT) team has run a program that provides a daily review of the the gamma-ray sky as soon as Fermi LAT data becomes available. The Flare Advocate/Gamma-ray Sky Watcher (FA-GSW) program allows a rapid analysis of the Automatic Science Processing (ASP) products and triggers dedicated followup analyses by several LAT science groups such as those studying Galactic transients, extragalactic sources and new gamma-ray sources. Significant gamma-ray detections also trigger rapid communications to the entire astrophysical community via astronomical telegrams and gamma-ray coordination network notices. The FA-GSW program plays a key role in maximizing the science return from Fermi by increasing the rate of multi-frequency observations of sources in an active gamma-ray state. In the past ~5 years blazar flaring activity of varying strength and duty cycles, gravitationally lensed blazars, flares from Galactic sources (like Nova Delphini and the Crab Nebula), unidentified transients near and off the Galactic plane, and emission from the quiet and flaring Sun, represent the range of detections made. Flare Advocates have published about 250 Astronomical Telegrams and they publish a weekly blog. Timely, extensive multi-frequency campaigns have been organized to follow-up on these phenomena leading to some of Fermi’s most interesting results.

  19. Control system high-precision laser to obtain the ensemble of ultracold ions Th3+

    NASA Astrophysics Data System (ADS)

    Florentsev, V. V.; Zhdamirov, V. Yu; Rodko, I. I.; Borodulya, N. A.; Biryukov, A. P.

    2018-01-01

    One of key problems of nuclear standard frequency development is preparation assembly of ultracold thorium ions in Pauli trap. In this case semiconductive frequency-stabilized lasers with external resonator on frequencies 690 nm, 984 nm, and 1088 nm are used for excitation of corresponding electronic dipole and quadrupole cooling transitions for Th3+ ions. In the paper the results of development and creation of unified laser module, which is able to be used as base for full-featured system designed for laser cooling of Th3+ ions, are presented. The module is able to fine-tune necessary wavelength with accuracy ±5 nm.

  20. Fermi-Level Pinning of Contacted Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Yu; Liu, Lei; Jayanthi, Chakram; Guo, Guang-Yu

    2004-03-01

    Experimental evidences suggest that the Fermi-level of a contacted SWCNT with an energy gap is pinned in the vicinity of either the top of the valence band or the bottom of the conduction band, depending on the work function of the metallic leads (see, for example, E. D. Minot, Yuval Yaish,Vera Sazonova, Ji-Yong Park, Markus Brink, and Paul L. McEuen, Phys. Rev. Lett. 90, 156401 (2003)). This pinning of the Fermi-level may be attributed to the finite length of the contacted SWCNT. In this presentation, we report the result of our study of the pinning of the Fermi-level of a finite SWCNT, using the single π-orbital theory modified by the inclusion of a self-consistent scheme for the determination of charge transfer. We will also discuss the effect of the Fermi-level pinning on the transport properties of a SWCNT with a gap, either intrinsic or induced by a mechanical deformation. This work is supported by the NSF (Grant Nos: DMR-0112824 and ECS-0224114), the U.S. Department of Energy (Grant No: DE-FG02-00ER45832), and the National Science Council of Taiwan.

  1. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir; Chowdhury, Debanjan

    2016-12-01

    We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.

  2. Molecular spectroscopy for producing ultracold ground-state NaRb molecules

    NASA Astrophysics Data System (ADS)

    Wang, Dajun; Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    Recently, we have successfully created an ultracold sample of absolute ground-state NaRb molecules by two-photon Raman transfer of weakly bound Feshbach molecules. Here we will present the detailed spectroscopic investigations on both the excited and the rovibrational ground states for finding the two-photon path. For the excited state, we focus on the A1Σ+ /b3 Π singlet and triplet admixture. We discovered an anomalously strong coupling between the Ω =0+ and 0- components which renders efficient population transfer possible. In the ground state, the pure nuclear hyperfine levels have been clearly resolved, which allows us to create molecules in the absolute ground state directly with Raman transfer. This work is jointly supported by Agence Nationale de la Recherche (#ANR-13- IS04-0004-01) and Hong Kong Research Grant Council (#A-CUHK403/13) through the COPOMOL project.

  3. Trends in source gases

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Fraser, P. J.; Albritton, D.; Cicerone, R. J.; Khalil, M. A. K.; Legrand, M.; Makide, Y.; Rowland, F. S.; Steele, L. P.; Zander, R.

    1989-01-01

    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form.

  4. Enrico Fermi - And the Revolutions of Modern Physics

    NASA Astrophysics Data System (ADS)

    Cooper, Dan

    1999-02-01

    In 1938, at the age of 37, Enrico Fermi was awarded the Nobel Prize in Physics. That same year he emigrated from Italy to the United States and, in the course of his experiments, discovered nuclear fission--a process which forms the basis of nuclear power and atomic bombs. Soon the brilliant physicist was involved in the top secret race to produce the deadliest weapon on Earth. He created the first self-sustaining chain reaction, devised new methods for purifying plutonium, and eventually participated in the first atomic test. This compelling biography traces Fermis education in Italy, his meteoric career in the scientific world, his escape from fascism to America, and the ingenious experiments he devised and conducted at the University of Rome, Columbia University, and the Los Alamos laboratory. The book also presents a mini-course in quantum and nuclear physics in an accessible, fast-paced narrative that invokes all the dizzying passion of Fermis brilliant discoveries.

  5. Modeling the instability behavior of thin film devices: Fermi Level Pinning

    NASA Astrophysics Data System (ADS)

    Moeini, Iman; Ahmadpour, Mohammad; Gorji, Nima E.

    2018-05-01

    We investigate the underlying physics of degradation/recovery of a metal/n-CdTe Schottcky junction under reverse or forward bias stressing conditions. We used Sah-Noyce-Shockley (SNS) theory to investigate if the swept of Fermi level pinning at different levels (under forward/reverse bias) is the origin of change in current-voltage characteristics of the device. This theory is based on Shockley-Read-Hall recombination within the depletion width and takes into account the interface defect levels. Fermi Level Pinning theory was primarily introduced by Ponpon and developed to thin film solar cells by Dharmadasa's group in Sheffield University-UK. The theory suggests that Fermi level pinning at multiple levels occurs due to high concentration of electron-traps or acceptor-like defects at the interface of a Schottky or pn junction and this re-arranges the recombination rate and charage collection. Shift of these levels under stress conditions determines the change in current-voltage characteristics of the cell. This theory was suggested for several device such as metal/n-CdTe, CdS/CdTe, CIGS/CdS or even GaAs solar cells without a modeling approach to clearly explain it's physics. We have applied the strong SNS modeling approach to shed light on Fermi Level Pinning theory. The modeling confirms that change in position of Fermi Level and it's pining in a lower level close to Valence band increases the recombination and reduces the open-circuit voltage. In contrast, Fermi Level pinning close to conduction band strengthens the electric field at the junction which amplifies the carrier collection and boosts the open-circuit voltage. This theory can well explain the stress effect on device characteristics of various solar cells or Schottky junctions by simply finding the right Fermi level pinning position at every specific stress condition.

  6. Fermi surfaces of the pyrite-type cubic AuSb2 compared with split Fermi surfaces of the ullmannite-type cubic chiral NiSbS and PdBiSe

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.

  7. Second-Order Fermi Acceleration and Emission in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  8. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Su2

    NASA Astrophysics Data System (ADS)

    Yamagami, Hiroshi

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu2Si2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu2Si2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like "curing-stone", "rugby-ball " and "ball". The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  9. Fermi bubbles as a source of cosmic rays above 1015 eV

    NASA Astrophysics Data System (ADS)

    Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.

    2014-11-01

    Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.

  10. High-fidelity cluster state generation for ultracold atoms in an optical lattice.

    PubMed

    Inaba, Kensuke; Tokunaga, Yuuki; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto

    2014-03-21

    We propose a method for generating high-fidelity multipartite spin entanglement of ultracold atoms in an optical lattice in a short operation time with a scalable manner, which is suitable for measurement-based quantum computation. To perform the desired operations based on the perturbative spin-spin interactions, we propose to actively utilize the extra degrees of freedom (DOFs) usually neglected in the perturbative treatment but included in the Hubbard Hamiltonian of atoms, such as, (pseudo-)charge and orbital DOFs. Our method simultaneously achieves high fidelity, short operation time, and scalability by overcoming the following fundamental problem: enhancing the interaction strength for shortening the operation time breaks the perturbative condition of the interaction and inevitably induces unwanted correlations among the spin and extra DOFs.

  11. Superallowed Fermi β decay studies at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Svensson, C. E.; Dunlop, R.; Finlay, P.; Ball, G. C.; Ettenauer, S.; Leslie, J. R.; Towner, I. S.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Demand, G.; Djongolov, M.; Garnsworthy, A. B.; Garrett, P. E.; Green, K. L.; Glister, J.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2013-10-01

    A program of high-precision superallowed Fermi β decay studies is being carried out at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility at TRIUMF. Recent high-precision branching ratio measurements for the superallowed decays of 74Rb and 26Alm, as well as a half-life measurement for 26Alm that is the most precise half-life measurement for any superallowed emitter to date, are reported. These results provide demanding tests of the theoretical isospin symmetry breaking corrections in superallowed Fermi β decays.

  12. MASTER-OAFA: Fermi GRB faded optical counterpart detection

    NASA Astrophysics Data System (ADS)

    Pogrosheva, T.; Lipunov, V.; Podesta, R.; Levato, H.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Gress, O.; Kornilov, V.; Vladimirov, V.; Chazov, V.; Gorbunov, I.; Krylov, A.; Shumkov, V.; Kuvshinov, D.

    2017-02-01

    During Fermi GBM 508295323 trigger ( GRB_TIME: 2017-02-09 01:08:38.08 UT https://gcn.gsfc.nasa.gov/other/508295323.fermi ) inspection MASTER-OAFA auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered new OT source (Podesta et al. GCN #20650) at (RA, Dec) = 07h 23m 07.30s -52d 14m 46.6s on 2017-02-09 02:07:07.478UT with unfiltered m_OT=17.4 (mlimit=18.1m).

  13. Enrico Fermi

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Enrico Fermi was, of all the great physicists of the 20th century, among the most respected and admired. He was respected and admired because of his contributions to both theoretical and experimental physics, because of his leadership in discovering for mankind a powerful new source of energy, and above all, because of his personal character. He was always reliable and trustworthy. He had both of his feet on the ground all the time. He had great strength, but never threw his weight around. He did not play to the gallery. He did not practise one-up-manship. He exemplified, I always believe, the perfect Confucian gentleman...

  14. Nonextensive Thomas-Fermi model

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen; Martinenko, Evgeny

    2007-11-01

    Nonextensive Thomas-Fermi model was father investigated in the following directions: Heavy atom in strong magnetic field. following Shivamoggi work on the extension of Kadomtsev equation we applied nonextensive formalism to father generalize TF model for the very strong magnetic fields (of order 10e12 G). The generalized TF equation and the binding energy of atom were calculated which contain a new nonextensive term dominating the classical one. The binding energy of a heavy atom was also evaluated. Thomas-Fermi equations in N dimensions which is technically the same as in Shivamoggi (1998) ,but behavior is different and in interesting 2 D case nonextesivity prevents from becoming linear ODE as in classical case. Effect of nonextensivity on dielectrical screening reveals itself in the reduction of the envelope radius. It was shown that nonextesivity in each case is responsible for new term dominating classical thermal correction term by order of magnitude, which is vanishing in a limit q->1. Therefore it appears that nonextensive term is ubiquitous for a wide range of systems and father work is needed to understand the origin of it.

  15. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.

    PubMed

    Chang, J; Månsson, M; Pailhès, S; Claesson, T; Lipscombe, O J; Hayden, S M; Patthey, L; Tjernberg, O; Mesot, J

    2013-01-01

    High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.

  16. Spin-imbalanced pairing and Fermi surface deformation in flat bands

    NASA Astrophysics Data System (ADS)

    Huhtinen, Kukka-Emilia; Tylutki, Marek; Kumar, Pramod; Vanhala, Tuomas I.; Peotta, Sebastiano; Törmä, Päivi

    2018-06-01

    We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, whose stability is confirmed by dynamical mean-field theory. The nature of the pairing is found to be richer than just the Fermi surface shift responsible for the usual FFLO state. The presence of a flat band allows for changes in the particle momentum distributions at null energy cost. This facilitates formation of nontrivial superfluid phases via multiband Cooper pair formation: the momentum distribution of the spin component in the flat band deforms to mimic the Fermi surface of the other spin component residing in a dispersive band. The Fermi surface of the unpaired particles that are typical for gapless superfluids becomes deformed as well. The results highlight the profound effect of flat dispersions on Fermi surface instabilities, and provide a potential route for observing spin-imbalanced superfluidity and superconductivity.

  17. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  18. Applications of Fermi-Lowdin-Orbital Self-Interaction Correction Scheme to Organic Systems

    NASA Astrophysics Data System (ADS)

    Baruah, Tunna; Kao, Der-You; Yamamoto, Yoh

    Recent progress in treating the self-interaction errors by means of local, Lowdin-orthogonalized Fermi Orbitals offers a promising route to study the effect of self-interaction errors in the electronic structure of molecules. The Fermi orbitals depend on the location of the electronic positions, called as Fermi orbital descriptors. One advantage of using the Fermi orbitals is that the corrected Hamiltonian is unitarily invariant. Minimization of the corrected energies leads to an optimized set of centroid positions. Here we discuss the applications of this method to various systems from constituent atoms to several medium size molecules such as Mg-porphyrin, C60, pentacene etc. The applications to the ionic systems will also be discussed. De-SC0002168, NSF-DMR 125302.

  19. FERMI Observations of High-Energy Gamma-Ray Emission from GRB 080825C

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Asano, K.; ...

    2009-11-24

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here in this paper, we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. Finally, we also present some theoretical interpretation ofmore » GRB 080825C observations as well as some common features observed in other LAT GRBs.« less

  20. Fermi surface properties of NbAs2 studied by de Haas-van Alphen oscillation

    NASA Astrophysics Data System (ADS)

    Singha, Ratnadwip; Mandal, Prabhat

    2018-04-01

    We have grown high quality single crystal of NbAs2, a member of the transition metal dipnictide family and measured magnetotransport properties. Very large magnetoresistance ˜1.3×105 % has been observed at 2 K with 9 T magnetic field. The Fermi surface properties have been studied by de Haas-van Alphen oscillation technique. The Fermi surface is highly anisotropic and consists of multiple Fermi pockets. From quantum oscillation results, different Fermi surface related parameters have been quantified.

  1. Progress Towards Laser Cooling of an Ultracold Neutral Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; Gorman, Grant; Chen, Zhitao; Chow, Kyle; Killian, Thomas

    2017-04-01

    We report on progress towards laser-cooling of the ion component of an ultracold neutral plasma (UNP) consisting of 88Sr+. The goal of the experiment is to increase the value of the ion Coulomb Coupling Parameter, Γi, which is the ratio of the average nearest neighbor Coulomb interaction energy to the ion kinetic energy. Currently, Γi is limited to 3 in most UNP systems. We have developed a new photoionization pathway for plasma creation that starts with atoms in a magnetic trap. This allows us to create much larger plasmas (upwards of 109 atoms with a width of 4 mm). This greatly reduces the plasma expansion rate, giving more time for laser cooling. We have also installed lasers for optically pumping atoms out of dark states that are populated during laser cooling. We will discuss these new systems, along with the results of our first attempts at laser-cooling. Supported by NSF and DoE (PHY-0714603), the Air Force Office of Scientific Research (FA9550-12-1-0267), and the Shell Foundation.

  2. Small Fermi surfaces of PtSn4 and Pt3In7

    NASA Astrophysics Data System (ADS)

    Yara, T.; Kakihana, M.; Nishimura, K.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    An extremely large magnetoresistance of PtSn4 has been recently observed and discussed from a viewpoint of de Haas-van Alphen (dHvA) oscillations and theoretical small Fermi surfaces. We have studied precisely the Fermi surfaces by measuring angular dependences of dHvA frequencies and have also carried out the full potential LAPW band calculation. Furthermore, small Fermi surfaces have been detected in another Pt-based compound of Pt3In7 with the cubic structure.

  3. Bose-Fermi symmetry in the odd-even gold isotopes

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Régis, J.-M.; Jolie, J.; Heinze, S.; Albers, M.; Bernards, C.; Fransen, C.; Radeck, D.

    2014-05-01

    In this work the results of an in-beam experiment on 195Au are presented, yielding new spins, multipole mixing ratios, and new low-lying states essential for the understanding of this nucleus. The positive-parity states from this work together with compiled data from the available literature for 185-199Au are compared to Interacting Boson Fermion Model calculations employing the Spin(6) Bose-Fermi symmetry. The evolution of the parameters for the τ splitting and the J splitting reveals a smooth behavior. Thereby, a common description based on the Bose-Fermi symmetry is found for 189-199Au. Furthermore, the calculated E2 transition strengths are compared to experimental values with fixed effective boson and fermion charges for all odd-even gold isotopes, emphasizing that the Spin(6) Bose-Fermi symmetry is valid for the gold isotopes.

  4. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compressed gases other than inert gases. 194.15-17 Section 194.15-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and...

  5. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compressed gases other than inert gases. 194.15-17 Section 194.15-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and...

  6. Generalized charge-screening in relativistic Thomas–Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact

  7. A joint analysis of the Drake equation and the Fermi paradox

    NASA Astrophysics Data System (ADS)

    Prantzos, Nikos

    2013-07-01

    I propose a unified framework for a joint analysis of the Drake equation and the Fermi paradox, which enables a simultaneous, quantitative study of both of them. The analysis is based on a simplified form of the Drake equation and on a fairly simple scheme for the colonization of the Milky Way. It appears that for sufficiently long-lived civilizations, colonization of the Galaxy is the only reasonable option to gain knowledge about other life forms. This argument allows one to define a region in the parameter space of the Drake equation, where the Fermi paradox definitely holds (`Strong Fermi paradox').

  8. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions

    PubMed Central

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-01-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  9. Search for Gamma-Ray Emission from Galactic Novae using Fermi-LAT Pass 8

    NASA Astrophysics Data System (ADS)

    Buson, Sara; Franckowiak, Anna; Cheung, Teddy; Jean, Pierre; Fermi-LAT Collaboration

    2016-01-01

    Recently Galactic novae have been identified as a new class of GeV gamma-ray emitters, with 6 detected so far with the Fermi Large Area Telescope (Fermi-LAT) data. Based on optical observations we have compiled a catalog of ~70 Galactic novae, which peak (in optical) during the operations of the Fermi mission. Based on the properties of known gamma-ray novae we developed a search procedure that we apply to all novae in the catalog to detect these slow transient sources or set flux upper limits using the Fermi-LAT Pass 8 data set. This is the first time a large sample of Galactic novae has been uniformly studied.

  10. Fermi Large Area Telescope Second Source Catalog

    NASA Astrophysics Data System (ADS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Bignami, G. F.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Cañadas, B.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Ceccanti, M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chipaux, R.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbet, R.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; DeCesar, M. E.; DeKlotz, M.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Enoto, T.; Escande, L.; Fabiani, D.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, R. P.; Johnson, T. E.; Johnson, A. S.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Landriu, D.; Latronico, L.; Lemoine-Goumard, M.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Marelli, M.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Minuti, M.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Pinchera, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Romani, R. W.; Roth, M.; Rousseau, R.; Ryde, F.; Sadrozinski, H. F.-W.; Salvetti, D.; Sanchez, D. A.; Saz Parkinson, P. M.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Shaw, M. S.; Shrader, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinebra, F.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-04-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes. We dedicate this paper to the memory of our colleague Patrick Nolan, who died on 2011 November 6. His career spanned much of the history of high-energy astronomy from space and his work on the Large Area Telescope (LAT) began nearly 20 years ago when it was just a concept. Pat was a central member in the operation of the LAT collaboration and he is greatly missed.

  11. The Fermi-Pasta-Ulam problem: Paradox turns discovery

    NASA Astrophysics Data System (ADS)

    Ford, Joseph

    1992-05-01

    This pedagogical review is written as a personal retrospective which seeks to place the celebrated Fermi, Pasta, and Ulam paradox into historical perspective. After stating the Fermi-Pasta-Ulam results, we treat the questions it raises as a pedagogical “skeleton” upon which to drape (and motivate) the evolving story of nonlinear dynamics/chaos. This review is thus but another retelling of that story by one intimately involved in its unfolding. This is done without apology for two reasons. First, if my colleagues have taught me anything, it is that an audience of experts will seldom pay greater attention than when, with some modicum of grace and polish, they are told things they know perfectly well already. Second, if generations of students have taught me anything, it is that few things fascinate them more than a scientific mystery - and the Fermi-Pasta-Ulam paradox is a cracker-jack mystery. And so readers, especially graduate students curious about nonlinear dynamics/chaos, are now invited to sit back, loosen their belts (and minds), and prepare for fact that sometimes reads like fantasy.

  12. A Mobile Data Application for the Fermi Mission

    NASA Astrophysics Data System (ADS)

    Stephens, Thomas E.; Science Support Center, Fermi

    2014-01-01

    With the ever increasing use of smartphones and tablets among scientists and the world at large, it becomes increasingly important for projects and missions to have mobile friendly access to their data. This access could come in the form of mobile friendly websites and/or native mobile applications that allow the users to explore or access the data. The Fermi Gamma-ray Space Telescope mission has begun work along the latter path. In this poster I present the current version of the Fermi Data Portal, a native mobile application for both Android and iOS devices that allows access to various high level public data products from the Fermi Science Support Center (FSSC), the Gamma-ray Coordinate Network (GCN), and other sources. While network access is required to download data, most of the data served by the app are stored locally and are available even when a network connection is not available. This poster discusses the application's features as well as the development experience and lessons learned so far along the way.

  13. A Mobile Data Application for the Fermi Mission

    NASA Astrophysics Data System (ADS)

    Stephens, T. E.

    2013-10-01

    With the ever increasing use of smartphones and tablets among scientists and the world at large, it becomes increasingly important for projects and missions to have mobile friendly access to their data. This access could come in the form of mobile friendly websites and/or native mobile applications that allow the users to explore or access the data. The Fermi Gamma-ray Space Telescope Mission has begun work along the latter path. In this poster I present the initial version of the Fermi Mobile Data Portal, a native application for both Android and iOS devices that allows access to various high level public data products from the Fermi Science Support Center (FSSC), the Gamma-ray Coordinate Network (GCN), and other sources. While network access is required to download data, most of the data served by the app are stored locally and are available even when a network connection is not available. This poster discusses the application's features as well as the development experience and lessons learned so far along the way.

  14. Fermi: The Gamma-Ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  15. Measurement of the Neutron Lifetime with Ultra-cold Neutrons Stored in a Magneto-gravitational Trap

    NASA Astrophysics Data System (ADS)

    Ezhov, V. F.; Andreev, A. Z.; Ban, G.; Bazarov, B. A.; Geltenbort, P.; Glushkov, A. G.; Knyazkov, V. A.; Kovrizhnykh, N. A.; Krygin, G. B.; Naviliat-Cuncic, O.; Ryabov, V. L.

    2018-05-01

    We report a measurement of the neutron lifetime using ultra-cold neutrons stored in a magneto-gravitational trap made of permanent magnets. Neutrons surviving in the trap after fixed storage times have been counted and the trap losses have continuously been monitored during storage by detecting neutrons leaking from the trap. The value of the neutron lifetime resulting from this measurement is τ n = (878.3 ± 1.6stat ± 1.0syst) s. A unique feature of this experiment is the monitoring of leaking neutrons providing a robust control of the main systematic loss.

  16. Luttinger theorem and imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Pieri, Pierbiagio; Strinati, Giancarlo Calvanese

    2017-04-01

    The proof of the Luttinger theorem, which was originally given for a normal Fermi liquid with equal spin populations formally described by the exact many-body theory at zero temperature, is here extended to an approximate theory given in terms of a "conserving" approximation also with spin imbalanced populations. The need for this extended proof, whose underlying assumptions are here spelled out in detail, stems from the recent interest in superfluid trapped Fermi atoms with attractive inter-particle interaction, for which the difference between two spin populations can be made large enough that superfluidity is destroyed and the system remains normal even at zero temperature. In this context, we will demonstrate the validity of the Luttinger theorem separately for the two spin populations for any "Φ-derivable" approximation, and illustrate it in particular for the self-consistent t-matrix approximation.

  17. Generalized susceptibilities and Landau parameters for anisotropic Fermi liquids

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ponte, P.; Cabra, D.; Grandi, N.

    2015-05-01

    We study Fermi liquids (FLs) with a Fermi surface that lacks continuous rotational invariance and in the presence of an arbitrary quartic interaction. We obtain the expressions of the generalized static susceptibilities that measure the linear response of a generic order parameter to a perturbation of the Hamiltonian. We apply our formulae to the spin and charge susceptibilities. Based on the resulting expressions, we make a proposal for the definition of the Landau parameters in nonisotropic FL.

  18. Enhancement of ultracold molecule formation by local control in the nanosecond regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, J. L.; Kallush, S.; Kosloff, R.

    2015-02-01

    We describe quantum simulations of ultracold 87Rb 2 molecule formation using photoassociation (PA) with nanosecond-time-scale pulses of frequency chirped light. In particular, we compare the case of a linear chirp to one where the frequency evolution is optimized by local control (LC) of the phase, and find that LC can provide a significant enhancement. The resulting optimal frequency evolution corresponds to a rapid jump from the PA absorption resonance to a downward transition to a bound level of the lowest triplet state. We also consider the case of two frequencies and investigate interference effects. The assumed chirp parameters should bemore » achievable with nanosecond pulse shaping techniques and are predicted to provide a significant enhancement over recent experiments with linear chirps.« less

  19. Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; Simonnet, A.; Fermi E/PO Team

    2013-04-01

    During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: ● Higher Education: Fermi E/PO promotes STEM careers through the use of NASA data including research experiences for students and teachers (Global Telescope Network), education through STEM curriculum development projects (Cosmology curriculum) and through enrichment activities (Large Area Telescope simulator). ● Elementary and Secondary education: Fermi E/PO links the science objectives of the Fermi mission to well-tested, customer-focused and NASA-approved standards-aligned classroom materials (Black Hole Resources, Active Galaxy Education Unit and Pop-up book, TOPS guides, Supernova Education Unit). These materials have been distributed through (Educator Ambassador and on-line) teacher training workshops and through programs involving under-represented students (after-school clubs and Astro 4 Girls). ● Informal education and public outreach: Fermi E/PO engages the public in sharing the experience of exploration and discovery through high-leverage multi-media experiences (Black Holes planetarium and PBS NOVA shows), through popular websites (Gamma-ray Burst Skymap, Epo's Chronicles), social media (Facebook, MySpace), interactive web-based activities (Space Mysteries, Einstein@Home) and activities by

  20. 2FHL: The Second Catalog of Hard Fermi-LAT Sources

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2016-01-14

    We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass 8 event-level analysis allows the detection and characterization of sources in the 50 GeV–2TeV energy range. In this energy band, Fermi - LAT has detected 360 sources, which constitute the second catalog of hard Fermi -LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (~1.'7 radius at 68 % C. L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associatedmore » with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi -LAT on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.« less